2,892 research outputs found

    A Synergistic Approach for Recovering Occlusion-Free Textured 3D Maps of Urban Facades from Heterogeneous Cartographic Data

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    City-Scaled Digital Documentation: A Comparative Analysis of Digital Documentation Technologies for Recording Architectural Heritage

    Get PDF
    The historic preservation field, enabled by advances in technology, has demonstrated an increased interest in digitizing cultural heritage sites and historic structures. Increases in software capabilities as well as greater affordability has fostered augmented use of digital documentation technologies for architectural heritage applications. Literature establishes four prominent categories of digital documentation tools for preservation: laser scanning, photogrammetry, multimedia geographic information systems (GIS) and three-dimensional modeling. Thoroughly explored through published case studies, the documentation techniques for recording heritage are most often integrated. Scholarly literature does not provide a parallel comparison of the four technologies. A comparative analysis of the four techniques, as presented in this thesis, makes it possible for cities to understand the most applicable technique for their preservation objectives. The thesis analyzes four cases studies that employ applications of the technologies: New Orleans Laser Scanning, University of Maryland Photogrammetry, Historic Columbia Maps Project and the Virtual Historic Savannah Project. Following this, the thesis undertakes a trial of each documentation technology – laser scanning, photogrammetry, multimedia GIS and three-dimensional modeling – utilizing a block on Church Street between Queen and Chalmers streets within the Charleston Historic District. The apparent outcomes of each of the four techniques is analyzed according to a series of parameters including: audience, application, efficacy in recordation, refinement, expertise required, manageability of the product, labor intensity and necessary institutional capacity. A concluding matrix quantifies the capability of each of the technologies in terms of the parameters. This method furnishes a parallel comparison of the techniques and their efficacy in architectural heritage documentation within mid-sized cities

    10371 Abstracts Collection -- Dynamic Maps

    Get PDF
    From September 12th to 17th, 2010, the Dagstuhl Seminar 10371 ``Dynamic Maps \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models

    Semantic Mapping of Road Scenes

    Get PDF
    The problem of understanding road scenes has been on the fore-front in the computer vision community for the last couple of years. This enables autonomous systems to navigate and understand the surroundings in which it operates. It involves reconstructing the scene and estimating the objects present in it, such as ‘vehicles’, ‘road’, ‘pavements’ and ‘buildings’. This thesis focusses on these aspects and proposes solutions to address them. First, we propose a solution to generate a dense semantic map from multiple street-level images. This map can be imagined as the bird’s eye view of the region with associated semantic labels for ten’s of kilometres of street level data. We generate the overhead semantic view from street level images. This is in contrast to existing approaches using satellite/overhead imagery for classification of urban region, allowing us to produce a detailed semantic map for a large scale urban area. Then we describe a method to perform large scale dense 3D reconstruction of road scenes with associated semantic labels. Our method fuses the depth-maps in an online fashion, generated from the stereo pairs across time into a global 3D volume, in order to accommodate arbitrarily long image sequences. The object class labels estimated from the street level stereo image sequence are used to annotate the reconstructed volume. Then we exploit the scene structure in object class labelling by performing inference over the meshed representation of the scene. By performing labelling over the mesh we solve two issues: Firstly, images often have redundant information with multiple images describing the same scene. Solving these images separately is slow, where our method is approximately a magnitude faster in the inference stage compared to normal inference in the image domain. Secondly, often multiple images, even though they describe the same scene result in inconsistent labelling. By solving a single mesh, we remove the inconsistency of labelling across the images. Also our mesh based labelling takes into account of the object layout in the scene, which is often ambiguous in the image domain, thereby increasing the accuracy of object labelling. Finally, we perform labelling and structure computation through a hierarchical robust PN Markov Random Field defined on voxels and super-voxels given by an octree. This allows us to infer the 3D structure and the object-class labels in a principled manner, through bounded approximate minimisation of a well defined and studied energy functional. In this thesis, we also introduce two object labelled datasets created from real world data. The 15 kilometre Yotta Labelled dataset consists of 8,000 images per camera view of the roadways of the United Kingdom with a subset of them annotated with object class labels and the second dataset is comprised of ground truth object labels for the publicly available KITTI dataset. Both the datasets are available publicly and we hope will be helpful to the vision research community

