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Spaas JH, Guest DJ, Van de Walle GR, 2012. Tendon regeneration in human and equine athletes: ubi 

sumus-quo vadimus? Sports Medicine 42(10), 871-890. 
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1.1. Definition of stem cells 

In a scientific context, the term “stem cell” (SC) was reported for one of the first times in 

the late 19
th

 century by the German hematologist, Artur Pappenheim (Pappenheim, 1896) and 

a few years later by the Russian histologist, Alexander Maximov (Maximov, 1909; Ramalho-

Santos and Willenbring, 2007). Maximov used this term to suggest the existence of 

hematopoietic SCs with the morphological appearance of a lymphocyte and capable of 

migrating throughout the blood to micro-ecological niches that would allow them to 

proliferate and differentiate. Nowadays, SCs are defined as cells that show self-renewal either 

with or without differentiation, depending on the symmetry of the division (Horvitz and 

Herskowitz, 1992). This means that SCs are able to form identical daughter cells (symmetric 

cell division, SD) or a SC and a more differentiated daughter cell (asymmetric cell division, 

AD) (Blanpain and Fuchs, 2009). Thanks to their proliferative nature, SCs are able to 

repopulate an entire organ. Since SCs resemble in this respect to an embryo and in order to 

better understand their developmental process, a short revision on embryology is advisable. 

After fertilization of the oocyte, SD forms the first SCs, which are called totipotent, because 

of their ability to form an embryo along with the extra-embryonic tissues such as the fetal 

membranes and the placenta. Subsequently, SD and AD form a blastocyst which consists of 

an inner cell mass (ICM) with pluripotent embryonic SCs (ESCs), which are able to 

differentiate into all cell types of the three germ layers of the embryo (Figure 1). At 

approximately day 16 after fertilization, the equine epiblast (now called primitive ectoderm) 

will give rise to all three germ layers of the embryo: ectoderm, mesoderm, and endoderm 

(Walter et al., 2010). The hypoblast (primitive endoderm) on the other hand, gives rise to 

extra-embryonic structures, such as the primary (primitive) yolk sac (providing early 

nourishment to the embryo). After the gastrulation process, the pluripotent SCs give rise to 

multipotent SCs which continue the cellular development with more specific tasks and 
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reduced plasticity (Figure 1). Interestingly, this process of further differentiation can be 

switched backwards, since Nobel Prize winners Yamanaka (2012) and Gurdon (2006) 

reported that differentiated adult non-pluripotent somatic cells (mainly fibroblasts) can be 

forced to express specific pluripotency genes and become so-called induced pluripotent stem 

(iPS) cells which is a physiological homeorhetic event (Figure 1). In order to obtain this 

return to pluripotency in a somatic cell, different pluripotency genes, such as Sox2, Oct4, 

Klf4, and c-Myc have to be stably integrated in the host’s genome by means of viral vectors 

(especially retro or lenti viruses that randomly incorporate in the DNA) and this results in the 

reprogramming of somatic cells to a pluripotent state which can, before transplantation, be 

differentiated into the desired cell type (Hackett and Fortier, 2011; Takahashi et al., 2007).   

The term “adult” SCs is used as a synonym for somatic SCs and refers to a population of 

undifferentiated cells that are residing all over the body after or during development of the 

tissues in juvenile or adult animals. In the following subchapters, two types of adult 

multipotent SCs will be discussed in more detail, i.e. the mesenchymal SCs (MSCs), derived 

from the mesoderm, and the mammary gland stem/progenitor cells (MaSCs), derived from the 

ectoderm. The term stem/progenitor cells is commonly used in the case of MaSCs 

(Choudhary and Capuco, 2012), because researchers are still doubting whether the isolated 

mammary cells are a pure SC population or a mixture with progenitor cells. In this regard, 

Dontu described the cultivation of human mammary gland-derived spheroid cell clusters, the 

so-called “mammospheres” which contained a mixture of MaSCs and their progeny (Dontu et 

al., 2003a).    
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Figure 1. Schematic overview of the different types of stem cells (SCs) in vertebrates in vivo (Adapted from 

Spaas et al., 2012). After fertilization of the oocyte, symmetric cell division (SD) results in totipotent SCs, and 

subsequent SD and asymmetric cell division (AD) will lead to a blastocyst. The inner cell mass (ICM) of the 

blastocyst contains pluripotent embryonic SCs (ESCs). After gastrulation into three germ layers, multipotent SCs 

continue the development process. Mesenchymal SCs (MSCs) are mesoderm-derived SCs, whereas mammary 

SCs (MaSCs) are ectoderm-derived. Both SC types develop towards precursor and progenitor cells through SD 

or AD before they differentiate into organ-specialized cells. In vitro, differentiated cells can become induced 

pluripotent stem (iPS) cells through increased expression of specific transcription factors (TF). 
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Both MSCs and MaSCs have a common ancestor, and therefore, may share some 

properties such as cell morphology, receptor expression, colony forming unit capacity and 

possibly even differentiation capacities to similar cell types. Importantly, they both can be 

isolated from a highly accessible source, namely peripheral blood (PB) for MSCs and 

slaughterhouse material for MaSCs. The term “peripheral blood” covers the pool of 

circulating blood in veins, arteries and capillaries that is not sequestered within the lymphatic 

system, spleen, liver or bone marrow (BM). In practice, it is in most cases a synonym for 

venous blood, drawn from an easily accessible vein such as the vena jugularis in horses. 

Peripheral blood must be distinguished from blood from locations other than the “periphery”, 

such as cardiac, coronary, splenic, umbilical cord and placental blood.  

The present thesis describes the optimization of the isolation and characterization protocols 

of multipotent SCs in the horse, which can be derived from readily available sources. In 

addition, the fundamental research of this thesis provided a basis for the treatment of 

degenerative joint disease (DJD) in a horse. In the next paragraphs, the current state of the art 

is given concerning the isolation and characterization of equine MSCs and MaSCs, and their 

potential for either regenerative therapy (MSCs) or as a model for mammary gland physiology 

and tumorigenesis (MaSCs). 

 

1.2. Mesenchymal stem cells (MSCs) 

1.2.1. General characteristics 

In 1970, Alexander Friedenstein was one of the first to evidence the presence of non-

hematopoietic cells in the bone marrow (BM) that were capable of self-renewal and bone 

differentiation (Friedenstein et al., 1970). These cells were typed as mesenchymal stem cells 

(MSCs) since they can differentiate into cells of the mesodermal germ layer (Friedenstein, 

1970). Since the discovery of MSCs, their potential use in regenerative medicine has been 
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studied with increasing interest. The major differences of using adult multipotent MSCs 

instead of pluripotent embryonic stem cells (ESCs) for therapeutic purposes is the fact that 

MSCs, in contrast to ESCs, do not have the ability to form a teratoma in vivo (Fong et al., 

2010; Lensch et al., 2007) and can be used autologous (in the same individual). In theory, 

therapeutic cloning could provide “autologous” ESCs for clinical applications (French et al., 

2006; Vassiliev et al., 2011) but in practice ESCs are mainly being used in an allogeneic set-

up (i.e. recovered from a different individual than the receptor), which raises the concern of 

immune rejection (Menendez et al., 2005). Nevertheless, it has been shown that human 

(allogeneic) ESCs do not express major histocompatibility complex (MHC) II, express only 

low levels of MHC I antigens and costimulatory molecules, are not recognized by natural 

killer cells and inhibit T-cell induced-stimulation (Menendez et al., 2005), which might 

indicate that ESCs are not very immunogenic. Interestingly, it becomes increasingly clear that 

also MSCs are not really immunogenic and could even have an immunosuppressive function, 

which creates new opportunities to use these cells in an allogeneic set-up as well. Indeed, the 

use of allogeneic multipotent MSCs without any adverse reactions has been described in both 

humans and horses (Carrade et al., 2011a; Carrade et al., 2011b; Fang et al., 2007; Ringden et 

al., 2006; Riordan et al., 2009). Moreover, MSCs can inhibit the innate immune activation by 

blocking dendritic cell maturation and suppressing macrophages and T-cell activity (Di 

Nicola et al., 2002; Djouad et al., 2007; English et al., 2008; Nasef et al., 2007; Ortiz et al., 

2007). Furthermore, MSCs inhibit both B-cell proliferation and production of IgM, IgA and 

IgG, (Corcione et al., 2006).  

In 2006, the International Society for Cellular Therapy (ISCT) has carefully determined the 

qualities human cells must possess in order to be defined as MSCs (Dominici et al., 2006). 

Combining this information with other reports (Majumdar et al., 2003; Pittenger et al., 1999), 

human MSCs have to fulfill the following requirements. First of all, they have to be plastic-
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adherent, meaning that they should attach to a coated surface. Secondly, MSCs should be 

positive for typical stem cell markers (CD29, CD44, CD73, CD90 and CD105) and negative 

for adult blood cell markers (CD14 or CD11b, CD34, CD45, CD79a or CD19 and MHC II). 

Finally, MSCs have to be able to differentiate into different cell types of the mesodermal 

germ layer such as osteoblasts, chondroblasts and adipocytes. Indeed, a cell can only be 

named “stem cell” when it is able to perform not only symmetrical cell divisions, but also 

asymmetrical cell divisions with the formation of more differentiated and/or specialized 

daughter cells. For equine MSCs, no such guidelines have been described to date, although 

this would greatly benefit researchers working in this field (De Schauwer et al., 2011b). 

Different sources of MSCs have been described in humans, equines and other mammal 

species. However, there is no clarity about which source is the most suitable for the treatment 

of which pathology or in which animal species. In horses, several sources of MSCs have been 

described, with BM, adipose tissue (AT), umbilical cord matrix (UCM) and umbilical cord 

blood (UCB) as being the best studied to date (Table I) (De Schauwer et al., 2011a; Guest et 

al., 2008a; Hoynowski et al., 2007; Koch et al., 2009b; Radcliffe et al., 2010). Remarkably, 

not every source delivers the same amount of MSCs and differences in marker expression and 

differentiation capacities have been noticed. Indeed, Kern reported that in comparison with 

64.2% of human BM-derived colony forming units (CFUs), only 7.1% of the human AT-

derived CFUs were able to differentiate into chondrocytes and adipocytes (Kern et al., 2006). 

This implicates that either the SCs’ potential (functionality) differs between different sources, 

or that the purity of the cells is compromised in AT. On the other hand, it has been reported 

that BM- and AT-derived equine MSCs have chondrogenic, osteogenic and adipogenic 

capacities (Table I) (Ahern et al., 2011; Koerner et al., 2006). This confirms that both sources 

contain functional MSCs, so the reported discrepancy in the study of Kern was probably due 

to a lower recovery rate of functional SCs. Both BM- and AT-derived MSCs express CD13, 
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CD29, CD44, CD49d, CD73, CD90, CD105, CD106, CD146 and CD166 transcripts (Table 

II) (Ranera et al., 2011). However, significant differences in gene expression levels between 

BM and AT MSCs were observed for CD44, CD90, CD29 and CD34 (Ranera et al., 2011). In 

addition, both cell types were negative for CD45 and CD31 (Ranera et al., 2011). When 

comparing the chondrogenic potential between BM- and AT-derived MSCs, a superior 

differentiation potential of BM MSCs has been described based on an increased proteoglycan 

and collagen type II deposition in their extracellular matrix (Ahern et al., 2011; Kisiday et al., 

2008). Recently, the amnion has been reported as a source of equine MSCs also (Table II). 

These amnion-derived MSCs expressed CD105 and were able to perform a trilineage 

differentiation towards cartilage, bone and fat (Table I) (Violini et al., 2012). Moreover, also 

the fluid present in the amnion has been reported to contain MSCs, which were able to 

perform a trilineage differentiation, expressed CD44, CD90 and CD105 and are negative for 

CD14, CD34 and CD45 (Table II) (Iacono et al., 2012). 

In addition, UCM-derived MSCs were shown to be positive for CD54, CD90, CD105 and 

CD146 and negative for MHC II (Table II) (Hoynowski et al., 2007). These UCM-derived 

MSCs were able to differentiate towards chondrocytes, osteocytes, adipocytes and neuronal-

like cells (Table I). For the immunophenotypic characterization of equine UCB-derived MSCs 

different markers, such as CD29, CD44 and CD90 (positive) and CD73 and CD105 (variable 

positive) and CD45, CD79α, Macrophage/Monocyte and MHC II (negative) have been 

described (Table II) (De Schauwer et al., 2011a; De Schauwer et al., 2012). Also these MSCs 

were able to perform a trilineage differentiation (Table I) (De Schauwer et al., 2011a; Koch et 

al., 2007).  
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Table I. Overview of the different sources of equine mesenchymal stem cells (MSCs) with the described 

markers and differentiation potential. 
 

Source Cell marker Differentiation Reference  

BM ND C Hegewald et al., 2004 

 ND O, C, A Koerner et al., 2006 

 ND O, A Vidal et al., 2006 

 CD90 O, C, A Arnhold et al., 2007 

 ND C Vidal et al., 2008 

 CD14, CD29, CD44, 

CD79α, CD90, MHC I&II 

O, C, A Guest et al., 2008a 

 ND O, C Colleoni et al., 2009 

 CD34 O, T Violini et al., 2009 

 CD11a, CD29, CD44, 

CD45, CD90 

O, C, A Radcliffe et al., 2010 

 CD13, CD29, CD34, CD44, 

CD49d, CD73, CD90, CD105, 

CD106, CD146, CD166 

O, C, A Ranera et al., 2011 

 ND O, C, A Ranera et al., 2013 

 CD44, CD49d ND Ranera et al., 2012 

AT  ND C Vidal et al., 2008 

 ND O, C Colleoni et al., 2009 

 CD13, CD44, CD90 ND de Mattos Carvalho et al., 2009 

 CD13, CD29, CD34, CD44, 

CD49d, CD73, CD90, CD105, 

CD106, CD146, CD166 

O, C, A Ranera et al., 2011 

 CD44, CD49d ND Ranera et al., 2012 

UC 

 

CD34, CD45, CD54, CD73, 

CD90, CD105, CD133, CD146, 

MHC I 

O, C, A Hoynowski et al., 2007 

 CD34 ND Cremonesi et al., 2008 

 ND ND Passeri et al., 2009 

 CD14, CD34, CD44, CD45, 

CD90, CD105 

O, C, A Iacono et al., 2012 

UCB ND O, C, A Koch and Betts, 2007 

 ND O, C, A, M Reed and Johnson, 2008 

 CD18 O, C, A Schuh et al., 2009 

 CD29, CD44, CD79α, CD90, 

MHC II 

O, C, A De Schauwer et al., 2011a 

 CD14, CD34, CD44, CD45, 

CD90, CD105 

O, C, A Iacono et al., 2012 

 CD29, CD44, CD45, CD73, 

CD79α, CD90, CD105, MHC II 

O, C, A De Schauwer et al., 2012 

PB ND O, C, A Koerner et al., 2006 

 ND O, C, A Giovannini et al., 2008 

 CD13, CD34, CD44, CD45, 

CD90, CD117 

O, A, M Martinello et al., 2010 

 CD51, CD90, CD105 O, C, A Dhar et al., 2012 

Amnion CD105 O, C, A Violini et al., 2012 

AF CD14, CD34, CD44, CD45, 

CD90, CD105 

O, C, A Iacono et al., 2012 

BM = Bone Marrow; AT = Adipose Tissue; UC = Umbilical Cord; UCB = Umbilical Cord Blood; PB = 

Peripheral Blood; AF = Amnion Fluid; ND = Not Described; O = Osteogenic differentiation; C = Chondrogenic 

differentiation; A = Adipogenic differentiation; M = Myogenic differentiation; T = Tenogenic differentiation 
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Table II. Overview of frequently described markers of equine MSCs derived from different sources.  

Marker Source Presence Reference 

CD11 BM - Iacono et al., 2012; Radcliffe et al., 2010 

CD13 BM + Ranera et al., 2011 

 AT ± de Mattos Carvalho et al., 2009; Ranera et al., 2011 

 PB + Martinello et al., 2010 

CD14 BM - Guest et al., 2008a 

CD29 BM + Guest et al., 2008a; Radcliffe et al., 2010; Ranera et al., 2011 

 UCB + De Schauwer et al., 2011a; De Schauwer et al., 2012 

CD31 BM - Ranera et al., 2011 

 AT - Ranera et al., 2011 

CD34 BM - Violini et al., 2009 

 UC - Cremonesi et al., 2008; Hoynowski et al., 2007; Iacono et al., 2012 

 UCB - Iacono et al., 2012 

 PB - Martinello et al., 2010 

 AF - Iacono et al., 2012 

CD44 BM + Guest et al., 2008a; Radcliffe et al., 2010; Ranera et al., 2012 

 AT + de Mattos Carvalho et al., 2009; Ranera et al., 2012 

 UC + Iacono et al., 2012 

 UCB + De Schauwer et al., 2011a; De Schauwer et al., 2012; Iacono et al., 2012 

 PB + Martinello et al., 2010 

 AF + Iacono et al., 2012 

CD45 BM ± Radcliffe et al., 2010; Ranera et al., 2011 

 AT - Ranera et al., 2011 

 UC - Hoynowski et al., 2007; Iacono et al., 2012 

 UCB - De Schauwer et al., 2012; Iacono et al., 2012 

 PB - Martinello et al., 2010 

 AF - Iacono et al., 2012 

CD49d BM + Ranera et al., 2012 

 AT + Ranera et al., 2012 

CD51 PB + Dhar et al., 2012 

CD73 BM + Ranera et al., 2011 

 AT + Ranera et al., 2011 

 UC + Hoynowski et al., 2007 

 UCB ± De Schauwer et al., 2012 

CD79α BM - Guest et al., 2008a 

 UCB - De Schauwer et al., 2011a; De Schauwer et al., 2012 

CD90 BM + Arnhold et al., 2007; Guest et al., 2008a; Radcliffe et al., 2010; Ranera et 

al., 2011 

 AT + de Mattos Carvalho et al., 2009; Ranera et al., 2011 

 UC + Hoynowski et al., 2007; Iacono et al., 2012 

 UCB + De Schauwer et al., 2011a; De Schauwer et al., 2012; Iacono et al., 2012 

 PB + Dhar et al., 2012; Martinello et al., 2010 

 AF + Iacono et al., 2012 

CD105 BM + Ranera et al., 2011 

 AT + Ranera et al., 2011 

 UC + Hoynowski et al., 2007; Iacono et al., 2012 

 UCB ± De Schauwer et al., 2012; Iacono et al., 2012 

 PB + Dhar et al., 2012 

 A(F) + Iacono et al., 2012; Violini et al., 2012 

CD106 BM + Ranera et al., 2011 

 AT + Ranera et al., 2011 

CD117 PB + Martinello et al., 2010 

MHC I BM + Guest et al., 2008a 

 UC + Hoynowski et al., 2007 

MHC II BM - Guest et al., 2008a 

 UCB - De Schauwer et al., 2011a; De Schauwer et al., 2012 

+ = present; - = absent; ± = moderate expression; BM = Bone Marrow; AT = Adipose Tissue; UC = Umbilical 

Cord; UCB = Umbilical Cord Blood; PB = Peripheral Blood; AF = Amnion Fluid 
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Taken together, there have been reports of differentiation of equine MSCs from several 

sources into cartilage (Hegewald et al., 2004), bone (Vidal et al., 2006), fat (Koch et al., 

2007), muscle (Martinello et al., 2010), tendon (Smith, 2008) and even neuronal-like cells 

(Hoynowski et al., 2007). Since obtaining BM and AT samples is a rather invasive procedure, 

the search for alternative sources has received more attention lately. As an alternative, UCB 

has been suggested, which in humans can be easily collected at birth at the hospital. However, 

in horses, autologous UCB is not always available and a sterile collection is only possible 

under highly hygienic circumstances, which is difficult to achieve under field circumstances. 

Moreover, the cost of storage of UCB- and UCM-derived MSCs for future therapeutic use 

over the lifetime of the animal/patient must also be considered.  

The disadvantages of UCB can be avoided by using PB as a source for MSCs. Since 

collection of a sterile blood sample can easily be performed by any equine practitioner, PB is 

a readily accessible source of autologous MSCs when injuries occur. The isolation of equine 

PB-derived MSCs was described for the first time in 2006 and was based on morphology 

combined with a differentiation towards osteocytes and adipocytes (Koerner et al., 2006). 

Two years later, another research group managed to produce chondroblasts from equine PB-

derived MSCs, although this was only achieved after 9 weeks and also here, no 

immunophenotypic characterization of the cells was performed (Giovannini et al., 2008). 

More recently, CD44 and CD90 have been used as positive immunophenotypic markers for 

equine PB-derived MSCs, but these cells were also positive for the hematopoietic SC marker 

CD117 and no differentiation towards chondroblasts was reported (Martinello et al., 2010). 

Also other researchers identified a MSC population in the PB using CD90 and CD105 as 

positive markers, but no further characterization was performed (Marfe et al., 2011). All this 

indicates that there is a need for more research to further characterize equine MSCs obtained 

from this readily available alternative source. 
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1.2.2. The MSC niche 

The stem cell (SC) niche is defined as the micro-environment where SCs reside and which 

contains important factors for SC regulation. The specific interactions between the residing 

mesenchymal SCs (MSCs) and their micro-environment determines whether or not a SC 

remains quiescent, starts to proliferate or differentiates into an adult cell (Becerra et al., 2011; 

Kuhn and Tuan, 2010; Scadden, 2006). The niche contains two main divisions: a biological 

and a physical (temperature, oxygen level, relative humidity,…) one. The biological niche can 

be divided into four subdivisions: surrounding cells, extracellular matrix components, growth 

factors and cytokines (Figure 2). Since MSCs mainly reside perivascular (as pericytes) in 

most tissues, they live in close contact with endothelial cells of the blood vessels and migrated 

macrophages (Figure 2) (Crisan et al., 2008; da Silva Meirelles et al., 2006; Kode et al., 2009; 

Zhou et al., 2010).  

 

 

Figure 2. Different niche factors which are of importance in the regulation of MSCs. 
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Manipulation of the niche can as such represent an important tool to guide the further 

direction of development of the MSCs. In this regard, an influence of human umbilical vein 

endothelial cells on the osteogenic potential of human BM MSCs has been previously 

reported (Xue et al., 2009). This study describes that 5 days after the addition of endothelial 

cells to MSCs, the cell proliferation significantly increased and cellular bridges between the 

two cell types were present, as well as increased mRNA expression of alkaline phosphatase 

(AP). Moreover, they reported a greater effect on differentiation after the addition of the 

endothelial cells than when adding osteogenic factors such as dexamethasone, ascorbic acid 

and beta-glycerophosphate to the culture medium. Furthermore, AP activity and mRNA 

expression of various osteogenic markers significantly increased when human endothelial 

cells and BM MSCs were cocultured on materials with calcium phosphate scaffolds compared 

to tissue culture polystyrene or to MSCs alone (Bulnheim et al., 2012). In that study it was 

also observed that the expression of osteopontin and osteocalcin was highly sensitive to the 

used adhesion substrate, indicating the importance of cell surfaces as a regulating structure in 

the micro-environment. In addition, coculturing human BM MSCs with endothelial cells 

increased formation of microvessel-like structures in vitro, as confirmed by CD31 and CD146 

expression (Kolbe et al., 2011) and vascular structures were formed as early as 48 hours after 

subcutaneous implantation within a starch-poly(caprolactone) biomaterial in vivo (Ghanaati et 

al., 2011). Also in humans, it has been described that co-cultivating adipose tissue (AT)-

derived MSCs with skeletal myoblasts changes their protein expression (Mizuno, 2010). 

These studies implicate that the products MSCs secrete depend on the surrounding cells. 

Furthermore, different growth factors have been described with proliferation or 

differentiation stimulating effects on human MSCs (Fong et al., 2011; Kuhn and Tuan, 2010). 

Hereby, the addition of basic-fibroblast growth factor (b-FGF) increased the mitosis capacity 

and maintained the growth and multilineage differentiation potential of human MSCs in vitro 
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(Kuhn and Tuan, 2010; Sotiropoulou et al., 2006; Tsutsumi et al., 2001). Also epidermal 

growth factor (EGF) and transforming growth factor-β3 (TGB-β3) would have an influence 

on human MSC growth and are considered valuable niche factors (Chieregato et al., 2011; 

Fong et al., 2011). In addition, after migration to the injury site, MSCs release all the 

aforementioned growth factors in order to stimulate local cells (and MSCs) to heal the 

damaged tissue (Shi et al., 2010). Several independent studies have suggested that pro-

inflammatory cytokines, which are present at the injury site, would have an influence on the 

MSC behavior, mainly by maintaining their undifferentiated state (Kode et al., 2009; Pricola 

et al., 2009). Indeed, MSCs contain receptors for the most common pro-inflammatory 

cytokines, such as interleukin (IL)1, IL3, IL6 & Tumor Necrosis Factor-α (TNF-α), (Kode et 

al., 2009; Kuhn and Tuan, 2010; Pricola et al., 2009). Moreover, adding IL6 to MSC cultures 

enhanced their proliferation, but inhibited adipogenic and chondrogenic differentiation 

(Pricola et al., 2009). Furthermore, it has been reported that granulocyte- and macrophage-

colony stimulating factor (G-CSF & M-CSF) may also affect MSCs, since these factors 

stimulate the BM MSC release (Dygai et al., 2009).  

From the aforementioned it became clear that the homeostasis within different tissues, and 

maybe even within the entire body is sustained by a complex network of growth factors and 

transcription factors that orchestrate the proliferation and differentiation of MSCs. Increasing 

evidence recently indicated that microRNAs (miRNAs), small non-coding RNAs with a post-

transcriptional regulating function, are one of the key players of this concert. Indeed, it has 

been reported that upregulation of miRNA-16 contributed to the differentiation of human 

bone marrow (BM) MSCs towards myogenic phenotypes in a cardiac niche (Liu et al., 2012). 

Moreover, miRNA-124 would play an important role in maintaining subventricular zone 

(brain compartment) homeostasis, by regulating the number of progenitors and the timing of 

neuronal differentiation (Cheng et al., 2009). 
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Regarding equine MSCs and their niche, many details remain unknown to date and most of 

the molecular characterizations of equine MSCs have been made at 20% O2, a higher oxygen 

level than that surrounding the cells inside the organism. In this regard, it has been reported 

that hypoxia maintains the undifferentiated state and potency of different SC types, such as 

ESCs, hematopoietic SCs (HSCs), neural SCs and MSCs (Basciano et al., 2011; Mohyeldin et 

al., 2010). Concerning the influence of hypoxia on the differentiation capacities of equine 

MSCs, several studies have been performed. In a study of Ranera et al. (2012), no significant 

differences were found in long-term cultures for osteogenesis and adipogenesis between 

normoxic (20% O2) and hypoxic (5% O2) expanded equine BM-derived MSCs. However, 

chondrogenesis-related genes (COL2A1, ACAN, LUM, BGL, and COMP) were upregulated 

and the extracellular sulphated glycosaminoglycan content was increased under hypoxemic 

conditions. These results suggested that chondrogenesis was enhanced at a low oxygen level 

(Ranera et al., 2013). The same group made a comparison between the influences of low 

oxygen surroundings on BM-derived MSCs and AT-derived MSCs (Ranera et al., 2012). 

