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ABSTRACT 
 

Functional neuroimaging has helped elucidating the complexity of brain function in 
ever more detail during the last 30 years. In this time the concepts used to understand 
how the brain works has also developed from a focus on regional activation to a 
network based whole brain perspective (Deco et al., 2015). The understanding that the 
brain is not just merely responding to external demands but is itself a co-creator of its 
perceived reality is now the default perspective (Buzsáki and Fernández-Ruiz, 2019). 
This means that the brain is never resting and its intrinsic architecture is the basis for 
any task related modulation (Cole et al., 2014). As often in science, understanding and 
technological advances go hand in hand. For the advancement of the functional 
neuroimaging field during the last decade, methods that are able to track, capture and 
model time resolved connectivity changes has been essential (Lurie et al., 2020). This 
development is an ongoing process. Part of the work presented in this thesis is a small 
contribution to this collective endeavor.  

The first theme in the thesis is time resolved connectivity of functional brain networks. 
This theme is present in Study I which presents a novel method for analysis of time 
resolved connectivity using BOLD fMRI data. With this method, subnetworks in the 
brain are defined dynamically. It allows for connectivity changes to be tracked from 
time point to time point while respecting the temporal ordering of the data. It also 
provides relational properties in terms of differences in phase coherence between 
simultaneously integrated networks and their gradual change. The method can be used 
see how whole brain connectivity configurations recure in quasi-cyclic patterns. 
Finally, the method is able to estimate flexibility and modularity of individual brain 
areas. The method is applied in Study III in order to understand how premature birth 
effects flexibility and modularity of intrinsic functional brain networks.  

Beyond the purely scientific endeavor to understand how the brain creates cognition, 
consciousness, perception and supports motor function, neuroimaging research has 
also been helpful in elucidating normal brain development and neurodevelopmental 
disorders. The second theme in this thesis is brain development in extremely preterm 
born children at school age. This theme is the focus of Study II & III. Study II 
investigates the prevalence of discrete white matter abnormalities at school age in 
children born extremely preterm and the relationship to neuro-motor outcome. The 
prevalence of white matter abnormalities was high but there was no relationship to an 
unfavorable outcome. Also, a longitudinal association to neonatal white matter injury 
was seen. While discrete white matter abnormalities were not correlated to 



quantitative measures of white matter volume and white matter integrity, neonatal 
white matter injury was associated with lower volume and integrity at age 8- 11 years. 
Moreover, neonatal white matter injury was associated with lower processing speed at 
12 years.  

The third and final study investigated flexibility and modularity as well as 
lateralization of intrinsic networks in children born extremely preterm at age 8-11 
years. No significant differences in either flexibility or modularity was	seen	for	any	
intrinsic	network after correcting for multiple comparisons. However,	at	the	level	of	
individual	brain	areas,	preterm	children	showed	decreased	flexibility	in	both	the	basal	
ganglia	and	thalamus. Also, children born extremely preterm had a decreased level of 
lateralization in most networks.   
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1 INTRODUCTION 
 

To a large extent the work in this thesis will be presented separately under headlines 
Study I, Study II, Study III. The rationale behind this is the rather separate character of 
the three studies. However, there is a common theme joining them. Or rather, there 
are two combined themes. The first theme is time resolved functional connectivity, the 
second theme is preterm brain development. The first theme is found in Study I & III. 
The second theme is found in Study II & III. Study I describe a novel method for time 
resolved analysis of functional brain network connectivity. In Study III, the method is 
applied to extremely preterm brain development in relation to normal brain 
development at school age. This study therefore is a bridge joining the two themes. 
Study II focuses on the prevalence of white matter alterations in extremely preterm 
born children at school age and any relation to motor development and cognitive 
outcome. It also explores the longitudinal	relationship to neonatal white matter 
alterations and injury. 

 

 

 

2 LITERATURE REVIEW 
 

2.1 THE BOLD SIGNAL 

 

In functional MRI (fMRI) research, the blood-oxygen-level-dependent (BOLD) signal is 
leveraged as a proxy marker for neuronal activity to map the functional organization of 
the brain (Huettel et al., 2009). The BOLD-signal results from the difference in magnetic 
properties of oxygenated and deoxygenated hemoglobin. In gradient echo pulse 
sequences sensitive to T2 weighted contrast, the paramagnetic effect of 
deoxyhemoglobin causes local distortion of the magnetic field which leads to a 
weakening of the signal (Ogawa et al., 1990). According to the neurovascular coupling 
explanatory model on which all fMRI research is based, areas with increased neuronal 
activation are flushed with oxygenated blood (Raichle, 2010). Since the increase in 
oxygen extraction from the capillaries is much smaller than the extra amount made 
available, the fraction of deoxyhemoglobin in the venous portion of the capillary bed 
and venules increases. This in turn results in a local increase in the BOLD signal 
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(Huettel et al., 2009). Even though arteries and arterioles can dilate substantially as a 
response to neuronal activation, the BOLD signal itself mainly reflects the venous side 
since that is where the most marked changes in the proportion of oxygenated and 
deoxyhemoglobin is seen. The response is therefore delayed relative to the 
hemodynamic response function of the arterial side and potentially biased medially 
due to the draining pattern (Hillman, 2014). The exact mechanisms underlying the 
neurovascular coupling are not known (Huettel et al., 2009). However, the evidence for 
a link between the BOLD signal and neuronal activity is	supported	by studies using a 
range of different and	complimentary	approaches. For example, compelling evidence 
comes from optogenetics showing that stimulation of specific neurons resulted in a 
local BOLD-response (Lee et al., 2010). In a study using transcranial magnetic 
stimulation (TMS), a concomitant neuronal and hemodynamic response was seen (Allen 
et al., 2007). Other important studies have focused on correlating the BOLD signal with 
local field potentials (LPFs). LFPs are invasive recordings of the extracellular voltage 
(<500Hz) and is thought to reflect the sum of current generated by synaptic input on 
the dendrites and cell bodies of the neuronal populations in its field of reach (Herreras, 
2016). This means that LFPs do not only reflect the activity originating in close 
proximity to the recording site but also from a distance. Moreover, several factors 
influence the contribution of the different sources such as local geometry, the 
frequencies generated and electrical conductivity of the extracellular medium. The 
timing of the contributions from the different sources cannot be disentangled. LFP 
interpretation is therefore non-trivial and LFPs share the problem of source 
localization with electroencephalography (EEG) / magnetoencephalography (MEG)  
(Herreras, 2016; Lindén et al., 2011). Despite these challenges, clear correlations between 
LPF power time courses and the BOLD signal can be seen (Schölvinck et al., 2010). Also 
studies using EEG and MEG have provided important evidence for the link between 
neuronal activity and the BOLD signal (Baker et al., 2014; Gohel and Biswal, 2015; 
Grooms et al., 2017; Keilholz, 2014). While questions about the exact mechanisms of the 
BOLD signal remain, the statement that the BOLD signal is indeed coupled to neuronal 
activity is uncontroversial. 

 

 

2.2 RESTING STATE FMRI  

 

While the field of task fMRI research has been prolific since the discovery of the BOLD 
signal in the early 1990’s, the field of resting state-fMRI is more recent and has had a 
slow start (Raichle and Mintun, 2006). In task fMRI, a subject is instructed to perform 
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some kind of task which can be purely cognitive or engage the sensory motor system. 
The mean activity is considered as background noise and averaged out from the 
analysis. However, in a study in 1995, researchers noted the presence of slow 
spontaneous fluctuations bilaterally in the motor cortex which showed strong 
temporal correlation without external stimulation (Biswal et al., 1995). Around the same 
time using positron emission tomography (PET), it was seen that brain activity at 
wakeful rest is not random but constrained by intrinsic activity patterns (Raichle, 2010). 
In fact, the extra energy expenditure of cognitive task load compared to intrinsic, or 
resting, activity rarely exceed 5% (Raichle, 2010). Clearly, these experimental results 
confirm the subjective experience of a non-idle brain even when not engaged in a 
specific task. Since then, using fMRI in the task free condition, the presence of distinct 
and highly reproducible patterns of co-activations have been widely corroborated 
(Raichle, 2010). These patterns can be reproduced by simply correlating regional time-
series of a full acquisition which is typically 10 min long. Importantly, areas that tend to 
activate together are believed to work together as a network. Due to the dichotomy 
between task and non-task (aka “rest”) conditions, that is used in neuroimaging 
research , the intrinsic functional networks in the human brain are commonly referred 
to as resting state networks (RSNs) (Smith et al., 2009). Broadly speaking, the RSNs 
encompass primary sensory-motor networks (visual (VIS), somato-motor (SOM)) and 
higher-order association networks (default mode (DMN), fronto-parietal control (FPN), 
dorsal attention (DAN), ventral attention (VAN)) (Thomas Yeo et al., 2011). Alternative 
partitions of the association networks include the salience (SA) network, 
language/auditory network (Lang/Aud), the cingulo-opercular network (CO), central 
executive (CEN) (Menon, 2015). Due to the ease of acquisition and reliability of network 
identification across MR scanner protocols and image data pre- and post-processing 
pipelines, rs-fMRI have become an important non-invasive method to better 
understand functional architecture of the healthy human brain. It has also been used to 
map changes in brain network connectivity due to disease affecting the brain such as 
Alzheimer’s, intractable epilepsy and depression (Fornito et al., 2015)  as well as 
developmental disorders including autism and ADHD. The method has also been used 
to study brain reorganization secondary to acquired brain injury and preterm birth 
(Cao et al., 2016) as well as altered states of consciousness, such as coma, sleep, 
anesthesia (Heine et al., 2012) and psychoactive drugs (Müller et al., 2018). 

