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Abstract

Biodiversity and its conservation are an important subject as human pressure on

natural resources increases continuously. Without accurate means of measuring

biodiversity, however, monitoring is very difficult and conservation efforts might

not be targeted effectively. There is a great demand for biodiversity assessment

on a regional scale in order to support national conservation aims as stated, for

example, in the UK Biodiversity Action Plan. Remote sensing lends itself to

interpretation at the landscape scale and this study aims to assess a variety of

optical and laser remote sensing data with regard to their usefulness for biodiversity

assessment in Wales.

The study was divided into four distinct areas to evaluate different remote sensing

data with regard to their utility for facilitating the measurement and assessment

of distinct elements of biodiversity. These components are vegetation composi-

tion and condition, land cover on a regional scale, three-dimensional woodland

structure and the interaction of flora and fauna within the landscape structure.

Methodological advances include a novel land cover mapping approach from multi-

spectral remote sensing data comparable to traditional manual habitat surveys as

well as an analysis of forest vertical profile under consideration of bird habitat

preferences.

Remote sensing data investigated included airborne hyperspectral data, multispec-

tral satellite imagery and airborne LiDAR.

The potential of hyperspectral data for the differentiation of grasslands of varying

levels of improvement was tested at two experimental grassland study sites and

the results suggest a strong correlation between biomass and the red-edge region

of the electromagnetic spectrum. A relationship between the presence of non-

photosynthetic vegetation and the level of agricultural improvement was further
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established and utilized in the formulation of rules for the classification of grass-

land habitats.

The outcomes of this study were used to support the landscape-scale land cover

mapping of the extent of 38 classes from a multi-temporal combination of two

spaceborne multispectral sensors (SPOT 5 HRG and IRS LISS IV). The derived

maps achieved a moderate accuracy of 64%, though individual classes, especially

woodlands and bogs, exceeded this value.

The ability of Light Detection and Ranging (LiDAR) and terrestrial laser scanner

data to capture the three-dimensional structure of forests was investigated. It was

found that both sensor types were limited in their ability to accurately represent

forest vertical profile due to respective downward and upward signal attenuation

through the canopy. However, both provided an accurate digital terrain model

and correlated well in their estimation of canopy height.

Despite the limitations of vertical forest structure assessment from airborne Li-

DAR, observation of bird species could be linked to distinct forest vertical profiles.

Specialist woodland species were found to have the strongest habitat preferences

with regard to the vertical forest structure.

This project has achieved advancements in the mapping of agricultural land and

habitats in Wales, using remote sensing data, specifically in the differentiation of

grassland improvement levels and tree species discrimination from multispectral

satellite imagery. Furthermore, a strong correspondence between airborne and

terrestrial laser scanner outputs has been established and LiDAR forest profiles

have been shown to relate well to known woodland bird habitat preferences.

The added value derived from examining these four research areas as part of a

single study, consists of the knowledge gained in how best to harness the respective

remote sensing methods for the evaluation of very different aspects of biodiversity.

It has further been shown that it is possible to use optical remote sensing data at

a high spatial and spectral resolution, but low availability to inform and improve

the utilization of more widely accessible, but less detailed images. Furthermore,

a method has been developed which allows the interpolation of avian diversity

from the assessment vertical forest structure. As biodiversity consists of many

different elements at a wide variety of scales it is crucial to be able to perform

such integrated analyses of its various components. However, only a combined

approach towards the utilization of remote sensing, as demonstrated in this study,

is likely to gain the necessary data.
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The outcomes of this research support Wales-wide assessment of biodiversity and

facilitate the production of regional or national vegetation maps as well as struc-

tural attributes for input into models. Components of the study can be used to

support, for example, climate change research, assessments of biodiversity and pol-

icy decisions. Optical and laser remote sensing data can be successfully utilized

for Wales-wide biodiversity components analysis.
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Chapter 1

Introduction

1.1 Biodiversity

1.1.1 Definition of biodiversity

Biodiversity is the variation of all life forms at all levels of biological organization

(e.g., molecular, organismal, populations, species or ecosystems (Wilcox, 1984)).

This variation is a product of evolution and the constant specialization and speci-

ation events occurring over time.

Biodiversity has generally been studied at three distinct levels; genetic, species

and the ecosystem.. An increase in diversity is only possible through speciation

events, which occur by way of natural selection and is expressed at the gene level

(where the gene is the fundamental unit of natural selection). Genetic diversity is

hence considered by some as the ‘real’ biodiversity.

The majority of studies on biodiversity are undertaken at the species or population

2



CHAPTER 1. INTRODUCTION 3

level because the scale and extent of the study can be easily defined. The species

level also lends itself to the illustration of events and processes which influence di-

versity and reduce the intrinsic complexity of the natural environment to an easily

comprehensible level.

Ecosystem studies of biodiversity are rarer, in part because of the difficulty in

defining the limits of an ecosystem. The extent of ecosystems is generally larger,

which restricts many empirical studies and hence many assessments and predic-

tions of diversity are based on modeled data. Where levels of biodiversity are

high, the ecosystem is generally more stable. The resilience to disturbance of any

ecosystem is also determined by its inherent diversity, which determines the ability

of the system to adapt to changing circumstances. A high number of species is

an ‘insurance policy’ for extreme events (e.g., not all species will be susceptible

to all diseases or require a certain temperature range). After an extinction event,

empty functional niches (e.g., prey for a certain predator species) can be filled by

a similar species.

To maintain diversity, the ability to adapt and change needs to be preserved.

Population and species extinctions are natural events and take place at all times

for a number of reasons. They are opposed by speciation events and the respective

rates of extinction and speciation occurrences, as well as species abundance and

distributions, determine the level of biodiversity present on Earth at any time,

which is not static. However, conservationists agree that the rate of extinction

has risen in historic times to an unnatural level as a direct consequence of human

activities (Chapin III et al., 2000). 40% of the 40.177 species assessed using the

IUCN (International Union for the Conservation of Nature and Natural Resources)

red list criteria in 2008 are now threatened with extinction and a large proportion
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of species are currently vulnerable to extinction (Figure 1.1).

Habitat destruction, over-harvesting of resources, pollution, climate change and

the introduction of invasive species have been identified as the most important

causes of biodiversity loss, all of which can be attributed to human activity and

population pressure.

Figure 1.1: Proportion of the global number of bird, mammal, fish and plant
species that are currently threatened with extinction. (Redrawn from Pimm et al.
(1995))

1.1.2 Biodiversity in Wales

In Wales, a number of habitats are considered to be of special importance for bio-

diversity and therefore have received conservation status.

One of the main repositories of terrestrial biodiversity within Wales is contained in

the large stretches of sparsely inhabited upland, located in the Cambrian Moun-

tains and the Preseli and Brecon Beacon hill ranges, whose main human land use

consists of extensive grazing by sheep and, to a lesser extent, cattle. The dominant
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land cover types here are rough grasslands (e.g., consisting of Molinia caerulea,

Nardus stricta and Festuca ovina ), dry and wet moorlands (Calluna vulgaris and

Vaccinium myrtilus) and climatically sensitive blanket bogs (Sphagnum spp. and

Eriophorum vaginatum). 40% of the UK’s land cover consists of uplands and these

areas contain 75% of the world’s heather moorlands. In the context of the UK,

the northern Snowdonia mountain range also contains a UK-wide very rare alpine

environment and endemic plant species such as the eyebright Euphrasia cambrica.

Wales also has a large and varied coastline and several river estuaries with exten-

sive associated areas of salt marshes and coastal wetlands (e.g., around the mouths

of the Severn, Mawddach and Dyfi rivers) of international importance. Many sites

are recognized as being important by the Convention on Wetlands of International

Importance (RAMSAR convention).

The maintenance of a high level of biological diversity is one of the most important

tasks of conservation in Wales. However, whilst conservation is important in Wales,

there is also the need to house and feed a population increasing through natural

growth and immigration. Hence, many of the diverse and biologically valuable

areas are under increasing pressure and threat from anthropogenically-induced

influences.

1.1.3 Biodiversity loss and human influence

Few areas of the global land and seascape have remained untouched by anthro-

pogenic activity, either directly (e.g., through actual physical alterations such as

building or agriculture) or indirectly (e.g, through air- or seaborne pollution or the
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inadvertent introduction of alien species). As a result, the rapid loss of natural

habitats has become one of the greatest threats to biodiversity.

The associated loss of faunal and floral species is a major concern, particularly for

conservationist and politicians who are increasingly aware of the potential value

of the natural environment for economy, health and quality of life and the risks of

disturbance of often not yet fully understood natural patterns and processes. The

environment, even if truly free from human influence, is in a constant state of flux.

Changes do occur frequently, whether as a result of natural events and processes

which can lead to extinction of populations, establishment of new populations or

migration. Whilst the environment is highly variable, there is considerable re-

silience in the system to change and many ecosystems oscillate around a state of

relative equilibrium.

However, the frequency and severity of change and change inducing events and

processes have increased exponentially over the last century, largely because of

changes in climate and human use of the landscape. There is increasing concern

that the severity of extreme events might cause irreversible change in the environ-

ment, disturbing natural balances and shifting the original equilibrium to one that

is less familiar. Land cover and land use change, as a result of the above events,

have been identified as the most significant variable to affect biodiversity in terres-

trial ecosystems over the next 100 years (Chapin III et al., 2000; Sala et al., 2000).

Conservation is, however, just one land use that competes with the need to house

and feed ever increasing human populations on a finite land resource. Hence, many

land areas that support a diversity of flora and fauna are often under consider-

able threat from anthropogenically-induced influences. Furthermore, whilst species
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conservation efforts often concentrate on dedicated reserves, changes in land use,

population pressure and, potentially, climate change will in future reduce the feasi-

bility of such reserves. Efforts to integrate biodiversity and conservation concerns

into land use decisions are hence increasingly undertaken. Reliable, spatially ex-

plicit information on land cover and habitat is an urgent requirement to enable

policy makers and land managers to make informed decisions.

1.1.4 Biodiversity quantification

The true rate of biodiversity loss is impossible to identify, not least because of

the difficulties of quantifying biodiversity, as explained below, but also because

not all species on the planet are known or, if known, are described. Studies also

have a distinct macroscopic bias towards the visible world. The majority of global

biodiversity exists though on the microscopic level (e.g., amongst insects and mi-

crobes, the amount and trends in biodiversity here are mostly unknown due to

the difficulty of monitoring). Because of the interconnected nature of ecosystems,

where there is a large amount of interdependency amongst species at all scales,

this microscopic biodiversity is just as important as that which can be observed

by the naked eye.

Biodiversity is not equal across the globe. In terrestrial ecosystems, diversity is

consistently higher in the tropics and fewer species occur towards the polar regions.

‘Biodiversity hotspots’ are defined as regions with a high level of endemic species

and are found were very specialized habitats require a diverse range of adaptations

(e.g., in the Amazon basin and other rainforest regions). As much attention has

focused on these ‘hotspots’, biodiversity loss is sometimes perceived to be mainly
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a problem in developing and/or tropical regions.

This misperception ignores the problem of biodiversity loss occurring at the same

time within developed countries, including the UK, because of human popula-

tion pressures and its associated problems, as described above. The UK is hence

implementing Biodiversity Action Plans (BAP), which devolve some of the respon-

sibility for the inventory of and action to conserve biodiversity to local authorities.

However, to effectively preserve biodiversity, reliable regional assessment and mon-

itoring methods need to be employed to detect trends and allow targeted use of

available resources.

Definitive quantification of biodiversity is problematic, largely because of the differ-

ent elements of diversity that are intricately interlinked (e.g., flora, fauna, climate

and the physical environment) and the varying scales involved (e.g, microbes to

large mammals and plants). The greatest diversity also tends to be found where

studies/inventories have been targeted and hence the view of global biodiversity

can be skewed.

As a general indication, biodiversity is often plotted as a function of the species

richness of a geographic area and often with some reference to temporal scale

(Whittaker, 1972). There are also a number of objective measures to empirically

estimate biodiversity, as listed in Table 1.1, which are in widespread use (Krebs,

2008). They are, however, all limited for wider application and often relate to a

particular use of the data. Most studies therefore calculate more than one measure

to provide an estimate of diversity.

where

Relative measures of biodiversity (e.g., high or low) are often used as an indicator
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Table 1.1: Biodiversity measures
Index name Definition
Species richness S

Simpson Index D = 1−
PS

i=1 ni(ni−1)

N(N−1)

Shannon-Weaver Index H ′ =
S∑
i=1

pilnpi − [(S − 1)/2N)]

Table 1.2: Diversity index symbol definitions
Symbol Definition
S Number of species (species richness)
N Total number of all individuals
n1 Number of individuals of species i (species abundance)
p1 Relative abundance of each species (ni

N
)

of the health of the environment. However, such measurements are only mean-

ingful if they are compared against a benchmark (e.g., for the ecosystem being

considered). However, benchmarks and trends can only be reliably established

through monitoring over time and, for this reason, there is an increasing need to

monitor and, where possible, predict trends and changes and their likely conse-

quences.

It is, however, very rare for biodiversity to be surveyed as a single measure. Much

more frequently, elements of biodiversity, such as species abundance and habitat

distribution or condition are recorded over a certain area as part of a larger frame-

work. These records are subsequently combined in measures such as the above.

Habitat availability, for example, is one of the most important facilitators for stable

levels of biodiversity and data on the spatial distribution and condition of various

habitats are hence of considerable value to all assessments of biodiversity. These

data, however, are very difficult to obtain on a regional scale while at the same
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retaining sufficient detail to allow meaningful interpretation.

For these reasons this study firstly focuses on the representation within remote

sensing data of two main components of the Welsh landscape (grasslands and

forests), as well as more general habitat mapping and finally attempts to illustrate

how detailed knowledge of a habitat can be linked to the distribution of species

which utilize these habitat elements (Section 1.3).

1.1.5 Landscape ecology and biodiversity

For the reasons mentioned above, there is an increasing and urgent need to cre-

ate inventories of habitats and species to aid policy decisions and the responsible

and sustainable management of land resources. By ensuring the conservation of

existing habitats and utilizing the potential for habitat expansion and integration

into the landscape, biological diversity can be maintained and the resilience of the

systems maintained.

However, there is no consensus within the scientific community on the most mean-

ingful way to measure biodiversity and the scales at which measurement should

be taken. For this reason, mechanisms for providing standard measures of biodi-

versity at scales ranging from local to regional are needed.

Spatial quantification of biodiversity and its elements have first been undertaken

by landscape ecologist. Turner et al. (2001) describes landscape ecology as the

reciprocal effect of spatial pattern on ecological processes and as a consequence,

this comparatively new discipline has developed an understanding of ecological

phenomena, which is inextricably linked with the spatial distribution of landscape

elements.

The term landscape ecology was first used by Troll (1939), a German biogeogra-
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pher who recognized the potential of aerial photographs for the analysis of spatial

patterns.

While traditionally, ecological studies assumed spatial homogeneity, landscape

ecologists now routinely consider the implications of spatial patterns and varia-

tions as a function of ecological processes, regardless of the scale at which these

occur (e.g., individual, population, communities or ecosystems). Landscape ecol-

ogy can hence be defined as the ecology of spatial configuration and as the study

of ecological causes and consequences on spatial patterns, processes and change in

the landscape (Turner et al., 2001).

In this context, the landscape is defined by the visible features of an area of land,

such as vegetation. These features can originate from variability in the physical

environment (i.e., the topography determined by the underlying bedrock forma-

tions), natural interactions of living organisms (flora and fauna) with each other

or the physical environment, natural disturbances, (e.g., floods or earthquakes) or

anthropogenic influences (e.g., building activity and land use, such as agriculture

or forestry). The classification and mapping of such features is one of the largest

areas of research within the discipline of remote sensing.

Landscape ecologists frequently use maps of habitat extent, with these either gen-

erated from ground surveys, manual aerial photography interpretation or, increas-

ingly, from the automated analysis of remotely sensed data. The improving ca-

pacity to observe landscapes remotely at fine spatial resolutions, and in three

dimensions, from an ever greater range of optical and laser sensors facilitates the

generation of such maps. Data analysis and interpretation methods are, however,

also required to evolve constantly in order to deliver useful spatial information at
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larger scales than is feasible to record manually.

This study hence aims to contribute to the effort to improve and expand such

interpretation methods.

When assessing biodiversity, the issue of scale is an important consideration. A

common mismatch between the requirements of science and those of policy mak-

ers or land managers occurs because of different approaches to scale. Most ex-

perimental designs are on a small scale with a comparatively short life span and

an arrangement that allows sufficient repeats to obtain statistically valid results.

Applied science, however, requires information on an appropriately larger scale to

devise management regimes and inform policy decisions and direction.

There is further an increasing requirement for spatial information on biodiversity

because of the importance of species distributions in determining diversity and

the nature and consequences of change. The extinction of a species is often pre-

ceded by range contraction, an increasing rarity of the species or fragmentation

of a species habitat. The area of a given habitat and the number of species it is

able to support within this area are also directly related (Equation 1.1), with some

variations (e.g., in the size of organisms). All of these are phenomena that can be

quantified spatially.

S = cAz (1.1)

log(S) = log(c) + zlog(A) (1.2)

The structure of a landscape is dependent on and determined by the size of the

area, which is considered and specifically by the grain or resolution at which land-
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scape features are defined. Hence, scale will strongly influence the specified hetero-

geneity of the studied landscape and identifying the optimal scale for quantifying

the relationship between spatial heterogeneity and the ecological process of interest

is a major challenge for landscape ecologists.

1.2 Remote sensing

1.2.1 Remote sensing in the landscape context

In many ways, landscape ecology as a science has arisen as a result of the need

to understand human impacts of the landscape. However, many landscape de-

scriptors, whilst providing a general overview of the distribution and geometry of

elements, do not consider the impacts of management (e.g., sheep grazing, heather

burning) on the landscape. Much of these changes are subtle and may occur over

long time periods (decades). Capturing such changes requires an understanding

of the impacts of management practices on the landscape. Given the dynamics

of many landscapes, remote sensing data acquired over over periods ranging from

weeks to years need to be used in order to adequately the variation that occurs.

However, most mapping exercises and particularly those at a regional level, focus

on the establishment of a static map for a particular year. An example are the

UK land cover maps for 1990, 2000 and 2007. However, such approaches do not

capture the temporal variability occurring within seasons and between years.

Troll (1939) was strongly influenced by the novel opportunities arising from the use

of aerial photography in regional vegetation studies. Since then, the potential of

remote sensing to provide information on the landscape has expanded enormously
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and an increasing number of operating modes are being exploited (e.g., LiDAR,

hyperspectral optical data, Radar). These data are typically used within the

framework of Geographical Information Systems (GIS) and are widely exploited

by landscape ecologist as a means to observe, visualize and analyze ecological pat-

terns across a range of scales. With advances in these technologies and computer

processing ability, the use of remote sensing data in landscape ecology studies has

expanded rapidly in recent years (Turner et al., 2001).

Remote sensing data facilitate the observation of patterns in the landscape but

also, through time series, processes leading to change. Understanding these changes

and predicting future changes is an important requirement for conservation, par-

ticularly in relation to policy-driven decision making processes. In the past and

even today, the observation and tracking of these processes has been largely ne-

glected partly because of the means to compare between the present and the past

have so far been limited. Long-term studies are also rare because of the lack of

long-term funding and commitment to monitoring and very few are consistent over

long time-periods. There is also limited comparability between independent sur-

veys of various ages as they suffer from the inevitable bias of their original design

purpose and the varying viewpoints and backgrounds of the scientists involved.

For monitoring, it is essential for processes occurring in the landscape under the

current climate to be observed. As pointed out by Reichholf (2005), it is a fallacy

to assume that one point in time as the optimal state of nature (i.e., that of the

most diverse and healthy) because of the constant flux of natural balances. It

is also not presumptuous to conclude from the observations of the landscape, its



CHAPTER 1. INTRODUCTION 15

connectivity and state in relation to the distribution of its faunal occupants.

In many early remote sensing studies, data from the Landsat series of sensors was

largely utilized for land cover mapping. These data were however limited by cover-

age, because of the persistence of cloud cover in the UK, and also spatial resolution,

which at 30 m, was relatively coarse for habitat mapping. In recent years, a wider

range of optical sensors have been acquiring data over the United Kingdom and the

greater repeat coverage has allowed more images to be obtained. These satellite

sensors (e.g., SPOT 5 HRG, Terra-1 ASTER) have also provided data at a finer

spatial resolution (typically < 20 m) which allows more detail in the landscape to

be resolved. There is also increasing capacity to obtain longtime-series of these

data and also to retrieve three-dimensional information with increased availabil-

ity of LiDAR and SAR. Hence, the opportunities for characterizing, mapping and

monitoring landscapes across a range of scales has increased significantly.

Scale is a further significant consideration during landscape mapping. For exam-

ple, assessments of biodiversity may focus on a small patch (e.g., a pond) or a

much larger region. The method of quantifying the landscape then varies and

may be based on ground survey or utilize different forms of remote sensing data

ranging from aerial photography to satellite sensor data. In each case, biophysical

properties are retrieved or the landscape is classified, but the level of detail varies

depending upon factors such as spatial resolution but also upon the classification

scheme applied. Within the United Kingdom , for example, hedgerows are an

important component of the landscape but are omitted from many classifications

(e.g., the UK land cover map (Fuller et al., 2002, 2006) and most of the original

Phase 1 survey). Therefore, linking the spatial maps of the landscape to mean-
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ingful quantitative indicators of biodiversity (e.g., bird species distributions) is

limited.

The capacity to be able to observe, map and monitor the landscape using remotely

sensed data has come at a time where there is an urgent need for information on

the environment. In particular, human-induced interference with the landscape

has led to changes that reduced biodiversity. These included political and socio-

historical pressures (particularly fluctuating policy and market forces) which are

the underlying causes of change in agriculturally dominated landscapes (Baudry

and Poggio, 2007). However, in addition, a more ominous threat of climate change

is anticipated to lead to far more impacts and significant loses of species. For

these reasons, there is a need to quantify and integrate information on the spatial

and temporal components of the landscape to fully document and interpret the

impacts of human-induced and climate change, including those leading to habitat

fragmentation and loss of biodiversity. Establishing baselines of habitat condition

and extent is also fundamental to the assessment of change but these need to be

at an appropriate scale and level of detail.

1.2.2 Vegetation mapping

In all landscapes, the richness and abundance of both flora and fauna is dependent

upon the vegetation present. Many plants (e.g., ground flora, epiphytes) occur as a

consequence of the environmental conditions (e.g., sunlight, nutrients) imposed by

other plants (e.g., trees) or competition within and between species. The majority

of faunal species are dependent upon the type and condition of local flora.

Hence, to quantify biodiversity within a landscape, spatial mapping of vegetation
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extent and characteristics (i.e., species, structure, biomass and seasonal phenology)

at appropriate spatial and also temporal scales is fundamental. However, many

maps of the landscape have insufficient descriptors of plant species composition

but also the state and condition of vegetation. As a consequence, the diversity of

flora and fauna and their response to change (whether natural or anthropogenic)

has proved difficult to quantify. Existing vegetation cover can also be a mitigating

factor in the management of climate change effects. In particular, local microcli-

mates are often dependent on the land cover present and this might therefore offer

a certain amount of resilience to temperature and precipitation changes. However,

existing mapping of vegetation often falls considerably below the detail which is

required to inform and assist in the implementation of management strategies

and accurate maps of, where possible, individual species, species communities and

habitats are needed.

In the past, environmental protection of species has only proven effective if coupled

with habitat protection. To observe processes and change and monitor its effects,

it is necessary to establish a baseline against which to compare change. In the

UK (and specifically Wales), such a baseline was established through the Phase 1

survey of the late 1980s and early 1990s. As the primary spatial dataset of semi-

natural habitats and the extent of agriculture across Wales, this survey was based

on a combination of field observations and aerial photography interpretation. The

maps generated from the Survey are still widely used today in decision making and

and as a baseline against which to measure change. However, a limitation of the

Phase 1 Survey is that updates have not occurred and yet significant changes in

the landscape have taken place as a consequence of changes in, for example, agri-

cultural policy. Therefore, wide-ranging changes of land cover and land use have
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taken place in the meantime, resulting in great inaccuracies between the survey

and the actual up-to-date status of the landscape. Additionally, the Phase I sur-

vey was conducted over a long time period by a great range of surveyors of widely

varying skill and aptitude, causing large inconsistencies from the outset (Wyatt,

1991). The classification system is also very open to interpretation and often does

not deliver sufficient information for some ecological applications (e.g., biodiversity

assessments). Therefore, to maximize utility, the Phase 1 Survey would require

regular updates but this has not been possible because of the lack of financial and

resource investment and political will.

Rodwell (1991) expressed the hope that the National Vegetation Classification

(NVC) would fulfill the function of a national vegetation survey system for the

UK. This Phase II Survey is far more detailed than the Phase 1 and was developed

from the late 1970s. However, the cost and effort involved in this very detailed

ground-based survey technique is prohibitive and hence it has not been undertaken

at a national level. Currently, the Phase II Survey is only used to advise on the

distribution of vegetation communities within small areas of high ecological interest

that were identified within the coarser Phase I Survey.

This study therefore uses the example of grasslands to explore the potential of

hyperspectral remote sensing imagery for the detailed analysis of the ecological

diversity and interest of a defined vegetation community.
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1.2.3 Land cover mapping in Wales

Several attempts to map land cover types across Wales (some of which equate to

Phase 1 habitats) have utilized satellite sensor data as opportunities for routine

mapping are provided. Using 30 m Landsat Thematic Mapper (TM) data, the first

satellite-derived (pixel-based) map of land cover was generated in 1990 as part of

the United Kingdom Land Cover Map (UK LCM) (Fuller et al., 1994). A follow-up

map (based on segmented objects) was generated for 2000 (Fuller et al., 2002) and

a further update was anticipated for 2007 (Fuller et al., 2006). For the 1990 and

2000 maps, Landsat sensor data from winter and summer were the primary data

source and the classification was undertaken using a supervised algorithm trained

with samples representing a range of land cover types.

These maps have so far been taken up very reluctantly by the ecological commu-

nity, due to their low resolution and occasional large inaccuracies, but also due

to a gross lack of understanding amongst the intended users of the possibilities

and limitations of remote sensing, which has lead to a large discrepancy between

expectations on the one hand and delivered map on the other. Nonetheless, the

land cover map project has been one of the principal drivers in the development

and application of object-based image analysis (OBIA; Lang et al. (2006); Hay

et al. (2008)) in the environmental sector.

Land cover maps largely based on optical, satellite-borne remote sensing data and

created through a standardized, automated classification system could offer a cost-

effective, large-scale solution to obtain sufficient spatial and temporal detail on the

distribution of habitats. In particular, the use of these data would:

1. potentially remove the bias associated with human collection and interpre-
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tation of plant surveys.

2. facilitate better observations of changes in agricultural areas. Intensification

of agriculture is one of the main drivers of biodiversity loss (Reichholf, 2005;

Stevens et al., 2006) but can be readily mapped and monitoring using remote

sensing data particularly if coupled with ancillary datasets such as the Land

Parcel Information System (LPIS) and Mastermap data (Lucas et al., 2006b).

A system of mapping and spatial inventory, with capacity for generation of spa-

tial metrics, is essential to establish conservation and research priorities and to

obtain the elusive goal of sensitive conservation of the landscape and its resources

(Rodwell, 1991). An integrative GIS-based system providing information on the

spatial distribution of plant species, as well as associated information, such as soil

and climatic conditions, is also necessary for identifying areas suitable for habitat

restoration or expansion in the event of climate change (e.g., the best combination

of climate and soils for particular types of broadleaf afforestation). Additionally,

spatial information on, for example, the distance to the nearest patches of the same

species or community would be helpful in the decision-making process. This would

assist in the development of strategies for reinforcing existing networks and their

connectivity or expanding networks and creating ‘spearhead’ patches as opposed

to ‘stepping stones’. The argument for improving the density of existing networks

first is the multilateral, positive effect this could have on secondary species depen-

dent on the connectivity between patches of the targeted restoration community

and the natural expansion which will most likely follow an improvement of the net-

work structure. In this context, Avery (2008) calls for the creation of a national

map of habitat creation opportunities with regard to helping flora and fauna adapt

to a changing climate.
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Reliable tools are also required to identify range declines, as smaller, isolated pop-

ulations are often a result of range collapses due to a decline in external conditions

(climate, habitat, food) and are subsequently at greater risk of random extinction

(Hanski, 1998). These populations also demonstrate a much lower resilience to

sub-optimal conditions.

A particular advantage of using remote sensing for monitoring is that data can

be acquired on a regular, repetitive basis and using the same wavelength regions,

such that consistent comparisons within and between regions can be made. Fur-

thermore, data can be acquired in different seasons, thereby allowing the temporal

variations in reflectance to be exploited for mapping and monitoring purposes.

The use of these data is particularly beneficial as the degree of spectral distinction

between different vegetation types varies across the seasons (e.g., deciduous and

coniferous forests are easier to distinguish in the leaf-off season).

This study therefore aims to demonstrate a land cover mapping approach from

multi-spectral data which incorporates these elements.

1.2.4 Assessing vertical landscape structure

Biodiversity encompasses multiple biological elements and landscape structure and

composition is one of the most fundamental of these elements. The term landscape

structure implies a third dimension and vertical structure indices have been pro-

posed as surrogate measure for biodiversity in forest ecosystems (Barbeito et al.,

2009). The vertical configuration of vegetation in a forest, for example, is to many

species, especially birds, as important as the area and location of the forest itself.

Species utilize different layers within the vertical canopy profile for feeding, nest-
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ing and courtship. Each canopy layer creates a unique niche composed of habitat

features.

Most vegetation mapping from remote sensing data, however, has been conducted

in two dimensions only, both manually (Wyatt, 1991) and from remotely sensed

sources (Fuller et al., 1994, 2002, 2006; European and Commission, 1994). These

maps have primarily focused on the two dimensional distribution and arrangement

of habitats and have mostly disregarded vertical landscape elements, such as veg-

etation height.

The same applies to the majority of landscape descriptors, which focus on only

two dimensional measures such as core area, area:perimeter ratios and distance

between landscape features of the same type. This is demonstrated by the com-

mon use of FRAGSTATS (McGarigal and Marks, 2002), which provides tools for

describing the structure of a landscape and linkages between elements but in two

dimensions only.

All elements of the landscape (water, soil, vegetation, air), however, have a third

dimension which is actively and wholly used by living organisms, but which is

less well considered by landscape ecologists and during biodiversity components

analysis. This has partly been a consequence of a lack of spatial information on

the three-dimensional structure of systems.

With the advent of new technologies such as Light Detection and Ranging (LiDAR)

and Radar this is now changing. The relative infancy of these technologies and

their application to characterizing vegetation has so far resulted in a relative lack

of information on the three dimensional structure of landscape elements and their

contribution to biodiversity.

One of the aims of the present study is hence to further investigate the extraction of
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three dimensional landscape information from laser remote sensing data of forests

and the utilization of this structure by biodiversity indicators, i.e. birds.

1.3 Aims

The primary aim of this research is to establish the potential for utilizing a combi-

nation of airborne and spaceborne remotely sensed data to enhance the mapping

and monitoring of biodiversity elements in Wales.

More specifically, the study aimed to:

1. Establish the potential of airborne hyperspectral data for the estimation of

grassland biomass and differentiation of grassland improvement levels

2. Demonstrate the use of multi-temporal optical remote sensing data for large-

scale habitat and land cover mapping, focusing specifically on forests, grass-

lands and moorlands

3. Evaluate and compare the potential and limitations of airborne LiDAR and

terrestrial laser scanning data for the quantification of tree height, canopy

openness and forest vertical profiles of different woodland types

4. Illustrate relationships between the vertical canopy structure of forests de-

rived from airborne LiDAR and the distribution of woodland bird species

The research contributes to a better understanding of the use of remote sensing

data for grassland differentiation, habitat mapping, as well as forest structure as-

sessment in the UK from the individual field/stand to the landscape level (based on

spaceborne optical data). Habitat maps provide opportunities to assess landscape
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connectivity and fragmentation, as well as for interpolation of floral and faunal

species distribution within the landscape, which are prerequisites for biodiversity

assessment.

The project further contributes to scientific knowledge relating to the informa-

tion content of airborne LiDAR data and also provides a unique insight into how

the habitat suitability for woodland bird species might be assessed using remote

sensing data without the need for extensive ground surveys.

1.3.1 Thesis outline by chapter

Chapter 1 has introduced the thesis and the context in which this study is expand-

ing current knowledge. The particular aims of the research were outlined.

Chapter 2 provides a review of habitat and land cover observations from remote

sensing and the subsequent opportunities for mapping habitats and detecting

change.

Chapter 3 describes the location and main characteristics of three principal study

sites (Trawscoed, Pwllpeiran and Lake Vyrnwy) and explains their suitability for

this research. The significance of the study sites within the Welsh landscape will

also be explained.

Chapter 4 outlines the data collection of all data used in the study, including field,

airborne and spaceborne remote sensing data. All necessary pre-processing steps

are explained.

Chapter 5 considers differences in the reflectance characteristics of grasslands at

various levels of improvement using airborne hyperspectral data and identifies links
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with their species composition and structure.

Chapter 6 demonstrates the concept of a rule-based approach to habitat clas-

sification (implemented within eCognition), with particular focus on grasslands

and forests. The production of detailed habitat maps of the study areas from

spaceborne optical remote sensing data is demonstrated and an assessment of the

classification accuracy is provided.

Chapter 7 focuses on retrieving information about the vertical canopy profile of

forests using airborne and terrestrial laser scanner data.

Chapter 8 focuses on the use of airborne laser scanner data for assessing the

distribution of woodland bird species based on retrieved information on forest

structure (e.g., height, openness and distribution of elements within the vertical

profile).

Chapter 9 discusses the remote sensing of both faunal and floral biological diversity

in the three-dimensional landscape, with an emphasis on biodiversity assessments

and the implications for climate change adaptation and mitigation. The chapter

also considers in how far the aims of the study have been obtained and evaluates

the results of the research with regards to current knowledge in remote sensing of

the environment.



Chapter 2

Review

2.1 Habitat and land cover manifestation within

remote sensing data

As outlined in chapter 1, reliable and current information on land cover is impor-

tant in the management of spatial resources and especially the monitoring and

conservation of biodiversity. For this purpose, many field surveys are undertaken

annually, with data collected by individuals and organizations under a wide vari-

ety of remits and survey designs. Once captured, these data become a snapshot

in time and rarely can be retaken because of constant change in the environment.

Variability and inconsistency in the data also occurs because of survey conditions

and the bias associated with the differing experience, thoroughness and training

of each surveyor.

As field data are collected to serve many different purposes, comparability both

between different areas and over time is often low. Even if different questions from

26
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the original study arise at a later point, it is often very difficult or even impossible

to re-interpret the data. Furthermore the time required and cost involved in most

manual surveys often are prohibitive or, at the very least, prevent repeat efforts

at intervals that would allow continuous monitoring.

The Phase 1 Habitat Survey (Howe et al., 2005; JNCC, 2003) undertaken in Wales

between 1987 and 1997 is an example. This Survey was aimed at obtaining a

complete inventory of land cover and the distribution of approximately 80 semi-

natural habitats and other land cover classes across Wales. Conducted over ten

years at great expense, this survey is unlikely to be repeated in the foreseeable

future (Stevens et al., 2004). Despite rapid changes in the environment, the Phase

1 Survey is still used today by a wide range of agencies to support planning and

conservation policy, although local adjustments may be made from time to time

and through local studies.

Wyatt (1991) and Cherrill and McClean (1999) investigated the qualitative vari-

ability of the survey as a function of individual bias and changing circumstance

over the survey period and came to the conclusion that inconsistency through indi-

vidual surveyor bias caused by differences in training and aptitude was a significant

factor.

Whilst field survey techniques are extremely valuable, approaches that maximize

the use of of the available remotely sensed data are desirable.

In general terms, remote sensing utilizes instruments mounted on satellites or air-

crafts to acquire spectral or topographical information of the land surface. Sensors

are divided between passive and active operational modes. Passive, or optical, re-

mote sensing sensors capture the reflectance of the sunlight from the earth’s surface

while active sensors, such as LiDAR (Light Detection and Ranging) or Radar (Ra-
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dio Detection and Ranging), emit a signal (e.g., a laser beam or microwaves) to the

ground and obtain data via the proportion and strength of the returning signal.

Remote sensing data from spaceborne sensors are particularly advantageous as

they provide:

1. Coverage of a large spatial extent

2. Repeat (temporal) coverage, allowing rapid changes over large areas to be

mapped

3. Consistency in observation in terms of spectral wavelength regions and spa-

tial resolution

4. Long-term time series with which to detect change

Whilst remote sensing data of even finer spatial resolution (1-2m) have been pro-

vided for many years by airborne sensors (e.g., Compact Airborne Spectrographic

Imager (CASI)), data of similar spatial resolution are increasingly being acquired

by spaceborne sensors (e.g., IKONOS, Quickbird). Data from airborne sensors

rarely provide complete coverage of regions, but they can be used to support the

interpretation of data acquired by spaceborne sensors and validation of data provi-

dors.

Remote Sensing data acquired by spaceborne sensors are less affected by these

problems and remain indefinitely available for re-processing once new procedures

(e.g., atmospheric correction) are developed or for re-interpretation. Even so, tech-

nological progress occurs and data from some sensors may only be comparable for

a restricted period of time (e.g., in the case of the Landsat MSS) and direct com-

parisons with data from other sensors may be problematic.

These limitations can, however, often be minimized through a range of image pro-
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cessing techniques and data from satellite sensors are therefore relatively consistent

within and between years.

Images are furthermore acquired on a repetitive basis in predictable cycles and

large spatial and temporal coverage is therefore ensured although, in the case of

optical sensors, cloud cover may limit the amount of usable imagery. Many optical

remote sensing instruments record data at wavelengths that are not visible to the

human eye or an ordinary camera (e.g., the near and shortwave infrared region

(NIR and SWIR)) but which contain a wealth of information that can be utilized

to discriminate between different land cover types.

For land cover mapping, data from satellite sensors are routinely exploited but

their use is limited for the following reasons:

1. Only snapshots in time are provided and many studies have attempted to

map areas for a specified year.

2. The ground surface is often obscured by cloud cover and often sub-optimal

combinations of data have been used for mapping depending on availability

3. Mapping has typically relied on data acquired by a single sensor (typically

Landsat) and has often only used one or two images per year

4. Data from both optical and active sensors such as Radar and LiDAR have

rarely been integrated to aid land cover mapping

The following section provides an overview of previous approaches to mapping

habitats from optical sensors.
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2.1.1 Passive remote sensors

In Wales, the most well known mapping products which have utilized satellite im-

agery have been the Land Cover Maps of 1990, 2000 (Fuller et al., 1994, 2002) and

2007 (Fuller et al., 2006). These maps were generated primarily by using 30 m

spatial resolution Landsat sensor data (see Section 1.2). Since the land cover maps

were generated, a number of satellite sensors observing at finer spatial resolution

(e.g., the 10 m SPOT 5 HRG) have become available and provide unique oppor-

tunities for refining land cover maps. A particular advantage of these sensors is

that the detail contained allows objects (e.g., houses, clusters of trees) to be better

resolved.

An alternative approach to discriminating and mapping habitats was suggested

by Lucas et al. (2007) as part of a pilot study commissioned by the Countryside

Council for Wales (CCW) and the British National Space Centre (BNSC). In this

study, which focused on the Berwyn Mountains in mid north Wales, time-series of

Landsat TM/Enhanced TM data from four dates (March, April, July and Septem-

ber) were used as input to a rule-based segmentation and classification procedure

developed within the Definiens suite of software (Definiens Developer; (Definiens,

2008)). The approach differed from the traditional methods in that the landscape

was first segmented into objects of sizes that varied from individual pixels to entire

fields (as defined using land parcel boundaries). A series of numerical rules were

then applied on the basis of known linkages between the distribution of habitats

in the landscape and their manifestation within remote sensing data. The se-

quential application of these rules allowed a number of semi-natural habitats and

agricultural land covers to be discriminated to a level comparable to that obtained

previously using the Phase 1 Survey (see Section 1.2).
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Based on the success of mapping semi-natural habitats and agricultural land in

the Berwyn Mountains, a further project aimed to extend the mapping approach

to first update and/or refine the Phase 1 Survey for a range of environments (low-

lands, uplands, coastal) within Wales and then to apply the resulting rule-set to

generate a revised and updated national map.

2.1.2 Active remote sensors

Active remote sensing utilizes energy generated by the sensor itself to emit a signal

(e.g., laser beams or microwaves) towards the land surface The most commonly

used types of active sensors are Radar and LiDAR.

The limitations of active sensors are that the data are difficult and complex to

interprete, primarily because they still are a relatively new technology. They are

also generally not acquired over wide areas, with the exception of spaceborne

SAR, which has not been used extensively in Wales. However, an exception is

the NextMap Britain data which was acquired using an airborne interferometric

X-band SAR and provides wall-to-wall estimates of terrain height and vegetation

surface height (above mean sea level).

Airborne LiDAR provides very accurate information on the three-dimensional

structure of surfaces but they are spatially limited in extent. Satellite based

sensors, such as ICESat and the X-, C- and L-band SAR (e.g., TerraSAR-X,

ENVISAT ASAR and ALOS PALSAR) enable more or less wall-to-wall coverage

of entire landscapes (Hyde et al., 2006a). However, these sensors do not have

the high resolution required to make precise statements regarding the structure of
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landscapes (e.g., forests).

2.1.3 Spectral reflectance of vegetation

Figure 2.1: Vegetation Reflectance Curve (re-drawn from Elachi (1987))

Figure 2.1 illustrates a typical vegetation reflectance response across the light spec-

trum from the visible blue (400-500nm), green (500-600 nm) and red (600-700 nm)

to to the near infrared (NIR: 700-1200 nm) and shortwave infrared wavelengths

(SWIR; 1200-2500 nm). The intensity of the reflectance corresponds in turn to

the sensitivity of the visible wavelengths to the amount of photosynthetic leaf pig-

ments (chlorophyll a and b and carotenoids), the NIR wavelengths to the internal

cell structure of leaves as a function air-water interfaces, and the SWIR to the
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moisture content of vegetation (SWIR).

