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Abstract. Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset
with corresponding uncertainties between 2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange
2020 (CMS-Flux NBE 2020). It is estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-
down flux inversion system that assimilates column CO2 observations from the Greenhouse Gases Observing
Satellite (GOSAT) and NASA’s Observing Carbon Observatory 2 (OCO-2). The regional monthly fluxes are
readily accessible as tabular files, and the gridded fluxes are available in NetCDF format. The fluxes and their
uncertainties are evaluated by extensively comparing the posterior CO2 mole fractions with CO2 observations
from aircraft and the NOAA marine boundary layer reference sites. We describe the characteristics of the dataset
as the global total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that
the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-observation
network within uncertainty. Averaged between 2010 and 2018, the tropical regions range from close to neu-
tral in tropical South America to a net source in Africa; these contrast with the extra-tropics, which are a net
sink of 2.5± 0.3 Gt C/year. The regional satellite-constrained NBE estimates provide a unique perspective for
understanding the terrestrial biosphere carbon dynamics and monitoring changes in regional contributions to
the changes of atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).

Published by Copernicus Publications.

https://doi.org/10.25966/4v02-c391


300 J. Liu et al.: CMS-Flux NBE 2020

1 Introduction

New top-down inversion frameworks that harness satellite
observations provide an important complement to global
aggregated fluxes (e.g., Global Carbon Budget (GCB),
Friedlingstein et al., 2019) and inversions based on surface
CO2 observations (e.g., Chevallier et al., 2010), especially
over the tropics and the Southern Hemisphere (SH) where
conventional surface CO2 observations are sparse. The net
biosphere exchange (NBE), which is the net carbon flux of all
the land–atmosphere exchange processes except fossil fuel
emissions, is far more variable and has far more uncertainty
than ocean fluxes (Lovenduski and Bonan, 2017) or fossil
fuel emissions (Yin et al., 2019) and is thus the focus of this
dataset estimated from a top-down atmospheric CO2 inver-
sion of satellite column CO2 dry-air mole fraction (XCO2 ).
Here, we present the global and regional NBE as a series of
maps, time series, and tables and disseminate it as a public
dataset for further analysis and comparison to other sources
of flux information. The gridded NBE dataset and its uncer-
tainty, air–sea fluxes, and fossil fuel emissions are also avail-
able so that users can calculate the carbon budget from a re-
gional to global scale. Finally, we provide a comprehensive
evaluation of both mean and uncertainty estimates against the
CO2 observations from independent airborne datasets and the
NOAA marine boundary layer (MBL) reference sites (Con-
way et al., 1994).

Global top-down atmospheric CO2 flux inversions have
been historically used to estimate regional terrestrial NBE.
They make uses of the spatiotemporal variability of atmo-
spheric CO2, which is dominated by NBE, to infer net car-
bon exchange at the surface (Chevallier et al., 2005; Baker et
al., 2006a; Liu et al., 2014). The accuracy of the NBE from
top-down flux inversions is determined by the density and
accuracy of the CO2 observations, the accuracy of modeled
atmospheric transport, and knowledge of the prior uncertain-
ties of the flux inventories.

For CO2 flux inversions based on high precision in situ and
flask observations, the measurement error is low (< 0.2 ppm,
parts per million) and not a significant source of error; how-
ever, these observations are limited spatially and are con-
centrated primarily over North America (NA) and Europe
(Crowell et al., 2019). Satellite XCO2 observations from CO2-
dedicated satellites, such as the Greenhouse Gases Observing
Satellite (GOSAT) (launched in July 2009) and the Observ-
ing Carbon Observatory 2 (OCO-2) (Crisp et al., 2017), have
much broader spatial coverage (O’Dell et al., 2018), which
fills the observational gaps of conventional surface CO2 ob-
servations, but they have up to an order of magnitude higher
single-sounding uncertainty and potential systematic errors
compared to the in situ and flask CO2 observations. Recent
progress in instrument error characterization, spectroscopy,
and retrieval methods has significantly improved the accu-
racy and precision of the XCO2 retrievals (O’Dell et al., 2018;
Kiel et al., 2019). The single-sounding random error of XCO2

from OCO-2 is ∼ 1.0 ppm (Kulawik et al., 2019). A re-
cent study by Byrne et al. (2020) shows less than a 0.5 ppm
difference between posterior XCO2 constrained by a recent
dataset, ACOS-GOSAT b7 XCO2 retrievals, and those con-
strained by conventional surface CO2 observations. Cheval-
lier et al. (2019) also showed that an OCO-2-based flux in-
version had similar performance to surface CO2-based flux
inversions when comparing posterior CO2 mole fractions to
aircraft CO2 in the free troposphere. Results from these stud-
ies show that systematic uncertainties in CO2 retrievals from
satellites are comparable to, or smaller than, other uncer-
tainty sources in atmospheric inversions (e.g., transport).

A newly developed biogeochemical model–data fusion
system, CARDAMOM, made progress in producing NBE
uncertainties, along with mean values that are consistent with
a variety of observations assimilated through a Markov chain
Monte Carlo (MCMC) method (Bloom et al., 2016, 2020).
Transport model errors in general have also been reduced rel-
ative to earlier transport model intercomparison efforts, such
as TransCom 3 (Gurney et al., 2004; Gaubert et al., 2019).
Advancements in satellite retrieval, transport, and prior ter-
restrial biosphere modeling have led to more mature inver-
sions constrained by satellite XCO2 observations.

Two satellites, GOSAT and OCO-2, have now produced
more than 10 years of observations. Here we harness the
NASA Carbon Monitoring System Flux (CMS-Flux) inver-
sion framework (Liu et al., 2014, 2017, 2018; Bowman et
al., 2017) to generate an NBE product – Carbon Moni-
toring System Flux Net Biosphere Exchange 2020 (CMS-
Flux NBE 2020) – by assimilating both GOSAT and OCO-
2 from 2010–2018. The dataset is the longest satellite-
constrained NBE product so far. The CMS-Flux frame-
work exploits globally available XCO2 to infer spatially re-
solved total surface–atmosphere exchange. In combination
with constituent fluxes, e.g., gross primary production (GPP),
NBE from CMS-Flux framework has been used to assess the
impacts of El Niño on terrestrial biosphere fluxes (Bowman
et al., 2017; Liu et al., 2017) and the role of droughts in
the North American carbon balance (Liu et al., 2018). These
fluxes have furthermore been ingested into land–surface data
assimilation systems to quantify heterotrophic respiration
(Konings et al., 2019), evaluate structural and parametric un-
certainty in carbon–climate models (Quetin et al., 2020), and
inform climate dynamics (Bloom et al., 2020). We present
the regional NBE and its uncertainty based on three types of
regional masks: (1) latitude and continent, (2) distribution of
biome types (defined by plant functional types) and conti-
nent, and (3) TransCom regions (Gurney et al., 2004).