While connectivity within and between RSNs (Resting-State Networks) has been shown 
to be altered in a number of health conditions affecting the brain, examples of integration 
of the RSN-methodology into clinical practice to aid diagnosis is scarce (O’Connor and 
Zeffiro, 2019). To date, the clinical use is limited to presurgical planning prior to removal 
of brain tumors and to locate epileptogenic foci (Boerwinkle et al., 2017). The reasons for 
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the lack of clinical applications are many. One important factor is the diversity of pre-
processing protocols and variability in analysis methodology which leads to inconsistent 
results across studies (O’Connor and Zeffiro, 2019). Perhaps the most serious limitation 
for use of rs-fMRI in clinical practice is a lack of robust network measures in individual 
subjects (O’Connor and Zeffiro, 2019).  

 

2.2.1 Developmental perspective 

Using fetal imaging, precursors to RSNs have been identified in fetuses at least as early 
as 21 weeks gestational age (GA) (Jakab et al., 2014). From the end of the second 
trimester up to birth, interhemispheric connectivity and cortical-subcortical 
connectivity increases as a function of gestational age. Connectivity between the 
hemispheres first develops between homotropic midline structures as the callosal 
fibers connect (Thomason et al., 2013). The development then gradually includes more 
lateral regions. The temporal cortices which are separated by most distance are last to 
develop bilateral connectivity (Keunen et al., 2017a). In the first study examining RSNs 
in healthy full term neonates, primary sensorimotor were identified together with 
precursors to the cognitive control networks (Fransson et al., 2007). Subsequent studies 
have largely corroborated these findings.  Primary somato-sensory networks mature 
earlier and show adult like connectivity and topography at birth.  In contrast, higher 
order association networks exist as less well-connected precursors at birth and mature 
later. Interestingly, the most significant part of the maturation process of these 
networks happens already within the first year (Gao et al., 2015). This coincides with a 
period of remarkable psycho-motor development. Functional hubs in healthy neonates 
are mainly found in primary sensory-motor areas, precuneus, cingulate cortex, medial 
prefrontal cortex (mPFC), posterior cingulate cortex(PCC) but also in subcortical-
limbic-paralimbic regions (De Asis-Cruz et al., 2015; Fransson et al., 2011; Gao et al., 
2011). The newly born brain already exhibit a small world topology, i.e. short average 
path lengths (resembling a random network) and high clustering coefficient 
(resembling a grid network) (Fransson et al., 2011). After one year, anti-correlation 
between DMN and DAN are present and becomes more apparent by 2 years (Gao et al., 
2013). With development local short range connectivity decrease (networks become 
more locally focused/specialized) and long-range connections increase (networks 
become more integrated). Segregation between networks increase with age (Fair et al., 
2009; Gao et al., 2015). 
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2.2.2 Effect of prematurity on functional brain network development 

The presence of primary RSNs have been demonstrated in premature born babies as 
early as 26 weeks GA (Smyser et al., 2010).  The DMN together with some other higher 
order RSNs has been identified at 30 weeks GA (Doria et al., 2010). While the functional 
network topology largely seem to be preserved in preterm born babies at term 
equivalent age (TEA) (Fransson et al., 2011), connectivity is generally stronger in the 
term population with the exception for the visual network with show stronger 
connectivity in the preterm group  (Bouyssi-Kobar et al., 2019; Eyre et al., 2021a; Smyser 
et al., 2010; Van Den Heuvel et al., 2015). When compared at TEA, preterm born children 
have weaker long-range connectivity and spatially smaller networks (fewer voxels 
with strong connections) compared to controls. Perhaps the most salient finding is 
altered functional connectivity between cortex and the thalamus and basal ganglia in 
preterm neonates (Ball et al., 2016; Cai et al., 2017; Smyser et al., 2010; Toulmin et al., 
2015).  For example, in a study applying a vector based classification approach, half of 
the network edges that had discriminatory power between term and preterm subject 
were connections between the cortex and basal ganglia (Ball et al., 2016). Another study 
found that strength in connectivity between the medial sensorimotor cortex and 
thalamus at TEA in preterm infants predicted motor outcome at 2 years (Toulmin et al., 
2021).  Alterations in cortical-subcortical connectivity is in line with the timing of 
preterm birth and the establishment of cortical-subcortical connectivity (Kostović and 
Jovanov-Milošević, 2006). 

 

 

2.3 THE BRAIN AS A NETWORK 

 

Important advances in the understanding of the brain have come from viewing the 
brain as a network. In any science involving networks, be it a brain or some other 
complex system, a fundamental aim is to find meaningful structure in order to 
understand the fundamental properties of organization and information flow. Graph 
theory is the branch of mathematics that is dedicated to characterizes and understand 
network properties. The fundamental building blocks of a network are the nodes and 
the connections between them, i.e. the edges (Bullmore and Sporns, 2009). Network 
measures can be global (characterizes the network as a whole) or local (characteristics 
of a single node or sets of nodes). Perhaps the most basic measure of connectivity 
within a network is the concept of degree. Degree simply means the number of edges 
associated with a node, i.e. how many direct connections it has with other nodes. 
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Other commonly used measures are betweenness (the proportion of shortest paths 
that includes the node) and closeness (short path length to a large subset of other 
nodes gives rise to high closeness score) (van den Heuvel and Sporns, 2013). These are 
all measures of centrality that quantifies how important nodes are in the central 
information flow in the brain. High centrality scores generally implies that the node is 
important in the global communication within the network. Brain areas that score high 
on centrality measures, either an isolated measure such as degree or a combination of 
measures, are often referred to as hubs (Hagmann et al., 2008). Hubs are central to 
integrating information from segregated regions. However, in a scenario where 
information flow is decentralized, hubs can in effect contribute to information detours 
leading to less effective communication (Avena-Koenigsberger et al., 2018). The 
clustering coefficient is another important measure. It quantifies the degree to which 
the nodes that are connected to a specific node are also directly connected to each 
other. A high clustering coefficient are seen within communities. A community is a set 
of nodes that are highly interconnected while they share relatively few edges, i.e. 
connections, with the rest of the network. Communities are also referred to as 
modules. It has repeatedly been shown that the brain at rest, in contrast to a random 
network, has a core organization that is highly modular (Sporns and Betzel, 2016). In 
the functional connectome these modules correspond to the RSNs. Within the network 
theoretical framework, the functionality of nodes is in essence a consequence of how 
they are connected (Avena-Koenigsberger et al., 2018). In this perspective, nodes gain 
their importance from being part of a larger highly interdependent context. 
Importantly, information flow in the brain seems to take place through the dynamics of 
multiple parallel pathways. In contrast to connectionism, the new field of network 
neuroscience stresses that the computations believed to take place in the brain are 
inherently linked to the topology of the network. In this context, computation mean 
some level of signal transformation (Avena-Koenigsberger et al., 2015). The modes of 
communications within the brain is likely heterogenous possibly spanning the full 
spectrum from diffusion to routing  (Avena-Koenigsberger et al., 2018). 

 

2.4 THE FLEXIBLE BRAIN 

 

Importantly, the brain is not a static entity. The brain is a highly nested systems that 
simultaneously functions on multiple time scales spanning from milliseconds to years 
and spatial scales ranging from sub molecular level to the macroscopic systems level 
(Buzsaki, 2006).   
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From the perspective of a dynamical system, the brain is modeled as a set of highly 
coupled ensembles which interactions are commonly described by a set of non-linear 
equations.  Central to this view is the whole brain perspective where information 
transfer is propagated through phase synchronization.  Due to the complexity and 
non-linearity of the dynamical models, downstream effects to perturbations of the 
systems can be hard to predict (Deco and Kringelbach, 2016).  Synchrony or near 
synchrony corresponds to connectivity in the graph theoretical models.  However, it 
also provides a mechanistic account where phase coupling is a mode of information 
transfer within and across levels in the system. Importantly, the phase coupling does 
have to be perfect in-phase synchrony to integrate information flow  (Deco and 
Kringelbach, 2016; Fries, 2005). Moreover, metastability provides an additional principle 
for the global ebb and flow of phase synchronization seen in the brain. It means that a 
system is not in equilibrium and moves between of quasi attractors representative of 
specific states. In a metastable framework, the duration of coupling between any two 
ensembles is linked to the strength of the coupling such that stronger phase coupling 
leads to longer duration of synchronization (Tognoli and Kelso, 2014). 

In  both the context of network theory and dynamical systems, intrinsic brain 
organization has been seen to shift between states of segregation (high modularity) 
and more integrated states (Ponce-Alvarez et al., 2015; Sporns, 2013). Also, functional 
organization adapts to shifting task demands. Tasks can either further emphasize the 
segregation seen at rest or promote network integration (Cohen and D’Esposito, 2016).  
While this includes a certain degree of network reorganization, task engagement does 
not induce a complete reorganization of the intrinsic functional structure at rest but 
rather modulates it (Cole et al., 2014). To understand both intrinsic fluctuations 
inherent to the brain at rest as well as the extent of reorganization to resolve specific 
cognitive sensorimotor tasks, measures that track connectivity in a time resolved 
fashion are necessary.  