Hereby, it was reported that fewer BM MSCs were obtained in hypoxia (5% O2) than in 

normoxia (20% O2), as a result of significantly reduced cell divisions. Hypoxic AT MSCs 

proliferated less than normoxic AT MSCs. In contrast, another study reported that the 

isolation rate of equine umbilical cord blood (UCB)-derived MSCs was improved by reducing 

the oxygen tension from 20% to 5% (Schuh et al., 2009). Although flow cytometry revealed 

no considerable changes in protein expression of both MSC sources under both oxygen 

conditions, PCR showed that statistically significant higher levels of gene expression of 

CD49d in BM MSCs and CD44 in AT MSCs were found under normoxic circumstances 

(Ranera et al., 2012). Furthermore, hypoxic cells tended to display a higher marker 

expression, which confirms the aforementioned statement that hypoxia retains MSCs in an 

undifferentiated state. Furthermore, hypoxic preconditioning of MSCs significantly increased 
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the expression of hypoxia inducible factor-1 (HIF-1) alpha and chemokine receptor CXCR4 

in MSCs and enhanced their migration in vitro (Yu et al., 2013). Additionally, hyperbaric 

oxygen treatment has been reported to enhance MSC recovery from peripheral blood (PB) in 

horses and to significantly increase CD90-positive cells (Dhar et al., 2012). Indeed, 

hyperbaric oxygen treatment has been reported before to stimulate BM release of HSCs 

(Thom et al., 2006). According to the authors, the increased SC release would be due to an 

increase in nitrogen oxide (NO) synthase. This would be a plausible explanation, since NO 

plays a key role in triggering progenitor cell mobilization from the BM through releasing a SC 

active cytokine (Kit ligand) (Aicher et al., 2003; Heissig et al., 2002).  

From the above it is clear that a specific interaction exists between residing MSCs and 

their micro-environment. Although there has been significant progress in the field of MSC 

biology, there is still ongoing controversy and debate concerning the influence of niche 

factors on the in vivo capacities of MSCs. In fact, the exact modus operandi of SCs itself 

remains a question. Although various clinical applications using MSCs have been described, 

the mechanisms underlying their therapeutic effects are not well known and characterized. For 

this reason, MSC treatments sometimes give unsatisfactory results in clinical trials (Frisbie et 

al., 2009; Wilke et al., 2007). Nowadays, it is generally accepted that the positive effects of 

SC therapy are due to the products they secrete, and not necessarily to the cellular 

reconstitution of the injured tissue. In this regard, it has been reported that MSCs enhance the 

metabolic function of other cells (Yang et al., 2013) and that the regulation of biologically 

active peptide secretion by MSCs would determine the efficacy of tissue regeneration 

(Cabrera et al., 2012). On the other hand, it has to be mentioned that several studies report a 

stable and uniform integration of MSCs in the repair tissue, indicating some sort of structural 

support (Guest et al., 2008b, Martinello et al., 2013). Nevertheless, there are no reports on the 

effects of injecting SC antigens or their secreted factors alone. For all the aforementioned 
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reasons, more efficacious therapies may result from the possibility to exogenously regulate 

the protein secretion in vitro, and hence, discriminate between the different therapeutic effects 

of MSCs or the products they secrete in vivo. To reach this goal, however, the micro-

environment of these cells should be tightly regulated. More specifically, identifying and 

using important niche factors which alter the protein secretion of patient MSCs in vitro, might 

prove invaluable to increase the efficacy of in vivo tissue regeneration and even standardize 

regenerative medicine, and also the clinical outcome of the injured patients. 

 

1.2.3. MSCs in physiology and pathology 

Symptomatic therapies for some musculoskeletal injuries (depending on the location and 

severity of the damage) may last for long periods of time and in several cases no significant 

improvements in functionality of the tissues have been reported. Therefore, the use of causal 

treatments may be of substantial importance. Causal treatments, such as stem cell (SC) 

therapy aim to reestablish the tissue or metabolic pathway to a status before disease. With 

causal treatments, researchers aim to repair, replace, restore or regenerate damaged or 

diseased cells, tissues and organs. In this regard, the aforementioned SC niche plays an 

important role and might influence the in vivo outcome. From a physiological point of view, a 

difference has to be made between homeostatic and homeorhetic processes (Bauman and 

Currie, 1980). The first phenomenon indicates maintenance of physiological equilibrium or 

constancy of environmental conditions within the animal (Bauman and Currie, 1980). After a 

homeostatic regulation, the original status and tissue integrity should be reconstituted 

(restitutio ad integrum) and the damage was in fact reversible, which remains questionable in 

the case of naturally occurring injuries. Homeorhesis on the other hand, aims to orchestrate 

the metabolism of body tissues in order to support a physiological state, which is a more 

realistic description of what may be achieved after SC treatment (Bauman and Currie, 1980). 
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The broad field of causal treatments covers a variety of research areas that includes growth 

factors (GFs) and cell therapy. One of the most explored GF-based therapies in equine 

research is the use of platelet-rich plasma (PRP), whereas the cell-based therapies are largely 

focused on the use of SCs. These therapies will be further discussed in this subchapter, using 

the treatment of equine tendinopathies as an example.  

 

1.2.3.1. Equine tendon (patho)physiology 

Tendons are dense bands of fibrous connective tissue that primarily serve as force 

transmitters between muscle and bone. Tendons are highly compliant structures under 

moderate tension. Physiological loads usually cause less than 4% increase in the length of the 

tendon (Jozsa and Kannus, 1997) and under those circumstances, the tendon will be in the 

elastic phase or “toe” region. This represents the loss of the waveform on the tendon surface 

but is fully recoverable (Figure 3). Strains above 4% result in tendon damage with changes in 

the mechanical characteristics of the tendon and irreversible changes in the ground substance 

(Stromberg B., 1969). This is called the visco-elastic phase (Figure 3). The point of complete 

tendon rupture, in humans as well as horses, occurs at strains of around 8-12% (Crevier et al., 

1996; Kader et al., 2002; Riemersma and Schamhardt, 1985; Riley, 2004) (Figure 3). Given 

that strains of up to 12-16% have been recorded in vivo at the gallop (Stephens et al., 1989), 

the equine superficial digital flexor tendon (SDFT) is therefore functioning close to its limits.  

After acute damage to the tendon, the first reaction consists of an inflammatory phase that 

lasts several days to two weeks. The extent of the inflammatory response may determine the 

level of pain experienced, but it is not always directly related to the extent of tendon damage 

(Ketchum, 1979). Directly after the acute reaction, the repair phase starts and continues for 

several months. This phase is characterized by fibroplasia and angiogenesis (Kajikawa et al., 

2007). Thirdly, there is the collagen phase which is of great importance for tendon healing, 
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since the type of collagen influences the tendon’s mechanical properties and the re-occurrence 

rate of tendinopathies is mostly dependent on this phase (Birch et al., 1998; Manske et al., 

1984; Richardson et al., 2007). 

 

 

Figure 3. The physiological stress-strain curve of a tendon (adapted from Riley, 2004). This curve shows the 

relationship between stress (force per area) and strain (deformation due to stress) of the tendon. The star 

represents the moment when tendon rupture occurs. 

 

 

Healthy tendon tissue is primarily composed of collagen type I (approximately 95% of the 

total collagen), which provides strength and elasticity. During tendon healing, random 

collagen type III deposition occurs (McCullagh et al., 1979), resulting in a much higher 

percentage (20-30%) of collagen type III compared to normal, functional tendon (1-3%) in 

horses and humans (Obaid and Connell, 2010; Williams et al., 1980). As collagen type III 

tends to produce smaller, less organized fibrils, it will provide a structural, but not a 

functional (homeorhesis) recovery of the tendon. Due to the loss of the original strength and 

elasticity, the risk of reinjury is increased (Birch et al., 1998; Manske et al., 1984). Finally, 

there is the remodeling or maturation phase of the repaired tissue. As the directional strain 

placed upon the tendon re-aligns the tendon fibers, collagen type III is partially replaced by 
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collagen type I. Limited exercise is therefore important to improve longitudinal orientation of 

tendon fibers (McCullagh et al., 1979), however, excessive exercise during this time can 

disrupt the early repair process (Ketchum, 1979; Rudolph et al., 1980). 

Ligament and tendon pathologies are a common cause of injuries and have a high re-

occurrence rate in sport horses. The group of Ely described that every year 22.8% of the 

horses were inflicted with these kind of injuries (Ely et al., 2009), and therefore, different 

regenerative therapies have been studied in this animal species. Chronic tendon injuries are 

caused by repetitive over-loading of the tendon. Their pathology differs to that of an acute 

injury in that there is no inflammatory stage. Instead there is an initial reactive stage where 

tendon cells proliferate and increase their production of proteoglycans. The tendon will 

increase in thickness but if the load is reduced it can, at this stage, revert to normal (Ohberg et 

al 2004). If the tendon continues to be overloaded, tendon dysrepair will occur. Tendon cells 

continue to proliferate and produce increased amounts of proteoglycans resulting in matrix 

disorganization. This can progress to the degenerative stage where the matrix changes are 

more pronounced with areas of acellularity, increased vascularity and reduced collagen (Cook 

& Purdam 2009). 

 

1.2.3.2. Equine clinical studies using growth factors (GFs) 

Based on positive laboratory results and promising in vivo results, the use of autologous 

GFs is gaining enormous popularity. These GFs have the in vitro potential to change collagen 

production and degradation by influencing matrix-regulating enzymes (Creaney and 

Hamilton, 2008; Mishra et al., 2009; Sampson et al., 2008). One of the most explored GF-

based therapies in equine research is the use of PRP. This is an autologous concentrate of 

platelets in a small volume of blood plasma and contains various endogenous GFs, such as 

platelet-derived GF (PDGF), transforming GF-beta (TGF-β), insulin-like GF (IGF) and 
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vascular endothelial GF (VEGF) (Marx, 2001). These GFs play a central role in the healing 

process of tendon injuries, because of their capacity to stimulate cell proliferation and the 

synthesis of extracellular matrix (ECM) components (Molloy et al., 2003). 

In horses, several studies on the use of PRP have been performed. In vitro studies with 

SDFT explant cultures have shown that PRP increases the expression of tendon matrix genes 

in these explants (Schnabel et al., 2007). The group of Bosch et al., have studied the in vivo 

effects, using several different parameters, of PRP injection one week after the creation of 

surgically-induced SDFT defects. In those placebo-controlled experimental studies, they 

found an increased neovascularization, as well as improved histological, biochemical and 

biomechanical properties of the tendons, suggesting that PRP treatment might be beneficial, at 

least for acute tendon lesions (Bosch et al., 2011; Bosch et al., 2010). The successful use of 

autologous PRP to treat chronic desmitis of the suspensory ligament (n=3) has also been 

reported, but due to the very limited number of patients in this study, no real conclusions on 

the benefits of PRP treatment for chronic tendon lesion can be made at present (Arguelles et 

al., 2008). 

According to another group, using PRP in combination with BM-derived mononuclear 

cells for the treatment of chronic equine tendinosis may enhance equine tendon regeneration 

in clinical cases (Torricelli et al., 2011). Although this study was not placebo-controlled, the 

authors did demonstrate a statistically significant reduction in recovery time associated with 

increased platelet concentration. This latter study implicates the potential of a combined use 

of GFs together with cell-based therapies (as described below) for the treatment of chronic 

tendinopathies. 
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1.2.3.3. Equine clinical studies using cell-based therapies 

Cell-based therapies are defined as the process of introducing new cells into a tissue in 

order to treat a disease or regenerate damaged tissue. Such therapies not only include the use 

of pluri- (1) or multipotent (2) SCs, but also include the transplantation of mature, functional 

cells (3). In general, it is accepted that these treatments have the highest success rate when 

administered immediately after the inflammatory phase of the initial tendon injury (before 

infiltration with fibroblasts and scar tissue formation), because of the ideal environment for 

cell growth at that point (Richardson et al., 2007). However, in clinical trials as well as under 

experimental conditions, acute as well as chronic tendon lesions have been studied to date. 

(1) Pluripotent stem cells 

Pluripotent SCs can differentiate into every cell type of the three germ layers (endoderm, 

mesoderm, and ectoderm). To date, there are two major groups of pluripotent SCs: embryonic 

SCs (ESCs), which are obtained from the inner cell mass (ICM) of a blastocyst, and induced 

pluripotent stem (iPS) cells, which are obtained from adult somatic cells (Chan et al., 2009; 

Paris and Stout, 2010). Over the last decade, the public opinion, especially in human 

medicine, has been ranging from increasing enthusiasm for SC therapy towards pronounced 

ethical concerns about using pluripotent ESCs, since this implies the destruction of embryos. 

In veterinary medicine, the objections against the use of SC therapy are not very much 

focused against the use of animal embryos, but are mainly based on the fact that SC therapies 

are being used in practice without being backed up by proper fundamental research. Since it is 

known that acute fetal tendon injuries can fully regenerate (Favata et al., 2006), the interest in 

ESCs has dramatically increased. These ESCs can be recovered from the inner cell mass of 

day 7-8 equine blastocysts (Li et al., 2006), but have not been proven yet to be real ESCs. 

In contrast to horses, human ESCs have been fully characterized by the expression of 

pluripotency markers and different functional characteristics including telomerase activity, 



Chapter 1 

31 

 

embryoid bodies and teratoma formation (Kempf et al., 2011; Lensch et al., 2007; Marion and 

Blasco, 2010). The SCs derived from equine embryos have undergone a much more limited 

characterization (Guest and Allen, 2007) and interestingly, teratoma formation in vivo of these 

cells has been unsuccessful to date (Li et al., 2006). Still, equine embryonic-like SCs have 

already been used in an in vivo experimental study for the treatment of surgically created 

equine SDFT lesions, 1 week after inducing the lesion. The cells did not induce a cell-

mediated immune response, nor did they form tumors in the 90 day time period studied 

(Guest et al., 2010). The ES-like cells survived in high, constant numbers for the duration of 

the study period and were capable of migrating to other areas of damage within the same 

tendon. In contrast, mesenchymal SCs (MSCs) derived from the bone marrow (BM) of these 

horses demonstrated very low cell survival within the damaged tendon. However, the effect of 

either cell type on tendon regeneration was not investigated in this study.  

Fetal-derived SCs have also been investigated for acute (after 1 week) collagenase-induced 

SDFT injury treatment in the horse (Watts et al., 2011). This experimental in vivo study 

showed that tissue architecture, tendon size, lesion size and linear fiber pattern improved 

significantly in the treated tendons compared to controls and no tumor formation was 

reported. However, no differences in tendon matrix specific gene expression or total DNA, 

proteoglycan and collagen production were seen between the control group and the cell-

treated group. 

As aforementioned, the iPS cells are derived from somatic cells by the forced expression of 

a combination of specific transcription factors. This results in the reprogramming of these 

cells to a pluripotent state which allows them to differentiate into any desired cell type for 

autologous transplantation. This should decrease the risk of immune rejection, although a 

recent study in mice suggests that abnormal gene expression as a result of reprogramming 

may produce an immune response following autologous transplantation (Zhao et al., 2011). 
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On the other hand, Araki et al. (2013) reported a limited to no immune response after 

transplantation of terminally differentiated cells derived from mouse iPS cells. Nonetheless, 

iPS cells do raise fewer ethical concerns compared to ESCs and they have been successfully 

produced from both human and equine fibroblasts (Breton et al., 2013; Hackett et al., 2012; 

Hussein et al., 2011; Nagy et al., 2011). However, equine iPS cells have been shown to induce 

teratoma formation in mice models (Nagy et al., 2011), which most likely explains why no 

clinical applications with iPS cells have been reported in horses to date. 

(2) Multipotent stem cells 

Adult multipotent SCs can only differentiate into a limited number of tissues of the adult 

individual (De Schauwer et al., 2011b). MSCs from different sources are the most commonly 

used multipotent SCs for the treatment of orthopedic injuries, mainly because of their 

regenerative, anti-inflammatory and homing capacities (Fong et al., 2011; Iyer and Rojas, 

2008; Shi et al., 2010). 

In horses, the first report on the use of cellular BM to aid tendon repair was in 2001 

(Herthel, 2001). In this study 84% (n=100) of horses with a naturally-occurring suspensory 

ligament desmitis returned to full work after BM treatment, in contrast to the control group, 

where only 15.2% (n=66) of the horses reached the same performance level as before. It must 

be noted, however, that in this study no information was given on the frequency of forelimb 

and hindlimb problems, nor the region of the injury, which are all of importance since they 

have different prognoses (Dyson, 2000; Dyson et al., 1995). In another study, the beneficial 

effects of BM-derived MSCs were evaluated in horses suffering from SDFT tendinosis and 

they found that 82% (n=168) of the horses treated with MSCs performed at their original level 

without reinjury in the next year (Smith, 2008), whereas 42-44% of the horses with SDFT 

tendinosis treated with conservative and reparative therapy with hyaluronic acid (HA) and 

polysulfated glycosaminoglycans (PSGAG) re-injured (Dyson, 2004). Here, it should be 
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mentioned that the documentation from the control group was from another study and 

spanned a longer time frame post-treatment (2 years). However, a recent 2 year follow-up 

study of 141 horses with SDFT tendinosis confirmed a significantly lower reinjury rate of 

27% after BM-derived MSC treatment (Godwin et al., 2011).  

The use of adipose tissue (AT)-derived MSCs has been described for the treatment of 

clinical cases of tendinopathy (Del Bue et al., 2008; Richardson et al., 2007). To date, there is 

only one study where they have evaluated the effects on tendon repair in an experimental 

equine model where therapy was initiated 1 week after inducing the lesion (Nixon et al., 

2008). Unfortunately, the authors used an AT-derived cell mixture instead of a pure AT-

derived MSC population in this study and although biomechanical properties of the repaired 

tissue were not measured, similar significant histological improvements, as described for BM 

MSCs (Schnabel et al., 2009), were noted along with a significant increase in COMP gene 

expression. The gene expression of collagen type I and III, on the other hand, were similar in 

the treated and control tendons (Nixon et al., 2008). Although equine AT-derived MSCs have 

been demonstrated to be inferior to BM MSCs in cartilage differentiation in vitro (Kisiday et 

al., 2008; Vidal et al., 2008) and the treatment of experimentally-induced osteoarthritis in 

horses (Frisbie et al., 2006), there has been - to our knowledge - no direct comparison 

reported to date on the ability of AT-derived versus BM-derived MSCs to generate tendon 

tissues. 

Although there are no reports on the use of synovium-derived MSCs in horses, the use of 

human synovium-derived MSCs has been reported as a promising treatment for 

musculoskeletal disorders due to the high proliferation and differentiation capacities of these 

cells in vitro and in vivo (De Bari et al., 2003; Ju et al., 2008).  

Recently, amniotic fluid (AF) has also been described as a useful source of MSCs in horses 

and in humans (Manuelpillai et al., 2011; Park et al., 2011a). In contrast to humans, where it 
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has been described that these cells may have clinical significance in prenatal and postnatal 

medicine (Shaw et al., 2011), no data on the clinical application of AF-derived MSCs has 

been reported in horses to date. 

The isolation of MSCs from umbilical cord matrix (UCM) as well as umbilical cord blood 

(UCB) has been described in equines (De Schauwer et al., 2011a; Hoynowski et al., 2007; 

Koch et al., 2007; Zeddou et al., 2010). A recent in vitro study in horses proposed the use of 

UCB-derived MSCs for musculoskeletal regeneration based on the differentiation potential of 

these cells. Unfortunately, no differentiation of equine UCB-derived MSCs towards tenocyte-

like cells was performed (Reed and Johnson, 2008). Moreover, the only in vivo experiments 

using equine UCM-derived MSCs to date report the injection of autologous and allogeneic 

UCM-derived MSCs into the radiocarpal joints and into the skin of healthy horses in order to 

evaluate any potential adverse effects (Carrade et al., 2011a; Carrade et al., 2011b). In both 

equine studies, no clinical signs of an immune response were detected after injection with 

autologous or allogeneic UCM-derived MSCs.  

As described above, regenerative medicine has been intensively used for the treatment of 

tendinopathies (Table III).  

 

Table III. Overview of reported multipotent mesenchymal stem cell (MSC) therapies to treat tendon injuries.  

Species 

origin 

Tissue origin In vivo 

model 

Tendon 

studied 

Reference  

Horse BM Horse SDFT Schnabel et al., 2009  

Horse BM Horse SDFT Lacitignola et al., 2008  

Horse BM Horse SL Herthel, 2001  

Horse BM Horse SDFT Smith, 2008  

Horse BM Horse SDFT Godwin et al., 2011  

Horse AT Horse SDFT Nixon et al., 2008  

Horse AT Horse SDFT  Del Bue et al., 2008  
SDFT: Superficial digital flexor tendon; SL: Suspensory ligament  
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On the other hand, the administration of MSCs has also been proposed as a promising 

treatment for other diseases such as arthrosis (Wilke et al., 2007), bone fractures (Vidal et al., 

2006), hepatic disorders (Petersen et al., 1999), pancreatic dysfunction (Santana et al., 2006), 

myocardial pathologies (Chen et al., 2006) and even skin wounds (Chen et al., 2012). 

Nevertheless, only limited clinical information is available or only a small number of animals 

have been included in these case reports. 

(3) Differentiated cells  

The use of autologous tenocytes has been reported for differentiated cell therapy and 

tenocytes have been isolated from tendon tissue of humans, rabbits, chickens and horses (Cao 

et al., 2002; Casey, 2011; Chen et al., 2007; Yao et al., 2006). 

To date, there is only one report of equine autologous tenocytes used for the treatment of 

naturally occurred tendon lesions (Casey, 2011). In this study, 45 horses with discrete core 

tendon lesions were treated. The tenocytes showed a strong linear cellular alignment in vitro 

and showed no in vivo overgrowth of the cells/tendon tissue. Furthermore, no negative effects, 

such as hypersensitivity or hyperproliferation after sampling or re-injection were observed. In 

this study, 60% (27 out of the 45 treated horses) reached the same competition level as before. 

Unfortunately, no control group of horses with identical discrete core tendon lesions was 

included in this study. Moreover, the functionality of equine tenocytes after in vitro culturing 

as well as after in vivo application remains to be demonstrated. In addition, recently the use of 

ovine amnion epithelial cells has been described to produce tenocytes in vitro and to treat 15 

horses with acute tendon lesions (Muttini et al., 2013). Here, they found that 80% (12 out of 

15) of the patients were able to return to their previous performance level. However, the lack 

of control groups in this study does not allow to draw any definite conclusions concerning this 

xenogeneic treatment. 
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1.2.3.4. Complications of MSC therapy 

Despite the positive effects of MSCs, an issue of debate is the risk of spontaneous 

transformation of these cells. For human AT-derived MSCs, this phenomenon has been 

reported after long-term in vitro passaging (Rubio et al., 2005). On the other hand, human 

BM-derived MSCs did not undergo transformation nor exhibited telomere maintenance 

mechanisms when culturing for a normal duration and less than 25 population doublings 

(Bernardo et al., 2007). Recently, clinical trials with 227 and 339 human patients treated for 

various orthopedic conditions with BM-derived MSCs failed to demonstrate any tumor 

formation on MRI at the re-implanted sites at 2 and 3 years after injection, respectively 

(Centeno et al., 2011; Centeno et al., 2010). Although long-term follow-up studies are 

lacking, these preliminary data implicate that MSCs are probably safe to use in humans. In 

141 horses with overstrain injury of the SDFT treated with BM-derived MSCs and followed 

up for a 2 year period, there was also no evidence of any complications, differentiation to 

undesirable cell types or neoplastic transformation at any time point post treatment with these 

cells (Godwin et al., 2011). Therefore, all current evidence suggests that the use of MSCs is 

safe in both humans and horses. Nevertheless, future research will provide new insights into 

the immunogenicity and complications after clinical application of SCs. 

Another drawback of SC therapy is the risk of possible disease transmission from animal-

based serum (fetal calf serum), which is commonly used for the cultivation of SCs. Therefore, 

several researches have explored alternatives, and the use of autologous platelet lysate 

appeared to be a worthy replacement for fetal calf serum (Centeno et al., 2010; Rauch et al., 

2011; Schallmoser et al., 2007). Defined cell culture media lacking any animal products has 

also been reported for the culture of human pluripotent SCs (Chen et al., 2011). 

Finally, and more specifically related to the use of SCs for the treatment of tendinopathies, 

there is the issue of ectopic bone formation. To date, different human and equine studies 
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report no ectopic bone formation after the clinical use of MSCs (Centeno et al., 2011; Centeno 

et al., 2010; Crovace et al., 2007; Godwin et al., 2011; Richardson et al., 2007; Riordan et al., 

2009; Smith, 2008). In rabbits, however, ectopic bone formation was reported in 28% of the 

animals (n=34) following injection of rabbit BM-derived MSCs into acute tendon lesions 

(Harris et al., 2004). Culturing these MSCs in a 3D collagen scaffold resulted in an even 

greater amount of ectopic bone formation (Harris et al., 2004). In this regard, other studies 

also implicate that the right scaffold or delivery vehicle is of great importance for each SC 

application (Bosch and Krettek, 2002; Koch et al., 2009a; Longo et al., 2011; Nixon et al., 

2012). 

 

1.2.3.5. The horse as a model for human regenerative medicine 

The use of MSCs in regenerative therapy has been studied extensively in mice, to gain 

valuable information concerning the in vivo efficiency and safety of regenerative medicine in 

humans. In this regard, nude mice and murine severe combined immunodeficiency (SCID) 

mutation are being reported as the ideal animal models to assess the in vivo functionality of 

heterologous cells, because the immune system of these animals accepts foreign cells much 

more easily compared to any other animal (Gerling et al., 1994; Mahasiripanth et al., 2012). 