At the canopy scale the NIR and SWIR reflectances are also linked to the canopy

structure, this applies to grasslands, as well as to forest and shrub.

Vegetation spectral reflectance is primarily a function of (Asner, 1998):

• optical properties of tissue, leaf, woody stems and litter

• canopy biophysical properties (leaf and stem area, orientation and foliage

clumping)

• soil reflectance and hence vegetation density

• illumination conditions

• viewing geometry

While illumination conditions and viewing geometry can be mostly eliminated as

factors due to standardization of atmospheric correction and rigorous nadir-looking

data capture, the other factors are the variables which could hold the key to iden-

tifying the spectral signatures of grassland and forest communities, through their

biophysical and biochemical characteristics. These factors are determined through

measurable phenological phenomena in the vegetation canopy.

From spectral data, a wide range of indices can be developed with the Normal-

ized Difference Vegetation Index (NDVI) being amongst the most frequently used.

This index demonstrates sensitivity to the productivity of vegetation, with values
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ranging from -1 to +1. Vegetation supports an NDVI > 0, with values derived

from image data rarely exceeding 0.6. (Section 4.1.1).

Additional information on vegetation attributes can be obtained through spec-

tral unmixing of the reflectance bands. Depending on spatial resolution and the

homogeneity of the land surface captured in the image, the measured spectra of

most pixels will be a composite of the reflectance of all the contributing materials

present within the pixel. Endmembers are the individual constituent spectra of

these distinct materials and commonly used endmembers include photosynthetic

vegetation (PV), non-photosynthetic vegetation (NPV) and shade/moisture. This

latter endmember reflects the roughness of the ground (with increasing roughness

associated with increasing shade). Using techniques such as linear spectral unmix-

ing (Adams et al., 1995), the relative proportions of these endmembers across the

landscape can be estimated. The derived estimates can then be used subsequently

to assist with classification of the landscape (Keshava, 2003; Bateson et al., 2000).

Within the UK, PV, NPV and shade/moisture are common elements of the land-

scape. For example, in the uplands of Wales, extensive tracts of land are dominated

by Purple Moor Grass (Molinia caerulea) which is largely senescent in the winter

and, to a certain extent, in the summer months. Bracken is another example but

whilst this community supports a high proportion of NPV in the winter months,

this is replaced by an equally large amount of PV during the summer months.

The change from NPV to PV can be readily observed in optical sensor imagery

acquired from late March though to late July. Differences between grasslands at

varying levels of improvement are also reflected in shade/moisture fraction which

tends to be greater in unimproved grasslands because of the greater amount of sur-
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face roughness. Differences in the NPV and PV are also evident and suggest that

discrimination of grassland types and growth stages may be achieved using these

data. The use of endmember images can therefore provide unique information for

discriminating and mapping a range of habitats.

2.1.4 Simultaneous acquisitions

LiDAR data only provide capacity for the retrieval of structural attributes of the

landscapes and vegetation, but little insight into species composition can be ob-

tained.

Optical and laser data acquired simultaneously, however, provide opportunities to

combine the spectral and structural information derived from them and therefore

increase the potential for differentiation of land cover. This is particularly bene-

ficial in the case of vegetation with a pronounced vertical element, such as wood-

lands, but also other land cover types with a distinctly textured surface (Haack

and Bechdol, 2000).

A further significant advantage of simultaneous acquisitions is the opportunity to

create an accurate digital elevation model (DEM) from the laser data of the area

covered by the imagery. This is very valuable as a tool in ensuring precise orthorec-

tification of optical imagery, especially in regions with a pronounced topographic

relief and applies to all types of land cover, e.g., forests and grasslands.

Increasingly studies are demonstrating, that by integrating data from different

sensors, including optical (e.g., hyperspectral and, to an lesser extent, multispec-

tral) and Interferometric Synthetic and Synthetic Aperture Radar (INSAR/SAR),

forests can be better characterized in terms of their structure, biomass and species
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composition (Hyde et al., 2005, 2006a; Chen et al., 2007a; Nelson et al., 2007) and

over greater areas (Slatton et al., 2001), than by using LiDAR alone. Opportuni-

ties for detecting changes in these attributes over time and at various scales are

also enhanced (Wulder et al., 2007a).

Approaches to integration have varied but have typically involved combining data

and derived products from other sensors to better quantify forest attributes (e.g.,

Hyde et al., 2006a; Nelson et al., 2007; Lucas et al., 2008) or using LiDAR-derived

information to better interpret data acquired by other sensors (e.g., Lucas et al.,

2006a; Simard et al., 2008).

Studies are also increasingly incorporating data acquired by finer (typically < 1m)

spatial resolution multi-/hyperspectral airborne (e.g., Compact Airborne Spectro-

graphic Imager; CASI) and/or spaceborne sensors (e.g., Quickbird) to enhance

descriptions of vegetation and land cover. The desire to simultaneously acquire

complementary LiDAR and multi-/hyperspectral data-sets has also led to sensors

being flown on the same platform (e.g., the Carnegie Airborne Observatory (CAO);

Asner et al., 2008). More commonly, however, data are acquired using different

platforms and on a similar or proximal date and algorithms for automatic rather

than manual co-registration of data are then desirable.

Accurate co-registration of data-sets significantly increases the diversity of infor-

mation that can be extracted. St-Onge et al. (2008), for example, used a LiDAR-

derived digital terrain model (DTM) as a base for increasing the accuracy of tree

height estimates generated from historical stereo aerial photography. Within co-

registered data-sets, stand density can be estimated by counting a) extracted high

points in LiDAR or ‘bright points’ in multi-/hyperspectral data (Wulder et al.,

2000) and/or b) tree crowns/clusters delineated using algorithms ranging from
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valley following to template matching (Bunting and Lucas, 2006). For open forests

and orchard sites, retrieval accuracies have exceeded 70 % (Lee and Lucas, 2007b)

and 99 % (Jang et al., 2008a) respectively. The advantage of having co-registered

datasets is that trees identified within one can be attributed with measures (e.g.,

height or species; Chen et al., 2007a) from the other, thereby leading to better

descriptions of the forest. As an example, Bunting and Lucas (2006) applied an

algorithm developed within Definiens Developer software and CASI data to delin-

eate tree crowns of varying dimension. Once delineated, crowns were associated

with a species type using spectra extracted from the sunlit portions as input to a

linear discriminant function.

Whilst hyperspectral data provide superior classifications of tree species, several

studies have discriminated species or broad forest types using LiDAR intensity

data (Antonarakis et al., 2008), relative height differences between the first and

last vegetation returns (Moffiet et al., 2005) and directed graphs (Brandtberg,

2007). Holmgren et al. (2008) reported, however, best discrimination when using

a combination of LiDAR and multi-spectral data.

While woodland environments form an obvious target for research into the advan-

tages of integrated optical and laser data, such as LiDAR, other land cover type

studies also benefit from such data integration. Bradbury et al. (2005) showed

that crop and field boundary height could also determined from LiDAR data and

combinations with land cover maps derived from optical remote sensing data would

hence create a powerful tool for the structural description of farmed landscapes.

This in turn could be used as a greatly improved input for organism-habitat mod-

els, such as for birds.

Kempeneers et al. (2009) used a combination of LiDAR and multispectral images
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to map the vegetation of coastal dunes and assess its condition with regards to

erosion risk. They found a considerable improvement in class differentiation ability

and classification accuracy when using the data in synergy. Bork and Su (2007)

found similar accuracy improvements while classifying heterogeneous rangeland

vegetation.

The following sections provide an overview of how grasslands and forests have been

characterized using various remote sensing data.

2.2 Remote sensing of grasslands

Using remote sensing data, important features of grassland functional community

groups can be quantified including their biomass (Friedla et al., 1994; Boutten

and Tieszen, 1983), productivity (Smita et al., 2008), living/dead matter ratio

(Tucker, 1978) and structure (Guo et al., 2004). The information retrieved can

subsequently be used to discriminate between different grassland types. Example

of the manifestation of grassland types within remote sensing data are described

by Hill (2004) and Trenholm et al. (2000) evaluated multi-spectral responses of

selected grassland species.

Grasslands provide a unique challenge for remote sensing classifications since they

are usually characterized by high variability (driven by species composition and

proportional contents of forbs and grasses(Hill, 2004)), a lack of regular spatial
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structure and an appearance of relative uniformity at the scale of satellite im-

agery.

Within the narrow range from ground level to approximately 1m in height, a wide

diversity of vertical and spatial structures may be encountered. This structure is

an important influence on the reflected or scattered radiation received by remote

sensing instruments (Gamon et al., 1995).

Other factors affecting the reflectance of grasslands include terrain (which varies

from steep slopes to flat expanses) as well as moisture content which varies from

inundated (e.g., marshy grasslands) to dry (e.g., calcareous grasslands). Within

many grasslands, the proportion of NPV can be substantial because of the contri-

bution from standing litter and can vary from 100% (e.g., in Molinia dominated

grasslands during the winter) to less than a few percent (e.g., very improved grass-

lands with a high proportion of Lolium perenne).

The relative components of live and dead tissue and the overall canopy structure

are measurable in grassland swards and can be linked to variations in the features

observed within hyperspectral and multispectral data.

2.2.1 Hyperspectral imagery and grassland properties

Many remote sensing studies of grassland properties specifically use either airborne

or spaceborne hyperspectral imagery to obtain a more detailed understanding of

grassland composition and properties. Hyperspectral data is well suited to this

task due to its generally greater spectral and spatial resolution compared to mul-

tispectral sensors.

Research focuses specifically on a better understanding of grassland species com-

position, as well as grassland biomass and productivity.
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Determining the species composition of grasslands, especially those of high di-

versity, is an important conservation priority, but is a time-consuming task to

undertake over larger areas. There is a great need for accurate data on the distri-

bution of natural resources as well as natural inventories and grasslands, due to

their high prevalence in most ecosystems form a large part of this.

Studies which attempt to map grassland species include that of Jacobsen et al.

(2000), who identified the spectral characteristics of a number of grassland species

found in semi-natural grasslands through a canonical discrimination analysis of

Compact Airborne Spectrographic Imager (CASI) and related floral composition

to management practices. Yamanoa et al. (2003) and Schmidt and Skidmore

(2001) used laboratory based spectroscopy methods to isolate unique hyperspec-

tral characteristics of grassland species from two very different ecosystems in China

and Kenya respectively and found that these were transferable to airborne hy-

perspectral imagery and hence formed a potentially effective tool for grassland

mapping.

Grassland biomass estimation from remote sensing data is an area of great in-

terest to agriculture as well as, increasingly, global carbon estimates (Jones and

Donnelly, 2004). However, relationships between grassland productivity and diver-

sity are also well documented (Guo, 2007) and reliable measures of biomass hence

also contribute to the mapping and monitoring of biodiversity.

Studies commonly associate the red-edge and near-infrared (NIR) waveband re-

gions with the best predictive ability of grassland biomass (Chen et al., 2009).

Research hence further focuses strongly on the identification of narrow band ratio

vegetation indices, as these overcome some of the saturation problems associated
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biomass estimation (Cho et al., 2007; Mutanga and Skidmore, 2004).

2.3 Remote sensing of woodlands

The discrimination and mapping of forests is complex because of the diversity of

tree species occurring and because of the deciduous nature of many. In partic-

ular, many broadleaved species and also Larch lose their leaves in the autumn

and winter period but these reappear in the spring but often at different times

during the growth period. Using single date optical imagery, discrimination and

extraction of biophysical properties is best achieved during the full leaf period

from high-resolution optical data, such as hyperspectral imagery (Bunting et al.,

2006; Gong et al., 2003; Martin et al., 1998). Greater discrimination, however, can

be achieved by considering time-series of optical sensor data which capture the

seasonal phenology (Jing et al., 2009).

Low SWIR reflectance and a high shade fraction are two factors, which clearly

distinguish forests from other habitats. Leaf angles, productivity, and seasonal

change are other traits with which distinct spectral signatures of varying forest

types can be explained.

A limitation of optical remote sensing for forest characterization is that they only

provide a two-dimensional overview of the forest. However, to quantify the struc-

ture of forests, three-dimensional information is required. For this purpose, LiDAR

data are most suitable and particularly if these are acquired at relatively fine (e.g.,

< 1m) spatial resolution.
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2.3.1 Airborne LiDAR and forest structure

Remote sensing has been used to map and monitor forest extent (e.g., Botkin et al.,

1984), type (e.g., Iverson et al., 1989) and condition (e.g., Rock et al., 1986) on a

regular basis since the early 1970s. However, recent advances in sensor technology

have allowed information on the three-dimensional structure of forests to be ex-

tracted allowing better descriptions of forests in terms of, for example, their above

ground biomass (e.g., Drake et al., 2002) or biodiversity distribution (e.g., Warren

and Collins, 2007). Synthetic Aperture Radar (SAR) has commonly been used

for these studies (e.g., Lucas et al., 2004) as these data allow scaling across large

areas. However, SAR is limited in its ability to quantify within canopy structures

(i.e., number of layers or canopy depth) at high resolutions, although progress is

being made in this area (Moghaddam and Lucas, 2003). For this reason, LiDAR

data have been used preferentially for the extraction of detailed canopy attributes

(e.g., height, crown volume). LiDAR also provides very high resolution three-

dimensional information on the ground surface with typical point post spacings of

0.5 - 2 m. By removing vegetation returns from these data through appropriate

filtering, highly detailed digital terrain models (DTMs) can be produced. Once

generated, normalisation of vegetation points using the DTM allows creation of

a canopy height model (CHM) and reliable measurement of vertical profiles and

distribution of tree components within these.

Discrete return LiDAR data consist of the first and last returns from the laser pulse.

Within a forested environment, the first return is typically associated with the

upper canopy surface and the last with the ground surface or canopy elements (e.g.,

branches). More recently, multiple return LiDAR systems, which collect the first,

second, third and last returns, have been used to provide increased information on
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the structures in the upper parts of the canopy.

Measures that can be extracted from LiDAR data can be split into two categories,

direct and indirect. The most common direct measure is height (Naesset, 1997)

but also includes canopy cover (Lefsky et al., 1999a), depth (Chen et al., 2007b),

openness (Lee and Lucas, 2007a), profile (Wulder et al., 2007b), outer ruggedness

and crown dimensions (Hyppae et al., 2001). Indirect measurements establish

relationships with those directly measured and include diameter at breast height

(DBH), basal area and density (Hudak et al., 2008), timber volume and biomass

(Naesset and Gobakken, 2008).

To further increase point densities and allow sampling across the whole verti-

cal structure, full waveform systems have been developed. These systems record

the intensity of the returned laser pulse as a function of time. Three methods

have emerged for the processing of full waveform data. The first decomposes the

waveform into discrete returns, with an intensity and width, allowing existing

techniques to be applied in the processing of these data. Two common decompo-

sition methods are threshold-based (Lin et al., 2008) and Gaussian decomposition

techniques (Wagner et al., 2006). Recent studies (e.g., Lin et al., 2008) have

highlighted the benefits of the Gaussian decomposition technique and developed

extensions which allow overlapping pulses to be identified and decomposed, fur-

ther increasing the number of points which can be retrieved and allowing smaller

features to be identified. The second technique is to use the intensity and pulse

width to model the geometry of the ground cover (Mallet and Bretar, 2009). These

techniques have been most commonly used within urban environments where the

geometry is relatively well understood. The third technique involves matching the

waveforms to those that are known using signal processing techniques.
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A number of studies have used full waveform LiDAR to extract and classify forest

and vegetation. For example, Wagner et al. (2008) used the Riegl LMS-Q560 with

a 25 cm footprint and mean pulse spacing of 0.5 m to classify vegetation and ter-

rain within a set of formal gardens with an accuracy of ∼90 %. Reitberger et al.

(2008) used full waveform LiDAR data to classify deciduous and coniferous trees

within the Bavarian National Forest with accuracies of 85 % and 96 % in leaf-on

and leaf-off conditions respectively. For classification, a tree crown delineation was

performed on the canopy height model (CHM) and an average intensity computed

for each crown; an unsupervised K-Means algorithm was applied to these data. To

further describe the structure of the canopy, Hyde et al. (2006b) used the metrics

outlined in Table 2.1 derived from full waveform LiDAR data. These structural

parameters were then utilized to assess the landscape for wildlife habitat.

Algorithms have also been developed to derive measures such as basal area (Lefsky

et al., 1999b; Means et al., 1999), canopy height profiles (Harding et al., 2001),

canopy height (Kimes et al., 2006; Lefsky et al., 1999a), vertical distribution (Lef-

sky et al., 1999a), canopy cover (Means et al., 1999), canopy volume profile (Lef-

sky et al., 1999a), biomass (Hyde, 2005; Drake et al., 2002), mean stem diameter

(Drake et al., 2002) and crown and stem volume from full waveform data (Mallet

and Bretar, 2009).

By decomposing the full waveform data into discrete points, techniques and re-

lationships previously derived for discrete return data are also valid. Such an

approach allows algorithms developed for discrete return data to be applied to full

waveform data with increased point densities. However, the retrieval is compli-

cated by a number of factors including crown shape and leaf state (on/off; which

vary within and between species), the location and spatial arrangement of trees
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Table 2.1: Metrics derived from LiDAR waveforms (Hyde et al., 2006b)
Metric Description

MINMAXHT Minimum height of the top of the canopy (m)
MAXMAXHT Maximum height of the top of the canopy (m)

MEANMAXHT Mean height of the top of the canopy (m)
STDEVMAXHT Standard deviation of the height of the top of the

canopy (m)
MINCOV Minimum canopy cover (%)
MAXCOV Maximum canopy cover (%)

MEANCOV Mean canopy cover (%)
STDEVCOV Standard deviation of canopy cover (&)
MINHOME Minimum height of the median energy of the wave-

forms (m)
MAXHOME Maximum height of the median energy of the wave-

forms (m)
MEANHOME Mean height of the median energy of the wave-

forms (m)
STDEVHOME Standard deviation of the height of the median en-

ergy of the waveforms (m)

within footprints of varying dimensions, local slope, varying reflectivity of the

ground and canopy, the LiDAR sampling intensity, atmospheric interference, and

the reliability of ground measurement. These therefore need to be considered when

applying any algorithm based on discrete return data (Yu et al., 2004; Harding and

Carabajal, 2005; Hyde, 2005; Goodwin et al., 2006b; Hyde et al., 2006b; Wulder

et al., 2007b; Jang et al., 2008b; Reitberger et al., 2008).

Hyde et al. (2006a), however, showed LiDAR data from the airborne LVIS sensor

(Blair et al., 1999) alone to be effective in retrieving height and biomass of large

trees and to be in this way superior to other sensors, such as InSAR, ETM+ and

Quickbird.

A common limitation of airborne LiDAR data, however, is the expense of ac-

quisition over large areas of forest (i.e., at the landscape level) and alternative
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approaches (e.g., SAR interferometry) are often advocated as a solution.

2.3.2 Terrestrial Laser Scanning (TLS) and forest struc-

ture

TLS provide detailed reconstructions of trunk, branch and leaf distributions from

which tree locations, diameter (Watt and Donoghue, 2005a), height (Maas et al.,

2008b), timber volume by size class (Jupp et al., 2005), canopy gap fraction (Hen-

ning and Radtke, 2006b; Danson et al., 2007a) and Leaf Area Index (LAI; Jupp

et al., 2009) can be quantified. Although limited by survey times and occlusion

as a function of stand density, a particular advantage of TLS is that a permanent

record of forest structure is provided.

Watt and Donoghue (2005a) used a Reigl LPM-300VHS TLS to map diameter at

breast height (dbh) and tree height within Sitka spruce and lodgepole pine plan-

tations in Kielder Forest, UK. Following capture, dbh and height were manually

measured from the point data in Terrasolid software. A close relationship was

observed with the field data providing R2 values of 0.92, although point density,

stem density and occlusion were identified as potential limitations of the process.

Maas et al. (2008b) developed automated methods to identify individual trees and

extract dbh and height for a range of forest types. 97.5 % of trees were successfully

identified and dbh and height were identified with a root mean squared (RMS) er-

ror of 1.8 cm and 2.07 m respectively after outliners were removed. Tansey et al.

(2009) compared three methods (circle fitting, cylinder fitting and Hough trans-

form) for automating the extraction of dbh from the TLS data finding similar

errors as Maas et al. (2008b) with RMS error ranging from 3.7 cm to 1.9 cm.
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A close correspondence between forest height and, to a lesser extent, foliage pro-

files (Jupp et al., 2005) retrieved separately using co-registered TLS and airborne

LiDAR has been reported. Linking TLS data with other remote sensing datasets

(e.g., airborne LiDAR) does, however, require a high level of geolocational accu-

racy (Table 4.6). Hence, establishment of a comprehensive and precise network of

ground survey points (Figure 4.11) and the use of high quality Inertial Navigation

System (INS) for airborne systems is essential if all scan points are to be correctly

located in three-dimensional space.

2.4 Biodiversity and remote sensing

Spatial indicators are required to assess habitats to support ecosystem integrity

monitoring and to contribute to a more quantitative evidence base for monitoring

and management of biodiversity in the UK and Europe. The Spatial Indicators for

Nature Conservation (SPIN) project (Langanke et al., 2005) under the European

FP5 programme recognized this need and endeavored to create and test a range of

indicators at various sites in Europe (e.g., at selected sites in the UK and Northern

Germany (Bock et al., 2005)).

The most obvious application of remote sensing for biodiversity assessment is the

classification of land cover types from optical remote sensing images using their

characteristic spectral properties. These classifications can potentially provide

detailed information on the composition and distribution of vegetation, which is

valuable in itself, and can often be used to define habitat suitability and the re-

sulting faunal diversity.
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Most maps produced for biodiversity assessment have been based on per-pixel clas-

sifications as opposed to object-based approaches. The benefits of an object-based

classification include a greater ability to pre-filter objects of interest according to

scale and mapping capacity.

Furthermore, most biodiversity assessments have been derived from two-dimensional

information and ignored the additional benefit that three-dimensional data can

provide.

Traditionally, all biodiversity assessment has relied on ground truth data, collected

by field surveyors.

For forests, this has typically included direct measures, such as height, diameter

at breast height (dbh) and stand density and habitat related surveys of associated

species, such as birds (e.g., Common Bird Census). Whilst generally more accu-

rate, such manual surveys are time and cost intensive and as such impractical and

very inefficient at the landscape scale, particularly for ecological and conservation

purposes. However, these measures are essential for many applications, such as

timber and biomass estimations for commercial forestry and carbon accounting

(Chen et al., 2007a), and structural assessments for biodiversity and habitat qual-

ity studies (Hyde et al., 2006a; Hill et al., 2004; Hinsley et al., 2006), which are

rapidly gaining in importance.

The collection of grassland information is similarly work intensive and often in-

volves detailed species identification work on the ground in a number of defined

quadrats.

Whilst the level of detail in these type of surveys cannot be replicated from remote

sensing data, there is increasing opportunity to do so through the use of new
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technologies as indicated below:

• Terrestrial Laser scanning. Ground-based LiDAR provides highly accurate

forest metrics, including height and vertical profile, but shares the disad-

vantages regarding large-area coverage with manual surveys (Tansey et al.,

2009; Danson et al., 2007a; Watt and Donoghue, 2005a).

• Airborne LiDAR. The information provided by airborne lasers is very accu-

rate, but also spatially limited. Statistical relationships between field, Li-

DAR and other sensors, however, allow the creation of spatially continuous

maps at the landscape scale, even if the more detailed data is only available

in the form of samples within the area (Hyde et al., 2006a).

Indirect measures (e.g., basal area, timber volume and biomass) have been

derived from the basic structural attributes, which are captured by terres-

trial and airborne laser instruments (Lefsky et al., 2005; Tickle et al., 2006a;

Goodwin et al., 2006a; Brandtberg, 2007; Popescu and Zhao, 2008).

• Hyperspectral sensors. Grassland productivity, biomass in particular and,

to a lesser degree, species composition have been consistently assessed using

airborne and terrestrial hyperspectral sensors, though the same spatial lim-

itations apply as to terrestrial and airborne laser scanners (Yamano et al.,

2003; Wamunyima, 2005; Cho et al., 2007; Psomas et al., 2007).

The advantages of using these data are that they provide opportunities for extrap-

olation of species information, either directly or through reference to measures of

productivity (e.g., grasslands) or structure (e.g., forests).

Studies which have directly or indirectly assessed forest biodiversity from remote
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sensing are Nagendra (2001) and Innes and Koch (1998).

The high diversity of fauna and non-tree flora associated with forests is attributable

to the diversity of habitats, which, in part, is reflected in the spatial distribution

and arrangement of structural elements within the volume space that trees create

and occupy. Several studies have noted that the distribution and richness of bird

species in particular are closely linked to forest canopy structure (Hyde et al.,

2005) and heterogeneity (Goetz et al., 2007), both of which can be quantified

using airborne LiDAR. Hill et al. (2004) and Hinsley et al. (2006) also reported a

link between habitat quality (defined by forest canopy structure and height) and

the breeding success of Great Tits (Parus major). Such assessments might be

improved by integrating information on tree species and the age and condition

of stands, as obtained using, for example, multi-/hyperspectral data (Hill and

Thompson, 2005). Most studies focusing on biodiversity are confined to relatively

small areas because of the limited coverage of airborne acquisitions. Extrapolation

to regional areas requires the establishment of forest height and structural maps

over larger areas, which can potentially be generated using SAR interferometry

and/or IceSAT data. Such information would complement habitat maps generated

at a commensurate scale using airborne/spaceborne optical data-sets.

Climate change will in the future precipitate changes in floral and faunal biodiver-

sity. Remote Sensing is therefore expected to assume an increasingly greater role

in the monitoring of the natural environment, which is a prerequisite for adapting

to and mitigating for environmental changes expected in the decades ahead. The

RSPB for example has listed a number of actions required which will help wildlife

adapt to a changing climate (Avery, 2008) and one of the most urgent require-

ments is the creation of a national map of potential habitat creation sites (see
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Section 1.2) to exploit these options fully, when the need and opportunity arises.

2.5 Summary

This review has provided an overview of

• Traditional habitat survey methods (e.g., Phase 1)

• The use of spaceborne remote sensing data for mapping habitats

• The lack of information on three-dimensional structure in land cover assess-

ment

• Limited understanding of grasslands and their response in remote sensing

data, particularly in relation to biodiversity.

This chapter has reviewed the types of Remote Sensing data and their use in

retrieving biophysical properties and classifying the natural components of the

landscape.

The chapter has also presented a theoretical review as to why certain properties

can be retrieved. The use of Remote Sensing in biodiversity assessments has been

demonstrated.

The next chapters will describe this in detail using the example of the present

study.



Chapter 3

Study sites

Chapter 3 provides a brief overview of the main landscape features of Wales,

focusing particularly on the climate, topography, soils and vegetation. A more

detailed review of the grasslands at the two sites of Trawscoed and Pwllpeiran

(Section 3.2.1) and the forests and heathlands at Lake Vyrwny (Section 3.2.2) is

then provided.

The chapter justifies the choice of these study sites and provides a description of

their context within the Welsh landscape.

3.1 Landscapes in Wales

3.1.1 Topography

Wales is largely a mountainous country, with much of its land lying above 150

metres. Yr Wyddfa (Snowdon) in the north-western national park of Snowdonia is

52



CHAPTER 3. STUDY SITES 53

the highest mountain in England and Wales at 1085m. The major upland region

in the south is formed by the Brecon Beacons, which rise to 885metres and the

mountainous nature of the landscape means that large areas are only sparsely

populated. Of the three million people living in Wales, over half are concentrated

in the industrial areas of the south around the cities of Cardiff, Swansea and

Newport, as well as Wrexham in the north-east.

Figure 3.1: Digital Elevation Model (DEM) of Wales derived from NextMap
Britain data
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3.1.2 Climate

Wales has an essentially maritime climate, characterized by weather that is often

cloudy, wet and windy, but mild. However, the shape of the coastline and the

central spine of high ground from Snowdonia southwards to the Brecon Beacons

introduce localized differences. Whilst some upland areas can experience harsh

weather, the coastal regions have generally more favourable conditions and ar-

eas in east Wales are more sheltered and hence similar to neighbouring English

counties.

Mean annual temperatures range from approximately 5 ◦C on the highest peaks

of Snowdonia to 11 ◦C in the coastal areas (Figure 3.2). Mean daily minimum

temperatures in January vary from just below 0 ◦C in the higher parts of north

and mid-Wales to about 3 ◦C around the coast, while mean daily maximum tem-

peratures are usually recorded in July and range from around 17 ◦C in the higher

inland locations, to 18 ◦C along the west coast and 21 ◦C in the east of Powys and

Monmouthshire along the border to England.

Wales’ climate is primarily described as maritime, particular in the west and along

the coastal regions. Rainfall varies considerably across Wales, but increases with

altitude (Figure 3.3) and is greatest in the mountainous regions of the northwest,

where the highest average annual totals are recorded. The wettest area is Snow-

donia with average annual rainfall exceeding 3000 mm. In contrast, the coastal

plains and regions close to the border with England are considerably drier, often

receiving less than 1000 mm of rainfall a year.

The southern upland hill regions of the Brecon Beacons and the central hill range

of the Cambrian Mountains divide the country between the climatically drier
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Figure 3.2: Mean annual temperatures across Wales (Crown Copyright/Met Office)
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eastern stretches and the western areas descending towards the sea, which are

more strongly influenced by the wetter Atlantic climate (Bendelow and Hartnup,

1980).

Figure 3.3: Mean annual rainfall across Wales (Crown Copyright/Met Office)

Climatic zonation

Previous studies (e.g., Bendelow and Hartnup, 1980) have attempted to divide

Wales into biogeographical zones (Figure 3.4), giving consideration to location,

continentality and elevation and their effects on climate and have directly corre-

lated vegetation composition to climatic gradients (Yeo and Blackstock, 2002).

Table 3.1 lists the defining properties of the biogeographical zones outlined in

Figure 3.4 by location, continentality and elevation Temperature gradients run
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Figure 3.4: Biogeographical zones of Wales
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from the north, the coastal areas and the uplands (coldest) to the south, inland

regions and the lowlands (warmest), while precipitation is higher in the west and

in the uplands than in the east and the lowlands.
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3.1.3 Natural vegetation

In the past, a large majority of Wales’ land area would have been covered by ex-

tensive broadleaf forests. Humans have, however, occupied the land for thousands

of years and have impacted significantly on the distribution, composition and con-

dition of vegetation.

In particular:

• extensive areas of deciduous forests have been cleared for agriculture or, in

more recent times, have been replaced with coniferous plantations

• Uplands have been grazed by sheep for several 100 years, which has led to a

change in the climax vegetation from forest to grassland

• Lowland marshes and fens have been drained and turned into arable land or

intensive grazing

This focus on agriculture, and especially grazing, has resulted in a shift towards

grasslands as the dominant land cover type within Wales and which today comprise

over 60 % of the total land area (Table 3.2).

The Phase I Survey (Howe et al., 2005; JNCC, 2003) represents the most up-to-

date mapping for Wales and defines 10 broad habitats (Table 3.2), within which

over 80 land cover types are described.

Today, Wales contains a diversity of landscapes that extend from the coast to

the mountainous regions. The coastal regions are diverse, supporting a range of

estuarine habitats (e.g., salt marshes) and also sand dune complexes and coastal

grasslands and heaths. Much of the lowland area below the enclosure boundary is
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Table 3.2: Land cover distribution in Wales according to the Phase 1 habitat
survey

Land cover type Phase 1 code Area (%) Area (ha)
Woodlands A 14.2 289818.7
Grasslands B 62.2 1271633.2
Tall herb and fern C 3.2 64804.6
Heathland D 5.2 106452.0
Mire E 3.0 61648.4
Swamp, marginal and inundation F 0.1 2049.0
Open water G 0.8 15713.9
Coastland H 2.8 56451.9
Rock exposure and waste I 0.7 13382.9
Urban and miscellaneous J 7.9 161887.3

used for agriculture (primarily sheep and cattle grazing but also for arable crops)

although extensive (albeit fragmented) areas of semi-natural habitat (e.g., mires,

marshy grasslands) occur. Grasslands in Wales range from the intensively man-

aged and strongly improved (i.e., reseeded and fertilized lowland pastures) to semi-

natural, often single species, expanses of Purple Moor Grass (Molinia caerulea),

Mat Grass (Nardus stricta) and Sheep’s Fescue (Festuca spp.) in the less accessible

upland regions. Even in the uplands though, these habitats are strongly modified

by grazing pressure and their contribution to the overall biodiversity of Wales is

therefore diminished.

Lowland grasslands of high conservation value in Wales often consist of wet ‘Rhos’

pastures and rare species-rich meadows, as well as unimproved neutral grasslands

areas. Rhos pastures often support wet heath vegetation as well as rushes and

grasses, which tolerate the waterlogged conditions. They were once so common

that their Welsh name has been adopted in English as well.

A more detailed description of Welsh grasslands is given in Chapter 5.
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Forests in Wales are diverse, but fragmented, with commercial coniferous planta-

tions in the uplands and broad-leaved and mixed forests in the lowlands. Many

forests are actively managed for either commercial harvesting, conservation or

recreation. Continously updated information about the size, distribution, compo-

sition and condition of Wales’ woodlands are recorded in the National Inventory

of Woodlands and Trees (NIWT) compiled by the Forestry Commission. 14% of

the total land surface (20.779 km2) of Wales is covered by forest, of which 57.8%

consist of commercial coniferous plantations made up mainly from Sitka Spruce

(Picea sitchensis) and Larch (Larix decidua), which is used to break up the vi-

sual impact of otherwise very large and monotonous, single-species stands. Other

commercial timber species present are Norway Spruce (Picea abies) and Douglas

Fir (Pseudotsuga douglasii). Only isolated and very small groves of semi-natural

conifer, such as Scots pine (Pinus sylvestris) can be found.

Apart from the coniferous forests, there are approximately 100.000 ha (30% of all

woodland in Wales) of broad-leaved woodland in Wales, of which around 34.000 ha

are ancient semi-natural forest, with Sessile Oak (Quercus petraea) the dominat-

ing tree species. Beech (Fagus sylvatica) is another species, which forms stands of

significant size and of a completely different structure. Furthermore there are im-

portant wet woodland habitats of willow (Salix spp.) and alder (Alnus glutinosa)

in the lowlands and upland stands of birch (Betulus pendula) and Mountain ash

or Rowan (Sorbus aucuparia) trees, especially along streams and on steep slopes,

where the grazing pressure is reduced. Hedges and scrub stands are further adding

to this range of important woodland habitats.

The mountain areas support some agriculture (primarily for sheep production)

but many are covered with semi-natural heaths, moors and bogs. Extensive, al-
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beit fragmented areas of semi-natural habitat (e.g., mires, marshy grasslands and

lowland heaths) remain in the lowlands. The most significant of these areas include

Cors Caron National Nature Reserve (NNR) near Tregaron, Ceredigion, which is

the largest area of near natural lowland raised bog habitat remaining in England

and Wales, and also Borth Bog near Aberystwyth, Ceredigion. Remnant forest

areas occur along the Ceredigion coast and in the Wye Valley.

The 1200 km coastline contains extensive areas of coastal cliff vegetation, sand

dunes and saltmarshes.

Nationally rare alpine habitats occur in Snowdonia whilst the Berwyn Mountains

are the southernmost habitat of the cloudberry (Rubus chamaemorus) in Britain

and contain the greatest expanse of unmodified blanket bogs within Wales (Tallis,

1969).

3.1.4 Land use

About 80 % of the total land surface area in Wales is used for agriculture, with the

majority being within the lowland areas (below 300 m elevation). Most consists of

permanent grass pasture (for sheep and cattle production), which is interspersed

with a smaller amount of arable land (less than 30%). The upland areas support

extensive agriculture in the form of rough sheep grazing.

3.1.5 Landscape conservation value

Wales has three National Parks, Snowdonia, the Brecon Beacons and the Pem-

brokeshire coast, which are joined by a number of Special Areas of Conservation

(SACs) and National Nature Reserves (NNR). There are also over a 1000 Sites of
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Specific Scientific Interest (SSSI) in Wales, ranging from very small sites to large

tracts of land, with over 50% located in the uplands. They cover just over 12 % of

the land area of Wales. This illustrates the large amount of land with conservation

interest that is present in the country.

3.2 Study sites

For this study two main sites were selected, with these chosen to represent grass-

lands and woodland sites respectively. Sites were selected for the diversity of

habitats and vegetation types present.

Figure 3.5: Study site locations within Wales
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3.2.1 Grasslands: The Trawscoed and Pwllpeiran study

areas

Trawscoed and Pwllpeiran are located near Aberystwyth (Figure 3.5) and are

owned and managed by the Institute of Biological, Environmental and Rural

Sciences (IBERS) at Aberystwyth University and the environmental consultancy

ADAS respectively.

These two sites were selected, as together they supported grassland types ranging

from lowland improved, Perennial Rye grass (Lolium perenne) dominated swards

to upland semi-improved grasslands. Marshy grassland areas characterized by Pur-

ple Moor grass (Molinia caerulea) and Rushes (Juncus spp.) are occurring close to

Pwllpeiran and the plots are considered to be representative of various grassland

habitats occurring in the Welsh landscape.

These two sites were chosen especially because of their experimental design, as

explained below, and the extensive records, which have been kept regarding their

changing vegetation over the past 15 years.

Trawscoed

Trawscoed farm in Ceredigion lies at an altitude of 110 m above sea approxi-

mately 10 miles south-east of Aberystwyth. The study site was originally created

in 1992 as part of a research experiment on the biodiversity restoration of previ-

ously intensely managed improved agricultural grasslands originally funded by the

Ministry of Agriculture, Fisheries and Food (MAFF) which in 2001 was replaced

by the Department of Environment, Food and Rural Affairs (DEFRA).

The site is comprised of a 3.6 ha hectare field divided into three blocks (see Fig-
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ure 3.6), each containing six fenced 30 x 40 m plots for grazing control (see Fig-

ures 3.7 and 3.8). The site has received various management treatments (T1-T6),

as outlined in Table 3.3, since its creation. Each treatment is represented once

in each block, thus creating three replicates of each. T3 and T5 were merged in

2002 and are now managed identically; historically T5 sites were also cut for hay

in early summer to decrease the nutrient content of the soil.

Figure 3.6: July 2006 Vexcel aerial photograph of the Trawscoed study site, treat-
ment plots are outlined and labelled.

Figure 3.8 shows a south-west facing view of the trial plots at Trawscoed. The

field on the right in the foreground of the image is the T6c plot, which is bordered

by T5c to the left and T5b to the rear.

The management regimes as shown in Table 3.3, were continued by the Institute

of Grassland and Environmental Research (IGER) after cessation of the initial

funding in 1997, though monitoring of changes in the vegetation composition of

the individual plots became sporadic and depended on available funds. Previous to
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Figure 3.7: Trawscoed study site plot arrangement

Table 3.3: Trawscoed treatment regimes
Label Sheep grazing Hay cut Fertilizer Lime
T1 (Control) continuous - yes yes
T2 autumn/winter July no no
T3 autumn/winter July no yes
T4 no grazing July no yes
T5 autumn/winter July no yes
T6 continuous grazing - no yes



CHAPTER 3. STUDY SITES 68

Figure 3.8: Trawscoed study site plots
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this, the site had been grazed by sheep with regular fertilizer inputs and the sward

was dominated by Lolium perenne and Poa spp.. This status is still represented

by the T1 control plots (Hayes and Sackville Hamilton, 2001).

After the merging of IGER with the Institutes of Biological Science (IBS) and

Rural Science (IRS) of Aberystwyth University to form the Institute of Biological,

Environmental and Rural Sciences (IBERS) in 2008, the treatments were discon-

tinued and the fencing removed, though all fieldwork was completed at this time.

Pwllpeiran

Pwllpeiran is located near Devil’s Bridge, approximately 13miles east of Aberyst-

wyth in Ceredigion. The site lies at an elevation of approximately 300 m above sea

level, near the main road leading to Cwmystwyth, adjacent to the historical Hafod

estate. The trial plot arrangement at the site was created as part of the same

DEFRA project as Trawscoed and shows a similar configuration (see figures 3.9

and 3.10) with the addition of one completely unmanaged plot and the P3 and P6

treatments sharing an enclosure. The management plan (see table 3.4) shows the

same treatments as at Trawscoed with two additional plots at P2 and P3 where

no lime was added to plots which are otherwise only grazed continuously or only

cut for hay.

The fenced fields include one discard area in block 3, which is unmanaged and not

grazed, but permanently fenced.

The experimental plots are part of an area of open, rough upland grazing domi-

nated by a Sheep’s fescue (Festuca ovina) sward and stocked predominantly with

sheep and some Welsh Black cattle. Plot P2 in the experiment is identical in
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treatment to the surrounding area.

There is a significant patch of Juncus on the eastern side of the experimental fields,

just south of plot P1c. The practical management of the plots is undertaken by

the local branch of the environmental consultancy ADAS, based at nearby Hafod

and, as opposed to Trawscoed, continues to date (Summer 2009 ).

Figure 3.9: July 2006 Vexcel aerial photograph of the Pwllpeiran study site, treat-
ment plots are outlined

Figure 3.11 shows plot P5c in the foreground and P4c adjacent to it. The fencing

of block 2 (Figure 3.10) is visible on the hillside, rising beyond the plots.
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Figure 3.10: Pwllpeiran study site plot arrangement

Table 3.4: Pwllpeiran treatment regime
Label Sheep grazing Hay cut Fertilizer Lime
P1 (Control) continuous - yes yes
P2 continuous - no no
P3 no grazing July no no
P4 autumn/winter July no no
P5 continuous - no yes
P6 no grazing July no yes
P7 autumn/winter July no yes
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Figure 3.11: Pwllpeiran study site plots
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3.2.2 Forests: The Lake Vyrnwy study area

The forests at Lake Vyrnwy are diverse and consist of semi-natural broadleaved

forest and coniferous plantations. The main forest types occurring in Wales are

represented around the lake (Figure 3.12). Lake Vyrnwy is a manmade reservoir

constructed in the late 19th century to supply the city of Liverpool with water.