 

2.4.1 Measures of time resolved connectivity 

For the first step, i.e. the measure of time resolved connectivity itself, the level of 
granularity is bounded by the time resolution of the acquisition. The most commonly 
used method to get a  measure of time varying connectivity is the sliding window 
approach that exists in many variations (Allen et al., 2014; Lurie et al., 2020). Most often, 
the basic measure in this approach is Pearson’s correlation. Instead of correlating 
entire time series, correlation is done over shorter segments. The window is then 
moved, usually by one time point at a time, such that it partly overlaps with the 
previous window to calculate the correlation for the next time point. The windowed 
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correlations are summarized in a functional connectivity (FC) matrix representing each 
time point.  The sliding window correlation approach has worked very well to show 
that connectivity between pairwise networks and areas indeed change with time  
(Allen et al., 2014; Zalesky et al., 2014). Importantly, not all pairwise relationships show 
equal levels of fluctuations in connectivity. The most dynamic relationships seem to be 
connections between the canonical RSNs while connections within RSNs are typically 
exhibit less time variation (Zalesky et al., 2014). This also means that homologous areas 
show the least degree of variability in connectivity over time (Gonzalez-Castillo et al., 
2012). One of the main critiques of sliding window approach is that it entails a choice of 
window length. If a too short window consisting only a handful of time points is used, 
the correlation or covariance measures will not be robust from a statistical 
perspective. In contrast, if the window is too long, meaningful variability will be lost. 
Common window lengths in the literature span 30-60s  (Hutchison et al., 2013). With the 
windowed approach there is also a risk of aliasing of frequencies (high and low) that do 
not fall within the window.  One of the first measures employed to show time varying 
connectivity in BOLD data is the use of  time-frequency coherence analysis in the form 
of the wavelet transform (Chang and Glover, 2010). With time-frequency analysis, the 
one-dimensional time-series (frequency domain) is broken down into a two-
dimensional time-frequency map. An important advantage of time-frequency analysis 
is it can be used on time series with non-stationary power including a wide range of 
frequencies (Torrence and Compo, 1998).  Like the windowed correlation approach, 
time-frequency analysis is done over snippets of time series. The wavelet transform 
has also been used to identify changing community structure across time (Bassett et 
al., 2011). In contrast, in the multivariate co-activation patterns (CAP) approach each 
volume is analyzed separately  (Liu et al., 2018; Liu and Duyn, 2013). Initially the method 
was based on seed regions analysis but was subsequently developed into a whole brain 
data driven approach. In the data driven approach the spatial correlations maps of 
each volume and each participant were vectorized. K-means clustering was applied on 
the vectors to maximize correlation between vectors within the same group and 
minimize it between vectors of separate groups. Each cluster group was then average 
and normalized resulting in a CAP. Occurrence rate (how frequently a CAP occurred), 
similarity (how similar the volumes contribution to a cap were) and polarity (if the CAP 
was dominated by positive or negative correlations)(Liu et al., 2013). When comparing 
the CAPs to temporal functional modes (TMFs)(Smith et al., 2012), a method based on 
spatial ICA followed by temporal ICA,  only a few of the spatial maps showed similar 
spatial distributions.  Instantaneous phase synchrony analysis (IPSA) is another 
method for time resolved analysis that is less frequently used but is gaining more 
attention recently (Cabral et al., 2017b; Glerean et al., 2012a; Ponce-Alvarez et al., 2015). 
In IPSA, the instantaneous phase of a signal is leveraged using the Hilbert transform 
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(See section 4.1.4 for details). By taking the cosine of the instantaneous phase between 
two signals, a measure of phase coherence spanning the range [-1,1] is gained where 1 is 
perfect in phase coherence and -1 is perfect anti-phase coherence. The range of the 
measure is therefore the same as for for Pearson’s r correlation.  An important 
advantage of IPSA is that instantaneous frequency is not sensitive to amplitude 
fluctuations in the signal.  This can be important since it increased levels of drowsiness 
has been shown to increase amplitudes an might in certain circumstances induce false 
positive correlations (Hutchison et al., 2013). The methods mentioned here are far from 
an exhaustive list. Additional methods exists and the numbers are growing as outlined 
in several excellent review articles (Hutchison et al., 2013; Keilholz et al., 2017; Lurie et 
al., 2020; Preti et al., 2017) 

Among the methods mentioned above, IPSA and CAP are truly time resolved in that 
they treat each volume separately while sliding window and time frequency analysis 
relay on several time points to derive a time resolved estimate. However, it is not only 
the time resolved measure itself that matter in the analysis.  The combined set of 
methodological choices are of importance. Temporal ordering is a central aspect. IPSA, 
sliding-window and time-frequency analysis all respect the temporal order while the 
CAP method does not. However, when clustering is applied to summarize FC matrixes 
into representative patterns such as FC states (Cabral et al., 2017b; “Tracking whole-
brain connectivity dynamics in the resting state,” 2014), the temporal order is ignored 
in the sense that non-continuous time points are clustered together. An important 
drawback with clustering is therefore a loss of time point to time-point resolution. 
Community detection has been used as an alternative approaches to identify time 
resolved network structure (Bassett et al., 2011).   

 

2.5 PRETERM BIRTH AND BRAIN DEVELOPMENT 

 

An estimated 15 million babies are born prematurely (< 37 + 0 weeks GA) in the world 
each year (WHO, 2012). Among these, the most premature are those born < 28 + 0 weeks 
GA, also called extremely premature (EPT).  Sweden belongs to the countries with the 
lowest incidence of preterm birth. Still, approximately 340 children in Sweden each 
year are born EPT. The majority of the Swedish born EPT neonates now survive 
beyond the first year while the prognosis is much grimmer for those born in low and 
middle income countries (Norman et al., 2019; WHO, 2012). It is well established that 
extremely preterm (EPT) neonates are at increased risk for adverse 
neurodevelopmental outcomes. This includes impaired motor function, cognitive and 
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attention deficits, anxiety, depression and autism with negative impact on school 
performance and life quality (Brydges et al., 2018; Gire et al., 2019; Johnson and Marlow, 
2011; Serenius et al., 2016). Even in the absence of overt brain injury, medical 
complications and environmental stressors in the NICU have a negative impact on the 
very immature brain (Joseph J. Volpe, 2009). 

The brain, like the rest of the body, develops according to a sophisticated and 
sequential program which takes the form of self-assembly where each step is a 
response to local ques (Hiesinger, 2021). However, in contrast to most other organs 
which have established their core architecture already during the first trimester, the 
intricate architecture of the brain continues to develop in the third trimester (Kostović 
and Jovanov-Milošević, 2006). In fact, EPT babies are born during a period when the 
brain is in a very rapid and sensitive phase of development. At 22 weeks GA the brain 
weighs only on average 75g which is less than a fifth of the weight of a term born baby 
brain (Guihard-Costa and Larrocheb, 1990). Only the lateral and sagittal sulci are 
present (Raybaud et al., 2013). The intricate cortical folding process which coincides 
with synaptogenesis and is the result of a combination of genetic, cellular and 
mechanic factors has not yet started (Llinares-Benadero and Borrell, 2019).  At this time 
most pyramidal neurons have migrated to the cortex but interneurons originating in 
the germinal matrix are still migrating. The sub plate that emerged at 10 weeks is 
several orders thicker than the cortex and act as a waiting station for incoming sensory 
projections from thalamus which are the first to enter the subplate (Joseph J Volpe, 
2009). They are followed by callosal fibers and lastly projections from other 
interhemispheric cortical regions (Kostović and Judas, 2010; Rados et al., 2006). Cortico-
thalamic connectivity starts in the sensory-motor regions at approximately 22 weeks 
and is directly followed by formation of primary sulci in the same region. The sulci-
gyrification progresses happens simultaneously as the establishment of tangential 
cortical expansion which has been proposed to be tightly linked (Llinares-Benadero 
and Borrell, 2019; Raybaud et al., 2013).   The vasculature is also still developing in the 
preterm brain. It is sparse and lack autoregulation. This leaves the extremely preterm 
brain very vulnerable to blood pressure changes that can lead to hemorrhages notably 
in the germinal matrix which can lead to disruption in the competition of migration of 
interneurons. Blood pressure changes can also cause under perfusion resulting in 
diffuse hypoxia-ischemia. The oligodendroglia precursors are among the most exposed 
and vulnerable to hypoxia, especially at the watershed areas next to the ventricles 
(Raybaud et al., 2013; Joseph J Volpe, 2009). The oligodendrocytes will later be 
responsible for axonal myelination. Varying degrees of injury to the white matter is 
therefore commonly seen in EPT neonates. They range from mild white matter 
alterations (WMA) to severe forms of white matter injury (WMI) in the form of cystic 
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periventricular leukomalacia (PVL) (Joseph J Volpe, 2009). Due to improvements in 
neonatal care during the last decades, milder forms of WMA/WMI are now dominating 
and severe forms are becoming increasingly rare.  However, also milder forms of 
injury to the white matter can also have important negative consequences. Secondary 
widespread trophic and maturational alterations affecting axonal and neuronal growth 
in cortex, cerebellum, subcortical nuclei and brainstem has more recently been 
identified. Together these dysmaturational changes are called  encephalopathy of 
prematurity (Joseph J Volpe, 2009). At term equivalent age, very preterm born children 
show cortical alterations most pronounced in the temporal lobe, insula and pre- and 
postcentral sulci (Engelhardt et al., 2015). Widespread gray and with matter volume 
alterations (mostly reductions) remains into adulthood (Nosarti, 2002).         

