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ABSTRACT 

EXAMINATION OF THE POTENTIAL OF STRUCTURE-FROM-MOTION 

PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING FOR RAPID 

NONDESTRUCTIVE FIELD MEASUREMENT OF GRASS BIOMASS 

SAM D. COOPER 

2017 

Above ground biomass (AGB) is a parameter commonly used for assessment of 

grassland systems.  While destructive sampling of AGB is highly accurate, it is time 

consuming and often precludes repeat temporal sampling or sampling in sensitive 

ecosystems.  Consequently, a number of nondestructive techniques that relate grass 

structural properties to AGB have been developed.  This study investigated the 

application of two recent technologies, Terrestrial Laser Scanning (TLS) and Structure-

from-Motion (SfM), in the development of rapid nondestructive AGB estimation of 

grassland plots. TLS and SfM volume metrics generated using a rasterized surface 

differencing method were linearly related to destructively measured total AGB and grass 

AGB excluding all litter, and results were compared to the conventional disc pasture 

meter.  The linear models were assessed using a leave-one-out cross validation scheme.  

The disc pasture meter was found to be the least reliable method in assessing total AGB 

(r2 = 0.32, RMSELOOCV = 269 g/m2).  SfM (r2 = 0.74, RMSELOOCV = 169 g/m2) 

outperformed TLS (r2 = 0.56, RMSELOOCV = 219 g/m2), though a much larger slope in 

SfM regressions suggests an increased sensitivity to error.  Litter removal decreased the 

effectiveness of AGB estimation for both TLS (r2 = 0.49) and SfM (r2 = 0.51) but 

increased the fit of disc pasture meter estimations (r2 = 0.42), highlighting the complex 
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relationship between litter accumulation and AGB.  TLS and SfM derived volumes were 

shown to be insensitive to cell dimensions when calculating volume provided cell 

dimensions were large enough to ensure no empty cells occurred. Using observed ground 

surfaces in volumetric calculations rather than an estimated ground plane increased r2 to 

0.63 for TLS and 0.77 for SfM.  Though the disc pasture meter was found to be the most 

rapid of the three methods, TLS and SfM both out performed it and have clearly 

demonstrated their potential utility for AGB estimation of grass systems.  Their ability to 

systematically collect measurements over larger spatial extents than those investigated 

here could greatly outpace the disc pasture meter’s predictive capabilities and speed. 

 

 

Keywords: Terrestrial Laser Scanning, Structure-from-Motion, disc pasture meter, grass, 

aboveground biomass,  
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1.0 INTRODUCTION 

Grasslands and rangelands make up 47% global terrestrial surface area and are 

home to a wide variety of unique plant and animal species (Owensby et al. 1993).  

Grasslands directly and indirectly benefit human life around the world through collective 

benefits known as ecosystem services (Costanza et al. 1997).  In grasslands, ecosystems 

services include basic functions such as food production, wildlife habitat, or waste 

assimilation, as well as more intangible services such as aesthetic value or cultural 

significance.  Globally, all ecosystem services have been estimated to provide US$ 16 – 

54 trillion of unaccounted for value into our economy (Costanza et al. 1997), with 

grasslands contributing significantly to erosion control, soil formation, and greenhouse 

gas regulation.  Understanding and quantifying the value of ecosystems around the world 

is the best means to garner larger support for their protection, and accomplishing that 

requires comprehensive understanding of their health and productivity.  

Though the overall productivity of grasslands is proportionally much lower than 

other ecosystems (e.g., forests), grasslands still are highly productive ecosystems with a 

large carbon storage capacity and contain up to 30% of the world’s soil carbon stock 

(Scurlock and Hall 1998).  Because of low soil turnover, tallgrass ecosystems in 

particular are important means for long term carbon storage globally (Knapp and Smith 

2001).   

Measuring and monitoring ecosystem health and suitability is a challenge that is 

present around the world.  A wide range of different indicators have been developed to 

monitor and understand ecosystems and the drivers that impact them.  These indicators 

vary depending on the ecosystem and lifeforms being assessed.  Often, they involve 
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community species assessment or in depth observations of sensitive or ecologically 

important species.  These processes, however, can be time consuming and require 

extensive in situ study on small spatial scales. 

Aboveground biomass (AGB) is one indicator frequently used for ecosystem 

assessment.  It is defined as the weight per unit area of plant material protruding above 

the soil surface and includes all living vegetation above the soil (Eisfelder et al. 2012). 

AGB is therefore closely related to ecosystem net primary production (NPP), which can 

be measured as the amount of organic matter (i.e. vegetation) produced per unit area in a 

given time.  This is not only a fundamental aspect to all life on earth, but it also plays an 

important role in global carbon cycling, a process of great importance to the study of 

climate change.  AGB is an important metric often used in climate modeling as well as a 

measure of vegetation production, quality of habitat, and an ecosystem’s direct and 

indirect economic outputs.  In grasslands, quantification of AGB is an important tool for 

a number of applications, including pasture management (Trotter et al. 2010), wildlife 

habitat monitoring (Carlyle et al. 2010; McNaughton 1985), fire management (Kauffman 

et al. 1994; Trollope et al. 1996), carbon storage (Scurlock and Hall 1998; Tilman et al. 

2006), and understanding the implications of and biophysical and ecological processes 

that influence grass production (Tilman et al. 2001; Loreau and Hector 2001). 

Measuring and monitoring AGB can be quite challenging, and techniques for 

doing so vary depending on the vegetation under investigation.  Direct destructive 

sampling of AGB involves cutting, drying and weighing all vegetation above the soil 

surface.  It is the most direct and accurate method for AGB measurement, however it is 

time consuming and highly intrusive by nature (Mannetje 2000).  The need to physically 
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remove vegetation for measurement can further limit site selection and makes repeat 

sampling difficult if not impossible.  The consequence of this is that while higher 

accuracy in plot measurements may be obtained, studies relying solely on destructive 

techniques are often limited to fewer plots which could lead to lower site-wide AGB 

estimation accuracy.   

To mitigate this, nondestructive methods have been developed to estimate AGB in 

grasslands.  These methods typically generate allometric relationships between a subset 

of destructively sampled plots to some structural property (e.g., height and cover 

Williamson et al. 1987) that can be nondestructively measured across the study site, 

thereby reducing the need for destructive sampling.  These relationships can further be 

calibrated to specific species composition and site conditions so that allometric 

calibration through destructive sampling can be bypassed altogether if the correct 

conditions are met (Zambatis et al. 2006).  The use of allometric relationships for AGB 

estimation has the benefit of leaving a majority of the vegetation intact, but at the cost of 

lower accuracy.  However this allows for more rapid sampling, meaning that a greater 

number of plots can be assessed in a limited time frame.  Given the time constraints many 

studies face, this could potentially allow for greater site-wide accuracy.   

One conventional allometric method commonly used in AGB estimation of 

grasslands is the disc pasture meter, which allometrically relates the settling height of a 

weighted disc on a grassland plot to the AGB beneath it (Holmes 1974; Santillan et al. 

1979).  While the disc pasture meter is rapid and reasonably accurate, it has shown to be 

less reliable in tall grasses and heterogeneous plots (Santillan et al. 1979; Mannetje 2000; 

Douglass and Crawford 1994) as well as in the presence of a large litter layer or variable 
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microtopography across the study site (Karl and Nicholson 1987).  Shortcomings such as 

these in allometric estimation of AGB leave the possibility open for the development of 

new methodologies in AGB estimation, and recent technological advances in active and 

passive remote sensing have the potential for rapid nondestructive estimation of grassland 

AGB. 

Two such advances are found in Terrestrial Laser Scanning (TLS) and Structure-

from-Motion (SfM) photogrammetry.  TLS utilizes Light Detection and Ranging 

(LiDAR) technology to make three dimensional measurements of an object.  These 

systems require very little training to use and may be deployed rapidly and systematically 

to return precise and consistent measurements of grassland vegetation.  Advances in 

LiDAR technology have lowered the instrument costs and increased data quality to the 

point that widespread adoption of the technology is becoming increasingly feasible.  The 

Compact Biomass Lidar (CBL) is one such advance making TLS technologies practical 

for implementation in a wide array of ecological surveys.  The CBL unit is lightweight, 

portable, and fast scanning, making it a highly versatile instrument allowing for rapid 

data acquisition (Paynter et al. 2016).  Advances such as these have led to the increasing 

use of TLS systems in vegetation assessment, though most studies have focused on 

woody vegetation. 

Structure-from-Motion (SfM) photogrammetry is a passive remote sensing 

technology with high potential for vegetation assessment.  SfM is a computer vision 

technique that generates a 3D point cloud similar to that of LiDAR (Nouwakpo et al. 

2015). First introduced in 1979 (Ullman 1979), it has only been with recent advances in 

computing that SfM has become a viable tool for general application.  Unlike LiDAR, 



5 

 

 

 

which is an active remote sensing technology, SfM point clouds are calculated from a 

series of overlapping digital photographs.  The use of ordinary cameras in SfM data 

acquisition significantly lowers equipment costs compared to TLS, but like TLS, SfM can 

be quickly and easily implemented, as users need only know the basics of camera 

operation and photo capture.  While this technology has been successfully implanted in 

woody vegetation assessments, few studies have explored its utility in assessing 

herbaceous vegetation such as grasses. 

Both TLS and SfM have been shown to be highly effective in woody vegetation 

assessment and AGB estimation.  The implementation of TLS in herbaceous vegetation 

assessment has been increasing, but direct applications linking TLS measurements to 

grass AGB estimations remain limited, and SfM remains largely untested in herbaceous 

systems.  Both technologies are being actively explored, however, and no standardized 

methods of their application have been developed, particularly in grassland systems.  
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2.0 THESIS OBJECTIVES 

This thesis investigates the efficacy of Terrestrial Laser Scanning (TLS) and 

Structure-from-Motion (SfM) in deriving above ground biomass (AGB) of grassland 

plots in order to establish new and more efficient means of AGB estimation for grassland 

ecosystems.  To accomplish this, I will address the following questions.  For the same 

prairie grassland system:  (1) How accurately can the SfM approach estimate 

aboveground grass biomass?  (2) How accurately can the TLS approach estimate 

aboveground grass biomass?  (3) Are the remote sensing approaches (SfM and TLS) 

more accurate than the conventional disc pasture meter approach?  (4) What are the 

limitations of each method (TLS, SfM, and disc pasture meter) for rapid field based 

assessments of aboveground grass biomass?          
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3.0 A REVIEW OF FIELD BASED METHODS FOR MEASURING 

ABOVEGROUND BIOMASS 

The AGB of grassland systems can be measured in a variety of different ways.  

Here I present a literature review of conventional field based methods for measuring 

AGB as well as general application of TLS and SfM technologies in vegetation 

assessment.  Grasslands and rangelands often contain a variety of woody plant species 

ranging from small shrubs to large trees and can make significant contributions to the 

AGB of a grassland system.  For the purposes of this study, site selection precluded the 

presence of woody biomass. Nevertheless, woody biomass of various sizes is often 

present in grassland environments and must be considered when assessing AGB of a 

grassland system as a whole.  Additionally, application of TLS and SfM for vegetation 

assessment has largely focused on woody vegetation assessment, and application in 

herbaceous systems has been limited, especially for SfM.  Techniques developed for 

woody vegetation assessment could therefore provide much needed insight into possible 

applications in a grassland ecosystem.  For these reasons, a review of woody vegetation 

assessment is included in this literature review.  

3.1 Conventional Field Based AGB Estimates 

Conventional methods for AGB measurement can be grouped into two broad 

categories: destructive and nondestructive.  Destructive techniques are widely regarded as 

the more accurate of the two, but they have several disadvantages (Mannetje 2000).  They 

are often far more labor intensive than nondestructive techniques.  Given that many 

studies are often limited both in time at resources, this means that while higher accuracy 

may be obtained, studies utilizing destructive techniques are often limited to fewer sites.  
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This can be detrimental to large area studies.  Furthermore, the removal of vegetation 

required for destructive sampling means that repeat sampling of a plot is impossible, 

limiting its use in sites within sensitive ecosystems or some studies of change over time.  

Consequently, non-destructive techniques requiring less time and obtaining more 

accurate results are a topic of research.  

3.1.1 Field Based AGB Estimates of Grasses 

3.1.1.1 Destructive Sampling.  For grassland systems, destructive sampling of 

AGB involves cutting and weighing all vegetation growing above the soil level in a plot.  

Grasses can be cut either by hand or by machine-driven devices such as specialized 

harvesters or lawn mowers.  The height at which the plot is cut is crucial to obtaining 

accurate AGB estimates, with consistency being key.  The ideal clipping height varies by 

the community makeup, but typically cutting heights should be low enough to sample a 

majority of the biomass without accidentally collecting any soil in the sample.  After 

removing the vegetation, samples are typically dried and weighed to obtain the dry matter 

yield of the sample.  While the wet weight of the plant matter may be useful for 

generalized comparisons, drying is necessary due to the highly variable water content that 

may exist between the plants being weighed (Mannetje 2000).  Prior to drying, the 

samples can also be sorted by various factors to determine percent composition by 

species or dead standing versus live standing biomass.   

The need for faster and less intrusive measurements has led to the development of 

many non-destructive methods for AGB estimation specific to grassland communities.  

These techniques are typically calibrated using a process known as double sampling, in 

which the destructive sampling of a few plots in a given community is used to establish 
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allometric relationships between the non-destructive techniques measured at larger spatial 

extents and the direct AGB measurements.  This allows for more rapid AGB estimations 

of large-scale projects.  Non-destructive techniques in grass dominated systems have 

been grouped into three categories by Mannetje (2000): visual estimation, height and 

density measurements, and measurements of other attributes related to biomass.  

3.1.1.2 Direct Visual Estimation.  Direct visual estimation has limited use in 

scientific research, as researchers simply visually compare plots to a destructively 

measured reference.  However, this method has been shown to sometimes yield accurate 

results, with a correlation coefficient between estimated and clipped AGB measurements 

of 0.98 using the comparative yield method developed by Haydock and Shaw (1975).  

This method involves clipping and weighing a small subset of a plot, and using that 

subset as a visual reference to estimate the AGB of the entire plot.  Boyda (2013) 

investigated the accuracy of a similar reference unit method in tallgrass prairies, 

obtaining highly accurate results (𝑟2 = 0.91).  He emphasized a high degree of 

consistency between different observers in the project, but as data was collected from 

only three individuals training, consistency between observers in widespread application 

may be an issue.   