The outline of the paper is as follows: Sect. 2 describes
methods, and Sects. 3 and 4 describe the dataset and the ma-
jor NBE characteristics, respectively. We extensively evalu-
ate the posterior fluxes and uncertainties by comparing the
posterior CO2 mole fractions against aircraft observations
and the NOAA MBL reference CO2, as well as a gross pri-
mary production (GPP) product (Sect. 5). In Sect. 6, we dis-
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cuss the strength and weakness as well as potential usage of
the data. A summary is provided in Sect. 7, and Sect. 8 de-
scribes the dataset availability and future plan.

2 Methods

2.1 CMS-Flux inversion system

The CMS-Flux framework is summarized in Fig. 1. The cen-
ter of the system is the CMS-Flux inversion system, which
optimizes NBE and air–sea net carbon exchanges with a 4D-
Var inversion system (Liu et al., 2014). In the current system,
we assume no uncertainty in fossil fuel emissions, which is
a widely adopted assumption in global flux inversion sys-
tems (e.g., Crowell et al., 2019), since the uncertainty in fos-
sil fuel emissions at regional scales is substantially less than
the NBE uncertainties. The 4D-Var minimizes a cost function
that includes two terms:

J (x)= (x− xb)TB−1(x− xb)

+ (y−h(x))TR−1(y−h(x)). (1)

The first term measures the differences between the opti-
mized fluxes and the prior fluxes normalized by the prior
flux error covariance B. The second term measures the differ-
ences between observations (y) and the corresponding model
simulations (h(x)) normalized by the observation error co-
variance R. The term h (·) is the observation operator that cal-
culates observation-equivalent model-simulated XCO2 . The
4D-Var uses the adjoint (i.e., the backward integration of the
transport model) (Henze et al., 2007) of the GEOS-Chem
transport model to calculate the sensitivity of the observa-
tions to surface fluxes. The configurations of the inversion
system are summarized in Table 1. We run both the forward
model and its adjoint at 4◦× 5◦ spatial resolution and opti-
mize monthly NBE and air–sea carbon fluxes at each grid
point from January 2010 to December 2018. Inputs for the
system include prior carbon fluxes, meteorological drivers,
and the satellite XCO2 (Fig. 1). Sect. 2.2 (Table 2) describes
the prior flux and its uncertainties, and Sect. 2.3 (Table 3) de-
scribes the observations and the corresponding uncertainties.

2.2 The prior CO2 fluxes and uncertainties

The prior CO2 fluxes include NBE, air–sea carbon exchange,
and fossil fuel emissions (see Table 2). The data sources
for the prior fluxes are listed in Table 7 and provided in
the gridded fluxes. Methods to generate prior ocean carbon
fluxes and fossil fuel emissions are documented in Brix et
al. (2015), Caroll et al. (2020), and Oda et al. (2018). The fo-
cus of this dataset is optimized terrestrial biosphere fluxes, so
we briefly describe the prior terrestrial biosphere fluxes and
their uncertainties.

We construct the NBE prior using the CAR-
DAMOM framework (Bloom et al., 2016). The CAR-
DAMOM data assimilation system explicitly represents the

time-resolved uncertainties in the NBE. The prior estimates
are already constrained with multiple data streams account-
ing for measurement uncertainties following a Bayesian
approach similar to that used in the 4D-variational approach.
We use the CARDAMOM setup as described by Bloom et
al. (2016, 2020) resolved at monthly timescales; data
constraints include Global Ozone Monitoring Experiment 2
(GOME-2) solar-induced fluorescence (Joiner et al., 2013),
MODIS leaf area index (LAI), and biomass and soil carbon
(details on the data assimilation are provided in Bloom et al.,
2020). In addition, mean GPP and fire carbon emissions from
2010–2017 are constrained by FLUXCOM RS+METEO
version 1 GPP (Tramontana et al., 2016; Jung et al., 2017)
and GFEDv4.1s (Randerson et al., 2018), respectively,
both assimilated with an uncertainty of 20 %. We use
the Olsen and Randerson (2004) approach to downscale
monthly GPP and respiration fluxes to 3-hourly timescales,
based on ERA-Interim re-analysis of global radiation and
surface temperature. Fire fluxes are downscaled using the
GFEDv4.1 daily- and diurnal-scale factors on monthly emis-
sions (Giglio et al., 2013). Posterior CARDAMOM NBE
estimates are then summarized as NBE mean and standard
deviation values.

The NBE from CARDAMOM shows net carbon uptake
of 2.3 Gt C/year over the tropics and close to neutral in the
extra-tropics (Fig. B1). The year-to-year variability (i.e., in-
terannual variability, IAV) estimated from CARDAMOM
is generally less than 0.1 g C/m2/d outside of the tropics
(Fig. B1). Because of the weak interannual variability esti-
mated by CARDAMOM, we use the same 2017 NBE prior
for 2018.

CARDAMOM generates uncertainty along with the mean
state. The relative uncertainty over the tropics is generally
larger than 100 %, and the magnitude is between 50 % and
100 % over the extra-tropics (Fig. B2). We assume no corre-
lation in the prior flux errors in either space or time. The tem-
poral and spatial error correlation estimates can in principle
be computed by CARDAMOM. We anticipate incorporating
these error correlations in subsequent versions of this dataset.

2.3 Column CO2 observations from GOSAT and OCO-2

We use the satellite-column CO2 retrievals from the Atmo-
spheric Carbon Observations from Space (ACOS) team for
both GOSAT (version 7.3) and OCO-2 (version 9) (Table 3).
The use of the same retrieval algorithm and validation strat-
egy adopted by the ACOS team to process both GOSAT
and OCO-2 spectra maximizes the consistency between these
two datasets. Both GOSAT and OCO-2 satellites carry high-
resolution spectrometers optimized to return high-precision
measurements of reflected sunlight within CO2 and O2 ab-
sorption bands in the shortwave infrared (Crisp et al., 2012).
Both satellites fly in a sun-synchronous orbit. GOSAT has
a 13:00± 0.15 h local passing time and a 3 d ground track
repeat cycle. The footprint of GOSAT is ∼ 10.5 km in diam-
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Figure 1. Data flow diagram with the main processing steps to generate regional net biosphere exchange (NBE). TER: total ecosystem
respiration; GPP: gross primary production. The green box is the inversion system. The blue boxes are the inputs for the inversion system.
The red boxes are the data outputs from the system. The black box is the evaluation step, and the gray boxes are the future additions to the
product.