 

2.5.1 Brain development beyond the neonatal period 

During the first years of life the brain continues to grow and develop in a remarkable 
way. It is during this time it is at its highest levels of plasticity which enables the baby 
to begin the journey to acquire language and social skill and develop its motor 
capabilities (Gao et al., 2017).  During the first year the subplate disappears completely 
and by the end of the first year the brain has doubled in volume. The majority of the 
volume increase during this time is due to synapse and dendritic growth in the gray 
matter and growth of the cerebellum (Knickmeyer et al., 2008) . During the second year, 
brain volume increases another 15%.  At 6 years, the brain has reached >90% of its 
adult size. Postnatally synaptic density rapidly increases to reach its maximum level 
around 2 years where it is 50% larger than in the adult brain (Lenroot and Giedd, 2006). 
The pruning of synaptic connection is region specific according to the same gradient 
that seems to be true for many other maturing events in the brain i.e. primary 
sensory-motor regions mature before association cortices. Synaptic density hence 
reaches its maximum in the primary visual cortex at 4 months of age but not until 4 
years in prefrontal cortex (Lenroot and Giedd, 2006).  Myelination is complete by 2 
years but continues in practice to mature and develop well beyond adolescence into 
the mid-twenties and possibly beyond (Barkovich et al., 1988).  Glial progenitor cells 
continue to migrate, proliferate and differentiate in the preschool years. Even though 
the majority of programmed neuronal cell death takes place before birth it continues 
until the 2nd year (Lenroot and Giedd, 2006). Cortical thickness steadily declines from 2 
years to adulthood while cortical surface area shows a peak around 10-12 years. 
However, variability in cortical surface area between individuals at any given age is 
larger than the variability over development (Brown, 2017). This is true for many other 
measures of the brain including total volume (Brown et al., 2012; Brown and Jernigan, 
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2012). A multicenter cross-sectional study of 885 children aged 3-20 combined measures 
from T1-, T2- and diffusion weighted MRI sequences into a model that was able to 
explained 92% of the variance in age. Mean prediction error was 1 year. Taken 
together, despite large variability between individual children there seem to be a 
strong general multimodal pattern of chronological structural brain maturation 
(Brown, 2017; Brown et al., 2012).  
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3 RESEARCH AIMS 
 

3.1 STUDY I 

The general aim of the first study was to gain a better understanding of time resolved 
network dynamics in the brain using BOLD fMRI data. This meant developing a novel 
method with the capacity to capture the gradual processes of functional network 
integration and segregation in the brain on a time point to time point basis respecting 
the temporal ordering. This involves formation and subsequent disintegration of 
transient networks reflecting the flexible aspect of intrinsic connectivity. The project 
was motivated by a lack of methods that use the full granularity of the time series and 
also respects the temporal ordering in order to track connectivity changes on a time 
point to time point basis, allowing for network definitions to change dynamically 
(Hutchison et al., 2013; Lurie et al., 2020). 

The intention was subsequently to use the method to answer specific questions 
pertaining to the functional brain development in children born extremely preterm. A 
secondary aim was to provide a novel tool that could be applied broadly both in 
clinical and basic fMRI-based neuroscience.  

 

3.2 STUDY II 

The second study aimed to investigate the prevalence of subtle macroscopic white 
matter alterations in children born extremely preterm and its potential relationship to 
neurocognitive and motor outcomes at 12 years as well as to quantitative measures 
indicative of white matter injury. Macroscopic means that the alterations could be 
identified based on visual inspection. Consensus classification systems for white 
matter injuries and alterations exist in the literature for the neonatal period but not 
beyond (Woodward et al., 2006). Since mild white matter alterations (WMA) and injury 
are common in extremely preterm neonates, we hypothesized that discrete alterations 
would be common at 8-11 years. We defined a new lowest level of WMA based on visual 
inspection of the shape of the lateral ventricles in the absence of signs other of injury. 
We hypothesized that discrete WMA, if present, would be related to reduction in global 
FA and white matter volume. We also hypothesized that there would be a longitudinal 
association between a diagnosis of any grade of WMI in the neonatal period and signs 
of WMA/WMI at 8-11 years. The clinical relevance of a finding of discrete WMA was 
evaluated in relation to cognitive and motor performance at 12 years. 
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3.3 STUDY III 

In the third study the aim was to apply the method developed in Study I to explore 
changes in brain network flexibility and modularity as a result of extremely preterm 
birth. We hypothesized to see a global reduction in RSN flexibility and increase in 
modularity at twelve years. For this purpose, novel measures of RSN flexibility and 
modularity were introduced. A secondary aim was to investigate the degree of time 
resolved intrinsic network lateralization. This poorly investigated in the literature and 
its potential role in development is unknown. Given the strong connectivity between 
homotropic areas in the two hemispheres, deviations in the level of uncoupling could 
potentially be meaningful. Homotropic	bilateral connectivity is established early in 
development and seen in fetal imaging and the preterm neonates (Keunen et al., 2017b).	
Since	time	resolved	lateralization	has	been	so	sparsely	studied	(if	at	all), this 
investigation was exploratory and not associated with a specific hypothesis. 
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4 MATERIALS AND METHODS 
 

4.1 STUDY I 

 

4.1.1 Participants 

From a cohort of 100 young adults from the Human Connectome Project (HCP) 

(www.humanconnectome.org/study/hcp-young-adult), sixty-one subjects that had low 
motion scores on both the left-right (LR) and right-left (RL) resting state scans were 
included. The definition of low motion was a maximum peak in FDRMS (framewise 
displacement root mean square) time series < 1 mm combined with a mean FDRMS < 
0.1 mm. Since this was openly available data no additional ethical clearance was 
necessary beyond what had been obtained by the HCP prior to data acquisition. 

 

4.1.2 Resting state fMRI acquisition and parcellation. 

The preprocessed LR resting state acquisition was used for analysis. No additional 
preprocessing was conducted. The standard time repetition (TR) in many resting state 
studies is 2 second. This means that a BOLD contrast image is acquired every other 
second. However, the HCP data is acquired using a faster protocol which results in an 
images every 0.72 seconds. Since each images equals a time point in a time series the 
faster acquisition results in more densely sampled time series. 

Static parcellations scheme are commonly used in rs-fMRI studies. A number of 
different options exist as well as levels of granularity ranging from less than 100 parcels 
to over 1000. The scope of the parcellations can be limited to the cortex or include 
subcortical regions and/or cerebellum as well. Some are volume based while others 
are based on cortical surface. Another important difference is whether the parcellation 
sorts regions into RSN or not (Lawrence et al., 2021; Schaefer et al., 2018). Common for 
all parcellations is that they entail dimensionality reduction. With the use of a 
parcellation, only a few hundred time series are analyzed instead tens of thousands of 
voxel time-series.  This is important not least since the temporal resolution in most 
cases consist of much fewer time points ranging from a few hundred to little over a 
thousand. This mismatch in spatial and temporal resolution would lead to a rank 
deficient matrix. With the use of a parcellation this problem is resolved. It also makes 
sense to use a parcellation since there is an inherent covariation between many voxels 
in the brain which is reflected in the parcellations.   Here we used the version of the 



 

20 

Schaefer parcellation which  divides the cortex into two hundred distinct areas 
grouped by 7 canonical RSNs (Schaefer et al., 2018). Since the cortex is highly integrated 
with the subcortical nuclei, we used the subcortical portion of a different parcellation 
to in order to include the thalamus, basal ganglia, amygdala and hippocampi (Fan et al., 
2016a). Therefore, a total of 9 RSNs were include in the combined parcellation. 

 

4.1.3 EMD - Empirical mode decomposition 

Band pass filtering is commonly used to limit the frequencies of interest in rs-fMRI 
studies. One of the main motives is to exclude higher frequency ranges contaminated 
by aliasing from heart rate and respiration.  Another motivation might be that one 
sometimes has a hypothesis about a specific frequency range as being more tightly 
coupled to neuronal activity than others. Regardless of the motivation, with band pass 
filtering a choice has to be made of what frequency range to focus on. If phase 
synchrony analysis is used, the band pass filtering must be narrow enough to eliminate 
riding waves which leads to contradictory instantaneous phase information. However, 
a narrow filter also smooths the amplitude fluctuations in the signal. Since amplitude 
fluctuations likely have a biological significance, this is suboptimal. An alternative that 
was used in this study is the empirical mode decomposition (EMD) (Huang et al., 1998). 
The EMD is a heuristic sifting algorithm. This means that it breaks down a signal into a 
finite set of oscillatory components. These are called intrinsic mode functions (IMF). 
The first IMF always contains the highest frequencies. Subsequent IMFs contain 
increasingly lower frequency ranges. The number of IMFs resulting from the sifting 
process is dependent on the frequency range of the signal: a wider frequency range 
will produce more IMFs. When applied to fMRI data, it has been shown that IMFs 
produce similar results as the corresponding band pass filtered signals when used in 
analysis of specific RSNs (Niazy et al., 2011). In contrast to band pass filtering, the IMFs 
contain more variability in amplitude fluctuations. 