Visual obstruction measurement have also been shown to be highly correlative 

(𝑟2 = 0.97) to the weight of clipped vegetation (Robel et al. 1970).  In this technique, an 

observer estimates the amount of vegetation obstructed along a transect by recording the 

lowest observable point at various distances and from different heights.  This distance 

metric can then be allometrically related to AGB of the plot.  
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3.1.1.3 Height and Density Measurements.  Height and density measurements 

have been found to show strong correlation with aboveground biomass.  Reppert et al.  

(1962) were able to show correlations between vegetation height and percent ground 

cover using point frame measurements for plant heights and visual estimations of ground 

cover.  While they found individually these metrics were poor indicators of total AGB, 

combining height, cover, and height multiplied by cover together accounted for 84% of 

the variation of the vegetation AGB.  Williamson et al. (1987) improved upon this 

relation somewhat by using basal cover and blade length of a plot to estimate AGB (𝑟2 = 

0.87). This relationship was also noted to vary seasonally.  

Due to their portability and consistency, disc pasture meters are a widely used tool 

for AGB estimation of grasses.  A disc pasture meter consists of a circular or rectangular 

plate that slides along a pole and is dropped from a fixed height or lowered gently onto 

the grass canopy.  The height at which it comes to rest is assumed to be a function of the 

height and density of the grass beneath it and can be allometrically related to the AGB of 

the plot (Holmes 1974).  This method is highly dependent on the grass species 

composition, phenology, and moisture content of the vegetation.  Bransby et al. (1977) 

tested the effect of varying the disc size and weight on measurements, comparing discs of 

equal weight per area but different size as well as discs of constant size but differing 

weights.  They found no significant differences in calibration from altered size or weight.  

This was contrasted by Santillan et al. (1979), who observed higher precision with larger 

disc sizes.  They concluded that this was due to larger discs measuring a greater area of 

vegetation, thus incorporating a larger degree of plot variability in the measurements.  
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However, improvements were only slight and they observed that the ease of use of the 

smaller discs as well as their uniformity across grass species offset their lower precision.  

Several different methods for obtaining the AGB measurements from disc pasture 

meters have been developed.  Holmes (1974) pioneered the disc pasture meter technique 

and allowed the disc to drop from a fixed height.  Santillan et al. (1979) found that gently 

lowering the disc on top of the vegetation reduced variation caused from dropping the 

disc.  Harmoney et al. (1997) found that by allowing the disc to rise slowly as the pole is 

inserted into the plot, a tighter relationship between resting height and AGB could be 

achieved.  While all of these studies showed strong correlations between disc height and 

measured AGB, they noted that the disc method appears to be most accurate in 

homogenous plots.  Grassland plots with numerous different species as well as forbs and 

woody shrubs make this method less effective (Mannetje 2000). 

Pasture meters are a relatively new technology that allow for rapid measurement 

of grass height that can then be allometrically related to AGB.  These meters consist of a 

vertical row of light beams mounted on a trailer.  When driven over a pasture, the grasses 

will disrupt the beams and the highest beam disrupted indicates the maximum height of 

the grass at that location.  Schori et al. (2015) compared the relative effectiveness of a 

pasture meter to the rising plate meter method of AGB estimation.  They found that the 

pasture meter yielded higher average measurements of grass height, but regressions 

estimating biomass yielded similar coefficients of determination, with 𝑟2 of 0.81 for the 

rising plate meter and 0.77 for the pasture meter.  The pasture meter, however, took 

approximately 1/6 of the time that the rising plate meter took for full field assessment.  
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3.1.1.4 Other Attributes Related to AGB.  The electrical capacitance of grasses 

and other herbaceous vegetation is much higher than that of woody vegetation and bare 

ground.  Taking advantage of this, Vickery and Nicol (1980) obtained high levels of 

correlation by calibrating measurements to the mean air capacitance.  Like disc pasture 

meters, capacitance can be affected by a variety of factors such as vegetation water 

content, species composition, and reproductive stage, suggesting that like other allometric 

methods, the use of capacitance for AGB estimation is best suited for homogenous plots 

during the same phenological stage.  Serrano et al. (2011) confirmed this assumption and 

found that accuracy varied significantly between homogenous grass dominated plots 

(𝑟2 = 0.90), heterogeneous grass plots (𝑟2 = 0.87) and legume dominated pastures (𝑟2  = 

0.48).  

Various field based optical remote sensing techniques for estimating AGB have 

also been proposed.  These methods relate spectral properties of the vegetation to AGB 

through the use of spectral reflectance indices (e.g., Normalized Difference Vegetation 

Index).  Trotter et al. (2010) used an active sensor emitting red (650nm) and near infrared 

(880 nm) to quantify AGB in a grass pasture using the Soil Adjusted Vegetation Index, 

the Normalized Differenced Vegetation Index, the Nonlinear Vegetation Index, the 

Modified Nonlinear Vegetation Index, the Simple Ratio, and the Modified Simple Ratio.  

They found that the Soil Adjusted Vegetation Index had the lowest RMSE of 288 kg/ha, 

largely due to its compensation of near infrared saturation at high biomass levels.  Erdle 

et al. (2011) compared active sensors, such as those used by Trotter et al. (2010), to a bi-

directional passive radiometer and found that all sensors were able to describe AGB and 

of a wheat field, though this broke down when estimating nitrogen content, and varied 
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significantly by growth stage of the wheat.  They also noted that active sensors had the 

added benefit of not relying on ambient lighting conditions, allowing for greater 

flexibility in usage. 

3.1.2 Woody Field Based Biomass Estimates 

3.1.2.1 Destructive Sampling.  Measuring AGB of woody vegetation using 

destructive techniques follows the same general principles as non-woody sampling and is 

also considered to be the most accurate means for measuring AGB.  First, the whole tree 

or shrub is cut at ground level or a specified height.  Typically, the plant material is 

sorted into wood, twigs, fruits, and leaves, and each component is dried and weighed 

separately.  A diameter based classification is typically used to distinguish between wood 

and twigs, for example classifying material greater than 5mm in diameter classified as 

wood and those less than 5mm classified as twigs (Mannetje 2000).   

Another destructive technique for woody vegetation assessment is xylometry, or 

water displacement of the woody components. This method can been used to obtain 

highly accurate volumetric measurements of woody vegetation (Özçelik et al. 2008), 

which along with the wood density relates directly to biomass.  By compensating for 

water weight absorbed by the log, the authors were able to obtain more accurate 

volumetric estimates than previous destructive methods of drying and weighing.  While 

xylometry doesn’t directly measure biomass, it is an effective way to obtain and validate 

volumetric measurements which can then be allometrically related to biomass.  Like non-

woody sampling methods, the need for less invasive and less resource intensive methods 

has led to the development of non-destructive techniques to estimate AGB for trees or 

shrubs.   
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Woody plant species vary morphologically, ranging from small shrubs to large 

trees.  These different lifeforms have require different methods of AGB measurement. 

Therefore, clearly differentiating between these groups of woody vegetation is necessary 

to fully understand the ecosystem and accurately assess its biomass.  This is often done 

based on organism height and the presence of multiple stems and defined crowns (FAO 

2015).  While destructive measurements of trees and shrubs are largely the same, this 

distinction is more important in allometric estimations of AGB, which by definition rely 

on the intrinsic structure of the organism being studied and its relationship to AGB. 

3.1.2.2 Nondestructive Sampling of Trees.  For trees, diameter at breast height 

(DBH) is a commonly used metrics to quickly estimate AGB.  Differences in 

morphological traits between different tree species means that direct comparisons to 

AGB using only DBH require intensive calibration to different species (Ter-Mikaelian 

and Korzukhin 1997).  However, these estimates are often drawn around the assumption 

that the trunk is both circular and solid.  Nogueira et al. (2006) quantified the 

overestimations inherent to these assumptions by comparing field measurements to 

measurements from cross-sectional discs.  They found an 11% overestimation from DBH 

and 30% overestimation from total basal area.  This was largely due to non-circular form 

of the trees, with hollow areas only affecting 0.7% of overestimation.  Chave et al. (2005) 

reported another bias in DBH assumptions, observing that neither the cylindrical nor the 

conic models for stem shape are appropriate for estimating stem volume as the rate at 

which the stem tappers is not constant.  

Many times, multiple metrics are combined to generate more accurate results.  

Segura and Kanninen (2005) found that the combination of DBH and total height yielded 
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the best AGB estimates with an 𝑟2 of 0.87 compared to 𝑟2 values ranging from 0.64 - 

0.71 without including height.  Chave et al. (2005) in their assessment of various 

regression models to estimate AGB of tropical forests found that the most important 

predictors in estimating AGB were trunk diameter, wood specific gravity, total height, 

and forest type.   

3.1.2.3 Nondestructive Sampling of Shrubs.  Shrubs, which by definition lack a 

single main stem (FAO 2015), cannot utilize DBH to estimate AGB.  Flombaum and Sala 

(2007) found strong relationships between vegetation cover and AGB for both shrub and 

grass dominated plots in an arid ecosystem, obtaining 𝑟2 values of 0.74 for shrubs and 

0.86 for grasses.  To accomplish this, they used a line-intercept method in which they 

measured canopy overlap along transects as a surrogate for biomass.   

Volumetric measurements have also used to estimate shrub biomass.  Usó et al. 

(1997) used height and diameter of the plant at maximum width to create nonlinear 

regressions estimating AGB.  They used three different volumetric models: circular 

cylinder, elliptical cylinder, and paraboloid of rotation, founding that all three methods 

accurately describe the relationship between biomass and shrub volume.  Alternatively, 

Sah et al. (2004), used crown area and shrub height for AGB estimations.  They obtained 

𝑟2 values ranging from 0.68 to 0.99, and found model performance to be highly 

dependent upon the species of shrub.  

The reference unit method has also been applied to woody biomass estimations.  

Kirmse and Norton (1985) visually estimated biomass of two shrub species using 

branches ranging from 7 to 19% of total plant foliage.  They were able to obtain 𝑟2 values 

ranging from 0.890 to 0.985 from 3 observers, with higher values obtained from 
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reference units accounting for more of the total plant volume.  They also tested a 

dimensional analysis method in which cylindrical volumes were calculated from two 

diameters (the longest width of the plant and the length perpendicular to the longest) and 

plant height, obtaining 𝑟2 values of up to 0.937.   

 

3.2 Terrestrial Laser Scanning for Vegetation Assessment 

Continuing advances in LiDAR technology have resulted in a relatively recent 

increase in the usage of Terrestrial Laser Scanning (TLS) for variety of applications from 

surface geomorphology to structural assessments of forest canopies.  Research into the 

viability of TLS systems for vegetation assessment has been dominated by forested 

ecosystems, but recent years have seen more studies expanding to new ecosystem types 

such as shrub lands, marshlands, and agricultural plots.  Grasslands, in part due to the 

difficulty of obtaining accurate scans due to high vegetation density and low structural 

integrity, have seen comparatively limited application of TLS in vegetation assessment. 

3.2.1 TLS Overview 

Terrestrial Laser Scanning utilizes Light Detection and Ranging (LiDAR) 

technology to make three dimensional measurements of an object.  To accomplish this, 

the LiDAR scanner first emits a pulse of light at a set frequency.  The pulse is reflected 

off an object of interest, and the instrument records the amount of time for the return 

pulse to reach the sensor.  The distance from the scanner to the object is then calculated 

from the travel time of the light pulse and the speed of light through the atmosphere and 

combined with the angle of the pulse can be used to determine the location of the 

reflective object.  What results is a three dimensional mass of data called a point cloud in 
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which each point represents the location relative to the sensor of an object that reflected 

the laser pulse back.  The point cloud can be oriented to a single XYZ coordinate system 

and used to infer structural attributes from the object.  

The laser returns themselves can be measured in a few different ways.  The most 

common is for the time of flight and intensity of a discrete number of returns to be 

recorded.  For the purposes of this study, a scanning system in which first and last returns 

are recorded will be used.  Full waveform processing similarly records time of flight 

pulses, but it is also capable of measuring the entire waveform of the return, allowing for 

more data to be extracted from a single laser pulse.  Phase based scanners act somewhat 

differently from the other two.  They modulate the laser into several phases and use the 

properties of the phase shifts in the returns to determine the distance to the object.  

The LiDAR technology utilized by TLS has already been well established with 

Airborne Laser Scanning (ALS), which has received significantly more use as a LiDAR 

platform than TLS, and several methods developed for ALS point cloud interpretation 

have been successfully applied to interpret TLS derived point clouds.  However, TLS 

offers some significant advantages over ALS in some situations.   For example, the low 

scan angles of TLS systems can help with measurements of low stature vegetation such 

as shrubs (Vierling et al. 2013).  Additionally, TLS can typically provide a much more 

dense point cloud than ALS, a feature that is crucial for measuring fine scale vegetation 

such as grasses, and one which may be used to better calibrate ALS data over larger 

spatial extents (Greaves et al. 2017).  This is particularly useful in forested or savanna 

systems where it can provide accurate understory information that would otherwise be 

occluded from ALS data by taller vegetation (Loudermilk et al. 2009).  The high point 
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cloud density and ease of implementation of TLS systems compared to ALS campaigns 

make TLS highly effective for studies of small areas or areas that require repeat surveys. 

This emphasis on highly detailed scans over a small spatial extent is ideal for plot level 

surveys such as this project. 

3.2.2 TLS for Woody Vegetation Assessment 

3.2.2.1 Trees.  One of the most well established applications of TLS in regards to 

vegetation assessment is in forestry.  TLS has been used to model AGB as well as various 

aspects of forest structure.  Kankare et al. (2013) developed models for AGB as well as 

tree stem, living branch, and dead branch biomass, estimated using ratios derived from 

felled trees.  Their models compared well to previously developed models, but greatly 

outperformed others in branch biomass.  Seielstad et al. (2011) modeled biomass of small 

and large branches by scanning individual branches of different size from different angles 

and orientations.  They established a linear relation between return scan density and 

biomass (𝑟2 = 0.898 for small branches and 0.937 for large branches).  