    Scalable 3D Surface Reconstruction by Local Stochastic Fusion of Disparity Maps

    Get PDF
    Digital three-dimensional (3D) models are of significant interest to many application fields, such as medicine, engineering, simulation, and entertainment. Manual creation of 3D models is extremely time-consuming and data acquisition, e.g., through laser sensors, is expensive. In contrast, images captured by cameras mean cheap acquisition and high availability. Significant progress in the field of computer vision already allows for automatic 3D reconstruction using images. Nevertheless, many problems still exist, particularly for big sets of large images. In addition to the complex formulation necessary to solve an ill-posed problem, one has to manage extremely large amounts of data. This thesis targets 3D surface reconstruction using image sets, especially for large-scale, but also for high-accuracy applications. To this end, a processing chain for dense scalable 3D surface reconstruction using large image sets is defined consisting of image registration, disparity estimation, disparity map fusion, and triangulation of point clouds. The main focus of this thesis lies on the fusion and filtering of disparity maps, obtained by Semi-Global Matching, to create accurate 3D point clouds. For unlimited scalability, a Divide and Conquer method is presented that allows for parallel processing of subspaces of the 3D reconstruction space. The method for fusing disparity maps employs local optimization of spatial data. By this means, it avoids complex fusion strategies when merging subspaces. Although the focus is on scalable reconstruction, a high surface quality is obtained by several extensions to state-of-the-art local optimization methods. To this end, the seminal local volumetric optimization method by Curless and Levoy (1996) is interpreted from a probabilistic perspective. From this perspective, the method is extended through Bayesian fusion of spatial measurements with Gaussian uncertainty. Additionally to the generation of an optimal surface, this probabilistic perspective allows for the estimation of surface probabilities. They are used for filtering outliers in 3D space by means of geometric consistency checks. A further improvement of the quality is obtained based on the analysis of the disparity uncertainty. To this end, Total Variation (TV)-based feature classes are defined that are highly correlated with the disparity uncertainty. The correlation function is learned from ground-truth data by means of an Expectation Maximization (EM) approach. Because of the consideration of a statistically estimated disparity error in a probabilistic framework for fusion of spatial data, this can be regarded as a stochastic fusion of disparity maps. In addition, the influence of image registration and polygonization for volumetric fusion is analyzed and used to extend the method. Finally, a multi-resolution strategy is presented that allows for the generation of surfaces from spatial data with a largely varying quality. This method extends state-of-the-art methods by considering the spatial uncertainty of 3D points from stereo data. The evaluation of several well-known and novel datasets demonstrates the potential of the scalable stochastic fusion method. The strength and the weakness of the method are discussed and direction for future research is given.Digitale dreidimensionale (3D) Modelle sind in vielen Anwendungsfeldern, wie Medizin, Ingenieurswesen, Simulation und Unterhaltung von signifikantem Interesse. Eine manuelle Erstellung von 3D-Modellen ist Ă€ußerst zeitaufwendig und die