 

4.1.4 IPSA – Instantaneous phase synchrony analysis 

Instantaneous phase synchrony analysis (IPSA) has been widely used in the analysis of 
electrophysiological data (Yoshinaga et al., 2020). More recently it has also been applied 
to rs-fMRI data (Cabral et al., 2017a; Glerean et al., 2012b; Ponce-Alvarez et al., 2015).  
With IPSA, phase coherence is used as a measure of the functional relationships 
between regions in the brain. In contrast to measures that rely on using a window of 
time points to estimate a time resolved measure (Allen et al., 2014), instantaneous 
phase is measured directly at each time point. IPSA therefor provides a solid basis for 
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time point to time point analysis. The instantaneous phase of a signal is harnessed 
through the Hilbert transformation which transforms the real signal s to is analytical 
form. Expressed in polar coordinates:  

𝑠(𝑡) = 𝐴(𝑡) 	× 	𝑒!"($) 

where t = time, A = instantaneous amplitude (envelope), 𝜙 = instantaneous phase.  

Using IPSA, at each time point t, the phase coherence matrix (dPC) that reflects the 
functional relationship between all areas in the parcellation can be calculated. If N are 
all areas in the parcellation and 𝑛,𝑚	 ∈ 𝑁, then the phase coherence between n and m 
at time point t is calculated as: 

𝑑𝑃𝐶$,',( = 𝑐𝑜𝑠5∆𝜙$,',(7  .  

Therefore, phase coherence as calculated above range from 1 (perfect in-phase) to -1 
(prefect anti-phase). 

	

4.1.5 Community detection 

Many methods exist to find patterns in complex data where there is no a priori 
knowledge of the inherent structure, if any. In graph theory, modularity maximization 
is a common approach to finding community structure in networks (Newman, 2006). 
Modularity is a measure of the density of the connections within and between sets of 
nodes in relation to what is expected by chance. High modularity scores mean a more 
modular organization, i.e clearly separable groups of (nonoverlapping) nodes with a 
large number of connections between themselves and relatively few connections with 
other groups can be identified.  The Louvain algorithm is one of the most commonly 
used algorithms for community detection (Blondel et al., 2008). It was used to find time 
resolved community structure in the dPC matrix. It was chosen since it accepts both 
positive and negative entries which is necessary in order to capture both the negative 
and positive phase coherence relationships in the dPC matrix.  

 

4.1.6 qint – a novel measure of temporal coupling strength  

Finding community structure in the dPC matrix resulted in that each area was assigned 
to a community at each time point. Based on the range and distribution of the dPC 
values it was hypothesized that same community assignment would equal positive 
phase coherence between areas. Separate community assignment would in the same 
way imply a negative of orthogonal phase coherence. Moreover, frequent assignment 
to the same community would therefore translate as strong phase coherence across 
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time. With these considerations, the qint measure was defined as the relative number of 
time points of same community assignment in comparison to the total duration of the 
resting-state fMRI experiment. A high value of qint would therefore mean strong phase 
coherence.  

 

4.1.7 Modeling time resolved networks 

Time resolved changes in connectivity were modeled using dynamically defined 
networks. This meant that the topology of a given network would be allowed to change 
across time within some spatial limits. In time-resolved analysis, flexible remodeling is 
contrasted to the main modular tendencies of static network analysis. Flexibility is 
harder to capture and hence less explored than modularity.  

With the qint measure as a basis, the strength of functional relationships beyond the 
pair wise level was calculated. The dynamic representation of subnetworks (SNs) was 
created through combination of smaller units, i.e. subnetwork components (SNC). The 
SNCs consisted of unique combination of eight areas with their own time course.  They 
were derived in an iterative fashion from seeds of pairwise areas. The seed were the 
each of the areas in the parcellation together with the area with which it was most 
frequently integrated. Given the size of the parcellation and the approximation of the 
probability distributions of sets of areas from n = 4 to n = 12, the SNC size was set to n = 
8. SNCs where then grouped into SNs. It was done such that the SNCs belonging to the 
same SN were guaranteed to be assigned to the same community at times of 
integration.  Finally, to represent the general trend of SN integration and segregation, 
SNs with a strong tendency to integrate were collectively represented as a meta-
network (MN). The MNs were derived using a thresholded hierarchical clustering 
approach. 

 

4.1.8 Flexibility and modularity 

The approach taken in this study was to build flexible subnetworks using combinations 
of smaller components. This also allowed for a novel way to estimate flexibility and 
modularity of individual brain areas. Flexibility and modularity were defined by 
combining information on temporal representation and spatial diversity. Temporal 
representation was defined as the relative frequency that an area was represented as 
part of at least one SNC. Spatial diversity was defined as the proportion of total areas 
that an area shared an SNC with. An area with low temporal representation but high 
spatial diversity would be classified as high in flexibility. In contrast, an area with high 
temporal representation but low spatial diversity would be classified as modular. The 
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reasoning behind these definitions is that areas that are characterized as high in 
modularity tend to frequent integrate with the same set of areas. Flexible areas instead 
integrate during short time spans with a large set of other areas. The large number of 
SNCs that the participate in are therefore not always represented by the model leading 
to lower temporal representation. 

 

4.1.9 Statistical analysis 

For statistical analysis, two-sided permutation t-test were used in most instances. The 
resulting p values where, when appropriate, corrected for multiple comparison using 
false discovery rate (FDR). Pearson’s correlation and a Mantel test was also used to 
compare matrices.  

 

4.1.10 Software and computational resources 

All code was written in MATLAB. Some imaging rendering was done using python. For 
large computations resources at KI as well as Uppsala Multidisciplinary Center for 
Advanced Computational Science (UPPMAX) were used.  The	resources	at	UPPMAX	are	
provided by Swedish National Infrastructure for Computing (SNIC) and partially funded 
by the Swedish Research Council through grant agreement no. 2018-05973.	

 

 

4.2 STUDY II 

 

4.2.1 Ethical consideration 

The local ethics board at the county council of Stockholm approved the study.  

4.2.2 Participants and MRI acquisition 

The study was part of a regional arm (Stockholm County) of a national longitudinal 
follow up study of children born EPT, the Extremely Preterm Infants in Sweden Study 
(EXPRESS). In total 68 children born < 27 weeks gestation participated as well as 45 
term born controls matched for residential area, sex and date of birth. In total 112 
children (median age 10.3 years, 56 girls) participated. All children were born in 
Stockholm, Sweden, between 1 January 2004 and 31 March 2007. Children with cerebral 
palsy, aneuploidy, acquired brain damaged after the neonatal period and those with a 
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ventriculoperitoneal shunt were excluded from the study. The control group was 
included in order to estimate the specificity of the performance of the visual inspection 
method since they were not expected to have white matter injury. 

MRI of the brain at age 8-11 years was performed without sedation and in the presence 
of a parent.  All children were scanned at MR-Centrum Karolinska University Hospital 
using a Sigma 3.0-T MR scanner (GE Healthcare, Wisconsin, USA). The neonatal scans (a 
subset of the preterm children only) were done at Karolinska university hospital 
pediatric radiology department using a Philips Intera 1.5-T MRI system (Philips 
International, Amsterdam, The Netherlands). Anatomical scans and DTI sequences 
were acquired at both time points. 

 

4.2.3 Diffusion tensor imaging - DTI 

The integrity of white matter in the brain can be assessed using diffusion tension 
imaging (DTI). DTI take advantage of the speed and directionality of water diffusion in 
white matter to assess its integrity. Different measures of diffusivity exist where 
fractional anisotropy (FA) is the most common (O´Donnell and Westin, 2011). High FA 
indicates that diffusion is restricted in mainly one direction which is a sign high 
integrity of the white matter. The use of DTI ranges from simple voxel-vise analyses of 
FA to advanced reconstruction of white matter tracts i.e. tractography (Jeurissen et al., 
2019). A common way to analyze DTI data is tract-based spatial statistics (TBSS) (Bach 
et al., 2014). It is a voxel-based method that uses the FA map in order to reconstruct 
major white matter tracts. Compared to the more advanced tractography methods, 
tract-based spatial statistics is not able to discern the orientation of the fibers which is 
particularly problematic at points of fiber crossings. 

	

4.2.4 Neuroradiological assessment of discrete WMA 

Standardized scoring of PVL and WMA/WMI exist for the neonatal period but not for 
older children (Woodward et al., 2006). For the assessment of discrete WMA at age 8-11 
years, a modified scoring based on previously published data was used (Flodmark et 
al., 1989; Imamura et al., 2013) . In addition, a new lowest level of WMA was introduced 
based on the shape of the shape of the lateral ventricles.  A squared form of the 
trigonum of the lateral ventricles was classified as discrete WMA if no other 
abnormalities were present. It was hypothesized that it would potentially reflect a 
minimal focal loss of white matter in the peri-trigonum following ischemic insults in 
the neonatal period. The scoring of WMA/WMI at 8-11 years therefore was: grade I, 
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discrete WMA, i.e. squared margins of the lateral wall of the ventricles; grade II, 
periventricular signal changes; grade III, periventricular signal changes plus volume 
loss; grade IV, cysts, extensive changes. A majority of the EPT children had neonatal 
scans (61/68).  The standardized neonatal WMI scoring is based on five parameters: WM 
signal abnormality, reduction in WM volume, cysts, ventriculomegaly (Woodward et al., 
2006). 

	

4.2.5 Cognitive and motor tests 

Cognitive and motor function was assessed at 12 years. The Weschler Intelligence Scale 
for Children (Fifth Edition) was used for cognitive testing. It encompasses five primary 
index scores: verbal comprehension, visual spatial, fluid reasoning, working memory, 
processing speed. Combined, they provide a full-scale intelligence index (mean = 100, SD 
= 15). Movement Assessment Battery for Children – Second Edition. (MABC-2), was used 
for the assessment of motor function. MABC assesses gross and fine motor function 
using three scales: manual dexterity, ball skills and balance. Total test score and 
percentiles are given for each scale. Test scores at or below the 5th percentile indicates 
abnormal motor function, scores between the 5th and the 15th percentile indicate 
borderline motor problems.  