Table 1. Configurations of the CMS-Flux atmospheric inversion system.

Model setup Configuration Reference

Inversion general setup Spatial scale Global –
Spatial resolution 4◦ latitude× 5◦ longi-

tude
Time resolution monthly
Minimizer of cost function L-BFGS Byrd et al. (1994), Zhu et

al. (1997)
Control vector Monthly net terrestrial

biosphere fluxes and
ocean fluxes

Transport model Model name GEOS-Chem and its
adjoint

Suntharalingam et al. (2004),
Nassar et al. (2010), Henze et
al. (2007)

Meteorological forcing GEOS-5 (2010–2014)
and GEOS-FP (2015–
2019)

Rienecker et al. (2008)

eter in sun nadir view (Crisp et al., 2012). The daily num-
ber of soundings processed by the ACOS-GOSAT retrieval
algorithm is between a few hundred to∼ 2000. Further qual-
ity control and filtering reduce the ACOS-GOSAT XCO2 re-
trievals to ∼ 100–300 daily (Fig. B5 in Liu et al., 2017).
We only assimilate ACOS-GOSAT land nadir observations
flagged as being good quality, which are the retrievals with
quality flag equal to zero.

OCO-2 has a 13:30 local passing time and 16 d ground
track repeat cycle. The nominal footprints of the OCO-2
are 1.25 km wide and ∼ 2.4 km along the orbit. Because
of its small footprints and sampling strategy, OCO-2 has
many more XCO2 retrievals than ACOS-GOSAT. To reduce
the sampling error due to the resolution differences between
the transport model and OCO-2 observations, we generate

super observations by aggregating the observations within
∼ 100 km (along the same orbit) (Liu et al., 2017). The
super-obing strategy was first proposed in numerical weather
prediction (NWP) to assimilate dense observations (Lorenc,
1981) and is still broadly used in NWP (e.g., Liu and Ra-
bier, 2003). More detailed information about OCO-2 super
observations can be found in Liu et al. (2017). OCO-2 has
four observing modes: land nadir, land glint, ocean glint, and
target. Following Liu et al. (2017), we only use land nadir ob-
servations. The super observations have more uniform spatial
coverage and are more comparable to the spatial representa-
tion of ACOS-GOSAT observations and the transport model
(see Fig. B5 in Liu et al., 2017).

We directly use observational uncertainty provided with
ACOS-GOSAT b7.3 to represent the observation error statis-
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Table 2. Description of the prior fluxes and assumed uncertainties in the inversion system.

Prior fluxes Terrestrial biosphere fluxes Ocean fluxes Fossil fuel emissions

Model name CARDAMOM-v1 ECCO-Darwin ODIAC 2018
Spatial resolution 4◦× 5◦ 0.5◦ 1◦× 1◦

Frequency 3-hourly 3-hourly Hourly
Uncertainty Estimated from CARDAMOM 100 % similar to Liu et al. (2017) No uncertainty
References Bloom et al. (2016, 2020) Brix et al. (2015), Carroll et al. (2020) Oda et al. (2018)

Table 3. Description of observation and evaluation dataset. Data sources are listed in Table 7.

Dataset name and version References

Satellite XCO2 ACOS-GOSAT v7.3 O’Dell et al. (2012)
OCO-2 v9 O’Dell et al. (2018)

Aircraft CO2 observations ObsPack OCO-2 MIP CarbonTracker team (2019)
HIPPO 3–5 Wofsy et al. (2011)
ATom 1–4 Wofsy et al. (2018)
INPE Gatti et al. (2014)
ORCAS Stephens et al. (2017)
ACT-America Davis et al. (2018)

NOAA marine boundary layer
(MBL) reference

NOAA MBL reference Conway et al. (1994)

GPP FLUXSAT GPP Joiner et al. (2018)

Top-down NBE estimates con-
strained by surface CO2

CarbonTracker Europe van der Laan-Luijkx et
al. (2017)
Peters et al. (2010, 2007)

Jena CarbonScope
s10oc_v2020

Rödenbeck et al., 2003

CAMS v18r1 Chevallier et al. (2005)

tics,R, in Eq. (1). The uncertainty of the OCO-2 super obser-
vations is the sum of the variability of XCO2 used to gener-
ate each individual super observation and the mean uncer-
tainty provided in the original OCO-2 retrievals. Kulawik
et al. (2019) showed that both OCO-2 and ACOS-GOSAT
bias-corrected retrievals have a mean bias of−0.1 ppm when
compared with XCO2 from the Total Carbon Column Ob-
serving Network (TCCON) (Wunch et al., 2011), indicating
consistency between ACOS-GOSAT and OCO-2 retrievals.
O’Dell et al. (2018) showed that the OCO-2 XCO2 land nadir
retrievals have an RMSE of ∼ 1.1 ppm when compared to
TCCON retrievals; the differences between OCO-2 XCO2 re-
trievals and surface-CO2-constrained model simulations are
well within 1.0 ppm over most of the locations in the North-
ern Hemisphere (NH), where most of the surface CO2 obser-
vations are located.

The magnitude of observation errors used in R is gener-
ally above 1.0 ppm, larger than the sum of random error and
biases in the observations. The ACOS-GOSAT b7.3 observa-
tions from July 2009–June 2015 are used to optimize fluxes
between 2010 and 2014, and the OCO-2 XCO2 observations

from September 2014–June 2019 are used to optimize fluxes
between 2015 and 2018.

The observational coverage of ACOS-GOSAT and OCO-
2 is spatiotemporally dependent, with more coverage during
summer than winter over the NH and more observations over
midlatitudes than over the tropics (Fig. B3). The variability
(i.e., standard deviation) of the annual total number of ob-
servations from 2010–2014 is within 4 % of the annual mean
number for ACOS-GOSAT. Except for a data gap in 2017
caused by a malfunction of the OCO-2 instrument, the vari-
ability of the annual total number of observations between
2015 and 2018 is within 8 % of the annual mean number for
OCO-2.