Thus, the mouse can be considered the best model as a highly efficient recipient of human or 

equine cells to engraft, proliferate and differentiate SCs. This unique feature offers a great 

opportunity for enhancing therapy researches of cancer, leukemia, visceral diseases, AIDS, 

and other diseases. It also provides applications for cancer, infection, regeneration, and 

hematology studies. Not only the short generation turnover and fast reproduction are great 

advantages for using small laboratory animals in clinical trials, but also their size, low cost 

and ease of handling benefits this animal species (Rosenthal and Brown, 2007).  
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However, for the evaluation of a new medicine against certain musculoskeletal diseases, 

such as osteoporosis, the food and drug administration (FDA) recommends the in vivo 

evaluation of the same product in two different animal species, namely a small laboratory 

animal and a second non-rodent large animal that has a similar tissue structure and 

remodeling pattern to that of humans (Food and Drug Administration, 1994). Indeed, the 

metabolism of horses, as well as the musculoskeletal physiology and pathologies resemble 

humans more closely than those of small laboratory animals. Moreover, there are many 

similarities between the weight bearing tendons of the horse and the human athlete (Smith and 

Webbon, 2005), with the tendons of both species showing a strong resemblance in function, 

matrix composition and nature of the injuries sustained (Smith and Webbon, 2005). Also the 

non-calcified cartilage thickness of the stifle joint in horses provides the closest 

approximation to humans, and this is considered to be relevant in pre-clinical studies of 

cartilage healing (Frisbie et al., 2006). Furthermore, in 2005, the FDA selected the horse as 

the most reliable animal model to evaluate new therapies on cartilage defects in human 

medicine. Additionally, the thickness, volume, composition, manipulation and exploration of 

equine cartilage is very similar to human cartilage (Frisbie et al., 2006). For all the 

aforementioned reasons, the evaluation of new treatments for musculoskeletal injuries in 

horses will be of advantage to human medicine. Of course, the equine animal model also 

directly benefits veterinary patients.  

 

1.3. Mammary stem/progenitor cells (MaSCs) 

1.3.1. General characteristics 

In 1959, the transplantation of mammary gland tissue into a cleared fat pad (mammary 

adipose tissue without mammary epithelium) of a genetically identical acceptor mouse gave 

rise to the development of an entirely functional mammary gland with the formation of ductal 
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and alveolar epithelial cells (Deome et al., 1959). With this finding, the hypothesis of the 

existence of a mammary stem/progenitor cell (MaSC) population was born. In 1983, the so-

called cap cells were identified as possible MaSCs (Williams and Daniel, 1983). These cap 

cells are epithelial cells and are located at the tip of an elongating mammary duct in mice, 

which is also called terminal end bud (TEB) (Figure 4) (Hinck and Silberstein, 2005).  

 

Figure 4. During rodent mammary gland development cap cells in the terminal end buds (TEBs) move through 

the fat pad and establish the different epithelial cell layers (Smalley and Ashworth, 2003). 

 

 

This developmental unit in the mammary tissue is called “terminal ductal lobular unit” 

(TDLU) in other species, such as ruminants and humans, and is characteristic for postpubertal 

mammary development (Capuco et al., 2002; Telang et al., 1990). The ductal lumen is formed 

when central body cells undergo apoptosis and outer cells differentiate into luminal epithelial 

cells, and extracellular-matrix enzymes degrade the stroma in front of the TEB to enable it to 

move through the fat pad (Smalley and Ashworth, 2003). Fifteen years later it was reported 

that MaSCs and their progeny are located in the entire mammary gland (Kordon and Smith, 
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1998). Even though the existence of undifferentiated human mammary cells, which could 

survive in suspension as so-called mammospheres, was reported for the first time in 1986 

(Soule and McGrath, 1986), it took some years before these cells were designated as MaSCs. 

These cells showed properties of bipotent cells based on their capacity to produce adult 

luminal epithelial on the one hand and myoepithelial cells on the other hand (Figure 5) 

(Petersen et al., 1992; Stingl et al., 2001). In line with what has been described for MSCs, 

MaSCs also need to express stem cell (SC)-specific markers and be negative for certain 

lineage-specific markers. Most information available comes from mice, and to a lesser extent 

humans, whereas not much is known on the immunophenotypic profiles in other mammalian 

species with the exception of bovine MaSCs. An overview of the markers most commonly 

used to immunophenotype murine, human and bovine MaSCs can be found in Table IV.  

The differentiation of murine and human MaSCs into myo-epithelial cells and ducto-

alveolar structures has been reported using a 3D culture model (Bai and Rohrschneider, 2010; 

Bandyopadhyay et al., 2012; Dontu et al., 2003a; Weaver and Bissell, 1999; Welm et al., 

2003). Also in cattle, the differentiation of MaSCs towards alveolar epithelial cells (on 

collagen coated culture plates) and towards myo-epithelial cells (on normal culture dishes) 

has been reported (Li et al., 2009; Motyl et al., 2011), however, less information concerning 

their cell surface markers is available in this animal species. 
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Figure 5. Schematic overview of the different cell types in the bovine mammary gland (Capuco et al., 2012). 

The mammary stem/progenitor cell (MaSC) can multiply through symmetric division with the formation of 

identical daughter cells. After asymmetrical cell division, a more differentiated progenitor cell rises from the 

MaSC. From a common progenitor cell, a ductal and alveolar progenitor cell can be produced. These can both 

give rise to myo-epithelial cells or ductal and alveolar epithelial cells with (+) or without (-) an estrogen receptor 

(ER), respectively. 

 

 

To date, several in vitro assays have been described to identify, isolate and/or characterize 

MaSCs. In order to morphologically identify this hierarchy, transmission electron microscopy 

can be performed with an osmium tetroxide staining or immunohistochemistry can be done on 

tissue sections after a repeated intravenous Bromodeoxyuridine (BrdU) injection in cows or 

intraperitoneal thymidine injection in mice. In different studies with different animal species, 

such as mice, rats and cows, the results were similar: small light staining cells (SLCs) or 

BrdU or thymidine-label-retaining epithelial cells (LRECs) were identified and this 

population most likely encompassed the MaSCs (Capuco, 2007; Chepko and Smith, 1997; 

Smith, 2005; Smith and Chepko, 2001).   
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Table IV. Overview of most commonly used mammary stem/progenitor cell (MaSC) markers, their function and 

their presence in bovine, murine and human MaSCs. 

 

Marker Function Expression Animal Reference 

CD10 Peptide  + Mice Han et al., 2006 

 degradation + Human Bachelard-Cascales et al., 2010 

  ND Bovine  

CD24 Cell adhesion ± Mice Bai and Rohrschneider, 2010 

  ± Human Dey et al., 2009 

  ± Bovine Rauner and Barash, 2012 

CD29 Cell adhesion + Mice Wang et al., 2008 

  + Human Jo et al., 2010 

  + Bovine Li et al., 2009 

CD31 Cell adhesion  - Mice Booth et al., 2008 

 Cell migration - Human Stingl, 2009 

  - Bovine Rauner and Barash, 2012 

CD34 Cell adhesion ± Mice Han et al., 2006 

  - Human Dey et al., 2009 

  ND Bovine  

CD44 Cell adhesion + Mice Dontu et al., 2005 

 Migration + Human Dey et al., 2009 

  ND Bovine  

CD45 Signaling  - Mice Shackleton et al., 2006 

 molecule - Human Hardt et al., 2012 

  - Bovine Rauner and Barash, 2012 

CD49f Cell adhesion + Mice Bai and Rohrschneider, 2010 

  + Human Stingl, 2009 

  + Bovine Li et al., 2009 

CD61 Cell adhesion + Mice Asselin-Labat et al., 2007 

  + Human Leccia et al., 2012 

  ND Bovine  

CD133 Unknown - Mice Sleeman et al., 2007 

  - Human Lehmann et al., 2012 

  ND Bovine  

ESA Epithelial + Mice Amann et al., 2008 

 Cell adhesion + Human Dey et al., 2009 

  ND Bovine  

Sca1 Mediates  + Mice Welm et al., 2003 

 adhesion - Mice Stingl et al., 2006 

 & signaling ND Human  

  ± Bovine Motyl et al., 2011 

ALDH1 Detoxification + Mice Park et al., 2011b 

 enzyme + Human Ginestier et al., 2007 

  + Bovine Rauner and Barash, 2012 

CK14 Cytoskeletal ± Mice Wang et al., 2008 

 (Cell shape and size) ± Human Dey et al., 2009 

  ± Bovine Martignani et al., 2009 

CK18 Cytoskeletal ± Mice Stingl et al., 2006 

 (Cell shape and size) ± Human Dey et al., 2009 

  ± Bovine Martignani et al., 2009 
   + = present; - = absent; ± = moderate expression; ALDH = Aldehyde dehydrogenase; ND = Not Determined 
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 Originally it was accepted that these SLCs and LRECs were lost lymphocytes, however, 

the presence of desmosomes and hemidesmosomes confirmed their epithelial nature (Ellis and 

Capuco, 2002). Moreover, these cells were undifferentiated because of the presence of only a 

few cytoplasmic organelles, small amounts of cell fibrils and a limited chromatin 

condensation in the nucleus. In addition, they were located in the basal layers of the mammary 

gland epithelium, a localization that corresponds with the expected MaSC niche (Verstappen 

et al., 2009). Based on the staining retention, also the progeny of the MaSCs has been 

identified: undifferentiated large light cells (progenitor cells), differentiated large light cells 

and large dark cells (Chepko and Smith, 1997). 

Even though the staining and label-retaining techniques were of great value for the 

identification and localization of MaSCs, no viable MaSCs can be isolated with these 

techniques. Therefore, the use of the lipophilic, membrane permeable Hoechst (nuclear 

staining) has been described in order to isolate MaSCs. In contrast to differentiated cells, 

different types of SCs possess ABC membrane transporter proteins on their cell surface which 

are able to exclude different lipophilic drugs. Because MaSCs are capable of excluding 

Hoechst 33342, they can be identified as a negative side population (SP) (Figure 6) which can 

subsequently be separated by means of fluorescence activated cell sorting (Alvi et al., 2003; 

Dontu et al., 2003a; Woodward et al., 2005). In order to verify if the cells in the SP can truly 

exclude Hoechst, and therefore, contain the MaSCs, different membrane transporter 

inhibitors, such as Cyclosporin A or Verapamil can be added to the cell suspension and this 

would result in the disappearance of the SP (Figure 6) (Dey et al., 2009). A similar molecule, 

Rhodamine 123 has been described to generate a negative SP as well (Dey et al., 2009).  
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Figure 6. Flow cytometric analysis of human breast epithelial cells with Hoechst (Alvi et al., 2003). The cells in 

the black box represent the Hoechst negative side population (SP) before (a) and after (b) addition of Verapamil. 

This resulted in a 12-fold reduction of the SP. 

 

Besides cell sorting, another technique for isolating MaSCs is the use of suspension 

cultures. In 1994, the first report on the influence of surface properties of the culture recipient 

on protein production (decreased in suspension) of murine mammary epithelial cells was 

published (Hurley et al., 1994). In this regard, a couple of years later Dontu described the 

culture of human mammary gland-derived spheroid cell clusters, the so-called 

“mammospheres” (Figure 7) which contained progenitor cells with MaSC properties (Dontu 

et al., 2003a). Unquestionably, there are many ways to identify, isolate and characterize 

MaSCs.  

 

 

 

Figure 7. Human mammospheres. Bar represents 50µm (Bachelard-Cascales et al., 2010).  
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However, there is a need for uniformity, and guidelines for MaSC characterization should 

be constituted. Indeed, there are only a few reports on the functional characterization of 

MaSCs, although a more thorough study on the physiological (and pathological) behavior of 

these cells could provide valuable information regarding mammary gland physiology (and 

pathology).  

 

1.3.2. The MaSC niche 

Mammary stem/progenitor cells (MaSCs) are recruited in response to specific 

physiological demands to regenerate, repair or maintain essential cellular components of 

tissues through activating signals which are part of a larger dynamic framework, the MaSC 

'niche' (Joshi et al., 2012). This micro-environment responds to different stimuli, generating 

signals that activate MaSCs in order to expand and/or differentiate. Mammary epithelial 

fragments taken from any area of the gland can give rise to new ductal trees indicating that 

MaSCs and their niches are distributed throughout the ductal network (Daniel et al., 1971; 

Deome et al., 1959), or in other words, that the entire fat pad is in fact their original niche. 

This would explain why transplantation of a single MaSC into the cleared fat pad results in an 

elaborate epithelial outgrowth (Shackleton et al., 2006; Stingl et al., 2006). At the same time it 

implicates the necessity of stroma-derived signals in order to support the MaSCs. The exact 

nature of these stroma-derived signals is, however, still not elucidated. It is clear though that 

these signals must direct both symmetrical and asymmetrical division of the MaSCs in order 

to develop a functional ductal tree and that hormones play a key role in directing the fate of 

the MaSCs. Although mouse MaSCs themselves do not express steroid receptors (Asselin-

Labat et al., 2006; Sleeman et al., 2007), ductal and alveolar growth is severely inhibited in 

ER knockout mice (Mallepell et al., 2006). Indeed, it has been reported that adding different 

hormones to MaSC cultures alter their destiny and determine the differentiation pathway they 
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will follow (Martignani et al., 2009; Visvader and Lindeman, 2006; Visvader and Smith, 

2011). In this regard, it was found that culturing bovine and canine MaSCs with insulin and 

hydrocortisone induced ductal differentiation, and that alveolar differentiation with the 

production of milk proteins (casein) could be induced after supplementing prolactin (Cocola 

et al., 2009; Li et al., 2009).  

Besides hormones, the mammary gland niche contains different cell types, such as adult 

epithelial cells, macrophages, eosinophils and stromal cells, such as fibroblasts and adipocytes 

(Gouon-Evans et al., 2002). It has been reported that the repopulating ability of murine 

MaSCs is compromised in the absence of macrophages (Gyorki et al., 2009). Indeed, 

macrophage-colony stimulating factor (M-CSF) deficiency in mice, caused defects in 

branching morphogenesis during pregnancy (Dai et al., 2002). Moreover, during postnatal 

mammary gland development, eosinophils are positioned around the top of TEBs and 

inhibiting the eosinophil infiltration, significantly reduced the total ductal branch numbers in 

murine mammary glands (Gouon-Evans et al., 2000). In addition, MSCs that are present in 

mammary adipose tissue (Zhao et al., 2012) produce IL6 and vascular endothelial growth 

factor (VEGF) which promote breast cancer cell migration through a more significant and 

more persistent activation of intracellular signaling pathways in these mammary cells 

(MAPK, AKT, and p38MAPK) (De Luca et al., 2012). 

In conclusion, although morphological mammary gland development and interactions with 

different hormones and cell types is well described in several animal species, much remains to 

be understood about the interaction of MaSCs with other cells, growth factors, cytokines and 

extracellular matrix components. Moreover, to our knowledge, in horses there are no reports 

on MaSCs or their interaction with the micro-environment.  
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1.3.3. MaSCs in physiology and pathology  

In the following paragraphs, the role of mammary stem/progenitor cells (MaSCs) in 

mammary gland physiology is described mainly based on data gathered in rodents and 

ruminants, since studies on mammary gland development have primarily been conducted in 

these species.  

The development of the mammary gland is an unusual phenomenon, since from birth till 

after puberty, in several animal species the mammary gland remains rudimentary with a 

relatively quiescent growth mainly consisting of ductal elongation (Tiede and Kang, 2011). 

Already in utero, the mammary gland develops from a relatively small number of stem cells 

(SCs) which multiply and form clonal regions in the mammary epithelium (Tsai et al., 1996). 

During mammary gland development, terminal end buds (TEBs) in rodents or terminal ductal 

lobular units (TDLUs) in other species ramify through the fat pad and establish inner luminal 

epithelial cell layers and outer myoepithelial cell layers (Brisken and Duss, 2007; Neville et 

al., 1998; Smalley and Ashworth, 2003). A unique and fascinating aspect of mammary gland 

biology is the requirement for MaSCs to grow and function in a stromal matrix referred to as 

the mammary fat pad (Neville et al., 1998). Crucial to this environment are the resident 

adipocytes (Hovey et al., 1999). Whereas this adipose depot was once accepted as a relatively 

inert tissue, it is now well-recognized that this is not the case (Neville et al., 1998). Besides 

the growth and function modulating properties of the adipocytes, this environment ultimately 

dictates to which extent the glandular epithelium of an individual can develop into a 

functional mammary gland (Hoshino, 1978).  

Prepubertal mammary development mainly involves penetration of the fat pad by 

progressive increase in ductal structures (Meyer et al., 2006; Sinha and Tucker, 1969). This 

invasion is mainly attributable to growth factors and steroidal hormones. Insulin-like growth 

factor-type I (IGF-I) and estrogen cause cell multiplication at the tip of the ducts (lengthening 
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and branching) (Figure 8), while progesterone causes ductile cells to multiply, leading to 

ductile development (Figure 8) (Atwood et al., 2000; Russo and Russo, 1996). This 

elongating and branching process is by no means a random process and is controlled by 

“zones of inhibition” around each duct into which other ducts are not able to grow (Faulkin 

and DeOme, 1960). The regulatory factor in this process has been identified in mice as 

transforming growth factor-β (TGF-β) (Daniel et al., 1996).  

 

 

Figure 8. Schematic representation of the effect of growth factors and hormones on neonatal bovine mammary 

gland development (Adapted from Knight and Sorensen, 2001).  

 

During puberty, the increasing ovarian activity stimulates ductal elongation, probably 

because of progenitor cell activation through their occupied estrogen receptors (Brisken and 

Duss, 2007; Capuco, 2007). During pregnancy TDLUs develop and form a cluster of alveoli, 

which is histologically recognizable as a lobuloalveolar unit. In this physiological phase the 

mammary gland undergoes intensive remodeling with alveolar growth and secretory 
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differentiation to initiate milk secretion, followed by involution with apoptosis and regression 

when lactation is terminated (Figure 9) (Lewis, 2000; Motyl et al., 2011; Tiede and Kang, 

2011). Different researchers have suggested that these changes are driven by the coordinated 

division and differentiation of MaSCs in response to several growth factors and hormones 

(Kass et al., 2007; Shackleton et al., 2006; Tiede and Kang, 2011). 

 

 

Figure 9. Schematic representation of mammary gland development (Knight and Sorensen, 2001). The width of 

the arrow represents the size of the gland. 

 

As for many other organs, the mammary gland encloses parenchym and stroma. The 

parenchym contains alveoli and ductuli, whereas the stroma consists mainly of connective 

tissue, adipose tissue, blood vessels and lymph vessels. Based on the mammary gland 

morphology, it would be logic to anticipate that MaSCs populate the parenchym, whereas 

mesenchymal SCs (MSCs) and hematopoietic SCs (HSCs) would populate the stroma. In 

order to construct functional alveoli and ductuli, different epithelial cell types have to be 

generated from MaSCs, i.e. ductal epithelial cells (ductuli), alveolar epithelial cells (alveoli) 

and myo-epithelial cells (contraction for milk ejection).  
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Moreover, it has been reported that MaSCs are not inexhaustible, since they lose their 

proliferation and differentiation capacities after repeated cell divisions. This was originally 

noted after a series of transplantations of murine mammary epithelium in cleared fat pads 

(Chepko and Smith, 1997; Clarke and Smith, 2005; Smith, 2006). After an undefined number 

of transplantations, the epithelium can only form alveolar structures or ductuli or even lose 

their capacity to produce anything at all. Apparently, senescence appears first in actively 

proliferated epithelial cells and later on in resting epithelial cells (Chepko and Smith, 1997). 

This implicates that the previous number of mitoses determines the senescence rate of the 

cells. However, more research is needed to fully unravel the self-renewal rate and 

proliferation capacities of MaSCs. 

The mammary gland is not only an organ which is important for lactation, it is also an 

important subject for research in tumorigenesis, especially in humans. Indeed, breast cancer is 

a devastating disease with in Belgium alone 5000 women who are being diagnosed and 2500 

women that pass away each year (Beyens et al., 2002). According to the International Agency 

for Research on Cancer (IARC), Belgium has the highest prevalence of women that are being 

diagnosed with breast cancer compared to other countries (probably because of the high 

screening frequency as reported by the IARC). Therefore, researchers are looking for 

improved treatments and ultimately, a potential cure. Already since the beginning of time it is 

known that all diseases should be treated based on the cause, instead of treating the 

symptoms. In this regard, it has been hypothesized that MaSCs could be at the origin of the 

development of mammary tumors, leading to the so-called cancer SC hypothesis (Figure 10) 

(Sagar et al., 2007). Moreover, it has been shown that deregulation of normal self-renewal 

pathways in undifferentiated breast SCs or progenitor cells could alter their destiny, resulting 

in abnormally differentiated cells in human and rodent breast cancer cell lines (Dontu et al., 

2003b; Reya et al., 2001). Indeed, because SCs live much longer than adult cells they have an 
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increased risk of genetic alterations or mutations (Marion and Blasco, 2010). In addition, SCs 

and tumor cells share many characteristics such as their: self-renewal rate, migration 

capacities, undifferentiated status and activated cytoprotective mechanisms (increased 

telomerase activity, increased transmembrane efflux capacities, etc.) (Ponti et al., 2005). For 

all these reasons, it is hypothesized that MaSCs could be at the basis of tumor development 

(Figure 10). 

 

 

Figure 10. Schematic overview of the cancer stem cell (SC) hypothesis (Sagar et al., 2007). The cancer SCs may 

develop when normal mammary SCs or progenitor cells acquire mutations and are transformed by altering only 

proliferative pathways or by multiple oncogenic mutations. The changed morphology in cancer cells indicates 

uncontrolled proliferation. 

 

 

Interestingly, mammary cancer is common in humans and carnivores (Munson and 

Moresco, 2007), whereas cows, sheep, pigs and horses only very rarely develop mammary 

tumors (Knight and Sorensen, 2001). Using this variation amongst different animal species, 

new insights could be gathered on the mechanisms underlying the functional behavior and 

regulation of MaSCs, and their role in tumorigenesis. Therefore, it is of importance to study 

MaSCs in as many species as possible. But in order to do that, proper isolation and 
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characterization procedures are needed to obtain MaSCs derived from animals with a low and 

high susceptibility to mammary cancer. In dogs, an animal species with high mammary tumor 

susceptibility, there are some reports on cancer MaSCs (Cocola et al., 2009; Hellmen et al., 

2000). In cattle, an animal species with low mammary tumor susceptibility, MaSCs are 

mainly studied for their capacity to improve milk production (Capuco, 2007; Li et al., 2009; 

Martignani et al., 2009). In this regard, it should be taken into account that low milk 

production might be caused by inflammatory processes. In several mammals, such as horses, 

mastitis is usually caused by bacterial infection (McCue and Wilson, 1989). These infections 

may occur as a result of inadequate mammary wound healing. One of the determining factors 

whether or not a trauma heals properly might be the accurate proliferation and differentiation 

of MaSCs. In this regard, MaSCs could also have a protective effect on the occurrence of 

mastitis and more knowledge on the MaSC biology might provide us with a tool for the 

prevention or even treatment of mastitis. Unfortunately, there are no reports on the presence 

and function of MaSCs in horses. This is probably due to the low economic impact of milk 

production in this animal species and because equine mammary tumors and mastitis are rare 

(Hirayama et al., 2003; Jackson, 1986; McCue and Wilson, 1989; Seahorn et al., 1992). 

Moreover, a thorough immunophenotypic characterization of equine cells in general, and 

putative equine MaSCs in specific, is hampered in this species, since only about 4% of human 

antibodies react with the equivalent equine proteins (Ibrahim et al., 2007). Still, a thorough 

study of equine MaSCs could potentially extend the current knowledge of the mammary gland 

biology in this animal species and form a negative model for a comparative physiological 

approach of MaSC tumorigenesis.  
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Aims 

When a fertilized egg cell develops into a multicellular organism, only highly proliferative 

pluripotent stem cells (SCs) are capable of driving this process. During further organ and 

tissue development, SCs become more specialized and less potent. However, multipotent SCs 

are still present in differentiated tissues of adult animals where they function to replace aged 

cells throughout an individual's life. So if SCs can be successfully isolated from these tissues 

and identified as such, they can form the basis for clinical applications in regenerative 

medicine and for more fundamental research on organ/tissue maintenance.  

Mesenchymal SCs (MSCs) and mammary stem/progenitor cells (MaSCs) represent two 

entirely different populations of SCs and require different isolation techniques. In the horse, 

MSCs have an important potential for clinical applications in the repair of bone, cartilage and 

tendon, tissues which are frequently damaged in sport horses. Besides that, MaSCs are 

invaluable tools for research on mammary gland development and disease. The horse is an 

interesting species in this respect, since it has a very low incidence of mammary carcinoma 

and as such, could represent a non-rodent cancer-resistant animal species.  

For the aforementioned reasons, the current thesis aimed: 

1. To optimize  the isolation and characterization of equine MSCs from peripheral blood 

(PB), since PB is a highly accessible source of MSCs, which is easy to collect under 

field circumstances (Chapter 3).  

2. To optimize the isolation and characterization of equine MaSCs, since equine 

mammary gland tissue is highly accessible through slaughterhouse collection and 

MaSCs play a pivotal role in mammary gland development and (mal)functioning, 

(Chapter 4).  
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3. To demonstrate in a supplementary part of this thesis, how equine PB-derived MSCs 

can be applied clinically by injection into the pastern joint of a horse suffering from 

degenerative joint disease (Chapter 5). 
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Equine peripheral blood-derived mesenchymal stem cells 
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3.1. Abstract 

The use of mesenchymal stromal cells (MSCs) for the treatment of orthopedic injuries in 

horses has been described in several studies. In contrast to human MSCs, no official 

guidelines have been proposed to classify a particular cell as an equine MSCs. For peripheral 

blood (PB)-derived MSCs in specific, only a limited characterization has been reported to 

date. In the present study, we have increased the currently available data on PB-derived 

MSCs. To this end, MSCs were isolated from equine PB samples and colony forming unit 

(CFU) assays as well as population doubling time (PDT) calculations from P0 to P10 were 

performed. Hereby, two types of colonies, fingerprinted and dispersed, could be observed 

based on macroscopic as well as microscopic features. Moreover, after an initial lag phase as 

indicated by a negative PDT at P0 to P1, the MSCs divided rapidly as shown by a positive 

PDT at all further passages. Furthermore, an immunophenotypic characterization was 

performed with trypsin- as well as accutase-detached MSCs, to evaluate a potential trypsin-

sensitive destruction of epitopes of certain antigens. Hereby, it was found that the isolated 

MSCs were positive for CD29, CD44, CD90 and CD105, and negative for CD45, CD79α, 

MHC II and a monocyte/macrophage marker, irrespective of the cell detaching agent used. 