 

4.2.6 Statistical analysis 

Statistical analyses were preformed using SPSS and MATLAB.  

 

 

 

4.3 STUDY III 

 

4.3.1 Ethical considerations 

As for study II, this study was approved by the local ethics board at the county council 
of Stockholm.  
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4.3.2 Participants  

The subjects in this study were drawn from the same cohort as Study II. Head motion is 
a serious confound in fMRI and particular rs-fMRI studies (Power et al., 2012).  Therefore, 
the criteria for inclusion in this study was based on strict criteria for head-motion which 
was the same as were used in Study I. Different measures of head motion exists. Here, 
the FDRMS (framewise displacement root mean square) was used. Children with 
otherwise high-quality scans and a maximum peak in FDRMS time series < 1 mm and a 
mean FDRMS < 0.1 mm were included in the study. In total 41 children were included of 
which 20 were born EPT and 21 were controls. For comparison, in the young adult HCP 
study, 61 out of 100 subjects met the same criteria. Mean GA at birth for the EPT born 
children was 25 w + 6 d (SD = 6 d, range [23 w + 6 d, 26 w + 6 d]) and 40 w + 0 d (SD = 8 d, 
range [37 w + 3 d, 41 w + 5 d]) for the control group.  

 

4.3.3 Data and removal of noise 

The rs-fMRI sequence was acquired with a TR = 2 s during 10 min resulting in 300 
volumes. Most image preprocessing was done using the FMRIB Software Library (FSL) 
v 5.0.9 (Jenkinson et al., 2012). Details of the pre-processing and acquisition are 
available in the manuscript. To clean the data from additional noise, independent 
component decomposition (ICA) using FSL MELODIC 3.0 was utilized. Automatic 
algorithms such as AROMA and FIX exists for this purpose (Pruim et al., 2015; Salimi-
Khorshidi et al., 2014) . However, after trying AROMA with unsatisfying results, manual 
removal was done. Noise components (scanner related and head motion) were 
identified based on published data (Griffanti et al., 2017). The cleaning process was 
conducted in an iterative fashion (3-4 times). The classification decision was reviewed 
once after initial assessment. Mean FDRMS prior to removal of noise components was 
0.061mm (SD = 0.025 mm) and 0.013 mm (SD = 0.003 mm) after. Hence, this cleaning 
strategy seems to be highly efficient in removing noise from the data compared to 
other ICA-based cleaning strategies (Dipasquale et al., 2017). 

 

4.3.4 Parcellation 

The same parcellation was used as in Study I, that is the Schaefer 200 areas 7 RSN 
parcellation together with the subcortical portion of the Brainnetome atlas (Fan et al., 
2016b; Schaefer et al., 2018). This yielded a total of 9 RSNs, where the thalamus and basal 
ganglia were additional network partitions added to the 7 cortical RSNs in the Schaefer 
7 parcellation. In the same way as for Study I, amygdala and hippocampal areas were 
grouped with the limbic network. 
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4.3.5 Flexible vs modular RSNs in the time resolved domain 

The method developed in Study I was used to understand the long-term development 
of flexibility and modularity of functional brain networks in children born extremely 
preterm. However, a slightly different approach was taken in that subnetworks (SNs) 
and meta-networks were not calculated. Instead, subnetworks components (SNCs) 
were used to assess flexibility and modularity of RSNs as defined by the static 
parcellation. Novel measure of flexibility and modularity was therefore introduced. 
The idea behind these measures was to estimate how frequently the areas of a 
predefined RSN were integrated in the same community, what proportion of total 
areas were integrated and how frequently an RSN was integrated simultaneous in two 
different communities (i.e. segregated). With the definitions introduced in this work, 
an RSN which seldom segregate and where a large proportion of its areas are 
frequently integrated in the same community score high on modularity. Conversely, an 
RSN which frequently segregate and where only a small proportion of its areas, if at all, 
on average integrate in the same community score high on flexibility (Figure 1).  

To test for significance in differences in flexibility and modularity for each of the nine 
RSNs permutation t-test with 10000 iterations was used.  Resulting p-values were 
subsequently corrected for multiple comparisons using the Benjamini-Hoschberg 
procedure for false discovery rate (FDR) (Benjamini and Yekuti, 2001). 
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Figure 1. Schematic illustration of a flexible (first row, blue) and modular (second row, 
red) RSN. Flexible RSNs are frequently segregated, i.e. its areas are split on multiple 
communities. Only a small proportion of the total areas of the RSN is integrated in the 
same community at any given time. In contrast, a large proportion of total areas 
belonging to the modular RSN most of the time integrate in only one community. 

 

4.3.6 Time resolved RSN lateralization 

Static RSNs are typically bilaterally symmetric engaging homotropic areas from the 
two hemispheres. It is also well known that homotropic areas are the first to show co-
activation during early brain development and continue to exhibit the strongest 
connectivity into adulthood (Keunen et al., 2017b). Few studies have explored the time 
resolved RNS lateralization. In other words, how frequently RSN areas from only one 
hemisphere integrate as a temporary network. Since aberrant functional connectivity 
within networks could potentially be seen as deviations in the frequency of lateralized 
integration, we investigated potential differences in lateralization between the two 
groups for all 9 RSNs. Here, we count instances of lateralization defined as time points 
where RSN areas from only one hemisphere are integrated. Left- and right-sided 
lateralization are counted separately for each RSN. Permutation t-test are used to test 
for statistical significance. Multiple comparisons are corrected for using false discovery 
rate (FDR). 
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5 RESULTS 
 

5.1 STUDY I 

 

5.1.1 Integration and segregation 

As hypothesized, we could show that assignment of areas to the same community 
meant positive phase coherence between the areas at that time point. Same 
community assignment was therefore definition as integration. Similarly, it was shown 
that assignment of areas to different communities most of the time equaled orthogonal 
(i.e. phase difference close to zero) or negative phase coherence relationships. 
Assignment to different communities was defined as segregation. It was also shown 
that the phase coherence matrixes at	all	time	points	were divided into either two or 
three communities. This meant that some level of segregation was always present in 
the brain. Integration and segregation were therefore noted to be simultaneous events, 
not consecutive as has previously been suggested (Shine et al., 2016). However, these	
results	do not preclude that some time-points are characterized by higher levels of 
segregation than others. 

 

5.1.2 Measures of temporal coupling 

The method resulted in novel measures of temporal coupling between areas in the 
brain. These were 1) frequency of instances of integration, 2) duration of integration 3) 
strength of the phase coherence during integration.  The first two were summarized in 
a common measure denoted qint (the subscript is short for integration). These 
measures of temporal coupling are applicable to all levels of network granularity used 
in the study: pairwise areas, SNCs, SNs and MNs. 

 

5.1.3 Levels of spatial network granularity 

Four levels of temporal networks granularity were examined in the study: 1) pairwise 
areas, 2) subnetwork components (SNCs), 3) Subnetworks (SNs) and 4) Meta-Networks 
(MNs). 

1) At the first level, pair wise areas, the qint measure was shown to yield a very similar 
results as Pearson’s correlation between areas.  
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2) At the second level, an iterative search to find the most common combinations of 

brain areas that were frequently integrated across subject was conducted. The top 
pairs of each brain area was used as initiaing seeds in the search.  The search 
resulted in 31976 SNCs representing all brain areas in the parcellation. Together 
they formed a sparse representation of the of the strongest spatiotemporal 
couplings in the brain. 
 

3) At the third level, the SNCs were combined into SNs. Each SNC consisted of a 
unique combination of eight areas with its own time course. Therefore, the SN 
representation in time and space resulted from the combination of its SNCs that 
were integrated. The code was written to assure that all SNCs belong to an SNs 
were always integrated in the same community at all time points and for all 
subjects, i.e. “no-split”. 
 

4) At the final level, SNs were combined into MNs. The reason for this step was the 
large number of similar and spatially partly overlapping SNs. The MNs were an 
attempt to summarize the main tendencies for SN integration and segregation. At 
this level, the “no-split” condition implemented at the level of SNs could not be 
kept since it would result in that only a small number of SNs could be combined 
into MNs. Therefor, threshold och mean and minimun frequency of community 
split for MNs were implemented. A final number of 71 MNs resulted (also see 
Errata). The first MNs were very similar to known RSNs or combinations of them 
(Figure 2). MNs were named according to the classical RSNs that contributed most 
weight in terms of frequency of area participation. The MN maps are probablistic 
representations of frequency of participation of specific areas in each MN. 

