Scalable 3D Surface Reconstruction by Local Stochastic Fusion of Disparity Maps

Abstract

Digital three-dimensional (3D) models are of significant interest to many application fields, such as medicine, engineering, simulation, and entertainment. Manual creation of 3D models is extremely time-consuming and data acquisition, e.g., through laser sensors, is expensive. In contrast, images captured by cameras mean cheap acquisition and high availability. Significant progress in the field of computer vision already allows for automatic 3D reconstruction using images. Nevertheless, many problems still exist, particularly for big sets of large images. In addition to the complex formulation necessary to solve an ill-posed problem, one has to manage extremely large amounts of data. This thesis targets 3D surface reconstruction using image sets, especially for large-scale, but also for high-accuracy applications. To this end, a processing chain for dense scalable 3D surface reconstruction using large image sets is defined consisting of image registration, disparity estimation, disparity map fusion, and triangulation of point clouds. The main focus of this thesis lies on the fusion and filtering of disparity maps, obtained by Semi-Global Matching, to create accurate 3D point clouds. For unlimited scalability, a Divide and Conquer method is presented that allows for parallel processing of subspaces of the 3D reconstruction space. The method for fusing disparity maps employs local optimization of spatial data. By this means, it avoids complex fusion strategies when merging subspaces. Although the focus is on scalable reconstruction, a high surface quality is obtained by several extensions to state-of-the-art local optimization methods. To this end, the seminal local volumetric optimization method by Curless and Levoy (1996) is interpreted from a probabilistic perspective. From this perspective, the method is extended through Bayesian fusion of spatial measurements with Gaussian uncertainty. Additionally to the generation of an optimal surface, this probabilistic perspective allows for the estimation of surface probabilities. They are used for filtering outliers in 3D space by means of geometric consistency checks. A further improvement of the quality is obtained based on the analysis of the disparity uncertainty. To this end, Total Variation (TV)-based feature classes are defined that are highly correlated with the disparity uncertainty. The correlation function is learned from ground-truth data by means of an Expectation Maximization (EM) approach. Because of the consideration of a statistically estimated disparity error in a probabilistic framework for fusion of spatial data, this can be regarded as a stochastic fusion of disparity maps. In addition, the influence of image registration and polygonization for volumetric fusion is analyzed and used to extend the method. Finally, a multi-resolution strategy is presented that allows for the generation of surfaces from spatial data with a largely varying quality. This method extends state-of-the-art methods by considering the spatial uncertainty of 3D points from stereo data. The evaluation of several well-known and novel datasets demonstrates the potential of the scalable stochastic fusion method. The strength and the weakness of the method are discussed and direction for future research is given.Digitale dreidimensionale (3D) Modelle sind in vielen Anwendungsfeldern, wie Medizin, Ingenieurswesen, Simulation und Unterhaltung von signifikantem Interesse. Eine manuelle Erstellung von 3D-Modellen ist äußerst zeitaufwendig und die Erfassung der Daten, z.B. durch Lasersensoren, ist teuer. Kamerabilder ermöglichen hingegen preiswerte Aufnahmen und sind gut verfügbar. Der rasante Fortschritt im Forschungsfeld Computer Vision ermöglicht bereits eine automatische 3D-Rekonstruktion aus Bilddaten. Dennoch besteht weiterhin eine Vielzahl von Problemen, insbesondere bei der Verarbeitung von großen Mengen hochauflösender Bilder. Zusätzlich zur komplexen Formulierung, die zur Lösung eines schlecht gestellten Problems notwendig ist, besteht die Herausforderung darin, äußerst große Datenmengen zu verwalten. Diese Arbeit befasst sich mit dem Problem der 3D-Oberflächenrekonstruktion aus Bilddaten, insbesondere für sehr große Modelle, aber auch Anwendungen mit hohem Genauigkeitsanforderungen. Zu diesem Zweck wird eine Prozesskette zur dichten skalierbaren 3D-Oberflächenrekonstruktion für große Bildmengen definiert, bestehend aus Bildregistrierung, Disparitätsschätzung, Fusion von Disparitätskarten und Triangulation von Punktwolken. Der Schwerpunkt dieser Arbeit liegt auf der Fusion und Filterung von durch Semi-Global Matching generierten Disparitätskarten zur Bestimmung von genauen 3D-Punktwolken. Für eine unbegrenzte Skalierbarkeit wird eine Divide and Conquer Methode vorgestellt, welche eine parallele Verarbeitung von Teilräumen des 3D-Rekonstruktionsraums ermöglicht. Die Methode zur Fusion von Disparitätskarten basiert auf lokaler Optimierung von 3D Daten. Damit kann eine komplizierte Fusionsstrategie für die Unterräume vermieden werden. Obwohl der Fokus auf der skalierbaren Rekonstruktion liegt, wird eine hohe Oberflächenqualität durch mehrere Erweiterungen von lokalen Optimierungsmodellen erzielt, die dem Stand der Forschung entsprechen. Dazu wird die wegweisende lokale volumetrische Optimierungsmethode von Curless and Levoy (1996) aus einer probabilistischen Perspektive interpretiert. Aus dieser Perspektive wird die Methode durch eine Bayes Fusion von räumlichen Messungen mit Gaußscher Unsicherheit erweitert. Zusätzlich zur Bestimmung einer optimalen Oberfläche ermöglicht diese probabilistische Fusion die Extraktion von Oberflächenwahrscheinlichkeiten. Diese werden wiederum zur Filterung von Ausreißern mittels geometrischer Konsistenzprüfungen im 3D-Raum verwendet. Eine weitere Verbesserung der Qualität wird basierend auf der Analyse der Disparitätsunsicherheit erzielt. Dazu werden Gesamtvariation-basierte Merkmalsklassen definiert, welche stark mit der Disparitätsunsicherheit korrelieren. Die Korrelationsfunktion wird aus ground-truth Daten mittels eines Expectation Maximization (EM) Ansatzes gelernt. Aufgrund der Berücksichtigung eines statistisch geschätzten Disparitätsfehlers in einem probabilistischem Grundgerüst für die Fusion von räumlichen Daten, kann dies als eine stochastische Fusion von Disparitätskarten betrachtet werden. Außerdem wird der Einfluss der Bildregistrierung und Polygonisierung auf die volumetrische Fusion analysiert und verwendet, um die Methode zu erweitern. Schließlich wird eine Multi-Resolution Strategie präsentiert, welche die Generierung von Oberflächen aus räumlichen Daten mit unterschiedlichster Qualität ermöglicht. Diese Methode erweitert Methoden, die den Stand der Forschung darstellen, durch die Berücksichtigung der räumlichen Unsicherheit von 3D-Punkten aus Stereo Daten. Die Evaluierung von mehreren bekannten und neuen Datensätzen zeigt das Potential der skalierbaren stochastischen Fusionsmethode auf. Stärken und Schwächen der Methode werden diskutiert und es wird eine Empfehlung für zukünftige Forschung gegeben

    Similar works