Hosoi and Omasa (2006) established a voxel-based method for 3D modeling from 

which they derived leaf area density and leaf area index of individual trees.  This method 

assigns each return point to a three dimensional box, or ‘voxel’, the size of which is 

optimized based on statistical analysis of the point cloud.  They found this method to be 

highly accurate when combined with an optimal scan inclination and it provides several 

advantages over previous TLS techniques, including the elimination of overlapping 

points and an intuitive 3D array allowing for straightforward computation.  Hosoi and 

Omasa (2013) were able to use the spatial distribution of voxels derived from their 2006 

methodology to distinguish between woody and non-woody biomass in a broad-leaf tree. 
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More advanced methods of volumetric measurement have been developed that 

implement quantitative models to generate highly precise stem and branch volumes from 

TLS point clouds (Raumonen et al. 2013).  These operate by locally modeling patches to 

generate cylinders around regions of the stems and branches and extrapolating these 

models to neighboring regions to produce a full tree model.  Volumes derived from these 

models can then be related to destructively measured AGB to generate allometric 

measures of AGB (e.g., Calders et al. 2014).  These methods can also be used to assess 

the structure of trees with exposed buttressed root systems, for example in mangrove 

ecosystems (Paynter et al. 2016). However, this methodology requires that individual 

stems be resolved in the point cloud.  Given the closed packed nature of grasses and 

subsequent occlusion of much of the grass stem, applying methods such as these to 

grasslands may not be possible.   

More recently, Grau et al. (2017) used a ray-tracing simulation to calculate the 

plant area index of simulated trees using a multi-return TLS framework.  By using the 

radiative transfer laws and the estimated number of beams passing through each voxel, 

the authors were able to assess the internal structure of the canopy.  Through extensive 

sensitivity testing, they found that the main sources of error in their method derived from 

poor voxel sampling, small voxels relative to leaf size, coarse angular resolutions (θ = 

0.5°), and using first-return only TLS systems.  When applied to realistic tree models, the 

authors emphasized the strong effects of vegetation structure and occlusion on the 

accuracy of the results.  The methodologies employed utilized the properties of multi-

echo returns, and therefore their findings may not be directly applicable to the current 

study.   
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Calders et al. (2014) investigated the relationship between TLS derived vertical 

plant profiles and topography.  Even with relatively flat locations, they found that not 

correcting for topography can lead to significant errors.  The TLS plane fitting approach 

they outlined reduced error in height measurements by 77-100%.  This is based on ALS 

data acting as the ‘truth’, which the findings of Zhao et al. (2013) indicates is not always 

a safe assumption. 

Several studies have also compared TLS to other non-destructive allometric 

models.  Calders et al. (2015) used a quantitative structure model modified from 

Raumonen et al. (2013) to directly infer tree volume as an estimate for AGB.  They 

observed high agreement with destructive sampling (correlation coefficient of 0.98), and 

notably less agreement (0.68-0.78) for two allometric nondestructive techniques, DBH 

and tree height.  Their TLS methodology was found to overestimate AGB by 9.68%, 

compared to Raumonen’s relative error of ~2% and underestimation by the allometric 

equations of 30-37%.  Yao et al. (2011) used TLS measurements of DBH, stem count 

density, and basal area to derive above-ground woody biomass at a plot level.  They 

estimated AGB from the mean diameter and mean stem count based on allometric 

equations for the two dominant species and then compared the results to individual tree 

measurements, finding a strong 1:1 linear relationship (𝑟2 = 0.854).  Site-wide, they 

found the 𝑟2 increased to 0.975.  

3.2.2.3 Shrubs.  Shrublands have also been the subject of TLS studies.  Olsoy et 

al. (2014a) compared TLS biomass estimates of sagebrush to destructive and point-

intercept sampling.  In total biomass prediction, TLS performed better than point 

intercept measurements (𝑟2 = 0.90 vs 𝑟2 = 0.85).  In green biomass (which they 
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distinguished by the intensity of the laser return pulses), TLS was much better than the 

point-intercept sampling employed (𝑟2 = 0.86 vs 𝑟2 = 0.65).  This research was expanded 

upon by Olsoy et al. (2014b) by comparing the convex hull method, which generates a 

convex polygon around the object to measure volume, to the voxel volume method used 

in Olsoy, et al. (2014a).  The findings indicate that convex hull estimated total and green 

biomass more accurately (𝑟2 = 0.92 and 0.83) than the voxel method (𝑟2 = 0.86 and 

0.73).  This was attributed to occlusion of the interior structure of the shrubs, resulting in 

erroneous null voxels when utilizing the voxel method.   

A similar comparison of methods was carried out by Greaves et al. (2015) in 

which they compared the voxel method to surface differencing for AGB estimates of 

arctic shrubs.  In surface differencing, the maximum point height (i.e. max shrub height) 

was subtracted from ground points to generate vegetation height from which volume was 

calculated.  They found the voxel method to be marginally better than surface 

differencing for close range plot data (𝑟2 = 0.94 vs 0.92), while surface differencing 

outperformed the voxel method in site wide variable range data (𝑟2 = 0.91 vs 0.82).  In 

both of these studies, the authors concluded that the method used should be determined 

by the vegetation structure, with voxel volume preferable when full penetration of the 

vegetation can be assumed, surface differencing performing better when there are no 

irregular gaps in the canopy, and convex hull requiring a consistent biomass to volume 

ratio across the object.   

Li et al. (2015) presented a similar comparison of volume models, adding a 

Triangular Irregular Network to the voxel volume and convex hull assessments.  They 

also included a comparison of methods to delineate individual shrubs from TLS point 
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clouds via manual selection, segmentation, and neighborhood point statistics.  The results 

were mixed, with voxel volume using manual delineation obtaining the highest adjusted 

𝑟2 (0.90), while the voxel volume with point statistic delineation having the lowest 

(0.51).  In general, however, neighborhood point statistics did outperform segmentation 

despite slight underestimations of boundary, and the convex hull outperformed the voxel 

and TIN models, despite overestimations of volume. 

3.2.3 TLS for Non-Woody Vegetation Assessment 

3.2.3.1 Digital Elevation Models. One of the earliest applications of TLS was for 

the creation of digital elevation models (DEMs).  Consequently, much of the research 

done with TLS in grass systems has focused on the challenges of obtaining proper ground 

measurements for the creation of DEMs rather than the direct measurement and 

assessment of grassland vegetation itself.  Still, these studies provide valuable insight into 

the application of TLS in these systems.   

Fan et al. (2014) demonstrated considerable occlusion laser returns from short 

grass (2.75-5.5 inches) on a mown lawn.  Using a single scan location, they observed an 

average laser penetration depth of around 35% of grass height, which decreased with both 

grass height and distance from the scanner.  Similarly, Nouwakpo et al. (2015) noted that 

due in particular to the use of a single scan location, error in TLS derived soil surface 

microtopography increased dramatically with vegetation cover.  

Coveney and Fotheringham (2011) made a similar investigation on DEM error 

induced by dense ground vegetation in a flat coastal saltmarsh.  This survey consisted of 

11 scan locations scattered throughout the study site.  Using gridded GPS data as 

validation, they found that the elevation error from vegetation occlusion and density was 
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significantly higher than all other survey or processing error sources combined.  Using a 

ground-based elevation filter to select the lowest return in a 1x1m grid, they were able to 

reduce the elevation error by 40%.  However, this method greatly reduced the resolution 

of the model.  This supports the findings of Guarnieri et al. (2009), who used a 

combination of a moving window filter and classification of the return beam intensity to 

remove non-ground returns.  While none of these studies attempt to derive biomass or 

vegetation structure from TLS data, obtaining an accurate DEMs as described here is a 

critical step in estimating above ground biomass. 

3.2.3.2 Fuel Bed Modeling.  The characterization of fine scale fuel bed 

components for fire prediction and modeling has been a strong stimulus in using TLS to 

characterize grasses.  Of particular interest to many researchers has been deriving 

vegetation height, which is an important determinant in both fire modeling as well as 

AGB estimations.  Loudermilk et al. (2009) measured understory fuel bed heights of 

forbs and prairie grasses in a second-growth longleaf pine forest.  They found decent 

correlation between TLS derived height measurements and the point intercept method 

traditionally used (𝑟2=0.48, p=0.12).  The discrepancies observed were explained by the 

overestimation of volume by traditional means due to variations in biomass distributions 

in shrub canopies.  They concluded that TLS was preferable due to its lower nugget effect 

observed in empirical variograms and its sensitivity to small scale variation often missed 

with conventional estimations.   

Rowell and Seielstad (2012) had similar findings with regards to the shortcomings 

of the point intercept method in describing fuel bed heights when compared to TLS.  

From TLS derived heights, they were able to accurately distinguish grass and litter from 
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shrubs, while forbs showed characteristics of both grass and shrubs.  Interestingly, the 

highly similar pre-burn and post-burn bare earth measurements observed suggests that 

vegetation metrics (e.g., volume) can be developed from pre-burned vegetation height 

and post-burn ground measurements (Rowell and Seielstad 2012).  In a bunchgrass 

dominated grassland, Umphries (2013) observed a similar relationship between TLS 

derived height metrics and field measurements.  However, using only TLS derived bunch 

height, only ~30% of variation in the destructively sampled AGB was explained.  The 

author suggested that including cover or volume metrics (e.g., Loudermilk et al. 2009 or 

Olsoy et al. 2014b) would better predict AGB than height alone.  Wallace et al. (2016) 

were able to use multi-temporal TLS data to observe changes in a savanna understory 

fuel bed following a burn and through the system’s recovery period.  The authors were 

able to model changes in both fuel bed height and cover from TLS generated fuel bed 

maps that corresponded closely to conventional methods.  

Schaefer and Lamb (2017) used a combination of the normalized difference 

vegetation index (NDVI) and TLS height metrics to estimate biomass in a Tall Fescue 

pasture, and found that using the two in conjunction produced better results (r2 = 0.76) 

than using only TLS height (r2 = 0.61) or NDVI (r2 = 0.56) alone.   

3.2.3.3 Agricultural Vegetation Assessment.  The use of TLS for the 

characterization of non-woody vegetation has also been implemented in rangeland and 

agricultural studies.  Radtke et al. (2010) implemented a downward facing TLS system to 

estimate the AGB loss from herbage removals that mimicked grazing patterns.  They 

observed strong relationships between the change in TLS derived volume and measured 

dry weight AGB for the two rangeland species observed (𝑟2 = 0.970 for alfalfa and 0.57 
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for tall fescue).  This high agreement was due in part to the low stature and homogenous 

sample plots, but the downward facing orientation of the scanner contributed significantly 

due to the reduction in occlusion often caused by the low scan angle of ground-based 

scanners.  Andújar et al. (2013) used a similar downward facing TLS system to detect 

and discriminate between weed species in maize crops.  Detection of the weeds was 

highly correlated to field measurements (𝑟2 = 0.88), but identification was only correct 

with 77.7% accuracy when S. halepense was compared against the other three as a group.   

Hosoi and Omasa (2009) used their voxel based method to model vertical plant 

area density profiles of wheat.  They were able to allometrically relate the dry weight of 

ears (𝑟2 = 0.96) and leaves and stems (𝑟2 = 0.94) with their TLS derived volumes.  They 

additionally stressed the importance of the scanner’s orientation, noting that the 

inclination used in this study (57.5°) allowed for both better penetration as well as 

helping with correction of leaf inclinations without leaf angle measurements.  Eitel et al. 

(2014) used TLS derived volumes to estimate wheat biomass and nitrogen at different 

phenological stages of wheat, joining and tillering obtaining r2 of 0.77 during tillering 

phases in 2011 and 2011, and r2 of 0.79 in 2011 and 0.72 in 2012 for joining phases. This 

suggests some degree of uncertainty in the seasonality of measuring AGB 

 

3.3 Structure-from-Motion for Vegetation Assessment 

Structure-from-Motion (SfM) was first introduced as a computer vision technique 

by Ullman (1979), but it has only been with recent advances in computing that this 

method has been able to be applied efficiently.  Similar to TLS, much of the early interest 

in SfM has been dedicated to topographical studies, particularly as a low-cost alternative 
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to TLS which requires much more specialized and expensive equipment.  Little research 

has focused on applying SfM to vegetation assessment, however, and like the 

development of TLS, studies exploring SfM in vegetation analysis have largely focused 

on forested ecosystems, with limited application in assessment of fine scale vegetation 

such as grasses. 

3.3.1 SfM Overview 

Structure-from-Motion is a computer vision technique that generates a 3D point 

cloud similar to that of LiDAR.  Unlike LiDAR, which is an active remote sensing 

system that generates the point cloud from direct measurements of an object, SfM is a 

passive method that generates a point cloud from a series of overlapping photographs.  

This process generates the 3D geometry of the target as well as the camera pose.  This is 

accomplished through triangulation unique points identified on the target from matching 

points between at least three photographs of differing orientation (Figure 1, Thormählen 

et al. 2010).  This generates the 3D location of the target points as well as the orientations 

and positions of the cameras. 

 

Figure 1. Conceptual visualization of SfM (from Thormählen et al. 2010). 
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Specialized software (e.g., Agisoft Photoscan, as used in this study) finds 

common points automatically in overlapping photographs to generate a ‘sparse point 

cloud’ and to calculate the position and attitude of each photograph. Then a more detailed 

point cloud is generated, often with a point density comparable to or greater than TLS 

systems and with red, green, blue radiance values from the best fit digital photograph 

pixel corresponding to the 3D point.  Placement of distinct targets around the object aids 

the SfM matching process, and can be used subsequently to help georeference the point 

cloud, which is generated without any spatially explicit reference system.  This new point 

cloud can be manipulated directly much like TLS derived point clouds, and with proper 

georeferenceing datasets may even be combined.  A polygonal mesh representative of the 

target’s surface can also be generated and used for a variety of analytical purposes such 

as DEM generation and volumetric measurements.   

3.3.2 Comparisons between SfM and TLS 

SfM offers both advantages and disadvantages over TLS techniques.  It has been 

noted that data acquisition can be much quicker for SfM than for TLS scans (Nouwakpo 

et al. 2015), though TLS scan time varies greatly based on the unit specifications.  

Furthermore, the relatively low cost and high portability of equipment makes this a much 

more accessible technology than TLS.  These advantages are traded off for specialized 

software needed and added processing time to generate the point clouds (Nouwakpo et al. 

2015; Morgenroth and Gomez 2014).   

Like TLS, SfM measurements can be obtained out without any prior referencing 

or calibration, as SfM point clouds are generated only from the input photographs.  SfM 

point clouds are generated without any reference unit.  Rather, the relative distance of 
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points to one another is arbitrary and must be established by identifying reference objects 

with known locations to scale to point cloud to.  TLS conversely generates point clouds 

in reference to the scan location and are generated with a meaningful relative scale (in 

meters) that can be measured directly.  This means that SfM point clouds must be 

manually georeferenced adding to SfM’s already increased processing time.   

