1,921 research outputs found

    Tendinosis develops from age- and oxygen tension-dependent modulation of Rac1 activity.

    Get PDF
    Age-related tendon degeneration (tendinosis) is characterized by a phenotypic change in which tenocytes display characteristics of fibrochondrocytes and mineralized fibrochondrocytes. As tendon degeneration has been noted in vivo in areas of decreased tendon vascularity, we hypothesized that hypoxia is responsible for the development of the tendinosis phenotype, and that these effects are more pronounced in aged tenocytes. Hypoxic (1% O2 ) culture of aged, tendinotic, and young human tenocytes resulted in a mineralized fibrochondrocyte phenotype in aged tenocytes, and a fibrochondrocyte phenotype in young and tendinotic tenocytes. Investigation of the molecular mechanism responsible for this phenotype change revealed that the fibrochondrocyte phenotype in aged tenocytes occurs with decreased Rac1 activity in response to hypoxia. In young hypoxic tenocytes, however, the fibrochondrocyte phenotype occurs with concomitant decreased Rac1 activity coupled with increased RhoA activity. Using pharmacologic and adenoviral manipulation, we confirmed that these hypoxic effects on the tenocyte phenotype are linked directly to the activity of RhoA/Rac1 GTPase in in vitro human cell culture and tendon explants. These results demonstrate that hypoxia drives tenocyte phenotypic changes, and provide a molecular insight into the development of human tendinosis that occurs with aging

    Isolation and characterization of multipotent mesenchymal stromal cells from the gingiva and the periodontal ligament of the horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale. These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells (MSC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue regeneration. The aim of this study was to isolate and characterize equine periodontal MSC.</p> <p>Tissue samples were obtained from four healthy horses. Primary cell populations were har-vested and cultured from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and typical <it>in vitro </it>characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of stemness markers and trilineage differentiation were analyzed.</p> <p>Results</p> <p>Colony-forming cell populations from all locations showed expression of the stemness markers CD90 and CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential into osteogenic, adipogenic and chondrogenic lineages.</p> <p>Conclusions</p> <p>Due to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC (eSc-MSC), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels, eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic and periodontal diseases.</p

    Tendon tissue engineering : An overview of biologics to promote tendon healing and repair

    Get PDF
    Funding Information: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge operating grant support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 955685, www.helsinki.fi/p4fit .Peer reviewedPublisher PD

    Examining the Potential of Vitamin C Supplementation in Tissue-Engineered Equine Superficial Digital Flexor Tendon Constructs

    Get PDF
    Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3\u27-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo

    Nature-inspired Biomaterials Discovery for Tendon Tissue Engineering

    Get PDF

    Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues

    Get PDF
    The musculoskeletal tissues have a prime role in the biomechanical support and metabolic activities of the human body. As musculoskeletal tissues are highly prone to injuries, conditions afflicting these tissues have a great impact on the quality of life of patients worldwide. Tissue engineering approaches hold the promise to develop bioengineered substitutes aiming at the regeneration of failing and injured tissue and organs. To effectively address the tissue-specific structural and biochemical features of musculoskeletal tissues, different biomaterials and techniques have been employed envisioning biomimetic solutions. Herein, the unique composition, structure, and function of the musculoskeletal tissues, namely bone, cartilage, and tendon, as well as state-of-the-art technologies to develop bioinspired strategies for tissue regeneration will be overviewed. Finally, this chapter will also discuss the unmet challenges and future perspectives in the field.FCT Project MagTT PTDC/CTM-CTM/29930/2017 (POCI-01- 0145-FEDER-29930) for A.I.G postdoc grant, the FCT Project PTDC/NAN-MAT/30595/2017 (POCI-01-0145-FEDER-30595) for P.S.B. postdoc grant, and for the assistant researcher contract (RL1) of M.T.R from the project “Accelerating tissue engineering and personalized medicine discoveries by the integration of key enabling nanotechnologies, marine-derived biomaterials and stem cells” supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Authors acknowledge the financial support from the European Union Framework Programme for Research and Innovation HORIZON 2020, under the TEAMING Grant agreement No. 739572—The Discoveries CTR and the European Research Council 2017-CoG MagTendon (No. 772817
    corecore