 

5.1.3.1 Errata  

After publication, an error was found in the part of the code that selects seed pairs for 
that initiate the search for the SNCs. The result of the bug was that a subset of the 
seeds was incorrectly selected. This meant that it was not the top pair for some of the 
areas that were selected but a pair with lower qint than the top pair. It led to a larger 
number of SNCs compared with the correct code (n = 31976 vs n = 26755). The	reason	is 
the	lower	degree	of convergence between iteration levels with the random pairs. It	
results	in a subset of SNCs with lower qint and somewhat more diversity in constituting 
areas. The downstream consequence was a larger number of SNs (240 vs 216) and MNs 
(71 vs 47). 
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Figure 2 – Top 9 MNs resulting from the corrected code (see Errata 5.1.3.1). A. 
DMN/VAN/DAN (mean qint = 0.96), B. DMN (mean qint = 0.95), C. VIS (mean qint = 0.85), D. 
DMN/FPN (mean qint = 0.84), E. DAN/FPN (mean qint = 0.84), F. Thal/BG/FPN (mean qint = 
0.71), G. DMN/FPN/Thal (mean qint = 0.35), H. DMN (mean qint = 0.28), I. DAN/FPN/DMN 
(mean qint = 0.19) 

 

	

5.1.4 Global state 

In order to capture the larger picture of integration and segregation and to see if any 
pattern across time was visible, time resolved state vectors were constructed. State 
vectors were simply the mean activation, i.e. IMF amplitude, of each of the SNs an MNs 
at each time point combined	into	a	vector. A third set of state vectors were based on 
the IMF amplitude of the individual areas in the parcellation. By simple Pearson’s 
correlation of all state vectors in each of the three sets, a recurrence plot was 
constructed. At the levels of SNs and MNs, it revealed a quasi-cyclic pattern of 
recurrence of patterns of integration and segregation that was similar to the pattern 
seen at the basic level of areas. It was therefore concluded that SNs and MNs were 
adequate coarse-graining’s of the amplitude fluctuations of the areas. If they had failed 

A. SOM/VAN/DAN B. DMN C. VIS

D. DMN/FPN E. DAN/FPN

H. DMN I. DAN/FPN/DMNG. DMN/FPN/Thal

F. Thal/BG/FPN
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as course-graining strategies, no amplitude fluctuations would have been seen in the 
SNs or MNs and also	no quasi-recurrent patterns. When taking the average across 
subjects, no patterns of recurrence was seen. This was expected since each subject 
during a resting state acquisition has their own internal time course unrelated to 
external cues.   

 

5.1.5 Flexibility vs modularity 

A novel measure of flexibility was introduced in the paper. This measure reflected the 
relative propensity for each area to either synchronize repeatedly with the same set of 
areas (i.e. modularity) or frequently but during short periods integrate in varied 
constellations (i.e. flexibility). Relative here means relative to the other areas. As can 
be seen in Figure 3, the highest levels of flexibility were exhibited by areas belonging to 
the basal ganglia, thalamus and limbic networks (upper	left	quadrant). In contrast, part 
of the visual network score highest on modularity (lower	left	quadrant).  

 

 

5.2 STUDY II 

In Study II, the prevalence of discrete WMA alterations in EPT born school children 
was investigated. The focus was to explore any potential relationship between 
cognitive and neuromotor outcomes as well as quantitative measures of white matter 
volume and white matter diffusivity. The longitudinal relationship between neonatal 

Figure 3. Flexibility and modularity 
of brain areas grouped by RSN 
belonging. Pdiv	=	spatial	diversity.	Pint	
=	temporal	representation. The	ovals	
are	centered	at	the	mean	Pdiv		and	Pint	
for	each	RSN.		The	tilt	of	the	ovals	is	
the	co-variance.	The	width	and	length	
correspond	to	1	SD.	This	is	the	same	
image	as	in	the	publication	except	the	
changes	in	SD	giving	the	oval	with	
and	length.	
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WMI and WMA/WMI at school age was also analyzed. The main results are 
summarized below. 

 

5.2.1 Neuromotor outcome 

Of the children with no WMA or discrete WMA at 12 years, a majority (47 out of 56) had 
also completed MABC-2 at 12 years. Of these, 36% had test results at or below the 15th 
percentile. This is a test result that either indicates problems or potential problems 
with motor function. The assessment of minor neurological dysfunction (Touwen) 
indicated difficulties in 43% of children. A majority of children also completed the 
WISC-V assessment at 12 years (46 out of 56). Of these, 30% had a full-scale index < 85 
indicating potential intellectual challenges. Similarly, difficulties with visuo-spatial 
processing were seen in 31% of children.  

 

5.2.2 Prevalence of discrete WMA and neuromotor outcome 

As expected, the prevalence of discrete WMA in the EPT group at 8-11 years was 52%. 
Furthermore, 2% had grade II, 0% had grade III, 2% had grade IV, 7% could be 
explained by other diseases. In the control group, 12 % were classified as having 
discrete WMA (grade I). Contrary to what was hypothesized, discrete WMA was not 
related to neuromotor, cognitive or visuo-motor integration outcomes either before or 
after adjusting for the mother’s education level.  

The prevalence of WMI in the subgroup of EPT children that had neonatal scans was: 
51% no WMI, 44% mild WMI, 3% moderate WMI and 2% severe WMI. There was a 
significantly better processing speed index (p=0.017) at 12 years in the group of children 
born EPT without mild WMI at TEA, compared with those who had mild WMI. No 
other significant differences between groups were seen. 

 

5.2.3 WMA/WMI in relation to quantitative measures 

No cross-sectional association was seen between WMA/WMI and WM volumes at 8-11 
years. Nor was there any significant relationship between WMA/WMI and mean 
diffusivity or diffusivity of major white matter tracts. There was however a positive 
relationship between WMI at TEA and WMA/WMI 8-11 years. Moreover, after adjusting 
for total brain volume, there was a positive relationship between WMI at TEA and both 
lower WM volume and lower global diffusivity. 
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5.3 STUDY III 

In Study III, we investigated how extremely preterm birth influences modular and 
flexible aspects of time resolved functional brain networks. The method developed in 
Study I was employed for this purpose. A relatively small sample of children born 
extremely preterm (< 27 weeks GA) (N = 20) and a control group of children born after a 
normal pregnancy (N = 21) was analyzed. This is a subsample of the cohort used in 
Study II. Inclusion criteria was high quality MR acquisition with low head motion on 
the resting state sequence. 

 

5.3.1 Modularity and flexibility in the preterm brain 

For both groups, there was a distinct	pattern for flexibility/modularity for all RSNs. 
The visual, basal ganglia and thalamic networks scored higher on modularity than 
flexibility, while the somatosensory network had similar scores for flexibility and 
modularity. For the remaining RSNs, flexibility was higher than modularity (Figure 4). 
There were no significant differences between extremely preterm born children in 
either flexibility or modularity for any of the RSNs after FDR correction. However, 
prior to correction for multiple comparisons several differences were seen.  In the 
preterm group compared to the controls, three RSNs showed significantly decreased 
flexibility: SOM (effect size = -0.75, p= 0.022), DAN (effect size = -0.86, p = 0.007) and BG 
(effect size = -0.69, p = 0.034). The Limbic network showed increased flexibility in the 
preterm group (effect size = 0.79, p = 0.017). Increased modularity was seen in the 
preterm group for SOM (effect size = 0.94, p = 0.005), DAN (effect size = 0.74, p = 0.019) 
and BG networks(effect size = 0.81, p = 0.015).  

. 
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Figure 4.  Modularity and flexibility estimated for RSNs for both groups. PT = 
extremely preterm, FT = Full term, Dark green = Modularity PT, Light green = 
Modularity FT, Dark orange = Modularity PT, Light orange = Modularity FT. In both 
groups, the visual, basal ganglia and thalamic networks all scored higher on modularity 
than flexibility. In the preterm group the somato-sensory (SOM), dorsal-attention 
(DAN) and basal ganglia (BG) networks had higher scores on modularity in the preterm 
group compared to the control group. In contrast, higher scores on flexibility in the 
preterm group was seen for the limbic network and lower scores for SOM, DAN and BG 
networks. * = significant differences between groups before	correction	for	multiple	
comparison (permutation t-tests, 10000 iterations). After correction for multiple 
comparison, none remained significant.  

 

5.3.2 Time resolved RSN lateralization 

The statical representation of RSNs typically includes homotropic areas of the two 
hemispheres. Little is known to what extent time resolved connectivity is lateralized 
and its potential role in normal	and	aberrant	development. In this group of EPT 
children and controls, significant differences in frequency of lateralization, i.e. 
instances of unique unilateral integration, were seen for multiple RSNs. 

The preterm group showed decreased lateralization for several RSNs compared to 
controls (left visual, right somato-motor, right dorsal attention, right limbic, left fronto-
parietal, right default mode, left and right basal ganglia and left thalamus). Only left 
portion	of	the	limbic	network	showed increased lateralization in the EPT group. The 
largest differences were seen for the left thalamic and bilateral basal ganglia networks. 
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Interestingly, the FPN which is sometimes represented as a separate left and right 
network (Smith et al., 2009), did not score high on lateralization (Figure 5).  

 

 

Figure 5. Lateralized integration. Frequency of unilateral integration for each RSN in 
the extremely preterm and term group. PT = Extremely preterm, FT = Full term, 
Red/pink = left, Blue/Purple =Right. * = statistically significant differences between 
groups after	correction	for	multiple	comparisons.  
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6 DISCUSSION 
 

6.1 STUDY I 

In this study, a novel method for time resolved analysis was developed based on 
flexible reconfiguration of networks that respects the temporal ordering. A strength of 
the method is that network integration and segregation can be tracked from time point 
to time point. This means that the relational properties in terms of phase relationships 
between simultaneously integrated networks is known. It also means that the gradual 
disintegration of networks and transient network constellations can be captured. 
Albeit imperfect, it also provides a birds’ eye perspective on the recurrence of similar 
types of whole brain states of network configuration in the global state analysis.  
Clearly, the results of the study corroborate the large collection  of previous studies 
that has shown that the definition of a network has a temporal constraint (Keilholz et 
al., 2017; Lurie et al., 2020; Preti et al., 2017). When considering the whole acquisition, 
we get the RSNs. During shorter time spans, the RSNs partially disintegrate and form 
transient constellations with each other to varied extent. An important result in the 
present study is that networks sometimes and in part remain integrated through cycles 
of activation and deactivation. This is already know from the early days of rs-fMRI 
where most notably the DMN regions showed synchronized deactivation during task 
performance (Fox et al., 2005; Fransson, 2005). However, the cyclic aspect of time 
resolved network integration and its meaning is not fully explored. Finally, in this 
study we also provide a novel way to estimate the relative flexibility and modularity of 
individual brain areas.  