Today, the lake and surrounds form the centre of a RSPB reserve in the Berwyn

Mountains in Powys, West Wales. Located just to the south of Snowdonia Na-

tional Park at 52◦ 48’ North and 3◦ 30’ West, the lake has a surface area of 4.53

km2, with a perimeter road of 11.75miles. It has an elongated shape in a East-

West direction and a length of 4.75miles. Its primary outflow is the River Vyrnwy,

which eventually joins the River Severn in Shropshire, while the reservoir is fed by

up to 31 streams and rivers descending from the surrounding hillsides.

Lake Vyrnwy nature reserve is designated as a National Nature Reserve (NNR),

a Site of Special Scientific Interest (SSSI), a Special Protection Area (SPA) and a

Special Area of Conservation (SAC). The reserve and the area surrounding it are

jointly managed by the RSPB and Severn Trent Water, the main landowner of the

area, as well as the Forestry Commission. The boundary of the RSPB reserve is

marked white in Figure 3.12.

The shores and adjoining hillsides of the lake are densely planted with about 5000

acres of mature commercial conifer plantations, interspersed by planted, as well

as semi-natural broad-leaved forest woodlands. These consist of mature beech,

semi-ancient sessile oak, as well as wet willow and alder stands and successional

birch and mountain ash groves. The surrounding uplands are characterized by

extensive heathlands and large areas of blanket bog on the hill plateaus, forming
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Figure 3.12: July 2006 Vexcel aerial photograph of the Lake Vyrnwy study site
with RSPB reserve boundary outlined

the largest remaining continuous area of heather moorland in Wales. Farmland

on the reserve consists mainly of rough upland sheep grazing with encroaching

dry bracken-covered areas, while some cattle grazed grasslands and damp rough

pastures can be found at the lower altitudes closer to the lake.

The bird life of the Lake Vyrwny catchment is diverse and resulted in the estab-

lishment of the area as a reserve for the Royal Society for the Protection of Birds

(RSPB). The main bird conservation interest at the reserve derives from the wide

variety of habitats surrounding the lake. Lake Vyrnwy is one of the RSPB’s most

diverse bird sanctuaries within the UK. Bird species of national importance in-

clude the Ring Ouzel (Turdus torquatus), Merlin (Falco columbarius) and Black

Grouse (Tetrao tetrix )

The forested areas of the reserve contain a diversity of bird species, divided be-
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tween those species which prefer coniferous forests, such as the Goldcrest (Reg-

ulus regulus), the Coal Tit (Parus ater) and the rare Siskin (Carduelis spinus)

and Goshawk (Accipiter gentilis) and those which are predominantly found in

broad-leaved woods, including Pied Flycatchers (Ficedula hypoleuca), Redstarts

(Phoenicurus phoenicurus), Wood Warblers (Phylloscopus sibilatrix ), Great Spot-

ted Woodpeckers (Dendrocopos major), Nuthatches (Sitta europaea) and Tawny

Owls (Strix aluco).

Since the Second World War a large percentage of heather moorland in the UK

has been lost mainly to agriculture and forestry, which resulted in the increasing

scarcity of birds which rely on this habitat for breeding, such as Red Grouse (Lago-

pus lagopus), Merlin (Falco columbarius) and Hen Harrier (Circus cyaneus). A

large emphasis in the reserve management at Lake Vyrnwy is focused at retaining

and restoring heather habitats to encourage these and other moorland species.

Finally the open farmland and especially the damp pastures are important habitat

for Curlews (Numenius arquata) and Snipe (Gallinago gallinago), while Whinchats

(Saxicola rubetra) and Tree Pipits (Anthus trivialis) can be found on the drier

bracken-covered slopes.

Overall around 90 bird species have been recorded to be breeding on the reserve.

Apart from avian diversity, a large variety of flowering plants, mosses, fungi, lichens

and insects (e.g., butterflies and dragonflies) are also associated especially with the

sessile oak woodlands and the less improved farmland. Six species of bat, including

the pipistrelle and brown long eared bat have also been observed.
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3.3 Summary

This chapter has provided an overview of semi-natural habitats and agricultural

land in Wales and more detailed information on the selected grassland and forest

study sites at Trawscoed and Pwllpeiran as well as Lake Vyrnwy.

It introduced the high diversity of vegetation types present in Wales which form

the basic components of its biodiversity as outlined in Chapter 1, for example,

grasslands important to conservation and a diverse array of forest types. The

Welsh uplands and mountainous regions also are at the southernmost extent of

several upland species within the UK.

The next chapter provides an overview of the field, airborne and spaceborne remote

sensing data acquired for the study areas.



Chapter 4

Methods of data collection

This chapter describes the characteristics and acquisition of remote sensing data

used for the study. The methods of collecting field data to support the interpre-

tation of the remote sensing data and the validation of derived products (e.g.,

classifications) are also described. The chapter describes the spaceborne datasets

available for the study regions and then focuses more specifically on the field

and airborne remote sensing data acquired for grassland and forest sites respec-

tively.

4.1 Spaceborne remote sensing data

The use of spaceborne optical sensors for classifying land cover and habitats across

Wales has largely been limited by the high frequency of cloud occurrence in most

areas. Many studies have also tended to select one sensor (particularly the Land-

sat series of sensors) for classification, but have not considered the use of other

77
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sensors such as the SPOT-5 High Resolution Geometric (HRG), the Indian Re-

mote Sensing Satellite (IRS) LISS-4 (P6) and the Terra-1 Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER). However, utilizing data

from several sensors observing at similar wavelength regions increases the number

of cloud free observations of the land surface. To minimise differences between

sensors as a function of radiometry, geometry, atmosphere and topography, how-

ever, a number of pre-processing steps are necessary. Clouds and cloud shadows

also have to be identified within each of the images such that classifications of the

land surface only can be undertaken (Section 4.1.1).

For this study, optical remote sensing data from the satellites listed in Table 4.1

were used.
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For Wales, a near complete coverage of SPOT-5 HRG (10m spatial resolution)

scenes was available for the years 2003-2007 (Figure 4.1).

Figure 4.1: Wales-wide mosaic of SPOT-5 HRG data

Coverage of IRS (23.5m spatial resolution) data was largely complete, apart from

small areas in west Pembrokeshire, which are outside the area of interest for this

study. ASTER images (15-30m spatial resolution), whilst often cloudy, also pro-

vided near complete cover of Wales for the years 2004-2006, with a cloud-free data

strip available for the central region for March, 2004. The dates of acquisition for

all scenes used in this study are compared in Table 4.2.

The different satellites and their sensors are described in detail, including indi-

vidual wavelength regions, in Appendix A.2.2. These data were used as part of a

larger project to support the revision of the Phase 1 Habitat Survey across Wales

(Lucas et al., in press).

The following scenes in Table 4.2 were selected for use in land cover classifications
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Table 4.2: Predominantly cloud-free SPOT-5 HRG, IRS LISS and ASTER scenes
available for the studysites over the period 2003-2006

Sensor Date Site
SPOT 5 HRG 27.03.03 Lake Vyrnwy
SPOT 5 HRG 22.03.03 Lake Vyrnwy
ASTER 07.04.06 Lake Vyrnwy
IRS LISS IV 13.07.06 Lake Vyrwny
SPOT 5 HRG 27.03.03 Ceredigion
IRS LISS IV 13.07.06 Ceredigion

(Chapter 6) of the Lake Vyrwny and west Ceredigion sites as they were mostly

cloud free and seasonally appropriate.

The two spring 2003 SPOT 5 HRG scenes, one summer 2006 IRS LISS IV and one

spring 2006 ASTER image in Figure 4.2 cover both sites, but are shown here only

for the extent of the study area over Lake Vyrnwy.

All scenes were provided courtesy of the Countryside Council for Wales (CCW).

Orthorectification of the imagery using a fine spatial resolution digital elevation

model, radiance calibration and atmospheric correction, cloud removal and topo-

graphic correction are considered in turn below.

4.1.1 Pre-processing of spaceborne sensor data

Radiometric correction

Radiometric correction from raw Digital Number (DN, 0-255) images at sensor

radiance (R) was applied to each of the images.

Satellite sensors record pixel information in digital numbers, ranging from 0 to 255
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(a) 27.03.03 SPOT-5 HRG (b) 22.03.03 SPOT-5 HRG

(c) 13.07.06 IRS LISS IV (d) 07.04.06 ASTER

Figure 4.2: Multispectral Satellite imagery over the Lake Vyrnwy study site
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and denoting the maximum and minimum measurable radiancies of the sensor.

Calculation of spectral radiance is fundamental to converting data from multiple

sensors into a common radiometric scale (Du et al., 2002). It takes the form of a

simple linear regression to convert DN to radiance.

Equations 4.1 and 4.2 show the respective formulas for conversion of SPOT 5

HRG and IRS LISS data.

R = DN/CC (4.1)

R = DN/CC ∗ (Lmax − Lmin) + Lmax (4.2)

Where:

1. R = radiance (Wm−2sr−1µm−1)

2. CC = 255 for radiometrically corrected products

3. Lmax = maximum saturation radiance

4. Lmin = minimum saturation radiance

5. DN = the digital number of the image

CC denotes band-specific Conversion Coefficients for each sensor as described in

Appendix A.2.2. The coefficients can be obtained either from the image metadata

or published material (Abrams, 1999; Slater and Biggar, 1996; Chander et al.,

2009).

As an example, Table 4.3 shows the calibration coefficients for a number of Spot 5

HRG images of Wales obtained from the metadata in the images’ header file.
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Table 4.3: SPOT 5 HRG sensor radiometric coefficients
Acquisition data Band 1 Band 2 Band 3 Band 4
14/02/2003 0.8651 1.0264 1.1174 14.0118
17/03/2003 0.424789 2.877923 1.341774 14.0118
22/03/2003 0.287813 4.919843 1.784376 23.711787
04/09/2003 1.870249 2.231121 1.104 6.377
12/07/2005 2.903215 3.86682 1.308 8.225268

Geometric correction (Orthorectification)

Orthorectification is the process of correcting optical remote sensing image data

for topographic relief and systematic sensor and platform-induced geometry errors

(e.g., lens distoration and camera or sensor tilt). This procedure provides orthorec-

tified images with the advantages of a uniform scale and true geometry, which in

turn makes it possible to take direct and accurate measurements of distances, an-

gles, positions and areas from the imagery, as if from a map. It also enables direct

comparisons and overlay of different datasets (i.e., from different sensors or raster

and vector layers).

Orthorectification is achieved through applying mathematical models of photogram-

metry and requires a high quality digital elevation model (DEM). For this purpose,

the 10 m spatial resolution NextMap Britain Digital Elevation Model (DEM) was

used as a topographic reference. Between 1 (for ASTER) and 20 (SPOT, IRS)

ground control points (GCP) were used, with these extracted from the VEXCEL

true colour aerial photograph mosaic of Wales (see Appendix A.2.1). All satellite

sensor data, regardless of their original spatial resolution, were resampled to 5m

resolution using a nearest neighbour resampling algorithm. This was undertaken

to better retain pixel values in the resampling process.

All SPOT 5 HRG images were orthorectified using the Leica Photogrammetry
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Suite (LPS) of the ERDAS Imagine 9.1 software. The raw data SPOT 5 DIMAP

(Digital Image Map) files were imported into ERDAS and subsequently orthorec-

tified using the SPOT 5 specific Orbital Pushbroom geometric model within LPS,

with the reference coordinate system set to United Kingdom and the British Na-

tional Grid. The model further required the scene average elevation, a high reso-

lution DEM (NextMap), as well as appopriately selected Ground Control Points

(GCPs) and the reference image from which these were collected ( in this case, the

VEXCEL aerial photography). During the orthorectification process, the software

determined the elevation of all GCPs from the DEM and used this information to

correctly warp the input image to the map geometry.

The orthorectification process for IRS LISS III and IV data was identical to that

for the SPOT 5 HRG data, with the only difference being, that the geometric

model used in the Leica Photogrammetry Suite was the Polynomial Based Push-

broom.

ASTER scenes, in contrast to the SPOT and IRS data, were orthorectified us-

ing ENVI 4.3 software. The visible and NIR bands were orthorectified together,

but separately from the SWIR band, because their original spatial resolution was

coarser (30 m as opposed to 15m).

Only a single ground control point was required, which was located towards the

centre of the image, away from either extreme of high or low elevation within

the scene. Following selection of the GCP, its x/y coordinates were identified in

the base (VEXCEL) and the warp (ASTER) image and the point elevation was

extracted from the DEM. All images were orthorectified to the British National

Grid.

Finally all bands were stacked into one final image at a spatial resolution of



CHAPTER 4. METHODS OF DATA COLLECTION 86

15m.

Atmospheric correction

The objective of atmospheric correction is to compensate for variations between

scenes in atmospheric conditions (e.g., water vapour and aerosols) that effect the

signal the satellite sensor retrieves from the ground at the time of image acquisi-

tion. Atmospheric correction provides image data in units of surface reflectance

(%), thereby standardizing the data and allowing comparison of images acquired

on different dates, from different sensors, and also across different regions.

All satellite scenes were atmospherically corrected using ENVI’s FLAASH (Fast

Line-of-sight Atmospheric Analysis of Spectral Hypercubes) algorithm (Matthew

et al., 2000). Prior to correction, each scene was converted to Band Interleaved

(BIL) file format and a number of parameters had to be determined for each scene

from the metadata before applying the algorithm:

• Scene centre location

• Sensor altitude (km)

• Average ground elevation across the scene (km)

• Image Pixel size (m)

• Image acquisition date and time

• Atmospheric model: Mid-latitude winter or summer

• Aerosol model - Rural
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• Initial Visibility

• Zenith and Azimuth angle

• Output Reflectance Scale Factor

Topographic correction

In addition to the atmospheric and illumination effects compensated for during at-

mospheric correction, topographic effects also strongly influence the satellite signal

by causing an enhancement of apparent surface reflectance values. Land surfaces

oriented towards the sun appear to have higher reflectance values than the same

surface cover oriented away from the sun if the influence of topography is neglected

(Shepherd and Dymond, 2003). Topographic correction effectively approximates

the reflectance of a surface as if occurring on flat terrain.

Topographic correction of the data was undertaken using ATCOR 3 software

(Richter and Mueller, 2005; Richter, 2009) to minimise differences in reflectance

as a function of slope and aspect, especially on north-facing slopes. However, the

procedure was only successful when applied to images acquired in the spring or

autumn months, where the shadowing effect of slope and aspect was also amplified

by the seasonally low sun angle. When summer imagery were used, overcorrection

of the imagery was observed. However, correction was deemed less necessary as

the topographic effects were mostly neglible. All images used in this study were

acquired close to solar noon.

Figure 4.3 shows a March SPOT 5 HRG image prior and following topographic

correction and hence illustrate the importance of this pre-processing measure in

enhancing the information content of previously shaded image areas.
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(a) Original image (b) After topographic correction

Figure 4.3: SPOT-5 HRG image (acquired on 27th March 2003) before and after
topographic correction

Cloud removal

Cloud and cloud shadow screening was undertaken using procedures developed by

Definiens AG. For each image, the algorithm was used to generate vector cloud

masks, that were used either to indicate where a classification was unable to be

undertaken or where the classification might be less reliable.

Derived products

Following atmospheric and topographic correction, a number of image products

were derived including:

1. The Normalized Difference Vegetation Index

2. Estimates of the relative amount (fractions) of shade/moisture, photosyn-

thetic (green) vegetation (PV) and non-photosynthetic (dead/senescent; NPV)

vegetation
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1. The NDVI has been related to vegetation productivity and phenology (Gamon

et al., 1995; Weiss et al., 2001), the fraction of the Photosynthetically Active Ra-

diation (PAR) absorbed by the vegetation canopy attributes (e.g., green biomass

and Leaf Area Index, LAI) and the condition of the vegetation (e.g., stress; (Wang

et al., 2001)).

The NDVI is calculated from the red and NIR bands an image using Equa-

tion 4.3.

NDV I =
NIR−Red

NIR +Red
(4.3)

Values typically vary from -1 to 1, but the NDVI of vegetated surfaces exceeds 0

and values of closed and highly productive canopies can approach 0.6-0.7.

2. Due to the moderate (5-10m) spatial resolution of the satellite images used in

this study and the heterogeneity of the landscape, many pixels contain a mixture

of land cover types. The radiance detected by the sensor represents a combination

of all object fractions present in the pixel. Non-photosynthetic, photosynthetic

and shaded surfaces are, however, common to all images of vegetation. Fraction

images can therefore be generated by deriving endmembers, defined as a spectral

signature for a pure surface, for these three surfaces and using them as input into

a linear spectral unmixing algorithm.

The linear spectral unmixing model is a technique that generates synthetic images

where each channel represents the proportion (fraction) or each component of the

mixing pixel (Lu et al., 2003). In linear spectral unmixing, the reflectance of each

pixel in the image is assumed to be linearly correlated to the reflectance of each

material (or endmember) present within the pixel (Adams et al., 1995). The model
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then reduces the number of channels in the images to the number of components

of the model. The number of endmembers must, however, be less (by one) than

the number of spectral bands, and all of the endmembers in the image must be

used. The SPOT-5 HRG, IRS LISS IV and CASI data used here are therefore

well suited to this derivation as more than three bands are available. The model

algorithms are described by Shimabukuro and Smith (1991).

Fractional images representing non-photosynthetic, photosynthetic vegetation and

shade were therefore generated from the SPOT and IRS images used in this study.

Within each image a small number of regions of interest (ROI) of each endmember

type were selected, consisting of approximately 300 pixels each and spread equally

across the image.

To ensure a good separation of the endmember fractions during the unmixing

process, image regions with the greatest proportion of non-photosynthetic, photo-

synthetic vegetation or shade present were selected for the respective ROIs. For

non-photosynthetic areas, bare ground areas like ploughed fields were used, while

highly productive, agriculturally improved fields were chosen as samples for pho-

tosynthetic vegetation. Finally, regions of deep shade created by woodlands or

buildings provided samples of the shade endmembers.

In each case the endmembers were defined through reference to the feature space

plots of the Red, NIR and SWIR bands. Examples of the derived fractional images

are given in Figures 5.10 and 5.11.

The advantage of fractional images generated using spectral linear unmixing is that

they can be used to complement or supplement images used more traditionally

as input to classification algorithms (Adams et al., 1995). Furthermore these

synthetic images are often more representative of the physical properties of classes
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(e.g., NPV in vegetation canopies) and for this reason also they are sometimes

more readily interpretable.

4.1.2 Overview of spaceborne sensor pre-processing

By pre-processing, the following benefits to classification were provided:

• A high accuracy of orthorectification facilitated the overlay of vector layers

(e.g., field boundaries, Figure 4.4) and also comparison of pixel values from

different sensors and dates

• Radiometric and atmospheric correction allowed better comparison of pixel

values from different sensors and dates

• The topographic correction allowed features within shadowed areas to be

better discerned and their pixel values to be more comparable with those in

non-shadowed areas

• The cloud and cloud-shadow screening allowed the study to focus only on

the observable land surface but increased the utility of the sensors

• The derivation of data products (e.g., vegetation indices, fractions) allowed

information on the productivity of vegetation as well as the proportion of dif-

ferent fractions (e.g., soil, photosynthetic vegetation and non-photosynthetic

vegetation) to be extracted and used in subsequent analysis procedures (Fig-

ure 4.5, Bateson et al. (2000))
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Figure 4.4: LPIS (Land Parcel Information System) boundaries superimposed on
a orthorectified SPOT image

4.2 Airborne and terrestrial remote sensing data

4.2.1 Aerial photography and classification validation

For all of Wales, Vexcel aerial photography was provided courtesy of the Welsh

Assembly Government (WAG) and the CCW. These data were acquired in 2006

at 1m spatial resolution in both the visible as well as the NIR wavebands. Where

ground visits were not feasible, these data were the primary source for ground truth

information and the consequent validation of the habitat classification by manual

photography interpretation. The NIR photography highlighted variations in pro-

ductivity across habitats and therefore provided a means of greater differentiation

for the interpreter than the true colour photography alone.
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(a) NPV

(b) PV

(c) Shade

Figure 4.5: Non-photosynthetic (NPV), photosynthetic (PV) and shade endmem-
ber extraction of the July 2006 IRS scene around Lake Vyrnwy: a.) Lighter
image regions indicate a higher proportion of non-photosynthetic vegetation. b.)
Brighter areas of the image consist of stronger photosynthesizing vegetation. c.)
Areas of high shade (mainly woodlands) are shown very light.
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4.2.2 Compact Airborne Spectrographic Imager (CASI)

data

Hyperspectral CASI data (1m spatial resolution) were acquired on 2nd June 2006

during two single overflights over the grassland plots at Trawscoed and Pwllpeiran.

The spectral data were recorded in 12 bands covering the visible blue to NIR

portions of the electromagnetic spectrum (Table 4.4), including several along the

red edge.

Table 4.4: Pimhai CASI sensor (Grasslands)
Band Centre wavelength (nm) FWHM

1 449.3 12.6
2 487.4 11.7
3 551.0 6.2
4 668.4 8.2
5 696.0 7.2
6 708.4 6.3
7 736.1 7.2
8 749.5 7.2
9 761.0 5.3
10 778.2 9.2
11 817.5 8.2
12 863.6 8.2

In preparation for the flights, maps of the study areas were generated and the

required course of the aircraft identified such that data were acquired over the key

areas of interest (i.e., the grassland survey plots at Pwllpeiran and Trawscoed).

The aircraft was held at an average height of 500 m above sea level to ensure that

each image swath covered an approximate width of 500 m on the ground. Each

image collected had an approximate length of 1.5 km of which subsequently only a

subsection covering the actual field trial plots was used. Data collection followed

the protocol outlined by Bunting and Lucas (2006). CASI position and Orien-
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tation System (POS) data were acquired to compensate for aircraft position and

movement. GPS base station data were acquired on the ground during the flights

to facilitate geographical correction of the images. The CASI sensor acquired data

in a north-south direction at approximately the time of the solar noon to avoid

shadowing and minimize bi-directional effects (Schlaepfer and Richter, 2002).

During the overflights, one black, one white and one grey 4 x 4m calibration

tarpaulin were laid out at one of the sites. As the aircraft passed, reflectance

measurements were taken from each tarpaulin, using a field spectroradiometer,

thereby allowing subsequent calibration of the data.

CASI scenes were provided corrected for roll and pitch and were geo-registered to

Vexcel aerial photography data from July 2006. For the geo-registration process

approximately 50 pairs of ground control points were collected at points which

were easy to identify precisely in both the CASI image and the aerial photograph,

for example at the corners of the sample plots or buildings. Following this, an

image-to-image nearest neighbour warping algorithm in ENVI software was ap-

plied.

Registration accuracy was assessed by super-imposing both LPIS field boundaries

and the boundaries of the trial plots, which were spatially defined using a differen-

tial GPS (Figure 5.8). Compared to these independent vector datasets, the result

of the registration process was considered satisfactorily precise.

It would, however, be possible, to further improve the accuracy of the image regis-

tration by acquiring a high-resolution digital elevation model of the areas covered

by the image strips, e.g., derived from LiDAR, to adjust for topographic relief.

This particularly applies to the Pwllpeiran site, where the local topography is
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very pronounced.

Empirical Line Calibration

The CASI scenes were provided in units of ‘at sensor’ radiance (L, W m−2sr−2?m−1)

but surface reflectance was estimated using the Empirical Line Calibration (ELC)

procedure available within Environment for Visualising Images (ENVI) software

(Inc, 2003). Empirical Line calibration is used to force spectral data to match

selected field reflectance spectra. A linear regression was used for each band to

equate DN and reflectance. This is equivalent to removing the solar irradiance

and the atmospheric path radiance. Equation 4.4 shows how the empirical line

gain and offset values are calculated. Through linear regression, the ELC forced

the spectral radiance from the black and white tarpaulins (as measured by the

CASI during the overflights, Jacobsen et al. (2000)) to match the corresponding

field reflectance spectra. Through this approach, the effects of solar irradiance

and atmospheric path radiance were reduced. From the ELC, a calibration file

was generated which were used subsequently to convert the remaining CASI scene

to estimated surface reflectance.

L = a+ 6xDN (4.4)

This equals:

Reflectance (field spectrum) = gain x radiance (input data) + offset.

ENVI’s empirical line calibration requires at least one field, laboratory, or other
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reference spectrum; these can be obtained from spectral profiles or plots, spectral

libraries, ROIs, statistics or from ASCII files.

Input spectra were automatically resampled to match the selected data wave-

lengths. When more than one spectrum was used, then the regression for each

band was calculated by fitting the regression line through all of the spectra. If

only one spectrum was used, then the regression line was assumed to pass through

the origin (zero reflectance equals zero DN). The calibration can also be performed

on a data-set using existing factors. In this study, images of all study sites were

acquired in a single flight, which only allowed a narrow time window around so-

lar noon. Due to limitations on human resources, field spectra from black and

white could only be collected at Morfa ( a third site flown close to Trawscoed and

Pwllpeiran, near the Ceredigion coast and the village of Llanon, but not utilized

in this study).

The empirical line calibration could therefore only be performed on the Morfa

image. The Trawscoed and Pwllpeiran images were then calibrated using the cal-

ibration file obtained for this site. The trapualins at Trawscoed and Pwllpeiran

were subsequently used to check how well the data were calibrated.

4.2.3 Airborne LiDAR data

Full waveform RIEGL LMS-Q560 LiDAR data were acquired over the Lake Vyrnwy

forests in a series of adjacent passed to form a continuous mosaic in August 2006.

The flightlines (approximately 500m swath width) were orientated parallel to the

longest dimension of the Lake (Figure 4.7). This was undertaken to maximize the

amount of forests sensed by the LiDAR.
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Figure 4.6: A CASI image of Morfa showing the three tarpaulins to be used in the
empirical line calibration circled in white. They are from the top: white, grey and
black

The Riegl LMS-Q560 LiDAR is part of the LiteMapper-5600 system and provides

access to detailed target parameters by digitizing the echo waveform of each laser

measurement (Hug et al., 2004). After the flight, the digitized waveforms can

subsequently be analyzed off-line. This approach proves especially valuable when

dealing with challenging tasks, such as canopy height investigations or highly re-

liable automated target classification.

The waveform digitizing principle is illustrated in Figure 4.8.

In situation 1 in figure 4.8, the laser pulse first hits the canopy and creates three

distinct echo pulses at various canopy layers. A fraction of the laser pulse also

hits the ground giving rise to another echo pulse. In situation 2, the laser beam

is reflected from a flat surface at a small angle of incidence yielding an extended

echo pulse width. In situation 3, the pulse is simply reflected by a flat surface at

normal incidence resulting in a single echo pulse with a similar shape as of the
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Figure 4.7: Area covered by the LiDAR acquisition over Lake Vyrnwy forests

Figure 4.8: Waveform digitizing principle - Echo signals resulting from different
targets (Rie, 2005)
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outgoing laser pulse. The Riegl LMS-Q560 laser scanner with waveform digitiza-

tion is especially well suited for forestry and agriculture monitoring.

In such applications, the digitized waveform information is valuable for deriving

several ground and vegetation parameters, including surface elevation, tree/vegetation

height, the openness of the canopy and the distribution of canopy elements within

the vertical profile. Calculation of timber volume, biomass and other important

vegetation descriptors is thus facilitated and made more precise (Grimm and Kre-

mer, 2005).

The LiDAR data were preprocessed by the data provider and, as part of this, the

waveforms were decomposed into discrete returns (a maximum of 4 per waveform).

This is further explained in Chapter 7.

4.2.4 Terrestrial laser scanner data

Terrestrial Laser Scanners (TLS) provide detailed reconstructions of geometrically

complex three-dimensional objects. In a forest context, data from the scanner

can be used to describe the distribution of trunkes, branches leaves as well as the

locations, diameters and heights of individual plants (Maas et al., 2008a; Watt

and Donoghue, 2005b). Although methods are still being developed, additional

attributes that are able to be retrieved include timber volume by size class (Jupp

et al., 2005) and canopy gap fraction (Danson et al., 2007b; Henning and Radtke,

2006a). Potential exists also for retrieving the woody biomass of individual trees,

either by considering the sizes of the stems scanned or multiplying the volume of

scanned branches and trunks by wood density. Although limited by survey times

and occlusion as a function of stand density, TLS provide a permanent record of

forest structure. An advantage of this technique is the density and precision of
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the spatial sampling at a high rate, particularly in inaccessible terrain and un-

der adverse conditions (e.g., poor weather, time constraints due to tides, etc.).

Observations are non-invasive, which is especially desirable in a conservation con-

text. Initial labour investments in any study sites, particularly those under forest

canopy, can be high due to the efforts required to geolocate the scans as described

below, but repeat surveys would always be very efficient. The main challenges

in the acquisition and application of TLS data in forested environments are the

need for efficient computational engines to manage and model the resulting large

datasets and the high acquisition and initial training costs required.

Terrestrial laser scanner

Terrestrial Laser Scanner data were collected using a Leica ScanStation 2 in 2007.

The Scanner possesses a 270◦ vertical field-of-view of which 45◦ is below the hor-

izontal. This enables the scanner to cover areas on the ground close-by to the

set-up as well as increasing its utility on non-level surfaces. For the purpose of

surveying forests, the ability to scan directly overhead is an added advantage.

Locations, vegetation characteristics and acquisition dates of the scanned

sites

TLS data were acquired for sites representing a range of forest structures, which

included coniferous plantations and broadleaved forests dominated by a range of

species, as described in section 3.2.2. The locations of the scans around the lake
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Figure 4.9: TLS data acquisition workflow

are illustrated in figure 4.10.

Data collection took place at 7 sites during August 2007.

Table 4.5: Terrestrial Laser Scans
Scan Date Scanner Control Network Dominant tree species
LV7 01.08.2007 Leica Vyrnwy01 Douglas Fir
LV8 03.08.2007 Leica Vyrnwy04 Sessile Oak
LV9 07.08.2007 Leica Vyrnwy04 Sessile Oak and Sycamore
LV10 07.08.2007 Leica Vyrnwy06 Sessile Oak
LV11 08.08.2007 Leica Vyrnwy03 Larch
LV12 08.08.2007 Leica Vyrnwy05 Sitka Spruce
LV13 13.08.2007 Leica Vyrnwy02 Sitka Spruce
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Figure 4.10: Locations of the 7 terrestrial laser scans around Lake Vyrnwy

The locations of the scanners for each forest plot (i.e., the triangular

arrangement)

At each scan station point, a full 360◦, hemispheric scan was performed, covering

the entire area visible to the scanner, as defined by its view angle restraints.

Scanning

From each scan point a minimum of three targets where surveyed to aid subse-

quent geometric registration of the scans.

All scan points and target locations were marked with semi-permanent stakes and

could subsequently be relocated for surveying with a total station.

Full-hemispheric scans taken with the Leica ScanStation took approximately 10
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minutes. The time and effort required to obtain the targets greatly exceeded that

of the actual scan, especially through view obstruction of branches and understory.

The understory was included in the scanning, as this is considered a key habitat for

certain bird species (e.g., blackcaps, bullfinches) and a significant forest structure

attribute.

Geo-registration of scans

Due to the lack of penetration of a GPS signal through woodland canopy, which

prohibited obtaining the global location of the scanner and target locations di-

rectly, it was necessary to set up control networks outside the forests. In several

cases these were a considerable distance away from the site of the scans (see cp1,

cp2 and cp3 in Figure 4.11). Each control network consisted of three points in

a triangular arrangement, whose locations could be reliably established, using a

differential GPS.

Starting at the control network, a local coordinate system (Figure 4.11) was sub-

sequently created by using a Leica Total Station. All target and scanner locations

were included in the local coordinate system.
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To obtain exact global coordinates of all points, the local coordinate system was

then registered to the known points of the control network using Leica Geo Office

software. The comparison to the LiDAR data shows a good correspondence (Fig-

ure 4.12).

Figure 4.12: Co-registered airborne (full waveform) LiDAR point cloud (grey) and
terrestrial laser scanner data (white)

Table 4.6 shows the registration accuracies for all target and scan points. The

smallest (0.015m) and largest (4.708m) errors are highlighted in bold. The very

large errors in LV13 were caused by a mis-function of the total station at the

time as it failed to detect the target prism automatically. It was, however, de-

cided to incorporate the scan in some of the analyses in Chapter 7 as outlined in

Section 7.3.1.
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Table 4.6: TLS registration error in meters
LV2a LV2b LV2c LV7 LV8 LV9 LV10 LV 11 LV12 LV13

1 0.021 0.119 0.422 0.088 0.221 0.256 0.132 0.044 0.203 3.134
2 0.015 0.155 0.837 0.069 0.065 0.374 0.217 0.294 0.276 4.708
3 0.026 0.274 0.420 0.034 0.216 0.048 0.267 0.046 0.187 1.648
4 0.656 0.374 0.077 0.174 0.271 0.288
5 0.203 0.030

4.3 Grassland field data collection

4.3.1 Biomass samples

During July 2006, 480 grass samples were collected from 30 0.25m x 2.5m strips

in each of the field plots at Trawscoed . All plots were cut for hay by IGER staff

using a tractor and standard hay mower. This mower cuts the hay along swaths

approximating 2.5m and concurrently lays the hay in lines along the left hand

edge of the swath. Against the management plan, the T1 and T6 treatment plots

were also cut for thistle management, which facilitated the collection of a greater

number of samples, as described below.

Samples were collected from the 2.5m wide swaths using a 25 cm wide wooden

plank, which was placed across the swath. Exerting light pressure to hold the

swath firm, the sample was cut either side of the plank with a sharp serrated

knife. After removal of the plank, the cut cross-section of the swath was rolled

up and collected in netted bags, which could be placed directly into the drying

ovens. A label with plot identifier and sample number was placed inside each bag.

Samples were collected in a regular pattern across each plot, mostly determined

by the lay-out of the mowing swaths. Areas of swaths which were not uniform
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because of mower blockage or repeated passes by the mower were avoided. This

is a standard operating procedure (SOP) known as the ‘bread knife technique’,

which was developed by ADAS for taking samples from hay swaths for monitoring

purposes. The location of each biomass sample was recorded at either end and in

the middle of the swath, using a differential GPS. This procedure was repeated at

Pwllpeiran for a further 480 samples. At Pwllpeiran, however, the management

plan was strictly adhered to, meaning that the P1, P2 and P5 plots were not cut

by the mower. In these fields, corresponding sample strips were cut by hand using

shears.

All grass samples were dried at 80◦ Celsius for 48 hours and then weighed to one

decimal place to give an estimate of dry weight in grams.

4.3.2 Vegetation survey

As described in Section 3.2.1, the Trawscoed and Pwllpeiran grassland plots were

originally created as part of a research experiment on the biodiversity restoration

of previously intensely managed improved agricultural grasslands. An important

component of the original experimental protocol was that regular vegetation sur-

veys of all plots were carried out to monitor the expected increase in species rich-

ness over time. The plots were surveyed annually up to 1999, coinciding with the

end of DEFRA funding for the research experiment (Hayes et al., 2000; Hayes

and Sackville Hamilton, 2001), and thereafter approximately biannually, as some

funding was available to maintain the experiment (Hayes 2006, personal communi-

cation). All surveys followed the protocol for the National Vegetation Classification

(NVC) scheme and recorded species present and percentage coverage within ten

randomly located 1m2 quadrats in each trial plot. A full survey was carried out
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at both sites in the summer of 2006 and these are the species data used in this

study.

Figure 4.13: Vegetation surevy quadrat at Trawscoed

4.4 Bird census data

For the Lake Vyrnwy forests, the RSPB had conducted a comprehensive survey of

the main forest areas during 2006. The method of the CBC involves the recording

of birds on a paper map at regular intervals (often fortnightly) throughout the

breeding season. Each bird species is given a code (see Appendix A.4) with a

secondary code which indicates whether the bird is nesting, singing, not singing,
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flying or fighting. At the end of the season, records are collated for each species

on a new map such that territories can be discerned.

The CBC data were digitized and attributed within ArcGIS. Over 6000 obser-

vations were digitized and integrated within a Geographical Information System

(GIS) project.

Bird species distribution data were collected by staff and volunteers in the wood-

land habitats of the RSPB Lake Vyrnwy bird reserve (see Section 3.2.2) between

late March and early July 2006, following the territory mapping method of the

Common Bird Census (CBC) for breeding birds of the British Trust for Ornithol-

ogy (BTO). The CBC involves the recording of sightings of individual birds on a

regular (e.g., weekly) basis during the breeding season. From information collated

over the season, the occurrence of different species, their approximate nesting sites

and also their territorial boundaries are mapped. Each site was visited six times,

as compared to the usual ten times, due to a shortage of personnel. The protocol

of this survey method is described in detail by Gilbert et al. (1998).

In total 6221 observations of 105 different species were recorded over the pe-

riod. Many of these, however, were not specialist woodland species and are hence

not considered in this study. Others were omitted because of insufficient sample

sizes, which could be a result of itinerant, non-territorial individuals (see Chap-

ter 8).
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Figure 4.14: Bird observations of the 2006 Common Bird Census in the Lake
Vyrnwy RSPB reserve
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4.5 Summary

This chapter has provided an overview of the spaceborne, airborne and field (in-

cluding TLS) data collected during the course of this project. Key elements of the

work include:

• The acquisition and pre-processing of spaceborne optical data from a range

of sensors to allow subsequent classification of the landscape

• The acquisition of airborne data by both hyperspectral and LiDAR sensors

to provide more detailed information on land covers in both two and three

dimensions

• The acquisition of TLS data to support the interpretation of LiDAR data,

particularly in relation to forest structure (height)

• The collection of ground data in the form of biomass and broad species

composition

• The collation and digitization of bird survey data collected by the RSPB dur-

ing the same period as the LiDAR and CASI acquisitions over Lake Vyrnwy

The following chapters describe the methods of analysing these data with a view to:

1. The use of airborne hyperspectral data to better understand how spaceborne

remote sensing data can be used to retrieve information on the level of im-

provement of grasslands
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2. Classifying semi-natural habitats and agricultural land across selected re-

gions in Wales (as part of a larger project)

3. To establish whether combinations of remote sensing data can be used to

better quantify the diversity of grassland species and also bird communities

inhabitating forests



Chapter 5

Spectral differentiation of

grasslands

5.1 Introduction

Grasslands are valuable biodiversity repositories. Their inherent floristic and asso-

ciated invertebrate diversity is an important component of Wales’ total biodiversity

and form the foundation for the habitat and food source requirements of many bird

and mammal species.

The natural environment of Wales is predominantly characterized by its rural pas-

toral landscape in both lowlands and uplands and approximately 62% of its total

area consists of grassland as established by the Phase 1 survey of Wales undertaken

during the late 1980s and 90s (Howe et al., 2005; JNCC, 2003).

This chapter aims to establish whether different grassland types can be identified

and discriminated using first airborne and then spaceborne remote sensing data.

114
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This was achieved by establishing relationships between fine (< 1m) spatial reso-

lution airborne CASI data acquired during 2006 at the Trawscoed and Pwllpeiran

sites (Section 3.2.1) and field-based measures of grassland biomass and species

composition. These relationships were further used to inform on the subsequent

development of rules for the classification of grassland types using spaceborne data.

The opportunities to acquire wide-area coverage of airborne CASI data are very

limited, due to the narrow swath width and the effort and costs which would be

incurred. For this reason it is important to identify the specific spectral character-

istics of different grassland types also in large-scale, lower resolution multispectral

satellite imagery such as SPOT 5 HRG. The potential for differentiating spectrally

characterized grasslands of varying conservation value in the wider landscape using

spaceborne SPOT data is therefore also discussed.

5.2 Review of grasslands

5.2.1 Grasslands in Wales

The conservation value of unimproved and semi-improved grasslands is determined

by their floristic diversity and by their role as a habitat and food source for a wide

variety of invertebrate (Rushton et al., 1989), bird (Barnett et al., 2004) and mam-

mal species. Dry acid, neutral and lowland and upland calcareous grasslands, as

well as Purple Moor Grass (Molinina caerulea) and rush (Juncus spp.) pastures

are examples of grassland habitats that are listed as priority habitats for protec-

tion in the UK Biodiversity Action Plan (Maddock, 2008).
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Conservation ecology and agricultural science commonly divide grasslands into

improved, semi-improved and unimproved classes to categorize their nature con-

servation interest and grazing value respectively. Unimproved grasslands are of the

highest interest and value to conservation and improved grassland of the lowest.

Most grasslands in Wales have, at one time, been subjected to differing levels of

agricultural improvement through grazing, fertilization with manure, slurry or in-

organic fertilizers, drainage, re-sowing or harvesting of silage crops. To establish

the conservation interest and potential for protection of grassland sites, it is im-

portant to distinguish unimproved and semi-improved from improved grasslands.

However, different grassland types often form a continuum and the range of crite-

ria for semi-improved grassland is especially broad, so that it is often not possible

to define each type precisely. Critical indicator species, such as Bird’s Foot Trefoil

(Lotus corniculatus and Yellow Rattle (Rhinanthus minor), are often also only

visible during certain periods of the growing season.

The following sections outline the grassland types occurring and, where appropri-

ate, characteristics typical to Wales are highlighted. Features that may assist in

their determination from remote sensing data are further described.

Improved Grassland

Agricultural grassland improvement typically causes a decrease in floral species

diversity of the sward and dominance of competitive grasses such as Perennial

Ryegrass (Lolium perenne), Yorkshire Fog (Holcus lanatus) and Red Fescue (Fes-

tuca rubra). Perennial Ryegrass (Lolium perenne) and White Clover (Trifolium
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repens) commonly constitute more than 50% of the vegetation cover of improved

fields. The actual sward composition is likely to vary with intensity of treatment,

of which periodical application of selective herbicides, ploughing and re-seeding

with a single species (most often the very productive Perennial Ryegrass) are the

most severe.

Improved grasslands do not contain many of the forb species which are commonly

found in an unimproved sward. The limited range of grasses and common herba-

ceous plants occurring are mainly those which require high levels of nutrients and

are resistant to grazing. Crested Dogstail (Cynosurus cristatus), Common Sorrel

(Rumex acetosa), Dandelion (Taraxacum officinale), Daisy (Bellis perennis) and

Buttercup species (Ranunculus spp.) are commonly found. The presence of Dock

(Rumex spp.), Common Nettle (Urtica dioica) and thistles (Cirsium spp.) indicate

local nutrient enrichment of the soil through the manure of grazing animals.