Finally, a trilineage differentiation towards osteoblasts, chondroblasts and adipocytes was 

confirmed using different histological staining methods. 

 

Keywords: Peripheral blood; Horse; Mesenchymal stromal cells 
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3.2. Introduction 

Stem cells (SCs) are defined as cells displaying a self-renewal capacity either with or 

without differentiation, depending on the symmetry of the division (Horvitz and Herskowitz, 

1992). More specifically, mesenchymal stromal cells (MSCs) are adult SCs derived from the 

mesodermal germ layer. In 2006, the International Society for Cellular Therapy (ISCT) has 

carefully determined the qualities human cells must possess in order to be defined as MSCs 

(Dominici et al., 2006). Hereby, human MSCs have to be (i) plastic-adherent; (ii) positive for 

the markers CD73, CD90 and CD105 and negative for the markers CD14 (or CD11b), CD34, 

CD45, CD79a (or CD19) and MHC II; and (iii) able to differentiate into different cell types of 

the mesodermal germ layer such as osteoblasts, chondroblasts and adipocytes. The use of 

other human MSC markers such as CD29 and CD44 was also reported (Majumdar et al., 

2003; Pittenger et al., 1999). 

For equine MSCs, no such guidelines have been described to date, although this would 

greatly benefit researchers working in this field (De Schauwer et al., 2011b). Sources of 

equine MSCs reported include bone marrow (BM), adipose tissue (AT), umbilical cord, 

amniotic fluid, umbilical cord blood (UCB), peripheral blood (PB), gingiva and periodontal 

ligament (Ahern et al., 2011; Carrade et al., 2011; Koch et al., 2007; Koerner et al., 2006; 

Mensing et al., 2011; Park et al., 2011). For MSCs isolated from equine BM, AT and UCB, 

the use of several MSCs markers and a successful trilineage differentiation have been 

described (Guest et al., 2008; Hoynowski et al., 2007; Koch et al., 2009; Radcliffe et al., 

2010). In contrast, only a limited characterization of equine PB-derived MSCs has been 

reported to date, despite the existence of several papers describing their isolation. Hereby, 

only one group has described a more extended immunophenotypic characterization of PB-

derived MSCs using two of the proposed positive markers, namely CD44 and CD90, and two 

of the proposed negative markers, CD34 and CD45 (Martinello et al., 2010). Nevertheless, for 
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the negative markers used in this study, no information was provided on the positive controls 

used to confirm cross-reactivity with equine cells and a potential influence of the detachment 

product on epitope expression was not evaluated. The latter might be of importance, since a 

recent paper by Hackett et al. describes a destructive effect of trypsin on the CD14 epitope of 

equine BM-derived cells, indicating that attentiveness is needed when evaluating negative SC 

markers on trypsin-detached cells (Hackett et al., 2011). Moreover, and aside from the 

immunophenotypic characterization, the results of different studies on the differentiation of 

equine PB MSCs into cartilage are contradictory (Giovannini et al., 2008; Koerner et al., 

2006). All this indicates the need for more characterization of PB-derived equine MSCs. 

Current clinical regenerative therapies with MSCs in horses mainly use BM-derived MSCs 

for the treatment of tendinopathies (Crovace et al., 2007; Smith, 2008; Smith et al., 2003) and 

BM-or AT- derived MSCs for the treatment of osteoarthritis (Frisbie et al., 2009). The most 

obvious disadvantages of BM and AT are the difficulty and invasiveness of the harvesting 

procedure. An excellent alternative would be blood, such as UCB collected at birth or PB 

from an adult horse. Despite the safety and high success rate of collecting UCB for use as a 

source for MSCs (Bartholomew et al., 2009), a potential disadvantage is the fact that 

autologous UCB is not always available at the moment of injury. In this case, the use of PB as 

a source for MSCs might prove a valuable alternative. Indeed, PB can be easily taken from 

the patient in a sterile manner, making this a readily accessible source of autologous MSCs 

when injuries occur and hence, indicates the potential of PB as a source of equine MSCs for 

regenerative therapies. Moreover, the first clinical applications of an heterogenous population 

of PB-derived SCs have been recently described for the treatment of ophthalmologic 

pathologies in horses (Marfe et al., 2011; Spaas et al., 2011). In order to standardize the 

promising results of this regenerative therapy, it is indispensable to use a well-characterized 

and homogenous SC population. 
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Therefore, the goal of the current study was to broaden the knowledge on the 

characterization of equine PB-derived MSCs by (i) determining the growth efficiency and 

proliferation rate of the cells, (ii) using a more wide-ranging set of complementary markers 

for their immunophenotyping and (iii) performing trilineage differentiation experiments.  

 

3.3. Materials and Methods 

3.3.1. Isolation of putative peripheral blood (PB)-derived mesenchymal stromal cells (MSCs) 

Ten mL of peripheral blood (PB) from the vena jugularis externa of four adult Warmblood 

horses was collected between 9 and 10 am in the spring season into EDTA tubes and 

transported at 4°C to the laboratory within 4 hours after sampling. The donor horses consisted 

of 1 mare (15 years-old), 2 stallions (4 years-old) and 1 gelding (5 years-old). The PB was 

centrifuged at 1000xg for 20 minutes at room temperature (RT). The buffy coat fraction was 

collected and diluted 1:1 with phosphate buffered saline (PBS). Subsequently, the cell 

suspension was gently layered on a Percoll gradient (density 1.080 g/mL; GE Healthcare) and 

centrifuged at 600xg for 15 minutes at RT, as previously described (De Schauwer et al., 

2011a). The interphase was collected, washed three times with PBS by centrifuging at 200xg 

for 10 minutes, and cells were planted at 16x10
4
 cells/cm

2
 in a T75 flask in culture medium 

consisting of low glucose (LG) Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen), 

supplemented with 30% fetal calf serum (FCS) (GIBCO), 10
-11 

M low dexamethasone, 50 

µg/mL gentamicin, 10 µl/mL antibiotic-antimycotic solution, 250 ng/mL fungizone (all from 

Sigma) and 2 mM ultraglutamine (Invitrogen). The medium was refreshed twice a week and 

the putative MSCs were maintained at 37°C and 5% CO2. At 70% confluency, cells were 

trypsinized with 0.25% trypsin-EDTA (P0) and were further cultured for 10 subsequent 

passages (P1 to P10) in expansion medium, with the latter being identical to the culture 

medium but without dexamethasone. 
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3.3.2. Colony forming unit (CFU) assay 

 Ten, 50 and 100 MSCs were plated per 94 mm plate and fixed 8 days later at ­20°C for 10 

minutes using 90% ethanol. Crystal violet stainings were performed to visualize the colony 

forming units (CFUs) macroscopically and the total number of CFUs per plate were counted. 

These experiments were done in triplicate for all samples.  

 

3.3.3. Population Doubling Time (PDT) determination 

 Cell doubling time (CDT) was calculated from P0 to P10 exactly as previously described 

(Hoynowski et al., 2007), using the following formula: CDT= ln(Nf/Ni)/ln2 with Nf as the 

final number of cells and Ni the initial number of cells. For the population doubling time 

(PDT), the cell culture time (in days) was divided by the CDT (Hoynowski et al., 2007). 

 

3.3.4. Flow cytometric immunophenotyping 

 To characterize the undifferentiated equine MSCs immunophenotypically, the expression 

of several MSC markers was evaluated simultaneously by flow cytometry. Cells were 

detached using either trypsin (Invitrogen) or accutase (Innovative Cell Technologies). Per 

series, 2x10
5
 cells were used and labeled with the following panel of primary antibodies: 

CD29-Alexa
488

 (Biolegend, clone TS2/16), CD44-APC (BD, clone IM7), CD45-Alexa
488

 

(Serotec, clone F10-89-4), CD79α-Alexa
647

 (Serotec, clone HM57), CD90 (VMRD, clone 

DH24A), CD105-PE (Abcam, clone SN6), MHC II (Serotec, clone CVS20) and a 

monocyte/macrophage marker-Alexa
488

 (Serotec, clone MAC387). For the detection of the 

CD79α and monocyte/macrophage marker, fixation and permeabilization pretreatment was 

carried out with commercially available reagents (Invitrogen). In general, cells were incubated 

for 15 minutes on ice in the dark with the primary antibodies and washed twice in LG DMEM 

with 1% bovine serum albumin (BSA). Secondary Alexa
647

-linked and PE-linked antibodies 
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(Invitrogen), again incubated for 15 minutes on ice in the dark, were used to label the CD90 

and MHC II positive cells, respectively. In addition, viability assessment with the nucleic acid 

stain 7-amino-actinomycin D (7-AAD, Sigma) was performed on the non-fixed cells. At least 

10,000 cells were acquired using a FACS Canto flow cytometer (Becton Dickinson 

Immunocytometry systems) equipped with a 488 nm solid state and a 633 nm HeNe laser, and 

these data were subsequently analysed with the FACS Diva software. To assess cross-

reactivity of the differentiated blood cell markers, for which stem cells (SCs) should be 

negative, proper positive equine control cells consisting of equine peripheral blood 

mononuclear cells (PBMCs) and equine endothelial cells were used. In addition, cells were 

incubated with or without (autofluorescence) isotype-specific IgG’s (mouse IgG1, mouse IgM 

and rat IgG2b) in parallel to establish the background signal. 

 

3.3.5. Trilineage cell differentiation 

 For the osteogenic differentiation, 3x10
3
 cells/cm

2
 were planted in a 4-well plate and 

incubated in expansion medium until cells were 70% confluent. At that point, osteogenic 

differentiation medium was added and refreshed twice a week. This medium consisted of LG 

DMEM (Invitrogen) supplemented with 10% FCS (GIBCO), 0.2 mM L-ascorbic acid-2-

phosphate (Fluka), 100 nM dexamethasone, 10 mM β-glycerophosphate, 50 µg/mL 

gentamycin and 10 µl/mL antibiotic-antimycotic solution (all from Sigma) (De Schauwer et 

al., 2011a; Koch et al., 2007). Three weeks later, differentiation was evaluated using Alkaline 

Phosphatase (Millipore detection kit) and Alizarin Red S staining in order to evaluate calcium 

phosphate deposition. For chondrogenic differentiation, 2.5x10
5
 cells/5mL were brought in a 

three-dimensional culture system, centrifuged at 150xg for 5 minutes at RT and resuspended 

in 0.5 mL chondrogenic inducing medium which was refreshed twice a week. This medium 

was based on the basal differentiation medium (Lonza), supplemented with 10 ng/mL 
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transforming growth factor-β3 (Sigma). Differentiation was daily evaluated macroscopically 

and after 3 weeks of incubation, an Alcian Blue staining was performed on 8 µm histological 

sections after paraffin embedding of the chondrospheres. For adipogenic differentiation, 

2.1x10
4
 cells/cm

2
 were planted in a 4-well plate in expansion medium until the cells were 

70% confluent and adipogenic inducing medium was added subsequently. After 3 days, this 

medium was replaced with adipogenic maintenance medium for 1 day. This cycle was 

repeated four more times after which the cells were refreshed twice with adipogenic 

maintenance medium. The adipogenic inducing medium consisted of LG DMEM (Invitrogen) 

supplemented with 1 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 10 µg/mL 

recombinant human-insulin, 0.2 mM indomethacin, 15% rabbit serum, 50 µg/mL gentamycin 

and 10 µl/mL antibiotic-antimycotic solution (all from Sigma) (De Schauwer et al., 2011a; 

Koch et al., 2007). The adipogenic maintenance medium was identical but without 

dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine. Differentiation was 

evaluated after 3 weeks of cultivation using Oil Red O staining. As a control for the trilineage 

differentiation, MSCs were cultivated for 3 weeks in expansion medium at the same 

concentrations and in the same culture vessels, and all stainings were performed identically. 

 

3.4. Results 

3.4.1. Putative peripheral blood (PB)-derived equine MSCs are plastic adherent 

On average, the buffy coat of 10ml blood of the horses contained approximately 1x10
7 

peripheral blood mononuclear cells (PBMCs). The first plastic adherent colonies, 

approximately 8 for each horse, were noticed starting from 16-18 days after culturing these 

isolated fractions and around 21 days post seeding, cells became confluent with the formation 

of a monolayer (Figure 1A). 
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Figure 1. Adherent putative equine mesenchymal stromal cells (MSCs). (A) Representative pictures of putative 

single MSCs and a MSC monolayer. (B) Representative macroscopic and microscopic images of dispersed 

colony forming units (CFUs) and fingerprint CFUs after crystal violet staining. Scale bars represent 50µm. 

 

3.4.2. Putative PB-derived equine MSCs have self-renewal growth properties 

Mesenchymal stromal cells (MSCs) can be evaluated using the well-characterized colony 

forming unit (CFU) assays. Hereby, a limited number of cells (10, 50 and 100) were seeded 

on a large surface and cultured for 8 days. At that time point, colonies in two different stages 
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could be observed macroscopically. First, there were dispersed CFUs identified by a spotted, 

vague macroscopic morphology and as rather scattered cells microscopically (Figure 1B). 

Second, darker and more packed CFUs were found with a microscopic fingerprint pattern 

(Figure 1B). In general, more dispersed compared to fingerprint CFUs were observed for all 

three seeding concentrations (Table I). To determine the growth efficiency and proliferation 

rate of the putative MSCs, population doubling times (PDT) in days were calculated from P0 

up to P10. After an initial lag phase, indicated by a negative PDT at P0→1, the putative MSCs 

divided rapidly as shown by a positive PDT at all further passages tested (Table II). 

Table I. Colony forming unit (CFU) assays of putative peripheral blood (PB)-derived equine mesenchymal 

stromal cells (MSCs) of four horses (H1 to H4). Data represent the means ± standard deviations.  

Number of seeded 

cells 

Isolation Fingerprint 

colonies 

Dispersed 

colonies 

Total 

colonies 

CFU10 H1 7±2 17±5 24±7 

 H2 6±1 11±4 17±5 

 H3 6±2 9±1 16±3 

 H4 9±5 10±4 19±9 

CFU50 H1 20±4 47±5 68±4 

 H2 17±3 38±3 55±6 

 H3 17±3 38±6 55±5 

 H4 26±3 47±6 73±3 

CFU100 H1 25±13 75±13 100±26 

 H2 32±2 82±6 114±6 

 H3 32±3 70±10 101±10 

 H4 32±9 65±11 99±12 
 

Table II. Population doubling time (PDT) in days of the putative peripheral blood (PB)-derived equine 

mesenchymal stromal cells (MSCs) of four horses (H1 to H4).  

Passage (P) PDT H1 PDT H2 PDT H3 PDT H4 

P0→1 -5.46 -6.25 -3.29 -3.72 

P1→2 0.70 1.27 0.77  0.82 

P2→3 1.21 0.98 0.75 1.17 

P3→4 1.03 1.14 1.12 1.52 

P4→5 1.49 1.02 0.98 0.92 

P5→6 0.90 1.22 1.47 1.21 

P6→7 1.35 1.00 1.23 1.41 

P7→8 1.27 1.15 1.13 1.06 

P8→9 0.74 1.02 1.01 1.92 

P9→10 0.79 1.18 1.02 1.01 
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3.4.3. Putative PB-derived equine MSCs are positive for MSC markers and negative for 

differentiated blood cell markers 

Flow cytometry, comprising a wide-ranging set of cellular markers, was used for the 

immunophenotypical characterization of the putative equine MSCs. Hereby, it was found that 

the cells were positive for the stem cell (SC) markers CD29, CD44, CD90 and CD105 (Figure 

2).  

 

 

Figure 2. Immunophenotypic characterization with positive markers for equine mesenchymal stromal cells 

(MSCs). Two laser flow cytometry was performed with a set of 4 MSC positive markers: CD29, CD44, CD90 

and CD105. Representative histograms show relative numbers of cells versus mean fluorescence intensity. The 

light and dark grey histograms represent the relevant isotype control staining and marker antibody staining, 

respectively with the corresponding mean percentage of positive cells ± standard deviation. 

 

In addition, the putative MSCs were negative for the panleukocyte marker CD45, the B-

lymphocyte marker CD79α, the monocyte/macrophage marker and a marker for MHC II, 

which is present on antigen presenting cells (Figure 3). Moreover, the negative results with 

the differentiated blood cell markers were due to the actual absence of these antigens on the 
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PB-derived equine MSCs since (i) these markers stained positive on the equine PBMC control 

cells, demonstrating cross-reactivity with the equine antigens (data not shown) and (ii) the 

results were virtually identical when using accutase-detached MSCs (Figure 3). In addition, 

no signal was detected with relevant isotype controls for all cell markers used (Figure 2 & 3). 

 

 

Figure 3. Expression of negative cell markers on trypsin- and accutase-detached putative equine mesenchymal 

stromal cells (MSCs). Two laser flow cytometry was performed with a set of 4 MSC negative markers: CD45, 

CD79α, MHC II and a monocyte/macrophage marker. Representative histograms show relative numbers of cells 

versus mean fluorescence intensity after trypsinization (histograms on the left) or detachment with accutase 

(histograms on the right). The light and dark grey histograms represent the relevant isotype control staining and 

marker antibody staining, respectively with the corresponding mean percentage of positive cells ± standard 

deviation. 
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3.4.4. Putative PB-derived equine MSCs are capable of differentiating in vitro towards 

osteoblasts, chondroblasts and adipocytes 

 The putative MSCs were further subjected to a functional characterization by 

differentiation experiments using selective media. After 3 weeks of culture in osteogenic 

medium, the morphology of almost all cultured cells changed from spindle-shaped to stellate 

and irregular (Figure 4B). Differentiated cells formed multiple individual clusters with a clear 

calcium deposition in the extracellular matrix and the presence of intracellular phosphatase as 

determined by Alizarin Red S (Figure 4A) and Alkaline Phosphatase (Figure 4B) stainings, 

respectively. The control MSCs on the other hand, maintained their spindle-shaped 

morphology with the formation of a monolayer and without any positivity for both staining 

methods (Figure 4A & B). 

 

 

Figure 4. Osteogenic and adipogenic differentiation of putative equine mesenchymal stromal cells (MSCs). 

Representative microscopic images of the Alizarin Red S (A) and Alkaline Phosphatase staining (B) in order to 

confirm osteogenesis. The production of lipid droplets is illustrated using Oil Red O staining (C). Also the 

negative control cells are presented. Scale bars represent 50µm. 
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 The differentiation towards adipocytes was performed using adipogenic inducing and 

maintenance media. The cell morphology changed from a spindle shaped towards a more 

round morphology during the differentiation process. Moreover, the production of lipid 

droplets was visualized using an Oil Red O staining (Figure 4C). For the chondrogenic 

differentiation, putative equine MSCs were grown in a three-dimensional culture system with 

chondrogenic medium and within 3 days of culture, spherical colonies, identified as 

chondrospheres, were already noted macroscopically (Figure 5A). The chondrospheres 

increased visually in size during the differentiation period and after staining with Alcian Blue, 

the presence of cartilage lacunes surrounded by sulphated acid mucopolysaccharides was 

clearly observed (Figure 5B). The size of the control pellet (Figure 5A) on the other hand, 

decreased gradually with packed cells without cartilage lacunes (Figure 5B). In addition, the 

control pellet stained negative for Alcian Blue which confirmed the absence of 

mucopolysaccharides (Figure 5B). Controls of non-differentiated MSCs subjected to the same 

detection methods maintained their spindle-shaped morphology with the formation of a 

monolayer (in adhesion) and stained negative (Figure 4 & 5). 
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Figure 5. Chondrogenic differentiation of putative equine mesenchymal stromal cells (MSCs). A representative 

macroscopic image of an encircled chondrosphere and a control pellet, indicated with an arrow, at 2 weeks after 

cultivation (A). Alcian Blue staining indicated cartilage lacunes surrounded by sulphated acid muco-

polysaccharides only in the differentiated chondrosphere pellets (B). Scale bars represent 50µm. 
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3.5. Discussion 

Recently, the use of peripheral blood (PB) stem cells (SCs) has been reported as a valuable 

tool in equine regenerative medicine (Marfe et al., 2011; Spaas et al., 2011). However, in 

order to correctly evaluate their potential, an extensive characterization is warranted. Whereas 

in 1997 Lazarus et al. described that human mesenchymal SCs (MSCs) could not be 

recovered from PB, Zvaifler et al. reported in 2000 the first isolation of mesenchymal 

precursor cells from human blood based on morphological features, cell proliferation assays, 

positivity for the MSC marker CD105 and osteogenic differentiation (Lazarus et al., 1997; 

Zvaifler et al., 2000). For horses, the isolation of PB-derived MSCs was described for the first 

time in 2006 and was based on morphology combined with a differentiation towards 

osteocytes and adipocytes (Koerner et al., 2006). However, no immunophenotypic 

characterization of the cells was performed and the differentiation towards cartilage was 

unsuccessful. In 2008, another research group managed to produce chondroblasts from equine 

PB-derived MSCs, although this was only achieved after 9 weeks of differentiation and also 

in that study, no immunophenotypic characterization of the cells was carried out (Giovannini 

et al., 2008). More recently, CD44 and CD90 have been used as positive immunophenotypic 

markers for equine PB-derived MSCs, but these cells were also positive for the hematopoietic 

SC (HSC) marker CD117 and no differentiation towards chondroblasts was reported 

(Martinello et al., 2010). Also other researchers identified a MSC population in the PB using 

CD105 and CD90 as positive markers, but no further characterization was performed (Marfe 

et al., 2011). In the present study, we therefore aimed to perform a more extended 

characterization of PB-derived MSCs, both immunophenotypically as well as functionally. 

The success rate of isolating equine MSCs from PB has been reported to range from 36.4 

to 66.7% (Giovannini et al., 2008; Koerner et al., 2006; Martinello et al., 2010) and the 

underlying reasons for this remain elusive to date, although the age of the donor has been 
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proposed as a potential influencing factor. In the present study, we were successful in 

isolating PB-derived MSCs in all 4 horses, ranging in age from 4 to 15 years, and in addition, 

we were also successful in isolating PB-derived MSCs from a 4 month old foal (data not 

shown). This seems to indicate that donor age does not appear to influence the success rate of 

isolation, although it has to be mentioned that we did not statistically assess this hypothesis 

and only used a very limited number of horses, which makes it difficult to draw any true 

conclusions at present. 

In order to produce valid data for an immunophenotypic characterization, it is necessary to 

use proper isotype controls to exclude aspecific antibody reaction and to use positive control 

cells for the confirmation of cross reactivity in equines, since only about 4% of human 

antibodies reacts with the equivalent equine proteins (Ibrahim et al., 2007). Another important 

feature to take into consideration when performing flow cytometric analyses is the fact that 

some epitopes can be destroyed by trypsin, resulting in a false negative result (Hackett et al., 

2011). Since MSCs are not only phenotyped by the presence of SC markers but also by the 

absence of several differentiated cell markers, trypsin-sensitivity might be a concern. Indeed, 

recently it has been described that CD14, present on e.g. macrophages, neutrophils and 

dendritic cells and which is used as a negative marker for human MSCs, appears to be 

actually present on equine bone marrow (BM)-derived MSCs, but is absent when using 

trypsinized cells, indicating that this protein contains a tryspin-sensitive epitope (Hackett et 

al., 2011). So in order to evaluate whether the negative MSC markers which we used in the 

present study are truly absent and not just merely destroyed by trypsinization, MSC samples 

were detached using the cell detaching agent accutase and the expression of the negative cell 

markers were compared to trypsin-detached MSCs from the same horse. Since we did not 

observe any difference when using both cell-detaching agents, we conclude that the negative 
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cell markers we tested in our study recognize trypsin-insensitive epitopes and hence, the PB-

derived equine cells fulfill all qualities to be immunophenotyped as MSCs. 

The expression of different markers on equine BM-derived MSCs has been tested at 

different time points after harvesting and hereby, it was found that expression of MSC 

markers can vary during cultivation but stabilizes after 2 to 3 weeks post isolation (Radcliffe 

et al., 2010). Due to the late appearance of MSCs after seeding PB mononuclear cell (PBMC) 

fractions, we were unable to immunophenotype the PB-derived MSCs earlier than 3 weeks 

post isolation in order to evaluate if a similar variation in expression also occurs. However, 

the levels of expression of the cell markers of BM-derived MSCs at 3 weeks (positive as well 

as negative markers) were similar to the expression levels we found in the current study with 

equine PB-derived MSCs, indicating that the source of MSCs most likely does not influence 

the level of cell marker expression on these equine cells (Radcliffe et al., 2010). 

In contrast to previous studies, where the differentiation towards chondroblasts was 

unsuccessful or only accomplished after 9 weeks of culturing in chondrogenic medium 

(Giovannini et al., 2008; Koerner et al., 2006), we could confirm in the present study the 

differentiation of PB-derived MSCs towards chondroblasts as early as 3 weeks post 

differentiation. First, we observed chondrospheres macroscopically in the 3-dimensional 

cultures as early as 3 days and secondly, a positive Alcian Blue staining at 3 weeks post 

culture confirmed the differentiation towards chondroblasts. A possible explanation for this 

discrepancy could be the use of commercially prepared chondrogenic differentiation medium, 

supplemented with transforming growth factor-β3 in the present study, whereas previous 

studies used an in-house prepared culture medium. Furthermore, we supplemented our culture 

medium with dexamethasone already at passage 0 (P0), which is in line with descriptions for 

culturing MSCs from equine umbilical cord blood (UCB) (De Schauwer et al., 2011a; Koch et 

al., 2007). Since dexamethasone is known to be essential for differentiation, adding this potent 
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synthetic glucocorticoid at the time of isolation might potentially have primed the equine 

MSCs for proper chondrogenic differentiation later on. 

In the present study, population doubling time (PDT) experiments were performed, as this 

is a reliable method to determine the given cell proliferation rate under culture conditions and 

PDT is defined as the time by which a given cell population doubles in number (Eslaminejad 

et al., 2010). Our results are in agreement with previous reports where the PDT of equine 

MSCs over several passages were studied (Colleoni et al., 2009; Hoynowski et al., 2007). 

Hereby, it was found in the previous studies as well as in the present study, that the PDT at 

P0/P1 was negative, which can be explained by the fact that there are very few MSCs present 

in the original PBMC cultures at P0. Therefore, a negative value at P0/P1 points out towards 

the initial lag phase of the cells in culture and not necessarily a slow proliferation capacity. 

After this initial lag phase, all PDT values were positive (corresponding to the log phase) and 

remained approximately the same at later passages, indicating a stable proliferation capacity 

of the PB-derived MSCs in culture over time. 