Early implementation of SfM, like TLS, has focused on topographical studies, 

though from these studies possible applications to vegetation assessment can be seen.  

Nouwakpo et al. (2015) used SfM and TLS to derive soil microtopography in plots with 

varying degrees of vegetation, and made several observations on the utility of SfM and 

TLS.  They observed that with increasing vegetation cover, the agreement between TLS 

and SfM degraded slightly, with significant divergence beyond 53% ground cover.  They 

attributed this to the difficulty of the SfM software (Agisoft PhotoScan) in correctly 

matching vegetation pixels due to similarities in heavily vegetated areas.  Furthermore, 

the surfacing of the SfM point cloud tended to smooth out irregularities, resulting in a 

narrower range and loss of fine scale detail.  For grasses in particular, they observed that 

increasing grass cover lead to an increase in signal to noise ratio in both TLS and SfM.  

Two different configurations for SfM analysis were used in their study.  The first two 

years of the study, photos were taken from a frame directly above the plots, yielding near 

nadir views.  The third year photos were taken by hand around the perimeter of the plot.  

They observed that the increased obliquity allowed for more accurate measurements 

around the vegetation resulting in more accurate elevation models. 

Liang et al. (2014) compared SfM to terrestrial LIDAR measurements in a mature 

mixed forest during winter months.  They estimated DBH of trees in a 30 x 30 m plot, 
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taking photos approximately 20 cm apart around the plot perimeter.  Both SfM and TLS 

had an overall stem mapping accuracy of 88%, however SfM DBH measurements 

yielded slightly better results (RMSE of 6.60% vs 7.27% for TLS). While SfM has been 

applied much more sparsely to vegetation assessment than TLS, these results clearly 

show SfM is capable of producing results of comparable accuracy to those of TLS. 

3.3.3 SfM for Woody Vegetation Assessment 

The use of SfM in vegetation assessment has primarily focused on linear 

measurements such as tree height or diameter at breast height (DBH).  Hesse (2014) used 

SfM to map vegetation cover and height in sand dunes.  He used a camera mounted 

approximately 6m above the ground, and noting the importance of obliquity to the 

measurements, the camera was angled 30° from nadir.  He found SfM plant height to be 

largely in agreement with field measurements, however he noted that the depth filtering 

employed sometimes removed the top portions of the vegetation, a trend that could prove 

problematic for volumetric measurements with SfM.  

Morgenroth and Gomez (2014) used SfM in conjunction with Multiple View 

Stereophotogrammetry to measure individual tree height and stem diameter for a young 

deciduous, a mature deciduous, and a mature pine tree.  Their results were very accurate, 

with height error of 2.59% and stem diameter error of 3.7%.  While shadowing was found 

to be problematic in correctly registering points, they observed that distance from the 

camera appeared to have no linkage to error.  This is in contrast to previous findings 

(James and Robson 2012) which established a relationship between accuracy estimates 

and distance to the photopoint as a ratio of approximately 1:1000.  
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In making DBH estimations of trees in a 30 x 30 m, Liang et al. (2014) found that 

most of the error from SfM measurements occurred in the central portions of the plot and 

were the result of occlusion, shading, and increased distance from the camera.  In 2015, 

the authors added to their 2014 findings, using an internal path taking photos outward 

from within the plot in addition to the perimeter photos facing inwards (Liang et al. 

2015).  They found RMSE for DBH to be between 8.03 and 18.87% depending on the 

paths and camera orientations used.  The best configuration was found to be from the 

outer path using a landscape camera configuration, which generated more accurate point 

clouds than those generated using a portrait view or outward facing photographs.  These 

results compared relatively well to the 9.74% RMSE for TLS derived DBH.  Liang et al. 

(2015) also reported significant influence of distance on their measurements, with further 

observations containing lower point densities and more noise.  The distance induced error 

observed in both Liang et al. 2014 and Liang et al. 2015 was in contrast to Morgenroth 

and Gomez’s 2014 findings that distance didn’t contribute to error.  This could be 

explained by the different scales, with Morgenroth and Gomez taking photos directly 

around the tree of interest, while Liang et al. in 2014 and 2015 assessed individual trees 

from photographs of a 30x30 meter plot.   

Miller et al. (2015) was the only study found that used SfM to directly obtain 

volumetric estimates of vegetation.  They measured the height, diameter and volume of 

30 leafless deciduous trees.  Photo acquisition consisted of 2-3 rows of photos around 

each tree (resulting in 150-180 photos per tree) and found the volumetric measurements 

of the main stem to be highly accurate and consistent with destructive measurements 

(RMSE 12.33%, 𝑟2 = 0.968).  Smaller branches were much more difficult to model, with 
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RMSE of 47.53% and 𝑟2  of 0.761.  Overall, however, the RMSE was 18.53% while the 

𝑟2 was 0.951.  Furthermore, a consistent bias to underestimate tree volume was observed, 

particularly with smaller branches at the extremities. They also noted the influence of 

ambient light on the measurements, recommending a diffuse rather than direct light 

source if possible in order to minimize over exposure and high contrast images, as well as 

taking measurements in as short a time frame as possible (ideally around noon with 

minimal shadows) to avoid inconsistencies in lighting.  These observations highlight the 

possible difficulties of obtaining SfM derived measurements of fine scale vegetation, 

particularly open grassland environments.  

3.3.4 SfM for Non-Woody Vegetation Assessment 

The only study found that focused on fine scale vegetation (i.e. grasses) using 

ground based SfM was Nouwakpo et al. (2015).  This study, however, simply looked to 

quantify the occlusion that resulted from ground vegetation occluding the soil surface 

when generating a DEM.  While SfM has yet to be applied to assess grassland vegetation 

directly, the technology is promising and studies show consistent agreement between 

SfM and TLS measurements.  However, using SfM to obtain volumetric estimates of fine 

scale vegetation has been shown to be difficult, particularly with regards to obtaining 

reliable ground points and movement of vegetation between scans or photos.   



32 

 

 

 

4.0 MATERIALS AND METHODS 

4.1 Study Site  

Field measurements were collected in September and October 2016 on the North 

Farm Unit of Oak Lake Field Station in Eastern South Dakota when adequate wind 

conditions were met.  The field station has been affiliated with South Dakota State 

University since 1988, and the North Farm Unit has not been subject to any form of 

management practice (e.g., grazing, burning, haying, etc.) since that time.  Consequently 

the unit is dominated by Smooth Brome grasses (Bromus inermis), an invasive cool 

season grass.  The North Farm Unit at OLFS was chosen primarily for the homogeneity 

of grass species present.  This homogeneity was due in large part to the absence of any 

disturbance regime, either natural or anthropogenic.  However as a result of this, a large 

undisturbed littler layer was present throughout the site. 

The field station is located on the Northern Glaciated Plains and has a mid-

continental climate.  Peak precipitation occurs in July, with mean annual precipitation of 

58 cm and a mean annual temperature of 6.1°C from 1995 to 2015 (SDSU Mesonet).  All 

plots were located on upland sites with well drained, fine-loamy soils in the Singsass-

Buse soil complex (Soil Survey Staff).  Sites were selected in flat areas, and all sites were 

relatively flat, with slopes of less than 5°. 

Data collection was limited to windless days or on days with low wind (<5 mph) 

for plots in wind shadows (due to nearby woodlands).  The measurements were made 

under consistent solar conditions (either overcast or clear skies) to avoid any variation in 

lighting conditions during the photo capture that might lead to poor photographic 

alignment (Miller et al. 2015).  
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Within the North Farm unit, eleven 1 x 1 m plots were delineated by four 1.2 m 

tall poles.  The poles were 0.8 cm in diameter, and had a 25 cm white reflective band that 

produced notably higher TLS return intensities than the surrounding vegetation.  The 

height of each reflective band above the surface of the ground was measured at each site 

and were used in point cloud alignment and in determining ground points.  Additionally, 

painted 7.6 cm cubed targets were placed on top of each pole to aid with SfM 

photographic alignment (Figure 2).   

 

Figure 2. Destructive sampling of aboveground grass biomass in one of the grassland plots. The 

four poles roughly delineate the 1 x 1 m plot and were used as reference points for aligning the 

SfM and TLS point clouds.   

Plots were selected across a range of grass heights observed at the field station, 

with average heights ranging from approximately 50 to 70 cm.  As data collection 

occurred late in the growing season, the grasses had reached full maturity and a minority 

of seed heads were present in all plots and had heights ranging from 90 to 120 cm.  Non-
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grass vegetation was excluded in plots selection and the homogeneity of grass species 

present was maximized.  

 

4.2 Data Collection 

4.2.1 Hardware 

TLS data was collected using a Compact Biomass Lidar (CBL) (Kelbe et al. 2013; 

Paynter et al. 2016). The CBL is optimized for rapid scanning and portability.  It uses a 

SICK LMS151 LiDAR unit that records time of flight and intensities of first and last 

returns with 360° horizontal and 270° vertical views in approximately 33 seconds.  The 

unit has a 0.25° angular resolution, a beam wavelength of 605 nm, and a 0.86° beam 

divergence and a maximum range of 40 m. 

 Photographs for SfM point cloud generation were collected using a Canon EOS 

6D 20 Megapixel digital single-lens reflex camera.  A Canon EF 24-70mm f/4L IS USM 

lens was used that is stabilized and has low dispersion aspherical detector elements to 

minimize chromatic and spherical aberration and color blurring around subject edges.  

The lens coatings provide improved color rendering and minimal ghosting compared to 

standard lenses and are resistant to dust and water.  During photo capture a constant focal 

length of 24 mm was used.  

SfM photographic alignment was done on a Dell PowerEdge R815 linux server 

operating with a 4 socket, 48c AMD Opteron™ Processor 6348 at 2.8 Ghz and 512 GB 

DDR Ram. 

The disc pasture meter used in this study was constructed in the manner of 

Rayburn (1997; Rayburn and Rayburn 1998), and consisted of a 0.4572 x 0.4572 m (18 x 
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18 inch) weighted acrylic plate.  A meter stick measured from a large central hole is used 

to record the disc pasture meter’s settling height once it has come to rest on top of the 

grass. 

4.2.2 Remotely sensed data collection 

4.2.2.1 TLS.  A total of four TLS scans were taken from opposing sides of each 

plot to minimize occlusion effects on vegetation assessment (Van der Zande, 2006).  The 

CBL unit was mounted on top of a tripod, and a spirit level was used to ensure the CBL 

was level throughout each scan.  The resulting point clouds were therefore properly 

oriented to two horizontal dimensions (x, y) and one vertical dimension (z).  The CBL 

sensor height was 1.6 m above the ground which ensured that the CBL was always above 

the grass (heights 50 to 70 cm).  Due to a structurally induced occlusion area of 45° off 

nadir, TLS scans were taken 1.6 m away from the plot edge, which corresponded to the 

scanner height.  Remotely sensed grass was therefore between 1.84 m and 2.80 m away 

from the CBL.  At these ranges the LiDAR pulses were sensed every 0.80 to 1.22 cm 

(due to the 0.25° angular resolution) and given the 0.86° beam divergence each pulse 

width is 2.76 cm to 4.2 cm.  As the grass blades were typically less than a millimeter thin 

and less than 1 cm across with any orientation many of the LiDAR measurements were 

partial returns. 

4.2.2.2 SfM.  Approximately 150 overlapping photographs were taken in 

concentric circles approximately 1.5 m from the center of each plot.  Photos were taken 

by hand approximately 20 cm apart by taking a small step clockwise around the plot after 

each photo.  Several passes were made at varying heights so that full hemispherical 

coverage of the plot and adequate photographic overlap (greater than 60%) was obtained.  
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The camera parameters were manually selected based on ambient light conditions during 

photo acquisition.  Specifically, a minimal ISO was a priority to provide finer grain 

digital photographs.  Aperture was kept small to maximize the field of view and an 

adequate shutter speed was used so that sharp images of the plots with low noise were 

captured.  Photo capture took approximately 10 minutes per plot.  

4.2.3 Disc pasture meter 

After TLS and SfM data collection, one end of a meter stick was carefully placed 

on the ground surface at the center of the plot.  The meter stick was placed through the 

central whole of the disc pasture meter, and the disc pasture meter was then gently 

lowered on top of the grass taking care to ensure the disc did not contact the meter stick.  

The settling height of the disc was recorded to the nearest millimeter at the center of the 

disc. 

4.2.4 Destructive sampling 

A wooden frame that encompassed the disc pasture meter was placed around the 

disc pasture meter at the center of the plot and the grasses were parted so that the frame 

rested on the ground.  All vegetation within the frame was clipped to ground level (Figure 

2).  In each plot there was a non-negligible litter layer on top of the soil surface.  As 

neither TLS nor the digital photographs for SfM point cloud generation were able to 

penetrate the grass canopy and resolve the litter layer, it was removed from the standing 

vegetation and bagged separately.  

All grass and litter samples were dried at 60°C for 72 hours and then 

independently weighed with an accurate laboratory scale and converted to AGB in units 

g/m2 by dividing the measured weight by the 0.4572 x 0.4572 m area from which the 
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grass was harvested.  Weights were tabulated as total dry weight AGB (AGBtotal = litter 

dry weight + standing vegetation dry weight) and grass dry weight AGB with litter 

removed (AGBgrass = standing vegetation dry weight only). 

After vegetation had been removed from the plot and bagged, TLS and 

photographic data were collected again using the same methodology in order to obtain an 

observed ground surface without vegetation occlusion.  The height above the ground 

surface of the white reflective band on each corner pole was measured and recorded so 

that an estimated ground surface could later be generated for comparison to the observed 

ground surface.  

 

4.3 Point Cloud Generation and Alignment 

The general workflow of data processing to generate volume estimates is outlined 

in Figure 3.  Three dimensional point clouds composed of x, y, z coordinates relative to 

the scanner location were generated onboard the CBL unit.  SfM point clouds were 

generated from the digital photographs using Agisoft Photoscan Pro 1.2.4 (Agisoft LLC, 

2016) and processed on a high performance Linux server. 