Erfassung der Daten, z.B. durch Lasersensoren, ist teuer. Kamerabilder ermöglichen hingegen preiswerte Aufnahmen und sind gut verfĂŒgbar. Der rasante Fortschritt im Forschungsfeld Computer Vision ermöglicht bereits eine automatische 3D-Rekonstruktion aus Bilddaten. Dennoch besteht weiterhin eine Vielzahl von Problemen, insbesondere bei der Verarbeitung von großen Mengen hochauflösender Bilder. ZusĂ€tzlich zur komplexen Formulierung, die zur Lösung eines schlecht gestellten Problems notwendig ist, besteht die Herausforderung darin, Ă€ußerst große Datenmengen zu verwalten. Diese Arbeit befasst sich mit dem Problem der 3D-OberflĂ€chenrekonstruktion aus Bilddaten, insbesondere fĂŒr sehr große Modelle, aber auch Anwendungen mit hohem Genauigkeitsanforderungen. Zu diesem Zweck wird eine Prozesskette zur dichten skalierbaren 3D-OberflĂ€chenrekonstruktion fĂŒr große Bildmengen definiert, bestehend aus Bildregistrierung, DisparitĂ€tsschĂ€tzung, Fusion von DisparitĂ€tskarten und Triangulation von Punktwolken. Der Schwerpunkt dieser Arbeit liegt auf der Fusion und Filterung von durch Semi-Global Matching generierten DisparitĂ€tskarten zur Bestimmung von genauen 3D-Punktwolken. FĂŒr eine unbegrenzte Skalierbarkeit wird eine Divide and Conquer Methode vorgestellt, welche eine parallele Verarbeitung von TeilrĂ€umen des 3D-Rekonstruktionsraums ermöglicht. Die Methode zur Fusion von DisparitĂ€tskarten basiert auf lokaler Optimierung von 3D Daten. Damit kann eine komplizierte Fusionsstrategie fĂŒr die UnterrĂ€ume vermieden werden. Obwohl der Fokus auf der skalierbaren Rekonstruktion liegt, wird eine hohe OberflĂ€chenqualitĂ€t durch mehrere Erweiterungen von lokalen Optimierungsmodellen erzielt, die dem Stand der Forschung entsprechen. Dazu wird die wegweisende lokale volumetrische Optimierungsmethode von Curless and Levoy (1996) aus einer probabilistischen Perspektive interpretiert. Aus dieser Perspektive wird die Methode durch eine Bayes Fusion von rĂ€umlichen Messungen mit Gaußscher Unsicherheit erweitert. ZusĂ€tzlich zur Bestimmung einer optimalen OberflĂ€che ermöglicht diese probabilistische Fusion die Extraktion von OberflĂ€chenwahrscheinlichkeiten. Diese werden wiederum zur Filterung von Ausreißern mittels geometrischer KonsistenzprĂŒfungen im 3D-Raum verwendet. Eine weitere Verbesserung der QualitĂ€t wird basierend auf der Analyse der DisparitĂ€tsunsicherheit erzielt. Dazu werden Gesamtvariation-basierte Merkmalsklassen definiert, welche stark mit der DisparitĂ€tsunsicherheit korrelieren. Die Korrelationsfunktion wird aus ground-truth Daten mittels eines Expectation Maximization (EM) Ansatzes gelernt. Aufgrund der BerĂŒcksichtigung eines statistisch geschĂ€tzten DisparitĂ€tsfehlers in einem probabilistischem GrundgerĂŒst fĂŒr die Fusion von rĂ€umlichen Daten, kann dies als eine stochastische Fusion von DisparitĂ€tskarten betrachtet werden. Außerdem wird der Einfluss der Bildregistrierung und Polygonisierung auf die volumetrische Fusion analysiert und verwendet, um die Methode zu erweitern. Schließlich wird eine Multi-Resolution Strategie prĂ€sentiert, welche die Generierung von OberflĂ€chen aus rĂ€umlichen Daten mit unterschiedlichster QualitĂ€t ermöglicht. Diese Methode erweitert Methoden, die den Stand der Forschung darstellen, durch die BerĂŒcksichtigung der rĂ€umlichen Unsicherheit von 3D-Punkten aus Stereo Daten. Die Evaluierung von mehreren bekannten und neuen DatensĂ€tzen zeigt das Potential der skalierbaren stochastischen Fusionsmethode auf. StĂ€rken und SchwĂ€chen der Methode werden diskutiert und es wird eine Empfehlung fĂŒr zukĂŒnftige Forschung gegeben
    • 

    corecore