140 research outputs found

    Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Get PDF
    We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH<sub>4</sub>) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH<sub>4</sub>) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH<sub>4</sub> surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr<sup>−1</sup>, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr<sup>−1</sup>. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr<sup>−1</sup>) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO<sub>2</sub> model output to investigate model error on quantifying proxy GOSAT XCH<sub>4</sub> (involving model XCO<sub>2</sub>) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH<sub>4</sub> measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH<sub>4</sub> measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (<i>r</i><sup>2</sup>) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb)

    Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Nino

    Get PDF
    The tropical carbon balance dominates year-to-year variations in the CO2 exchange with the atmosphere through photosynthesis, respiration and fires. Because of its high correlation with gross primary productivity (GPP), observations of sun-induced fluorescence (SIF) are of great interest. We developed a new remotely sensed SIF product with improved signal-to-noise in the tropics, and use it here to quantify the impact of the 2015/2016 El Nino Amazon drought. We find that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of water in the soil. SIF went below its climatological range starting from the end of the 2015 dry season (October) and returned to normal levels by February 2016 when atmospheric conditions returned to normal, but well before the end of anomalously low precipitation that persisted through June 2016. Impacts were not uniform across the Amazon basin, with the eastern part experiencing much larger (10-15%) SIF reductions than the western part of the basin (2-5%). We estimate the integrated loss of GPP relative to eight previous years to be 0.34-0.48 PgC in the three-month period October-November-December 2015. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'

    On measurements of aerosol particles and greenhouse gases in Siberia and future research needs

    Get PDF
    The role of the world's boreal forest for our understanding of the climate system is indisputable. Due to the large area covered, the forest's biophysical (e.g. surface energy balance, albedo) and biogeochemical (e.g. bidirectional exchange of greenhouse gases or aerosol precursors) processes are known to affect today's climate, and will need to be accounted for in studies of climate feedbacks in response to anthropogenic warming. However, observations that are needed to develop and evaluate terrestrial and climate models are still relatively scarce, especially for the Siberian part of the boreal forest. Here, we present a short overview of aerosol and greenhouse gas measurements over Siberia, aiming to also survey a large fraction of the existing literature in Russian. We aim to highlight areas of least data coverage and argue that, due to the importance of Siberia in the global climate system, a coordinated research program is needed to address some of the open research questions: The Pan Siberian Experiment

    Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Get PDF
    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO<sub>2</sub> and CH<sub>4</sub> fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO<sub>2</sub> proxy measurements such as radiocarbon in CO<sub>2</sub> and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales

    Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Get PDF
    A globally integrated carbon observation and anal-ysis system is needed to improve the fundamental under-standing of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of poli-cies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon obser-vation system requires transformational advances from the existing sparse, exploratory framework towards a dense, ro-bust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial bio-sphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observa-tion system that can be built in the next decade. A key conclu-sion is the substantial expansion of the ground-based obser-vation networks required to reach the high spatial resolution for CO2 and CH4 ?uxes, and for carbon stocks for address-ing policy-relevant objectives, and attributing ?ux changes to underlying processes in each region. In order to establish ?ux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measure-ments. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consis-tency and accuracy so that they can be ef?ciently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest chal-lenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural ?uxes, although over a small land area (cities, industrial sites, power plants), as well as the in-clusion of fossil fuel CO2 proxy measurements such as ra-diocarbon in CO2 and carbon-fuel combustion tracers. Addi-tionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) ?ux esti-mates across the range of spatial and temporal scales rele-vant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitor-ing, on improved international collaboration to ?ll gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interopera-ble, and on the calibration of each component of the system to agreed-upon international scales
    • …
    corecore