SfM point cloud generation was completed in three stages.  First, where necessary 

shadows cast by the photographer were manually masked from the photographs using 

Photoscan in order to avoid inconsistent lighting and to allow for accurate point 

identification.  Next, the masked images were aligned from unique points automatically 

identified in overlapping photographs by Photoscan.  During this process, Photoscan 

calculated the camera position and attitude, and a sparse point cloud defined by the 

identified unique points was generated.  From this, Photoscan generated depth maps for  
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Figure 3. Processing workflow of TLS and SfM volume estimation. SfM point clouds were 

aligned to TLS point clouds, but save for that the two processes remained entirely separate. The 

result was two volume estimates per plot for both TLS and SfM point clouds, one derived from 

the observed bare earth measurements, and one derived from the estimated ground surface.  

each photo, from which a dense point cloud was generated with point densities many 

times greater than the sparse point cloud. 

Due to the highly homogenous appearance of the grass, feature matching of the grass 

plots during the photo alignment phase was difficult.  Using high accuracy settings 
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resulted in poor model outputs and large gaps in the point cloud, therefore a low accuracy 

setting was used.  This also greatly reduced processing time required for photo alignment.  

Within the software, a depth filtering parameter was used to automatically remove 

erroneous points from the dense point cloud.  A mild depth filtering setting was found to 

produce the most reliable dense clouds, as aggressive depth filtering led to an over-

smoothing of the vegetation surface and removed the upper portions of the vegetation, 

while disabling this feature resulted in excessive noise rendering the point cloud 

unusable. 

SfM point clouds are generated without any meaningful spatial scale or reference 

and must be manually georeferenced to apply a meaningful scale for analysis.  SfM point 

clouds were therefore aligned to the appropriate TLS point cloud to take advantage to the 

spatially explicit nature of TLS point clouds.   

All point cloud alignment and analysis was carried out using CloudCompare 2.7.0 

(CloudCompare, 2017).  For each of the eleven plots, the four TLS point clouds were 

aligned and combined using CloudCompare to manually select equivalent point pairs and 

generate an appropriate transformation for the entire point cloud.  In each scan, the 

reflective bands on all four poles were readily apparent, and the bottom of each band was 

identified in each point cloud to generate the point cloud transformations. 

SfM point clouds were aligned to the equivalent TLS point cloud using the same 

methodology as well as the painted pole top cubes.  This process was repeated for the 

observed ground surface TLS and SfM point clouds that were collected after biomass 

removal.  The observed ground surface was used to identify the harvested area, and all 

point clouds were clipped to a 0.44 x 0.44 m square within that area.  
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4.4 Volumetric Assessment  

Various methods have been proposed to estimate AGB from 3D point clouds.  

While some methods use point cloud measurements to estimate AGB from other 

allometric relationships (e.g., TLS derived DBH to estimate tree biomass (Morgenroth 

and Gomez 2014), of particular interest to this study is the use of volume estimation to 

derive AGB.  Several methods have been proposed that use point cloud derived volume 

estimates to estimate AGB, and each requires different assumptions of vegetation 

structure to accurately relate volume to AGB. 

Sophisticated methods have been proposed to estimate vegetation AGB from 3D 

point clouds using quantitative 3D vegetation models to generate complex and highly 

accurate volumetric models (Raumonen et al. 2013).  However, these approaches are 

inappropriate for application to grasses unless the individual grass components can be 

resolved in the point cloud which was not the case for this study. 

The voxel volume method (Hosoi et al. 2006) divides the three dimensional space 

occupied by the point cloud into 3D pixels, or ‘voxels’, of a specified size.  Whenever a 

point is observed within one of these voxels, that voxel is classified as vegetation.  By 

summing the volumes of all the vegetation voxels, one can obtain the overall volume of a 

target.  Any occluded region of the target would not be classified as vegetation regardless 

of vegetation presence or absence. This process therefore assumes full penetration of the 

vegetation, as any occluded regions would result in erroneously low volume estimates. 

The convex hull method (Olsoy et al. 2014) generates a 3D convex hull bounded 

by a set of outer points such that the entire point cloud is located within the convex hull.  

Volume can then be calculated from the interior of this object.  In relating this method to 
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AGB it assumes equal distribution of vegetation density across the vegetated area.  

Neither TLS nor SfM can fully penetrate grass canopies (Fan et al. 2014; Nouwakpo et 

al. 2015), and grass density varies by height, particularly in mature stands such as those 

being studied.   This study therefore employed a surface differencing method (Greaves et 

al. 2015; Eitel et al. 2014) for volumetric measurements, which calculates vegetation 

volume from the area between a vegetated surface and a ground surface (Figures 4 - 7).  

As neither TLS nor SfM point clouds have any reference to the ground surface, an 

estimated ground surface first needed to be defined in order to estimate the grass volume. 

Although the plots were on flat (< 5°) sites, a planar model of the ground surface 

was defined.  The x, y, z coordinates of the bottoms of the white reflective bands on each 

pole were identified in the aligned 3D point clouds.  Then the measured distances from 

the bottoms of the white reflective bands to the ground surface (Section 4.1) were 

subtracted from each z coordinate. This yielded four x, y, z coordinates defining the 

location of the ground at the base of each pole relative to the point clouds.  The ground 

surface was defined by two 3D triangles with vertices defined by the pole coordinates. 

     

Figure 4. Visualization of surface differencing method employed (shown: 2 x 2 cm cells). The 

mean z-coordinate value (m) for each 2 x 2 cm estimated ground surface cell (center) was 

subtracted from mean SfM z coordinate value for the vegetation cell (left) to yield the relative 

height of grasses in each cell (right).  

0.1655 0.4670 -1.5838 -1.5181 -1.3922 -1.0836 
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Figure 5. As Figure 4 but using the TLS derived vegetation heights (left) and the estimated ground 

surface (center) to generate the relative grass heights (right) rather than SfM vegetation heights. 

 

        

Figure 6. As Figure 4 but using the SfM observed ground surface (center) to generate the relative 

grass heights (right) rather than the estimated ground surface. 

 

       

Figure 7. As Figure 5 but using the TLS derived observed ground surface (center) to generate the 

relative grass heights (right) rather than estimated ground surface. 

0.2364 0.6624 -1.5838 -1.5181 -1.3109 -0.9008 

0.1456 0.4680 -1.5643 -1.4967 -1.3922 -1.0836 

0.2281 0.6334 -1.5729 -1.4896 -1.3109 -0.9008 
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Volumetric measurements were carried out using CloudCompare’s ‘Compute 

2.5D volume’ function using both the estimated ground surface (Figure 4 and 5) and the 

observed ground surface (Figure 6 and 7).  This process relies on rasterizing the x,y plane 

into square cells of a specified width.  For each cell, the mean relative height of grass 

above ground level was calculated as: 

mean relative height = 
∑ 𝑧𝑐𝑎𝑛𝑜𝑝𝑦 𝑝𝑜𝑖𝑛𝑡𝑠

𝑛𝑐𝑎𝑛𝑜𝑝𝑦 𝑝𝑜𝑖𝑛𝑡𝑠
 - 

∑ 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑝𝑜𝑖𝑛𝑡𝑠

𝑛𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
   (1) 

where 𝑧𝑐𝑎𝑛𝑜𝑝𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 and 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 are the vertical values (z coordinates) of TLS or 

SfM points falling within the x,y dimensions defined by the cell, and n is the total number 

of points within each cell.  The resulting relative height metric is equivalent to the mean 

height of grass above ground level within each cell.  From this, the grass volume of each 

cell was derived by multiplying the cell side dimensions and the cell’s mean relative 

grass height.  Total plot volume was calculated by summing the volumes of all cells 

within the plot. 

The volume derived by the above process is expected to be sensitive to the cell 

dimension in a complex way relative to the structure of the vegetation and the resolution 

provided by the TLS and SfM measurements (Greaves et al. 2015; Eitel et al. 2014).  To 

assess this sensitivity, AGB estimations were made using volumes calculated from cell 

dimensions with widths of 0.5, 1, 2, 4, 11, 22, and 44 cm were considered.  Note that the 

44 cm cell dimension is equivalent to simply using the mean plot vegetation height, 

which is similar to previous grass AGB research approaches (Umphries 2013; Schaefer 

and Lamb 2016). 
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4.5 Allometric AGB Estimation  

Statistical analysis and generation of allometric regressions were carried out in R 

(R Core Team 2015).  The volume estimates derived from TLS and SfM point clouds as 

well as the settling height of the disc pasture meter were linearly related to the 

destructively sampled AGB of the grass plot through ordinary least squares regression 

(OLS) both with (AGBtotal) and without litter (AGBgrass) included in the regression.  The 

performances of the resulting models were then evaluated using the coefficient of 

determination (r2) as well as the F-test p-value.  

The OLS regression terms for the settling heights have different units (cm) to the 

point cloud grass volumes (m3) and so they cannot be compared directly.  Therefore to 

compare the predictive capability between the three models a boot-strapped “leave one 

out” cross validation (LOOCV) approach was adopted in which the regressions were 

repeatedly generated each time leaving out one observation for model validation and 

using the remaining ten as training data to generate the regression.  From these 

regressions the following terms were defined: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 =  𝐴𝐺𝐵𝑖 − 𝐴𝐺�̂�                                                                             (2) 

 

𝑅𝑀𝑆𝐸𝐿𝑂𝑂𝐶𝑉 = √∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖
11
𝑖=1

2

11
    (3) 

where 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖    is the difference between the sampled AGB for ‘left out’ plot i (𝐴𝐺𝐵𝑖) 

and the predicted AGB derived using the OLS regression derived using the data for the 

10 other plots (𝐴𝐺�̂�).  The 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 was calculated for each of the 11 LOOCV runs, as 

were the OLS regression goodness of fit (r2), F-test p-value, and RMSE.  The 

𝑅𝑀𝑆𝐸𝐿𝑂𝑂𝐶𝑉 𝑖s the root mean square error of the residuals of each of these 

regressions.   This LOOCV methodology was implemented for each combination of 
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method (TLS, SfM, and disc pasture meter) and AGB (AGBtotal and AGBgrass) 

investigated.  

To investigate the relationships between total AGB and grass AGB with the litter 

layer removed, a reduced major axis (RMA) regression performed between the respective 

variables.  An RMA regression was deemed more appropriate than OLS for this analysis 

because errors in the x and y axes for these regressions are likely to both be present in 

similar magnitudes, and the asymmetry between variables in OLS would be inappropriate 

for this assessment (Smith 2009).  An RMA regression was also used to investigate the 

relationship between SfM and TLS volumetric measurements. 
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5.0 RESULTS 

5.1 Destructive AGB Measurements 

The destructively sampled grass and litter AGB (AGBtotal) varied from 149 g/m2 

to 1043 g/m2 (mean = 634.03 g/m2).  This range of AGB is comparable to those found in 

other undisturbed grass systems (Briggs and Knapp 1995) and managed smooth brome 

pastures (Lamond et al. 1992).  The litter was highly variable, and ranged from 49.13 

g/m2 to 590.87 g/m2, accounting for 13 - 57% of  AGBtotal at each site, with an average of 

litter proportion of 36% of AGBtotal  (Figure 8).   

Because neither TLS nor SfM were able to penetrate the grass canopy and resolve 

the litter layer, AGBgrass was tabulated by removing the litter layer in order to assess its 

impact on AGB estimation (section 4.2.4).  AGB with the litter layer removed reduced 

the range of dry weight AGBgrass to between 99.5 g/m2 and 551 g/m2 (mean 382.7 g/m2). 

This nearly halved the range of observed values from a difference of 894 g/m2 with 

AGBtotal to 451 g/m2 for AGBgrass.  It was observed that sites with higher AGBtotal tended 

to have a larger proportion of litter, as seen by the divergence from the 1:1 line in Figure 

8.  The high litter biomass was likely because the study site was not mown or grazed by 

domestic animals, or subject to prescribed fires, for at least two decades.  High levels of 

litter accumulation in undisturbed grass systems such as this are not uncommon, and have 

been observed to be as high as three times the AGB of living vegetation (Weaver and 

Rowland 1952). 
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Figure 8. Destructively sampled AGB for the 11 plots. The AGBgrass and the AGBtotal (left) have 

a 0.85 correlation, and the AGBgrass and litter AGB (right) have a 0.59 correlation. The solid line 

shows the reduced major axis (RMA) regression of these data and the dotted line shows the 1:1 

line for reference. 

 

5.2 Point Cloud Volumes 

SfM and TLS were observed to generate morphologically similar point clouds but 

with significant differences in detail of the same grassland plot.  A visual assessment of 

the generated point clouds confirms these differences.  For reference, Figure 9 shows the 

same example point clouds of a typical plot (AGBtotal =  602.7 g/m2) as displayed in 

Figures 4 - 7.  For all plots, neither TLS nor SfM provided canopy penetration to the 

ground or litter layers.  Point cloud densities vary considerably, with TLS point clouds 

containing an average of approximately 4,000 points per 0.44 x 0.44 m plot, and SfM 

containing an average of nearly 35,000 points per plot.   

    A 
C

  A 

B 
D 
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Figure 9. TLS (A & B) and SfM (C & D) top of vegetation point clouds used in the analysis for a 

typical grassland plot. The observed ground surface SfM and TLS point clouds collected after 

biomass removal are shown below the vegetation canopies (A & C), as are the estimated ground 

surfaces (B & D). The two SfM point clouds (C & D) are colored with the best fit digital photo 

red, green, blue radiance pixel value. The TLS point clouds (A & B) are colored by their relative 

height, as are the estimated ground surfaces (B & D, lower). 
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While point clouds generated from SfM display a readily identifiable vegetation 

canopy with structural detail, TLS generated clouds that were highly noisy and 

distinguishing a clear vegetation surface is difficult.  This resulted from some of the 

isolated elements at the top of the canopy (i.e. taller grass blades and seed heads) present 

in all plots being expressed in TLS and SfM point clouds differently.  TLS point clouds 

generated a significant amount of noise around seed heads (Figure 9a) due to partial hits 

and slight alignment errors between scans.  Conversely, SfM failed to model the full 

extent of the seed heads (Figure 9b) due to SfM depth filtering. Though this was 

minimized, disabling depth filtering during SfM point cloud generation resulted in a high 

number of noisy mismatched points that rendered the point cloud unusable. This failure 

of SfM to model the full extent of grass height is evident across the plots, as is the high 

level of noise in TLS point clouds. 