2.4 Uncertainty quantification

The posterior flux error covariance is the inverse Hessian,
which incorporates the transport, measurement, and back-
ground errors at the 4D-Var solution (Eq. 13 in Bowman et
al., 2017). Posterior flux uncertainty projected to regions can
be estimated analytically based on the methods described in
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Fisher and Courtier (1995) and Meirink et al. (2008), using
either flux singular vectors or flux increments obtained dur-
ing the iterative optimization (e.g., Niwa and Fujii, 2020). In
this study, we rely on a Monte Carlo approach to quantify
posterior flux uncertainties following Chevallier et al. (2010)
and Liu et al. (2014), which is simpler and widely used.
In this approach, an ensemble of flux inversions is carried
out with an ensemble of priors and simulated observations
to sample the uncertainties of prior fluxes (i.e., B in Eq. 1)
and observations (R in Eq. 1), respectively. The magnitude
of posterior flux uncertainties is a function of assumed uncer-
tainties in prior fluxes and observations, as well as the density
of observations. Since the densities of GOSAT and OCO-
2 observations are stable (Sect. 2.3) within their respective
data record, we characterize the posterior flux uncertainties
for 2010 and 2015 only and assume the flux uncertainties for
2011–2014 are the same as 2010 and flux uncertainties for
2016–2018 are the same as 2015.

2.5 Evaluation of posterior fluxes

Direct NBE estimates from flux towers only provide a spa-
tial representation of roughly 1–3 km (Running et al., 1999),
which is not appropriate to evaluate regional NBE from top-
down flux inversions. Thus, we use two methods to indirectly
evaluate the posterior NBE and its uncertainties. One is to
compare annual NBE anomalies and seasonal cycle to a gross
primary production (GPP) product. The other is to compare
posterior CO2 mole fractions to independent (i.e., not assimi-
lated in the inversion) aircraft and the NOAA MBL reference
observations. The second method has been broadly used to
indirectly evaluate posterior fluxes from top-down flux in-
versions (e.g., Stephens et al., 2007; Liu and Bowman, 2016;
Chevallier et al., 2019; Crowell et al., 2019). In addition
to these two methods, we also compare the NBE seasonal
cycles to three publicly available top-down NBE estimates
that are constrained by surface CO2 observations (Tables 3
and 7).

2.5.1 Evaluation against the independent gross primary
production (GPP) product

NBE is a small residual difference between two large terms:
total ecosystem respiration (TER) and GPP, plus fire. A pos-
itive NBE anomaly (i.e., less uptake from the atmosphere)
has been shown to correspond to reduced GPP caused by
climate anomalies (e.g., Bastos et al., 2018), and the mag-
nitude of net uptake is proportional to GPP in most biomes
observed by flux tower observations (e.g., Falk et al., 2008).
Since NBE is related not only to GPP, the comparison to
GPP only serves as a qualitative measure of the NBE qual-
ity. For example, we would expect the posterior NBE sea-
sonality to be anti-correlated with GPP in the temperate and
high latitudes. In this study, we use FLUXSAT GPP (Joiner
et al., 2018), which is an upscaled GPP product based on

Figure 2. The spatial and temporal distributions of aircraft observa-
tions used in evaluation of posterior NBE. (a) The total number of
aircraft observations between 1–5 km between 2010–2018 at each
4◦× 5◦ grid point. The rectangle boxes show the range of the nine
sub-regions. (b) The total number of monthly aircraft observations
at each longitude as a function of time.

flux tower GPP observations and satellite-based geometry-
adjusted reflectance from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and solar-induced chloro-
phyll fluorescence observations from GOME-2 (Joiner et al.,
2013). Joiner et al. (2018) show that the agreement between
FLUXSAT GPP and GPP from flux towers is better than
other available upscaled GPP products.

2.5.2 Evaluation against aircraft and the NOAA marine
boundary layer (MBL) reference CO2 observations

The aircraft observations used in this study include those
published in OCO-2 MIP ObsPack in August 2019 (Car-
bonTracker team, 2019), which include regular vertical pro-
files from flask samples collected on light aircraft by NOAA
(Sweeney et al., 2015) and other laboratories, regular (2- to 4-
weekly) vertical profiles from the Instituto de Pesquisas Es-
paciais (INPE) over tropical South America (SA) (Gatti et al.,
2014), and vertical profiles from the Atmospheric Tomogra-
phy (ATom, Wofsy et al., 2018), HIAPER Pole-to-Pole Ob-
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servations (HIPPO, Wofsy et al., 2011), the O2/N2 Ratio and
CO2 airborne Southern Ocean Study (ORCAS) (Stephens et
al., 2017), and Atmospheric Carbon and Transport – America
(ACT-America, Davis et al., 2018) aircraft campaigns (Ta-
ble 3). Figure 2 shows the aircraft observation coverage and
density between 2010 and 2018. Most of the aircraft obser-
vations are concentrated over NA. ATom had four (1–4) cam-
paigns between August 2016 and May 2018, spanning four
seasons over the Pacific and Atlantic Ocean. HIPPO had five
(HIPPO 1–5) campaigns over the Pacific, but only HIPPO 3–
5 occurred between 2010 and 2011. HIPPO 1–2 occurred in
2009. Based on the spatial distribution of aircraft observa-
tions, we divide the comparison into nine regions: Alaska,
midlatitude NA, Europe, East Asia, South Asia, Africa, Aus-
tralia, Southern Ocean, and South America (Table 4 and
Fig. 2).

We calculate several quantities to evaluate the posterior
fluxes and their uncertainty with aircraft observations. One is
the monthly mean differences between posterior and aircraft
CO2 mole fractions. The second is the monthly root mean
square errors (RMSEs) over each of the nine sub-regions,
which is defined as

RMSE=

(
1
n

n∑
i=1

(yo
aircraft− y

b
aircraft)

2
i

) 1
2

, (2)

where yo
aircraft is the ith aircraft observation, ybaircraft is the

corresponding posterior CO2 mole fraction sampled at the
ith aircraft location, and n is the number of aircraft obser-
vations over each region. The RMSE is computed over the
n aircraft observations within one of the nine sub-regions.
The mean differences indicate the magnitude of the mean
posterior CO2 bias, while the RMSE includes both random
and systematic errors in posterior CO2. The bias and RMSE
could be due to errors in posterior fluxes, transport, and ini-
tial CO2 concentrations. When errors in transport and initial
CO2 concentrations are smaller than the errors in the poste-
rior fluxes, the magnitude of biases and RMSE indicates the
accuracy of the posterior fluxes.