Importantly, the perspective taken in the study is that of network activity in a whole 
brain perspective. The importance of this perspective in neuroimaging research is 
increasingly recognized (Kringelbach et al., 2015). It is related to two unanswered 
questions regarding functional connectivity in the spatial and temporal domains. First, 
is the effect of the activation of a specific network dependent on the entire state of the 
brain? In other words, does it matter what state of partial or full disintegration other 
networks are and which networks that are in anti-phase with the network of focus? 
The second question has to do with the temporal trajectory. Beyond the purely auto-
correlative aspects of the time series and the relative sluggishness of the BOLD-signal, 
does it matter for the function of network x at time point t1 how the brain state Y was 
configured at time point t0, t-1 , ..., t-N ? Important to remember for this last question is 
that the brain does not operate on one single time-scale, but rather works on multiple 
nested time scales simultaneously. Even the BOLD-signal contains multiple frequencies 
that are not straight forward to disentangle. However, studies that have investigated 
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functional connectivity in different frequency ranges has found important differences 
which still remain to be fully elucidated (Gohel and Biswal, 2015; Niazy et al., 2011). In 
preliminary unpublished work, we saw that subnetworks similar to those presented in 
this study could be obtained from all the IMFs. There were no significant differences in 
qint between IMFs. However, the duration of integration was a function of the 
frequency spectrum of the IMF. This meant that faster frequencies led to a shorter 
duration of integration, while the subnetworks derived from IMFs with were 
characterized by slower frequencies had much fewer but substantially longer 
durations of integration. With or without considering the hemodynamic response 
function, these results beg the question which temporal scales should be considered 
when we talk about timing in (rs-) fMRI research. It also remains to be understood 
how these different frequency ranges modulate each other, if at all. 

 

6.2 STUDY II 

Mild WMI is prevalent in EPT born neonates. Few studies have investigated the long-
term development of WMA/WMI. This study contributed novel information in the 
sense that discrete forms of WMA are prevalent in childhood in born EPT.  
Importantly, it does not relate to neuromotor outcome. The more important finding 
was that WMA/WMI at TEA was a predictor both of outcome in terms of processing 
speed as well as quantitative measures, such as white matter volume and global 
diffusivity than WMA/WMI at 8-11 years. Both scoring systems are based on visual 
inspection. The scoring used at TEA is based on compound scores from five 
parameters that each was scored from no (1 point) to severe (3 points). In contrast, the 
scoring at 8-11 years was much less fine grained and based on the presence or absence 
of 4 parameters. Therefore, it was much less robust to interrater variability that likely 
explains some of the results. Another possible reason for lower sensitivity of visual 
scoring at 8-11 years compared to TEA is the remodeling and development of the white 
matter that takes place during early childhood that might mask previous injury. One of 
the main aims of the study was to find a measure sensitive to very discrete signs of 
persisting WMA into childhood. It remains possible that the discrete WMA as defined 
in this study is such a sign. However, to confirm or discard such a	hypothesis, further 
studies need to be conducted on larger samples preferably with independent 
neuroradiologists from different centers. 
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6.3 STUDY III 

In this study, a novel way to estimate RSN flexibility and modularity was introduced. 
After correcting for multiple comparisons, contrary to the initial hypothesis, no 
significant differences between the extremely preterm born and the control group was 
seen for any of the networks. This does not however preclude that differences do exist. 
The methodological approach treated every area in an RSN as interchangeable with 
any other. It is possible that if the individual areas had been accounted for in a more 
specific way, differences would have been seen. Particularly, this would be expected 
for the thalamic and basal ganglia networks that both show lower levels of flexibility 
when treated as individual areas in the extremely preterm group. They also show 
significantly decreased levels of lateralization. These results	indicate that the 
subcortical regions in the two hemispheres in extremely preterm born children are	
linked	by	increased	functional	connectivity	and have	reduced flexibility. This is a novel 
finding with a new methodology and hence needs to be corroborated in a larger 
independent sample and with complimentary methodological approaches. Most rs-
fMRI studies in preterm born subjects are conducted in the neonatal period (Doria et 
al., 2010; Eyre et al., 2021b; Fransson et al., 2011; Smyser et al., 2016; Toulmin et al., 2015).  
Only a few studies have investigated functional network organization in preterm born 
children and young adults (Myers et al., 2010; Wehrle et al., 2018; Wheelock et al., 2018; 
White et al., 2014).  Importantly, these do not exclusively include extremely preterm 
born subjects, but also very preterm (< 32 weeks). In most cases, the focus has	been	on 
only a few RSNs and none has investigated time resolved connectivity and flexibility. In 
contrast to the studies of preterm neonates that have included subjects with 
macroscopic brain injury (Smyser et al., 2013), the studies in older children and young 
adults typically do not include subjects with brain injury. Common to these studies and 
the present study is that only that	which can be classified as minor differences between 
the preterm and control groups has been identified. This could be because the 
methods are not sensitive enough to capture differences that do exist. The results are 
also likely related to the selection of preterm subjects that are include in the studies. 
Like the present study, most subjects are doing relatively well with no major brain 
injuries, normal IQ and are going to normal schools. Finally, it remains possible that 
the BOLD-level of investigation is in itself insensitive to the differences in brain 
function that exist between groups.
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7 CONCLUSIONS 

The first study aimed at better capture and understand the dynamic changes in 
intrinsic functional connectivity in the brain. A novel method was developed for this 
purpose. While far from perfect in all its detail, it still provides a novel framework to 
capture time resolved connectivity changes that can potentially be helpful in the 
context of resting-state and cognitive neuroscience. Potentially it might also find 
applicability in data with higher temporal resolution such as EEG and MEG.  

In Study II, the prevalence and clinical relevance of discrete macroscopic white matter 
alterations in school aged children born extremely preterm was investigated. More 
than half of the subjects had signs of discrete white matter alterations but it was not 
related to more negative neuromotor and cognitive outcomes at 12 years than for the 
group as a whole. The study also found a positive association between neonatal white 
matter injury of any grade and smaller white matter volume and lower FA at school 
age. Importantly, a neonatal diagnosis of WMI was associated with lower processing 
speed at 12 years. From a pathophysiological perspective this finding makes sense. 
Damage to the myelin producing cells leads both to slower conduction rates for signal 
transmission, lower FA and lower volume since myelin makes up a substantial portion 
of the white matter.  

The third study is the logical bridge between Study I and Study II and encompasses 
both of the themes explored separately in the first two studies; intrinsic time resolved 
connectivity changes in the brain and brain development in extremely preterm born 
children at school age. This study is not yet peer-review and published and is likely to 
change before it finds its final form. It explores the concept RSN flexibility and 
modularity in a novel way using the method developed in Study I. No significant 
differences were seen between groups in	flexibility	or	modularity	at	the	RSN	level. 
However,	at	the	level	of	individual	areas,	basal	ganglia	and	thalamic	areas	showed	
significantly	reduced	flexibility. Also, several	RSNs	in	the preterm grouped exhibited 
significantly	fewer	instances of lateralization. Lateralization	can	also	be	understood	as 
an aspect of flexibility. Together	these	results	indicate that	flexibility in functional 
organization to	some	extent	is	reduced	in	the	preterm	subjects	compared	to	the	control	
group.	It	is	likely	linked	to	other	aspects	of	subtle	functional	reorganization	not	
captured	by	this	study.	
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8 POINTS OF PERSPECTIVE 

Perhaps the most salient question in neuroimaging research that needs to be 
addressed is: Will ever more detailed and sophisticated methods of time resolved 
analysis be enough to truly understand how the brain functions and creates our 
internal experience as well as helps us survive in the world? The answer will partly 
depend on what is meant by understanding. Cleary, tracking and timing brain events 
with cognitive and motor events is important not least since it has the potential to 
identify a brain that suffers from malfunctioning. However, in some sense it remains a 
form of cartography unless the questions why and how can also be answered. 
Causative models and direct interventions with brain stimulation methods does not 
solve these fundamental questions. As of date, the motor system and perception are 
much better understood in neuroscience than higher order cognition and the 
subjective experience where consciousness itself is at the center. The concept of 
computation which is widely accepted way to think about how the brain operates does 
not solve the essence of the problem. For that, a theory for how computation creates 
subjective experience is needed. Several theories have been proposed but none has 
convincingly bridged the explanatory gap (Baars, 2005; Tononi and Edelman, 1998).  
With this said, I do believe the field of neuroimaging has a lot to offer in terms of 
understanding the fundamental principles of the dynamics of neuronal events and its 
correspondence to cognition and bodily events. I also believe it has a diagnostic 
potential in the clinic beyond what is seen at the moment. An increased integration 
between the available windows into the brain are necessary, i.e. combining fMRI, EEG, 
ECoG, MEG, TMS and other techniques in order to untangle the multilayered 
spatiotemporal activity in the brain.    
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