In conclusion, this study provides additional insights into the characterization of equine 

PB-derived MSCs which can prove to be valuable not only for future research on equine PB-

derived MSCs in specific, but also on equine MSCs in general. 
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4.1. Abstract 

The mammary gland is a highly regenerative organ that can undergo multiple cycles of 

proliferation, lactation and involution. Based on the facts that (i) mammary stem/progenitor 

cells (MaSCs) are proposed to be the driving forces behind mammary growth and function 

and (ii) variation exists between mammalian species with regard to physiological as well as 

pathological functioning of this organ, we hypothesize that studying MaSCs from different 

mammals is of great comparative interest. Over the years, important data has been gathered 

on MaSCs of men and mice, although knowledge on MaSCs in other mammals remains 

limited. Therefore, the aim of this work was to isolate and characterize MaSCs from the 

mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met 

the two in vitro hallmark properties of stem cells (SCs), namely the ability to self-renew and 

to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using 

markers for CD29, CD44, CD49f and Ki67.  

Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSCs 

during different physiological phases since it was observed that equine lactating mammary 

gland contains significantly more mammosphere-initiating cells than the inactive, non-

lactating gland (a reflection of MaSC self-renewal) and moreover, that these spheres were 

significantly larger in size upon initial cultivation (a reflection of progenitor cell 

proliferation). Taken together, this study not only extends the current knowledge of mammary 

gland biology, but also benefits the comparative approach to study and compare MaSCs in 

different mammalian species.  

 

Keywords: Mammary stem cells; Horse; Lactation 
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4.2. Introduction 

The mammary gland is a unique organ because, although the stroma is established prior to 

birth, the mammary epithelium primarily develops postnatal and achieves full maturity in the 

adult pregnant individual (Motyl et al., 2011). In several animal species, from birth till after 

puberty, the mammary gland remains rudimentary with a relatively quiescent growth mainly 

consisting of ductal elongation (Tiede and Kang, 2011). Once pregnancy is initiated, this 

dynamic organ will undergo intensive remodeling with (i) alveolar growth and secretory 

differentiation, (ii) lactation, with milk secretion and (iii) involution, with apoptosis and 

regression (Lewis, 2000; Tiede and Kang, 2011). Growing evidence suggests that these 

changes are driven by the coordinated division and differentiation of mammary stem cell (SC) 

populations (Kass et al., 2007; Shackleton et al., 2006; Tiede and Kang, 2011). In 1986, Soule 

and McGrath reported for the first time the existence of undifferentiated human mammary 

cells which could survive in suspension (Soule and McGrath, 1986). A couple of years later, 

these cells were designated human mammary stem/progenitor cells (MaSCs) and showed 

properties of bipotent cells based on their capacity to produce adult luminal epithelial and 

myoepithelial cells (Petersen et al., 1992; Stingl et al., 2001). Now, if MaSCs are indeed the 

driving force behind the different remodeling phases, than it could be anticipated that the 

number or proliferation rate of MaSCs might vary depending on the physiological stage of 

this dynamic organ. 

For understanding the functional role of MaSCs in normal mammary gland development, 

the cleared fat pad mouse model is frequently used (Bruno and Smith, 2011; Visvader and 

Smith, 2011). This in vivo model allows the transplantation and growth of mammary cells into 

their normal anatomical site and under the influence of a normal physiological environment 

(Visvader and Smith, 2011). Using this model, it has e.g. been demonstrated that MaSCs are a 

relative quiescent cell type, which only becomes activated under conditions of mammary 
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gland repopulation such as fetal growth or the pubertal growth phase (Molofsky et al., 2004; 

Reya et al., 2001; Visvader and Smith, 2011; Young et al., 1971). Also, this murine mammary 

gland-free fat pad transplantation system is the animal model of choice for human breast 

cancer research (Cardiff et al., 2002). Indeed, mice have played an indispensable and pivotal 

role in the study of breast cancer and this animal species will keep on being a major research 

resource in comprehending this devastating disease (Young, 2008). However, by studying 

(patho)physiological mechanisms in such model, some key insights might be lost due to the 

absence of variation. Intriguingly, whereas both in humans and other mammals, the mammary 

gland undergoes repeated cycles of development, function and dedifferentiation, changes 

proposed to be driven by MaSCs, the incidence of mammary cancer varies greatly amongst 

these species. Mammary cancer is common in humans and carnivores (Munson and Moresco, 

2007), whereas cows, sheep, pigs and horses only very rarely develop mammary tumors 

(Knight and Sorensen, 2001). We now hypothesize that this variation amongst different 

animal species, namely the susceptibility for mammary gland cancer, might provide novel 

insights into the mechanisms underlying the functional behavior and regulation of MaSCs. 

Therefore, we believe it is of eminent importance to study MaSCs in as many species as 

possible. 

In general, a thorough study on the isolation and characterization of MaSCs is a critical 

step towards elucidating MaSC functioning under different physiological as well as 

pathological circumstances in different species. Unfortunately, when looking at companion or 

production animals, not much information on MaSCs is available to date. This is primarily 

due to the lack of universal markers and in vitro systems to identify MaSCs in different 

mammals. Moreover, functional in vivo assays to detect MaSC activity are missing in these 

species, emphasizing the need for developing additional in vitro assays to better characterize 

these cells. Several reports describe the isolation and characterization of MaSCs from 
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mammary gland tissues of dogs, mostly in order to gain better insights into mammary 

tumorigenesis (Cocola et al., 2009; Hellmen et al., 2000; Michishita et al., 2011), a process 

that shares many features with human breast cancer (Kumaraguruparan et al., 2006a; 

Kumaraguruparan et al., 2006b; Uva et al., 2009). In cattle, on the other hand, MaSCs are 

being studied mainly to explore their potential to improve milk production efficiency 

(Capuco, 2007; Capuco et al., 2009; Li et al., 2009; Martignani et al., 2009; Motyl et al., 

2011). In horses, however, the knowledge on mammary gland development is mainly limited 

to lactation physiology (Davies Morel, 2008; Leadon et al., 1984; Ousey et al., 1984) and no 

information on MaSCs in this species is available to date, although a thorough study of equine 

MaSCs could potentially extend the current knowledge of mammary gland biology and will 

aid in our comparative physiological approach to study and compare MaSCs in different 

mammalian species. 

Therefore, the goal of the present study was to isolate and characterize MaSCs from equine 

mammary gland tissues and more specifically, MaSCs from non-lactating and lactating tissues 

in order to study potential differences between these two very important physiological 

mammary gland phases. To this end, previously described characterization experiments used 

in other species were optimized for identifying equine MaSCs. Hereby, equine MaSCs were 

enriched by culturing the cells under anchorage-independent condition, the so-called 

mammospheres. Next, equine MaSCs were immunophenotypically characterized using cross-

reacting antibodies against SC markers and the cells were differentiated towards adult 

epithelial and myoepithelial cells using selective media. Moreover, colony forming unit 

(CFU) assays and mammosphere cycle assays were evaluated to see if these assays are 

valuable additional in vitro systems to better characterize MaSCs. 
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4.3. Materials and Methods  

4.3.1. Sample collection  

Inactive, non-lactating mammary gland tissues (n=3) or active, lactating tissues (n=3) from 

adult Warmblood slaughterhouse mares (8-12 years old) were collected by excising two parts 

of 5cm
2
 of tissue next to the median line of the two mammary gland compartments (Figure 1). 

 

 

Figure 1. The mammary gland of a horse with tissue distribution and sampling site. 

 

The samples did not show any macroscopic abnormalities and were transported to the 

laboratory on ice within four hours after sampling in phosphate buffered saline (PBS) 1x 

(without calcium and magnesium) with 1% of penicillin/streptomycin/amphotericin B (P/S/A, 

Sigma). A part of the sample was immediately fixed with 4% paraformaldehyde (PF) and 

hematoxylin-eosin stainings were performed on 8 µm histological sections after paraffin 

embedding for histological examination. 

 

4.3.2. Collagenase digestion and mammosphere formation  

The isolation of equine mammosphere-initiating cells was based on the protocol of Dontu 

et al., with some modifications (Dontu et al., 2003). Upon arrival in the laboratory, mammary 

gland samples were dissociated mechanically with a sterile scalpel, followed by enzymatic 
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digestion with 0.1% collagenase III (Worthington Biochemical Corporation) at 37° C for 60 

minutes. The cell suspension was subsequently filtered through a sterile 100µm and 40µm 

filter to obtain a single cell suspension, and centrifuged at 400xg for 10 minutes at room 

temperature (RT). Cells were resuspended in PBS with 1% P/S/A, centrifuged at 260xg for 10 

minutes and resuspended in mammary stem/progenitor cell (MaSC) medium, consisting of 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 (50/50) supplemented with 10% of fetal 

bovine serum (FBS), 2% B27 (all from Invitrogen), 1% P/S/A (Sigma), 10 ng/ml basic-

fibroblast growth factor (b-FGF) (BioVision) and 10 ng/ml epidermal growth factor (EGF) 

(Sigma). Approximately 5x10
5
 cells were seeded on a 6-well tissue culture dish for one hour 

to allow adherence of contaminating fibroblasts and this was repeated once more. The non-

adherent cells were collected and seeded at approximately 20,000 cells/cm
2
 on 6-well ultralow 

attachment plates (Corning, Elscolab). MaSC medium was refreshed twice a week by means 

of centrifugation of the mammospheres at 230xg for 6 minutes. For further experiments, 

mammospheres were seeded on adhesive tissue culture dishes in MaSC medium, unless where 

indicated otherwise. 

 

4.3.3. Flow cytometry 

 To characterize mammosphere cells immunophenotypically, the expression of several stem 

cell (SC) markers, previously used for the phenotypic characterization of MaSCs in other 

species (Cocola et al., 2009; Dontu et al., 2003; Li et al., 2009; Michishita et al., 2011; Rauner 

and Barash, 2012; Smith, 2006; Stingl, 2009), was evaluated by flow cytometry. Per series, 

2x10
5
 cells were used and labeled with following primary antibodies (Abs): mouse anti-

human CD29-FITC IgG1 (Southern Biotech, clone TDM29, 1:10), rat anti-mouse CD44-APC 

IgG2b (BD, clone IM7, 1:20), rat anti-mouse CD49f IgG2a (Novus Biologicals, clone GoH3, 

1:10), and rabbit anti-human Ki67 IgG (Abcam, ab15580, 1:200). For the latter, cells were 
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fixed with 4% PF for 10 minutes and subsequently permeabilized with 0.1% Triton X for 2 

minutes, both at RT. Cells were incubated with the primary Abs for 15 minutes on ice in the 

dark and washed twice in washing buffer, consisting of DMEM with 1% bovine serum 

albumin (BSA). For CD49f and Ki67, secondary goat anti-rat Alexa
488

-
 
and goat

 
anti-rabbit 

Alexa
647

-linked Abs (Invitrogen, 1:100), respectively, were used to identify positive cells after 

15 minutes of incubation on ice in the dark. Finally, all cells were washed three times in 

washing buffer and in addition, viability assessment with 7-amino-actinomycin D (7-AAD, 

Sigma) was performed on the non-fixed cells. At least 10,000 cells were evaluated using a 

FACS Canto flow cytometer (Becton Dickinson Immunocytometry systems) equipped with a 

488 nm solid state and a 633 nm HeNe laser, and these data were further analyzed with the 

FACS Diva software. All analyses were based on (i) autofluorescence and (ii) control cells 

incubated with isotype-specific IgG’s, in order to establish the background signal. All 

isotypes were matched to the immunoglobulin subtype, conjugated to the same fluorochrome 

and used at the same protein concentration as the corresponding Abs. 

 

4.3.4. Differentiation experiments 

 Differentiation of mammosphere cells towards the two major cell types present in the 

mammary gland, namely luminal epithelial and myoepithelial cells, was induced by culturing 

2.5x10
3
 cells/cm² in a 24-well plate in differentiation medium, consisting of DMEM/F12 

(50/50), 10% FBS, 2% B27, 1% P/S/A, 5µg/ml insulin, 1µg/ml hydrocortisone and 1µg/ml 

prolactin (Sigma), for 10 days. As a control, mammosphere cells were cultured in MaSC 

medium for 10 days. Media of the adherent cultures were refreshed every 3-4 days. 

Immunohistochemistry (IHC) was performed to evaluate the expression of markers present on 

differentiated cells (see below). 
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 For evaluation of three-dimensional tubular structure formation, 5x10
3
 cells/cm

2
 were 

seeded in a 6-well Synthemax plate (Corning, Elscolab) in differentiation medium 

supplemented with 50 pg/ml recombinant human transforming growth factor-beta3 (rhTGF-

β3, Sigma) and cultured for 10 days. Control MaSCs were seeded on a normal tissue culture 

plate for 10 days as well. The formation of tubular/acinar structures was evaluated by light 

microscopic inspection of the wells. 

 For adipogenic differentiation, 2.1x10
4
 cells/cm

2
 were seeded in 4-well plates in MaSC 

medium and cultured upon 70% confluency. At that moment, adipogenic inducing medium 

was added for 3 days, after which the medium was replaced with adipogenic maintenance 

medium for 1 more day. The adipogenic inducing medium consisted of DMEM (Invitrogen) 

supplemented with 1 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 10 µg/mL 

recombinant human-insulin, 0.2 mM indomethacin, 15% rabbit serum and 10 µl/mL 

antibiotic-antimycotic solution (all from Sigma) (De Schauwer et al., 2011; Spaas et al., 

2013). The adipogenic maintenance medium was identical but without dexamethasone, 

indomethacin and 3-isobutyl-1-methylxanthine. As a control, cells were seeded at a 

concentration of 2.1x10
4
/cm² in 4-well plates in MaSC medium for 5 days. Adipogenesis was 

evaluated in all samples after 5 days of cultivation using Oil Red O stainings. 

 

4.3.5. Immunohistochemistry (IHC) 

Cells were fixed for 10 minutes with 4% PF and permeabilized for 2 minutes with 0.1% 

Triton X, both at RT. Cells were then incubated with 0.03% hydrogen peroxide for 5 minutes 

at RT and after washing with PBS, incubated for 2 hours at RT with the following primary 

mouse IgG1 monoclonal Abs: anti-human cytokeratin (CK)18 (Abcam, clone C-04, 1:30), 

anti-human PanCK (Dako, clone, AE1/AE3, 1:50) and anti-porcine vimentin (Thermo 

Scientific, clone V9, 1:100); the mouse anti-human smooth muscle actin (SMA) IgG2a Ab 
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(Dako, clone 1A4, 1:200) and the rabbit anti-human IgG Ab casein kinase 2β (Abcam, clone 

EP1995Y, 1:50). All Abs were used at the concentrations as indicated by the manufacturer. 

After washing with PBS, secondary ready to use goat anti-mouse and anti-rabbit peroxidase 

(PO)-linked Abs (Dako) were added and incubated for 30 minutes at RT. Finally, 3,3’-

diaminobenzidine (DAB) was added for 2-10 minutes and a counter staining with 

hematoxylin was performed to visualize the surrounding cells. As controls, identical stainings 

were performed on undifferentiated mammosphere cells and background staining was 

assessed by using the proper isotype-specific IgG’s. All isotypes were matched to the 

immunoglobulin subtype and used at the same protein concentration as the corresponding 

Abs. 

 

4.3.6. Mammosphere cycle assay 

First cycle mammospheres, which developed from the inactive, non-lactating and lactating 

mammary gland tissue-derived cells on ultralow attachment plates (as described above), were 

counted at days 4, 7 and 11 post seeding. In addition, 10 mammospheres were photographed 

and average mammosphere areas were determined using Image J software 

(http://rsb.info.nih.gov/ij/). At day 11 post seeding, all mammospheres were collected and 

plated on adhesive tissue culture dishes in MaSC medium. Upon 80% confluency, the 

adherent cells were trypsinized with 0.25% trypsin-EDTA and seeded at a very low density of 

4,000 cells/cm² in a 6-well ultralow attachment plate to initiate a second mammosphere cycle. 

These second cycle mammospheres were counted and evaluated exactly as described for the 

first cycle mammospheres. To calculate the mammosphere forming efficiency (MFE), the 

number of mammospheres was divided by the original number of single cells seeded and 

expressed as a percentage, exactly as previously described (Booth et al., 2010; Farnie et al., 

2007). 
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4.3.7. Colony forming unit (CFU) assay 

Approximately one mammosphere cell was seeded per cm² of a 6-well plate and fixed 7 

days later with 90% ethanol for 10 minutes at -20°C. Crystal violet stainings were performed 

to visualize colony forming units (CFUs) macroscopically and the total number of CFUs per 

6-well were counted. CFU assays were done in duplicate for three independent experiments. 

 

4.3.8. Statistical analysis  

Student’s t-test for paired data was used to test for statistically significant differences in 

mammosphere numbers, areas and CFU assays between MaSCs from non-lactating and 

lactating mammary gland tissue. Data given are the means of three independent experiments 

and the bars show standard deviations. 

 

4.4. Results 

4.4.1. Histological evaluation of the mammary gland tissue samples 

The physiological activity status of all mammary gland tissue samples used was confirmed 

by histology. Hereby, it was observed that the inactive, non-lactating mammary gland tissues 

consisted of small alveoli with a narrow lumen lined by small cuboidal cells (Figure 2A), 

whereas the lactating mammary gland tissues consisted of large and dilated alveoli containing 

milk secretion in their lumina (Figure 2B).  

 

4.4.2. Equine mammary gland tissue-derived cells are capable of mammosphere formation. 

Mammosphere formation is a frequently used in vitro cultivation system that allows for the 

propagation of mammary stem/progenitor cells (MaSCs) by culturing enzymatically digested 

mammary gland cells on ultralow attachment plates to prevent adhesion (Dontu et al., 2003).  
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Figure 2. Hematoxylin-eosin staining of equine inactive, non-lactating (A) and lactating (B) mammary gland 

tissues. Small alveoli with a narrow lumen lined by small cuboidal cells were noticed in inactive mammary gland 

tissues, whereas large and dilated alveoli containing milk secretion (arrow) were visible in lactating mammary 

gland tissues. Bars represent 500µm (a) and 50µm (b). 

 

 

The formation of mammospheres, typically consisting of non-adherent spherical clusters of 

cells, could be observed in all cultures as early as 4 days post seeding. Since mammospheres 

consist of a mixture of stem cells (SCs), their progeny and non-stem progenitor cells (Stingl, 

2009), the observed equine mammospheres thus indicate that at least some mammary 

epithelial cells with SC characteristics, or MaSCs, could be obtained with this technique. In 

Figure 3 I & III, representative pictures of equine mammospheres are presented. These 

mammospheres could, upon trypsinization to obtain single cells again, be passaged on ultra-
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low attachment plates up to passage (P) 6. From P6 onwards, the vitality of the cells rapidly 

declined and by P8, no more mammospheres could be observed. 

 

 

Figure 3. The mammosphere cycle assay. After mammosphere formation on ultralow attachment plates (first 

mammosphere cycle, I), mammosphere-derived cells are cultured on tissue culture dishes (II). Upon confluency, 

adherent cells are cultured on ultralow attachment plates (second mammosphere cycle, III), and subsequently 

cultured on tissue culture dishes (IV). Bars represent 50 µm. 

 

 

4.4.3. Equine mammosphere cells are positive for stem cell markers. 

Next, the mammosphere-derived cells were immunophenotypically characterized by flow 

cytometry and virtually all cells were positive for the SC surface markers CD29, CD44, 

CD49f and the proliferation marker Ki67, regardless of the activity status of the mammary 

gland (Figure 4). No fluorescence signal was obtained with the appropriate isotype controls 

(Figure 4). 
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Figure 4. Immunophenotypic characterization of mammosphere cells from equine inactive, non-lactating and 

lactating mammary glands. Flow cytometry was performed with a set of four markers: CD29, CD44, CD49f and 

Ki67. Histograms show relative numbers of cells versus mean fluorescence intensity with the isotype control 

staining (light grey) and marker antibody staining (dark grey). Data represent the mean percentage of three 

experiments ± standard deviations. 

 

 

 

4.4.4. Equine mammosphere cells can differentiate into luminal epithelial and myoepithelial 

cells and form 3-dimensional tubular structures. 

 The mammosphere-derived cells were also subjected to a functional characterization by 

culturing the cells in selective media which was supplemented with insulin, hydrocortisone 
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and prolactin. After 10 days of culture, the structural organization of the cells changed from a 

monolayer (control cells) towards an acinar formation (differentiated cells) (Figure 5). The 

cells in these structures were immunohistochemically characterized as luminal epithelial and 

myoepithelial cells by using markers which were previously described for human and bovine 

MaSC differentiation studies (Cregan et al., 2007; Dontu et al., 2003; Hu et al., 2009; Li et al., 

2009; Martignani et al., 2009; Zhao et al., 2010). Luminal epithelial cells showed a strong 

cytoplasmic staining for cytokeratin (CK)18 and a weak positive signal for the PanCK marker 

(Figure 5). For casein kinase 2β, both a nuclear and cytoplasmic immunolabeling was 

observed in these cells. A positive immunolabeling was not observed in mammosphere cells 

that had been cultured in normal MaSC medium (control cells), with the exception of casein 

kinase 2β, which showed a cytoplasmic staining (Figure 5). To characterize myoepithelial 

cells, an antibody against smooth muscle actin (SMA) was used and cells positive for this 

marker were found in the differentiated cell cultures, but not in the control cultures (Figure 5). 

Lastly, a staining for vimentin was also included and positive cells were found in the control 

cells as well as in the acinar differentiated cells (Figure 5). No signal was detected in the 

differentiated cell cultures when relevant isotypic controls were used for staining (Figure 5). 

 When culturing the mammosphere cells on Synthemax plates in the differentiation medium 

supplemented with recombinant human transforming growth factor (rhTGF)-β3, tubular, 

acinar and alveolar structures could be noticed in the cultures by light microscopy within 10 

days of culture (Figure 6). Control cells were cultivated on normal tissue culture plates 

(Figure 6). 
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Figure 5. Differentiation of mammosphere cells into luminal epithelial and myoepithelial cells. 

Immunohistochemistry was performed on control and differentiated cells using cytokeratin (CK) 18, PanCK, 

casein kinase 2β, smooth muscle actin (SMA) and vimentin markers. Relevant isotype controls were also 

included. Arrows indicate positive stainings and bars represent 50µm. 
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Figure 6. Three-dimensional tubular structure formation. Mammosphere-derived cells were cultured on 

Synthemax plates and acino-tubular structures were analyzed by light microscopy at different magnifications. 

Control cells were seeded on normal culture plates. Bars represent 50µm. 

 

 

4.4.5. Equine mammosphere cells can differentiate into adipocytes. 

 In order to assess the SCs’ potency, differentiation towards cell types of other germ layers 

can be performed (Nombela-Arrieta et al., 2011). Here, mammosphere-derived cells were 

cultured in a selective medium which is typically used to differentiate adult mesenchymal SCs 

(MSCs), originating from the mesodermal germ layer, into adipocytes (Spaas et al., 2013). 

Interestingly, within 5 days of culturing in such medium, the mammosphere cells changed 

morphologically from spindle-shaped to round cells and the production of small intracellular 

granules could be microscopically noticed in the cultures (Figure 7). Subsequent Oil Red O 

stainings confirmed the presence of lipids in these cells (Figure 7), indicating that 

mammosphere cells, which originate from the epidermal germ layer, are capable of 

differentiating into cell types of the mesodermal germ layer. Controls of non-differentiated 

cells subjected to the same detection method maintained their spindle-shaped morphology 

with the formation of a monolayer and stained negative (Figure 7). 
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Figure 7. Adipogenic differentiation. Mammosphere-derived cells were cultured in adipogenic inducing and 

maintenance medium and analyzed by light microscopy (a) and Oil Red O stainings (b). Bars represent 50µm. 

 

 

4.4.6. Equine mammosphere cells from non-lactating and lactating mammary gland tissues 

exhibit similar clonogenic expansion capacities. 

To monitor and compare the clonogenic expansion of mammosphere cells from inactive, 

non-lactating versus lactating mammary gland tissues, colony forming unit (CFU) assays 

were performed. To this end, a limited number of cells was seeded at clonal density on a large 

surface (1 cell/cm
2
 on a 6-well plate) and cultured for around a week. After cultivation, two 

different colony stages could be observed. One stage consisted of “dispersed” CFUs, 

identified by a spotted, vague macroscopic morphology and rather distant cells 

microscopically, whereas the other stage consisted of “fingerprint” CFUs, which were darker 

and more packed at macroscopic examination and with a microscopic fingerprint pattern. 

Overall, more dispersed colonies were observed compared to fingerprint CFUs (Figure 8). No 

differences between cells from inactive, non-lactating mammary gland tissues and cells from 

lactating mammary gland tissues were noted (Figure 8). 
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Figure 8. Colony forming unit (CFU) assays of mammosphere cells derived from inactive, non-lactating and 

lactating mammary gland tissues. Macroscopic and microscopic images of dispersed and fingerprint CFUs after 

crystal violet staining (A). Bars represent 100µm. Numbers of CFUs were counted per 6-well and data represent 

the mean percentage of three experiments ± standard deviations (B). 

 

 

4.4.7. Cells from lactating mammary gland tissues generate more and larger mammospheres 

than cells from inactive, non-lactating tissues.  

 Mammosphere cycle assays, as described in the Material & Methods section and Figure 3, 

were initiated to evaluate whether this assay could be a valuable additional in vitro system to 

better characterize MaSCs. Hereby, it was found that the number of mammospheres derived 
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from lactating mammary gland cells was higher compared to those from inactive, non-

lactating tissues, a finding significant for all time points during the first cycle of the 

mammosphere assay (Figure 9A). In addition, the mammosphere forming efficiency (MFE) 

during the first mammosphere cycle varied between 0.8-1.5% for cells isolated from non-

lactating versus 1.9-3.2% for cells isolated from lactating mammary glands (Figure 9A). 

During the first mammosphere cycle, a two-fold increase in number of mammospheres was 

noted between 4 and 7 days of culture, irrespective of the tissue type (Figure 9A). This 

finding is in good agreement with another study, where a two-fold increase was also noted in 

the number of mammospheres from freshly isolated Balb/c mammary epithelial cells cultured 

for 4 days and for 7 days (Booth et al., 2010). Moreover, when evaluating the size of the 

generated mammospheres, it was found that the first cycle mammospheres were significantly 

larger at day 4 for cells originating from lactating tissues (P = 0.044) (Figure 9B). At days 7 

and 11, this difference was still noticeable, but no longer statistically significant (Figure 9B). 