To evaluate the magnitude of posterior flux uncertainty
estimates, we compare RMSE against the standard devia-
tion of ensemble simulated aircraft observations (Eq. 3) from
the Monte Carlo method (RMSEMC). The quantity RMSEMC
can be written as

RMSEMC =

[
1
nens

nens∑
iens=1

((yb(MC)
aircraft)iens− ȳ

b(MC)
aircraft)

2

] 1
2

. (3)

The variable (yb(MC)
aircraft)iens is the ith ensemble member of sim-

ulated aircraft observations from the Monte Carlo ensemble
simulations, ȳb(MC)

aircraft is the mean, and nens is the total number
of ensemble members. For simplicity, in Eq. (3), we drop the
indices for the aircraft observations used in Eq. (2). In the
absence of errors in transport and initial CO2 concentrations,

when the estimated posterior flux uncertainty reflects the true
posterior flux uncertainty, we show in the Appendix that

RMSE2
=

1
n

n∑
i=1

Ri,i +RMSE2
MC, (4)

where Raircraft is the aircraft observation error variance,
which could be neglected on a regional scale.

We further calculate the ratio r between RMSE and
RMSEMC:

r =
RMSE

RMSEMC
. (5)

A ratio close to one indicates that the posterior flux un-
certainty reflects the true uncertainty in the posterior fluxes
when the transport errors are small.

The presence of transport errors will make the compar-
ison between RMSE and RMSEMC potentially difficult to
interpret. Even when RMSEMC represents the actual uncer-
tainty in posterior fluxes, the RMSE could be larger than
RMSEMC, since the differences between aircraft observa-
tions and model-simulated posterior mole fraction RMSE
could be due to errors in both transport and the posterior
fluxes, while RMSEMC only reflects the impact of posterior
flux uncertainty on simulated aircraft observations. In this
study, we assume the primary sources of RMSE come from
errors in posterior fluxes.

The RMSE and RMSEMC comparison only shows differ-
ences in CO2 space. We further calculate the sensitivity of the
RMSE to the posterior flux using the GEOS-Chem adjoint.
We first define a cost function J as

J = RMSE2. (6)

The sensitivity of the mean-square error to a flux, x, at loca-
tion i and month j is

wi,j =
∂J

∂xi,j
× xi,j . (7)

This sensitivity is normalized by the flux magnitude. Equa-
tion (7) can be interpreted as the sensitivity of the RMSE2 to
a fractional change in the fluxes. We can estimate the time-
integrated magnitude of the sensitivity over the entire assim-
ilation window by calculating

Si =

M∑
j=1

∣∣wi,j ∣∣
P∑
k=1

M∑
j=1

∣∣wk,j ∣∣ , (8)

where P is the total number of grid points and M is the total
number of months from the time of the aircraft data to the be-
ginning of the inversion. The numerator of Eq. (8) quantifies
the absolute total sensitivity of the RMSE2 to the fluxes at the
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Table 4. Latitude and longitude ranges for seven sub-regions.

Region Alaska Midlatitude NA Europe East Asia South Asia

Longitude range 180–125◦W 125–65◦W 5◦W–45◦ E 110–160◦ E 65–110◦ E
Latitude range 58–89◦ N 22–58◦ N 30–66◦ N 22–50◦ N 10◦ S–32◦ N
Region Africa South America Australia Southern Ocean
Longitude range 5◦W–55◦ E 95–50◦W 120–160◦ E 110◦W–40◦ E
Latitude range 2–18◦ N 20◦ S–2◦ N 45–10◦ S 80–30◦ S

ith grid. Normalized by the total absolute sensitivity across
the globe, the quantity Si indicates the relative sensitivity of
RMSE2 to fluxes at the ith grid point. Note that Si is unit-
less, and it only quantifies sensitivity, not the contribution of
fluxes at each grid to RMSE2.

We use the NOAA MBL reference dataset (Table 7) to
evaluate the CO2 seasonal cycle over four latitude bands:
90–60◦ N, 60–20◦ N, 20◦ N–20◦ S, and 20–90◦ S. The MBL
reference is based on a subset of sites from the NOAA Coop-
erative Global Air Sampling Network. Only measurements
that are representative of a large of volume air over a broad
region are considered. In the comparison, we first remove
the global mean CO2 (https://www.esrl.noaa.gov/gmd/ccgg/
trends/global.html, last access: 19 May 2020) from both the
NOAA MBL reference and the posterior CO2.

2.6 Regional masks

We provide posterior NBE from 2010–2018 using three sets
of regional masks (Fig. 3), in addition to the gridded prod-
uct. The regional mask in Fig. 3a is based on a combination
of seven plant function types condensed from MODIS IGBP
and the TransCom 3 regions (Gurney et al., 2004), which is
referred to as Region Mask 1 (RM1) in the following de-
scription. There are 28 regions in Fig. 3a: six in NA, four in
SA, five in Eurasia (north of 40◦ N), three in tropical Asia,
three in Australia, and seven in Africa. The regional mask in
Fig. 3b is based on latitude and continents with 13 regions in
total, which is referred to as Region Mask 2 (RM2) in later
description. Figure 3c is the TransCom regional mask with
11 regions on land.

3 Dataset description

We present the fluxes as globally, latitudinally, and region-
ally aggregated time series. We show the 9-year average
fluxes aggregated into RM1, RM2, and TransCom regions
(Fig. 3). The aggregations are geographic (latitude and conti-
nent) and bio-climatic (biome by continent). For each region
in the geographic and biome aggregations, we show 9-year
mean annual net fluxes and uncertainties and then the an-
nual fluxes for each region as a set of time-series plots. The
month-by-month fluxes and uncertainties are available in tab-
ular format, so the actual aggregated fluxes may be readily

compared to bottom-up extrapolated fluxes and Earth sys-
tem models. Users can also aggregate the gridded fluxes and
uncertainties based on their own defined regional masks. Ta-
ble 5 provides a complete list of all data products available in
the dataset. In Sect. 4, we describe the major characteristics
of the dataset.