Volumes derived from TLS and SfM point clouds showed very little sensitivity to 

variation in cell sizes above 2 x 2 cm (Figure 10).  However, at 1 x 1 cm and 0.5 x 0.5 cm 

cell sizes, volume metrics were markedly lower than for all other cell sizes.  This resulted 

from empty cells within the plot dramatically lowering calculated volume as the cell size 

became smaller than the point cloud density, and thus being potentially calculated as not 

containing any vegetation volume despite the presence of vegetation.  This trend was less 

pronounced in SfM volume estimations due to the higher point density of SfM compared 

to TLS.  
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Figure 10. Sensitivity cell size of volumetric measurements using the estimated ground surface.  

Mean and standard deviation of TLS (open circles) and SfM (closed circles) volumetric 

measurements using the estimated ground surface.  Cell sizes displayed had 0.5, 1, 2, 4, 11, 22, 

and 44 cm sides. Note that the 44 cm cell dimension is equivalent to simply using the mean plot 

vegetation height for this assessment. 

 

 

Figure 11.  As Figure 10 but using the observed ground surface rather than the estimated ground 

surface for volumetric measurements  
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Sensitivity in volume estimations using the observed ground surface showed 

similar characteristics to those derived from the observed ground surface (Figure 11).  

Volume estimation was lower for both TLS and SfM when using the estimated ground 

surface, but the same insensitivity to cell size observed was observed.  

With cell dimensions of 2 × 2 cm there were always points within each cell for the 

TLS or SfM point clouds.  Because both TLS and SfM showed very stable volume 

estimates above this size, the remainder of the analyses were carried out using point 

cloud volumes derived with 2 cm cell dimensions.  Further work is needed to establish 

the maximum optimal cell size for volumetric analysis of an undisturbed grassland plot. 

A comparison of TLS and SfM volumes confirms differences observed between 

TLS and SfM point clouds.  SfM derived grass volumes have a smaller range and are 

typically 27% less than the TLS derived volumes.  This can be clearly seen the reduced 

major axis (RMA) regression of TLS and SfM derived volume estimates (Figure 12), 

which shows a significant divergence from the 1:1 line.  Despite this bias, TLS and SfM 

volume estimates using the estimated ground surface are well correlated (r = 0.762), 

confirming that both methods are providing related measurements.  This relationship was 

slightly weaker with volume estimates derived from the observed bare earth surfaces (r = 

0.738), which showed a larger range in both TLS and SfM volume estimates thanks to 

topographical variation within the plot not captured by the estimated ground surface. 
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Figure 12. TLS and SfM volume estimates (m3) derived from the 11 grassland point cloud data 

sets using the estimated ground surface (left, correlation 0.762) and the observed ground surface 

(right, correlation 0.738) and a 2x2 cm cell size. The solid line shows the reduced major axis 

(RMA) regression of these data and the dotted line shows the 1:1 line for reference.  

 

5.3 AGB Estimation  

The destructively sampled above ground biomass with (AGBtotal) and without 

litter (AGBgrass) were compared by OLS regression with the disc pasture meter settling 

heights and with the grass volumes derived from TLS and SfM point clouds. 

The disc pasture meter settling height was found to have the poorest regression fit 

with the destructively sampled AGB (Figure 13).  Using the disc pasture meter, better 

model fits were observed when estimating AGBgrass (r
2 = 0.42) than estimates of AGBtotal 

(r2 = 0.32).  However, these regressions were not particularly significant (AGBtotal p = 

0.0683 and AGBgrass p = 0.0300). 
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Figure 13. Ordinary Least Squares (OLS) regressions of AGBtotal (red triangles) and AGBgrass 

(blue squares) against the disc pasture meter settling heights (cm). 

 

The OLS regressions between TLS and SfM derived volume metrics and AGB are 

presented in Figure 14 for volumetric measurements using the estimated ground surface.  

Both TLS and SfM showed greater correspondence with AGB compared to the disc 

pasture meter.  When estimating AGBtotal, SfM (r2 = 0.74) provided a more effective 

estimation than TLS (r2 = 0.56).  However, the smaller range of SfM volumes resulted in 

slopes over two and a half times more steep than TLS regressions.  Removing the litter 

layer from AGB dry weight lowered the overall fit of each of the models, as 

correspondence was lower for both SfM and TLS when estimating AGBgrass, (SfM r2 = 

0.51, TLS r2 = 0.49), and the fits were less significant.  For both data types, the volume 

estimates corresponded better with AGBtotal than with AGBgrass and the fits were more 

significant.   
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Figure 14. Ordinary Least Squares (OLS) regressions of AGBtotal (red triangles) and AGBgrass 

(blue squares) against the TLS (left) and SfM (right) derived volume estimates (m3) using the 

estimated ground surface.  

 

The relationships between TLS and SfM derived volume using the observed 

ground surface and AGB are shown in the regressions presented in Figure 15.  Using 

these observed ground surfaces, regressions of AGBtotal against SfM (r2 = 0.77) and TLS 

(r2 = 0.63) outperform models of AGBtotal utilizing the estimated ground surface.  The 

same general trends observed previously using the estimated ground surface hold true 

with the estimated ground surface, with a noted drop in significance and model fit when 

assessing AGBgrass.  In addition to the better model fits, volumes derived from the 

estimated ground surface tended to be greater than those derived from the observed 

ground surface. The mean TLS volume was 0.0960 m3 when using the estimated ground 

surface, but 0.0916 m3 when using bare earth observations.  Similarly, SfM volumes 

using the estimated ground surface had a mean of 0.0702 m3 versus 0.0662 m3 when 

using the bare earth observation.  
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Figure 15. As Figure 14 but showing TLS (left) and SfM (right) volume estimates derived from 

bare earth observations rather than the estimated ground surface. 

Results of the LOOCV runs (Table 1) largely corroborate with what was observed in 

the complete OLS regressions, and each of the 11 regressions generated using this 

scheme provided similar fits to those observed in Figures 13 – 15.  Consequently, the 

same trends in r2 and significance observed there can be observed in the LOOCV results 

as well.  Summary statistics for each regression summarized in Tables 1 and 2 can be 

found in Appendix III.  

Table 1. Summary statistics for the 11 LOOCV runs for TLS and SfM volume estimates using the 

estimated ground surface, as well as the disc pasture meter settling height. Displayed are the means 

and standard deviations of OLS regression F-test p-value, the coefficient of determination (r2), the 

RMSE (g/m2), and the residual of the ‘left-out’ observation (equation 2) for each regression 

(n=10). Additionally, RMSELOOCV (g/m2) calculated using equation 3 are presented as well.  Full 

results of each LOOCV are found in Appendix III. 

  p-value r2 RMSE Residual RMSELOOCV 

Disc 
AGBtotal 0.089 ± 0.031 0.326 ± 0.046 223.424 ± 12.26 16.272 ± 268.20 268.70 

AGBgrass 0.042 ± 0.013  0.428 ± 0.040 95.955 ± 7.290 7.540 ± 119.92 120.15 

       

TLS 

AGBtotal 0.014 ± 0.007 0.561 ± 0.054 179.987 ± 13.44 0.492 ± 219.46 219.46 

AGBgrass 0.027 ± 0.013 0.492 ± 0.063 90.591 ± 10.368 -0.227 ± 107.68 107.68 

       

SfM 

AGBtotal 0.002 ± 0.001 0.740 ±0.037 138.015 ± 5.83 3.876 ± 168.68 168.73 

AGBgrass 0.026 ± 0.021 0.509 ± 0.086 88.306 ± 7.013 4.522 ± 111.58 111.67 
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Error in model prediction can be summarized through the RMSELOOCV values 

generated by equation 1.  These indicate that the disc pasture meter yielded poor 

predictive capability of AGBtotal, with RMSELOOCV of 268.7 g/m2.  Errors in prediction of 

AGBgrass were significantly lower at 120.25 g/m2. These errors are quite large, however, 

and correspond to approximately 42% and 31 % of the mean AGBtotal and AGBgrass 

sampled across all plots. Both TLS and SfM showed less error in estimation of AGBtotal.  

SfM RMSELOOCV values for AGBtotal (168.73 g/m2) were smaller than TLS values 

(219.46 g/m2). These errors correspond to 26 and 35 % of the mean destructively sampled 

AGBtotal. 

In estimation of AGBgrass, lower and more uniform RMSELOOCV values were 

observed for all methods.  Direct comparison of these RMSE values to those of AGBtotal 

models can be misleading however, and the lower values can largely be attributed to the 

smaller range of AGB in regressions with litter removed rather than an indication of 

lower accuracy in AGBtotal models.   

 

Table 2. As Table 1 but showing regressions using the observed ground surface in volumetric 

calculations rather than the estimated ground surface. 

  p-value r2 RMSE Residual RMSELOOCV 

TLS 

AGBtotal 0.006 ± 0.003 0.637 ± 0.051 163.569 ± 12.69 -0.776 ± 203.05 203.05 

AGBgrass 0.024 ± 0.011 0.502 ± 0.053 89.623 ± 9.196 0.348 ± 107.67 107.67 

SfM 

AGBtotal 0.001 ± 0.001 0.769 ± 0.42 130.120 ± 8.40 0.728 ± 151.55 151.56 

AGBgrass 0.039 ± 0.040 0.463 ± 0.091 92.294 ± 5.911 7.960 ± 119.58 119.84 
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6.0 DISCUSSION 

6.1 AGB Estimation 

6.1.1 Point Cloud Generation 

Point cloud generation between TLS and SfM data capture methodologies were 

markedly different for this grassland ecosystem.  Point cloud densities varied greatly 

between the two, with SfM producing many more points and consequently a more 

detailed perspective of grass structure within the plot.  The lower TLS point densities 

observed were largely due to the relatively large angular step of the TLS unit used 

(section 4.2.4). 

One of the most notable differences between TLS and SfM point clouds was in 

the observed height of the vegetation canopy, with SfM producing much lower grass 

heights, and consequently volumes, than TLS (Figure 9).  This underestimation of grass 

height comes from an apparent failure to model the extremities of fine scale vegetation 

(i.e. single grass blades and seed heads).  This has been noted when modeling other fine 

scale vegetation structures such as small branches (Miller et al. 2015; Morgenroth and 

Gomez 2014) and the upper portions of shrubs (Hesse 2014). The difficulty in modeling 

these fine scale has been attributed to insufficient point cloud resolution either from 

camera specifications or distance to the reconstructed object (Miller et al. 2015).  While 

this was likely a factor, very close ranges (<2m) and high camera resolution (20 

Megapixels) used in this study make this unlikely to be the only explanation.  Rather, the 

possibility of slight movement of these fine scale objects between photographs make tie 

point identification difficult, resulting in an increased likelihood of point identification 

errors and subsequent failure of proper photograph alignment and point cloud generation.  
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In this study, the problem was particularly pronounced with seed heads, which SfM 

almost always failed to model entirely.   

The high degree of homogeneity of the grasses further made identifying unique 

points within the grass stand more difficult.  SfM relies on automated identification of 

unique points from different camera angles to generate 3D information.  However, there 

is very little variation between blades of grass which may be used in identifying unique 

points.  Like vegetation movement, this can result in poor photo alignment and point 

cloud generation of the vegetation less accurate (Nouwakpo et al. 2015).  Uniquely 

painted cubes placed on the corners of the plot were found to help with photo alignment, 

but even with these aides, point cloud modeling of the grasses lost much of the finer 

details of the grass structure. 

Lighting conditions can also play a role in the accuracy of SfM point cloud 

generation (Miller et al. 2015).  The consistency of lighting between photographs is 

incredibly important as variable lighting can lead to poor photograph alignment.  It has 

been suggested that diffuse lighting (i.e. cloudy days) is preferred to reduce shadows and 

overexposure (Miller et al. 2015).  However, overcast days could result in underexposed 

photographs, particularly when using hand held cameras, which require relatively high 

shutter speeds to capture crisp photographs.  When light is limited, the ISO or aperture 

settings must therefore be changed accordingly, possibly reducing image quality.  

Furthermore, extremely long shutter speeds (e.g., with tripod mounted cameras) increase 

the likelihood of photo blur from moving grasses while the photo is being captured.  

The various challenges in SfM point cloud generation observed in grasses resulted 

in excessively noisy point clouds. These error prone points were removed from the point 
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cloud using a built in depth filtering mechanism within Agisoft Photoscan.  While this 

has been found to over smooth vegetation and lead to underestimation of vegetation 

height (Hesse 2014), disabling the filter entirely resulted in excessive noise that rendered 

analysis of the point cloud impractical. The depth filtering used was therefore minimized, 

but not disabled. 

TLS and SfM point clouds also displayed markedly different levels of noise in the 

datasets.  The high degree of noise TLS point clouds resulted from both the TLS sensor 

canopy properties of the grasses.  The TLS sensor used produced relatively low point 

cloud densities, with pulses were sensed every 0.80 to 1.22 cm at the distances observed 

in this study (section 4.2.2).  This is much larger than the individual grass blades, 

meaning that it is not possible to distinguish grass canopy structure at fine scales.  

Furthermore, the grass canopy is not homogenous and contains many gaps and void 

dispersed between the fine scale grasses.  Because of this, TLS point returns were 

observed for both the top of the grass canopy as well as points lower in the grass stand 

that were detected by TLS returns due to these voids.   

Another possible noise contributing factor could be from the scanning geometries 

used.  Scan locations above the vegetation canopy have been shown to overestimate 

vegetation height (Ehlert and Heisig 2013).  This overestimation was found to be larger at 

greater scanning distances.  Due to the multi scan symmetry of this study, this would 

cause both high and low height estimations at the plot edges once all four scans have 

been merged.  Given the range of this study however, the effect of this was likely 

minimal.  
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Alignment of the point clouds is another potential source of error in the 

assessment of TLS and SfM point clouds.  The upper limit of scan alignment accuracy is 

limited largely to point cloud density, as the point cloud density determines the precision 

with which alignment targets can be resolved.  In the context of this study, that means 

that alignment accuracy was limited to the resolution and accuracy of the CBL unit.  

Average alignment RMS error for TLS point clouds was 1.42 cm.  This roughly 

corresponds to the point dispersal at the target locations, which ranged from 0.80 to 1.22 

cm for each scan.  Alignment of the SfM point clouds to the TLS point clouds showed 

similar alignment error with an average of 1.43 cm. 