During the second cycle mammosphere assay, significant differences in number, MFE or size 

of mammospheres from non-lactating and lactating mammary gland tissues were no longer 

apparent (Figure 9A & B). 
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Figure 9. Mammosphere cycle assays of non-lactating and lactating equine mammary gland tissues. Numbers of 

mammospheres were counted per 6-well (A) and mammosphere sizes were calculated in µm² (B). To calculate 

the mammosphere forming efficiency (MFE), the number of mammospheres was divided by the original number 

of single cells seeded and expressed as a percentage. Calculations were made at three time points post seeding 

and data represent the mean of three experiments ± standard deviations. 

 

4.5. Discussion 

Much of the available data on mammary gland development comes from rodents 

(Sternlicht, 2006), although variation in mammary growth and function exist between 

mammals, especially with regard to the endocrine control of these processes (Forsyth, 1986; 

Lamote et al., 2004). Because (i) mammary stem/progenitor cells (MaSCs) are proposed to be 

the driving forces behind mammary growth and function and (ii) variation exists between 

mammalian species with regard to physiological as well as pathological functioning of this 

organ, we hypothesize that studying MaSCs from different species is of great comparative 

interest. 
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In the present study, we aimed to isolate and characterize MaSCs from the mammary gland 

of horses. Briefly, equine mammosphere-derived cells were immunophenotypically 

characterized by using stem cell (SC) markers CD29, CD44, CD49f and the proliferation 

marker Ki67. The latter was included to give an indication of the self-renewal rate of the cells, 

since this nuclear protein is only expressed during the late growth (G)1-phase and the 

synthesis (S)-, mitosis (M)- and G2-phase of the cell cycle (Coates et al., 1996). Moreover, a 

successful differentiation towards luminal (alveolar and ductal) epithelial and myoepithelial 

cells, the two major adult epithelial mammary gland cell types, was achieved. Luminal ductal 

epithelial cells, at least in mice, ramify through the fat pad before puberty and further 

proliferate under the influence of hormones in early pregnancy/gestation (Pitelka et al., 1973). 

During lactation, the myoepithelial cells will contract under the stimulation of oxytocin, 

thereby ejecting the milk from the luminal alveolar epithelial cells (Capuco et al., 2003; 

Dontu et al., 2003). For the latter, we found that after differentiating our equine 

mammosphere cells, which contained at least some mammary epithelial cells with SC 

characteristics, into adult luminal epithelial cells, these cells became positive for cytokeratin 

(CK) 18, whereas no expression was found on the undifferentiated control cells. This is in 

accordance with a human MaSC study (Dontu et al., 2003) and in contrast with a murine 

study, where it was found that undifferentiated MaSCs were CK18 positive (Stingl et al., 

2006a). In several studies it was found that murine MaSCs were also positive for CK14 

(Stingl et al., 2006a; Sun et al., 2010), however, we were unable to evaluate the expression of 

this cytokeratin on our equine mammosphere cells and their differentiated progeny, due to a 

lack of cross-reactivity of several CK14 antibodies tested (data not shown). In the present 

study, the differentiation of mammosphere cells towards both luminal and myoepithelial cells 

was achieved using one culture medium. This is in contrast to a study on bovine MaSCs 

where two different selective media were used (Li et al., 2009), but in line with what has been 
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previously reported for the differentiation of canine (Cocola et al., 2009) and human MaSCs 

(Stingl et al., 1998). Lastly, but interestingly, the equine mammosphere cells were capable of 

differentiating into adipocytes when cultured in adipocyte-inducing selective media (Spaas et 

al., 2013). Several independent studies report the differentiation of SCs into cell types of 

another germ layer (Ghaedi et al., 2012; Hermann et al., 2004). Here, we studied 

mammosphere cells, originating from the ectoderm, and showed that they were capable of 

differentiating into a cell type from the mesoderm, namely adipocytes. Since adipogenic 

transdifferentiation of human amnion and chicken oviduct adult epithelial cells has been 

reported (Khuong and Jeong, 2011; Murphy et al., 2010), the adipogenesis of epithelial 

mammosphere cells is not an unusual phenomenon. 

It has to be noted, however, that some of the markers described above, including CD29, 

CD44 and CD49f, are not MaSC-specific but are also expressed on other SCs such as 

mesenchymal SCs (MSCs) (Semon et al., 2010; Smith and Chepko, 2001; Spaas et al., 2013). 

So, to ensure that the adipogenesis we observed was caused by epithelial cells with SC 

characteristics, or MaSCs, and not merely an effect of contaminating MSCs, we included the 

epithelial-specific marker casein kinase 2β (Deshiere et al., 2011). Flowcytometric analysis 

revealed that the equine mammosphere-derived cells were positive for this marker, in contrast 

to equine MSCs, which were casein kinase 2β-negative (data not shown). 

The lack of in vivo functional assays has been pointed out as a vital drawback of current 

MaSC research (van Os et al., 2004). Indeed, because the use of a cleared fat pad model is not 

really feasible in horses, we aimed to evaluate additional in vitro assays to better characterize 

equine MaSCs. In our present study, we evaluated colony forming unit (CFU) assays and 

mammosphere cycle assays in equine cells from non-lactating versus lactating mammary 

glands. First, we assessed the clonogenic potential of mammosphere-derived cells derived 

from both physiological mammary gland stadia with the CFU assays and virtually identical 
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results were obtained, indicating that the in vitro clonogenic potential of MaSCs from 

lactating versus non-lactating mammary gland tissue is similar. Interestingly, two different 

colony morphologies were observed in the CFU assay at 7 days of culture (end of the 

experiments). The presence of different colony types has been described previously for human 

keratinocytes and other cell types: (i) holoclones: large colonies with lots of small cells which 

were shown to have the greatest reproductive capacity, (ii) paraclones: smaller colonies with 

large, flattened cells which have a short replicative lifespan and (iii) meroclones: a transitional 

stage between the holo- and paraclone which contains a mixture of cells with different growth 

potential (Barrandon and Green, 1987a). Based on these descriptions, we would like to 

hypothesize that the fingerprint colonies observed in the present study might represent 

holoclones, whereas the dispersed colonies resemble paraclones. Future experiments of 

subculturing the colony types we observed in the present study by transferring them to 

indicator dishes, as described in the paper of Barrandon and Green (Barrandon and Green, 

1987b), will give more information on their growth potential and might prove an elegant 

method to determine the progenitor cell hierarchy in a given mammary gland sample under 

different (patho)physiological conditions. The existence of a progenitor cell hierarchy in the 

mammary gland has already been extensively studied in the human and murine mammary 

gland (Dontu et al., 2003; Stingl, 2009; Stingl et al., 2006b; Visvader and Lindeman, 2006), 

but information in other mammal species remains limited to date.  

Second, the number as well as the size of the mammospheres was determined in both 

sample types using the in vitro mammosphere cycle assay. Hereby, the number of 

mammospheres formed upon serial passage reflects self-renewal of primitive MaSCs, whereas 

the mammospheres’ size is a reflection of progenitor cell proliferation (Dontu et al., 2003). 

Interestingly, we found significantly more and larger mammospheres when cells were derived 

from lactating mammary glands compared to inactive, non-lactating mammary gland tissues, 
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at least in the first mammosphere cycle. Also, during the first cycle of the mammosphere 

cycle assay, a two-fold difference was found between the mammosphere forming efficiency 

(MFE) of the inactive, non-lactating (on average 1.3%) versus the lactating (on average 2.9%) 

equine mammary glands. A difference in MFE has previously been reported between 

epithelial cells from normal human breast tissue and breast tissue with ductal carcinoma in 

situ (DCIS), with the latter showing a significantly greater MFE (Farnie et al., 2007). The 

authors hereby suggested that a greater MFE, as seen in the DCIS samples, translates into the 

presence of a greater number of stem or progenitor cells (Farnie et al., 2007). So, based on the 

MFE data from our present study, the equine mammary gland appears to harbor a higher 

number of MaSCs during lactating compared to the inactive, resting state. Moreover, the 

significantly larger mammospheres indicate that MaSCs possess a higher progenitor cell 

proliferation rate during lactation. This is in line with what has previously been reported 

regarding lactation physiology in horses, where it was found that during lactation, cell 

divisions increase in line with milk production (Leadon et al., 1984; Ousey et al., 1984). This 

physiological process during lactation is most likely represented by MaSCs, since we 

demonstrated that MaSCs from lactating tissues are higher in number and show higher 

proliferation capacities. On the other hand, it has been proposed in rodents that murine 

MaSCs are relatively quiescent during lactation (Smith and Medina, 2008; Welm et al., 2002), 

which is in contrast to the increased proliferation rates, depicted by the larger mammosphere 

sizes, which were observed with the equine lactating mammary gland tissues. Hence, these 

results emphasize once more the importance of studying mammary gland physiology in 

general, and MaSC biology in specific, in different mammalian species.  

For the second cycle of the mammosphere assay, spheres from the first cycle were 

collected, plated for one passage on an adherent plate and after trypsinization, replated at 

4000 cells/cm
2
. Hereby, it was observed that mammospheres derived from mammary gland 
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tissue had the capacity to form new generations of mammospheres in the second 

mammosphere cycle, with a similar regeneration capacity (MFE of 5,6% versus 5,2% on 

average) between the two tissue samples (non-lactating versus lactating, respectively). This is 

in contrast to the study with the normal human breast and DCIS tissues. There they found that 

DCIS mammospheres were capable of regenerating mammospheres at a significantly higher 

regeneration ratio compared to normal breast mammospheres (Farnie et al., 2007). A potential 

explanation for the lack of any difference in the second mammosphere cycle, observed in the 

present study, could be due to the fact that for this second cycle, mammosphere-derived cell 

populations were used after one passage on an adherent plate. It would be interesting to see if 

reseeding mammospheres as single cells directly under non-adherent conditions, would result 

in a difference between non-lactating and lactating tissues. Interestingly, the lack of any 

difference in the second mammosphere cycle reflects the lack of any difference observed in 

the CFU assays. For the latter, one mammosphere-derived cell obtained from an adherent 

culture was seeded per cm
2
 of a 6-well plate. It would be interesting to see whether 

mammosphere populations where a difference in CFUs is observed, will also display the same 

difference in the second mammosphere cycle assay. Future work will therefore focus on 

further optimizing and validating these assays to determine the number and MFE of MaSCs 

present in the mammary gland at certain (patho)physiological stadia such as mastitis and 

mammary tumor formation not only in horses, but also in other mammalian species. 

 In conclusion, this study is the first to report on the isolation and characterization of equine 

MaSCs. Furthermore, we describe the valuable use of additional in vitro assays to compare 

mammospheres and mammosphere-derived cells in the mammary gland at different 

physiological stages. 
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Treatment of equine degenerative joint disease with autologous 
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After extensively characterizing the isolated equine peripheral blood (PB)-derived 

mesenchymal stem cells (MSCs), as described in Chapter 3, these cells were injected into the 

pastern joint of a horse suffering from chronic degenerative joint disease. Since the injured 

horse was only clinically evaluated without the presence of a sham-treated control horse, 

repetition or any functional data, this report should be considered as purely descriptive. 
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5.1. Abstract 

A 5-year-old German Warmblood stallion with chronic lameness, attributable to 

degenerative joint disease (DJD) of the pastern joint unresponsive to medical treatments, was 

treated with autologous mesenchymal stem cells (MSCs). These MSCs were isolated from the 

peripheral blood (PB) of the patient and injected into the pastern joint, at a concentration of 

2.5x10
6
 cells, twice with an 8-week interval. The positive response to this MSC treatment was 

documented by visual gait evaluation as well as objective pressure plate analyses. This paper 

is the first to describe the use of autologous PB-derived MSCs to treat a horse suffering from 

chronic DJD. The favorable outcome of this single case may stimulate further research on the 

use of equine PB as a source of autologous MSCs in equine regenerative medicine. 

 

Keywords: peripheral blood; mesenchymal stem cells; horse; degenerative joint disease 
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5.2. Introduction 

Degenerative joint disease (DJD) is a major cause of diminished athletic function and 

wastage in performance horses (Frisbie 2005; Jeffcott et al. 1982; McIlwraith 1982). Ideally, 

any treatment should be based upon a good knowledge of the anatomy and physiology of 

normal joints and the processes occurring during degeneration and repair (Goodrich and 

Nixon 2006; McIlwraith and Vachon 1988; Nizolek and White 1981). Initially, such treatment 

should include some degree of rest or exercise restriction. Medical treatments for DJD may 

include anti-inflammatory and analgesic drugs to reduce inflammation and pain, and so-called 

disease modifying drugs such as glucosamine or chondroitin sulphate or hyaluronic acid 

(Goodrich and Nixon 2006; Malone 2002; Nizolek and White 1981). In the presence of severe 

cartilage and bone changes, the use of articular cartilage curettage, osteophyte removal and 

even arthrodesis could be suitable in some cases (Malone 2002; Zubrod and Schneider 2005). 

Nevertheless, the aforementioned therapies are merely palliative or may aim for an enhanced 

repair, albeit without actual regeneration of the affected joint. Over the last decades, the field 

of equine regenerative medicine is getting increased attention and the use of stem cells (SCs) 

to treat joint pathologies appears to be a promising strategy to regenerate injured tissues by 

differentiation towards cells with a hyaline-like cartilage morphology and which are able to 

produce cartilage-specific components, such as collagen type II and glycosaminoglycans 

(Berg et al. 2009; Koch and Betts 2007). 

SCs are defined as cells displaying a self-renewal capacity either with or without 

differentiation, depending on the symmetry of the division (Donovan and Gearhart 2001). 

More specifically, mesenchymal SCs (MSCs) are adult SCs derived from the mesodermal 

germ layer. Current clinical regenerative therapies with MSCs in horses mainly use bone 

marrow (BM)-derived MSCs for the treatment of tendinopathies (Crovace et al. 2007; Smith 

2006, 2008; Smith et al. 2003; Violini et al. 2009) and BM- or adipose tissue (AT)-derived 
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MSCs for the treatment of osteoarthritis (Frisbie et al. 2009). In general, obtaining BM and 

AT samples is invasive and quite difficult to harvest. As an alternative, scientists have 

suggested umbilical cord blood (UCB), which in humans can be easily collected at birth. 

However, in horses, autologous UCB is not always available and a sterile collection is only 

possible under highly hygienic circumstances, which is difficult to achieve under field 

circumstances. The disadvantages of UCB can be avoided using peripheral blood (PB) as a 

source for MSCs. Since collection of a sterile blood sample can easily be performed by any 

equine practitioner, PB is a readily accessible source of autologous MSCs when injuries 

occur.  

This paper is the first to describe the use of autologous PB-derived MSCs to treat a horse 

suffering from chronic lameness attributable to DJD. 

 

5.3. Case history 

 One year before injection of autologous peripheral blood (PB)-derived mesenchymal stem 

cells (MSCs), a 5-year-old German Warmblood stallion was presented with severe unilateral 

forelimb lameness (grade 4/5 according to the American Association of Equine Practitioners 

(AAEP) scale), attributable to DJD of the pastern joint. The diagnosis was made based on 

clinical and radiographic examination and a positive response to intra-articular anesthesia. 

Dorsopalmar and lateromedial radiographes revealed periarticular new bone formation 

(Figure 1). Initial medical treatment with oral non-steroidal anti-inflammatory drugs and box 

rest during 2 months, and subsequent intra-articular administration of steroidal anti-

inflammatory medication and hyaluronic acid did not improve the impaired locomotion. Two 

months later, an additional period of 1 month of complete box rest and limited movement in a 

small paddock for the following 5 months did not give any improvement of the lameness. 

Given the lack of response to therapy after almost one year, the owners opted for treatment 
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with autologous PB-derived MSCs. The ethical committee of the Faculty of Veterinary 

Medicine, Ghent University, Belgium (EC2010-147) approved the experimental design. 

 

 

Figure 1. Dorsopalmar (A) and lateromedial (B) radiographic images of the pastern joint. The images on the left 

are weight-bearing and on the right using the podoblock. White arrows indicate the periarticular new bone 

formation. 

 

 

5.4. Treatment 

 Ten mL of blood was taken from the vena jugularis of the patient and centrifuged at 

1000xg for 20 minutes at room temperature (RT). The buffy coat fraction was collected and 

diluted 1:1 with phosphate buffered saline (PBS). Subsequently, the cell suspension was 

gently layered on a Percoll gradient (density 1.080 g/mL; GE Healthcare) and centrifuged at 

600xg for 15 minutes at RT. The mesenchymal stem cells (MSCs) were maintained and 

characterized by the presence or absence of different immunophenotypic markers and by in 
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vitro differentiation towards osteoblasts, chondroblasts and adipocytes as previously 

described (De Schauwer et al. 2011). 

 For the first intra-articular injection, 2.5x10
6
 autologous peripheral blood (PB)-derived 

MSCs of passage 1 (P1) were resuspended in 2.5 mL of sterile PBS with 50 µg/mL 

gentamicin (Sigma-Aldrich, Bornem, Antwerp, Belgium) and injected into the pastern joint of 

the patient. A similar injection was repeated 8 weeks later with cryopreserved MSCs of P1 

which were further cultured up to P3. The intra-articular injections were performed after 

clipping and aseptic preparation of the skin, as is routinely done before any intra-articular 

treatment. 

 Figure 2 gives an overview of the timing of the injections with the autologous PB-derived 

MSCs and all evaluations of the patient, as described below.  

 

 
 

Figure 2. Timeline of equine mesenchymal stem cells (MSCs) injections and evaluation intervals. A 5-year-old 

stallion with chronic lameness attributable to degenerative joint disease (DJD) of the pastern joint was treated 

with autologous peripheral blood (PB)-derived MSCs. Clinical evaluations and pressure plate analyses were 

performed 4 weeks before (T-1) and at 4-week-intervals (T1= 4 weeks, T2= 8 weeks, T3= 12 weeks and T4= 16 

weeks) after the first injection. P = passage. 

 

5.5. Outcome 

5.5.1. Clinical assessment 

 Clinical evaluation was performed 4 weeks before injection (T-1), and at 4-week-intervals 

after the first injection (T1= 4 weeks, T2= 8 weeks, T3= 12 weeks and T4= 16 weeks), 
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according to the scoring system of the American Association of Equine Practitioners (AAEP) 

by the same team of veterinarians. Hereby, a grade 0 corresponds to soundness and a grade 5 

to a non-weight-bearing lameness. At every time point, flexion tests of the affected lower 

limb were performed also and the results were graded from 0 (no response) to 3 (severe 

lameness). 

 Four weeks before the first injection (T-1), the lameness was evaluated and localized to the 

pastern joint using intra-articular anesthesia. A score of 4/5 was given, which implied that the 

horse showed a severe lameness at the walk and the trot in a straight line, with a marked head 

nod and shortened stride. Moreover, the flexion test of the distal limb was strongly positive 

(3/3). Two days after the first injection with autologous mesenchymal stem cells (MSCs), a 

mild diffuse swelling was observed at the pastern. This swelling disappeared within a day. 

After 3 days of box rest, gradual hand-walking was initiated. Four weeks after the first 

injection (T1), the lameness was obviously decreased although it could still be observed 

consistently at the trot under all circumstances tested, and therefore, a score of 3/5 was given. 

The flexion test at that time point was only slightly positive (1/3). After the second MSC 

injection, a mild, localized swelling together with a mild, transient lameness was observed at 

the walk. At all subsequent evaluation time points thereafter (T2, T3 & T4), only a residual 

irregularity at the trot could be noticed when lunging the horse (grade 2/5) and the flexion 

tests were negative (0/3). 

 

5.5.2. Pressure plate analysis 

 Recently, pressure plate analysis has been proposed as a useful tool to quantify equine 

locomotion and to evaluate the effects of a certain therapy in horses (Oosterlinck et al. 2010a; 

Oosterlinck et al. 2010b). Indeed, this technique allows for simultaneous analyses of different 

limbs and provides detailed information on the loading of the different portions of the foot 



Chapter 5 

141 
 

during a complete stance period. In this case, the horse was walked and trotted over a pressure 

plate (RSscan 3D 2m-system, RSscan International, Olen, Belgium) in a custom-made 

walkway, as described previously (Oosterlinck et al. 2010a; Oosterlinck et al. 2010b). A trial 

was considered valid only if a complete hoof print of at least one forelimb was recorded while 

velocity was within a preset range. A measuring session was limited to the number of trials 

necessary to obtain five valid measurements of both forelimbs. The following kinetic 

variables were calculated for both forelimbs at the walk and at the trot, and expressed as % 

symmetry (left/right x 100%): (1) peak vertical force (PVF), i.e. the maximal vertical force 

value throughout the stance phase; (2) vertical impulse (VI), calculated by time integration of 

the force-time curves and (3) load rate (LR) of the vertical force curve. 

 The PVF, VI and LR symmetry ratios at all time points are presented in Figure 3. Already 

after the first injection with the autologous PB-derived MSCs, an increase in the LR 

symmetry ratio was observed in both the walk and the trot, which even further increased 

considerably after the second injection (Figure 3). Clear improvements were also seen in the 

PVF and VI symmetry ratios, although these effects were more pronounced at the trot than at 

the walk (Figure 3). 

 

5.5.3. Medical imaging 

Routine dorsopalmar and lateromedial radiographic evaluation of the pastern joint did not 

reveal considerable changes after the autologous MSC therapy compared to pre-treatment 

radiographs (data not shown). Four weeks before stem cell therapy, an ultrasonographic 

examination was performed and was normal. Therefore, no further ultrasonography was 

performed. 
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Figure 3. Pressure plate analyses at the walk and the trot. The patient was evaluated 4 weeks before (T-1) and at 

4-week-intervals (T1= 4 weeks, T2= 8 weeks, T3= 12 weeks and T4= 16 weeks) after the first injection with 

autologous peripheral blood (PB)-derived mesenchymal stem cells (MSCs). The following parameters were 

measured: peak vertical force (PVF), vertical impulse (VI) and load rate (LR). 

 

5.6. Discussion 

Mesenchymal stem cells (MSCs) represent a very promising therapeutic tool for certain 

types of degenerative or traumatic diseases in different animal species, because of their 

enormous plasticity and differentiation capacities. The in vivo use of MSCs in equine 

veterinary medicine has been studied intensively, with several independent studies reporting 

regenerative effects, mainly in tendon and ligament injuries (Crovace et al. 2007; Smith 

2008). Equine degenerative joint disease (DJD) is one of the most common causes of early 

retirement and reformation of sport horses, and therefore, the use of MSCs is currently being 

explored for its regenerative potential in this musculoskeletal injury (Berg et al. 2009; Koch 

and Betts 2007). To our knowledge, there are only reports on the in vivo use of equine adipose 

tissue (AT)-derived and bone marrow (BM)-derived MSCs for the treatment of osteoarthritis 

(Frisbie et al. 2009; Wilke et al. 2007). Hereby, osteoarthritis was experimentally induced and 

the MSCs were injected in the acute phase of the lesion (within 14 days). In all these studies, 

a short-term clinical improvement was noticed after MSC therapy, although this was not the 

case for the long-term follow-up of the horses. In contrast, a more recent study of McIlwraith 
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showed no evidence of any clinically significant improvement in the joints injected with BM 

MSCs, but arthroscopic evaluation confirmed a significant increase in aggrecan production, 

repair tissue firmness and a trend for better overall repair tissue quality in BM MSC-treated 

joints (McIlwraith et al. 2011). This latter study emphasizes the importance of combining 

clinical evaluation with more scientifically-based parameters to evaluate the efficacy of MSC 

treatment in horses. 

In the present case report, we describe for the first time the use of peripheral blood (PB)-

derived MSCs to treat a horse suffering from chronic lameness attributable to DJD of the 

pastern joint. A positive response to the therapy could be demonstrated already at 4 weeks 

after the first injection, as assessed by clinical evaluations and pressure plate analyses. For the 

latter, it was proven that the load rate (LR) symmetry ratio increased considerably in both 

gaits, indicating an increased speed of loading at the walk as well as at the trot. Moreover, a 

clear improvement in peak vertical force (PVF) and vertical impulse (VI) symmetry ratios 

was evident at the trot, indicating increased symmetry of the weight-bearing function of the 

forelimbs. The lack of an overall increasing improvement in PVF and VI symmetry ratios at 

the walk is most likely associated with a lower reproducibility of pressure plate analysis at the 

walk than at the trot, as previously reported (Oosterlinck et al. 2010a). At one year after MSC 

treatment, the stallion was not showing any signs of recurrent lameness and was competing 

again (personal communication with the horse owner). Half a year later, joint stiffness 

increased (noticeable on the circle), leading to a third MSC injection. Within four weeks the 

horse was ready to compete again and is still clinically sound at two and a half years after the 

first injection. Still, in order to truly confirm the effectiveness of PB-derived MSCs, a double 

blinded standardized model should have been used with exactly the same induced lesions in a 

large number of horses, including control groups. Moreover, and in analogy to previously 

performed experiments in horses where the fate of injected BM MSCs was studied in an 
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equine tendon injury model (Guest et al. 2010), fluorescently-labelled PB MSCs could be 

used to prove that the in vivo cartilage regeneration is attributable to the MSC itself or rather 

to the products they secrete. 

 In conclusion, this case report is the first to describe the successful treatment of a patient 

suffering from chronic lameness attributable to DJD using autologous PB-derived MSCs. 

Clearly, this single case study does not allow us to draw definite conclusions on the clinical 

efficacy of the treatment protocol, nor does it allow for an extrapolation to other equine 

pathologies beyond DJD. However, the results of this case report are encouraging to further 

evaluate the efficacy of autologous PB-derived MSCs in equine regenerative medicine. 
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The present thesis describes the isolation and characterization of 2 different types of adult 

multipotent stem cells (SCs) in horses: the mesenchymal SCs (MSCs), derived from the 

mesodermal germ layer, and the mammary gland stem/progenitor cells (MaSCs), derived 

from the ectodermal germ layer. Since both SC types are able to constitute a tissue or an 

organ, they are at the origin of normal functioning of the organ, and defects may consequently 

result in pathologies (Kenyon and Gerson, 2007). The potential use of adult SCs in 

regenerative medicine has been the main reason for the increasing interest in MSCs (Kuo et 

al., 2009; Torricelli et al., 2011). On the other hand, MaSCs are mainly studied for their 

possible correlation with breast cancer (Ercan et al., 2011; Ponti et al., 2005; Tiede and Kang, 

2011). In horses, both MSCs and MaSCs can be derived from highly accessible sources, 

namely the peripheral blood (PB) for MSCs and slaughterhouse material for MaSCs. 

Therefore, the focus of our research was to optimize the isolation and characterization 

techniques of PB-derived MSCs and mammary gland-derived MaSCs in the horse. In 

addition, we report the treatment of a horse suffering from chronic degenerative joint disease 

with autologous PB-derived MSCs. The following subchapters will discuss the different 

aspects described in this thesis. 