4 Characteristics of the dataset

4.1 Global fluxes

The annual atmospheric CO2 growth rate, which is the net
difference between fossil fuel emissions and total annual
sink over land and ocean, is well observed by the NOAA
surface CO2 observing network (https://www.esrl.noaa.gov/
gmd/ccgg/ggrn.php, last access: 12 March 2020). We com-
pare the global total flux estimates constrained by GOSAT
and OCO-2 with the NOAA CO2 growth rate from 2010–
2018 and discuss the mean carbon sink over land and ocean.
Over these 9 years, the satellite-constrained atmospheric
CO2 growth rate agrees with the NOAA observed CO2
growth rate within the uncertainty of the posterior fluxes
(Fig. 4). The mean annual global surface CO2 fluxes (in
Gt C/yr) are derived from the NOAA observed CO2 growth
rate (in ppm/yr) using a conversion factor of 2.124 Gt C/ppm
(Le Quéré et al., 2018). The estimated growth rate has the
largest discrepancy with the NOAA observed growth rate in
2014, which may be due to a failure of one of the two solar
paddles of GOSAT in May 2014 (Kuze et al., 2016). Over
the 9 years, the estimated total accumulated carbon in the
atmosphere is 41.5± 2.4 Gt C, which is slightly lower than
the accumulated carbon based on the NOAA CO2 growth
rate (45.2±0.4 Gt C). On average, we estimate that the NBE
is 2.0± 0.7 Gt C, ∼ 20± 8 % of fossil fuel emissions, and
the ocean sink is 3.0± 0.1 Gt C, ∼ 30± 1 % of fossil fuel
emissions (Fig. 4). These numbers are within the ranges
of the corresponding GCB estimates from Freidlingstein et
al. (2019) (referred to as GCB-2019 hereafter). The mean
NBE and ocean sink from GCB-2019 are 2.0± 1.0 Gt C and
2.5±0.5 Gt C, respectively, which are 21±10 % and 26±5 %
of fossil fuel emissions, respectively, between 2010–2018.
The GCB does not report NBE directly, we calculate NBE
from GCB-2019 as the residual differences between fossil
fuel emissions, ocean net carbon sink, and atmospheric CO2
growth rate. It is also equivalent to (SLAND+BIM−ELUC)
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Figure 3. Three types of regional masks used in calculating regional fluxes. (a) The mask is based on a combination of seven condensed
MODIS IGBP plant functional types, TransCom 3 regions (Gurney et al., 2004), and continents. (b) The mask is based on latitude and
continents. (c) The TransCom region mask.
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Figure 4. Global flux estimation and uncertainties from 2010–2018 (black: fossil fuel; green: posterior land fluxes; blue: ocean fluxes;
magenta: estimated CO2 growth rate; red: the NOAA CO2 growth rate).

reported by Freidlingstein et al. (2019), where SLAND is ter-
restrial sink, BIM is a budget imbalance, and ELUC is land
use change. Over these 9 years, we estimate that NBE ranges
from 3.6 Gt C (∼ 37 % of fossil fuel emissions) in 2011 (a La
Niña year) to only 0.5 Gt C (∼ 5 % of fossil fuel emissions)
in 2015 (an El Niño year), consistent with 3.3 Gt C (35 % of
fossil fuel) in 2011 to 0.9 Gt C (7 % of fossil fuel) in 2015
estimated from GCB-2019. We estimate that the ocean sinks
range from 3.5 Gt C in 2015 to 2.3 Gt C in 2012, which is
larger than the estimated ocean flux ranges of 2.7 in 2016 to
2.5 in 2012 reported by Freidlingstein et al. (2019).

4.2 Mean regional fluxes and uncertainties

Figure 5 shows the 9-year mean regional annual fluxes, un-
certainty, and its variability between 2010–2018. Table 6
shows an example of the dataset corresponding to Fig. 5a,
d, and g. It shows that large net carbon uptake occurs over
Eurasia, NA, and the Southern Hemisphere (SH) midlati-
tudes. The largest net carbon uptake is over the eastern US
(−0.4± 0.1 Gt C (1σ uncertainty)) and high-latitude Eurasia
(−0.5±0.1 Gt C) (Fig. 5a, b). We estimate a net land carbon
sink of 2.5± 0.3 Gt C/yr between 2010–2013 over the NH
mid- to high latitudes, which agrees with 2.4± 0.6 Gt C esti-
mates over the same time periods based on a two-box model
(Ciais et al., 2019). Net uptake in the tropics ranges from
close to neutral in tropical South America (0.1±0.1 Gt C) to
a net source in northern Africa (0.6± 0.2 Gt C) (Fig. 5a, b).
The tropics exhibit both large uncertainty and large variabil-
ity. The NBE interannual variabilities over northern Africa
and tropical SA are 0.5 and 0.3 Gt C, respectively, which
are larger than the 0.2 and 0.1 Gt C uncertainty (Fig. 5d,

e). We also find collocation of regions with large NBE and
FLUXSAT GPP interannual variability (Fig. B4). The avail-
ability of flux estimates over the broadly used TransCom re-
gions makes it easy to compare to previous studies. For ex-
ample, we estimate that the annual net carbon uptake over
North America is 0.7± 0.1 Gt C/yr with 0.2 Gt C variability
between 2010 and 2018, which agrees with 0.7±0.5 Gt C/yr
estimates based on surface CO2 observations between 1996–
2007 (Peylin et al., 2013).

4.3 Interannual variabilities and uncertainties

Here we present hemispheric and regional NBE interannual
variabilities and corresponding uncertainties (Figs. 6 and 7,
and corresponding tabular data files). In Fig. 6, we further di-
vide the globe into three large latitude bands: tropics (20◦ S–
20◦ N), NH extra-tropics (20–85◦ N), and SH extra-tropics
(60–20◦ S). The tropical NBE contributes 90 % to the global
NBE interannual variability (IAV). The IAV of NBE over the
extra-tropics is only about one-third of that over the trop-
ics. The dominant role of tropical NBE in the global IAV of
NBE agrees with Fig. 4 in Sellers et al. (2018). The top-down
global annual NBE anomaly is within the 1.0 Gt C/yr uncer-
tainty of residual NBE (i.e., fossil fuel–atmospheric growth–
ocean sink) calculated from GCB-2019 (Friedlinston et al.,
2019) (Fig. 6).