Figure 5.1: Improved grassland plot at the Trawscoed study site. The uniform
sward is dominated by Lolium perenne.

In Wales, the majority of improved grasslands are found in the lowlands and below

the enclosure boundary. They are managed for sheep and cattle grazing with
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the aim of providing an efficient fodder source. Semi-improved and unimproved

grasslands are rare in the lowlands and often limited to either steep slopes, which

hinder the use of agricultural machinery or areas of poor soil, especially marshy

ground. In the uplands, improved swards are rarer, limited by access and the

pre-dominant extensive grazing regimes.

Semi-improved Grassland

Semi-improved grasslands are a transition category created by partial improvement

of previously unimproved sites, using the agricultural practices described above.

Alternatively, if intensive agricultural treatment is not maintained, herbaceous

species such as Knapweed (Centaurea nigra), Yarrow (Achillea millefolium) and

Bird’s Foot Trefoil (Lotus corniculatus) re-establish and the field can revert to

semi-improved status. This usually takes place over a number of years. Fields that

have been re-seeded in the past, but which have subsequently become more diverse

again are included in this category. The diversity of species within semi-improved

grasslands is generally lower and less compared to unimproved grasslands, although

they still possess some conservation value.

Semi-improved grasslands span the widest part of the grassland continuum and

therefore can vary considerably in appearance, making identification and mapping

difficult. A key indicator of semi-improved grasslands is the generally lower species

diversity compared to that of proximal unimproved grassland, but higher than

improved fields. Semi-improved grasslands are therefore best categorized within

their regional context.

Figure 5.2 illustrates a semi-improved sward at the Trawscoed study site, which

has reverted from an improved field similar to that in Figure 5.1 since intense
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management ceased. The seed heads of Plantain (Plantago lanceolata) are evident

within the image.

Figure 5.2: Semi-improved grassland plot at the Trawscoed study site.

Unimproved Grassland

Species diversity in unimproved grasslands is often greater than that of semi-

improved or improved fields, with species characteristic of the area and local soil

type present, while agricultural species such as Perennial Ryegrass only make up

a low percentage of the vegetation cover. Some extensive grazing, especially in the

uplands, may take place, but is mostly not sufficient to alter the natural species

composition of these grassland significantly. Fields may also be cut for hay. Unim-

proved grasslands are usually rare in the lowlands, because of the land demands

of intensive agriculture.

The species composition and appearance of unimproved grasslands varies according

to location (altitude), soil moisture and whether they occur on neutral, calcareous

or acid soils, as determined by the underlying geology and soil depth. Improve-
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ment often reduces the distinctive characteristics of acid, neutral or calcareous

grasslands, making them difficult to differentiate.

Figure 5.3: Least improved grassland at the Pwllpeiran studysite

Acid Grassland

Acid grassland is often unenclosed and, in Wales, occurs mainly in the uplands

and in the mountainous regions of Snowdonia. Underlying soils vary in acidic-

ity, but commonly have a pH of less than 5.5. These grasslands are generally

species poor, but contain species that are indicative of acidic conditions when fre-

quent or abundant. These include Wavy Hair-Grass (Deschampsia flexuosa), Mat

Grass (Nardus stricta), Heath Bedstraw (Galium saxatile), Tormentil (Potentilla

erecta) and Sheep’s Sorrel (Rumex acetosella). In Wales, the dominant grasses on

dry, acidic soils are Sheep’s Fescue (Festuca ovina) and Bents (Agrostis spp.) On

wetter ground, these species will be replaced by expanses of Purple Moor grass

(Molinia caerulea), particular in the Cambrian Mountains and wet acidic grass-

lands typified by species such as Heath Rush (Juncus squarrosus).
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Calcareous grassland

These grasslands are also often unenclosed and occur on shallow soils with a pH

above 7.0. In Wales, these grasslands are comparatively rare and confined to

areas of limestone pavements in the uplands (e.g., above Llangollen in Powys).

Indicator species of calcareous turfs are Crested Hair-grass (Koeleria macrantha),

Downy Oat-grass (Avenula pratensis), Common Rock-Rose (Helianthemum num-

mularium), Salad Burnet (Sanguisorba minor), and Wild Thyme (Thymus poly-

trichus).

Neutral Grassland

This category is typically more intensively managed than acid or calcareous grass-

land and is often enclosed and occurring in the lowlands of Wales. The following

species are indicative of neutral soils (pH 5.5-7.0), if they occur frequently: Meadow

Foxtail (Alopecurus pratensis), False Oat-grass (Arrhenatherum elatius), Crested

Dogstail (Cynosurus cristatus), Cocksfoot (Dactylis glomerata), Tufted Hair-grass

(Deschampsia cespitosa), Yellow Rattle (Rhinanthus minor) and Meadow Fescue

(Festuca pratensis).

Hay meadows usually fall within this category, as well as a range of grasslands

which are inundated periodically or permanently wet. On such wet pastures grasses

are dominant, but with species such as Marsh Marigold (Caltha palustris), Meadow

sweet (Filipendula ulmaria) or Rushes (Juncus spp.) present.
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5.2.2 Grassland manifestation within remote sensing data

Bright green, lush and even swards, dominated by grasses with a low diversity

of herbaceous flowering plants usually indicate substantially improved grassland.

Perennial Ryegrass (Lolium perenne) in particular and White Clover (Trifolium

repens) commonly constitute more than 50% of the vegetation cover of improved

fields. Within remotely sensed data, these swards typically exhibit a high and

relatively uniform near infrared (NIR) reflectance (typically above 40%) and a

high NDVI which often exceeds 0.4. These high values are attributable to the

high density of grass blades, but is exaggerated by clover which has horizontally

orientated leaves that are arranged in a relatively uniform layer. The NDVI is also

high, because of the strong absorption of the green wavelengths by chlorophyll.

Within many grasslands, variability in reflectance is evident, both spectrally and

spatially. Such variability is attributable to species composition and condition,

which in turn are determined by a number of factors, listed in Table 5.1.
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There is no precise divide in appearance between unimproved and semi-improved

grasslands. Species composition usually is the over-riding criterion for distinguish-

ing unimproved and semi-improved grasslands, which is difficult to detect in satel-

lite images as most indicator species will occur at low frequencies, though their

presence will make a difference to the overall appearance and hence reflectance of

the sward.

Differentiating improved from semi-improved grasslands is difficult from remote

sensing data, as on the ground, separation is based primarily on species compo-

sition. Many indicator species occur in low numbers and their presence cannot

be detected remotely. Nevertheless, a number of factors suggest that fields are

unimproved. These include:

1. lower productivity

2. reduced amounts of high reflectance (in the NIR), Lolium perenne and clover

3. increased structural variability associated with grass tussocks

These grasslands also exhibit characteristics that are midway between unimproved

and improved grasslands (Figure 5.4). Hence by defining these characteristics

first for these grassland types in spectral properties (e.g., NIR), vegetation indices

(NDVI) or fractional images (e.g., shade), intermediate or overlapping areas can

be associated with semi-improved grasslands.

Grasslands react, compared to other habitats such as forests, more readily to

improvement by human intervention or climate change effects through changes in

species composition (Robertson, 2010) and productivity (Zha et al., 2005; Holden

and Brereton, 2002). It is therefore important to monitor them accordingly. While

it is not possible to detect the presence of individual species, occurring with low
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Figure 5.4: Feature distribution across different levels of grassland improvement

frequency, using low resolution satellite data, productivity and condition can be

examined at the community level.

By focusing on grasslands at Trawscoed and Pwllpeiran, this chapter establishes

whether differences in productivity and species community can be detected using

remote sensing optical data. This was achieved by acquiring hyperspectral data at

the same time as field based measures of biomass and species composition.

5.3 Methods of data acquisition and analysis

5.3.1 Grassland improvement levels

Under consideration of the management strategies described in Section 3.2.1 and

the percentages of improvement indicator species present (Figures 5.5 and 5.6),

all plot types were graded according to expected level of improvement through

fertilization and grazing treatment. These gradients are illustrated in Figure 5.7

in ascending order of improvement for both Trawscoed and Pwllpeiran.
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Figure 5.5: Percentage ground cover of Lolium perenne of the Trawscoed trial plots

5.3.2 Airborne data

CASI Image Data

Airborne CASI hyperspectral images were acquired over both the Trawscoed and

Pwllpeiran study sites in June 2006 (Figures 5.8 and 5.9) during two single over-

passes. All images were geo-registered using ground control points, with the VEX-

CEL aerial photography used as a base image, and atmospherically corrected with

the empirical line calibration process (Section 4.2.2).

Fraction Images

Endmember fraction images for non-photosynthetic (NPV) and photosynthetic

vegetation (PV), as well as shade were derived through ENVI’s linear spectral

unmixing from the two CASI images (Figure 5.10 and 5.11, Adams et al. (1995)),

using the process described in Section 4.1.1.
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(a) Lolium perenne

(b) Festuca spp.

Figure 5.6: Percentage ground cover of Lolium perenne and Festuca spp. of the
Pwllpeiran trial plots
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(a) Trawscoed (b) Pwllpeiran

Figure 5.7: Grassland improvement in Trawscoed and Pwllpeiran study sites in
increasing order of magnitude
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Figure 5.8: July 2006 CASI image of the Trawscoed study site, treatment plots
are outlined and labeled according to the management treatments T1-T6 (see
Table 3.3)
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Figure 5.9: July 2006 CASI image of the Pwllpeiran study site, treatment plots
are outlined and labeled according to the management treatments P1-P7 (see
Table 3.4)
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(a) NPV (b) PV

(c) Shade

Figure 5.10: Endmember fraction images at Trawscoed

Vegetation Indices

The following five vegetation indices were calculated from the Trawscoed image

only using band maths (Figure 5.12):

• Normalized Difference Vegetation Index (NDV I) = ρ817.5−ρ668.4

ρ817.5+ρ668.4
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(a) NPV (b) PV

(c) Shade

Figure 5.11: Endmember fraction images at Pwllpeiran
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• Ratio vegetation index (RV I) = ρ749.5

ρ708.4

• Renormalized difference vegetation index (RDV I) = ρ817.5−ρ668.4√
ρ817.5+ρ668.4

• Triangular vegetation index (TV I) = 120(ρ749.5−ρ551)−200(ρ668.4−ρ551)
2

• Modified triangular vegetation index (MDV I) = 1.2[1.2(ρ817.5 − ρ551) −

2.5(ρ668.4 − ρ551)]

The RVI, RDVI, TVI and MDVI were chosen for examination because they are

described by Chen et al. (2009) in a detailed study of vegetation indices as most

successful in estimating grassland biomass from hyperspectral data. The Normal-

ized Difference Vegetation Index (NDVI) is a robust and very common measure of

vegetation productivity from remote sensing data (Silleos et al., 2006; Wang et al.,

2001), calculated from the red and near infrared bands. It is frequently applied in

grassland environments (Goetz, 1997; Goodin and Henebry, 1998; Tieszen et al.,

1997) and is hence also included here.

The airborne data acquisition and pre-processing are described in further detail in

Section 4.2.2.

5.3.3 Data extraction

The location of the mid-point and both ends of each biomass sample, as deter-

mined by a differential GPS (Section 4.3.1), were buffered by a radius of 0.5m.

The resulting shapefiles (Figure 5.13) were used to retrieve zonal statistics of the

corresponding reflectance values for all bands, the NDVI and endmember fraction

values within the plots for each biomass sample. At each location three values

were extracted and the mean of these three was subsequently calculated.



CHAPTER 5. SPECTRAL DIFFERENTIATION OF GRASSLANDS 134

(a) NDVI (b) RVI

(c) RDVI (d) TVI

(e) MDVI

Figure 5.12: Vegetation Indices at Trawscoed
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Figure 5.13: Buffered (0.5m) ends and midpoint (circles) of one sample swath and
the area from which the biomass sample has been taken (rectangle)

Subsequently the outline of each plot was buffered inwards by 3m to avoid edge

effects and data were extracted for the whole plot from the same datasets using

zonal statistics as above. For Trawscoed the data for the additional Vegetation

Indices listed in Section 5.3.2 were also obtained on a per plot basis.

One-way Analyses of variance (ANOVA) of the extracted reflectance (ranging from

ρ487.4 to ρ863.6)of all trial plots from Trawscoed and Pwllpeiran were performed to

establish whether the various plots differ significantly with regard to reflectance

and in which bands the differentiation potential is strongest.

Further analysis explored the regression between reflectance data, NDVI and end-

member fractions respectively and at each of the sample locations. The values

for reflectance, endmember images and vegetation indices extracted from the sam-
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ple locations were plotted against their corresponding biomass sample to establish

their degree of regression and possible empirical relationships.

5.3.4 Vegetation and Biomass data

A survey following NVC protocol recording vegetation species occurring as well

as percentage cover of species in ten 1m2 quadrats per plot was conducted during

summer 2006 at both Trawscoed and Pwllpeiran.

Tha Shannon-Weaver diversity index (H ′ =
S∑
i=1

pilnpi − [(S − 1)/2N)]) for each

plot at Trawscoed were calculated from this data.

Biomass samples of all plots at both sites were collected during June and July 2006,

in the three weeks after acquisition of the hyperspectral data (Section 4.2.2).

The mean, standard deviation and range of the biomass samples for all plots were

calculated and compared (Tables 5.2 to 5.5).

One-way ANOVA tests of the biomass samples and species composition data re-

spectively were performed for all trial plots at both Trawscoed and Pwllpeiran.

This was done to establish the degree to which the different plots vary in relation

to biomass and species compostion and how this variation can be related to the

different management regimes.

A similar approach has been suggested by Jacobsen et al. (2000), to examine the

connection between floristic composition and management of grasslands.
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5.3.5 Spaceborne data

Through reference to the Phase 1 survey for Wales (Howe et al., 2005), as well as

Vexcel aerial photography as a visual guide, grasslands at varying levels of agri-

cultural improvement were identified in a range of temporally differing satellite

images (SPOT-5 and IRS) across the whole of Wales. The spectral reflectance of

these fields was subsequently extracted and compared both across time, as well as

across grassland improvement levels.

The data collection and pre-processing, as well as the specifications of the space-

borne SPOT 5 HRG and IRS data utilized for the spaceborne analysis are outlined

in Section 4.1 and Appendix A.2. The results for this experiment are described in

Section 5.4.5.

5.4 Results

5.4.1 Grassland Biomass and management regimes

The tables below describe the biomass samples collected from the field plots at

Trawscoed and Pwllpeiran on a per plot (Tables 5.2 and 5.4) and a summarized

treatment basis (Tables 5.3 and 5.5).

Trawscoed Biomass

Figure 5.14 shows large variation of mean biomass samples across the individual

treatment plots at Trawscoed. The most improved plots (Treatments T1 and T6)

are found at the lower range of standing biomass. Two of the least improved
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Table 5.2: Biomass sample measurements of the Trawscoed management treatment
plots

Plot Average weight (g/0.3m2) StDev Range
T1a 20.9 10.6 25.9
T1b 14.4 32.7 126.4
T1c 12.1 6.3 40.3
T2a 112.6 29 136.6
T2b 134.4 44.02 98.9
T2c 116.8 28 196.3
T3a 129.6 41.8 428.4
T3b 97.2 31 119.7
T3c 102.7 28.2 122.4
T4a 154.4 39.2 122.4
T4b 120.6 32.7 88.8
T4c 216.4 66 152.5
T5a 138.9 32.3 146.4
T5b 69.4 53.7 192.6
T5c 141.5 34.9 119.1
T6a 43.6 22.4 167.6
T6b 37.6 34 129.4
T6c 84.6 111.2 283.2

Table 5.3: Average biomass measurements per treatment at Trawscoed
Treatment Average weight (g/0.3m2) StDev Range
T1 15.6 20.9 126.4
T2 120.9 35.1 202.5
T3 109.8 36.7 150
T4 163.8 62.1 317.6
T5 117.2 52.8 223.8
T6 55.3 70.8 443.6
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plots (T4 treatment) are found to have the highest biomass occurring, with T4c

noticeably higher than all other plots, though the third plot ranks considerably

lower.

All other treatments (T2/T3/T5) occurr in the mid-range of values, with little

variation evident. The standard deviations of plot T1b and T6c and to a lesser

degree T5b are very high, indicating a wide spread of sample measurements around

the mean.

Figure 5.14: Biomass for the individual Trawscoed management plots (Table 5.2)

Figure 5.15 shows the mean biomass of each set of three plots being managed in the

same way (Table 5.3). Comparing the treatments directly in this way, shows that

the mean standing biomass for each treatment corresponds to the expected level

of improvement, as indicated in Figure 5.7(a). T4, the least intensely managed

treatment again shows the highest values and T1 the lowest.
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Figure 5.15: Average biomass measurements for the Trawscoed management
regimes (Table 5.3)

Table 5.4: Biomass sample measurements for the Pwllpeiran management treat-
ment plots

Plot Average weight (g/0.3m2) StDev Range
P1a 9.3 5.9
P1b 9.9 10.3
P1c 32.6 19.6
P2a 12.6 7.9
P2b 17.4 13.3
P2c 21.19 17.5
P3P6a 111.8 37.3
P3P6b 144 38.2
P3P6c 110.4 38.2
P4a 29.3 18.8
P4b 145.4 47.5
P4c 94.5 38.9
P5a 15.62 12.1
P5b 27.8 19.3
P5c 29.6 20.1
P7a 94.6 29.3
P7b 124.1 33.5
P7c 110.6 37.4
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Table 5.5: Average biomass measurements per treatment at Pwllpeiran

Treatment Average weight (g/0.3m2) StDev Median Maximum Minimum
P1 17.3 17.1 81.7 0
P2 17.1 13.8 77.9 0.1
P3P6 121.7 40.6 235.3 30
P4 89.7 60.2 277.6 5.6
P5 24.4 18.4 96.3 0.9
P7 109.8 35.4 197 43.6

Pwllpeiran Biomass

Figure 5.16 shows a similar pattern of biomass distribution to Trawscoed. As

illustrated in Figure 5.7(b), the treatments P3/P6, P4 and P7a are expected to

produce the least improved fields and here also have noticeably higher biomass

values than the more intensively managed fields (P1/P5/P2), though no single plot

is showing a particular spike. The Standard Deviations also show little variation,

indicating a high degree of uniformity amongst biomass samples from individual

fields.

Figure 5.16: Biomass for the individual Pwllpeiran management plots(Table 5.4)
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Figure 5.17 indicates the same trend. Though the increase in biomass per treat-

ment does not correlate perfectly to Figure 5.7(b), with P2 showing the lowest

value despite a semi-improved ranking, there are marked differences in standing

biomass between the greater and less intensely treated plots.

These results suggest that lower levels of improvement are related to higher amounts

of standing biomass within the sward.

Figure 5.17: Average biomass measurements for the Pwllpeiran management
regimes (Table 5.5)

further show the results of one-way ANOVA tests of the significance in biomass

variation between treatment plots at the two sites. Both tests indicate that the

variation of biomass between plots is higher than can be explained by chance alone,

as this chance (p-value) is in both cases considerably lower than the statistically

significant threshold of 5%. The high F-ratios also indicate that variability in

biomass between plots is very considerable.
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Table 5.6: One-way Analysis of variance (ANOVA) of the Trawscoed mean biomass
between treatment types (T1-T6)

Source of Variation SS df MS F P-value

Between Groups 41805.06944 5 8361.013889 9.754643556 0.000658244
Within Groups 10285.58 12 857.1316667
Total 52090.64944 17

Table 5.7: One-way Analysis of variance (ANOVA) of the Pwllpeiran mean biomass
between treatment types (P1-P7)

Source of Variation SS df MS F-ratio P-value
Between Groups 36258.42 5 7251.68 10.313 0.00051
Within Groups 8438.028 12 703.169
Total 44696.45 17

5.4.2 Variability of spectral reflectance across treatments

and between trial plots

Figure 5.18 shows the greatest range of reflectance across treatments in the NIR

band reflectance (736.1nm to 863.6nm). The T2 treatment shows the highest

reflectance in this region, while the improved treatment type T1 reflects strongest

in the visible and red edge region (449-708.4 nm). The T4 treatment consistently

reflects at the lowest level, which is especially noticeable in the NIR region.

This might indicate that the opportunity to distinguish between different levels of

grassland improvement is greatest in the NIR region.

However, Figure 5.19 shows the results of one-way ANOVA analyses of the sta-

tistical significance of each image band in distinguishing between treatment types

at Trawscoed. The graph illustrates that, with the exception of band 4 (ρ668.4 /

p=0.062), all image bands within the visible and red-edge regions (ρ449 − ρ708.4)
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Figure 5.18: Reflectance of Trawscoed treatment types across the CASI bandwidth
spectrum

Figure 5.19: ANOVA test results across the CASI bandwidth spectrum for signif-
icant variability between treatments at Trawscoed
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are statistically significant in explaining the variation between treatment types as

manifested in the reflectance in these bands.

The null hypothesis tested in Figure 5.19 for each image band, states that there

is no significant difference in reflectance between treatment types T1-T6, but the

likelihood that the null hypothesis is true is below the standard significance thresh-

old of 5% for six bands and is therefore rejected in this case.

Figure 5.20: Reflectance of Pwllpeiran treament types across the CASI bandwidth
spectrum

Figure 5.20 shows a similar pattern to Figure 5.18. The greatest range of average

reflectance per treatment type is found in the NIR region (ρ736.1 − ρ863.6). The

unmanaged discard plot at Pwllpeiran (Figure 3.7) exhibits a considerably lower

NIR response than all other field types, but the greatest reflectance in band 4

(ρ668.4). It is, however, not included further in the analysis, because no repeat
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plots exist and it was not sampled for biomass.

P3P6, which is considered the least improved plot type, is then the lowest reflecting

in the NIR bands, followed by P5, which is ranked as second most improved.

Figure 5.21: ANOVA test results across the CASI bandwidth spectrum for signif-
icant variability between treatments at Pwllpeiran

These results suggest a great similarity in the reflectance behaviour of the dif-

ferently treated fields between Trawscoed and Pwllpeiran. The one-way ANOVA

(Figure 5.21) conducted to test each band for significant differences in reflectance

between all treatment types, however, shows that the significance threshold of 5%

is not reached for any band. The null hypothesis can therefore not be rejected and

the variation in reflectance between differently treated fields has to be considered

not statistically significant.

Table 5.8, however, shows significant results of the same test when a smaller num-

ber of bands is considered. The result indicates that the spectral variation between

the least and the most improved treatment types (P1 and P3P6) is significant

in bands 3 and 6. A comparison of the same variation between the three least

improved field types (P3P6/P4/P7) meanwhile indicates that they do not differ
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significantly in band 3, but that there is a highly significant difference in band 6

(the red edge).

Table 5.8: ANOVA test result of spectral differentiation between selected treat-
ment types at Pwllpeiran

Image band P1/P3P6 P3P6/P4/P7
Band 3 (ρ551) 0.030 0.177
Band 6 (ρ708.4) 0.040 0.0000029

However, as Figure 5.21 and Table 5.8 suggest that it is not possible to differentiate

all treatment plots at Pwllpeiran spectrally, not all analyses below will be carried

out for this site, but instead the study will focus primarily on Trawscoed.

Possible reasons for the lack of separability are discussed in Section 5.5.5.

5.4.3 Species composition and coverage variability

Canonical Discriminant Analysis derives canonical variables that summarize between-

class variation and finds the variables which optimize separation of the data groups,

here vegetation survey data for each treatment type. The best two are represented

on the two axes in Figure 5.22. As the the dataset only contains two variables,

species and percentage cover of species, they are known to be represented here.

The Canonical Discriminant Analysis in Figure 5.22 compares the similarity be-

tween the different management regimes with regard to species composition (Func-

tion 1) and coverage (Function 2). The distribution of quadrats indicates a high

correspondence in the species composition and coverage in plots treated under the

semi-improved management plans (T2, T3, T5). The improved (T1 and T6) plots

display similarity with regard to percentage coverage (evenness of species distri-

bution), but differ visibly in species composition. The least improved plots (T4),
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in comparison, contain similar species to those which are semi-improved but they

are distributed differently.

Figure 5.22: Canonical Discriminant Analysis of vegetation percentage cover at
Trawscoed

Figure 5.23 shows the calculated Shannon-Weaver biodiversity index (H’) for each

of the indiviudal plots at Trawscoed. The most improved fields (T1) exhibit the

lowest index, while all other plots do not seem to follow any particular order. T6b,

one of the more improved fields shows the highest value for H’. The index, however,

takes into account both species richness and evenness of vegetation distribution.

Figure 5.24 repeats the trend from Figure 5.23. The combined T1 treatments dis-

play the lowest biodviersity value, while the T6 plots are ranked highest and the
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Figure 5.23: Shannon-Weaver diversity index (H’) for Trawscoed experimental
plots in ascending order

value of H’ does not correspond to level of improvement with all other treatment

types. One-way ANOVA tests on the separability of plots or treatments by the

Shannon-Weaver Index showed that the variability between both plots and treat-

ments with regard to this biodiversity indicator is not significant.

Two-way Analysis of variance (ANOVA) of the Trawscoed and Pwllpeiran vegeta-

tion survey data variability between treatments (Tables 5.9 and 5.10) further show

that a statistically significant separation of the treatment types (here arranged in

rows or samples) from the 2006 vegetation survey data is not possible and further

that the interaction between treatment type and species is not significant.

Endmember fractions

Anova results for testing the separability of the treatment types using the end-

member fraction images indicate that variation between treatments with regard to
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Figure 5.24: Shannon-Weaver diversity index (H’) for Trawscoed treatment types
in ascending order

Table 5.9: Two-way Analysis of variance (ANOVA) of the Pwllpeiran vegetation
survey data variability between treatments (P1-P7)

Source of Variation SS df MS F-ratio P-value
Sample 38.30276308 5 7.660552616 0.193393676 0.965033957
Columns 16308.72296 41 397.7737307 10.04195494 2.24666E-43
Interaction 7537.447237 205 36.7680353 0.928223573 0.730871015
Within 19964.03704 504 39.6111846

Total 43848.50999 755

Table 5.10: Two-way Analysis of variance (ANOVA) of the Trawscoed vegetation
survey data variability between treatments (T1-T6)

Source of Variation SS df MS F-ratio P-value
Sample 31.80348324 5 6.360696649 0.4301934 0.82766493
Columns 24417.79151 48 508.7039897 34.40520921 9.5936E-140
Interaction 16389.21966 240 68.28841527 4.618554723 1.45033E-51
Within 8693.972593 588 14.78566767

Total 49532.78725 881
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the derived fraction images for non-photosynthetic and photosynthetic vegetation

as well as shade is not significant, but that the variation between all individual

plots is.

All plots show a very low standard deviation for their NPV, PV and Shade values

respectively, indicating a low spread of samples around the mean.

5.4.4 Integration of field and airborne data

Biomass and Spectral data comparison

The graphs in Figure 5.25 to Figure 5.29 show the regression of biomass sample

values against their corresponding spectral or derived values. There are three rep-

etitions for each analysis, as each management treatment is repeated three times.

Figure 5.25 shows the results of a simple linear regression between biomass samples

from all plots at Trawscoed and the reflectance at the corresponding sample point

extracted from each image band (ρ449.3-ρ863.6). The greatest correlation between

any band and biomass is found in band 6 (on the red-edge) with an r2-value of 0.6.

This corresponds with the result of the ANOVA analysis in Figure 5.19, which

indicated that band 6 has the greatest potential to differentiate the treatment

types spectrally.

The same result is included here for Pwllpeiran in Figure 5.26, to show that the

correlation between spectral reflectance and biomass is indeed considerably lower

than at Trawscoed, as suggested in Section 5.4.2 by the lack of significance of

spectral variability between treatment types at Pwllpeiran..
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Figure 5.25: CASI image bands versus Biomass, Trawscoed
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Figure 5.26: CASI image bands versus Biomass, Pwllpeiran
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Figure 5.27 and Figure 5.28 compare the average per plot biomass with the cor-

responding spectral value also extracted from the whole plot for each band. Fig-

ure 5.27 shows strong correlations between biomass and reflectance in the visible

bands at Trawscoed, particular again in Band 6 (r2=0.768). This suggests that for

Trawscoed biomass and spectral reflectance in the visible region of the wavelenght

spectrum are highly correlated. However, the same is not the case at Pwllpeiran,

even while the strongest correlation in Figure 5.28 reach r2-values of nearly 0.5.

Figure 5.29 and Figure 5.30 illustrate the correspondence between the fractional

image extracted from the CASI data and biomass at each sample location at

Trawscoed and Pwllpeiran respectively. No correlation can be detected at for

any fraction image at Pwllpeiran or the photosynthetic fraction at Trawscoed.

The non-photosynthetic and shade fraction images at Trawscoed, however, show

a small to moderate relationship with biomass.

Chen et al. (2009) suggest a range of vegetation indices derived from hyperspectral

data obtained from a spectroradiometer to estimate grassland biomass. The four

indices they indicated as most successful (MTVI, RDVI, RVI, TVI) were calculated

in this study for Trawscoed (Figure 5.12) and are shown in Figure 5.31 correlated

with the average biomass from each plot. The NDVI was also calculated and is

compared against biomass samples at each sample location.

Apart from the RVI, the plots show no correlation between vegetation indices cal-

culated from airborne hyperspectral data and grassland biomass. The correlation

for the Ratio Vegetation Index is also weak at r2=0.248, but it corresponds in so

far with Chen et al. (2009), that this was also the best performing vegetation index

in their study.
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Figure 5.27: Comparison of average per plot biomass against spectral value per
plot for each band, Trawscoed
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Figure 5.28: Comparison of average per plot biomass against spectral value per
plot for each band, Pwllpeiran
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Figure 5.29: Endmember fraction values versus Biomass for each sample location
at Trawscoed
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Figure 5.30: Endmember fraction values versus Biomass for each sample location
at Pwllpeiran
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5.4.5 Scaling up of grassland diversity using multispectral

data

Figure 5.32 shows a 2003 March SPOT image of Trawscoed to illustrate the vari-

ability of coarser resolution (10m) multispectral data at the site.

Figure 5.33 then illustrates the results of a small scaling up experiment described

in Section 5.3.5. It demonstrates that grasslands with different improvement levels

can be differentiated also from multi-sensor and multi-temporal satellite data and

that the NIR band has the potential to do so.

Differences in the reflectance of grasslands in Figure 5.33 were most evident within

the NIR reflectance, with higher (> 30 %) reflectance observed for improved grass-

lands throughout most of the year, increasing to over 40 % (maximum 50 %) in late

spring/early summer. By contrast, the NIR reflectance of unimproved acid grass-

lands was generally < 40 % and lower (by at least 10 %) in most months. Semi-

improved grasslands supported a reflectance that was between these extremes.

The greatest potential for distinguishing between the different grassland types is

between late February and early May, while improved grassland have a significant

advantage in growth and productivity. Later in the year the differences are signif-

icantly reduced when less improved grasslands also reach higher growth levels and

grazing and senescence take place to obscure productivity differences.
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Figure 5.31: Comparison of average per plot biomass against vegetation indices,
Trawscoed
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Figure 5.32: March 2003 SPOT image of the Trawscoed study site, treatment
plots are outlined and labeled according to the management treatments T1-T6
(see Table 3.3)
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Figure 5.33: Variations in the SPOT NIR reflectance in grasslands of varying
productivity throughout the growing season

5.5 Discussion

Diversity, biomass and productivity are key variables in community and ecosystem

ecology (Guo, 2007), including that of grassland environments. Mapping grassland

biophysical parameters such as biomass and Leaf Area Index (LAI) is hence fun-

damental to the understanding of ecosystem dynamics which directly influence

biodiversity.

A large number of studies have established a positive relationship between plant

species richness and productivity and biomass in grasslands (e.g., Jiang et al.,

2007; Silvertown et al., 1994). Hector et al. (1999) stated that a loss of plant di-

versity could be related to a log-linear reduction of average above ground biomass,

because of a reduction in functional diversity and therefore diminished uptake of

niche spaces. Increased nutrient use efficiency at high species richness is an im-

portant mechanism in this relationship (van Ruijven and Berendse, 2005; Fargione
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et al., 2007) and swards of high species richness have shown greater temporal sta-

bility of productivity levels (Tilman et al., 2006).

In direct comparison agricultural improvement, through re-seeding, fertilization

and grazing of grasslands, leads to very low species numbers or even monocultures,

mostly of Lolium perenne, in such swards and simultaneously to low productivity

and biomass levels, often further reduced through intensive grazing.

Both for biodiversity assessment and subsequent conservation, as well as moni-

toring of a reliable and efficient supply of grassland products, such as livestock

fodder, the reliable estimation of grassland biomass and productivity from remote

sensing data is hence of great interest.

This discussion considers the differentiation of grasslands of varying degrees of

agricultural improvement, as well as the estimation of related biomass levels and

species diversity through the use of airborne hyperspectral remote sensing. This

is an essential step in preparation for the large-scale mapping of habitats in

Chapterr̃efchp6:AllHabitats, including different grassland types, from multispec-

tral satellite data of a coarser spatial resolution.

5.5.1 Biomass

The high standard deviations of biomass samples for both individual plots and

treatments for some of the experimental plots (Section 5.4.1) indicate a large range

of sample values around the mean. This can be interpreted as a function of the

heterogeneity of the vegetation within and between plots managed in the same way.

Plot T1b for example has a uniform Lolium perenne sward, but contains a patch of
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nettles Urtica dioica, which causes a number of samples to have considerably higher

biomass values than the majority and hence increases the standard deviation of

biomass samples for this plot.

The very high standard deviation in T6c biomass samples (Figure 5.14) is due to

the presence of a large Juncus spp. patch in the NE corner of the plot next to a

shorter, more homogenous swards. Incidentally this plot consistently exhibits the

greatest correlation between reflectance and biomass, because a greater range of

samples is available (Figure A.3(r) to Figure A.14(r)). The same is true for T5b,

which shares this Juncus spp. area with T6c. There is a similar occurrence in

T1b, where a large nettle patch occurs within the plot.

At Pwllpeiran the same phenomenon can be observed. Less improved plots have

higher biomass levels (Tables 5.5 and 5.4). This is due to a lack of grazing on the

less improved plots during the summer months (Table 3.3 and Table 3.4), which

allows dead standing plant material to remain.

It has been shown that the differences in biomass between treatment types are

highly significant (Tables 5.6 and 5.7) with regard to separability of the different

management and that they relate well to levels of grassland improvement. It

is therefore highly desirable to establish a good correlation between reflectance

and biomass in order to be able to establish improvement levels reliably from

remote sensing data for mapping and conservation purposes (Barnett et al., 2004;

Breyer and Medcalf, 2006). If spectral reflectance and biomass are significantly

related, the estimation of grassland biomass on a regional scale from airborne

hyperspectral data would be a potential application of the connection (Jones and

Donnelly, 2004).
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5.5.2 Spectral wavelengths

This section regards the different wavelength regions and derived image products

examined above in turn and assesses their information content with regards to

their ability to discriminate grassland improvement levels and sward types within

the landscape from remote sensing data.

Band 6 (ρ708.4, in the middle of the red edge) has the greatest significance and

hence the greatest potential to distinguish between different levels of grassland

improvement at Trawscoed (Table 5.19). The red edge correlates closely with

grass chlorophyll (Pinar and Curran, 1996).

The results above show a relationship between biomass and the reflectance ob-

tained from hyperspectral CASI data. This has also been shown by other studies,

such as Chen et al. (2009), Cho et al. (2007) and Psomas et al. (2007).

This study, however, differs from others in the experimental set-up of the studysites.

Usually spectra are taken from open grasslands, where it is rarely possible to im-

pose a consistent management regime, or alternatively, under laboratory condi-

tions, where the simulation of natural conditions and grazing, for example, are

difficult to simulate. Trawscoed and Pwllpeiran, however, offer a valuable oppor-

tunity for the study of grassland reflectance across a number of fields, which are

subject to different treatments and hence differ in structure and species compos-

tion.
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5.5.3 Fraction images

Figure 5.29 indicates a weak relationship between the non-photosynthetic fraction

image (r2=0.333), the shade fraction image (r2=0.306) and the standing biomass

on the Trawscoed plots. The photosynthetic fraction image however does not

display any relationship. This suggests that the non-photosynthetic proportion

of the vegetation present is at this point in the season greater than that of the

photosynthesizing, and hence alive, vegetation.

5.5.4 Vegetation Indices

With the exception of the RVI none of the vegetation indices showed any cor-

relation with biomass in Figure 5.29. The RVI is, however, calculated from im-

age bands on or close to the red edge (Section 5.3.2) which have been shown

(Table 5.19) to have the greatest significance to distinguish between the individ-

ual treatment types and correlates strongest with biomass (Figures 5.27(f) and

5.27(f)).

5.5.5 Ecological causes of reflectance variation

Asner (1998) notes that grassland canopies typically have a low Leaf Area Index

(LAI) and that leaf optical variability therefore plays a comparatively small role

in determining canopy reflectance variation. Overall reflectance variability can be

influenced by LAI or chlorophyll content (Pinar and Curran, 1996). However, sen-

sitivity to this varies from the visible over the NIR to the SWIR reflectance. Leaf

optical properties, and thus the biochemistry of leaf material, are generally un-
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derrepresented at canopy scales, unless LAI is relatively high, which is an unusual

scenario in grassland environments. The leaf orientation angle also has a strong

effect on the expression of leaf optical properties at canopy scales and thus overall

reflectance. Leaf angles vary between species, with most grasses having verti-

cally orientated foliage. Forbs, however, which are more common in less improved

grassland types, commonly have a higher LAI than grasses as well as horizontally

orientated leaves and are therefore able to reflect light stronger, before senescence

sets in.

Asner (1998), however, found that variability in surface reflectance was dominated

by any presence of standing litter in the canopy and this has been confirmed here

through the results in Table 5.6, which indicates that the predominant differen-

tiating factor between the various plots is the standing biomass. The biomass

subsequently shows a moderate correlation with the non-photosynthetic fraction

image (Figure 5.29(a)).

Semi-natural vegetation, including grassland, is very rarely homogenous and the

smallest scales and unimodal spectral classes for various vegetation types remain

therefore the exception rather than the rule. Additionally, sites can be spectrally

homogenous, but vegetationally heterogeneous. This can occur either as a function

of the spatial resolution of the imagery available and the ‘grain’ of the vegetation

mosaic on the ground or the inherent spectral similarity of different plant species

and can be a feature within or between sites (Jacobsen et al., 2000). Spectral

similarity between various grass species is especially pronounced, due to the struc-

tural similarity between species. However, grassland communities vary greatly in

composition, distribution of species and associated non-grass species occurring,

factors which provide distinct identification features of different communities and
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plant associations.

Jacobsen et al. (2000) suggest the production of abundance maps, that could be

interpreted at the succession stages from sown improved grassland to old, species-

rich, well-established and successionally mature semi-natural grassland. This could

be achieved through spectral unmixing of the images, using endmembers of differ-

ent management and floristic classes.

The Trawscoed and Pwllpeiran grassland plots are considered to be in a succes-

sionally ‘adolescent’ stage (Mike Hayes, 2006, personal communication). Most of

them are still in a process of reverting from formerly improved fields similar to

T1/P1 plots. As this process is considered to be ongoing, it is possible that the

significance of vegetation variability will rise in the future compared to those in

Table 5.9, if the management regimes were maintained and a mature and stable

stage in vegetation growth and composition is reached.

Effects on image features other than management to be considered are local to-

pography and resulting microclimates (e.g., different moisture conditions on north

and south-facing slopes). Topographic formations can also be the cause of spectral

artifacts, such as shadow and BRDF effects (Jacobsen et al., 2000).

These factors could play a significant factor at Pwllpeiran, where the local topog-

raphy is very pronounced and would partly explain the differing results between

the two sites. Orthorectification of the Pwllpeiran image using a high-resolution

digital elevation model is hence desirable to improve the georegistration of the

scene, as it is likely inferior to that of Trawscoed, which is located on level ground.

Pwllpeiran lies approximately 200m higher above sea-level than Trawscoed and

is therefore part of a biogeographically subtly different area. Due to the greater

elevation, exposure and accompanying factors, such as higher winds, lower temper-
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atures and likely greater precipitation, the species composition of the site differs

slightly to Trawscoed (Mike Hayes, 2006, unpublished vegetation survey), with a

greater predominance of grassy vegetation and a considerably lower occurrence of

forb species with a high LAI and is hence more homogenous in vegetation struc-

ture. Climatic factors also directly influence vegetation productivity (Wang et al.,

2001) and it is likely that the more improved plots at Pwllpeiran would reach

greater levels of productivity under more favourable climatic conditions, e.g., in

the lowlands.

Furthermore, Pwllpeiran is not as regularly monitored as Trawscoed, due to a more

remote location and it is likely that the grazing regime is not as well maintained.

On several visits to the site, sheep were found in plots which were not due to be

grazed. This could further reduce the spectral distinctiveness of the individual

plots at the site, especially if this had been the case over the entire period of the

experimental set-up.

Finally, as discussed below, spectral variation and differences in productivity be-

tween improved and unimproved grassland types are greater in the spring than

in the summer, when the images were acquired, and this could be a further con-

tributing factor to the less conclusive results at Pwllpeiran (Goetz, 1997).

5.5.6 Scaling up of grassland diversity

The productivity of grassland canopies varies throughout the year. Figure 5.33

illustrates the different annual growth curves of improved, semi-improved and

unimproved grassland types by comparing their NIR reflectance, NDVI and non-

photosynthetic and photosynthetic endmember fractions throughout the growing
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season. Because of their intense fertilization and resulting growth advantage, as

well as their lower content of dead vegetation matter, improved grassland have a

much higher NIR response in the spring than less intensively managed swards. The

differences in productivity are considerably less pronounced later in the year and

early spring (late March) is therefore the point of highest separability between

grasslands of differing improvement and composition. This is the crucial infor-

mation for identifying grasslands of lower productivity, but higher conservation

interest in low-resolution multispectral images.

The classification in Chapter 6 utilizes this information in order to differentiate

different grassland types.