 

6.1. Isolation of equine stem cells   

Mesenchymal stem cells 

In order to fulfill the first Aim of the present thesis, we performed the sampling of 10ml of 

venous blood of 4 horses resulting in a successful mesenchymal stem cell (MSC) isolation in 

all 4 cases (success rate of 100%). However, when we initiated the isolation of MSCs under 

identical culturing conditions in a larger number of horses (n = 10), this resulted in an 

isolation success rate of only 40% (unpublished data). Indeed, the greatest hurdle for using 

equine peripheral blood (PB) as a source of MSCs is the varying isolation success rate, as also 
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evidenced by other researchers. Koerner et al. (2006) described a successful isolation in 12 

out of 33 attempts (36.4%), starting from 36ml of equine blood per isolation (Koerner et al., 

2006). Two years later, Giovannini et al. reported a success rate of 66.7% (Giovannini et al., 

2008). The aspirated blood volume did not seem to determine whether or not the isolation was 

successful, since Martinello et al. used 100ml of blood per isolation and MSCs were only 

recovered in 11 out of 25 horses (44%) (Martinello et al., 2010). In order to further optimize 

the isolation technique, we performed an experiment in 3 horses using different initial seeding 

concentrations of peripheral blood mononuclear cells (PBMCs) (1.35x10
5
/cm² vs 

2.7x10
5
/cm²), however, without any significant differences in success rate (unpublished data). 

In all our studies a basic isolation medium consisting of Dulbecco’s Modified Eagle’s 

Medium (DMEM), 30% of fetal calf serum (FCS), dexamethasone and a combination of 

amino acids, antibiotics and antimycotics was used and the first medium changes took place 

after overnight incubation.  

In the study of Martinello et al. a similar medium was used, except for the lower 

concentration of FCS (20%) and the omission of dexamethasone (Martinello et al., 2010). 

Although a much higher seeding concentration of 4-6x10
6
 PBMCs/cm² was used in their 

study, no considerable difference in the MSC isolation percentage could be noticed in 

comparison to our preliminary experiment in 10 horses (44% vs 40%). Even though 

Giovannini reports an almost 2-fold increase in isolation success rate in comparison to 

Koerner, both studies used a similar set-up consisting of a similar isolation medium as 

Martinello with the addition of F12, an initial seeding concentration of 1.5x10
5
 PBMCs/cm² 

and first medium changes at 10-14 days later. Another option to optimize the isolation success 

could be the addition to the medium of different substances which have been shown to 

stimulate MSC proliferation. In this regard, it has been reported that adding fibroblast growth 

factor (FGF) to SC medium increases the mitose capacity with the conservation of 
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differentiation capacities (Kuhn and Tuan, 2010; Sotiropoulou et al., 2006; Tsutsumi et al., 

2001) and that heparan sulphate (HS) can increase the initial MSC retrieval and stimulate SC 

proliferation (Dombrowski et al., 2009; Helledie et al., 2012). In our hands, medium 

supplementation with FGF and/or HS did not result in significant improvement of isolation 

success (data not shown).  

A potential explanation for the variable success rate of MSC isolation from PB could be a 

difference in the physiological condition of the donor horse, which could cause a change in 

the number of MSCs in the PB at the time of sampling. In this regard, it could be postulated 

that the age, gender and general condition of the donor horse can influence the number of 

circulating MSCs. However, in all studies published so far, the evidence for this assumption is 

low to non-existing, mostly due to the lack of appropriate statistical analysis and/or low 

numbers of animals. In order to show a significant increase in isolation success rate of for 

example 20% starting from the reported 40% in horses with an age ranging from 5-15 years 

old versus horses younger than 5 yours old, 2 groups of 107 horses in each group would be 

necessary. If there would only be a difference of 10% in isolation success rate between both 

age groups, 2 groups with 408 horses per group would be needed.  

Interestingly, we found that for 3 donor horses that were used in our study (Spaas et al., 

2013) in which the isolation was successful, sampling of the same horses at a later time point 

(i.e. 4 months) was unsuccessful in isolating MSCs, with the exception of 1 horse, where the 

isolation was successful at both time points. This observation indicates that individual 

differences or the moment of blood sampling might be of vital importance. Hereby, it is 

known that the production in horses of different bone marrow (BM) activating substances 

depend on the seasonal and circadian rhythm (Cordero et al., 2012). Future research could 

focus on the success rate of MSC isolation at different time points in correlation with the 

physiological and hormonal status of the donor horses. In humans, it has been reported that 
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high corticosteroid levels induce BM activation (Dror et al., 2000) and also that the 

administration of granulocyte colony stimulating factor (G-CSF) and/or macrophage 

inflammatory protein-2 (MIP-2) before taking blood would enhance the BM release of SCs in 

humans (Kanold et al., 1998) and mice (Wang et al., 1997). Besides growth factors and 

cytokines, the use of hyperbaric oxygen treatments has been recently proposed to have a 

similar progenitor cell mobilizing effect, hereby increasing the amount of MSCs in PB and 

MSC recovery in mares. Indeed, Dhar et al. described an initial success rate of only 2 out of 6 

mares without such treatment, whereas 3 hyperbaric oxygen treatments in the same mares 

resulted in a 100% success rate (Dhar et al., 2012). Still, larger studies should confirm this 

finding and a hyperbaric oxygen chamber is not always available in field circumstances. 

 

Mammary stem/progenitor cells 

In order to fulfill the second Aim of the present thesis, equine mammary biopsies were 

collected and an optimized isolation technique allowed us to isolate mammary epithelial cells 

(Figure 1, unpublished data) in 11 out of 11 tissue samples (Spaas et al., 2012; unpublished 

data). Mammosphere formation was evaluated in 8 out of the 11 samples and was successful 

in all trials.  

 

 

Figure 1. Mammary gland-derived adult cells at 2 weeks after isolation. Scale bars represent 100µm. 

4x 
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In the present thesis, epidermal growth factor (EGF) and FGF were added to the isolation 

medium for mammary stem/progenitor cells (MaSCs) and omission of these substances led to 

a substantial lower recovery rate of mammospheres after 7 days of cultivation (data not 

shown). Also in other animal species, the addition of FGF and EGF to the culture medium 

lead to a successful mammosphere formation after approximately 1 week (Dontu et al., 2003; 

Li et al., 2009). However, it is important to note that mammospheres do not solely consist of 

MaSCs, but also contain progeny cells and non-stem progenitor cells (Stingl, 2009). 

Nevertheless, the mammosphere formation described in this thesis indicates that at least some 

equine cells with MaSC characteristics could be successfully obtained with the present 

isolation technique. In this regard, the group of Dontu et al. described that seeding the isolated 

mammary cells at clonal density would increase the number of MaSCs per mammosphere, or 

in other words “the pureness” of the isolated cells (Dontu et al., 2003).  

Still, after dissociating the mammospheres into single cells, only 4 out of 1000 cells were 

able to form new mammospheres in that study. In the present thesis, we report an average 

mammosphere forming efficiency (MFE) of 4.85% (at the second mammosphere cycle) after 

dissociating the adherent culture of MaSCs into single cells. This 10-fold increase in MFE in 

comparison to Dontu might be due to a different initial plating concentration, the use of 

another animal species (human vs horse) or the fact that the mammospheres in our study were 

first cultured on adherent plates before a second mammosphere cycle was initiated. This 

implicates that the number of mammosphere forming cells might fluctuate and depend on 

variable parameters. Nonetheless, the exact number of MaSCs per mammosphere remains a 

difficult parameter to determine. Therefore, future research may focus on defining the exact 

culture conditions that are necessary in order to obtain a pure MaSC population and whether 

or not MaSCs would need the surrounding cells in order to form mammospheres. 
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6.2. Characterization of equine stem cells 

Although research in adult multipotent stem cells (SCs) is a hot topic to date, the exact 

functional as well as immunophenotypical blueprints of these cells are not completely 

unraveled. Indeed, if the isolates are not well characterized, there is the possibility of 

contamination with other cell types, which might give unsatisfactory results in different SC 

studies. For this reason, both Aim 1 and 2 of the present thesis do not only focus on the 

isolation, but also on the characterization of the obtained cells. Even with the generated data, 

it remains a major hurdle in equine SC research to find the appropriate tools (i.e. cross-

reacting antibodies) to properly characterize these cells (Borena et al., 2013; De Schauwer et 

al., 2011).  

 

Mesenchymal stem cells 

In 2006, the International Society for Cellular Therapy (ISCT) has carefully determined the 

qualities human cells must possess in order to be defined as mesenchymal SCs (MSCs) 

(Dominici et al., 2006). No such guidelines have been established for equine MSCs, which 

makes it sometimes difficult to compare results on equine MSCs between different studies. In 

the present thesis, a thorough characterization of equine peripheral blood (PB)-derived MSCs 

was performed and several interesting observations were made. In contrast to previous 

studies, where only a limited number of SC markers were tested and chondrogenic 

differentiation was unsuccessful or only accomplished after 9 weeks (Giovannini et al., 2008; 

Koerner et al., 2006), we tested the expression of 8 different markers on PB-derived MSCs 

and the cells could be successfully differentiated into chondroblasts within 3 weeks. 

Nevertheless, it has been reported that the expression of MSC markers can vary during culture 

(Radcliffe et al., 2010). Therefore, it would be interesting to evaluate the evolution of marker 

expression at different stages of the culture process and after differentiation towards different 
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adult cell types. In addition, any possible influence of the used media (for culture) or 

physiological status of the donor horses on the marker expression and differentiation 

capacities could be an interesting addition to the presented data. In this regard, preliminary 

experiments revealed that the chondrogenic capacities of MSCs might vary from one donor to 

another (Figure 2, unpublished data). Indeed, MSCs of a healthy donor were capable of 

differentiating into chondroblasts in lacunes with the production of an extracellular matrix 

(blue glycosaminoglycan deposition), whereas the MSCs of an injured horse were not able to 

perform chondrogenesis under identical culturing circumstances (Figure 2, unpublished data). 

However, this was not the case for MSCs from other injured horses. Whether this was a 

coincidence, a genetic anomaly or determined by the physiological condition of the horse at 

that time, remains to be determined. Further research could provide valuable insights in the 

mechanisms affecting MSC chondrogenesis.  

Also the influence of age, sex and hormonal status on the SC potential and differentiation 

capacities could provide us with valuable knowledge before therapeutic use. In this 

preliminary experiment both donors had the same age, indicating that also young horses might 

provide dysfunctional SCs. Whether aging increases the possibility of SC dysfunction should 

be tested in a large group of horses. In humans, it has been described that SCs of old donors 

have lower differentiation capacities (Zhang et al., 2012). Hereby, it has been reported 

recently that adipose tissue (AT)-derived MSCs of infants showed a higher expression of 

angiogenetic factors (VEGF and FGF-2) and responded more profound to osteogenic 

induction (alkaline phosphatase and alizarin red staining and bone-related gene expression, 

such as RUNX-2 and osteocalcin) than AT-derived MSCs of older donors (Wu et al., 2012). 

Moreover, it has been reported that the age-related disease, osteoporosis was correlated with 

enhanced human MSC mRNA expression of osteoporosis and osteoclastogenesis associated 

genes (Benisch et al., 2012). Whether the lower estrogen levels in elderly osteoporotic women 
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is the determining factor in changing the mRNA expression, however, needs to be 

determined. 

 

CHONDROGENESIS                CONTROL 

    HEALTHY HORSE      INJURED HORSE      HEALTHY HORSE 

 

Figure 2. Macroscopic images of chondrogenic differentiation (left and middle panels) and undifferentiated 

mesenchymal stem cells (MSCs) as a control (right panels). Alcian blue stainings on all the samples confirmed 

chondrogenesis in a differentiated MSC sample of a healthy horse and absence of chondrogenesis in a 

differentiated MSC sample of an injured donor horse as well as in undifferentiated control MSCs. Scale bars 

represent 50µm. 



Chapter 6 

156 
 

Furthermore, other factors that are known to affect osteoblast activity, such as parathyroid 

hormone (PTH), have also been shown to affect SCs. Indeed, treatment of mice with 

parathyroid hormone has been described to have beneficial effects on the hematopoietic SC 

pool (Rashidi and Adams, 2009). In addition, it has been described that cell orientation has an 

important influence on MSC migration and behavior. For example, it has been shown that 

multilineage differentiation of immature human MSCs can be directed by changing tissue 

elasticity using a controlled elastic in vitro model (Engler et al., 2006). Indeed, soft matrices 

that mimic brain tissue induced neurogenesis, whereas stiffer matrices that mimic muscle 

tissue induced myogenesis and the most rigid matrices induced osteogenesis (Figure 3).  

 

 

Figure 3. Naïve human mesenchymal stem cells (MSCs) become more branched, spindle or polygonal shaped 

when grown in matrices in the range of brain elasticity (0.1-1 kPa), muscle elasticity (8-17 kPa) or stiff cross-

linked collagen matrices (25-40kPa), respectively (Engler et al., 2006). Scale bar represents 20µm. 
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In the study of Engler, responses were observed at all levels from RNA to protein 

production and from morphology to cell stiffness, indicating the overall impact of matrix 

elasticity on the MSC’s biology. Unfortunately no data concerning the influence of matrix 

elasticity on equine MSCs are available to date. Besides the physical micro-environment, also 

biological factors, such as extracellular matrix components play a pivotal role on the SC’s 

behavior. Indeed, ligation of the basement membrane component laminin to cell membrane 

anchored integrines would drive osteogenic differentiation (Klees et al., 2005; Klees et al. 

2007). Moreover, as already mentioned in the General Introduction, several growth factors 

and cytokines that are present in the niche of the SC have a directing or preserving function 

on these cells. For all the aforementioned reasons, researchers should be encouraged to 

increase the knowledge of the niche of cells in general, and of MSCs in specific. Not only the 

fundamental science of MSC regulation would benefit from this knowledge, but also the 

efficacy of cell-based therapies might improve. 

 

Mammary stem/progenitor cells 

In contrast to MSCs, no uniform guidelines are available to properly define mammary 

stem/progenitor cells (MaSCs), not even in human MaSC research (Borena et al., 2013). 

Although a plethora of different isolation/characterization techniques are used for MaSCs 

across species, it is generally accepted that MaSCs have to be capable to form colony forming 

units (CFU) from single cells and to differentiate into different cell types of the epidermal 

germ layer, such as luminal epithelial cells (ductal and alveolar) and myo-epithelial cells. 

Furthermore, MaSCs should express SC-specific markers after multiplication in order to 

verify their stemness under in vitro cultivation (cfr. Table IV of the General Introduction). In 

the present thesis, we have evaluated cells isolated from equine mammary gland tissue for all 
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the requirements described above and our results strongly indicate that we have been 

successful in obtaining equine MaSCs.  

In the present thesis, the functional characterization of equine MaSCs was performed by 

directing their differentiation in vitro. Still, the ultimate proof of the “stemness” of MaSCs is 

the in vivo outgrowth into a functional mammary gland. In this regard, MaSCs injected into 

the mammary gland could be marked with e.g. a fluorescent protein in order to be able to 

identify the implanted MaSCs and to discriminate them from the MaSCs which are already 

present in the mammary gland. Another option would be the use of a cleared fat pad model 

(cfr. General Introduction), where the MaSCs of an individual would be injected into the 

adipose tissue of a cleared mammary gland from another individual. By doing so, the 

repopulation activity, multilineage differentiation capacities and self-renewal potential of 

MaSCs can be assessed in vivo. The cleared fat pad is considered the “gold standard” assay of 

functional MaSCs, because the mammary fat pad is essential for the development of 

mammary epithelium, provides signals that mediate ductal morphogenesis, and stimulates 

alveolar differentiation (Neville et al., 1998). Although such an approach is difficult to 

achieve in horses, the transplantation of human normal and neoplastic mammary tissue 

(Outzen and Custer, 1975) and even human MaSCs (Vafaizadeh et al., 2012) into cleared fat 

pads of nude mice have been successfully reported. This should encourage scientists to adapt 

the cleared fat pad model for other mammals or to develop other assays to evaluate MaSC 

functioning.  

In the course of mammary gland development and differentiation, it has been shown that 

MaSCs continue to proliferate by means of symmetric cell divisions in the mammary fat pad 

until the ducts reach the margins, at least in mice, indicating the transitive nature of this 

micro-environment (Woodward et al., 2005). For the bovine mammary gland, it is 

hypothesized (Capuco et al., 2012) that during mammary gland development asymmetric cell 
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division would occur in a plane that is perpendicular to the basal membrane and is located 

more or less vertically on the symmetrical cell division orientation, similar to what has been 

reported in skin studies (Blanpain and Fuchs, 2009; Jones and Simons, 2008) (Figure 4). 

Indeed, the differences in cell orientation and growth patterns affects the destination of 

MaSCs. Still, what the exact impact of the MaSC niche is and how it influences the behavior 

of MaSCs has yet to be evaluated.  

 

 

 
Figure 4. Hypothetical growth pattern of mammary stem/progenitor cells (MaSCs) after symmetric (SD) and 

asymmetric cell division (AD). 

 

 

MSCs and MaSCs: similarities and differences 

Interestingly, when comparing the results on MSCs and MaSCs obtained in the present 

thesis, it became clear that these two cell types shared many properties. Besides a similar CFU 

efficiency, both equine SC types expressed immunophenotypic markers such as CD29 and 

CD44 (Spaas et al., 2012; Spaas et al., 2013) and also the proliferation marker Ki67 was 
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present on MaSCs (Spaas et al., 2012) as well as MSCs (Figure 5, unpublished data). 

Moreover, we could demonstrate that both equine SC types share similar differentiation 

capacities, since both MaSCs and MSCs were capable to differentiate into adipocytes (Spaas 

et al., 2012; Spaas et al., 2013).  

 

 

Figure 5. Immunofluorescence staining with the proliferation marker Ki67 (A-D) on cytospins of equine 

mammary stem/progenitor cells (MaSCs, A & C) and equine mesenchymal stem cells (MSCs, B & D). In panel 

C & D the nuclei were visualized after counterstaining with Hoechst.   
 

 

On the other hand, differences in characteristics, i.e. marker expression, were also found. 

The equine MaSCs described in this thesis were positive for casein kinase 2β (Figure 6, 

unpublished data) and epithelial specific antigen (ESA) (Figure 7, unpublished data), which 

was to be expected, since they are two epithelial-specific markers, which is in contrast to 

equine PB-derived MSCs that need to be negative for these two markers (Figure 6 & 7). Not 

only do these SC types share several characteristics, it has been described in literature that 



Chapter 6 

161 
 

they can influence each other. In a study of Klopp et al., it was reported that human bone 

marrow (BM)-derived MSCs increased human mammosphere formation in a dose-dependent 

manner (Klopp et al., 2010). Moreover, these mammosphere-derived cells expressed less E-

cadherin and more N-cadherin when compared to mammary cells cultivated without MSCs 

(Klopp et al., 2010). Based on this finding, the authors concluded that this was an indication 

that mammosphere-derived cells obtain a mesenchymal phenotype under the influence of 

MSCs. 

 

 

       
Figure 6. Flow cytometry of casein kinase 2 (dark grey histograms) demonstrated that 68.6% of the equine 

mammary stem/progenitor cells (MaSCs, left) were positive, whereas only 6.9% of the equine mesenchymal 

stem cells (MSCs, right) expressed this enzyme. Light grey histograms represent the isotype controls. 

 

 

           

Figure 7. Immunofluorescence staining with the epithelial specific antigen marker (ESA) and nuclear 

counterstaining with Hoechst on cytospins of equine mammary stem/progenitor cells (MaSCs, left) and equine 

mesenchymal stem cells (MSCs, right). 
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A few years later, Xu et al. reported that this epithelial-mesenchymal transition (EMT), 

which is associated with cancer progression and metastases, was regulated by MSC-

associated production of transforming growth factor-β1 (TGF-β1) (Xu et al., 2012). Since it 

has been reported that TGF-β1 reduces epithelial cell proliferation within the mammary gland 

(Lamote et al., 2004), one might expect an antagonistic effect on tumor growth. Nonetheless, 

inhibiting TGF-β1 effects of BM MSCs disrupted the cytokine network mediating the 

interaction between MSCs and breast cancer cells (Shangguan et al., 2013). Consequently, 

BM MSCs significantly inhibited growth and metastasis of co-inoculated cancer cells, 

whereas the opposite was the case before TGF-β1 inhibition. On the contrary, it has been 

reported that the conditioned media of human adipose-derived MSCs displayed an 

antiproliferative activity on human mammary tumor cells, where coculturing both cell types 

stimulated the proliferation of the tumor cells as reported for BM MSCs (Trivanović et al., 

2013). As such, preactivation of human BM MSCs with tumor necrosis factor (TNF)-α 

enhanced their tumor-suppressive properties and may represent a useful strategy to develop 

MSC-based approaches for the treatment of cancer (Lee et al., 2012). By treating both normal 

and malignant breast epithelial tissue with human recombinant TNF-α alone, a specific 

cytotoxicity towards malignant cells could be noticed (Dollbaum et al., 1988). In addition, 

adding TNF-α to healthy rat mammary epithelial cells might even stimulate their proliferation 

(Ip et al., 1992). Therefore, one could postulate that TNF-α and undoubtedly also other (pro)-

inflammatory cytokines play an important specific communicative and regulating role which 

determines the destination and even function of SCs and their progeny. For all the 

aforementioned reasons, studying the interaction between MSCs and MaSCs might not only 

lead to novel insights into tissue regeneration, but also in the mechanisms of tumor 

progression or regression.  
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Aside from the interaction between MSCs and MaSCs, there still are several questions that 

remain unanswered regarding how these interactions might influence the SC niche or vice 

versa, how the niche can influence these interactions. For example, it is well known that a 

correct spatial and temporal interaction between different cell types, such as SCs, and between 

cells and their environment is essential for proper functioning of cells and an efficient tissue 

regeneration, as has been shown in the case of MSCs (Borjesson and Peroni, 2011; Fortier and 

Smith, 2008). Taken together, more research is definitely needed to study (i) the common and 

specific characteristics of MSCs and MaSCs, (ii) mutual interactions and (iii) their 

interaction(s) with the micro-environment or niche.  

 

6.3. The role of equine stem cells in regenerative therapy 

The safety, efficacy and complications of stem cell (SC) therapy has divided public 

opinion. To date, clinical applications of embryonic SCs (ESCs) have been limited, mainly 

because of the risk of in vivo teratoma formation (Chou and Yabuuchi, 2011; Fong et al., 

2010) and immune rejection (Menendez et al., 2005), at least in humans. However, an in vivo 

study using an equine model of acute surgically induced superficial digital flexor tendon 

(SDFT) injury revealed no teratoma formation or immune rejection following the injection of 

undifferentiated equine ESCs (Guest et al., 2010). As a result one could postulate that equine 

ESCs might not have the same properties as ESCs from other species that have the potential 

to form teratomas in vivo. Nonetheless, the authors used the term embryonic stem-“like” cells, 

indicating that further characterization of the isolated cells was warranted in order to confirm 

their potency and pureness. Still, the risk of immune rejection remains present and might be 

reduced by using induced pluripotent stem (iPS) cells, which can be derived from the patient 

itself, although the effect of inducing pluripotency genes on the host’s immune system has not 
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been studied yet in horses and in vivo teratoma formation was observed upon injection of 

equine iPS cells in mice (Nagy et al., 2011).  

In order to avoid teratoma formation and potential immune rejections, adult SCs from the 

patient itself, also named autologous SCs, have been proposed. Several studies report the 

therapeutic use of autologous mesenchymal SCs (MSCs) in horses (Smith, 2008; Wilke et al., 

2007). On the other hand, the safe use of MSCs from a donor which is different from the 

recipient, also named allogeneic MSCs, has been described in both humans and horses 

(Carrade et al., 2011a; Carrade et al., 2011b; Fang et al., 2007; Guest et al., 2008; Ringden et 

al., 2006; Riordan et al., 2009). The use of autologous as well as allogeneic MSCs has been 

shown to induce joint swelling and lameness for a short period of time in treated horses 

(Carrade et al., 2011b). Hereby, an inflammation within the synovial fluid which induced an 

increase in white blood cell count and protein concentration has also been reported (Carrade 

et al., 2011b). The third Aim of the present thesis was to clinically evaluate autologous MSCs 

in an equine patient with a non-induced orthopedic injury. After the second injection with 

autologous MSCs, a localized swelling of the treated joint was noticed. The exact reason for 

the observed swelling in the pastern joint remains unanswered. However, a potential 

explanation could be that the presence of MSC debris initiated a short period of swelling and 

pain at the injury site. On the other hand, one could postulate that cell attachment and defect 

filling may stimulate local nerves and create a short inflammatory reaction after 

transplantation. It also needs to be mentioned that the MSCs were expanded in a medium 

containing fetal calf serum (FCS), and residues of bovine proteins could cause an immune 

response after repeated injections in another animal species. Nevertheless, the exact reason for 

the noticed swelling after the second treatment in the present case report remains to be 

determined.  
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Although MSCs are able to differentiate into cells of the damaged tissue in vitro, the 

question remains if they can regenerate injured tissues in vivo. In this thesis, we report the 

first use of peripheral blood (PB)-derived MSCs to treat a horse suffering from chronic 

degenerative joint disease (DJD). It has to be noted that besides this single case report with a 

positive clinical outcome of DJD after MSC therapy, only a few placebo-controlled double 

blind studies have been performed in horses and those had a more reserved outcome (Frisbie 

et al., 2009; Mcllwraith et al., 2011; Wilke et al., 2007). The major advantage of our study 

was the application of MSCs in a patient with a chronic naturally occurred DJD of the pastern 

joint, rather than experimentally inducing cartilage lesions. The clinical improvement in this 

one case report might have been attributable to cartilage regeneration or to the inhibition of 

pro-inflammatory cytokines, as previously reported (Frisbie et al., 2009; Jing et al., 2003). 

Nevertheless, based on a single patient as reported in the present thesis, no definite 

conclusions can be made concerning the clinical effects of MSC treatment on DJD in horses.  