Figure 7 shows the annual NBE anomalies and uncertain-
ties over a few selected regions based on RM1. Positive NBE
indicates reduced net uptake relative to the 2010–2018 mean,
and vice versa. Also shown in Fig. 7 are GPP anomalies es-
timated from FLUXSAT. Positive GPP indicates increased
productivity, and vice versa. GPP drives NBE in years where
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Figure 5. Mean annual regional NBE (a, b, c), uncertainty (d, e, f), and variability between 2010–2018 (g, h, i) with the three types of
regional masks (Fig. 3). The first column uses a region mask based on plant functional types (PFTs) and continents (RM1). The second
column uses a region mask based on latitude and continents (RM2), and the third column uses a TransCom mask.

Figure 6. The NBE interannual variability over the globe (black), the tropics (20◦ S–20◦ N), SH midlatitudes (60–20◦ S), and NH midlat-
itudes (20–90◦ N). For reference, the residual net land carbon sink from GCB-2019 (Friedlingstein et al., 2019) and its uncertainty is also
shown (magenta).

anomalies are inversely correlated (e.g., positive NBE and
negative GPP), and TER drives NBE in years where anoma-
lies of GPP and NBE have the same sign or are weakly
correlated. Over tropical SA evergreen broadleaf forest, the
largest positive NBE anomalies occur during the 2015–2016

El Niño, corresponding to large reductions in productivity,
consistent with Liu et al. (2017). In 2017, the region sees
increased net uptake and increased productivity, implying a
recovery from the 2015–2016 El Niño event. The variabil-
ity in GPP explains 80 % of NBE variability over this region
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Figure 7. The NBE interannual variability over six selected regions. Blue: annual NBE anomaly and its uncertainties. Green: annual GPP
anomaly based on FLUXSAT.

over the 9-year period. In Australian shrubland, our inver-
sion captures the increased net uptake in 2010 and 2011 due
to increased precipitation (Poulter et al., 2014) and increased
productivity. The variability in GPP explains 70 % of the in-
terannual variability in NBE. Over tropical South America
savanna, the NBE interannual variability also shows strong
negative correlations with GPP, with GPP explaining 40 %
of NBE interannual variability. Over the midlatitude regions
where the IAV is small, the R2 between GPP and NBE is
also small (0.0–0.5) as expected. But the increased net uptake
generally corresponds to increased productivity. We also do
not expect perfect negative correlation between NBE anoma-
lies and GPP anomalies, as discussed in Sect. 2.5. The com-
parison between NBE and GPP provides insight into when
and where net fluxes are likely dominated by productivity.

4.4 Seasonal cycle

We provide the regional mean NBE seasonal cycle, its vari-
ability, and uncertainty based on the three regional masks
(Table 5). Here we briefly describe the characteristics of the
NBE seasonal cycle over the 11 TransCom regions and its
comparison to three independent top-down inversion results
based on surface CO2, which are CT-Europe (e.g., van der

Laan-Luijkx et al., 2017), CAMS (Chevallier et al., 2005),
and Jena CarbonScope (Rödenbeck et al., 2003). CMS-Flux
NBE differs the most from surface-CO2-based inversions
over the South American tropical, northern Africa, tropical
Asia, and NH boreal regions. The CMS-Flux NBE has a
larger seasonal cycle amplitude over tropical Asia and north-
ern Africa, where the surface CO2 constraint is weak, while
it has a smaller seasonal cycle amplitude over the boreal
region; this may be due to the sparse satellite observations
over the high latitudes and weaker seasonal amplitude of the
prior CARDAMOM fluxes. The comparison to FLUXSAT
GPP can only qualitatively evaluate the NBE seasonal cycle
but cannot differentiate among different estimates. In gen-
eral, the months that have larger productivity correspond to
months with a net uptake of carbon from the atmosphere, es-
pecially over the NH (Fig. 8). More research is still needed
to understand the seasonal cycles of NBE, including its phase
(i.e., transition from source to sink) and amplitude (peak-to-
trough difference), as well as its relationships with GPP and
respiration.
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Table 5. List of the data products.

Product Spatial resolution Temporal resolution Data Sample data description
when applicable format in the text

Total fossil fuel, ocean, and
land fluxes

Global Annual csv Fig. 4 (Sect. 4.1)

Climatology mean NBE, vari-
ability, and uncertainties

PFT- and continent-based 28 re-
gions

n/a csv Fig. 5 (Sect. 4.2)

Geographic-based 13 regions csv
TransCom regions csv

Hemispheric NBE and uncer-
tainties

NH (20–90◦ N), tropics (20◦ S–
20◦ N), and SH (60–20◦ S)

Annual csv Fig. 6 (Sect. 4.3)

NBE variability and uncertain-
ties

PFT- and continent-based 28 re-
gions

Annual csv Fig. 7 (Sect. 4.3)

Geographic-based 13 regions csv
TransCom regions csv

NBE seasonality and its uncer-
tainties

PFT- and continent-based 28 re-
gions

Monthly csv Fig. 8 (Sect. 4.4)

Geographic-based 13 regions csv
TransCom regions csv

Monthly NBE and uncertainties PFT- and continent-based 28 re-
gions

Monthly csv n/a

Geographic-based 13 regions csv
TransCom csv

Gridded posterior NBE, air–sea
carbon exchanges, and uncer-
tainties

4◦ (latitude)× 5◦ (longitude) Monthly NetCDF n/a

Gridded prior NBE and air–sea
carbon exchanges

4◦ (latitude)× 5◦ (longitude) Monthly and 3-hourly NetCDF n/a

Gridded fossil fuel emissions 4◦ (latitude)× 5◦ (longitude) Monthly mean and hourly NetCDF n/a

Region masks PFT- and continent-based 28 re-
gions

n/a csv Fig. 3 (Sect. 2.4)

Geographic-based 13 regions
TransCom regions

n/a: not applicable.

5 Evaluation against independent aircraft CO2
observations

5.1 Comparison to aircraft observations over nine
sub-regions

In this section, we evaluate posterior CO2 against aircraft
observations over the nine sub-regions listed in Table 4 and
Fig. 2. We compare the posterior CO2 to aircraft CO2 mole
fractions above the planetary boundary layer and up to the
mid-troposphere (1–5 km) at the locations and time of air-
craft observations, and then we calculate the monthly mean
error statistics between 1–5 km. The aircraft observations be-
tween 1–5 km are more sensitive to regional fluxes (Liu et al.,
2015; Liu and Bowman, 2016). Scatter plots in the left col-

umn of Fig. 9 show regional monthly mean detrended aircraft
CO2 observations (x axis) versus the simulated detrended
posterior CO2 (y axis). We used the NOAA global CO2 trend
to detrend both the observations and model-simulated mole
fractions (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_
trend_gl.txt, last access: 19 May 2020). Over the NH re-
gions (Fig. 9a, b, c, d) and Africa (Fig. 9f), the R2 is greater
than or equal to 0.9, which indicates that the posterior CO2
captures the observed seasonality. The low R2 (0.7) value
in South Asia is caused by one outlier. Over the Southern
Ocean, Australia, and SA, the R2 is between 0.2 and 0.4, re-
flecting weaker CO2 seasonality over these regions and pos-
sible bias in ocean flux estimates (see discussions later).