Considering this, the CASI image used in this study was captured at an disad-

vantageous time of year (June/July) for spectral grassland differentiation. Had it

been acquired in late March/early April, it would have probably been possible to

show greater differentiation between plots of differing improvement levels. Unfor-

tunately it was logistically impossible to capture the imagery early in the season,

but this should be considered a priority in any further studies.

The additional information available from the images due to the high spatial and

spectral resolution of the hyperspectral data, however, balances this limitation

somewhat.

It is likely that the spectral variability at Pwllpeiran in the spring is significant

enough to differentiate between the treatment types.
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5.6 Summary

This chapter has demonstrated the levels variability between grassland of vari-

ous improvement levels according to spectral reflectance, biomass and vegetation

cover. Empirical relationships between ecological parameters, such as biomass

and species composition and spectral data and derived image products were also

demonstrated.

Grassland types with different levels of agricultural improvement and hence dif-

ferent species compositions and sward structures were best differentiated based on

the percentage of Red-edge reflectance followed by the ratio of non-photosynthetic

material in the vegetation canopy.

The results of these analyses were related to the classification rule-base developed

in Chapter 6 and used to inform the formulation of grassland specific rules, e.g.,

using the proportion of non-photosynthetic plant material within the sward to de-

termine the level of agricultural improvement.

The following rules used information gained from the study in this chapter (Ta-

ble 5.11):
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Chapter 6

Habitat mapping from

multispectral data

6.1 Introduction

This chapter evaluates the use of spaceborne multispectral data for discriminating

and mapping semi-natural habitats, with particular emphasis on different wood-

land types at the Lake Vyrnwy study site and grassland improvement levels in west

Ceredigion. The chapter builds on the outcomes of Chapter 5 and is undertaken

in preparation for Chapters 7 and 8. The chapter is structured as follows:

Sections 6.2.1 and 6.2.2 focus on the availability and pre-processing of multi-

spectral data acquired by the TERRA-1 ASTER, IRS P6 and SPOT HRG sen-

sors. These sensors were selected over the Landsat series because of their better

spatial resolution. Temporally distinct combinations of these sensors were used

to better capture the seasonal variability in the spectral reflectance of vegetation,

173
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particularly given the persistent cloud cover occurring in the region.

Section 6.2.4 then outlines the approach to the segmentation of the landscape

using the higher resolution SPOT data. Following this, Section 6.2.6 describes

the development of a rule-based approach within Definiens software for classifying

the landscape using combinations of the earth observation data. The outputs of

the habitat classification for the Lake Vyrnwy and west Ceredigion areas are then

illustrated in Section 6.3. The accuracy of the Lake Vyrnwy classification is fur-

ther detailed in Section 6.3.2.

Finally, the results are discussed in Section 6.4 and put into context in relation to

other land cover mapping schemes currently being undertaken in the UK.

Combining ecological knowledge and information from remotely sensed data into a

rule-based classification method, Lucas et al. (2006b) suggested that remote sens-

ing data could potentially be applied within an ongoing and continuously updat-

able habitat mapping and monitoring program. Such a method could subsequently

be utilized to obtain urgently required information on the ecological implications

of vegetation transformation attributed to both human interference and climate

change.

6.2 Methods of data analysis

6.2.1 Available satellite sensor imagery

For the mapping of habitats, data acquired by the SPOT-5 High Resolution Ge-

ometric (HRG), Terra-1 Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) and Indian Remote Sensing Satellite (IRS) LISS 4 (P6) sen-
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Table 6.1: Available Satellite Imagery for Lake Vyrnwy and west Ceredigion
Sensor Date Site
SPOT 5 HRG 27.03.03 Lake Vyrnwy
SPOT 5 HRG 22.03.03 Lake Vyrnwy
ASTER 07.04.06 Lake Vyrnwy
IRS LISS IV 13.07.06 Lake Vyrwny
SPOT 5 HRG 27.03.03 Ceredigion
IRS LISS IV 13.07.06 Ceredigion

sors were used (see Table 6.1 for a complete list of scenes and Appendix A.2 for

a description of the sensors used). The images chosen were the best, i.e.; cloud

free, available for a three year period between spring 2003 and summer 2006.

Scenes outside of this time window were not considered, as it was found that land

cover change was too great after three years as to enable a consistent classification.

There are two spring March SPOT 5 HRG scenes which cover the area of inter-

est around Lake Vyrwny (Figure 4.2), though neither the whole area alone. The

27.03.03 scene was used wherever possible, with the image from the 22.03.03 sub-

stituted over the eastern part of the classification area. Where scattered cloud is

found on the primary SPOT scene (Figure 4.2(a)), the second SPOT scene was

used if an overlap existed. In the north-west area of the classification the ASTER

scene was then utilized in the rule-set, where neither SPOT image could be used.

As the two SPOT-5 HRG scenes were acquired only five days apart (see Table 6.1),

under similar atmospheric conditions, it was possible to create a seamless classifi-

cation.

For Ceredigion only one IRS and SPOT scene were available respectively (Fig-

ure 6.1). However, as they both provide cloud-free, complete coverage and were

acquired at the optimal time for habitat differentiation, i.e., late spring (March)
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(a) 27.03.03 SPOT-5 HRG (b) 13.07.06 IRS LISS IV

Figure 6.1: Multispectral Satellite imagery over the Ceredigion study sites

and mid-summer (July), they are sufficient.

The shadowing effects of topography can be clearly seen in the Ceredigion SPOT

scene (Figure 6.1(a), though they are diminished by topographic correction (Sec-

tion 4.1.1).

Within spaceborne remote sensing data, regional variability in the phenology and

dynamics of vegetation was evident, even when acquired on the same date. For

example, an IRS scene acquired in May 2007 revealed extensive stands of bracken

emerging in the south but not yet in the north of Wales as a result of a shorter

growing season with a later start date.

This study focused on two areas around Lake Vyrnwy and in Ceredigion, which

are highlighted grey in Figure 6.2. Each classification area is approximately 12km2

in size.
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Figure 6.2: The classification project areas for this study are outlined around Lake
Vyrnwy and in Ceredigion
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6.2.2 Image pre-processing

Prior to mapping, a range of pre-processing was necessary to allow integration of

the available satellite sensor data. Separate procedures were implemented for the

SPOT, IRS and ASTER data and focused primarily on radiance calibration, atmo-

spheric correction and orthorectification, as well as the correction of topographic

shadowing. All images were orthorectified using 10 m spatial resolution NextMap

Britain Digital Elevation Model (DEM) as a topographic reference. Between 1 (

ASTER) and 20 (SPOT, IRS) ground control points were used for each image reg-

istration, with these extracted from a 2006 true colour aerial photograph mosaic

(see Appendix A.2.1) of Wales.

All satellite sensor data, regardless of their original spatial resolution, were re-

sampled to 5m resolution using a nearest neighbour resampling algorithm. Atmo-

spheric correction was undertaken to provide image data in units of surface re-

flectance (%), thereby allowing comparison of images acquired on different dates,

from different sensors, and also over different regions. Topographic correction

of the data was undertaken using ATCOR 3 software to minimize differences in

reflectance as a function of slope and aspect, although the procedures were only

successful when applied to images acquired in the spring or autumn months, where

strong shadowing occurred due to low seasonal sun angles.

Following atmospheric and topographic correction, a number of image products

were derived, including:

• Estimates of the relative amount (fractions) of shade/moisture, photosyn-

thetic (green) vegetation (PV) and non-photosynthetic (dead/senescent; NPV)

vegetation.
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• Vegetation indices, including the Normalised Difference Vegetation Index

(NDVI; derived from visible red and near infrared bands).

Cloud and cloud shadow screening was undertaken using procedures developed by

Definiens AG. For each image, the algorithm was used to generate cloud masks

that were used either to indicate where a classification was unable to be undertaken

or where the classification might be less reliable.

All image pre-processing procedures and the generation of the fractional images

and the NDVI outlined above are described in detail in Section 4.1.1.

6.2.3 Thematic layers

Following processing, the images were stacked within Definiens Developer software

in preparation for segmentation and classification.

Additional thematic layers representing infrastructure (roads and buildings), wa-

ter, the coast, Land Parcel Information System (LPIS) boundaries and also eleva-

tion, slope and aspect (as derived from NextMap Britain Digital Elevation Model

(DEM) data) were included. As the visible (green and red), near infrared and

shortwave infrared bands were common to all sensor data, only these wavelengths

were used in the classification.

Digital soil maps were investigated for inclusion in the classification but none were

found to be of sufficient spatial resolution.
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Table 6.2: Thematic layers utilized in the land cover classification
Layer Origin Use
Urban OS MasterMap Exclusion of buildings and roads from

the classification
Water OS MasterMap Exclusion of permanent water features

from the classification
LPIS WAG Field delineation
Elevation NextMap Britain Distinction of lowlands and

uplands
Slope NextMap Britain Exclusion of habitats not occurring

on slopes, e.g., blanket bog
Aspect NextMap Britain Identification of shadowed north

slopes

6.2.4 Image segmentation

The segmentation and classification processes were necessarily developed using

subsets (training areas) of each project, as the software can only process each

project completely during a tiling procedure, with the tile size set at 500x500

pixels (1 pixel = 5m x 5m = 25m2).

Initial segmentation of the images into objects was undertaken within Definiens

Developer software and differed depending on whether the landscape was enclosed

(e.g., by hedges or within the LPIS boundaries) or pre-classified as urban, water,

arable, coastal, upland or lowland (e.g., as determined by elevation thresholds or

overlap with the relevant thematic layer (Table 6.2)). The objects varied in size

from individual pixels to entire fields, the extent of which was determined from the

LPIS thematic layer. The segmented image was then duplicated to form a layer

above (hereafter referred to as the super-level) and below (sub-level) the original

layer (Level 1, Figure 6.3).

In the super-level, segments were redefined using the Land Parcel Information
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Service (LPIS) vector layer and were typically larger compared to Level 1, although

the same boundaries were maintained, where these were common to both layers.

Many of the segments were equivalent in size to the fields defined using the LPIS.

The sub-level was segmented such that objects were of the size of one pixel each

(i.e., 25m2). In both projects, the segmentation was undertaken using the image

values themselves and the SPOT 5 HRG data were used in preference to others

because of the greater spatial resolution.

Figure 6.3: Image segmentation on three levels

6.2.5 Class selection and definition

The Phase 1 Habitat Survey defines 10 broad types of habitats (lettered A to J;

Table 6.3) and within these, over a 100 different habitats are described (JNCC
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(2003), Section A.5).

Table 6.3: Broad Phase I habitats defined for Wales
Code Description
A Woodlands
B Grasslands
C Tall herb and fern
D Heathland
E Mire
F Swamp, marginal and inundation vegetation
G Open water
H Coastal land
I Rock exposure and waste
J Miscellaneous

A more detailed classification of habitats than listed in Table 6.3, but often distinct

from the 80 Phase 1 sub-classes was undertaken for the following reasons:

1. The 80 Phase 1 habitat classes have been found to be often insufficient in

detail for many ecological applications (e.g., for the assessment of biodiversity

in the landscape).

2. Many Phase 1 habitats cannot be mapped directly from remote sensing data

as a single class, because they represent a number of sub-habitats. However,

the subhabitats themselves may be spectrally distinct,because of differences

in phenology and structure and able to be discriminated from remote sensing

data.

As indicated by Fuller et al. (2005a), the definitions of habitats can be too broad

or variable to be extracted from remote sensing data in a single class. A number

of Phase I habitats are associated with a single species (e.g., bracken (C1.1)) and

are extensive and hence well-suited to classification.

However, a greater number are comprised of a mix of species, either occurring



CHAPTER 6. HABITAT MAPPING FROM MULTISPECTRAL DATA 183

within the same community or as discrete and separate communities. For ex-

ample, Bilberry (Vaccinium myrtillus) and Ling heather (Calluna vulgaris) often

occur together and are both constituents of the Phase I class Dry Dwarf Shrub

Heath (D1) whilst Larch (Larix decidua) and Sitka Spruce (Picea sitchensis) com-

monly occur separately (and often in discrete homogeneous stands) but are still

referred to jointly as coniferous woodland (A1.2). Another example is scrub (A2),

which combines wet willow, gorse and hawthorn scrub, amongst others, into the

same class.

Therefore, any attempt at mapping Phase I classes from remote sensing data needs

to either combine maps of these different species based on relative proportions or

commonalities in the grouping of species.

The composition and dynamics of habitats also varies as a function of, for example,

seasonality and the physical environment. Between and even within biogeographi-

cal zones (Figure 3.4), several habitat classes can vary with regard to their timing

of leafing, flowering and senescence, but also in their overall structural and species

composition. For example, in the north of Wales and particularly on colder north-

facing slopes, bracken fronds appear later in the year compared to southern zones

and south-facing slopes. Across the country, broadleaved woodlands are often

dominated by different species (e.g., Rowan (Sorbus aucuparia) or Sessile Oak

(Quercus petraea)), depending on whether they occur in the uplands or lowlands

or on different geological substrata. As the reflectance of vegetation varies as a

function of the response of vegetation to environmental factors, consideration of

this variability is a pre-requisite to mapping.

Given the seasonal phenology of plant species in Wales, the development of a new
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approach to mapping necessarily required the use of satellite sensor data acquired

at different points in the growing season. A spring and summer image respectively

allowed the exploitation of maximum differences within and between vegetation

types, e.g., between coniferous and broadleaved trees before leafing in the spring or

large seasonal changes in productivity and reflectance, due to growth or senescense,

such as in bracken (Pteridium aquilinum) stands.

Consideration also needed to be given to the different phenological and growth

responses of plant communities to the physical environment, such as elevation,

geology, soils, slope and aspect (Yeo and Blackstock, 2002). Understanding this

seasonal and geographical variability in appearance of habitats is a prerequisite to

mapping from reflectance data and derived measures.

6.2.6 Classification of land cover and vegetation commu-

nities

The classification of habitats was undertaken in Definiens eCognition software

(Definiens, 2008), which allows the formulation of a knowledge based rule-set to

classify imagery.

Rules that were based on thresholds of reflectance data or derived layers were

applied progressively in a defined hierarchy described in nine steps below. For this

purpose, a large number of additional image-based indices were developed which

assisted the discrimination. They are listed in Table 6.5, together with the habitat

classes which they differentiate. Table 6.4 further lists the single channel data

which has been used to distinguish habitats and the key habitats they were used

for.
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Indices in Table 6.5 are based on SPOT-5 HRG spring (March) and IRS summer

(July) images, as listed in Table 6.1.

Rules were developed initially to discriminate and map the distribution of different

land covers (e.g., forest, grasslands and heath) or dominant species within vegeta-

tion communities (e.g., Purple Moor Grass (Molinia caerulea), Ling Heather (Cal-

luna vulgaris) or rushes (Juncus spp.), comprising many of the Phase I habitats.

In each case, rules were based on ecological knowledge with regard to, for exam-

ple, relative differences in moisture content, surface roughness, woody biomass or

productivity, and the manifestation of these within remotely sensed data.

Rules were developed sequentially and applied separately within each of the three

separate levels, according to the scale appropriate to the respective land cover

class, and the resulting classification was subsequently transferred to the level

above or below. As an example, arable croplands were classified at the super-level

using objects approximating the size of fields (Figure 6.3). The classification was

then transferred to objects created on the lower levels. All woodland types were

classified within Level 1 and their classification was then transferred to objects in

the sub-level.

6.2.7 Classification steps and workflow

The classification was applied progressively within 9 stages focusing first on man-

made infrastructure, other non-vegetated areas and forests and then on lowlands

and upland habitats. The classification is based on optimized rules combined

from the indices listed in Table 6.5 and specifically calibrated for each class. The

individual steps of the calibration process are described in detail below and also
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summarized in the flowchart in Figure 6.4.

Figure 6.4: Flowchart of individual classification steps undertaken on the three
different levels to create the land cover classification

Step 1 : Water bodies, urban areas and infrastructure were mapped with reference

to the OS Mastermap layers such that recognizable features that constituted the

framework on the landscape were accurately represented.

Step 2 : Upland and lowland areas were differentiated on the basis of elevation.

Areas that were enclosed (or otherwise) were defined with reference to the LPIS

boundaries.

Step 3 : Non-vegetated areas were classified using the image data themselves and

primarily the NDVI, visible reflectance and shade fraction data, e.g., large spoil
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features. Adjacent objects of the same class were merged to create larger fused

objects.

Step 4 : The extent of bracken was primarily defined by considering differences in

PV fraction and NIR reflectance between the spring and summer periods. Separate

modified rules were also developed to account for differences in the timing and

appearance of bracken growing on north and steep facing slopes.

All bracken rules were applied to unclassified objects in the lowlands and up-

lands.

Step 5 : Woodlands (including areas of felled plantations) were defined using re-

flectance data and region-growing processes from core areas. Coniferous forests

(plantations) were largely confined to areas outside of the LPIS and exhibited

lower SWIR reflectance in the spring and summer months. Separate rules were

developed for Larix decidua (European Larch) because of the deciduous nature

of this tree species, with these based largely on differences in the NPV fraction

between the spring and summer imagery.

Felled woodlands exhibited greatest differences in the red, NDVI and SWIR bands

between dates of satellite data acquisition. Where woodlands had been felled pre-

vious to data acquisitions, these exhibited low summer NDVI and red reflectance

values and were often in proximity to existing woodlands. Broadleaved woodlands

typically exhibited a low green reflectance in both spring and summer and occurred

primarily outside of the LPIS. Similar rules to broadleaved woodland, but with

lower thresholds, were applied to map dense scrub.

Within the woodland classes a small number of single-species broadleaved and

coniferous classes were subsequently distinguished at Lake Vyrnwy.

Step 6 : Hedgerows were identified largely by exploiting the contrast in reflectance
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with surrounding open fields, particularly the relative difference in visible green in

spring or NIR in summer. Subsequent rules were implemented to allow objects to

grow the hedgerows along the field boundaries.

Step 7 : Agricultural land was identified by classifying the larger objects contained

within the upper layer first as either ploughed, harvested, mown or grazed fields.

The classes were then merged and transferred to the smaller objects contained in

the layers below. As many of these objects had already been classified previously

(e.g., as bracken or woodland), the transfer was only applied to those classes that

had not been assigned a habitat class previously. All areas remaining unclassified

were then assigned to an umbrella class representing semi-natural habitats.

Steps 8 - 9 : Lowland and upland habitats (including, e.g., heaths, bogs, semi-

and unimproved grasslands) were classified using fuzzy membership functions (de-

fined primarily on the basis of the remote sensing data, (Benz et al., 2003)) in a

single simultaneous classification step for all lowland and upland habitats respec-

tively.

The rules were applied separately for habitats occurring in both the lowlands and

uplands (e.g., heaths and semi-improved grasslands).

Once developed, the segmentation and classification processes were evaluated on

other subsets taken from different parts of the project areas and then refined

where needed. This process required several iterations as rules used to discriminate

habitats in one part of the project area were often found to lead to confusion in

other parts, particularly where additional habitats occurred. Once developed, the

final process was then applied to the entire image area using Definiens Developer

workspace and server engines, which use a tiling and stitching process to apply

the ruleset to the entire project area.
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6.3 Results

This section is divided as follows:

Section 6.3.1 shows the two classifications for the Lake Vyrnwy (Figure 6.5) and

east Ceredigion (Figure 6.6) study sites, with a full colour legend in Figure 6.7.

Table 6.6 lists all habitat classes occurring in the two maps and gives a description

of each with regards to predominant species, location (e.g., upland/lowland) and

other characteristics, such as age or structure, if appropriate.

Section 6.3.2 then outlines the results of a rigorous accuracy assessment of the

Lake Vyrnwy classification.

6.3.1 Habitat classifications

Table 6.6: Lake Vyrwny and Ceredigion habitat classes

Classname Description

Acid flush Wet flushes on upland grassland slopes,

Arable Land under arable cultivation

Ash gulleys Sorbus aucuparia along stream gulleys in the uplands

BareGround All non-vegetated, non-urban surfaces

BirchAsh wood Betulus penduala and Sorbus aucuparia stands on steep

hillsides in the uplands

Bog OldCv Blanket Bog with mature, continuous Calluna vulgaris cover

Bog youngCv Blanket Bog with scattered or young Calluna vulgaris cover

continued on the next page
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Bracken Dense, continuous stands of bracken

Broadleaved All broadleaved woodland not classified by species

Coniferous Plantation All coniferous woodland not classified by species

Cv cont old Mature Calluna vulgaris or very dense younger stands

which form complete ground cover

Cv Et Short Mixed Calluna vulgaris and Erica tetralix stands

Douglas Fir Pseudotsuga douglasii single species plantation

Et Mc Cv wet Wet heath vegetation with Molinia caerulea,,

Erica tetralix and Juncus sqarrosus

Felled woodland Felled Coniferous Plantation (pre and post 2003)

Fo At grass Dry Festuca ovina/Agrostis spp. upland grassland

Fo Ns moss Dry banks with frequent Polytrichum spp. carpet amongst

the fescue and some Nardus stricta

Hedge All hedges below enclosure line

I upland Improved acid grassland in the uplands above the LPIS

boundary

Je flush Wet Juncus spp. dominated flushes in the uplands

Jsq Ns grass Wet acid grasslands in the uplands dominated by

Nardus stricta and Juncus spp., relatively unproductive

Larch Larix europaeus plantations

LowL I Intensively improved pasture in the lowlands, mostly

dominated by Lolium perenne

continued on the next page
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LowL Je flush Lowland Juncus spp. flushes and marshy

grassland

LowL SI acid Lowland semi-improved grasslands

Mature Oak Semi-ancient, species-rich Quercus petraea

woodland, grazed or ungrazed

Mature Spruce Core of conifer plantations and mature stands

(usually Sitka Spruce (Picea sitchensis))

Mc upland Dense Molinia caerulea grassland, complete

ground cover

Ns Fo grass Less productive acid grassland, with more dead

matter but still dry - looking like Nardus dominated grassland

Scattered scrub (gorse) Gorse scrub close to bracken

Scattered scrub (trees) Hawthorn/Blackthorn scrub and other

young broadleaved woodland

SI acid upld Semi-improved (mostly by grazing) upland

acid grassland

Sph bog Sphagnum spp. dominated blanket bog

Ue scrub Gorse scrub

Urban All man-made surfaces

Water All waterbodies visible to sensor or recorded in

OS Mastermap

Wet woodland and Scrub Willow carr or alder on very wet

continued on the next page



CHAPTER 6. HABITAT MAPPING FROM MULTISPECTRAL DATA 199

or periodically flooded terrain

Young Spruce Younger, less dense plantations and plantation

edges with wind damage (usually Picea sitchensis)

Figure 6.5 is the detailed habitat classification of the area of interest around Lake

Vyrnwy. At the bottom right hand corner of the map a small part is missing,

where no cloud free imagery was available.

The map shows the Lake surrounded by commercial Spruce plantations (dark

green, Figure 6.7) and a number of small stands of mature oak, ash and birch

woodlands, as well as larch and Douglas Fir. There are large areas of recently

felled conifer plantations (grey), both in the southern as well as the eastern part

of the image.

The only agriculturally managed land of the area is to the east of the image, in

the lower lying regions. The network of hedges can be clearly distinguished.

From the lake the land rises steeply to the upland stretches of the Berwyn Moun-

tains. Bracken (light-orange) and Molinia grassland (turquoise) are found in exten-

sive stands in the upland fringes. The upland plateaus are completely dominated

by a combination of blanket bog and large areas of Calluna vulgaris heath (pink

and dark purple). Semi-improved and unimproved grasslands (light yellow) are

found mostly in the western part of the map, at a lower elevation than and at

fringes of the upland heath and bog complex.

Figure 6.6 shows a habitat classification for the predominantly lowland region

between the Trawscoed and Pwllpeiran grassland studysites (highlighted in red)

examined in detail in Chapter 5. Both sites are, on this scale, correctly classified

as lowland and upland semi-improved grassland respectively.

The eastern part of this map shows some extensive areas of semi- and unimproved
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Figure 6.5: Classification of forests, grasslands, lowland and upland habitat types
around Lake Vyrnwy (A colour key to the classes is provided in Figure 6.7)
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Figure 6.6: Classification of grasslands, lowland and upland habitat types in east
Ceredigion. (A colour key to the classes is provided in Figure 6.7.) The Trawscoed
and Pwllpeiran grassland study sites (Chapter 3) are outlined in red.
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upland grasslands, with some areas of Molinia and Juncus spp. dominated marshy

grasslands on the upland fringes. The majority of the area is, however, classified

as improved grassland, with an increase in connected hedges towards the west.

Other features of interest are the broadleaved woodlands, which are spread along

rivers descending from the uplands and an area of lowland bog (light pink) in the

south western corner of the map.

6.3.2 Lake Vyrnwy classification accuracy

If classification-based maps are used in decision making processes, such as policy

development and resources management, a measure of their accuracy has to be

given, so as to establish the degree of confidence with which these thematic maps

can be used (Stehman and Czaplewski, 1998).

The accuracy of the Vyrnwy classification only was assessed by creating an error

matrix (see Table 6.7 for results) and using this to calculate the overall, as well

as the user’s and producer’s accuracy. These are standard methods for the ac-

curacy assessment of remote sensing classifications (Story and Congalton, 1986;

Congalton, 1991).

For the error matrix a 100 x 100m grid was superimposed on the classification,

creating 9000 points at which the predicted habitat class was visually compared to

2006 Vexcel 1m resolution aerial photography. Each point was exactly located in

the centre of a pixel, which is also the Minimum Mapping Unit (MMU) of 25m2,

to ensure association with only one predicted class.

It is important though to remember that the images were not pan-sharpened after

orthorectification, but simply re-sampled to 5m square pixels, using a nearest-

neighbour algorithm. This means that the during a per-pixel classification the
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Figure 6.7: Class legend
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effective MMU is still 100m2. However, due to the segmentation approach em-

ployed here, the four quarters of any original 100m2 pixel can be apportioned to

different objects and there exists therefore a possibility that they would be classi-

fied differently.

Due to the number of classes, the error matrix was too large to be displayed here.

The results were hence summarized by class in Table 6.7.

The overall accuracy for the classification is 63.69%. The individual user’s and

producers’ accuracies for each class assessed are listed in Table 6.7.

The producer’s accuracy for each category describes the percentage of grid points

at which the predicted class was judged to be correct during the accuracy as-

sessment, i.e., the total number of grid points apportioned to this class during

photo-interpretation. The producer’s accuracy therefore describes the percentage

of each class on the ground correctly identified. The user’s accuracy shows the

same value divided by the column total of each class, i.e., the total number of

grid points predicted to be the class heading the column (Congalton and Green,

1993). This therefore indicates the proportion of each predicted class which has

been classified correctly.

The reverse values of producer’s and user’s accuracy hence respectively describe

the percentage of under- and over-estimation of each class in the classification.

These values are usually called omission and comission error.

Figure 6.8 ranks each class with regard to their user’s and producer’s accuracy, as

listed in Table 6.7, respectively. The classes Arable and Ue scrub have very low

values in both cases, which is due to their very rare occurrence in the classification.

Another unusual feature is a 100% User’s accuracy for the urban class. This is

explained by the fact, that it is exclusively classified from the OS MasterMap the-
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Table 6.7: Accuracy assessment results for the Lake Vyrnwy study site (Figure 6.5)

Classname Number Number User’s Producer’s
classified groundtruth accuracy (%) accuracy (%)

Acid flush 233 87 27.90 74.71
Arable 2 1 0.00 0.00
Ash gulleys 190 47 18.42 74.47
Birch-Ash wood 119 65 32.77 60.00
Bog OldCv 649 415 58.71 91.81
Bog youngCv 400 485 72.00 59.38
Bracken 408 410 69.12 68.78
Broadleaved forest 141 164 51.77 44.51
Cv cont old 1130 1017 67.08 74.53
Douglas Fir 58 2 1.72 50.00
Et Mc Cv wet 154 356 50.65 21.91
Felled woodland 451 556 76.27 61.87
Fo At grass 347 352 58.50 57.67
Fo Ns moss 297 221 62.29 83.71
Hedges 167 95 37.72 66.32
I upland 56 128 57.14 25.00
Je flush 68 77 29.41 25.97
Jsq Ns grass 27 151 62.96 11.26
Larch 355 213 32.11 53.52
LowL I 549 755 89.44 65.03
LowL SI acid 37 58 59.46 37.93
Mature Oak 176 71 22.73 56.34
Mature Spruce 502 528 86.45 82.20
Mc upland 184 213 55.98 48.36
Ns Fo grass 187 303 68.45 42.24
Scattered scrub (gorse ) 22 50 27.27 12.00
Scattered scrub (trees) 67 34 47.76 94.12
SI acid upld 323 259 51.39 64.09
Ue scrub 5 29 0.00 0.00
Urban 209 248 100.00 84.27
Water 458 454 98.69 99.56
Wet woodland and Scrub 126 309 52.38 21.36
Young Spruce 881 852 77.19 79.81
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(a) User’s Accuracy

(b) Producer’s Accuracy

Figure 6.8: User’s and Producer’s Accuracy for the Lake Vyrnwy classification
ranked in order of magnitude (Table 6.7)
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matic layer and hence does not confuse with other classes. It does though still show

a 15.73% omission error, indicating that the MasterMap layer is not completely

comprehensive and some man-made features are hence not classified.

Classes such as Ash gulleys, Birch-Ash wood, Hedges and especially Douglas Fir

have quite low user’s accuracies, compared with their high producer’s accuracy.

This indicates that, while they are not differentiated well, these classes also are

not confused a lot with other classes. Water in comparison is classified from

a combination of the OS MasterMap water data and a satellite based rule and

performs very highly for both types of accuracy.

In contrast many classes, which are comparatively successfully classified, also show

a high percentage of comission error, which suggests that the rules used to classify

them are not class-specific enough and probably should be revised. A good example

is Jsq Ns grass, which has a comparatively good user’s accuracy and a very high

producer’s accuracy.

While 63.69% is not a very high accuracy for the whole of the classification, several

individual classes achieve considerably higher values of user’s accuracy, such as

Bog youngCv, Felled woodland, LowL I, as well as Young and Mature Spruce.

Both types of spruce also achieve high scores for producer’s accuracy and are hence

the best performing classes solely differentiated from remote sensing data.

Fo Ns moss is further remarkable, as it scores high for both accuracies, but particu-

lar producer’s accuracy. In turn I upland’s values are lower than could be expected

in comparison to Lowl I and the homogenous appearance of improved grassland

in comparison to an unimproved grassland type, such as Fo Ns moss.

It was decided not to undertake a separate accuracy assessment in Ceredigion

in favour of collecting the very large set of assessed points described above at
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a high spatial density over the Vyrnwy site. It is therefore not possible at this

stage to provide similar figures for the Ceredigion classification. However, it was

created by applying a near-identical set of rules to the Vyrnwy classification to

the same spring SPOT 5 HRG and summer IRS scenes and is hence assumed to

be of comparable accuracy.

Transferability of the rules to other areas further away from the training sites is an

important consideration though for the validation of the approach and an accuracy

assessment should hence be undertaken, when time allows.

6.3.3 Spatial error distribution

The spatial distribution of errors is not random, but can in many cases be related

to certain image and ecological phenomena as suggested above. In the context

of accuracy assessment during change detection, van Oort (2007) found that spa-

tial error distribution is often temporarily correlated and consistent, thus further

supporting the argument above.

Figure 6.9 illustrates the spatial distribution of errors in two areas around Lake

Vyrnwy.

The images indicate that errors are clustered on the boundaries between well

defined habitats and across ecotones, e.g., blanket bog and upland dry heath (Fig-

ure 6.9(b) 2 ), as well as flushes and gulleys (Figure 6.9(a) 3+4 ). There are no

errors over the lake itself, but several along the shore(Figure 6.9(b) 1 ), where

narrow bands of different tree species are common. A similar tendency can be

found along woodland edges(Figure 6.9(b) 3 ). The error associated with steep

north-facing slopes is very well illustrated in Figure 6.9(a) 1+2 ).

Ecotones are characterized by a mixture of species and/or habitats and therefore
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(a) Example 1

(b) Example 2

Figure 6.9: Spatial error distribution across an upland landscape. Dots (red)
indicate grid points tested for accuracy and judged to be wrongly classified. The
numbers (yellow) refer to different scenarios where error clustering occurs and
these are outlined in the text above.



CHAPTER 6. HABITAT MAPPING FROM MULTISPECTRAL DATA 210

prove challenging for a rule-based classification, particular one that is based on

the assumption that it is possible to divide the landscape into a fixed number of

clearly defined classes. In some classes, this ambiguous character has been taken

into account in the rule-base by making allowance for stands occurring on north-

facing slopes (bracken) or different levels of productivity in grasslands, which are

nevertheless all considered to be improved.

However, despite the pixel level segmentation and fuzzy classifications taking the

possibility into account that an object can feasibly have a membership to one or

more classes, in the final and crisp map this membership cannot be displayed and

a final decision has hence to be made with regard to a single class.

6.4 Discussion

The high level of detail obtained in the classification was largely attributable to the

use of the 10 m SPOT HRG data for segmenting the landscape and the application

of fuzzy membership functions for describing complex communities (e.g., heath

mosaics) in the uplands. The use of optical data acquired prior to and during the

growing season allowed the seasonal phenology of habitats to be better captured,

thereby increasing opportunities for their discrimination. Whilst a greater number

of satellite acquisitions during the year would lead to further enhancement of

the classification, those acquired prior to the spring flush of growth (late March)

and following this flush (July) were considered sufficient. Imagery acquired early

(before February) or late (after November) was of limited use, particularly in

mountainous areas and primarily because of the low sun angle.

While the point based approach to accuracy assessment used here is the most
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rigorous,the object based approach is arguably more appropriate for the following

reasons:

1. habitats are traditionally defined and described at the patch level

2. many ‘patches’ consist of mosaics that are comprised of a range of species

(e.g., Ec Mc Cv wet; see Table 6.6)

3. others can be interpreted as belonging to several habitats (in terms of their

Phase 1 description). For example, broad-leaved woodlands may support a

bracken understory and, depending on openness and height of the canopy,

maybe interpreted as being dense scrub, rather than forest.

4. a number of habitat patches may be at various stages of degradation, suc-

cession, species invasion or extinction processes and their classification is

therefore open to interpretation

6.4.1 Classification error

An overall accuracy of 85% is considered a standard requirement for remotely

sensed land cover maps (Foody, 2002; Fuller et al., 2003), which is considerably

above the accuracy achieved in this study. The classification accuracy could,

however, be considerably improved through a meaningful combination of related

classes. This would particularly apply in the case of an amalgamation of all wood-

land classes into a single broadleaved and coniferous class respectively, as well as

the creation of a single class for upland bogs. While this would lead to a simplifi-

cation, confidence in the usability of the map would increase considerably.
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Laba et al. (2002), however, question the usefulness of the 85% accuracy stan-

dard and argue that accuracies approaching 80% are only feasible through the use

of sensors with higher spectral, spatial, and temporal resolution than utilized in

this study. The required overall accuracy of any map is further dependent on its

intended use (Wulder et al., 2006), while the proportional distribution of its com-

ponent classes determine the weighting of individual class accuracy requirements

(Czaplewski and Patterson, 2003).

The five classes (Bog youngCv, Felled woodland, LowL I, Young and Mature

Spruce) highlighted in Section 6.3.2 for their high accuracy values all have in

common that they form large, homogenous and continuous areas with well-defined

borders and are hence less likely to mix with other vegetation types, which could

reduce classification accuracy.

Figure 6.9 shows that there are few errors associated with large and even land

cover types.

Douglas Fir has an exceptionally low user’s accuracy. This is probably due to the

fact that only one small stand exists in the study area (Number of points tested

for accuracy = 2), though this has been classified correctly. The class otherwise is

commonly confused with other conifer species and the rule for Douglas Fir should

be revised, where it is more commonly found.

Classification errors can be divided into several distinct types of varying severity,

corresponding to error source. Accordingly there are low severity errors, which are

confusions between related classes, e.g., Mature and Young Spruce, as well as high

severity errors (e.g., grasslands confused with forest).

More important though than awarding a degree of severity to the error, is to

establish whether a reason for the error can be identified.
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There are many possible sources for errors in the classification and confusions be-

tween categories and not all of them are caused by the classification rule-base. The

accuracy assessment therefore benefits from the identification of these confusion

sources and the subsequent opportunity to control and limit their impact in future

classifications. Confusions caused by such external factors are referred to by Con-

galton and Green (1993) as non-error differences to distinguish them from the true

classification errors in the confusion matrix. The accuracy values derived from the

confusion matrix, as described above (see Table 6.7) are based on the assumption

that all mismatches in the matrix derive from the remotely sensed classification

and/or segmentation and while segmentation based errors are discussed below, the

following other possible error sources were identified and considered.

It is further difficult to obtain a complete correspondence between habitats ob-

served in the field or from aerial photography interpretation and those classified

from remote sensing data for the following reasons:

The reference data (in this case the Vexcel aerial photography from 2006) post-

dates some of the imagery (2003 SPOT data) used in the classification by three

years and the land cover can therefore have changed significantly in the intervening

period. Examples include the harvesting of commercial conifer plantations and

the burning of heathlands and bracken stands as well as fluctuations in grassland

improvement levels due to changing management regimes.

A specific problem in this study is also that the aerial photography was acquired

over several seasons in 2006 and while the whole mosaic is seamless, the appear-

ance of a category in the reference data can change suddenly (e.g., from leafleass

broadleaved woodland in the winter to leaf canopy present in spring and summer)

and demands the interpreter to be alert to this (Figure 6.10). This is particularly
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apparent in larch stands and in bracken covered areas, as well as all other habitats,

which change their appearance seasonally.

Congalton and Green (1993) also mention registration differences between the

reference data and the map classification as a potential error source. This does

not apply here as the Vexcel was used as the registration basis for all remotely

sensed data utilized in the classification. Accurate co-registration of the various

data layers used is indeed a prerequisite for a successful classification.

Photo-interpretation varies with individual interpretation bias and it is therefore

important that assessments are carried out by the same interpreter, or the min-

imum number possible to ensure the highest consistency possible (Wyatt, 1991).

Each interpretation based on the skills and experience of the interpreter and the

degree of familiarity with the classification area and the classes.

An absolute decision from the aerial photography is also often difficult to justify

and it is therefore important to consider the surrounding habitats and to take

ecological knowledge of the communities present into account.

Objects often can reasonably be attributed to more than one class and a considered

decision has to be made, but this might justifiably vary between different inter-

preters. Categories with low accuracy values were often associated with regions

that were comparatively cloudy or shadowed by cloud. The 27th March 2003 Spot

scene used at Vyrnwy is covered in scattered cloud (Figure 4.2(a)), which causes

difficulties where a spring image is required for the differentiation of a habitat

class, though the ASTER and second SPOT scene have often been successfully

substituted here.

Very steep north facing slopes are similarly problematic to areas obscured to cloud,

as the sun illumination is often not sufficient to differentiate habitat classes. This
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Figure 6.10: Seasonal discrepancy in the 2006 Vexcel Aerial Photography. While
all individual photograph tiles form a very well constructed mosaic of this part of
North Wales, a clear vertical boundary is visible in the centre of the image. This
is due to the images of the left of the boundary to have been taken during the
summer (note the brighter green appearance) and those to the right of it being
acquired during the winter after deciduous trees had shed their leaves and during
a time of lesser productivity for grasslands.
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effect is especially pronounced where imagery were acquired in the winter and is

well illustrated in Figure 6.9.

6.4.2 Habitat scale and homogeneity

Homogeneity across patches of the same class cannot be assumed and therefore

decisions regarding deviation have to be made early on to avoid later discrepancies

in the assessment.

Categories here are constrained in scale by the limitations, and especially by the

resolution of the remote sensing data on which the classification is based and are

therefore sometimes forced amalgamations of classes which should be separated

from an ecological point of view and which are not homogeneous. They form the

‘smallest common denominator’. It is therefore paramount that these limitations

are considered during the accuracy assessment.

In effect, whilst some classes are homogenous (e.g., coniferous plantations) and

can be classified with relative confidence, where more heterogeneous and complex

habitats occur, assignment to a particular class then becomes more difficult, par-

ticularly across ecotones. For this reason, criteria for separating classes have to

be established a priori in order to arrive at an appropriate classification scheme,

but also to establish which classes are acceptably confused when evaluating accu-

racy.

The scale of observation is also important. As an example, a confusion between

improved grassland and hedges was commonly observed. These two categories are

spectrally sufficiently distinct to make this an unexpected occurrence. However,

neither is classified at the sub-level, but segmented to and classified at Level 1.
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Hence the elongated shape of the hedges and the relative coarseness of the re-

sampled pixel resolution (25m2) is causing the objects which delineate them, to

often include a small area of the adjacent improved grassland. The predominant

category in the object is then assigned to the whole of the object. However, this

is not reflected in the accuracy assessment on a point basis.

Furthermore it was found that the rate of error, in the classes predicted on the

object level, decreased with increasing distance of the checked grid point to the

edge of the object. This can be related to the core and edge habitat definitions

in spatial ecology as outlined in Chapter 1. Core habitat is always assumed to be

more representative of a habitat class than the edge and this can be translated

into a remote sensing context as the increasing likelihood to encounter mixed

pixels closer to the the edge of a habitat patch or object, which will influence the

classification accuracy in this area. The greater the contrast between two habitats

and the more defined their edge (e.g., between coniferous forest plantations with

predominantly straight, man-made borders and adjacent grasslands), the less this

type of confusion occurs, as the segmentation closely follows the borders and the

occurrence of mixed pixels at the edge is less likely.

However, natural and semi-natural habitat patches often have very poorly defined

edges and transitions between habitats are typically gradual and not abrupt. In

cases where mixed pixels are abundant, classes are decided by the majority of one

habitat in the object or the MMU. Whilst the MMU in this case is only 25m2,

this resolution is still too coarse to capture precise boundaries of many habitats,

for example hedges and small flushes, and hence confusion using a point-based

approach to accuracy assessment will be greater.
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6.4.3 Other land cover classification schemes

Neither the Phase 1 or Phase 2 Surveys utilized satellite sensor data. However,

these data have been used for more timely mapping of land cover and largely for

reporting at the national (UK) and European level.