In order to determine whether MSCs really regenerate the injury or stimulate the 

surrounding cells to do the work for them, MSCs should be labeled and histological sections 

could confirm which cells were at the origin of a possible regenerative response. In this 

regard, it has been recently described in donkeys that carpal joint arthrosis clinically improved 

at 2 months and 6 months after treatment with bone marrow (BM)-derived MSCs and that 

green fluorescent protein-labelled MSCs integrated in the cartilage, which indicated that the 

MSCs participated in the healing process of the damaged tissue (Mokbel et al., 2011). In the 

present case report no information was available on the amount of equine MSCs that 

remained in the injury site after intra-articular injection. In horses with naturally occurring 

tendon lesions, it has been reported recently that only 24% of the Technetium99m-labeled 

MSCs were still present at 24 hours after intralesional injection (Becerra et al., 2013). A 

similar setup has been previously used for the evaluation of MSCs transfected with a green 
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fluorescent protein (GFP)-expressing plasmid in tendon lesions in horses (Guest et al., 2008). 

In the latter study, the authors demonstrated that autologous as well as allogeneic MSCs 

integrated in the damaged tendons. However, after 34 days only 10
3
 of 10

6
 transplanted cells, 

i.e. 0.1% of the injected cells, were localized within the lesion whereas the majority of the 

cells had migrated into the surrounding tissue, indicating a strong need for optimizing current 

transplantation techniques.  

Hereby, it has to be mentioned, that BM mononucleated cells and BM-derived MSCs had 

similar effects on tendon extracellular matrix (type I/III collagen ratio and COMP) (Crovace 

et al., 2010; Lacitignola et al., 2008). One could expect that any cell transplantation or maybe 

even a single epitope might be sufficient to induce the observed effects. Nonetheless, it has 

been reported that acellular BM also has the capacity to stimulate COMP synthesis in SL 

explants, even more than growth factor-based treatments, such as platelet-rich plasma (PRP) 

or platelet-poor plasma (PPP) (Schnabel et al., 2008). This confirms the earlier mentioned 

hypothesis (cfr. General Introduction) that the products MSCs secrete might be at the basis of 

the observed effects. For all these reasons, it is warranted to investigate the modus operandi of 

cell-based therapies and to identify healing enhancing cytokines, growth factors or 

metabolites. In conclusion, we can state that research to develop new and better regenerative 

therapies is a rapidly expanding field, making efficient treatments in the field of 

musculoskeletal injuries a reality for human as well as equine athletes in the nearby future.  

To our knowledge, no clinical applications using mammary stem/progenitor cells (MaSCs) 

have been reported to date. Nevertheless, because MaSCs provide mammary cell renewal and 

turnover, several application possibilities have been pointed out in different studies. In this 

regard, it has been reported that MaSCs could benefit milk yield and persistency (Capuco et 

al., 2003; 2009; 2012), repair of damaged mammary tissue caused by mastitis or trauma 
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(Borena et al., 2013; Capuco et al., 2012), and maybe even provide a cure for breast cancer by 

studying tumoral transformation (Bierla et al., 2012; Borena et al., 2013; Sagar et al., 2007).  

In chapter 4 of the present thesis, we described the isolation of MaSCs from slaughtered 

mares, however, in field circumstances taking tissue samples of 5cm² would not be ethical nor 

meaningful. For this reason, one might suggest to optimize the isolation technique for smaller 

biopsies or propose the use of allogeneic MaSCs, in line with what has been reported for 

MSCs. In the case of tissue damage or breast cancer studies this could be defendable after 

further investigation of the MaSCs for rejection proteins, possible side effects and 

carcinogenic properties. Furthermore, it has to be noted that mammary gland epithelial cells 

are likely to play an important role in the defense against intramammary infection by 

increasing pro-inflammatory substances, such as interleukin (IL)-8, tumor necrosis factor 

(TNF)-α, serum amyloid A and Lactoferrin (Wellnitz and Kerr, 2004). Increasing the 

inflammation is desirable in the case of pathogen exposure and in the light of the 

aforementioned tumor-suppressive properties, although leading to more tissue damage 

followed by a decrease in milk production (De Olives et al., 2013). In order to counteract an 

unnecessary decline in milk production due to an excessive inflammatory response, it would 

be interesting to illuminate the role of MaSCs or MSCs as an immunomodulating agent, as 

previously reported for the latter (Kode et al., 2009). It should be mentioned though, that such 

an approach is quite controversial in mammals with a high risk for breast cancer development 

(i.e. humans and carnivores) and should be interpreted with caution. Indeed, it has been 

recently reported by several groups that the immunosuppressive effects of human MSCs 

would possibly be correlated with tumor growth in breast cancer (Ljujic et al., 2013; Mandel 

et al., 2013). Therefore, future studies should focus on whether or not the immature MaSCs 

also possess these immunosuppressive properties and should be considered as a possible 

target for future cancer therapies (besides cancer SCs). Indeed, elucidating the modus 
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operandi of MaSCs might bring us one step closer to understanding their different roles in the 

(mal)functioning of this complex organ. 

On the other hand, in order to increase milk production of healthy mammary glands in 

herbivores (especially cows and horses for economic purposes), the use of techniques which 

could stimulate or activate MaSCs in situ, could be a valuable option. As such, it has been 

found that an intramammary infusion of xanthosine, which suppresses asymmetric SC 

division by p53 inhibition, resulted in an increased number of MaSCs by promoting 

symmetric SC divisions (Capuco et al., 2009; Choudhary et al., 2012). In addition, a large 

number of treatments or agents have been shown to increase milk production and/or cell 

proliferation and it would be interesting to study whether this is caused by a direct or indirect 

effect on MaSCs. For example, increasing the milking frequency (Bar-Peled et al., 1995) and 

photoperiods (longer period of light per day) (Dahl et al., 1997) induces an increase in milk 

production. Daily injections with bovine somatotropin was shown to increase cell 

proliferation during late gestation in sheep (Stelwagen et al., 1993), as well as mammary 

growth during mid-lactation in goats (Knight et al., 1990). In both studies this phenomenon 

was followed by an enhanced milk yield. In addition, insulin-like growth factor-I (IGF-I) 

infusion into the local arterial mammary gland supply of goats increased milk synthesis as 

well (Prosser et al., 1990; Prosser and Davis, 1992). Since the ability of IGF-I to induce cell 

proliferation has been demonstrated in several studies, a link between cell proliferation and 

milk yield is easily made (Baumrucker and Erondu, 2000; Hadsell et al., 2002; Peaker and 

Linzell, 1974).  

Based on all the cited studies, it could be hypothesized that cell proliferation instead of a 

higher secretory capacity or activity of the mammary cells lies at the basis of the noted 

enhanced milk yield, and therefore, that regulation of the MaSC pool might be sufficient to 

increase milk production. It has to be mentioned though, that estrogen and progesterone 
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induce proliferation of the mammary epithelium throughout gestation (Vangroenweghe et al., 

2005), and MaSCs do not express receptors for these sex steroid hormones (Capuco et al., 

2012). In this regard, one might postulate that instead of MaSCs, the progenitor cells are 

responsible for intramammary epithelial cell proliferation, because they do express estrogen 

and progesterone receptors (Capuco et al., 2012). However, it is not excluded that these 

steroid hormones are providing indirect signals to the MaSCs through an intercellular 

communication network that is still not elucidated.  

Since it has been proven that cell proliferation within the mammary gland is at least 

partially driven by MaSCs (Capuco et al., 2009; Vaillant et al., 2011) and that the MaSC pool 

increased 14-fold due to maximal progesterone levels during the luteal phase in mice (Joshi et 

al., 2010), it might be postulated that estrogen and progesterone receptor positive cells release 

the major mitogen(s) for MaSC expansion in the mammary gland. In addition, the results of 

the present thesis confirm that a significant increase in mammosphere forming cells could be 

noticed after harvesting mammary glands from lactating mares (in comparison to non-

lactating mares). This supports the theory that MaSCs are indeed the forces driving mammary 

gland development. 

For all the aforementioned reasons, future studies should definitely focus on intercellular 

communication mechanisms between MaSCs and their surrounding counterparts. More 

research is not only warranted to provide more insights in the mammary gland physiology but 

also to the effects of these mediators on breast cancer (stem) cells. 
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Stem cells (SCs) are undifferentiated cells which have the capacity to divide without 

differentiation or to form more specialized daughter cells. Traditionally, they are divided into 

2 groups. The first group contains embryonic SCs (ESCs) that are able to differentiate into all 

the different cell types that are present in the body (pluripotency). The second group consists 

of adult or tissue specific SCs that have the capacity to mainly form cell types of their own 

germ layer (multipotency). The present thesis focuses on 2 different types of adult multipotent 

SCs in horses: (i) peripheral blood (PB)-derived mesenchymal SCs (MSCs), for their potential 

use in regenerative medicine and (ii) mammary gland stem/progenitor cells (MaSCs), which 

can represent an important tool for research on mammary gland development and disease, ie. 

breast cancer. More specifically, the present thesis focuses on the optimization of the isolation 

and characterization techniques of PB-derived MSCs and MaSCs in the horse, followed by a 

preliminary study describing a clinical application of characterized PB-derived MSCs.  

Although equine MSCs can be easily isolated from bone marrow, adipose tissue and 

umbilical cord blood, there is the need for a less invasive and more practitioner-friendly 

source of MSCs. In this regard, PB represents an elegant and highly accessible source of 

MSCs. However, for therapeutic use, a major setback is that although several clinical trials 

with MSCs have been performed in horses, in most cases they are lacking a fundamental 

background. Indeed, this technology is still in an early stage, mainly because of the lack of 

horse specific markers for SC identification and because of the absence of a thorough 

fundamental characterization. Nevertheless, a fair knowledge of the SC biology is 

indispensable for the development of rationally sound SC therapies. For all the 

aforementioned reasons, an isolation and characterization of equine PB-derived MSCs was 

performed in chapter 3 which increased the currently available data on PB-derived MSCs. To 

this end, the properties of the isolated cells were assessed by means of different 

characterization techniques consisting of a functional and immunophenotypic component. The 
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functional characterization consisted of colony forming unit (CFU) assays as well as 

population doubling time (PDT) calculations in order to evaluate the self-renewal capacities 

of the cells on the one hand, and a trilineage differentiation towards osteoblasts, chondroblasts 

and adipocytes on the other hand. Secondly, an immunophenotypic characterization was 

performed in order to evaluate typical MSC markers (CD29, CD44, CD90 and CD105) and 

adult blood cell markers (CD45, CD79α, MHC II and Mφ marker). Because of this optimized 

characterization, the quality of PB-derived MSCs can now be thoroughly assessed before 

therapeutic application.  

To date, there are no data available about the presence of MaSCs in the equine mammary 

gland. However, the mammary gland is a highly regenerative organ that can undergo multiple 

cycles of proliferation, lactation and involution, processes that are driven by MaSC 

proliferation and differentiation. Over the years, important data has been gathered on MaSCs 

of women and mice in the light of breast cancer research. Also canine and bovine MaSCs are 

receiving increased attention with regard to mammary tumors and increasing milk production, 

respectively. Studying the potential of equine MaSCs, however, could be of interest for 

understanding the SC biology and functioning in this dynamic organ at different physiological 

stages. Therefore, this thesis also covers the isolation and characterization of equine MaSCs in 

chapter 4. Similar to MSCs, this characterization consisted of a functional as well as 

immunophenotypic component in order to confirm the SC properties of the isolated cells. The 

isolated equine cells were able to self-renew and to differentiate into multiple cell lineages. 

Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f and 

Ki67. Afterwards, MaSCs of non-lactating and lactating mares were compared. Here, we 

found that lactating mares contained significantly more mammosphere forming cells which 

were in a higher proliferative state. As a result, the mammosphere assay was proposed as a 

valuable assay to study MaSCs during different physiological stages. Taken together, chapter 
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4 is the first report of MaSC isolation in horses and extends the current knowledge of 

mammary gland biology.  

In chapter 5 the clinical use of equine PB-derived MSCs was preliminary evaluated in a 

non-induced orthopedic injury. To this end, autologous PB-derived MSCs were injected 

locally in the pastern joint of a horse suffering from naturally occurred chronic degenerative 

joint disease (DJD). Since the injury was only clinically evaluated without the presence of 

sham-treated control horse or any functional data, this case report should be considered as 

purely descriptive, yet providing a basis for further research.  

In conclusion, the present thesis describes the isolation and characterization of PB- and 

mammary gland-derived equine adult multipotent SCs which fulfilled all the requirements to 

be typed as MSCs and MaSCs, respectively. Nevertheless, controlled and scientifically sound 

studies concerning the biological properties and regenerative capacities of equine SCs are of 

vital importance in order to achieve the goals which were set for regenerative medicine and 

cancer research. 
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Stamcellen (SC’n) zijn ongedifferentieerde cellen die enerzijds onbeperkt kunnen delen 

zonder te differentiëren en anderzijds meer gespecialiseerde cellen kunnen aanmaken. 

Traditioneel worden ze ingedeeld in twee groepen: embryonale SC’n die in staat zijn om te 

differentiëren tot alle mogelijke celtypes van het lichaam (pluripotentie) en adulte of 

weefselspecifieke SC’n met een differentiatiecapaciteit naar voornamelijk celtypes van hun 

eigen kiemlaag (multipotent). Het huidige proefschrift beschrijft twee verschillende typen van 

adulte multipotente SC’n bij paarden: mesenchymale SC’n (MSC’n) die potentieel hebben 

voor gebruik in de regeneratieve geneeskunde, en melkklier stam/voorlopercellen (MaSC’n) 

die kunnen aangewend worden in studies gericht op de verhoging van de melkproductie of op 

de pathogenese van borstkanker. Aangezien beide SC typen een weefsel of orgaan kunnen 

genereren, liggen ze aan de basis van de normale werking van dit orgaan. Defecten in hun 

normale fysiologie kunnen daarom leiden tot afwijkingen zoals ongebreidelde 

vermenigvuldiging (kanker). Om voorgaande redenen is het huidige proefschrift gericht op 

het optimaliseren van de isolatie van MSC’n uit het perifeer bloed (PB) en MaSC’n uit de 

melkklier, en een typering van de karakteristieken van beide stamceltypen, gevolgd door een 

klinische toepassing van PB MSC’n.  

Hoewel bij paarden MSC’n gemakkelijk geïsoleerd kunnen worden uit beenmerg, 

vetweefsel en navelstrengbloed, bestaat er een nood aan een minder invasieve en meer 

gebruikersvriendelijke bron van MSC’n. In dit opzicht is het PB een elegante en zeer 

toegankelijke bron van MSC’n. Ook al werden er reeds verschillende klinische studies met 

MSC’n beschreven, toch ontbreekt de fundamentele basiskennis in veel gevallen. Dit komt 

mede doordat deze technologie zich nog in een vroeg ontwikkelingsstadium bevindt, vooral 

door het gebrek aan paarden-specifieke merkers voor de identificatie van SC’n en door het 

ontbreken van een diepgaande fundamentele karakterisatie van deze cellen. Toch is een 
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kennis van de stamcelbiologie onontbeerlijk voor de ontwikkeling van rationeel-gefundeerde 

stamceltherapieën. 

Om al deze redenen werd de isolatie en karakterisatie van paarden PB MSC’n uitgevoerd 

in hoofdstuk 3. De eigenschappen van de geïsoleerde cellen werden bepaald door een 

functionele en immunofenotypische karakterisatie. Functionele parameters waren de 

volgende: (i) kolonievormende eenheid assays, (ii) populatieverdubbelingstijd en (iii) 

differentiatie naar osteoblasten, chondroblasten en adipocyten. De immunofenotypische 

karakterisatie evalueerde typische MSC-merkers (CD29, CD44, CD90 en CD105) en 

volwassen bloedcelmerkers (CD45, CD79α, MHC II en  Mφ merker). Dankzij deze 

optimalisatie kan de kwaliteit van MSC’n geïsoleerd uit het PB nu grondig geëvalueerd 

worden vooraleer ze therapeutisch toe te passen bij paarden.  

Tot op heden zijn er nog geen gegevens bekend over de aanwezigheid van MaSC’n in de 

paardenmelkklier. De melkklier is een zeer regeneratief orgaan dat meerdere cycli van 

proliferatie, lactatie en involutie kan ondergaan, allemaal processen die worden aangedreven 

door MaSC proliferatie en differentiatie. In de loop der jaren zijn er belangrijke gegevens 

verzameld over MaSC’n van vrouwen en muizen in het kader van borstkankeronderzoek. Ook 

MaSC’n van hond en rund krijgen meer aandacht respectievelijk als model voor 

mammatumoren en als onderzoeksonderwerp voor het verhogen van de melkproductie. Het 

bestuderen van paarden MaSC’n zou van belang kunnen zijn voor het begrijpen van de 

stamcelbiologie en het functioneren van dit dynamische orgaan in de verschillende 

fysiologische stadia. 

Om voorgaande redenen behandelt dit proefschrift ook de isolatie en karakterisatie van 

paarden MaSC’n in hoofdstuk 4. Zoals voor MSC’n, bestaat de karakterisatie van MaSC’n uit 

een functionele en immunofenotypische component om de stamceleigenschappen van de 

geïsoleerde cellen te bevestigen. Hierbij waren de geïsoleerde paardenmelkkliercellen in staat 
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om zichzelf te vermeerderen en te differentiëren naar meerdere cellijnen. Bovendien werden 

de cellen met verschillende merkers (CD29, CD44, CD49f en Ki67) immunofenotypisch 

gekarakteriseerd. Daarna werden de MaSC’n van niet-lacterende en lacterende merries met 

elkaar vergeleken. Hierbij werd vastgesteld dat bij lacterende merries significant meer 

mammosfeervormende cellen geïsoleerd werden die zich in een hogere proliferatieve toestand 

bevonden. Bijgevolg werd de mammosfeer assay voorgesteld als een waardevolle assay om 

MaSC’n te bestuderen tijdens verschillende fysiologische stadia. Deze studie is de eerste die 

rapporteert over de isolatie van paarden MaSC’n en vormt een belangrijke uitbreiding op de 

huidige kennis van de melkklierbiologie. 

In hoofdstuk 5 wordt de klinische toepassing van equine PB MSC’n preliminair 

geëvalueerd in een niet-geïnduceerd orthopedisch letsel. In dit verband werden autologe PB 

MSC’n geïnjecteerd in het kroongewricht van een paard met een natuurlijk voorkomende 

chronische degeneratieve gewrichtsaandoening. Aangezien het letsel enkel klinisch 

geëvalueerd werd zonder controlegroepen of functionele data, moet deze case report enerzijds 

beschrijvend en anderzijds als basis voor verder onderzoek beschouwd worden. 

In conclusie beschrijft dit proefschrift de isolatie en karakterisatie van volwassen 

multipotente SC’n, geïsoleerd uit het PB en de melkklier, die aan alle eisen voldoen om 

getypeerd te worden als MSC’n en MaSC’n. Toch zijn gecontroleerde en wetenschappelijk 

onderbouwde studies over de biologische eigenschappen en regeneratieve capaciteiten van 

paardenstamcellen van vitaal belang om dergelijke SC’n voor regeneratieve geneeskunde en 

kankeronderzoek te kunnen gebruiken. 
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doctoraat is één van mijn dromen. 

Allereerst zou ik mijn promotoren, Professor Dr. Gerlinde Van de Walle en Professor Dr. 

Ann Van Soom willen bedanken om mij mijn onderzoek te laten uitvoeren met de nodige 

vrijheid en toch een wetenschappelijk verantwoorde rem op. Professor Van de Walle wil ik 

bedanken voor het nalezen van al de projecten, artikels en andere zaken die ik geschreven heb 

tijdens mijn verblijf aan de Vakgroep Vergelijkende Fysiologie en Biometrie. Veel werk of 

niet, ze kon altijd tijd vrijmaken voor mij en al mijn vragen. Ik zou Professor Van Soom 

willen bedanken voor haar volharding en om in mij te geloven op de momenten dat het nodig 

was! Ik zou haar willen beschrijven als een rots in de branding en een bemiddelaar. Zij nam 

mij onder haar vleugels voor de IWT verdediging en bleef dit nog doen zelfs nadat ik het nest 

verliet.   

De leden van de begeleidingscommissie, namelijk mijn promotoren, Professor Dr. Evelyne 

Meyer en Professor Dr. Frederik Pille zou ik willen bedanken om dit proefschrift te blijven 

ondersteunen en telkens opnieuw weer door te nemen en suggesties te geven. Dankzij jullie 

wetenschappelijke input en vertrouwen heeft dit proefschrift al zijn beproevingen doorstaan. 

Verder zou ik de voorzitter en onze decaan, Professor Dr. Frank Gasthuys en de leden van 

de lees- en examencommissie, namelijk Professor Dr. Christian Burvenich, Professor Dr. 

Herman Favoreel, Professor Dr. Ann Martens, Professor Dr. Maria Cornelissen, Professor Dr. 

Peter Bols en Dr. Geert Vertenten willen bedanken voor hun inzet en kritische, maar terechte 

kijk op de zaken. Zonder hun constructieve suggesties zou dit proefschrift niet geworden zijn 



Dankwoord 

195 
 

wat het nu is! Ik ben hen ook mijn dankbaarheid verschuldigd omdat ze mij de kans gegeven 

hebben om te ontwikkelen en uit te groeien tot doctorandus! 

Professor Dr. Christian Burvenich zou ik willen bedanken voor zijn positieve kritische kijk 

op de zaken en onze stimulerende gesprekken na 19u, als de vakgroep leeggelopen was. Uw 

inzicht over uiteenlopende zaken is op zijn minst gezegd intrigerend en zet mij altijd aan tot 

nadenken en het verder uitdiepen van bepaalde onderwerpen. Dat is wat onderzoek voor mij 

betekent! Onze vakgroepvoorzitter, Professor Dr. Luc Duchateau wil ik ook bedanken voor 

zijn wetenschappelijke en persoonlijke inzichten die hij mij gegeven heeft en mij nog steeds 

geeft. In Ethiopië heb ik een reuze tijd met u gehad. Dat zal ik nooit vergeten. Ook wil ik u 

bedanken om altijd het beste in de mensen te zien en alles van beide kanten te bekijken. U 

bent één van mijn grote voorbeelden. 

Aan al mijn collega’s van de vakgroep, bedankt voor de goede sfeer op de werkvloer. Er 

ging geen dag voorbij, of we hadden ergens wel plezier om. Zeker Brecht wil ik bedanken 

voor de steun en droge opmerkingen op de momenten dat ik het nodig had en Cynthia van 

Pathologie voor de goedlachse lunchdates. Ook de laatste nieuwe collega’s: Dries, Kevin, 

Christoph en Xanthippe wil ik bedanken om mee te gaan joggen en jullie lief en leed met mij 

te delen. Ik wil zeker Bart en Klaartje van de Biometrie niet vergeten. Zij zorgden voor een 

frisse wind, leuke middagwandelingen en gezellige babbels in de gang. 

Catharina van Verloskunde wil ik bedanken voor de lange begeleiding aan de laminaire 

flow en om haar passie voor stamcelkarakterisatie met mij te delen. Bedankt Isabel en Petra 

van Verloskunde voor de liters media die jullie bereid hebben: mijn cellen waren jullie zeer 

dankbaar daarvoor! 

Annick, Lennert, Lieven, Sjouke en Carine van Virologie wil ik bedanken voor al de raad 

en ondersteuning in het maken van eender welke bereiding en het aanleren van eender welk 

protocol. 
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Bedankt Professor Dr. Pieter Cornillie en Jurgen van Morfologie en Delphine, Christian en 

Sarah van Pathologie voor de prachtige kleuringen. 

Ook Maarten, Jeroen en Michele van Heelkunde bedankt om te willen meedenken over 

mogelijke toepassingswijzen van stamcellen in de praktijk en om dit op een wetenschappelijk 

verantwoorde manier te benaderen. 

Ik zou mijn huidige collega’s, Sarah, Nathalie, Jo, Marc en Tom willen bedanken om mij 

de ruimte te hebben gegeven om dit proefschrift tot een goed einde te brengen. Ik ben blij om 

samen met jullie vooruitgang te mogen boeken in het nog onontgonnen landschap van de 

regeneratieve geneeskunde. 

Ook zou ik mijn schoonouders willen bedanken om mij opgenomen te hebben in hun 

families. Mams en Georges wil ik bedanken om mij tijdens de voorbereiding van de 

mondelinge verdediging te voorzien van al het voedzame dat een mens nodig heeft en de 

warme thuiskomsten! Papa Broeckx en Chris wil ik bedanken voor de inzichten in het 

geneesmiddelenlandschap en in het leven.  

Ik zou mijn ouders willen bedanken omdat ze mij de mogelijkheid gegeven hebben om te 

studeren en te doctoreren. Ook al had mijn papa liever gehad dat zijn zoon ruiter gebleven 

was of praktijkdierenarts geworden was, hij heeft mijn ondernemingen altijd gesteund en doet 

dit op de dag van vandaag nog steeds! Bedankt daarvoor. Daarnaast wil ik vooral mijn mama 

bedanken om mij de kracht te geven wanneer mijn gemoed het liet afweten en mij door uw 

onvoorwaardelijke liefde altijd weer op te tillen en door iedere beproeving te loodsen. Gij 

hebt ervoor gezorgd dat ik de juiste Heer dien! Ook mag ik Greet en Papa Thieu zeker niet 

vergeten, die elk aan de zijde van mijn ouders staan en ook mij in mijn weg bijstaan! Zo heeft 

Papa Thieu mijn eerste kot mee helpen zoeken en was Greet een van de eerste om te bellen na 

ieder examen. Bedankt! 
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Daarnaast zou ik mijn zussen, Cathy, Charlotte, Inge, Elke, Heidi en Veroniek willen 

bedanken om hun enige broer te ondersteunen en te verdragen zoals hij is! Mijn grootouders 

wil ik ook bedanken: Bommama, Bompapa, Omaatje, Moeke Beckers, Moeke Lijn, 

Bompapie, Bomie en Bomma. Zowel mijn zussen als mijn grootouders hebben ieder op hun 

manier bijgedragen tot de blauwdruk van mijn levensverhaal. Ik geloof nu nog meer dan ooit 

dat een bepaalde wijsheid met de jaren komt en niet uit boeken te leren valt. Dank jullie om 

die wijsheid telkens met mij te willen delen. De dag dat dit niet meer kan, zal een groot gemis 

zijn! 

Sarah, mijn allerliefste vrouw, het leek wel gisteren toen ik je hoorde zeggen: “Jan dat is 

niets voor mij”.  Ik ben blij dat ik je van gedachten heb doen veranderen, want jij bent het 

lichtje in mijn leven. Bedankt om zo een geweldige vrouw/geliefde/beste vriendin/collega te 

zijn! Ik vind het trouwens fantastisch dat je dagelijks zonder enige commentaar naar mijn 

stamcelgezever wilt luisteren en je op die manier mijn passie ook in jouw leven geïntegreerd 

hebt. Ik ben voor eeuwig de jouwe!  



 

 

 

  



 

 

 