6.1.2 Sensitivity to cell size 

Neither TLS nor SfM were found to be sensitive to cell size when estimating 

volume provided that the cells were of a sufficient size to ensure that no cells were left 

empty for the given point cloud densities.  This sensitivity however is based on the 

combined relationship between the point clouds generated and the specific structural 

properties of the grass plots in the study, and may vary with different instrumentation or 

grass structure.  The observed insensitivity of either technique to cell size implies that 

using simple height metrics (e.g., Eitel et al. 2014), at least up to 0.44 x 0.44 m plot sizes 

for the grasses considered in this study, is sufficient for calculating AGB in grasslands.  

6.1.3 TLS and SfM AGB estimation 

Results from this analysis show that both TLS and SfM are able to estimate AGB 

with a reasonable amount of accuracy.  Robust allometric relationships are difficult to 

establish and require much more robust sampling (e.g., Trollope et al. 1999) than the 11 

plots analyzed here.  As a result, the allometric relations observed in this study were less 
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successful than some observed in the literature, both in terms of regression fit and overall 

error in predicting AGB.  However, from this assessment the potential of both of these 

techniques can be seen.  Results from both methods show relatively high predictive errors 

when estimating AGBtotal, but biomass estimates showed significant errors, with errors in 

prediction ranging from 107 g/m2 to 219 g/m2.  This is a substantial level of error given 

the range of measured AGB was 149 g/m2 to 1043 g/m2.  Nevertheless, both TLS and 

SfM showed high correspondence to AGBtotal (r
2 = 0.56 and r2 = 0.74). These 

correspondences are comparable in magnitude to previous results estimating grass 

biomass from point cloud metrics (Eitel et al. 2014; Schaefer and Lamb 2016). 

Both TLS and SfM have proven their potential for grassland vegetation 

assessment.  While higher r2 and lower RMSE would seem to suggest SfM would be the 

preferred method for grassland assessment, the tendency observed in SfM for under 

modeling grass height could prove to be problematic.  Volume estimates for SfM in this 

study fell within a more narrow range than TLS volume estimates did, resulting in a 

much steeper OLS regression slope observed in SfM regressions.  Consequently, the 

same error in SfM volume estimation could create a disproportionately larger effect in 

AGB estimation when compared to the effects the same magnitude of error in TLS 

volume estimation.  Given that the errors in grass volume estimates of both methods may 

be substantial, this could prove detrimental to the selection of SfM over TLS. 

6.1.4 Disc pasture meter AGB estimation 

Both TLS and SfM outperformed the conventional disc pasture meter, further 

demonstrating their utility in AGB estimation.  However, I note that the AGB estimations 

using the disc pasture meter fell well short of the upper limits observed in the literature, 
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where r2 values greater than 0.95 have been found (Santillan et al. 1979; Karl and 

Nicholson 1987).  However, AGB estimation of grass AGB has been shown to be greatly 

reduced by the presence of a significant litter layer and variable microtopography (Karl 

and Nicholson 1987), as well as in tall grasses (Santillan et al. 1979; Douglas and 

Crawford 1994).  As variable litter layer and microtopography have been shown to 

negatively impact TLS and SfM estimates of AGB as well, it is possible that future work 

assessing AGB assessments in grassland systems unaffected by these variables will show 

better results for all three methods.   

6.1.5 Effects of litter on AGB estimation 

The disc pasture meter saw improvements to estimation of grass AGB with the 

litter layer removed, with an r2 of 0.32 for AGBtotal and an r2 of 0.42 for AGBgrass. 

However, these r2 values were still lower than r2 using TLS or SfM for either AGBtotal or 

AGBgrass, and all disc pasture meter regressions were much less significant than TLS or 

SfM. 

AGB estimation using SfM or TLS volume metrics showed significant decreases 

in model fit when the litter layer is removed.  Reduction in regression fit for AGBgrass 

data likely resulted from the inability of TLS or SfM to resolve the litter layer. 

Proportions of accumulated litter were highly variable, accounting for 14 % to 137 % of 

the grass AGB, and there was a strong relationship between the AGBgrass and litter 

(Figure 8) with larger litter proportions observed in plots with higher grass AGB.  

Furthermore, plots with higher AGBgrass tended to have larger estimated volumes (Figure 

12).  Because of these correlations, removing the litter weight resulted in a greater loss of 

AGB in plots with higher volumes.  As volume estimates couldn’t change to compensate 
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for litter removal, this resulted in a flattening of regression slopes (Figure 14).  As the 

relationship between litter and grass biomass appears to be somewhat non-linear (Figure 

8), this transformation of the data resulted in poorer regression fits. 

Beyond this statistical explanation lies the complex and non-linear relationship 

between litter accumulation and AGB observed which can be difficult to determine 

(Xiong and Nilsson 1999, Knapp and Seastedt 1986).  Litter decomposition rates in 

grasslands tends to be very low due to relatively dry conditions and low nutrient quality 

of many grasses (Koelling and Kucera 1965), resulting in substantial litter accumulation 

in undisturbed grasslands (Weaver and Rowland 1952) as was observed in this project.  

Litter can influence AGB in grasslands in numerous, and sometimes competing 

ways.  In undisturbed grasslands such as this, litter accumulation has been found to 

largely reduce grass productivity and therefore AGB.  For example, high litter 

accumulation blocks sunlight from the soil surface, reducing the amount of energy 

available to emerging vegetation, resulting in lower productivity and lower grass shoot 

densities (Hulbert 1969, Knapp and Seastedt 1986).  However, a large litter layer has also 

been shown to increase soil water content, which can decrease water stress and increase 

grass productivity in semiarid and water limited grass systems (Redmann 1978).  By 

removing the litter layer from the assessment, I removed a portion of the AGB that both 

directly and indirectly affects the quantity and quality of standing AGB in ways that 

cannot be accounted for using TLS or SfM.  The poor regression results observed in TLS 

and SfM AGB estimation when the litter weight was removed from analysis demonstrate 

the importance of this relationship.   
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While the disc pasture meter did see improvements in AGB estimation with the 

litter layer removed, the regression itself was still less significant that TLS or SfM 

estimates.  Furthermore, the litter layer resided at the bottom of the grass stems and so 

had little influence on the grass mechanical strength and consequently on the disc settling 

height. This inconsistency demonstrates the difficulty in accounting for a variable litter 

layer using allometric relationships of AGB.  While the litter layer in grassland 

ecosystems is an important component of AGB, the failure of TLS and SfM to account 

for this variation remains a methodological shortcoming.  However, the relatively high 

performance of AGBtotal estimation indicates that these methods can still be usefull in 

assessing AGB of undisturbed grasses and use in managed grassland systems would not 

be subject to these errors.  Furthermore, an inability to account for a variable litter layer is 

not unique to these methods, and has been shown here and elsewhere to negatively affect 

other allometric methods, including the disc pasture meter (Karl and Nicholson 1987).  

6.1.6 Effects of plot microtopography on AGB estimation 

Further uncertainty in both TLS and SfM volume estimates resulted from the 

microtopography at each site.  The relationships between AGB and volume using an 

estimated ground surface in lieu of the observed ground surface showed both lower 

regression fits and higher errors compared to when the observed ground surface was 

used.  This suggests that while the estimated ground surface is able to approximate the 

general surface of the ground correctly, the actual ground surface was observed to contain 

numerous small depressions and protuberances which can cause error in volumetric 

measurements when the estimated ground surface was used.  
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At times, however, it may be necessary to use an estimated ground surface in 

order to preserve the nondestructive nature of the TLS and SfM biomass estimates.  

While this has been shown to be less accurate than using observed ground surfaces, it can 

still provide useful and reasonably accurate estimates of AGB despite ignoring 

microtopographical variation between and within plots when measuring volume.  Future 

studies investigating AGB loss (e.g., from burning or harvesting) could avoid this 

problem by replacing the estimated ground surface with TLS and SfM measurements 

collected after the AGB event. 

 

6.2 Practical Limitations 

In choosing a method for rapid AGB estimation on grasslands, practical 

limitations need to be identified, and the different AGB estimation methods considered in 

this study have quite different practical limitations.  In this respect, the rapidity of each 

method is a key concern.   

The disc pasture meter was the quickest method, taking only seconds to collect a 

reading. It was simple to implement, and was the least expensive.  However, it was also 

found to be the least accurate method for estimating AGB in this grassland.  Data capture 

for both TLS and SfM were both relatively rapid.  Using the CBL unit, TLS scanning 

took less than 10 minutes to set up and complete all four plot scans, with a similar 

amount of time required for SfM photo capture of approximately 150 photographs. 

Processing times for these two methods were very different.  All four TLS point clouds 

for a given plot could be aligned and clipped to the proper extent in under 30 minutes.  
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Point cloud generation using SfM took over five times as long on account of the higher 

processing needs.  

These times are largely reflected by the specifications of the instruments used for 

data collection and processing.  The CBL unit used was built for rapid scanning and high 

portability (Paynter et al. 2016), and doesn’t require a high performance computer to 

generate point clouds.  SfM processing times are largely dependent on the number of 

input photographs and computing power.  While photographic overlap was maximized 

for this project, further investigation is needed into determining the optimal balance of 

processing time and point cloud generation. 

Beyond data collection and processing times, a major limitation of TLS and SfM 

application is vegetation movement during data acquisition, which can greatly reduce 

their ability to reconstruct accurate point clouds.  When aligning multiple LiDAR scans, 

any portion of the vegetation that has moved between the scans will occupy different 

relative locations in each scan.  This results in a localized misalignment and an 

overrepresentation of these portions of vegetation, adding to the noise in TLS datasets.  

Seed heads, protruding well above the rest of the grass canopy and being more prone to 

movement, are particularly culpable in adding noise to TLS point clouds.  Movement of 

vegetation between photographs for SfM point cloud generation would result in 

photograph misalignment due to changing relative locations of the vegetation within each 

photograph.    

 Because of this, wind is a key factor in point cloud generation using both of these 

techniques as well.  While study design limited the effect of wind in this assessment, 

grasses are prone to movement in even light winds.  Depending on the climatic 
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conditions of the study site, this can severely limit the number of sites visited, as was the 

case with this study.  As investigators would ideally need to wait for windless days, the 

limited time frame of a field season is restricted even further. This can greatly reduce the 

predictive power of allometric relationships generated.  So while direct effects of wind on 

the data were minimized, reduced sampling ability meant that wind still limited the 

results in that fewer replicates were available to generate robust allometric relationships.  

The disc pasture meter is not prone to such wind induced errors,  

Further investigation is needed into the precise effects of wind on TLS and SfM 

point cloud modeling of grasslands.  While failure of photographic alignment will likely 

limit SfM data acquisition, it is possible that TLS will not be as adversely affected.  

Under light or moderate winds, while grasses will invariably move, overall grass height 

will vary relatively little.  This decreases the precision of point cloud generation, 

particularly between multiple scans.  However, given the relative insensitivity observed 

in this study of volume estimation to cell size used, this added noise may prove to be 

irrelevant in AGB estimation. 

Several reasons for errors AGB estimation using TLS and SfM have been 

discussed previously and primarily occur in the generation of the point clouds.  However, 

it is prudent to discuss the basic assumptions the volumetric assessment employed here.  

Grass stand structure can be very complex, and the generated point clouds indicate that 

this complexity cannot be captured by TLS or SfM, at least with the instruments being 

used and the structure of the grasses being investigated.  While using more advanced and 

higher resolution instruments could potentially alleviate some of these errors through 

resolving finer details of the grass structure, the underlying assumption is that the volume 
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of standing grass is directly related to AGB.  While this may be a reasonable assumption, 

it is worthwhile to discuss how it impacts AGB estimation using the methodologies 

presented here.   

This study’s volumetric assessment assumes that the entire area under the 

measured grass height contributes to the plot biomass.  With the resolution of data 

available for this study, it is impossible to resolve individual grass blades, meaning that 

the precise grass structure cannot be resolved.  Even if individual grasses could be 

resolved, occlusion of lower portions of the grass stand would still occur from the upper 

portions of the grass canopy, making observations of these lower sections impossible.  

Grass stands contain numerous voids between the individual plants, and given that many 

of these voids cannot be directly measured by TLS or SfM, it is impossible to verify their 

true structure with this methodology.  Consequently, TLS and SfM inherently 

overestimate grass volume, as the volumes of both the grasses and the voids are included 

in their volume metrics.  The implicit assumption therefore is that these voids occur in a 

regular manner such that the volume of the entire grass stand, including vegetation as 

well as voids, can be linearly related to AGB. 

Given that this study only investigates homogenous stands of Smooth Brome at 

the same life cycle stages and in the same environment, this is a reasonable assumption to 

make.  However, extrapolating these results to different and more complex conditions is 

challenging, and as with other allometric techniques for AGB estimation, it will require 

extensive calibration and assessment.  
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6.3 Future Applications 

Further work is needed to assess the impact of confounding factors of AGB 

estimation using SfM or TLS derived measurements. Such factors may include grass 

species composition, growth stage, structure and condition, variable litter, the effects of 

wind, and seasonality. Further work to determine the major influencing factors and to 

establish optimal configuration and instrumentation for SfM and TLS data acquisition is 

suggested.  Additionally, both SfM and TLS can potentially be used in the classification 

of dead versus living vegetation using the red, green, and blue radiance values generated 

by SfM or the return intensity of TLS.  

Differences in measurement of grass volume and subsequently AGB estimation 

opens the possibility for using the two methods in conjunction to estimate AGB either 

through linear regression between multiple SfM and TLS point cloud metrics (e.g., 

volume), or by merging the two point clouds and generating point cloud metrics from this 

new combined point cloud.  By combining SfM and TLS derived vegetation metrics, it is 

possible that more accurate AGB estimation could be obtained.   

Perhaps the greatest opportunities both of these technologies hold is in their 

potential for upscaling AGB estimates from plot-level measurements investigated in this 

study to direct field-level measurements, such as with terrestrial vehicle mounted 

instruments or merging scans from multiple adjacent locations to assess a larger spatial 

extent.  Additionally, given the relatively high point density and low spatial error of SfM 

and TLS point clouds, they can be used to calibrate and validate point clouds generated 

from airborne or spaceborne platforms (Greaves et al. 2017).  This can be used to help 
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assess studies a much larger spatial scales, for example in global analysis using platforms 

such as the upcoming Global Ecosystem Dynamics Investigation (GEDI) LiDAR. 