Using 30 m spatial resolution Landsat Thematic Mapper (TM) data for the period

1988-1989, the first satellite derived map of land cover of Wales was created as part

of the United Kingdom(UK) Land Cover Map (Fuller et al., 1994). A maximum

likelihood classification of 25 classes representing broad and nationally consistent

vegetation categories was applied at the pixel-level, with mapping undertaken in

conjunction with a sample based countryside survey (CS1990). A follow-up map

(LCM2000) for 2000 again used Landsat-sensor data acquired during the winter

and summer months but these were segmented to better identify relatively homoge-

neous areas (e.g., fields, water bodies; Fuller et al. (2002, 2006)). Knowledge-based

algorithms that integrated ancillary data, such as soils and elevation, were also ap-

plied. The mapping identified 72 classes, which were subsequently grouped into

24 thematic subclasses. A further update is expected using a generalization of the

UK Mastermap GIS objects (Smith and Wyatt, 2007). Fuller et al. (2005a) noted

several limitations to the land cover maps. Many of the broad vegetation classes

selected were not ideal for detection using remote sensing data as these had often

been defined by combinations of plant species, by the substratum or by elements of

land use not discernible in images. Some vegetation categories typically occurred

in stands that were rare, localized or smaller in area than the spatial resolution of

the imagery. While limitations on the separability of classes in the imagery could

be partially resolved by only mapping broad habitats, many users required more

detailed information on classes beyond these.
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The approach used in this study is an extension to the method suggested by

Lucas et al. (2006b) as part of a pilot study commissioned by the Countryside

Council for Wales (CCW) and the British National Space Centre (BNSC). Lucas

et al. (2006b) used a time-series of Landsat TM/Enhanced TM data from four

dates (March, April, July and September) as input to a rule-based segmentation

and classification procedure developed within eCognition (Definiens, 2008). The

approach differed from the traditional methods in that the landscape was first

segmented into objects of sizes that varied from individual pixels to entire fields

(as defined using Land Parcel Information System (LPIS) boundaries). Numer-

ical rules, designed to capture known correspondences between the distribution

of habitats in the landscape and their manifestation within remote sensing data,

were then applied. The sequential application of these rules allowed semi-natural

habitats and agricultural land cover classes to be discriminated, in some cases, to a

level comparable to or better than those mapped previously using Phase 1 Survey

field methods.

This study further develops the approach used by Lucas et al. (2006b) and the Land

Cover Map, by using higher resolution spaceborne satellite data (SPOT 5 HRG and

IRS LISS IV, resampled to 5m pixel size) than Landsat and by integrating further

thematic layers (Table 6.2), beyond the LPIS boundaries, into the classification.

The segmentation and classification procedures within the rule-base are further

refined by undertaking them at three separate levels to allow for differences in

habitat scale and homogeneity to be taken into account.

The number of classes identified has been increased from Lucas et al. (2006b)

and the classification focused more on single-species dominated habitats, such as

Calluna vulgaris heath and particularly a greater number of woodland classes
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(Table 6.6).

6.4.4 Advancements to land cover classification

One of the most important advantages of this mapping approach is its capability

to be updated on a regular basis, as new imagery becomes available.

Whilst the classifications were generated using satellite sensor data acquired be-

tween 2003 and 2006, the rule-base can be adjusted to allow updates for any

reference year and/or refined as and when new imagery becomes available. The

approach can be adapted and expanded to provide continual monitoring of the

extent, distribution and state of habitats across Wales, where imagery of sufficient

quality is availaible.

The original Phase 1 survey did not map hedgerows in Wales, except in the county

of Powys. The ability to map hedgerows from spaceborne remote sensing data is

hence a significant advancement of this mapping method.

With regards to the accuracy assessment, it has been shown that errors are more

likely to occur in ecotone regions, i.e., along the edges of relatively homogenous

habitat stands, rather than in their core area.

While the classifications in this study have shown encouraging results, particular

with regard to more detailed tree species, blanket bog and unimproved upland

grassland identification, the classification needs to be improved further, especially

with regard to more complex habitat mosaics. This should be done by a revision

of the classes used and the rules applied under considerations of the accuracy

assessment and spatial error distribution demonstrated in this study. The inclusion

of a class for Bilberry (Vaccinium myrtillus), for example, would increase the
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accuracy of the map, but it is limited by its seasonal appearance and can only

be detected in the remote sensing imagery during small windows in time. Gorse

(Ulex europaeus/Ulex gallii) is also poorly classified so far and suffers from strong

spectral similarities with mature Ling heather (Calluna vulgaris) and other scrub

types. As a common and distinct land cover class within Wales, it would be

desirable to improve the differentiation of gorse significantly.

The segmentation approach has been improved by using three differently scaled

levels, in order to create habitat-scale appropriate objects. However, as described

above, especially with regards to hedgerows, there is further potential for a better

delineation of objects to reduce confusion with neighbouring habitat patches.

Preliminary tests have shown, that a segmentation based on a high resolution

dataset such as the 2006 Vexcel NIR aerial photography of Wales (1m spatial

resolution) greatly improves object definition and hence classification accuracy

from coarser remote sensing data. This is, however, to be explored in a further

study.

6.5 Summary

Land cover maps as described in this study can be used to support various en-

vironmental and natural resource applications, such as change analyses, resource

inventories, flood modeling and as input into habitat suitability models (see Chap-

ter 8 (Stehman and Czaplewski, 1998)). Reliable and consistent vegetation data is

an important component of many ecological studies, but it is time-consuming and

expensive to collect. A widely available large-scale map of acceptable accuracy,

based on a consistent rule-base would therefore provide an invaluable resource for
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a great number of further studies of individual habitats and species and would help

to reduce the element of assumptions in much research regarding land cover.

This chapter has described how spaceborne remote sensing data can be integrated

within a rule-based approach to map semi-natural habitats, including grasslands

and woodlands and how to distinguish these from other habitats (e.g., heaths and

moorland).

Key elements, that allow classification, are:

1. accurate geometric correction, which allows intercomparability with other

data layers (e.g., aerial photography and MasterMap derived thematic layers)

2. atmospheric correction, which allows the creation of a range of indices to

exploit seasonal variation for habitat differentiation (e.g., difference in pho-

tosynthetic vegetation proportion of bracken between spring and summer

images)

3. a hierarchical segmentation approach that segments and classifies at three

levels (super-level, sub-level and Level 1) and therefore gives consideration

to relative differences in the scale and homogeneity of habitats (e.g., arable

fields through to complex heath mosaics)

4. a careful definition of classes to be defined from the remote sensing data, ac-

cording to how they manifest themselves within the data. A correspondence

of any class system to existing survey class definitions (such as the Phase

1 habitat survey) is desirable to ease comparison and utility of the classi-

fication. However, many existing field survey classes can not be directly

translated into a remote sensing class and the classification might suffer in

accuracy, if this is not taken into account.
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The following chapter describes the structural characteristics of different wood-

land types as derived from full-waveform LiDAR and Terrestrial laser scanner

data.



Chapter 7

Forest structural attributes from

laser data

7.1 Introduction

In recent years, significant advances in the use of Light Detection and Ranging (LI-

DAR) have occurred with the development of full waveform LiDAR and Terrestrial

Laser Scanners (TLS). Independently, these datasets have been shown to provide

opportunities for quantifying the structure of forests (e.g., Watt and Donoghue,

2005a; Koetz et al., 2006; Coops et al., 2007; Hudak et al., 2008; Tansey et al.,

2009). However, few studies have compared TLS and airborne LiDAR to un-

derstand the extent to which structures occurring within the vertical profile are

being captured by the airborne LiDAR and the interaction of LiDAR pulses with

different tree components (leaves, branches and trunks).

The primary objective of this chapter is to couple small footprint full-waveform

224
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airborne Light Detection and Ranging (LiDAR) data with terrestrial laser scanner

(TLS) and forest inventory data for purposes of evaluating the level of forest

structural information that can be retrieved from the former.

Focusing on the RSPB reserve of Lake Vyrnwy (see section 3.2.2), research in

this chapter seeks to analyse forest structure by retrieving parameters such as tree

height, canopy openness and canopy layers from full-waveform LiDAR data. Inte-

grating the LiDAR and terrestrial laser scanner data also provides an in-depth as-

sessment of the capacity and accuracy of airborne LiDAR for retrieving sub-canopy

forest structural attributes at scales ranging from the tree to the landscape.

An objective of this research therefore is to establish whether these data can be

used realistically to estimate forest stand height and other structural parameters,

particularly in relatively undulating terrain.

Many studies (e.g., Todd et al., 2003; Chen et al., 2005; Lefsky et al., 2005; Suarez

et al., 2005), have focused on the use of LiDAR data for retrieving forest structural

attributes. However, none have coupled these data, and specifically full-waveform

LiDAR, to terrestrial laser scanner (TLS) data acquired at the ground level for

purposes of better understanding the attenuation of LiDAR pulses through the ver-

tical profile and their interaction with different tree components (leaves, branches,

trunks). For this project TLS data for selected forests stands has been obtained for

which airborne LiDAR data have also been acquired, thereby facilitating a direct

comparison between the two datasets.

The chapter is structured as follows. The acquisition of LIDAR and TLS data and

methods used to retrieve the ground elevation and structural data are outlined

in Section 7.2. In Section 7.3, accuracies in the registration of the LiDAR and

TLS data and comparisons between the two datasets are presented. The discus-
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sion (Section 7.4) outlines the implications for the retrieval of forest structural

attributes from both sensors. The study is concluded in Section 7.5.

7.2 Methodology

For the Lake Vyrnwy area, airborne LiDAR and TLS data were acquired in Au-

gust 2007, details of which are provided in the following sections. In linking the

remote sensing datasets (i.e., airborne LiDAR and TLS), a high level of geo-

locational accuracy was required. Hence, a comprehensive and precise network

of ground survey points was established in conjunction with TLS data acquisi-

tion and a high quality Inertial Navigation System (INS) was used during the

airborne LiDAR acquisitions. This ensured that all points were correctly located

in three-dimensional space. For processing, all point data were converted to the

Sorted Point Data (SPD) file format (Bunting, 2009) and processing was under-

taken within the Remote Sensing and GIS software library (RSGISLib; Bunting

and Clewley, 2009) unless otherwise stated. The acquisition and processing steps

are outlined below.

7.2.1 TLS data acquisitions

Leica Geosystems Scanstation 2 TLS data were acquired for seven forests repre-

senting a range of structural formations (one to multiple layers, with or without

understory) and species types (Table 7.1), including forests dominated by douglas

fir, sessile oak, larch, or mixtures of these. This terrestrial laser scanner is well

suited for scanning forests as it supports a 270◦ vertical field of view which extends
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45◦ below the horizontal but only records a single first return per pulse. The sensor

operates to a range of 250-350m (300m at 90 % reflectivity) and generates three

dimensional (x, y and z) point cloud data. For each site, a single scan was acquired

from the centre with a point spacing of 3cm at 30m providing a hemisphere of data

around the scanner that covered approximately a 50× 50m plot.

Table 7.1: The location and forest type for each of the seven TLS sites.
Scene Eastings Northings Dominant tree species
LV7 296702 324141 Douglas Fir
LV8 302082 318823 Sessile Oak
LV9 302078 318934 Sessile Oak and Sycamore
LV10 301273 320647 Sessile Oak
LV11 300583 320963 Larch
LV12 300786 319826 Sitka Spruce
LV13 300209 321227 Sitka Spruce

For each site, tilt and turn targets (flat or hemispheric) were mounted on tripods

and orientated towards the TLS. The TLS itself was mounted on a plumb tribrach

which allowed leveling of the target over a specific point on the ground (marked

with a permanent marker). Site markers were put in place at all sites so that repeat

measurements could potentially be taken in future years. For each plot, at least

three targets were set up around the TLS and named appropriately. The height of

each target above the marker was then recorded for later geo-registration.

To precisely locate the TLS in x, y and z coordinates, a GPS base station and

control network were first established within an open area close to the site of

each scan. An open area was required as a reliable RTK GPS signal could not

be obtained under the forest canopy. Therefore, following the establishment of

the control network, a total station was used to move into the forest and survey

the TLS and target locations. To move within the forest with the total station,
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a series of resections were required, with each resulting in an x, y, z location

fix. In total 196 points were surveyed within the airborne LiDAR scenes, 42 of

which overlapped with the TLS surveys. The GPS data were processed using

the Ordnance Survey of Great Britain’s active GPS RINEX data (within Leica

GeoOffice). The total station survey data were then converted into the UK national

grid coordinate system. Using these survey points, the scanner target locations

were identified within each scan and matched to the appropriate survey point.

This process allowed geo-registration of the complete scan, which was undertaken

within Leica’s Cyclone software.

7.2.2 TLS data analysis

Following geo-registration, returns associated with the ground were identified to

derive a fine spatial resolution (2m) Digital Terrain Model (DTM). DTM gener-

ation was limited as the point spacing provided by the TLS varied as a function

of range and shadowing occurred within the scene because of occlusion by trunks,

branches and foliage. For this reason, the data were first binned to a 2 m grid

whereafter the algorithm attempted to identify a single ground return for each

bin. Ground returns were identified using a plane fitting (least squares) approach

whereby a window of bins 10m either side of the central bin was first selected.

Within this larger column (22 × 22m), a plane was iteratively fitted to the data.

Following fitting, the deviation of the points from the plane was quantified. Where

the deviation was below a user defined threshold (e.g., 0.5m), the plane was deemed

to be well fitted with the points along the plane corresponding with the ground

surface. The lowest point below the plane in the central bin was then identified

and classified as a ground return. Where the deviation was above the user-defined
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threshold, then the plane was deemed to be poorly fitted, the points above the

plane were removed and the plane refitted to the remaining points. This process

was continued iteratively until either the points fitted to an identified plane or the

number of points remaining was below 4. In the latter case, the process was ceased

and no ground point was classified. These thresholds were found to be suitable

as, although the point densities from the TLS were high, the number of ground

returns were spatially variable with range from the instrument and ground cover

(i.e., as a function of understory).

7.2.3 LiDAR processing

The airborne LiDAR data were captured by the Natural Environment Research

Council (NERC) using the Riegl LMS-Q560 full waveform laser scanner, with a

20 cm footprint size and a post spacing of approximately 2m. Following capture,

the data were processed by NERC, using the Riegl RiAnalyze software to decom-

pose the waveforms into discrete returns (a maximum of 4 per waveform). Regis-

tration was undertaken using Terrasolid software. The LiDAR data were supplied

in LAS format but converted to the SPD format (Bunting, 2009) for processing.

From these data, a DTM was derived using the same algorithm and parameters

as applied to the TLS data (binned to a 2m grid, a window of bins 10 m either

side of the central window (creating a 22 × 22m window) and a threshold of 0.5 m

defining whether the points fitted the plane). These thresholds were determined

experimentally through a visual assessment of the derived DTMs to minimize any

incorrectly classified ground points and were found to be suitable for both the TLS

and airborne LiDAR.
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7.2.4 DTM and CHM generation

Following classification, the ground returns identified were used to form a delaunay

triangulation from which a 2 m resolution raster DTM was produced. The final

stage of processing produced canopy height models (CHM) for each TLS scene

and the airborne LiDAR. This was achieved by normalizing the ground surface to

a height of zero for each point where the intersecting DTM height was removed.

Therefore, the CHM contained all the points within the scene, including the ground

returns normalized for the ground surface topography. From these data, the ver-

tical profiles and heights of the forest from both the airborne LIDAR and TLS

could be observed. For this purpose, each TLS scene was subset to field plots of

50 × 50m with the scanner positioned at the centre of the scene. The scenes were

subset to extract a core of data with sufficient point densities (< 3cm at 30m) for

later processing and interpretation. Subsetting was undertaken following DTM

and CHM generation to avoid boundary effects within the areas of interest.

7.2.5 Integration of airborne LiDAR and Terrestrial Laser

Scanner data

As the TLS data was referenced using differential Global Positioning Systems

(dGPS), each tree imaged on the ground was associated with the position of the

LiDAR waveform in relation to the TLS. Recorded returns in three-dimensional

space were then related through position.

A number of analyses were subsequently undertaken, including comparisons at the

individual tree, tree cluster and stand level of the frequency of LiDAR returns by

height above the ground surface. Previous studies in Australia (Lee and Lucas,
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2007b) have established that the relative penetration of pulses into the forest

canopy can be described using a Height Scaled Crown Openness Index (HSCOI)

and that the lower values of the HSCOI can be associated with trunk locations.

Further testing of this has been carried out as part of this research, but in a

different environment.

7.3 Results

7.3.1 Registration accuracies

Through the registration process, within the Leica Cyclone software, the residual

errors for each target used to register the TLS data were identified (Table 7.2).

For the majority of targets, the error was less than 30 cm with the lowest being

just 3 cm.

LV13 was the exception where, because of equipment failure, manual targeting of

the total station was required within a dense forest and across undulating terrain

which lead to greater residual errors. Data from this site were included in the

subsequent assessment of the ground surfaces (DTM) derived from both sensors

as the ground points were identified within a radius of 7m around each survey

point (Section 7.3.2). The terrain at site LV13 was level and the canopy height

comparatively uniform and the site was further included in the comparison of

both DTMs and canopy top height (Figures 7.3 and 7.4) without leading to a

notable decrease in correspondence compared to the high impact of inclusion of a

single non-ground point in Figure 7.3. The site was, however, not included in the

generation of two-dimensional plots of the forest vertical profile in Section 7.3.4,
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because of the higher registration accuracy required for a visual comparison of

canopy profiles at precise locations.

Table 7.2: TLS residual errors (in metres) for the TLS target positions.
Target LV7 LV8 LV9 LV10 LV11 LV12 LV13

1 0.088 0.221 0.256 0.132 0.044 0.203 3.134
2 0.069 0.065 0.374 0.217 0.294 0.276 4.708
3 0.034 0.216 0.048 0.267 0.046 0.187 1.648
4 0.656 0.374 0.077 0.174 0.271 0.288
5 0.203 0.030

7.3.2 Resolving the ground Surface

To assess the accuracy of the DTMs derived from the TLS and airborne LiDAR

datasets, the elevation data from survey points collected to geolocate the TLS

data were compared. To ascertain whether the laser strikes were reaching the

ground surface, the lowest point within a radius from each survey point was first

identified within both the TLS and airborne LiDAR datasets. Radii of 1 to 25m,

at 1m intervals, were considered to identify the density of points reliably reaching

the ground surface. The survey data were then compared to the raster DTMs

generated from the filtered point data. This test aimed to demonstrate that the

filtering and interpolation algorithm deployed worked appropriately. Finally, the

DTMs from the TLS and LiDAR were compared.

Survey and points

The comparison of the survey data with the minimum TLS and airborne LiDAR

data (within a radius from the known survey point) indicated similarities in the
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surface elevation for both sensors, with errors reducing with increases in the search

radius. Differences between the elevation were minimal at a radius of 7m and in-

creased for radii >7m because of topographic variations (Figure 7.1). The radius

of 7m was the distance at which the ground returns could be identified for a partic-

ular point without errors introduced from any changes in the adjacent topography

(radii greater than the optimal) or non-ground returns such as those associated

with the understory (radii less than the optimal). This analysis reinforced the

decision to use the same parameters for the TLS and airborne LiDAR to retrieve

the ground returns and generate the DTM as the ground returns were similarly

spaced.
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Figure 7.1: This graph demonstrates that the LiDAR points match the ground
survey with an average error of 2m at a radius of 7m from the survey point.

Survey and DTM

When compared to the survey data, the DTMs derived from the TLS and airborne

LiDAR showed residual errors of ± 0.99m and ± 1.17m respectively, (Figure 7.2).
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Survey heights were derived from the 196 and 42 survey (GPS and total station)

points for the airborne and TLS respectively whilst base heights were established

from a corrected RTK-GPS control network.

TLS DTM and LiDAR DTM

A close correspondence was also observed between the DTMs from both datasets

(Figure 7.3), with the overall error being ± 0.58 m. However, a notable error

occurred in scene LV9, where a single incorrect ground point had been identified

in the TLS data which resulted in the generation of an incorrect surface in the

surrounding pixels of the DTM. This leads to a deviation of the otherwise close

correspondence of the two surfaces visible at the lower end of the graph in Fig-

ure 7.3. In the future, this problem will be solved by integrating an additional

step into the DTM filtering process where points which form a vertex to steeply

sloping triangles (within the delaunay triangulation) will be removed.

7.3.3 Canopy top height

A comparison of canopy top heights derived from both the TLS and airborne

LiDAR (Figure 7.4) indicated a close correspondence (± 4.44 m, R2=0.65) and

were consistent with previous measures of tree height from TLS data (e.g., Maas

et al., 2008b). The differences can be explained by the different viewpoints and

characteristics (e.g., sampling rates) of the sensors resulting in different levels of

penetration. The TLS data were captured from the ground looking up and there-

fore the majority of the points were intercepted by the lower parts of the canopy.

By contrast, the strongest returns decomposed from the airborne LiDAR were
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Figure 7.2: The survey data compared to the DTMs derived from the (a) TLS and
(b) LiDAR data. Heights are metres above sea-level.
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Figure 7.3: Correspondence between DTMs derived from the TLS and LiDAR
datasets respectively. The outliers at the lower end of the graph are caused by a
non-ground point, which was missed during filtering and created an artificial peak
in the surface of the DTM in its vicinity.
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concentrated in the upper parts of the canopy and also on the ground. Therefore,

the forest structure represented by the LiDAR profile was biased towards the top

of the canopy and under represented the canopy depth and volume.
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Figure 7.4: Comparison of canopy height models derived from TLS and LiDAR
data respectively.

7.3.4 Forest structure

To understand the differences in measured canopy height and profiles and inter-

pret the structures represented by the two systems, the TLS and airborne LiDAR

data were compared visually. Two-dimensional plots, using the X and Z axis, were

used for visualization where variable width slices were taken through the TLS data

such that each slice contained approximately 100,000 TLS points. The intersect-
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ing airborne LiDAR points were identified for these slices and plotted alongside

the TLS data. Additionally, for the data within each slice, binned profiles were

generated using a vertical bin width of 1 m and visualized alongside the point

data (Figure 7.5). The plots demonstrated the penetration of both the TLS and

LiDAR data through the forest canopy and their capacity to represent the vertical

structure within the forest volume. Figure 7.5a illustrates a forest stand domi-

nated by Douglas fir (LV7). The dense upper canopy results in an offset of the

resulting profile structures. The profiles for the TLS and airborne LiDAR were

similar to one another in shape and form but neither had captured the full vertical

profile of the canopy and the TLS data underestimated the canopy height. For an

oak stand (LV9; Figure 7.5b) with a dense canopy, the LiDAR pulse was able to

penetrate through the more open canopy but the form of the generated profiles dif-

fered between the two. The TLS profile was biased towards the bottom while the

airborne was biased towards the top of the canopy. Therefore, these profiles would

be interpreted as representing different forest structures. For an oak stand with

an open canopy (LV8; Figure 7.5c), the laser returns were observed throughout

the canopy resulting in profiles with a strong correspondence even though sensors

characteristics and viewing angles differed.
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A)

B)

C)

Figure 7.5: Comparison of TLS (black) and LiDAR (red) data points and profiles.
A) LV7: dense Douglas Fir stand, B) LV9: dense sessile Oak canopy, C) LV8:
open sessile oak canopy
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7.4 Discussion

7.4.1 Retrieval of forest structural attributes from TLS

data

Despite the resolution of the TLS, the number of pulses reaching the upper canopy

was significantly reduced in denser forest stands because of occlusion from trunks,

branches, and leaves. The resulting shadowing had a signifiant effect on the pro-

files and therefore the structures represented (Henning and Radtke, 2006b). To

overcome the problem of occlusion, multiple scans from different view points could

be captured and the individual scans registered for use as a single combined point

cloud. However, this solution is time consuming during data capture, although

options should improve with new developments in sensor design (e.g., multiple

return or full waveform systems). The Leica ScanStation 2, which was used for

this study, only records the first return and in complicated environments with

many small overlapping elements (e.g., forest), the vegetation elements behind

cannot be observed. Therefore, the amount of information that can be obtained

is limited.

Measurement of the forest vertical profile from the TLS is limited to visual in-

terpretation. However, these data provide good representation of the individual

vegetation elements occurring within the forests. Therefore, future studies will fo-

cus on extraction and direct measurement of key structural attributes (e.g,. trunk

diameter; Gorte and Pfeifer, 2004) and the development of relationships between

the point cloud distribution and canopy metrics (e.g., canopy gap fraction, leaf

area index, foliage projected cover and branch angles). The present study in-
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dicates that the TLS is best used for retrieving attributes that are closer to the

scanner (e.g., dbh) with the exception of more open forest types where penetration

to the upper canopy can be achieved.

7.4.2 Retrieval of structural attributes from airborne LI-

DAR

From the airborne LIDAR, a close correspondence with the maximum tree height

derived from the TLS data where penetration was sufficient to reach the upper

canopy was observed. However, descriptors such as canopy depth and the num-

ber of layers (e.g., sub-canopy and understory) were either significantly under-

represented or not represented at all within the data. Generally, the height esti-

mates were considered to be more accurate than those obtained using TLS data.

However, because of the lower sampling rate of the airborne LiDAR, the upper

canopy was not always sampled and therefore the measured top of canopy heights

could be underestimated (e.g., Figure 7.5a; Tickle et al., 2006b; Hyppae et al.,

2008).

In terms of within canopy structures, reliable profiles were only extracted for the

top half or third of the canopy, depending on the density of branches and foliage

in the canopy. Therefore, reliable measures of canopy parameters such as depth

or layers could not be retrieved from these data, although the profiles do illustrate

differences between the dominant forest structural types (Figure 7.6).
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A) B) C)

Figure 7.6: Comparison of LiDAR vertical canopy profiles for a) Oak, b) Larch
and c) Douglas Fir woodlands.

7.4.3 Parameterization of the canopy vertical profile

The results here differed from those obtained from previous work (e.g., Ander-

sen et al., 2005; Hyppae et al., 2008), which have demonstrated the ability to

extract various canopy parameters (e.g., canopy depth). However, these studies

used data acquired with higher sampling rates and hence the point density was

increased significantly. The research presented in this study has demonstrated

that low sampling density airborne LiDAR data are primarily characterizing the

upper sections of the canopy while TLS data provide a better representation of

the lower sections. These discrepancies are largely attributable to the different

viewing geometries.

However, these datasets might be more comparable if higher numbers of pulses/returns

were extracted from the full waveform data and one possibility for future work

therefore consists of investigating the potential of these data at other sites using

improved pulse extraction algorithms (e.g., Lin et al., 2008).

Further research is also needed to better establish the influence of changing LiDAR

system specifications, and specifically point density on the retrieval of structural
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attributes. The use of TLS data acquired at a similar time as the airborne LiDAR

is recommended in such investigations in order to independently assess the degree

of signal attenuation between the top of the canopy and the ground. The degree

of attenuation in itself might provide a useful measure of canopy density (Wright

et al., 2008).

While the comparative profiles of extracted TLS and LiDAR waveforms shown in

this study are interesting in itself, they do not allow a parameterization of the

canopy vertical profile and future research should also concentrate on the extrac-

tion of quantitative measures of forest structure at the site from the data available.

This would be particularly interesting with regard to the different woodland types

present in the dataset and hence offers an opportunity to quantify structural vari-

ation between forests of various species composition. An integration of the two

datasets should be considered, to explore the possibilities for mutual compensation

of their respective limitations (Tansey et al., 2009).

Potential further analyses of the data therefore should include the following:

1. The thresholds of canopy openness should be related to dominant forest

species and growth stage or maturity. The proposed scale of openness should

be further reviewed with regards to its suitability.

2. Quantification of signal attenuation of either sensor related to canopy open-

ness, depth and density, as well as forest species composition.

3. Possible fusion of the waveforms extracted from TLS and LiDAR data in

order to compensate for the respective upward and downward signal atten-

uation. For this the decreasing point density of the TLS with increasing

distance from the scanner needs to be calculated and the different point

densities of both sensors have to be compensated for.
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4. Refinement of the canopy height model through integration of the TLS data

and utilization of known allometric relationships for the calculation of forest

biomass from tree height.

5. If the resolution of the TLS data allows identification of diameter at breast

height (dbh) or basal tree areas then this would allow further precision in

any biomass calculation (Ni-Meister et al., 2010).

6. Vegetation density at regular, ecologically meaningful height intervals could

be calculated for the different sites by assessing and comparing horizontal as

well as vertical profiles of selected sites.

7.5 Conclusions

For a range of temperate forest structures, comparison of TLS and airborne LiDAR

concluded that:

1. The height of individual trees was identified to a higher degree of accuracy

using airborne LiDAR when compared to TLS data. This was attributed to

the inability of the TLS to penetrate the upper sections of the canopy. The

2 m post spacing of the airborne LiDAR led to some loss of returns from the

crown tops and an underestimation of height.

2. The full waveform LiDAR penetrated the forest canopy to retrieve ground

returns consistently across all the forest types represented in this study.

3. The ability to characterize the full canopy was limited for both datasets as

the majority of points were associated with interaction with elements closer
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to the sensor. This resulted in insufficient penetration to characterize the

remaining parts of the canopy.

4. Similarities between the observed structures was greatest for more open

broadleaved forests.

5. Future work is focusing on the use of the RAW full waveform data rather

than decomposing the signal to a series of discrete returns.

This chapter has highlighted a number of issues associated with the retrieval of

structural attributes through the interpretation of vertical profiles from TLS and

airborne LiDAR. Even so, information on forest structure can be extracted. In

particular, TLS represents an opportunity to extract individual elements from the

canopy, such as stem diameter and branch distributions. Airborne LiDAR needs

to be captured at high point densities and new methods which are directly applied

to the RAW full waveforms data should be sought to allow further extraction of

structural information.



Chapter 8

Forest structure associations with

bird distributions

8.1 Introduction

As indicated in Chapter 7, airborne LiDAR provides unique information on the

three-dimensional structure of forests, including the height, openness and the dis-

tribution of plant elements such as branches and trunks within the vertical profile.

The inclusion of such information with the two-dimensional information on the

distribution of forests can significantly enhance the capacity to assess distribu-

tion of biodiversity elements (particularly mammals, birds and insects) across the

Welsh landscape. The Nextmap Intermap DSM is regarded as unsuitable for this

purpose because of inaccuracies in the retrieval of stand height as well as ground

returns and the inability to retrieve information on, for example, the number of

layers within the forest vertical profile (i.e., upper canopy, sub-canopy, understory

246
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(< 10 m) and shrub layer (< 2m)).

Airborne LiDAR, particularly if acquired at a finer (< 1m) post spacing, are how-

ever recommended although these data are unlikely to be acquired in large quantity

in the foreseeable future due to the high costs involved and the large area needed

to be covered. However, with sufficient justification, data may be acquired. For

this reason, this chapter focuses on demonstrating the potential of using airborne

LIDAR for assessing three-dimensional elements of biodiversity, focusing specifi-

cally on the bird species typical to forests, woodlands and the fridd in Wales. The

fridd is a complex mosaic of habitats that occurs at the margins of the upland

moorlands and typically consists of bracken, shrub (e.g., gorse, blackthorn) and

scattered trees (e.g., hawthorn, mountain ash).

The chapter is structured as follows. Section 8.2 outlines a dataset of bird pop-

ulations that was acquired for Lake Vyrnwy forests during the summer of 2006

using techniques adopted in the British Trust for Ornithology’s (BTO) Common

Bird Census (CBC). Section 8.3 outlines how these observational data, LiDAR

structural attributes and profiles were extracted for a range of species common

to woodlands. Section 8.4 describes and compares typical profiles for forest types

common to the study site whilst Section 8.5 considers structural attributes as-

sociated with different bird species and discusses these in relation to forest type

and the habitat (structural) preferences of these species. Section 8.6 discusses the

utility and limitations of using structural information derived from LiDAR as in-

put to species distribution models. Section 8.7 then outlines optimal approaches

for integrating the three-dimensional information from LiDAR with the satellite

habitat mapping for quantifying bird species diversity across the wider landscape

in Wales.
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8.2 Bird species data

8.2.1 The Common Bird Census

The British Trust for Ornithology (BTO) initiated the Common Bird Censuses

(CBC) with the primary aim of establishing baseline distributions of breeding

birds during the spring and summer periods against which to assess changes in

population and habitat use over extended periods (Marchant et al., 1990). This

method involves visits of pre-defined areas by personnel skilled in the recognition

of birds, both visually and from calls, during which the location of each sight-

ing and information on bird activity (e.g., nesting, territorial fighting, flying) is

recorded. The methods of the CBC are well established (Snow, 1965; O’Connor

and Marchant, 1990; Fuller et al., 1985). In 2000, the CBC was superseded by the

Breeding Bird Survey (BBS) which records data along line transects rather than

the territory-mapping method employed by the CBC (Freeman et al., 2003).

8.2.2 RSPB Lake Vyrnwy Survey

Using the original CBC methods, the RSPB conducted as many as six repeat

surveys of birds between March and July 2006 within a range of small wood-

lands surrounding Lake Vyrnwy. These included coniferous (fir, spruce and larch)

plantations at various stages of maturity and semi-natural broadleaved woodlands

dominated either by oak, birch or beech or of mixed species composition. For the

period 2006, RSPB staff made 6221 observations of 72 bird species.
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8.2.3 Data used

Through reference to existing Ordnance Survey mapping and VEXCEL aerial pho-

tography, the locations of all 6221 bird sightings were digitized within a Geograph-

ical Information System (GIS) and attributed with information on bird activity

(e.g., nesting, flying, fighting). However, many observational data were subse-

quently excluded for the following reasons:

1. They represented water birds (e.g., Mallard, Kingfisher, Dipper, Grey Wag-

tail) or birds (e.g., Raven) flying overhead and not within or in close proxim-

ity to the forest. The only exception was Buzzards, where most observations

were associated with birds flying in proximity to forests.

2. They were observed on less than 20 occasions although some that were rare

or elusive (e.g., Cuckoo, Crossbill, Firecrest, Green Woodpecker, Jay, Tawny

Owl and Willow Tit) were retained.

3. They were located outside of the area captured in the LiDAR overflight.

The final dataset therefore included 4906 observations of 36 species, with 7 species

having less than 20 observations (Table 8.1). The location of the observations is

given in Figure 8.1.

8.3 Extraction of data

LiDAR data were extracted to associate structure attributes with different forest

types, but also the observation locations of different bird species. More specifically,

data were extracted from:
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1. Regions representing common forest types and structures (conifer planta-

tions, mature semi-natural woodlands of varying species composition, dense

and scattered scrub), with areas selected identified through classification of

each of the forest types occurring (see Chapter 6), as well as field visits.

2. Locations associated with observations of birds of different species. In this

latter case, the number of observations ranged from two (for cuckoo) to 702

(chaffinch).

The extractions from different forests types, as classified using the rule-based ap-

proach (Chapter 6), were undertaken specifically to give an indication of differences

in the mean canopy height, canopy openness and canopy profiles (the distribution

of canopy elements). For the forest types, data were extracted from large poly-

gons representing discrete areas of each type. However, for the bird observation

locations, data were extracted from buffered areas of 20 m radius to overcome

limitations connected to low point density, as described in Chapter 7.

8.3.1 Forest type classification

Within the area of the LiDAR overflights, a wide range of forest types were clas-

sified but the most extensive were coniferous plantations (primarily Sitka Spruce,

Douglas Fir and European Larch) and broadleaved woodlands dominated by oak,

ash, birch or beech or combinations of these. The forests were at various stages of

growth and maturity and included young (< 10 year old) coniferous forests planted

on previously felled areas.
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Table 8.1: Bird species associated with semi-natural vegetation with woody com-
ponents

BTO code Common Name Scientific Name Count
B Blackbird Turdus merula 289
BC Blackcap Sylvia atricapilla 192
BF Bullfinch Pyrrhula pyrrhula 34
BT Blue Tit Parus caeruleus 250
BZ Buzzard Buteo buteo 35
CC Chiffchaff Phylloscopus collybita 68
CH Chaffinch Fringilla coelebs 702
CK Cuckoo Cuculus canorus 8
CR Crossbill Loxia curvirostra 2
CT Coal Tit Parus ater 146
FC Firecrest Regulus ignicapillus 6
G Green Woodpecker Picus viridis 4
GC Goldcrest Regulus regulus 104
GS Great Spotted Woodpecker Dendrocopos major 76
GT Great Tit Parus major 143
GW Garden Warbler Sylvia borin 45
J Jay Garrulus glandarius 14
LR Lesser Redpoll Carduelis cabaret 33
LT Long-tailed Tit Aegithalos caudatus 38
M Mistle Thrush Turdus viscivorus 27
MT Marsh Tit Parus palustris 21
NH Nuthatch Sitta europaea 97
PF Pied Flycatcher Ficedula hypoleuca 135
R Robin Erithacus rubecula 521
RT Redstart Phoenicurus phoenicurus 145
SF Spotted Flycatcher Muscicapa striata 56
SK Siskin Carduelis spinus 64
ST Song Thrush Turdus philomelos 201
TC Treecreeper Certhia familiaris 91
TO Tawny Owl Strix aluco 7
TP Tree Pipit Anthus trivialis 43
WO Wood Warbler Phylloscopus sibilatrix 94
WP Wood Pigeon Columba palumbus 91
WR Wren Troglodytes troglodytes 646
WT Willow Tit Parus montanus 4
WW Willow Warbler Phylloscopus trochilus 474
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Figure 8.1: The location of RSPB bird observations around Lake Vyrnwy
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8.3.2 Canopy height and openness

As measures of canopy height, both the maximum and mean were extracted from

the polygons associated with discrete forest stands and observation locations. A

measure of canopy openness, the local maximum Height Scaled Crown Openness

Index (HSCOI; Lee and Lucas (2007b)) was also calculated for each polygon. The

HSCOI translates point measurements into a measure of relative penetration of

LiDAR pulses by scaling these from the top of the canopy. Values range from 0 (no

penetration) to 100 (full penetration). The HSCOI is a weighted summation of a

proxy variable of the inverse of canopy density (i.e., 1/number of voxels (nvoxels)

containing returns per 1m2 vertical column). The weighting used is the relative

height of the voxel (Hvoxel) with respect to the maximum height (Hmax) within an

n x n kernel window such that:

HSCOI =

nvoxels(i)>0∑
n=1

((
Hmax −Hvoxel

Hmax

) ∗ 1

nvoxels
) ∗ 100 (8.1)

where the summation uses only those voxels that contain LiDAR returns. This is

achieved with a variable (i) that counts the LiDAR voxels (containing returns) up

to the maximum number of levels (i.e., maximum height of the column). The max-

imum height can also be that of the stand, although this was not used here.

8.3.3 Canopy profiles

Extraction of canopy profiles from bird observation points was undertaken to es-

tablish whether these were reflective of the habitat preferences of species. For

each of the 4906 bird observations, data were extracted from areas of variable area
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(circles of, respectively, 2, 5, 10 and 20 m radius), with each area centred on the

location of the observed individuals. From each, the number of points in each 0.5m

height interval in turn (up to a maximum of 50 m) was summed as:

Nj =
i=n∑
i=1

Oi (8.2)

where Nj represents the count of LiDAR returns in height interval j (range 0.5 to

50 m) for all observation points (O) with n being the number of observations for

the bird species considered. Once extracted, the data were combined to produce

a frequency profile such that:

Np = Ni/

j=50∑
j=0

Nj ∗ 100 (8.3)

where Np represents the number of returns in each 0.5m height interval as a per-

centage of the total. The profiles represented the distribution of scattering elements

within the vertical column.

Comparison of the profiles extracted suggested that areas with radii of 2 and 5m

respectively were too small to give representative profiles, with no clear distinction

between layers (Figure 8.2). However, those from 10 m and 20 m radii were

more similar and differences between the upper canopy, subcanopy, understory

and shrub-layer were discernible. As the profiles based on a 20 m radius fell

largely within the forest area, this buffer size was used for all extractions, although

some overlap with different forest types (e.g., coniferous plantation, broadleaved

forest) and other land covers (e.g., grasslands at various levels of improvement)

was evident.
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Figure 8.2: Vertical profiles based on LiDAR points extracted from circular areas of
2m, 5m, 10 m and 20 m radius and associated with the locations of pied flycatcher
observations (Sessile oak woodlands)
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8.4 Structural characteristics

8.4.1 Height (mean and maximum)

The image representing the height of forests at Lake Vyrnwy is given in Figure 8.3.

The tallest forests (> 35m) were associated with Douglas Fir plantations, although

the range of height classes reflected the different age classes of plantations in the

area. The majority of broadleaved forests were between 10 and 35m in height,

with the tallest associated with beech forests north of Lake Vyrnwy.

Figure 8.3: Tree height at Lake Vyrnwy (ground returns are not filtered out and
are hence shown in light grey)
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8.4.2 Openness

The image representing the openness of forests at Lake Vyrnwy is given in Fig-

ure 8.4. Most forests supported an openness of < 40 %, with greater openness

associated with the sessile oak woodlands. Within the fridd zone, extensive ar-

eas of bracken, gorse and scattered or dense tree scrub were observed, with these

generally being < 10 m in height. These forests were also more open (typically >

80 %) compared to the forest areas. The younger coniferous plantations observed

were also less than 10 m in height.

Figure 8.4: Canopy Openness at Lake Vyrnwy
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8.4.3 Canopy profiles

Examples of canopy profiles for a range of forest types are given in Figure 8.5.

Monospecific and relatively mature coniferous plantations (typically dominated

by Douglas Fir, Sitka Spruce and Scots Pine) tended to be single layered with no

sub-canopy and a limited understory. The majority of returns from within these

forests were in the height range 20 - 30 m, 15 - 25m and 15 - 20 m respectively.

Profiles associated with approximately 30 m high larch plantations indicated an un-

derstory (of <10 m), which was attributed to regrowth beneath the upper canopy.

