19 research outputs found

    Model Structure of Fetal Health Status Prediction

    Get PDF
    One of the issues of pregnant mothers in Indonesia is their access speed and accuracy services availability towards the prediction of fetus or baby conceived during pregnancy. Thus, the research aimed to obtain the ability to predict three ranges of a fetal target, namely normal, risk, and abnormal condition. This research emphasized the modeling aspect of supervised learning using seven different algorithms to obtain an optimal working score. Those are Decision Tree, Gradient Boosting, Random Forest, SVM, k-NN, AdaBoost, and Stochastic Gradient Descent (SGD). The structure process is mainly divided into two steps, pre-process model and the prediction model. An early data pre-process is needed before executing. Prediction output indicated that dataset test is valid, and can be proven by comparing between the testing data table and prediction and testing table diagram. The resulting model has described the sequence for simulating the training and testing data model to produce the highest working score from the seven selected algorithms. The simulated data based on the model created is proved its validity thru three main filter processes, which are missing data solution, outlier data control, and data normalization. The result obtained a working score that has data proximity with a low score range of 0.063 from model evaluation, confusion matrix, and prediction output

    Deep learning based pipeline for fingerprinting using brain functional MRI connectivity data

    Get PDF
    In this work we describe an appropriate pipeline for using deep-learning as a form of improving the brain functional connectivity-based fingerprinting process which is based in functional Magnetic Resonance Imaging (fMRI) data-processing results. This pipeline approach is mostly intended for neuroscientists, biomedical engineers, and physicists that are looking for an easy form of using fMRI-based Deep-Learning in identifying people, drastic brain alterations in those same people, and/or pathologic consequences to people’s brains. Computer scientists and engineers can also gain by noticing the data-processing improvements obtained by using the here-proposed pipeline. With our best approach, we obtained an average accuracy of 0.3132 ± 0.0129 and an average validation cost of 3.1422 ± 0.0668, which clearly outperformed the published Pearson correlation approach performance with a 50 Nodes parcellation which had an accuracy of 0.237.Thanks to Eduarda Sousa for support. NFL was supported by a fellowship of the project MEDPERSYST - POCI-01-0145-FEDER-016428, funded by Portugal’s FCT. This work was also supported by NORTE-01-0145-FEDER-000013, and NORTE 2020 under the Portugal 2020 Partnership Agreement through the FEDER, plus it was funded by the European Commission (FP7) “SwitchBox - Maintaining health in old age through homeostasis” (Contract HEALTH-F2-2010-259772), and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte), under the QREN through FEDER, and by the “Fundação Calouste Gulbenkian” (Portugal) (Contract grant number: P-139977; project “TEMPO - Better mental health during ageing based on temporal prediction of individual brain ageing trajectories”). We gratefully acknowledge the support of the NVIDIA Corporation with their donation of a Quadro P6000 board used in this research. This work was also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning

    Get PDF
    There is growing interest in the potential of neuroimaging to help develop non-invasive biomarkers in neurodegenerative diseases. In this study, connection-wise patterns of functional connectivity were used to distinguish Parkinson's disease patients according to cognitive status using machine learning. Two independent subject samples were assessed with resting-state fMRI. The first (training) sample comprised 38 healthy controls and 70 Parkinson's disease patients (27 with mild cognitive impairment). The second (validation) sample included 25 patients (8 with mild cognitive impairment). The Brainnetome atlas was used to reconstruct the functional connectomes. Using a support vector machine trained on features selected through randomized logistic regression with leave-one-out cross-validation, a mean accuracy of 82.6% (p < 0.002) was achieved in separating patients with mild cognitive impairment from those without it in the training sample. The model trained on the whole training sample achieved an accuracy of 80.0% when used to classify the validation sample (p = 0.006). Correlation analyses showed that the connectivity level in the edges most consistently selected as features was associated with memory and executive function performance in the patient group. Our results demonstrate that connection-wise patterns of functional connectivity may be useful for discriminating Parkinson's disease patients according to the presence of cognitive deficits

    Early development of sleep and brain functional connectivity in term-born and preterm infants

    Get PDF
    The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being. Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep ontogenesis is a complex process, whereby alternations between rudimentary brain states-active vs. wake and active sleep vs. quiet sleep-mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the brain's ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment. However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship between sleep, preterm birth, and FC, and the challenges associated with understanding these processes. Impact Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process information. This process may be impaired in infants born preterm. The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood. This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are presented to provide direction for future research.Peer reviewe

    Time resolved functional brain networks : a novel method and developmental perspective

    Get PDF
    Functional neuroimaging has helped elucidating the complexity of brain function in ever more detail during the last 30 years. In this time the concepts used to understand how the brain works has also developed from a focus on regional activation to a network based whole brain perspective (Deco et al., 2015). The understanding that the brain is not just merely responding to external demands but is itself a co-creator of its perceived reality is now the default perspective (Buzsáki and Fernández-Ruiz, 2019). This means that the brain is never resting and its intrinsic architecture is the basis for any task related modulation (Cole et al., 2014). As often in science, understanding and technological advances go hand in hand. For the advancement of the functional neuroimaging field during the last decade, methods that are able to track, capture and model time resolved connectivity changes has been essential (Lurie et al., 2020). This development is an ongoing process. Part of the work presented in this thesis is a small contribution to this collective endeavor. The first theme in the thesis is time resolved connectivity of functional brain networks. This theme is present in Study I which presents a novel method for analysis of time resolved connectivity using BOLD fMRI data. With this method, subnetworks in the brain are defined dynamically. It allows for connectivity changes to be tracked from time point to time point while respecting the temporal ordering of the data. It also provides relational properties in terms of differences in phase coherence between simultaneously integrated networks and their gradual change. The method can be used see how whole brain connectivity configurations recure in quasi-cyclic patterns. Finally, the method is able to estimate flexibility and modularity of individual brain areas. The method is applied in Study III in order to understand how premature birth effects flexibility and modularity of intrinsic functional brain networks. Beyond the purely scientific endeavor to understand how the brain creates cognition, consciousness, perception and supports motor function, neuroimaging research has also been helpful in elucidating normal brain development and neurodevelopmental disorders. The second theme in this thesis is brain development in extremely preterm born children at school age. This theme is the focus of Study II & III. Study II investigates the prevalence of discrete white matter abnormalities at school age in children born extremely preterm and the relationship to neuro-motor outcome. The prevalence of white matter abnormalities was high but there was no relationship to an unfavorable outcome. Also, a longitudinal association to neonatal white matter injury was seen. While discrete white matter abnormalities were not correlated to quantitative measures of white matter volume and white matter integrity, neonatal white matter injury was associated with lower volume and integrity at age 8- 11 years. Moreover, neonatal white matter injury was associated with lower processing speed at 12 years. The third and final study investigated flexibility and modularity as well as lateralization of intrinsic networks in children born extremely preterm at age 8-11 years. No significant differences in either flexibility or modularity was seen for any intrinsic network after correcting for multiple comparisons. However, at the level of individual brain areas, preterm children showed decreased flexibility in both the basal ganglia and thalamus. Also, children born extremely preterm had a decreased level of lateralization in most networks

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth

    Machine-learning to characterise neonatal functional connectivity in the preterm brain

    Get PDF
    Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest-based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth
    corecore