 The systematic collection of SfM or TLS data across larger spatial extents could 

provide a great advantage over the disc pasture meter, which is limited to plot-level 

assessments.  Studies of AGB loss using these techniques are particularly promising, as 

direct measurements of a ground surface become possible allowing for more reliable 

volumetric measurements.  
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7.0 CONCLUSIONS 

The results of this study demonstrated the potential of Structure-from-Motion 

(SfM) photogrammetry and Terrestrial Laser Scanning (TLS) for nondestructive 

estimation of grass aboveground biomass (AGB) in a prairie grassland in South Dakota.   

Volume metrics extracted from the SfM and TLS 3D point clouds, and also conventional 

disc pasture meter settling heights, were compared to destructively harvested AGB total 

(grass and litter) and AGB grass plot measurements at 11 sites. The three approaches 

were assessed based on the OLS regression coefficient of determination (r2), and the root 

mean squared error (RMSE) derived from a leave-one-out cross validation scheme 

(Section 4.5).   

 

The four thesis questions (Section 2.0) were all addressed and the findings for 

each are summarized briefly below.   

 

Q1) How accurately can the SfM approach estimate aboveground grass biomass? 

SfM provided the most accurate results of the three approaches investigated with an r2 of 

0.74 and an RMSE of 169 g/m2 for AGBtotal.  

 

Q2) How accurately can the TLS approach estimate aboveground grass biomass?  

TLS was less accurate than SfM with an r2 of 0.56 and an RMSE of 219 g/m2 for 

AGBtotal.  
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Q3) Are the remote sensing approaches (SfM and TLS) more accurate than the 

conventional disc pasture meter approach?   

The SfM and TLS approaches were more accurate than the conventional disc pasture 

meter approach that provided an r2 of 0.32 and a RMSE of 269 g/m2 for AGBtotal.   The 

disc pasture meter was less effective than in certain other studies reported in the literature 

however (which may be due to site and grass differences). 

 

Q4) What are the limitations of each approach (SfM, TLS, and disc pasture meter) 

for rapid field based assessments of aboveground grass biomass?   

Each approach had limitations. The SfM andTLS approaches were not  able to penetrate 

the entirety of the grass canopy.  Consequently, the SfM and TLS volume estimates had 

higher correspondence with AGBtotal (r
2 = 0.74 and r2 = 0.56) than with AGBgrass (r

2 = 

0.51 and r2 = 0.49).  In other vegetation canopies this may not be the case.  The disc 

pasture meter approach is straightforward and rapid as it takes only seconds to place and 

measure the disc settling height. Unlike the TLS and SfM approaches it can be 

undertaken on windy days and does not require consistent solar illumination conditions 

needed for effective SfM point cloud generation. The CBL used in this thesis is a new 

generation of TLS that is optimized for rapid scanning and portability. It took less than 10 

minutes to set up and complete the four CBL scans for each plot. A similar amount of 

time was spent taking the approximately 150 digital photographs per plot needed for the 

SfM approach. However, the processing required to generate 3D point clouds was 

markedly different between the TLS and SfM approaches, typically 30 minutes per plot 
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for the TLS data and five times more for the SfM data due to greater computer processing 

requirements.  The disc pasture meter is the least expensive of the three approaches. 

Although the CBL is more expensive than a digital camera it does not require a high 

performance computer to process the collected data. The TLS processing could be 

undertaken on a laptop computer in the field but except for generating “quick look” 

images this was not considered an advantage due to the difficulty of operating a laptop in 

natural daylight.  

 

 

In summary, both the SfM and TLS approaches demonstrated their potential and 

enabled grass AGB estimation with greater accuracy than the conventional disc pasture 

meter approach.  Each approach has different limitations, and the results of this thesis 

suggest that the selection of a particular approach should consider accuracy and practical 

application requirements.  Further research to determine the major influencing factors and 

to establish optimal methodologies for SfM and TLS data acquisition in grassland 

ecosystems is also suggested.   
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APPENDICES 

Appendix I: Sensor Specifications and Process Settings 

LiDAR Unit SICK LMS151 

    Angular Resolution 0.25° 

    Beam Wavelength 605 nm 

    Beam Divergence 0.86° 

    Maximum Range 40 meters 

    Horizontal view 360° 

    Vertical view 270° 

    Scan Time 33 seconds 

    Weight 3.9 kg 

  

Camera Canon EOS 6D 

    Resolution 20 MP 

    Lens Canon EF 24-70mm f/4L IS USM 

  

Server Specifications Dell PowerEdge R815 

    Operating System Linux 

    Processor AMD Opteron™ Processor 6348 

    RAM 512 GB 

  

PhotoScan Parameters  

Photo Alignment  

    Accuracy Low 

    Pair Selection Generic 

    Key Point Limit 400,000 

    Tie Point Limit 10,000 

  

Dense Cloud Generation  

    Quality High 

    Depth Filtering Mild 
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Appendix II: Data 

 

 

Site  AGBtotal (g/m2) AGBgrass (g/m2) 

Disc Settling 

Height (cm) 

TLS volume (m3) - 

estimated ground 

SfM volume (m3) - 

estimated ground 

TLS volume (m3) - 

observed ground 

SfM volume (m3) 

- observed ground 

1 148.638 99.512 16.9 0.079 0.050 0.071 0.041 

2 303.032 202.877 18.4 0.068 0.062 0.065 0.059 

3 479.831 321.243 14.4 0.056 0.058 0.052 0.055 

4 602.731 494.565 23.0 0.094 0.061 0.089 0.057 

5 455.720 400.130 23.4 0.079 0.066 0.075 0.063 

6 882.114 524.035 36.7 0.145 0.089 0.138 0.082 

7 1042.998 550.777 23.9 0.137 0.081 0.129 0.076 

8 1023.001 432.135 25.5 0.115 0.082 0.122 0.089 

9 841.211 413.812 21.4 0.082 0.082 0.079 0.079 

10 605.601 391.088 27.5 0.094 0.063 0.087 0.055 

11 589.431 379.511 26.9 0.107 0.079 0.101 0.073 
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Appendix III: LOOCV Results 

Table A3.1. Results of the 11 Leave-one-out cross validation (LOOCV) regressions for each 

method against the AGBtotal data (left series) and AGBgrassl data (right series).  Displayed are the 

OLS regression F-test p-value, the coefficient of determination (r2), the RMSE, and the residual 

of the ‘left-out’ observation for each regression (n=10).  

Run 
AGBtotal ~ TLS   

Run 
AGBgrass ~ TLS  

p-value r2 RMSE residual  p-value r2 RMSE residual 

1 0.008 0.610 148.925 406.057 
 1 0.006 0.628 58.722 259.130 

2 0.021 0.506 186.889 141.797 
 2 0.042 0.422 91.640 105.786 

3 0.010 0.587 182.010 -220.832 
 3 0.019 0.517 92.384 -104.506 

4 0.013 0.558 191.112 17.428 
 4 0.016 0.536 88.053 -130.543 

5 0.015 0.542 190.524 53.779 
 5 0.019 0.520 93.064 -85.733 

6 0.013 0.557 183.564 218.450 
 6 0.043 0.420 95.952 39.818 

7 0.033 0.451 187.957 -133.012 
 7 0.055 0.388 95.774 -43.199 

8 0.014 0.550 172.499 -280.711 
 8 0.027 0.479 96.317 16.939 

9 0.004 0.676 159.040 -356.915 
 9 0.018 0.521 92.778 -88.606 

10 0.013 0.558 191.136 14.269 
 10 0.025 0.487 96.314 -16.654 

11 0.010 0.580 186.200 145.101 
 11 0.023 0.496 95.500 45.068 

           

Run 
AGBtotal ~ SfM  

Run 
AGBgrass ~ SfM 

p-value r2 RMSE residual  p-value r2 RMSE residual 

1 0.005 0.644 142.182 136.346 
 1 0.087 0.322 79.251 198.049 

2 0.001 0.744 134.623 195.340 
 2 0.022 0.500 85.211 135.068 

3 0.001 0.744 143.273 -105.199 
 3 0.021 0.507 93.372 -38.888 

4 0.001 0.773 137.110 -175.341 
 4 0.002 0.703 70.420 -213.038 

5 0.001 0.742 142.930 105.566 
 5 0.018 0.526 92.545 -55.546 

6 0.001 0.745 139.322 170.998 
 6 0.036 0.443 94.029 1.180 

7 0.001 0.741 129.186 -237.929 
 7 0.029 0.470 89.134 -103.483 

8 0.002 0.723 135.398 -193.940 
 8 0.020 0.514 93.013 48.072 

9 0.002 0.726 146.185 26.851 
 9 0.017 0.531 91.839 70.326 

10 0.001 0.759 141.252 -129.856 
 10 0.016 0.536 91.542 -72.586 

11 0.000 0.806 126.700 249.801 
 11 0.015 0.542 91.006 80.584 
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Table A3.2. As Table A3.1 but for regressions calculated using the disc pasture meter settling height. 

Run 
AGBtotal ~ Disc  

Run 
AGBgrass ~ Disc 

p-value r2 RMSE residual  p-value r2 RMSE residual 

1 0.167 0.224 209.972 389.046 
 1 0.068 0.358 77.125 237.630 

2 0.123 0.271 227.097 231.210 
 2 0.059 0.376 95.211 126.793 

3 0.091 0.316 234.168 -133.720 
 3 0.033 0.451 98.452 -102.706 

4 0.087 0.322 236.679 20.880 
 4 0.029 0.469 94.172 -130.404 

5 0.079 0.336 229.384 194.514 
 5 0.041 0.425 101.867 -20.047 

6 0.101 0.300 230.556 261.013 
 6 0.056 0.383 98.981 120.292 

7 0.050 0.398 196.771 -436.841 
 7 0.023 0.497 86.827 -177.870 

8 0.077 0.340 208.961 -371.562 
 8 0.043 0.418 101.834 -21.949 

9 0.058 0.380 219.898 -292.939 
 9 0.035 0.444 99.995 -67.948 

10 0.072 0.349 232.051 159.882 
 10 0.036 0.440 100.594 58.356 

11 0.073 0.347 232.126 157.507 
 11 0.036 0.442 100.447 60.789 

 

Table A3.2. As Table A3.1 but for regressions calculated using the observed ground surface rather than 

the estimated ground surface for volumetric measurements.  

Run 
AGBtotal ~ TLS   

Run 
AGBgrass ~ TLS  

p-value r2 RMSE residual  p-value r2 RMSE residual 

1 0.004 0.672 136.467 369.217 
 1 0.009 0.591 61.573 249.179 

2 0.009 0.593 169.543 136.375 
 2 0.036 0.441 90.140 108.850 

3 0.004 0.675 161.397 -244.407 
 3 0.017 0.529 91.230 -104.499 

4 0.006 0.634 173.938 10.535 
 4 0.014 0.552 86.517 -133.078 

5 0.007 0.621 173.408 47.166 
 5 0.017 0.531 91.997 -84.946 

6 0.006 0.639 165.579 212.482 
 6 0.039 0.430 95.125 26.660 

7 0.014 0.551 169.894 -138.676 
 7 0.047 0.408 94.165 -55.770 

8 0.011 0.579 166.819 -175.635 
 8 0.020 0.510 93.394 68.552 

9 0.001 0.752 139.120 -350.434 
 9 0.017 0.529 92.052 -83.540 

10 0.006 0.634 173.937 -10.799 
 10 0.022 0.501 95.021 -26.708 

11 0.005 0.653 169.153 135.644 
 11 0.021 0.505 94.637 39.130 

           

Run 
AGBtotal ~ SfM  

Run 
AGBgrass ~ SfM 

p-value r2 RMSE residual  p-value r2 RMSE residual 

1 0.004 0.672 136.542 75.672 
 1 0.163 0.228 84.548 203.680 

2 0.000 0.798 119.413 231.351 
 2 0.028 0.474 87.385 151.420 

3 0.001 0.766 137.057 -49.304 
 3 0.033 0.454 98.243 -11.535 

4 0.001 0.794 130.558 -149.679 
 4 0.007 0.622 79.474 -196.329 

5 0.001 0.781 131.760 134.281 
 5 0.028 0.474 97.479 -42.163 

6 0.001 0.751 137.511 32.119 
 6 0.048 0.406 97.164 -52.963 

7 0.000 0.808 111.071 -277.481 
 7 0.036 0.443 91.368 -123.348 

8 0.002 0.713 137.786 9.459 
 8 0.017 0.533 91.250 141.862 

9 0.001 0.757 137.720 17.014 
 9 0.027 0.479 96.802 59.269 

10 0.000 0.810 125.223 -197.475 
 10 0.021 0.507 94.423 -93.822 

11 0.000 0.806 126.685 182.050 
 11 0.027 0.479 97.096 51.493 
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Appendix IV: Alignment Errors 

Table A4.1. Error (RMS) of point cloud alignments. ‘Pre’ and ‘post’ refer to data collected before and after AGB removal in the plots.  TLS pre scans, 

TLS post scan 1, and SfM point clouds were all aligned to TLS pre scans. TLS post scans were aligned to TLS post scan 1 after it had been properly 

aligned to TLS pre scan 1.  

 

Site 
TLS pre TLS post 

SfM pre SfM post 
Scan 2 Scan 3 Scan 4 Scan 1 Scan 2 Scan 3 Scan 4 

1 0.0079 0.0112 0.0172 0.0113 0.0153 0.0169 0.0105 0.0064 0.0107 
2 0.0079 0.0118 0.0181 0.0117 0.0172 0.0183 0.0122 0.0107 0.0085 
3 0.0130 0.0165 0.0133 0.0219 0.0192 0.0105 0.0169 0.0211 0.0247 
4 0.0165 0.0173 0.0170 0.0173 0.0059 0.0150 0.0128 0.0143 0.0155 
5 0.0115 0.0154 0.0112 0.0151 0.0077 0.0135 0.0147 0.0139 0.0115 
6 0.0126 0.0200 0.0093 0.0105 0.0178 0.0161 0.0138 0.0152 0.0132 
7 0.0193 0.0165 0.0041 0.0110 0.0094 0.0133 0.0106 0.0075 0.0205 
8 0.0197 0.0199 0.0185 0.0212 0.0115 0.0169 0.0105 0.0192 0.0114 
9 0.0126 0.0113 0.0164 0.0141 0.0118 0.0118 0.0023 0.0231 0.0187 
10 0.0192 0.0121 0.0190 0.0105 0.0178 0.0161 0.0138 0.0081 0.0153 
11 0.0173 0.0083 0.0171 0.0312 0.0115 0.0169 0.0105 0.0125 0.0126 
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