An example of a regrowth conifer plantation (10 m in height) is also given for

comparison. For broadleaved woodlands, profiles were generated for woodlands

dominated by oak, beech, birch and willow/alder (wet woodlands). Some differ-

ences were observed between sessile oak woodlands of lower stature (< 20 m) and

with and without a shrub layer (Figures 8.5(g) and 8.5(h)). Within woodlands

dominated by either beech and birch and also the wet woodlands, neither the shrub

layer nor understory were well established which reflected field observations (Fig-

ure 8.5(i) and 8.5(j)). Within woodlands dominated by mountain ash in the fridd,

most of the trees and associated shrub were < 15m in height with a few larger

individuals occurring. In each case, the profiles reflected observations in the field

although caution needs to be taken in their interpretation, given the discrepancies

observed between the profiles obtained using the TLS and airborne LiDAR (see

Chapter 7).
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Figure 8.5: Canopy profiles of common forest, woodland and shrub types. Domi-
nant species are indicated where appropriate.
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(a) Sparse understory

(b) Understory

(c) Birch woodland

(d) Beech woodland

Figure 8.6: Panoramic photographs of sessile oak woodland with a) sparse under-
story and b) understory, c) birch and d) beech woodlands
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8.5 Links between forest type and structure and

bird species distributions

8.5.1 Forest type

As expected, general associations between forest type and bird species occurrence

were observed. For example, within the mature oak forests (Figure 8.7), common

species included pied flycatcher, green woodpecker, nuthatch, redstart and greater

spotted woodpecker. This was in contrast to the mature spruce forests where the

most commonly observed species were firecrest, siskin and goldcrest. These species

are typically associated with coniferous forests. Within mixed forest types, the

presence of bird species more typical to coniferous forests was generally dictated

by the existence of coniferous tree species within the stand.

8.5.2 Forest structure

Height

With increases in mean height (Figure 8.8), bird species typically associated with

woodland communities were more prominent, with these including tawny owl,

nuthatch, treecreeper and greater spotted woodpecker. Some species (e.g., spotted

flycatcher and chiff chaff) were associated with taller stands, although observations

were generally at the margins with cleared or more open areas. A number of

species occurring in the taller forests generally favoured the understory and ground

layers (e.g., blackbird, robin, blackcap, song thrush) and hence were generally not

exploiting the full vertical profile. Birds associated with lower stature forests
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(a)

(b)

Figure 8.7: Relative frequency of bird species within (a.) mature oak and (b.)
spruce forests.
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included tree pipits, green woodpeckers, cuckoo, lesser redpoll, willow warbler and

willow tit. However, whilst species such as tree pipit and cuckoo favoured open

areas, larger isolated trees were often present. Linkages between tree height and

species distributions therefore need to be treated with some caution and should

take account of specific use of the forested landscape (e.g., for nesting, feeding,

roosting). For all forests, maximum height was less appropriate as a measure

because of bias towards larger trees where these existed (Figure 8.9).

Figure 8.8: Distribution of bird species occurrences within woodlands of increasing
mean canopy height

Canopy openness

Species preferring more open canopy forests (Figure 8.10) included jay, mistle

thrush, tawny owl, blue tit, lesser redpoll, nuthatch and siskin whilst the more

open forests were favoured by firecrest, cuckoo, green woodpecker, tree pipit, car-

rion crow and whinchat. These observations generally align with known species
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Figure 8.9: Distribution of bird species occurrences within woodlands of increasing
maximum canopy height

preferences.

Canopy profiles

For bird species with territories confined largely to the area occupied by forest,

woodland or fridd, canopy profiles were generated and compared. Within the

coniferous plantations, bird species that were most common included goldcrest,

firecrest, siskin and coal tit (Figure 8.11). Firecrest, which has a preference for

nesting in tall trees, was found largely within the mature Douglas Fir plantations.

Goldcrest and siskin were more common within a lower stature forests, where most

of the returns were between 10 and 20 m. These included broadleaved forests with

coniferous trees as a component. Coal tits were associated more with forests with

a sub-canopy occurring between 10 and 20 m and overstory up to 30-35m.

A large proportion of bird species were more common to the broadleaved forests,
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Figure 8.10: Distribution of bird species occurrences within forests of varying
canopy openness
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Figure 8.11: The percentage of LiDAR returns by height (m) for goldcrest (GC),
firecrest (FC), siskin (SK) and coal tit (CT).
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although some frequented coniferous forests. Greater spotted woodpecker, green

woodpecker, treecreeper and nuthatch are species that require trees above a certain

trunk diameter size in order to breed and also obtain food (e.g., insect larvae). The

vertical profiles associated with these four species were remarkably similar with

each occurring in forest up to 40 m in height but with a dominant of returns

between 10 and 15m (Figure 8.12(a)). These species also preferred a relatively

sparse understory. Other species that are typically associated with larger trees and

which were observed at Lake Vyrnwy included tawny owl, mistle thrush and wood

pigeon (Figure 8.12(b)). These species favoured forests with a more established

sub-canopy and understory.

Pied flycatchers, wood warblers and redstarts are typical to upland woodlands in

Wales and particularly those dominated by or including sessile oak. Pied flycatch-

ers in particular are common in sheep-grazed woodlands or those with a limited

understory. This species nests in holes in trees and hence are more frequent in

older woodlands where branch and trunk sizes are sufficiently large. The nesting

material often includes honeysuckle and hence the occurrence of this plant within

the understory often favours this species. Wood warblers are also common in oak

and also taller beech woodlands. This species often remains in the upper canopy

but nests on the ground. To access the nest site, individuals move from the upper

canopy to the ground by using the lower branches of larger trees but also sub-

canopy trees (e.g., beech) as cover. Redstarts prefer more open woodlands and

dense to scattered scrub and nest in hollow trees or buildings. The different pref-

erences of these three species were reflected in the vertical profiles (Figure 8.13). In

particular, wood warblers were found in taller forests (dominated by beech and/or

oak) up to 45m, with a sub-canopy of 10-25m and relatively sparse understory.
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Figure 8.12: The percentage of LiDAR returns by height (m) for a) nuthatch (NH),
treecreeper (TC), greater spotted woodpecker (GS) and green woodpecker (G) and
b) tawny owl (TO), mistle thrush (MT) and woodpigeon (WP).
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Pied flycatchers and redstarts were found within woodlands of lower stature, with

the former associated with those with a reduced understory layer. Redstarts were

associated with a more open canopy and a more established understory.
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Figure 8.13: The percentage of LiDAR returns by height (m) for pied flycatcher
(PF), wood warbler (WO) and redstart (RT).

Blackcap, bullfinch and garden warbler occur across a range of woodland types

(coniferous or broadleaved) of varying height but require a dense shrub layer for

nesting. Both blackcaps and garden warblers typically nest about 0.5 to 2m above

the ground whilst bullfinches often nest 1 - 2m above the ground. Nests are often

located in brambles and other dense shrub-layer species. All three species also feed

within the understory or lower layers of the canopy. The vertical profiles for these

species (Figure 8.14) reflect their occurrence across forest structures ranging from

> 40 m high coniferous forest (BC) to lower stature woodlands with an established

sub-canopy and understory (including dense scrub).
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Figure 8.14: The percentage of LiDAR returns by height (m) for blackcap (BC),
bullfinch (BF) and garden warbler (GW).

A number of bird species were associated with more open woodlands and scrub

(typical to the fridd). Both tree pipit and cuckoo favour open areas with low

scrub but scatterings of tall trees, with these including felled coniferous planta-

tions where mature deciduous trees are often retained. Spotted flycatchers also

prefer these habitats as well as the edges of forests from where they make frequent

flights from their perch, catch insects and then return to the same or a nearby

perch. Willow warblers and chiff chaffs are associated with more open forests and

often favour willow/alder carr or regenerating forests (including plantations with

a high proportion of birch). These preferences are again reflected in the vertical

profiles (Figure 8.15), with all indicating a dominance of returns within the lower

height classes (with the exception of spotted flycatchers). The profiles reflected

the preference of these species for low stature woodlands (including regrowth) and

the occurrence of large individual trees but a lack of a distinct overstory.
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Figure 8.15: The percentage of LiDAR returns by height (m) for tree pipit (TP),
cuckoo (CK), willow warbler (WW), spotted flycatcher (SF) and chiff chaff (CC).

A number of bird species were widespread and generalist, occurring across a range

of forest types and often associated with human habitation (e.g., gardens, out-

buildings, farmyards). As examples, blackbirds and song thrush are woodland

birds that are frequent within more open areas. However, these species prefer a

dense understory for cover and also for nesting but often sing from tall trees, hence

their occurrence within the woodlands that were mature or contained larger indi-

vidual trees. Robins and wrens are ubiquitous throughout the Lake Vyrnwy forests

but typically feed and breed in the lower canopy and ground layers. Chaffinches

occur in the upper canopy where they both nest and feed but also make frequent

visits to the ground layer. The vertical profiles (Figure 8.16) indicate preference

for a sub-canopy and ground layer but also their occurrence across a range of forest

statures (including > 40 m high coniferous forests).
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Figure 8.16: The percentage of LiDAR returns by height (m) for chaffinch (CH),
robin (R), blackbird (B), song thrush (ST) and wren (WR).

To better illustrate differences between vertical profiles, those obtained for titmice

(Paridae) and warbler (Sylviidae) families are compared (Figures 8.17 and 8.18).

Great tits and blue tits are common to woodlands, particularly those dominated

by oak species which provide an abundance of food (e.g., caterpillars). Long-

tailed tits are more characteristic of woodlands and dense scrub of medium height,

particularly that dominated by birch, willow and alder. Both marsh and willow tits

occur across a range of broadleaved woodlands although favour an understory or

shrub layer; both nest at a relatively low level in the canopy. These preferences are

reflected in the profiles, which were similar for great tit and blue tit (Figure 8.17),

with both occurring within forests > 30 m in height but with a dominance of trees

within the 10 - 20 m height range. Long-tailed tits were absent (or not observed)

within forests > 30 m but with a distinct upper canopy layer. Marsh tits were

observed within forests up to 30 m but were more abundant within lower stature
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forests and those with an established understory. Willow tits were associated with

forests with a distinct overstory with some understory, although this could have

reflected the lower number of observations for this species.
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Figure 8.17: The percentage of LiDAR returns by height (m) for great tit (GT),
blue tit (BT), long-tailed tit (LT), willow tit (WT) and marsh tit (MT).

For the different warbler species, the profiles varied. Wood warbler favoured the

taller forests (as outlined earlier) with a sparse understory whilst chiff chaff pre-

ferred a more substantial understory. Garden warblers occurred in woodlands

with an overstory at approximately 10 - 20 m and an understory of 2 - 8m. Willow

warblers preferred a more open forest of < 20 m in height with an established

understory. In this case, the profiles for each of these species reflected the different

habitat preferences.

Whilst the profiles for the bird species illustrated are as expected, it should be

noted that observations of birds occurring in the upper canopy may be less than
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Figure 8.18: The percentage of LiDAR returns by height (m) for willow warbler
(WW), garden warbler (GW), chiff chaff (CC) and wood warbler (WO).

in the lower canopy, particularly when these are not singing and their identification

is less certain. Therefore, some care needs to be taken in characterizing the vertical

profiles for different bird species. Canopy profiles were generated for all species, but

only those associated with species confined largely to the forest area are illustrated

and discussed. However, Table 8.2 indicates the dominant layer and the number

of layers associated with all species observed.
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Table 8.2: Association of common bird species with the dominant layer and number
of layers in the forest.

BTO code Common Name Dominant layer (depth in m) No. layers
B Blackbird 0-18 1
BC Blackcap 0-15 1
BF Bullfinch < 10 1
BT Blue Tit 3-17 1
BZ Buzzard 0-20 1
CC Chiffchaff 0-10,10-30 1
CH Chaffinch 0-15 1
CK Cuckoo 2-7 1
CR Crossbill 0-15 1
CT Coal Tit 0-15 1
FC Firecrest 15-30 1
G Green Woodpecker 10-18 1
GC Goldcrest 3-20 1
GS Great Spotted Woodpecker 5-20 1
GT Great Tit 0-18 1
GW Garden Warbler 0-5, 10-17 2
J Jay 0-8, 15-20 1
LR Lesser Redpoll < 7 1
LT Long-tailed Tit 3-16 1
M Mistle Thrush 0-5, 10-20 2
MT Marsh Tit 3-20 1
NH Nuthatch 8-18 1
PF Pied Flycatcher 10-19 1
R Robin 0-5 1
RT Redstart 3-15 1
SF Spotted Flycatcher 4-20 1
SK Siskin 4-22 1
ST Song Thrush 0-15 1
TC Treecreeper 0-16 1
TO Tawny Owl 8-20 1
TP Tree Pipit 0-5 1
WO Wood Warbler 10-23 1
WP Wood Pigeon 0-20 1
WR Wren 0-15 1
WT Willow Tit < 5, 10-15 2
WW Willow Warbler < 5 1
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8.6 Discussion

8.6.1 Links between bird distributions and forest struc-

ture

Within the Lake Vrywny catchment, several bird species were confined primar-

ily to either coniferous (e.g., firecrest) or broadleaved forest (e.g., pied flycatcher,

wood warbler). These broad habitats can be mapped using satellite sensor data

(as indicated in Chapter 6) and their classification from these data infers a rel-

atively mature forest. Fridd habitat can also be classified from satellite sensor

data. However, better knowledge of the distribution of some forest types (e.g.,

those dominated or containing sessile oak, beech and/or birch) is necessary to

better indicate the distribution of the habitats of some bird species (e.g., pied

flycatcher, wood warbler). Other bird species were associated with mixtures of

broadleaved and coniferous forests. For example, willow warblers were often ob-

served within younger coniferous plantations, where birch is commonplace, whilst

goldcrest occurred within broadleaved forests where coniferous species (e.g., pines)

were a component. In the former case, classification from satellite sensor data can

be achieved, particular if time-series datasets were introduced (i.e., to document

the history of felling and replanting).

The inclusion of structural information benefits the characterization of forests and

their association with bird species distributions. In particular, differences in the

vertical profiles associated with distinct species groups were evident. For example,

bird species that utilize the larger trunks and branches of trees (e.g., woodpeckers,

treecreeper and nuthatch) were more frequent within taller forests with a sparser

understory. Below a certain mean tree height, observations of these species reduced
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and other species became more prevalent (e.g., blackcaps, garden warblers, marsh

tits). Many species (e.g., firecrest, wood warbler) were confined largely to more

closed canopy forests whilst others (e.g., tree pipit, redstart, cuckoo) favoured more

open areas with scattered trees or the edges of the forest.

Defining a ’typical’ profile for bird species is nevertheless problematic as this de-

pends on a number of factors including scale (i.e., of data extraction) and also

more specific requirements of species (e.g., nesting sites). Nevertheless, the pro-

files reflected the known preference of many species in terms of their use of the

vertical profile of forests.

The limitations of using LiDAR data to retrieve canopy profiles have been high-

lighted in Chapter 7. Nevertheless, a broad correspondence can be observed in

many cases, although this depends on the number of plant elements occurring

within different parts of the vertical profile. Figure 8.19 gives examples of TLS

and airborne LiDAR profiles for the forest types observed at LV7 - LV13. In

most cases, the overstory and sub-canopy are well represented within the airborne

LiDAR data (although less so by the TLS).

These data may be less suited though for identifying differences in habitat for

species favouring the understory (e.g., blackcap, bullfinch, marsh tit, garden war-

bler) and Figures 8.11 to 8.18 therefore have to be considered with this limitation.

However, discrimination also depends upon the relative openness of the top canopy

of each woodland type and the capacity for LiDAR pulses to transmit through to

the underlying layers, which would increase with greater pulse frequency. The

profiles in Figures 8.11 to 8.18 are furthermore not based on single laser pulses,

but on a large number of profiles extracted from a 20m radius around each bird

sighting. Assuming the relative structural homogeneity of each separate woodland
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type, a proportion of any understory present would be represented in each pro-

file through those fewer laser pulses which penetrated the canopy to the ground,

though the exact proportion cannot be accurately determined here.

A number of studies have similarly identified a link between forest structural mea-

sures and bird species diversity. For example, Goetz et al. (2007) suggested that

the distribution and richness of bird species was linked closely to the structure and

heterogeneity of the forest canopy structure. Hill et al. (2004) and Hinsley et al.

(2006) also reported a link between habitat quality (defined by canopy structure

and height) and the breeding success of great tits in UK woodlands. A number of

studies have linked LiDAR-derived measures of forest structure to bird species dis-

tributions (e.g., Bradbury et al., 2005; Davenport et al., 2000; Hyde et al., 2006a).

Hill and Thompson (2005) also advocated the inclusion of additional information

on tree species as well as stand age and condition (e.g., as determined from multi-

or hyper-spectral data). However, whilst a broad correspondence may be observed,

there are other factors which determine the distribution of bird species that cannot

be quantified from LiDAR, including the occurrence of nesting sites (hollows in

trees), food availability and competition between individuals and species. Other

species may be more generalist in habitat generalization and occupy both forests

and adjoining habitats. For this reason, many studies have focused on a particular

bird species or group of species (Goetz et al., 2007).

8.6.2 Species distribution models

For conservation purposes, spatial information on both the actual and likely oc-

currence of species is a requirement and has been obtained primarily by linking

field-observations with environmental surfaces, including habitat maps. For this
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(a) LV7 (Douglas Fir)

(b) LV8 (Open Sessile Oak)

Figure 8.19: Comparison of vertical profiles obtained for coniferous and broad
leaved woodlands from both TLS (black) and airborne LiDAR (red)
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(c) LV9 (Open Sessile Oak with understory)

(d) LV10 (Grazed Sessile Oak)

Figure 8.19: Comparison of vertical profiles obtained for coniferous and broad
leaved woodlands from both TLS (black) and airborne LiDAR (red) (cont.)
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(e) LV11 (Dense Larch)

(f) LV12 (Dense mixed coniferous wood)

Figure 8.19: Comparison of vertical profiles obtained for coniferous and broad
leaved woodlands from both TLS (black) and airborne LiDAR (red) (cont.)
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(g) LV13 (Dense Sitka Spruce)

Figure 8.19: Comparison of vertical profiles obtained for coniferous and broad
leaved woodlands from both TLS (black) and airborne LiDAR (red) (cont.)

purpose, a wide range of species distribution models (SDMs), or habitat suitability

models, have been developed (e.g., GARP, BioMapper, Maxent). SDMs provide

an opportunity to combine field-based observations (presence, presence-absence or

abundance) of the distribution of flora and fauna with vegetation maps and envi-

ronmental information (e.g., terrain and climate variables, disturbance or energy

resources; (Guisan and Thuiller, 2005)) to predict their distribution in unsam-

pled areas. In many cases, these models use existing or new or updated mapping

based on the classification of satellite (primarily optical) sensor data. A number of

SDMs are commonly used including DesktopGARP (Stockwell and Peters, 1999;

Stockwell, 1999) and Biomapper (Hirzel et al., 2001, 2008).

The majority of SDMs have relied on two-dimensional mapping of habitats and

other biophysical properties (e.g., vegetation productivity). However, few have
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used quantitative information on the three-dimensional structure of vegetation,

particularly forests. Potential LiDAR-derived inputs to such model include forest

top height, mean height and openness as well as the number of layers within the

vertical profile. However, a number of issues have been identified which still limit

the use of these LIDAR-derived measures in SDMs.

1. Comparison of canopy profiles derived from both the airborne LiDAR and

TLS indicated discrepancies associated with attenuation of the pulses by

elements within the canopy volume. Hence, components of the sub-canopy

and particularly the understory may not be captured accurately.

2. Many bird species may be associated with distinct profiles but other compo-

nents of the habitat (e.g., availability of nesting sites or prey) may be more

important.

For these reasons, careful consideration needs to be given to the inputs into

SDMs.

8.6.3 Assessing bird habitat suitability across Wales

To assess the suitability of habitats for different bird species across Wales, detailed

habitat maps are needed. For this purpose, the revised Phase I map (Lucas et al.,

in press) provides detailed land cover mapping at 10 m spatial resolution and at a

sub-object level for complex environments (e.g., upland mosaics). For habitats low

in height (e.g., heathlands, grasslands), the requirement for structural information

is relatively low and hence these data may be well suited for SDMs, particularly

in relation to birds. However, for forests, the use of three-dimensional information

to assess structural heterogeneity can contribute to a better assessment of bird
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species distributions. Although Wales-wide coverage is provided, the Nextmap

Britain DSM has already been discounted, because of inaccuracies in the retrieval

of stand height and low spatial resolution.

Whilst discrete dual return LiDAR data (2m nominal resolution) have been ac-

quired for much of Wales, and particularly along the river network, by the Environ-

ment Agency, these data are also considered to be of insufficient spatial resolution.

As full waveform data were not acquired, the number of structural attributes able

to be extracted is also more limited, particularly in relation to descriptions of

the vertical canopy profile. Even so, measures such as mean and maximum stand

height and the HSCOI should be retrievable. On this basis, the study recommends

the use of full waveform data acquired at < 1m post spacing at a Wales-wide

level.

8.7 Summary and conclusions

For the Lake Vyrnwy forests, woodlands and fridd habitats, 4906 bird observations

(36 species) were made in 2006. For each of the 36 species, information on the

forest type, height, openness and vertical profiles was summarised. The main

conclusions were:

1. The vertical profiles reflected the known habitat preferences of most species,

particularly those that were more specialised (e.g., wood warbler, pied fly-

catcher, greater spotted woodpecker, garden warbler, tree pipit).

2. Profiles were less easy to interpret for species that were more generalist (e.g.,

blackbird, robin, chaffinch) but still reflected the habitat use by these species.
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3. Confidence in the use of profiles for the interpretation of bird distributions

was reduced for forests where the density of plant components led to attenu-

ation of the airborne LiDAR pulses such that information on the sub-canopy

or understory was reduced.

4. Whilst structural attributes derived from airborne LiDAR data may be used

as input to species distribution models, consideration needs to be given to

attenuation of the LiDAR pulse, the post-spacing of the LiDAR data used

and the presence of other factors (e.g., nesting opportunities, food availability

and competition) that might influence species occurrence and use of the

landscape.

For regional assessment of bird species distributions, the Phase 1 Survey revised

with satellite sensor data is regarded as more useful for those species specific to

habitats such as grasslands and heaths. However, to assess distributions within

forests, information on their three-dimensional structure is required. Whilst maps

of forest height at a national level can be generated from NextMap Britain data,

these are considered unreliable because of the difficulty in obtaining a DTM from

below the forest canopy. For this reason, acquisition of full waveform LiDAR

data of fine (< 1m) post spacing, even if only across important forested areas

(e.g., reserves or areas with actual or planned management actions), is recom-

mended.



Chapter 9

Discussion: Remote Sensing of

biological diversity

The discussion focuses on the benefits obtained through the integration of space-

borne multispectral, airborne hyperspectral and LiDAR data for better land cover

mapping and the characterization of grasslands and forests in particular. The

benefits for the assessment of biodiversity in terms of grass species (inferred from

habitat type) and bird species associated with forests are conveyed. Potential

benefits and measurements for mapping across Wales are highlighted.

9.1 Object-based classification of Welsh landscapes

The research undertaken has established, through reference to hyperspectral data,

that different grassland types and levels of improvement, can be discriminated

from spaceborne optical sensor data. Such knowledge has been evaluated over west

285
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Ceredigion and incorporated into the mapping of habitats across Wales. For as-

sessing the species diversity of grasslands, the spectral information can allow map-

ping of broad categories (e.g., grasslands dominated by Molinia caerulea, Nardus

stricta and Festuca ovina) and different levels of improvement. The classification

scheme has been expanded to include forests (coniferous and broadleaved) and

also upland heaths. For discriminating tree species, some success was obtained

using spectral data (e.g., for oak) but this was considered insufficient for wide area

application. For assessing the diversity of bird species within forests, the use of

three-dimensional information (namely from LiDAR) is advocated as a close cor-

respondence in metrics (e.g., height, distribution of elements within the vertical

profile and canopy openness) with the known distribution of some species ob-

served. The following sections discuss in more detail the contribution that remote

sensing data acquired at various scales and modes can make to the assessment of

biodiversity in Wales.

9.1.1 Classification of semi-natural habitats

The object-based classification of semi-natural habitats and agricultural land rep-

resents a significant advance in land cover mapping. This research has contributed

to the development of a map by focusing on Ceredigion grasslands and Lake

Vyrnwy forests.

Habitat mapping across Wales has been, as indicated previously, associated with

field survey with support from targeted aerial photography interpretation. Satellite

derived mapping has been relatively coarse and not at the level of detail, in terms

of resolution or discrimination of habitat types, as to be useful for conservation

purposes.
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The research conducted for this PhD has established that better mapping can be

achieved from spaceborne remote sensing data, particularly through the integration

of SPOT 5 HRG data.

In particular:

1. habitats can be mapped in greater detail

2. rules are consistent in terms of their sequence but values change between

regions. The mapping benefits from

a. hard (boolean rules)

b. soft (fuzzy based rules)

This allows both discrete and relatively homogenous areas of the landscape

to be mapped and differentiated from complex mosaics.

3. The method utilizes field boundary information which assists documentation

of habitats, etc.

9.1.2 Classification of grasslands

Across the Vyrnwy and Ceredigion study areas, grasslands were categorised pri-

marily as improved, semi-improved or unimproved. The latter category largely

belongs to upland acid (Sheep’s fescue (Festuca ovina, Agrostis spp.) or calcareous

grasslands and marshy grasslands (dominated primarily by Purple Moor Grass

(Molinia caerulea) and/or rushes (Juncus spp.) as well as Mat Grass (Nardus

stricta) and these could be discriminated spectrally.
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Improved grasslands

At a regional level, improved grasslands were defined by the presence of some

species (e.g., Lolium perenne). Using spaceborne data, areas of improved grass-

land were also associated with a relatively high near infrared reflectance, pho-

tosynthetic fraction and/or NDVI during the growing seasons. In the uplands,

improved grasslands were associated with a high spring NDVI and also a high

NIR reflectance. Based on the data collected at Trawscoed and Pwllpeiran, im-

proved grasslands exhibited a higher near infrared reflectance which was associated

with greater structural and species homogeneity, as well as increased productivity

through fertilization. Similarly, the greater proportion of photosynthetic vegeta-

tion compared to non-photosynthetic vegetation because of constant grazing was

evident.

Productivity in improved fields is high and so there is a reduction in reflectance

in the visible wavelengths (as a consequence of chlorophyll absorption) and an

increase in scattering in the near infrared wavelengths. In many improved swards,

clover (Trifolium repens) is present and the leaves are horizontally orientated and

held in a relatively uniform ‘floating’ layer. Hence shadowing is reduced (and hence

the shade fraction) and the proportion of non-photosynthetic vegetation (NPV) is

minimal.

Unimproved grasslands

The drier unimproved grasslands were generally less productive, which was re-

flected in a greater SWIR reflectance (particularly in the spring) and lower NDVI

compared to more improved grasslands in the spaceborne data. Unimproved grass-
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lands also often have a high level of non-photosythetic vegetation present, as the

grazing levels are less intense than those of improved fields and there is subse-

quently less removal of biomass before senescence. At Pwllpeiran and Trawscoed,

the increase in reflectance in the SWIR and reduced NDVI was attributed to a

greater species diversity and hence sward heterogeneity, but also a greater propor-

tion of non-photosynthetic material in the vegetation.

Semi-improved grasslands

Semi-improved grasslands were generally more productive, as indicated by greater

proportions of photosynthetic vegetation in the spring and summer. Discrimina-

tion of these grasslands is difficult as though, even in the field, there is contention

as to their classification.

Differentiation of improved, semi-improved and improved grasslands was problem-

atic as these are effectively gradations of each other.

Other grassland types

A number of other grassland types were discriminated with these being dominated

by one or several species. Wet grasslands dominated by Juncus species were iden-

tified primarily using the visible green and red wavebands because of contrasts

with many surrounding habitats, often improved grasslands. These grasslands

also exhibited lower NIR reflectance and NDVI compared to those that were more

productive.

Molinia caerulea is widespread throughout Wales and is the dominant species of

many upland marshy grasslands. Typically, the diversity of other grass species is
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very low were Molinia is widespread. Differences in the photosynthetic fraction

between the spring and the summer months as well as red (summer) and SWIR

(spring) reflectance and knowledge of slope preferences were used primarily to

distinguish Molinia-dominated grasslands from adjoining habitats (e.g., bracken

and other unimproved upland grasslands). Vegetation indices incorporating the

SWIR and red reflectance in the spring and summer were also used. Unimproved

grasslands associated with Nardus stricta exhibited low differences in the NDVI

between the spring and summer. This occurred because of the low proportion

of non-photosynthetic vegetation with Nardus dominated swards as the species

is very slow-growing and has a comparatively low primary productivity (Perkins,

1968).

Festuca spp. grasslands (with short turf) typically exhibited a high spring SWIR

and NIR reflectance.

Overall, individual species can only be mapped if they are spatially dominant and

occupy large areas and are spectrally distinct. However, the species diversity can

also be inferred. For example, within improved fields, species diversity is low but

increases within semi-improved fields. Acid grasslands tend to be of lower diversity

than neutral or calcareous unimproved grasslands (Krauss et al., 2004), because

they are confined generally to the upland areas where conditions permit less species

to establish themselves.

Comparisons with other classifications indicate that a wider range of grassland

types have been mapped. The land cover map of 2000 (Fuller et al., 2002) only

mapped broad grassland classes, for example. It was possible to make improve-

ments to the grassland classifications by utilizing the relationships established

between grassland improvement and reflectance. Similarly, the proportion of non-
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photosynthetic vegetation within the grassland provides a good indication of pro-

ductivity and improvement levels. Use of multi-temporal imagery further allowed

observation of the seasonal variation in these parameters for different grassland

types (Tateishi et al., 2004).

The key indicators for level of grassland improvement in multispectral data are:

• NDVI - productivity

• NPV - proportion of dead material

• Shade - roughness of grasslands

• NIR - biomass/grass length and living, photosynthesizing material

• Seasonal differences in the above

Some grassland species information can be inferred from multi-spectral remote

sensing data, especially where swards are dominated by a single or very few species,

e.g., Molinia-dominated grasslands.

Improved grassland supports few species, but those that occur (Lolium perenne,

Trifolium repens) are very productive and the sward, more importantly for classi-

fication, is very homogenous in appearance and reflectance. Unimproved grass-

lands have a high proportion of NPV, though this varies with different types

of unimproved grasslands. Molinia, for example, produces a large amount of

non-photosynthetic vegetation and complete ground cover, while acid and cal-

careous swards which are commonly closely grazed do not contain much dead

material. The amount of NPV present also varies by species composition of the

unimproved sward, for example Festuca ovina in the uplands, and this can be

discriminated.

The points made above give some indication of species present, when remote sens-
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ing information is combined with ecological knowledge. The greater the area of one

type of grassland or habitat, the greater the chance to detect and identify it cor-

rectly, because a greater homogenous core will be present. This, for example, has

been shown to improve the species discrimination within semi-natural grasslands

(Jacobsen et al., 2000; Lauver, 1997).

9.1.3 Classification of forests

Across Wales, according to the Phase 1 survey (Howe et al., 2005), forests represent

about 14 % of the landscape, with these split between broadleaved (5 %), coniferous

(7 %) and mixed (2 %). Scattered and dense scrub cover approximately a further

6% of the landscape.

The segmentation and classification procedures resulted in two different levels of

information relating to the distribution and scale of habitats. These included

complex mosaics such as moorlands and lowland grasslands where objects were

associated with values representing the fuzzy membership of selected sub-habitats.

Within Level 1, habitats were associated with one class only (e.g., coniferous for-

est). The rule-base was extended to attempt classification of more detailed forest

types by species but was only moderately successful because of spectral similari-

ties between different tree species and insufficient segmentation of different forest

type objects from their surrounding habitats. Similar rule-based approaches to

classification have been applied previously with variable success (Czaplewski and

Patterson, 2003).

For forestry, mapping requirements are varied and range from broad type classifi-

cations (coniferous, broadleaved, mixed) to individual tree mapping.
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As an example Bunting and Lucas (2006) used 1m spatial resolution hyperspectral

data at the individual tree level, as well as co-registration with LiDAR data to

allow each mapped tree to be assigned a structural measure (e.g., height, crown

area).

An object-orientated rule-based classifications of forests (broadleaved, coniferous

and some single species dominated woodlands) was undertaken as part of a larger

programme aimed at classifying habitats across Wales. Classification of other

habitats (e.g., bracken) was necessary to facilitate the discrimination but also to

place the forests in the context of the wider landscape.

The rules accommodated imagery from different sensors observing in similar wave-

length regions (i.e., SPOT HRG and IRS). This was achieved by implementing

rigorous geometric, radiometric, atmospheric and topographic correction proce-

dures to give comparability of spectral values from different dates and sensors and

greater confidence in the production of derived data such as vegetation indices and

end-member fractions. The advantage of the rule-based classification is that rules

can be based on spectral information but can also consider topography (slope,

aspect) and context (adjacency, enclosure). The rules were developed primarily

by using information on the spectral properties of forests, although some topo-

graphic (slope and aspect) and context information (adjacent, enclosure) was also

considered.

The more detailed classification of forest types around Lake Vyrnwy provided

classification accuracies of between 18% (Ash gulleys) and 86% (Mature Spruce),

with broadleaved forest types such as Oak and Birch generally showing lower

accuracies, compared to conifers such as Spruce and Larch. The classification

might be improved by using fuzzy rules, particularly in the scrub classes where
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bracken occurred in intricate mosaics with scattered or dense scrub and by refining

the segmentation progress.

Using SPOT 5 HRG data classification accuracies of the main forest types, i.e.,

coniferous, broadleaved woodlands, were lower than expected. Errors were often

caused primarily by the segmentation, not the classification. A re-segmentation of

broadleaved and coniferous at the sub-level and a subsequent re-classification might

have been more successful. This is an important argument for scale-appropriate

mapping for different habitat types and the need for well-defined objects. The use

of higher spatial resolution data, such as NIR photography for segmentation and

subsequent classification using higher spectral resolution data should be consid-

ered.

Hyperspectral data could also provide better opportunities for differentiation, both

because of better spatial and spectral resolution (Bunting et al., 2006). Prob-

lems include limited coverage and problems with bi-directional effects, because of

not flying in a north-south direction. Figure 9.1 shows an example of strong bi-

directional effects in 2006 CASI data over Lake Vyrnwy, which limit the usefulness

of the data severely.
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The classification of optical data provides information only on the two dimensional

structure of forests, although the three dimensional structure can be inferred.

Within a rule-based classification, the inclusion of height would allow discrimina-

tion of a greater range of forests, including regrowth stages (particularly in relation

to plantations) but also indicate the structural diversity of the forest. The inclu-

sion of canopy openness would facilitate differentiation of open and closed forest

and particularly scrub.

9.1.4 Accuracy assessment of remote sensing classifications

1. Accuracy assessment needs to be scale-appropriate. Accuracy assessments

assume that a 100% correct classification can be generated. However, this

depends on every object fitting the criteria of at least and, at the same

time, not more than one class. This is an assumption which in reality is

rarely met. Classes would have to be either very broad or, conversely, very

detailed. The fewer classes a classification uses, the more accurate it will

be, but there is also a greater likelihood that the same classification would

have been achieved if classes were randomly assigned to objects. Accuracy,

however, can only be tested against classes and objects which have been

mapped. If a land cover type is excluded from the classification, accuracy

can therefore not be tested subsequently and such areas should be left blank

on any map created (Foody, 2008).

2. In the natural environment, habitat areas are rarely clearly delineated by

type (e.g., as a woodland and an adjacent grassland would be). In the ma-

jority of cases, these form extensive overlapping areas or ecotones, which are
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mosaics consisting of vegetation cover typical to two or even more habitats.

It can therefore be expected that accuracy is lower in ecotone regions.

3. A further large source of error is the scale of the classification. Different

land cover types exist at different scales and should be mapped accordingly,

using image objects of varying dimensions. However, this would require a

classification prior to the main segmentation into areas of different size, which

in turn would need to be assigned prior to this (Powell et al., 2004).

The smallest achievable scale further depends on the base data used for

classification, in this case 10m SPOT data. Many classes of interest in this

study, (e.g; isolated trees, hedges and Juncus spp. dominated flushes), can

occur as objects smaller in area or narrower than the minimum mappable unit

(MMU) of 25m2 and it is therefore assumed that their accuracy is lower than

that of habitats covering large areas, such as forests. Accuracy is therefore

scale-dependent and so is the utility of the map.

Useful statements, regarding for example patch fragmentation, using this

map can be made on a 1:10000 scale, but become misleading on a smaller

scale.

4. Another scale consideration concerns the size of the area to be classified

in relation to the training area used to create the rule-base. The further

away an object is from the training area, the lower the likelihood that it has

been classified accurately due to natural variations in vegetation caused by

differences in climate, aspect, elevation or underlying soil type.

A number of methods of assessing accuracy vary according to the area classified

(Liu et al., 2007).

The assessment method for accuracy should be suited to the classification ap-
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proach. For example, a point checking method is unsuitable in this case, where

image objects were classified. Points are at a much smaller scale, which was never

intended to be mapped. In this case a suitable number of randomly selected objects

should be tested for accuracy (Radoux et al., 2008).

9.2 Forest structure attributes

A disadvantage of using optical remote sensing data for classifying forests is that

only limited information on their three-dimensional structure can be obtained.

Knowledge of vertical structure is needed, however, to support assessments of

biodiversity as many organisms use different areas of the volume space and veg-

etation structure in itself is an indication of diversity (Boncina, 2000; Qiaoying

et al., 2006), while forest vegetation communities alone have been found to be

insufficient for the interpolation of species diversity (Cushman et al., 2008). The

requirement is hence for high resolution three-dimensional datasets, such as de-

rived from LiDAR, but relationships might be established with spaceborne sensor

data, i.e., multi-spectral optical data or laser sensors (Rosette et al., 2008).

There is also a role for these data to support carbon accounting. This is particu-

larly the case for terrestrial laser scanning where individual tree-based estimates

of biomass can be obtained and used to inform algorithms that utilize coarser

spatial resolution data or that covering a larger area (e.g., InSAR or airborne

LiDAR).

Validation of height estimates from LiDAR has provided difficult because the LI-

DAR estimates are often more reliable than those obtained from the ground (e.g.,

using clinometers and other measurement devices). Retrieval of height from air-
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borne LiDAR has further been difficult because of uncertainties in retrieving the el-

evation of the underlying terrain through signal attenuation while passing through

the canopy. In this study, however, the ground elevation has been rigorously veri-

fied through a GPS based surveying system.

The comparison of height derived from LiDAR and terrestrial laser scanner data

is given in Chapter 7 and demonstrates that, in general, reasonable estimates of

top height can be obtained, although these are more reliable where the canopy

closure (as indicated by LiDAR) is less. Comparison of GPS measures of ground

elevation and those obtained using the algorithm utilized in Chapter 7 indicate a

close correspondence and allowed the height of the trees to be determined. Ground

elevation was also able to be extracted from the terrestrial laser scanner. The

analysis indicated that similarities in height were obtained but that the airborne

LiDAR was not interacting with all of the elements beneath the upper canopy.

Similarly, the TLS was not able to penetrate through to the upper canopy although

this depended upon the density of branches and foliage. Similar results have been

obtained by Chasmer et al. (2006) for a single-species pine forest, while the results

of this study indicate a correlation between canopy density and signal attenuation

in forest of varying species composition and maturity.

A particular advantage of LiDAR is that continuum classifications can be gener-

ated using relationships established between LiDAR data and biophysical prop-

erties such as biomass (van Aardt et al., 2006; Popescu, 2007; Ni-Meister et al.,

2010).

Validation of these relationships typically relies on the use of plot-based mea-

surements, but in this case, such information can potentially be retrieved using

terrestrial laser scanner data. Comparisons with common measures such as height
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are provided in Chapter 7 and show the potential for retrieving other structural

attributes, although this is beyond the scope of the study.

A limitation of LiDAR is that the spatial estimates of structural attributes derived

are limited to only a small area. For this reason, other approaches such as the use

of SAR interferometry should be considered, as wider coverage is provided (Hyde

et al., 2006a; Balzter et al., 2007). LiDAR or TLS derived estimates of biomass

and structural attributes can provide a basis for supporting the development of

SAR-based retrieval algorithms, particularly as field-based measurements are often

limited in amount and spatial distribution. Data integration with optical sensors

also offer a possibility for larger scale forest modeling (Lefsky et al., 2005).

Nevertheless, LiDAR data can play a key role in the verification of retrieved profiles

(Slatton et al., 2001), thereby leading to fine-tuning of algorithms and aiding the

scaling up between the local and the regional scale (Zimble et al., 2003). LiDAR

can also provide a yardstick for assessing the retrieval of structural attributes from

other sensors. For example, several studies have demonstrated differences of only

a few metres in the errors associated with height retrieval from InSAR and LiDAR

(e.g., Balzter et al., 2007; Breidenbach et al., 2008). Hyde et al. (2006a) also

suggested that InSAR was best suited for structurally homogeneous forests and

that LiDAR provided better estimates of the height of larger trees.

9.3 Bird diversity

A large number of studies have established links between forest structural at-

tributes and bird diversity, either through direct relationships with height (Helle

and Fuller, 1988; Hinsley et al., 2002; Hill et al., 2004) or other measures (Boulinier
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et al., 2001; Bradbury et al., 2005; Goetz et al., 2007; Hinsley et al., 2006; Clawges

et al., 2008).

This study has shown that vertical profiles of laser strikes as a function of height

can be related to the known distribution and preferences of bird species. As ex-

amples, pied flycatchers favour open woodlands with a relatively spare understory

whilst wood warblers prefer a taller woodland (typically beech or oak dominated)

with a relatively sparse understory. These preferences are reflected in the different

vertical profiles illustrated in Chapter 8.

The results suggest that remote measurement of bird diversity requires both broad

species and structural information. For example, some bird species (e.g., Firecrest)

are confined largely to coniferous forests whereas others (e.g., Pied Flycatchers) are

particularly common to deciduous forests. Some species are generalist whilst others

also have very specific requirement requirements regarding canopy structure and

the association with forest structure is naturally greatest for specialist woodland

species, such as Willow and Wood Warblers (James and Wamer, 1982).

Birds are commonly used as indicators for biodiversity (Gregory et al., Ornis Hun-

garica) because they tend to be well observed and recorded and large datasets of a

great number of species with very different requirements on their environment are

available for combination into composite indices (Fuller et al., 2005b). The need

for such focal species is particularly pronounced in fragmented landscapes, such as

they are found within the United Kingdom (Eycott et al., 2007).

While the study only observed links between bird species distributions and forest

structural information retrieved from LiDAR, further integration of the land cover

mapping should be attempted to widen the assessment potential for bird diversity
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(Barnett et al., 2004). An integrated approach of vegetation cover mapping and

vegetation structural assessment is likely to be most productive with regards to

bird diversity assessment (Gil-Tena et al., 2010).

The use of habitat suitability models is one approach to establishing where birds

might occur and also to predicting where birds might be found in other regions

or under different scenarios of land use or climate change. However, habitat suit-

ability models are entirely dependent on their input data. Davenport et al. (2000)

demonstrated the use of a fine-resolution airborne laser scanner for the capture

of parameters such as crop height and the improved output gained from utiliz-

ing such data during habitat modeling, while Martinuzzi et al. (2009) showed the

considerable improvement in the predictive ability of a model after integration of

LiDAR derived data on the vertical heterogeneity of forest structure.

Whilst habitat suitability models provide an opportunity for understanding the

distribution of bird species across a landscape, identifying the input to these mod-

els is problematic. In particular, a large number of metrics can potentially be

retrieved from LiDAR data but establishing which may be best suited for model-

ing is uncertain.

The assessment of habitat suitability is likely to be best for bird species which

maintain their territories entirely within the volume of the forest. As an example,

species such as pied flycatchers, wood warblers and firecrests tend to remain within

the confines of the forest whilst others (e.g., blue tits and blackbirds) are common

to a wider range of environments and exploit a wider range of niches.

Habitat suitability models are very useful, especially when using LiDAR as an

input, but they can never consider all factors contributing to the niche requirements

of a particular species, particularly in complex landscapes (e.g., hedgerows).
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Considering the value of birds as biodiversity indicators, however, it is suggested

that a rule-based approach to bird habitat mapping from both two-dimensional

land cover maps and vertical landscape structure data combined breeding bird

surveys (Fearer et al., 2007) would be worth further research.

9.4 Biodiversity

The study has indicated the greater potential for mapping and prediction of vege-

tation land cover across Wales and this is assisted in particular by the greater level

of detail provided by the Definiens classification (e.g., in terms of hedgerows and

scrub classes). Landscape heterogeneity and structure are in itself indicators of

biodiversity (Dauber et al., 2003) and regional land cover mapping hence supports

the assessment of biodiversity within Wales.

This study has led to improvements in the assessments of biodiversity by improv-

ing

1. information on the distribution of grasslands

2. information on forest structure and distribution of tree species

3. better mapping of landscape structure (e.g., hedgerows)

4. link between forest structure derived from LiDAR and bird distribution

The greater value derived from examining these four research areas as part of a

framework for biodiversity assessment, however, consists of an ability to target the

employment of various remote sensing methods for the evaluation of specific as-

pects of biodiversity. Integration of different remote sensing data types to exploit



CHAPTER 9. DISCUSSION: REMOTE SENSING OF BIOLOGICAL DIVERSITY304

information synergies such created is another important technique for the assess-

ment of biodiversity (Dalponte et al., 2008; Anderson et al., 2008). Biodiversity

consists of many different components it is crucial to be able to perform such

integrated analyses of its various elements. However, only a combined approach

towards the utilization of remote sensing, as demonstrated in this study, is likely

to gain the necessary information.

9.5 Future change and monitoring

Sala et al. (2000) identified the expected main drivers of biodiversity change on a

global scale in the future. These are, in order of predicted magnitude:

1. Changes in human landuse

2. Atmospheric CO2 concentration

3. Nitrogen deposition and acid rain

4. Climate

5. Deliberate or accidental biotic exchanges

The pattern of biotic exchanges influencing biodiversity changes closely mirrors

patterns of human activity. In Britain this effect is especially pronounced due

to the long history of intensive landuse through agri- and silviculture. Rodwell

(1991) points out that few plant communities in the British Isles are unaffected

by human activity, despite public perception of untouched wilderness (e.g., in the

upland regions).

Future climatic change, for example, is likely to lead to changes in the species
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composition and the productivity of most habitats. Climate change is not only

defined by increases or decreases in mean values of temperature and precipita-

tion, but also by increased variability in these parameters. Climate variability can

help maintain diversity in plant communities by regulating the coexistence of com-

peting species (Adler et al., 2004). Permanent changes resulting from a distinct

alteration of climate could thus be offset by this mechanism. This depends though

on the time scales involved and on the impacts and frequency of extreme events.

Climate variability should therefore be taken into account when predicting future

diversity.

The following changes in vegetation might be expected to occur as a consequence

of climate change and are addressed in this study as having the greatest potential

to be monitored effectively using remote sensing techniques:

1. geographical shifts in the distribution of communities,

2. increased standing biomass through an extended growing season,

3. structural changes within vegetation canopies throughout the seasons.

Considering the likely magnitude of future biodiversity change driven by factors

such as the above, reliable methods for change detection and monitoring are essen-

tial and efforts to utilize remote sensing data are well developed (Alimohammadi

et al., 2004; Hegarat-Mascle et al., 2006).

The results from this study have suggested that hyperspectral remote sensing data,

for example, might potentially be used to monitor grasslands such that such subtle

changes can be identified as they take place. The data demonstrates that the red-

edge wavelength region provides information on the biomass, productivity and

improvement level of grasslands.
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However, to achieve effective change detection, a long term monitoring strategy

based on remote sensing data and further research into the information able to

be retrieved from spectral data would have to be put in place. Historic remote

sensing data could be utilized to establish a baseline against which change could

be estimated.

The land cover mapping undertaken in this study has the potential to provide

a baseline from which to assess the impacts of future biodiversity change. If it

were possible to survey a selection of change sensitive regions and communities

by remote sensing on a regular basis, then this would form a non-biased monitor-

ing scheme through which change could be registered, demonstrated and reliably

recorded.

9.6 Summary and conclusions

The study has indicated that more detailed mapping of habitats can be under-

taken using finer spatial resolution SPOT HRG data to segment the landscape

into recognizable units and by using time-series of other spaceborne optical data

to differentiate habitat types. Simply by virtue of the greater detail provided, the

classifications give greater opportunity for linking habitats to the distribution of

flora and fauna across the landscape. Whilst a number of species can be classi-

fied because they form the dominant vegetation cover and occur across large areas

(e.g., bracken, Molinia, gorse), many species are unable to be mapped individu-

ally for reasons of scale and data resolution and diversity can only be inferred.

For grasslands, for example, higher diversity is indicated through association with

areas that are unimproved. Lowest diversity is linked to improved grasslands and
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mono-dominant grasslands (e.g., Molinia in the uplands).

For forests, differentiation of tree species is difficult in multi-layered canopies and

without the use of high resolution optical sensor data. Where tree species form

relatively uniform stands (e.g., birch, oak), some discrimination is possible but the

majority of forests in Wales are of mixed species composition. Therefore, from

spaceborne data, only broad forest types can be reliably classified.

In terms of assessing the diversity of fauna (including mammals and bats as

well as birds), knowledge of the three-dimensional structure of forests is essen-

tial. NextMap Britain could potentially provide information on the top height of

the canopy but is very limited by the lack of an accurate DTM at a national level.

The use of a DEM generated independently from LiDAR may be a viable option,

particularly as once obtained, height (and changes in height) can be assessed from

subsequent overflights of interferometric SAR.

LiDAR profiles can be reliably extracted which can then in turn be related to the

distribution of foliage and branches within the forest volume, with this providing

an indication of the likely distribution of bird and other faunal species. Habitat

suitability models should exploit the structural information derived from LiDAR

data but great care needs to be taken in their parameterization.

This chapter has discussed the outcomes of research in the context of

1. regional mapping of semi-natural habitats from spaceborne data

2. differentiation of grassland improvement levels

3. detailed characterization of forests in two and three dimensions

4. The implications for biodiversity assessment

Whilst this study has not contributed to assessment of all biodiversity, it has
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contributed components, which ought to be used in a continuous monitoring and

assessment system.

Key benefits of the research include:

1. Differentiation of grassland improvement levels from hyperspectral image

data

2. Detailed mapping of vegetation land cover types from multispectral satellite

data at the landscape scale

3. Integration of ecological knowledge and remote sensing data for land cover

mapping

4. The mapping methods are re-producable and are easily understood

5. There is capacity to implement a monitoring system through regular updates

of the map as and when satellite sensor data are acquired

6. Opportunities to bring in other forms of remotely sensed data include higher

resolution NIR aerial photography to achieve a better segmentation

7. Airborne LiDAR and terrestrial laser scanner data correlate well and can

supply forest structural information

8. Specialist woodland bird species are found to have strong habitat preferences

with regard to the forest vertical profile

Modern ecology’s emphasis on the variability in structure and function at all spatial

and temporal scales can be mirrored by studying these phenomena in remote

sensing data of corresponding variability. This study has shown that a wide variety

of airborne and spaceborne, optical and laser remote sensing data can be utilized
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to assess biodiversity at different scales and in different habitats.

9.6.1 Benefits

This study benefits the scientific community and also conservation organizations,

particularly in terms of laser scanner research and biodiversity assessment. A

better understanding of the use of remote sensing data for forest structure and tree

species mapping in the UK from the local to the landscape level is of particular use

to forestry organizations (e.g., the Forestry Commission, Woodland Trust).

The results of the study further support the aims stated in Chapter 1.
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Appendix A

Appendices

A.1 Appendix I - Abbreviations

AGI - Association for Geographic Information

ALOS - Advanced Land Observing Satellite

ARSF - Airborne Remote Sensing Facility

ASTER - Advanced Spaceborne Thermal Emissions and Reflection Radiometer

ATCOR - Atmospheric/Topographic Correction software

AU - Aberystwyth University

AVHRR - Advanced Very High Resolution Radiometer

AVIRIS - Advanced Visible/Infrared Imaging Spectrometer

BAP - Biodiversity Action Plan

BNSC - British National Space Centre

BRDF - bidirectional reflectance distribution function

BTO - British Trust for Ornithology
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CASI - Compact Airborne Spectrographic Imager

CCW - Countryside Council for Wales

CBC - Common Bird Census

DEFRA - Department for Environment, Food and Rural Affairs

DEM - Digital Elevation Model

DESDyni - Deformation, Ecosystem Structure and Dynamics of Ice

dGPS - differential Global Positioning System

DLR - Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Cen-

ter)

DN - Digital Number

DSM - Digital Surface Model

DTM - Digital Terrain Model

EO - Earth Observation

ESA - Environmentally Sensitive Area (farming support scheme)

ESA - European Space Agency

ETM+ - Enhanced Thematic Mapper Plus

FLAASH - Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes

FOV - Field of View

FP - Framework Project

fPAR - fraction Photosynthetically Active Radiation

GARP - Genetic Algorithm for Rule-set Production

GCP - Ground Control Point

GeoTIFF - Geographic Tagged Image File Format

GLAS - Geoscience Laser Altimeter System

GIFTSS - Government Information from the Space Sector
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GIS - Geographic Information System

GPS - Global Positioning System

GRN - Global Restoration Network

HDF - Hierarchical Data Format

HRG - High Resolution Geometric (sensor)

HRS - High Resolution Stereoscopic (sensor / imaging instrument)

HRV - High Resolution Visible (sensor)

HRVIR - High Resolution Visible and Infrared

HSCOI - Height Scaled Crown Openness Index

IALE - International Association of Landscape Ecology

ICESat - Ice, Cloud, and land Elevation Satellite

IEEE - Institute of Electrical and Electronics Engineers

IGER - Institute of Grassland and Environmental Research

IGES - Institute of Geography and Earth Sciences

IPCC - Intergovernmental Panel on Climate Change

IRS - Indian Remote Sensing Satellite

ISPRS - International Society for Photogrammetry and Remote Sensing

IUCN - International Union for the Conservation of Nature and Natural Re-

sources

IUFRO - International Union of Forest Research Organizations

JERS - Japanese Earth Resources Satellite

LAD - Leaf Angle Distribution

LAI - Leaf Area Index

Laser - Light Amplification by Stimulated Emission of Radiation

LCM - Land Cover Map
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LiDAR - Light Detection and Ranging Aperture Radar

LISS - Linear Imaging Self Scanning System

LPIS - Land Parcel Information System

LSUM - Linear Spectral Unmixing

LVIS - Laser Vegetation Imaging Sensor

MAFF - Ministry of Agriculture, Forestry and Fisheries

MISR - Multi-angle Imaging Spectroradiometer

MODIS - Moderate Resolution Imaging Spectrometer

NERC - Natural Environment Research Council

NIR - Near Infrared part of the solar spectrum (0.7-1.3mum)

NIWT - National Inventory of Woodland and Trees

NDVI - Normalized Difference Vegetation Index

NNR - National Nature Reserve

NOAA - National Oceanic Atmospheric Administration

NPP - Net Primary Productivity

NPV - Non-Photosynthetic Vegetation

PALSAR - Phased Array type L-band Synthetic Aperture Radar

PAR - Photosynthetically Active Radiation

PIMHAI - Plate-forme d’Imagerie Multi et Hyperspectrale de l’Acquisition l’Interprtation

pour l’expertise et l’aide la dcision en gestion de l’environnement / Platform for

Analysis of Multispectral and Hyperspectral Images from Acquisition to Interpre-

tation for Environmental Monitoring and Decision Making

POS - position and orientation data

PV - Photosynthetic Vegetation

Radar - Radio Detection and Ranging
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RSPB - Royal Society for the Protection of Birds

SAC - Special Area of Conservation

SAIL - Scattering by Arbitrarily Inclined Leaves (canopy reflectance model)

SAR - Synthetic Aperture Radar

SDF - Sample Data File

SeaWiFs - Sea-viewing Wider Field-of-View Sensor SER International - Society

for Ecological Restoration International

SLICER - Scanning LiDAR Imager of Canopies by Echo Retrieval

SOCS - Scanner’s own coordinate system

SPA - Special Protection Area

SPIN - Spatial Indicators for Nature Conservation

SPOT - Satellite Pour l’Observation de la Terre, French satellite supporting the

HRG sensor

SQL - Structured Query Language

SRTM - Shuttle Radar Topography Mission

SSSI - Site of Special Scientific Interest

SWIR - Short Wave Infrared part of the solar spectrum (0.7-2.5µm)

TIFF - Tagged Image File Format

TIR - Thermal Infrared part of the solar spectrum (8.4-11.6µm) TM - Thematic

Mapper

UTM - Universal Transverse Mercator

VIS - VISible part of the solar spectrum (0.3-07 µm)

VNIR - Visible and Near-Infrared part of the solar spectrum (0.3-1.3µm)

WAG - Welsh Assembly Government

WiFS - Wide Field-of-View Sensor
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WGS 84 - World Geodetic System 1984

A.2 Appendix II - Sensor specifications

A.2.1 Vexcel Aerial Photography

The aerial photography used in this study was captured in 2006 by GeoPerspec-

tives, a joint venture between Infoterra Ltd. and BlueSky Ltd., in partnership

with aerial surveying company COWI. The survey was originally undertaken as

the result of a contract awarded by the Welsh Assembly Government to create a

map-accurate image layer for the whole of Wales for projects including the ad-

ministration of land management, agricultural and environmental monitoring and

control.

The full colour photography covers approximately 20,000 square kilometres at

40cm ground resolution in around 7000 individual image tiles. It was captured

using the Vexcel UltraCamD photogrammetric aerial survey camera and colour

infrared imagery (CIR) for the whole of Wales was acquired simultaneously. The

data were converted subsequently to orthophotos of very high positional accuracy

with NextMap radar scanning data as input for a digital terrain model.

For ease of use in this study, the image tiles were combined into a Wales wide

ECW mosaic using Global Mapper software.
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A.2.2 Satellite Sensors

a.) Terra 1

The sensor onboard NASA’s Terra-1 is the Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER) which is an advanced multispectral im-

ager.

ASTER can acquire data over the entire globe with an average duty cycle of 8%

per orbit. This translates to acquisition of about 650 scenes per day that are

processed to Level 1A; of these about 150 are processed to Level 1B.

ASTER Level 1A data are formally defined as reconstructed, unprocessed instru-

ment data at full resolution. They consist of the image data, radiometric coef-

ficients, the geometric coefficients and other auxillary data without applying the

coefficients to the image data, thus maintaining original data values. This is

the preferred data processing level for this project. The L1B data are generated

by applying these coefficients for radiometric calibration and geometric resam-

pling.

All 1A and 1B scenes are transferred to the EOSDIS archive at the EROS data

centre’s (EDC) Land Processes Distributed Active Archive Centre (LP-DAAC),

for storage, distribution, and processing to higher level data products. All ASTER

data products are stored in a specific implementation of Hierarchical Data Format

called HDF-EOS.

The ASTER instrument consists of three separate instrument subsystems:

• Visible and Near-infrared (VNIR) - 3 bands with an additional backward

telescope for stereo
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• Shortwave Infrared (SWIR) - 6 bands

• Thermal Infrared (TIR) - 5 bands

Each subsystem operates in a different spectral region, with its own telescope(s).

The Terra spacecraft is flying in a circular, near-polar orbit at an altitude of 705km.

The orbit is sun-synchronous so that solar illumination conditions vary as little as

possible, with equatorial crossing at a local time of 10.30 a.m., returning to the

same orbit every 16 days. The orbit parameters are the same as those of Landsat

7, except for the local equatorial crossing time.

Table A.1: Terra-1 ASTER specifications

Bands Spectral Resolution (µm) Spatial Resolution (m)
Band 1 - Nadir looking VNIR 0.52-0.60 15
Band 2 - Nadir looking VNIR 0.63-0.69 15
Band 3 - Nadir looking VNIR 0.76-0.86 15
Band 3 - Backward looking VNIR 0.76-0.86 15
Band 4 SWIR 1.6-1.7 30
Band 5 SWIR 2.155-2.185 30
Band 6 SWIR 2.195-2.225 30
Band 7 SWIR 2.235-2.285 30
Band 8 SWIR 2.295-2.385 30
Band 9 SWIR 2.380-2.430 30
Band 10 TIR 8.125-8.475 90
Band 11 TIR 8.475-8.825 90
Band 12 TIR 8.925-9.275 90
Band 13 TIR 10.25-10.95 90
Band 14 TIR 10.95-11.65 90

b.) Satellite Pour l’Observation de la Terre 5 (SPOT)

The sensors onboard SPOT 5 are two High Resolution Geometric (HRG) instru-

ments from the HRVIR instruments on SPOT 4 and one High Resolution Stereo-
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scopic (HRS) imaging instrument able to acquire stereo pair images almost si-

multaneously for optimized production of digital elevation models (DEM). SPOT

5 is also carrying the recurring VEGETATION 2 instrument and the Doppler

Orbitography and Radiopositioning Integrated by Satellite (DORIS) instrument.

The objective of the DORIS instrument is to meet new requirements for precise

satellite orbit determination and ground beacon location.

The HRG imaging instruments have a field of view of 45◦, it can therefore observe

a 60 kilometer wide swath on the ground and can be pointed 270◦ either side of the

nadir for oblique viewing. The oblique viewing capability of the SPOT imaging

instruments enable them to acquire imagery of any point on the globe within less

then 5 days along the equator and in less then 3 days at temperate latitudes (above

45◦). Users are therefore able to task specific scene acquisition.

Only SPOT HRG data were used in this project and they were purchased at

the processing Level 1A, which indicates that the only difference to the raw data

is a radiometric correction of distortions due to differences in sensitivity of the

elementary detectors of the viewing instrument, because further processing, as

outlined in section 4.1.1, was undertaken in-house to retain full control over the

quality of the data products.

The data were made available in Digital Image Map (DIMAP) format which con-

sists of two parts, image and metadata. The image is described in GeoTIFF

(Geographic Tagged Image File Format) format whereas the metadata is written

in XML. The metadata contains the necessary information for the pre-processing

of the images, such as the date and time of capture, exact image size as well as

the gain and offset values.

The SPOT 5 satellite orbits the earth at an altitude of 822 kilometers at the
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Equator.

The orbit is near polar, circular and sun-synchronous with equatorial crossing at

a local time of 10.30 a.m. The orbit is phased so that a satellite passes over the

same point every 26 days.

Table A.2: SPOT 5 HRG specifications
Bands Spectral Resolution (µm) Spatial Resolution (m)

Band 1 NIR 0.79-0.89 10
Band 2 Green 0.50-0.59 10
Band 3 Red 0.61-0.68 10
Band 4 SWIR 1.58-1.75 20
Band 5 Pan (or Supermode)a 0.51-0.73 5 (or 2.5)

aSupermode is a unique sampling concept, which yields a 2.5m resolution image from two 5m
resolution images. Not all imagery is supplied with this.

c.) Indian Remote Sensing Satellite 1C, 1D & P6 (IRS)

Table A.3 shows the four generations of India’s Earth observation program begin-

ning in March 1988. IRS satellites operate in a circular, sun-synchronous, near

polar orbit with an inclination of 98.69◦ at an altitude of 817 km. The orbit is

phased so that a satellite passes over the same point every 24 days and crosses the

equator in descending mode at 10.30 a.m. local time.

The LISS-III sensor was improved slightly on each satellite (see table A.4). The

most important improvement is an increase in spatial resolution in the SWIR band

from 70m to 23.5m between the older satellites and IRS-P6.

IRS standard data products are offered with two processing levels - radiometri-

cally corrected and system corrected. System corrected is the higher level, which

includes the radiometric and geometric correction of the data. The data for this

project were provided in two different formats, EOSat /Euromap Fast Format
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Table A.3: IRS satellite generations and their sensors
Satellite name Sensors Year launched
IRS-1A 1988
IRS-1C Pan 1995 (defunct by 2006)

WiFs
LISSa-III

IRS-1D Pan 1997 (defunct by 2006)
WiFs
LISS-III

IRS-P6 AWiFs 2003
(Resourcesat-1) LISS-III

LISS-IV

aLinear Self Imaging Scanning System

Table A.4: Linear Self Imaging Scanning System specifications on IRS satellites

Satellite Band Spectral Resolution (µm) Spatial Resolution (m)
1C (1995) & 1D (1997) Green 0.52-0.60 23

Red 0.62-0.68 23
NIR 0.77-0.86 23

SWIR 1.55-1.70 70

P6 (2003) Green 0.52-0.59 23.5
Red 0.62-0.68 23.5
NIR 0.77-0.86 23.5

SWIR 1.55-1.70 23.5
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and Super Structure Format and only radiometrically corrected, so all further

pre-processing was carried out in-house.

Fast Format consist of one ASCII header file and one simple binary image file

for each band. The ASCII header includes the image size (number of pixels per

line and number of lines), image location (4 corner co-ordinates and one centre

co-ordinate, path, row), acquisition parameters (date, sun elevation, sun azimuth,

gain settings) and some technical parameters related to the processing (product

code, etc.).

Super Structure Format has a much more complex structure than the Fast For-

mat. A typical dataset consists of a ‘volume directory file’ (which includes a short

description of the data product and a number of pointers and corresponding de-

scriptors), one ‘leader file’, one or several ‘image data files’, one ‘trailer file’ and

one concluding ‘null file’. Other than the Fast Format, the Super Structure Format

contains information related to ephemeris and spacecraft attitude.

Landsat

Landsat data were available for the whole of Wales and therefore all study sites,

but were not used because of the timing of the available scenes and the relative

coarseness of the spatial resolution. Furthermore, all image data acquired by the

Landsat 7 ETM+ from 14th July 2003 to present have been collected in Scan

Line Corrector (SLC)-off mode due to an instrument malfunction. The problem

was caused by failure of the Scan Line Corrector (SLC), which compensates for

the forward motion of the satellite. Without an operating SLC, the Enhanced

Thematic Mapper Plus (ETM+) line of sight now traces a zig-zag pattern along
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the satellite ground track (see figure A.1) with a resulting depletion of imaged area

that increases towards the scene edge.

Figure A.1: Illustration of the SLC failure effect

A.3 Appendix III - Phase I Habitat Classes

A.4 Appendix IV - BTO Species Codes

Table A.5: BTO Species Codes

Code Common Name Scientific Name

AX Alexandrine Parakeet Psittacula eupatria

AC Arctic Skua Stercorarius parasiticus

AE Arctic Tern Sterna paradisaea

AV Avocet Recurvirostra avosetta

HD Bar-headed Goose Anser indicus

BO Barn Owl Tyto alba

BY Barnacle Goose Branta leucopsis

BA Bar-tailed Godwit Limosa lapponica

BE Bean Goose Anser fabalis

continued on the next page
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Code Common Name Scientific Name

BR Bearded Tit Panurus biarmicus

MZ Bee-Eater Merops apiaster

BS Bewick’s Swan Cygnus columbianus

BI Bittern Botaurus stellaris

BK Black Grouse Tetrao tetrix

TY Black Guillemot Cepphus grylle

KB Black Kite Milvus migrans

BX Black Redstart Phoenicurus ochruros

OS Black Stork Ciconia nigra

AS Black Swan Cygnus atratus

BJ Black Tern Chlidonias niger

B. Blackbird Turdus merula

BC Blackcap Sylvia atricapilla

BH Black-headed Gull Larus ridibundus

BN Black-necked Grebe Podiceps nigricollis

BW Black-tailed Godwit Limosa limosa

BV Black-throated Diver Gavia arctica

BT Blue Tit Parus caeruleus

BU Bluethroat Luscinia svecica

OQ Bobwhite Colinus virginianus

BL Brambling Fringilla montifringilla

BG Brent Goose Branta bernicla

continued on the next page
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Code Common Name Scientific Name

UG Budgerigar Melopsittacus undulatus

BF Bullfinch Pyrrhula pyrrhula

BZ Buzzard Buteo buteo

CG Canada Goose Branta canadensis

CP Capercaillie Tetrao urogallus

C. Carrion Crow Corvus corone corone

CW Cetti’s Warbler Cettia cetti

CH Chaffinch Fringilla coelebs

CC Chiffchaff Phylloscopus collybita

HL Chiloe Wigeon Anas sibilatrix

CF Chough Pyrrhocorax pyrrhocorax

KR Chukar Alectoris chukar

CL Cirl Bunting Emberiza cirlus

CT Coal Tit Parus ater

QL Cockatiel Nymphicus hollandicus

CD Collared Dove Streptopelia decaocto

CM Common Gull Larus canus

SQ Common Rosefinch Carpodacus erythrinus

CS Common Sandpiper Actitis hypoleucos

CX Common Scoter Melanitta nigra

CN Common Tern Sterna hirundo

CO Coot Fulica atra

continued on the next page
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Code Common Name Scientific Name

CA Cormorant Phalacrocorax carbo

CB Corn Bunting Miliaria calandra

CE Corncrake Crex crex

CQ Cory’s Shearwater Calonectris diomedea

AN Crane Grus grus

CI Crested Tit Parus cristatus

CR Crossbill Loxia curvirostra

CK Cuckoo Cuculus canorus

CU Curlew Numenius arquata

CV Curlew Sandpiper Calidris ferruginea

DW Dartford Warbler Sylvia undata

DI Dipper Cinclus cinclus

DO Dotterel Charadrius morinellus

DN Dunlin Calidris alpina

D. Dunnock Prunella modularis

EG Egyptian Goose Alopochen aegyptiacus

E. Eider Somateria mollissima

EM Emperor Goose Anser canagica

FP Feral Pigeon Columba livia

ZL Feral/hybrid Goose Anser sp

ZF Feral/hybrid mallard type

FD Ferruginous Duck Aythya nyroca

continued on the next page
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Code Common Name Scientific Name

FF Fieldfare Turdus pilaris

FC Firecrest Regulus ignicapillus

F. Fulmar Fulmarus glacialis

GA Gadwall Anas strepera

GX Gannet Morus bassanus

GW Garden Warbler Sylvia borin

GY Garganey Anas querquedula

GZ Glaucous Gull Larus hyperboreus

GC Goldcrest Regulus regulus

EA Golden Eagle Aquila chrysaetos

OL Golden Oriole Oriolus oriolus

GF Golden Pheasant Chrysolophus pictus

GP Golden Plover Pluvialis apricaria

GN Goldeneye Bucephala clangula

GO Goldfinch Carduelis carduelis

GD Goosander Mergus merganser

GI Goshawk Accipiter gentilis

GH Grasshopper Warbler Locustella naevia

GB Great Black-backed Gull Larus marinus

GG Great Crested Grebe Podiceps cristatus

SR Great Grey Shrike Lanius excubitor

ND Great Northern Diver Gavia immer

continued on the next page
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Code Common Name Scientific Name

QW Great Reed Warbler Acrocephalus arundinaceus

GQ Great Shearwater Puffinus gravis

NX Great Skua Stercorarius skua

GS Great Spotted Woodpecker Dendrocopos major

GT Great Tit Parus major

GE Green Sandpiper Tringa ochropus

G. Green Woodpecker Picus viridis

GR Greenfinch Carduelis chloris

GK Greenshank Tringa nebularia

H. Grey Heron Ardea cinerea

P. Grey Partridge Perdix perdix

PL Grey Phalarope Phalaropus fulicarius

GV Grey Plover Pluvialis squatarola

GL Grey Wagtail Motacilla cinerea

GJ Greylag Goose Anser anser

GU Guillemot Uria aalge

HA Harris Hawk Parabuteo unicinctus

HF Hawfinch Coccothraustes coccothraustes

FW Helmetted Guineafowl Numidia meleagris

HH Hen Harrier Circus cyaneus

HG Herring Gull Larus argentatus

HY Hobby Falco subbuteo

continued on the next page
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Code Common Name Scientific Name

HZ Honey Buzzard Pernis apivorus

HC Hooded Crow Corvus corone cornix

HP Hoopoe Upupa epops

HM House Martin Delichon urbica

HS House Sparrow Passer domesticus

IG Iceland Gull Larus glaucoides

IC Icterine Warbler Hippolais icterina

JS Jack Snipe Lymnocryptes minimus

JD Jackdaw Corvus monedula

J. Jay Garrulus glandarius

KP Kentish Plover Charadrius alexandrinus

K. Kestrel Falco tinnunculus

KF Kingfisher Alcedo atthis

KI Kittiwake Rissa tridactyla

KN Knot Calidris canutus

LM Lady Amherst’s Pheasant Chrysolophus amherstiae

FB Lanner Falcon Falco biarmicus

LA Lapland Bunting Calcarius lapponicus

L. Lapwing Vanellus vanellus

TL Leach’s Petrel Oceanodroma leucorhoa

LB Lesser Black-backed Gull Larus fuscus

LR Lesser Redpoll Carduelis cabaret

continued on the next page
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Code Common Name Scientific Name

LS Lesser Spotted Woodpecker Dendrocopos minor

LW Lesser Whitethroat Sylvia curruca

LI Linnet Carduelis cannabina

LK Little Auk Alle alle

ET Little Egret Egretta garzetta

LG Little Grebe Tachybaptus ruficollis

LU Little Gull Larus minutus

LO Little Owl Athene noctua

LP Little Ringed Plover Charadrius dubius

LX Little Stint Calidris minuta

AF Little Tern Sterna albifrons

LE Long-eared Owl Asio otus

LN Long-tailed Duck Clangula hyemalis

OG Long-tailed Skua Stercorarius longicaudus

LT Long-tailed Tit Aegithalos caudatus

MG Magpie Pica pica

MA Mallard Anas platyrhynchos

MN Mandarin Aix galericulata

MX Manx Shearwater Puffinus puffinus

MR Marsh Harrier Circus aeruginosus

MT Marsh Tit Parus palustris

MW Marsh Warbler Acrocephalus palustris

continued on the next page
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Code Common Name Scientific Name

MP Meadow Pipit Anthus pratensis

FR Mealy Redpoll Carduelis flammea

MU Mediterranean Gull Larus melanocephalus

ML Merlin Falco columbarius

M. Mistle Thrush Turdus viscivorus

MO Montagu’s Harrier Circus pygargus

MH Moorhen Gallinula chloropus

MY Muscovy Duck Cairina moschata

MS Mute Swan Cygnus olor

NT Night Heron Nycticorax nycticorax

N. Nightingale Luscinia megarhynchos

NJ Nightjar Caprimulgus europaeus

NH Nuthatch Sitta europaea

OP Osprey Pandion haliaetus

X. Other cage bird species

OC Oystercatcher Haematopus ostralegus

PC Parrot Crossbill Loxia pytyopsittacus

PX Peacock Parvo cristatus

PP Pectoral Sandpiper Calidris melanotos

PE Peregrine Falco peregrinus

PH Pheasant Phasianus colchicus

PF Pied Flycatcher Ficedula hypoleuca

continued on the next page
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Code Common Name Scientific Name

PW Pied Wagtail Motacilla alba

PG Pink-footed Goose Anser brachyrhynchus

PT Pintail Anas acuta

PO Pochard Aythya ferina

PK Pomarine Skua Stercorarius pomarinus

PM Ptarmigan Lagopus mutus

PU Puffin Fratercula arctica

UR Purple Heron Ardea purpurea

PS Purple Sandpiper Calidris maritima

Q. Quail Coturnix coturnix

RN Raven Corvus corax

RA Razorbill Alca torda

RG Red Grouse Lagopus lagopus

KT Red Kite Milvus milvus

ED Red-backed Shrike Lanius collurio

EB Red-breasted Goose Branta ruficollis

RM Red-breasted Merganser Mergus serrator

RQ Red-crested Pochard Marmaronetta angustirostris

RL Red-legged Partridge Alectoris rufa

RX Red-necked Grebe Podiceps grisegena

NK Red-necked Phalarope Phalaropus lobatus

RK Redshank Tringa totanus

continued on the next page
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Code Common Name Scientific Name

RT Redstart Phoenicurus phoenicurus

RH Red-throated Diver Gavia stellata

RE Redwing Turdus iliacus

RB Reed Bunting Emberiza schoeniclus

RW Reed Warbler Acrocephalus scirpaceus

RV Reeve’s Pheasant Syrmaticus reevesi

RZ Ring Ouzel Turdus torquatus

IN Ring-billed Gull Larus delawarensis

RP Ringed Plover Charadrius hiaticula

RI Ring-necked Parakeet Psittacula krameri

R. Robin Erithacus rubecula

DV Rock Dove Columba livia

RC Rock Pipit Anthus petrosus petrosus

RO Rook Corvus frugilegus

RS Roseate Tern Sterna dougallii

RF Rough-legged Buzzard Buteo lagopus

RY Ruddy Duck Oxyura jamaicensis

UD Ruddy Shelduck Tadorna ferruginea

RU Ruff Philomachus pugnax

JF Saker Falco cherrug

SM Sand Martin Riparia riparia

SS Sanderling Calidris alba

continued on the next page
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Code Common Name Scientific Name

TE Sandwich Tern Sterna sandvicensis

VI Savi’s Warbler Locustella luscinioides

SP Scaup Aythya marila

CY Scottish Crossbill Loxia scotica

SW Sedge Warbler Acrocephalus schoenobaenus

NS Serin Serinus serinus

SA Shag Phalacrocorax aristotelis

SU Shelduck Tadorna tadorna

SX Shorelark Eremophila alpestris

SE Short-eared Owl Asio flammeus

TH Short-toed Treecreeper Certhia brachydactyla

SV Shoveler Anas clypeata

PV Silver Pheasant Lophura nycthemera

SK Siskin Carduelis spinus

S. Skylark Alauda arvensis

SZ Slavonian Grebe Podiceps auritus

SY Smew Mergus albellus

SN Snipe Gallinago gallinago

SB Snow Bunting Plectrophenax nivalis

SJ Snow Goose Anser caerulescens

ST Song Thrush Turdus philomelos

OT Sooty Shearwater Puffinus griseus

continued on the next page
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Code Common Name Scientific Name

SH Sparrowhawk Accipiter nisus

NB Spoonbill Platalea leucorodia

AK Spotted Crake Porzana porzana

SF Spotted Flycatcher Muscicapa striata

DR Spotted Redshank Tringa erythropus

SG Starling Sturnus vulgaris

SD Stock Dove Columba oenas

SC Stonechat Saxicola torquata

TN Stone-curlew Burhinus oedicnemus

TM Storm Petrel Hydrobates pelagicus

SL Swallow Hirundo rustica

SI Swift Apus apus

TO Tawny Owl Strix aluco

T. Teal Anas crecca

TK Temminck’s Stint Calidris temminckii

TP Tree Pipit Anthus trivialis

TS Tree Sparrow Passer montanus

TC Treecreeper Certhia familiaris

TU Tufted Duck Aythya fuligula

TT Turnstone Arenaria interpres

TD Turtle Dove Streptopelia turtur

TW Twite Carduelis flavirostris

continued on the next page
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Code Common Name Scientific Name

VS Velvet Scoter Melanitta fusca

WI Water Pipit Anthus petrosus spinoletta

WA Water Rail Rallus aquaticus

WX Waxwing Bombycilla garrulus

W. Wheatear Oenanthe oenanthe

WM Whimbrel Numenius phaeopus

WC Whinchat Saxicola rubetra

OR White Stork Ciconia ciconia

WG White-fronted Goose Anser albifrons

WE White-tailed Eagle Haliaeetus albicilla

WH Whitethroat Sylvia communis

WS Whooper Swan Cygnus Cygnus

WN Wigeon Anas penelope

WT Willow Tit Parus montanus

WW Willow Warbler Phylloscopus trochilus

DC Wood Duck Aix sponsa

WP Wood Pigeon Columba palumbus

OD Wood Sandpiper Tringa glareola

WO Wood Warbler Phylloscopus sibilatrix

WK Woodcock Scolopax rusticola

WL Woodlark Lullula arborea

WR Wren Troglodytes troglodytes

continued on the next page
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Code Common Name Scientific Name

WY Wryneck Jynx torquilla

YW Yellow Wagtail Motacilla flava

Y. Yellowhammer Emberiza citrinella

YG Yellow-legged Gull Larus arg. michahellis

FI Zebra Finch Taeniopygia guttata

A.5 Phase 1 habitat classes
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A.6 Individual Grassland Plots
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Figure A.3: B1 v Biomass
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Figure A.4: B2 v Biomass
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Figure A.5: B3 v Biomass
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Figure A.6: B4 v Biomass
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Figure A.7: B5 v Biomass
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Figure A.8: B6 v Biomass
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Figure A.9: B7 v Biomass



APPENDIX A. APPENDICES 372

0.35 0.36 0.37 0.38 0.39 0.40
Mean_b8

10

20

30

40

50

B
io

m
a
ss

_g

R2 =0.080

['T1a'] Mean_b8 v Biomass_g

(a) T1a

0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47
Mean_b8

0

20

40

60

80

100

120

B
io

m
a
ss

_g

R2 =0.338

['T1b'] Mean_b8 v Biomass_g

(b) T1b

0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44
Mean_b8

5

10

15

20

25

B
io

m
a
ss

_g

R2 =0.265

['T1c'] Mean_b8 v Biomass_g

(c) T1c

0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44
Mean_b8

60

80

100

120

140

160

180

B
io

m
a
ss

_g

R2 =0.010

['T2a'] Mean_b8 v Biomass_g

(d) T2a

0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46
Mean_b8

100

150

200

250

B
io

m
a
ss

_g

R2 =0.196

['T2b'] Mean_b8 v Biomass_g

(e) T2b

0.39 0.40 0.41 0.42 0.43
Mean_b8

80

100

120

140

160

B
io

m
a
ss

_g

R2 =0.020

['T2c'] Mean_b8 v Biomass_g

(f) T2c

0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43
Mean_b8

60

80

100

120

140

160

180

200

B
io

m
a
ss

_g

R2 =0.147

['T3a'] Mean_b8 v Biomass_g

(g) T3a

0.380 0.385 0.390 0.395 0.400 0.405
Mean_b8

60

80

100

120

140

160

180

B
io

m
a
ss

_g

R2 =0.077

['T3b'] Mean_b8 v Biomass_g

(h) T3b

0.36 0.37 0.38 0.39 0.40 0.41 0.42
Mean_b8

60

80

100

120

140

160

180

B
io

m
a
ss

_g

R2 =0.008

['T3c'] Mean_b8 v Biomass_g

(i) T3c

0.34 0.35 0.36 0.37 0.38
Mean_b8

120

140

160

180

200

220

240

B
io

m
a
ss

_g

R2 =0.080

['T4a'] Mean_b8 v Biomass_g

(j) T4a

0.33 0.34 0.35 0.36 0.37 0.38
Mean_b8

80

100

120

140

160

180

200

220

B
io

m
a
ss

_g

R2 =0.040

['T4b'] Mean_b8 v Biomass_g

(k) T4b

0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420
Mean_b8

100

150

200

250

300

350

400

B
io

m
a
ss

_g

R2 =0.005

['T4c'] Mean_b8 v Biomass_g

(l) T4c

0.35 0.36 0.37 0.38 0.39 0.40 0.41
Mean_b8

80

100

120

140

160

180

B
io

m
a
ss

_g

R2 =0.180

['T5a'] Mean_b8 v Biomass_g

(m) T5a

0.34 0.35 0.36 0.37 0.38 0.39
Mean_b8

50

100

150

200

B
io

m
a
ss

_g

R2 =0.196

['T5b'] Mean_b8 v Biomass_g

(n) T5b

0.39 0.40 0.41 0.42 0.43 0.44
Mean_b8

100

150

200

B
io

m
a
ss

_g

R2 =0.199

['T5c'] Mean_b8 v Biomass_g

(o) T5c

0.35 0.36 0.37 0.38 0.39
Mean_b8

20

40

60

80

100

B
io

m
a
ss

_g

R2 =0.106

['T6a'] Mean_b8 v Biomass_g

(p) T6a

0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44
Mean_b8

0

20

40

60

80

100

120

140

B
io

m
a
ss

_g

R2 =0.523

['T6b'] Mean_b8 v Biomass_g

(q) T6b

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
Mean_b8

0

100

200

300

400

B
io

m
a
ss

_g

R2 =0.681

['T6c'] Mean_b8 v Biomass_g

(r) T6c

Figure A.10: B8 v Biomass
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Figure A.11: B9 v Biomass
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Figure A.12: B10 v Biomass
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Figure A.13: B11 v Biomass
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Figure A.14: B12 v Biomass