The right panel of Fig. 9 shows the monthly mean dif-
ferences between posterior CO2 and aircraft observations

https://doi.org/10.5194/essd-13-299-2021 Earth Syst. Sci. Data, 13, 299–330, 2021

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_trend_gl.txt
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_trend_gl.txt


312 J. Liu et al.: CMS-Flux NBE 2020

Table 6. The 9-year mean regional annual fluxes, uncertainties, and variability. Regions are based on the mask shown in Fig. 5a (Figure5.csv).
Unit: Gt C/yr.

Region name (Figure4.csv) Mean NBE Uncertainty Variability

NA shrubland −0.14 0.02 0.05
NA needleleaf forest −0.22 0.04 0.06
NA deciduous forest −0.2 0.04 0.07
NA crop natural vegetation −0.41 0.06 0.18
NA grassland −0.04 0.03 0.03
NA savanna 0.03 0.02 0.03
Tropical South America (SA) evergreen broadleaf 0.04 0.1 0.28
SA savanna −0.09 0.06 0.18
SA cropland −0.07 0.03 0.07
SA shrubland −0.03 0.02 0.08
Eurasia shrubland savanna −0.44 0.07 0.14
Eurasia needleleaf forest −0.41 0.07 0.12
Europe cropland −0.46 0.09 0.16
Eurasia grassland 0.02 0.08 0.13
Asia cropland −0.37 0.13 0.08
India 0.14 0.09 0.14
Tropical Asia savanna −0.12 0.11 0.08
Tropical Asia evergreen broadleaf −0.09 0.09 0.12
Australian savanna grassland −0.11 0.02 0.09
Australian shrubland −0.07 0.01 0.05
Australian cropland −0.01 0.01 0.03
African northern shrubland 0.04 0.02 0.03
African grassland 0.03 0.01 0.01
African northern savanna 0.54 0.15 0.49
African southern savanna −0.27 0.18 0.33
African evergreen broadleaf 0.1 0.07 0.09
African southern shrubland 0.01 0.01 0.01
African desert 0.06 0.01 0.04

(black), RMSE (Eq. 2) (blue line), and RMSEMC (Eq. 3) (red
line). The magnitude of the mean differences between the
posterior CO2 and aircraft observations is less than 0.5 ppm,
except over the Southern Ocean, which has a −0.8 ppm bias.
The mean differences between posterior CO2 and aircraft ob-
servations are primarily caused by errors in transport and
biases in assimilated satellite observations, while RMSEMC
is the internal flux error projected into mole fraction space.
With the exception of the Southern Ocean, for all regions
mean bias is significantly less than RMSEMC, which sug-
gests that transport and data bias in satellite observations
may be much smaller than the internal flux errors. Note that
RMSEMC is smaller than RMSE over the first ∼ 6 months of
simulation, which may indicate a dominant impact of errors
in transport and initial CO2 concentration on posterior CO2
RMSE.

As demonstrated in Sect. 2.5, comparing RMSE and
RMSEMC is a test of the accuracy of posterior flux uncer-
tainty estimate. Over all the regions, the differences between
RMSE and RMSEMC are smaller than 0.3 ppm, which in-
dicates a comparable magnitude between empirical poste-
rior flux uncertainty estimates from the Monte Carlo method

and the actual posterior flux uncertainty over the regions that
these aircraft observations are sensitive to. These aircraft ob-
servations are sensitive to NBE over a broad region as shown
in Fig. B5. Note that Figs. B5 and B8–B10 are calculated
using Eq. (8).

5.2 Comparison to aircraft observations from ATom and
HIPPO aircraft campaigns

Figures 10 and 11 show comparisons to aircraft CO2 from the
ATom 1–4 campaigns spanning four seasons and HIPPO 3–5
over the Pacific Ocean between 1–5 km. The vertical curtain
comparisons are shown in Figs. B6 and B7. The mean dif-
ferences between posterior CO2 and aircraft CO2 are quite
uniform (within 0.5 ppm) throughout the column, except over
the Atlantic Ocean during ATom 1–2 and the Southern Ocean
during ATom 1 (Figs. S6 and S7). Also shown in Figs. 10
and 11 are RMSEs of each aircraft campaign (middle col-
umn) and the ratio between RMSE and RMSEMC (right col-
umn). A ratio larger than one between RMSE and RMSEMC
indicates errors in either transport or underestimation of the
posterior flux uncertainty (Sect. 2.5).
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Figure 8. The NBE climatological seasonality over TransCom regions. The seasonal cycle is calculated over 2010–2017 since CT-Europe
only covers until 2017. Black: CMS-Flux NBE and its uncertainty; blue shaded: mean NBE seasonality based on surface CO2 inversion
results from CAMS, CT-Europe, and Jena CarbonScope; red: CAMS; magenta: CT-Europe; green: Jena CarbonScope. The names of each
region are shown on individual subplots.

Over most of the flight tracks during ATom 1–4, the pos-
terior CO2 errors are between −0.5 and 0.5 ppm, the RMSE
is smaller than 0.5 ppm, and the ratio between RMSE and
RMSEMC is smaller than or equal to 1. However, off the coast
of Africa during ATom 1 and 2 and over the Southern Ocean
during ATom 1, the mean differences between posterior CO2
and aircraft observations are larger than 0.5 ppm. During
ATom 1 (29 July–23 August 2016), the mean differences be-
tween posterior CO2 and aircraft CO2 show large negative
biases, while during ATom 2 (26 January–21 February 2017)
it has large positive biases off the coast of Africa. The ra-
tio between RMSE and RMSEMC is significantly larger than
one over these regions, which indicates an underestimation
of posterior flux uncertainty or a large magnitude of trans-
port errors during that time period.

We further run adjoint sensitivity analyses over the three
regions with ratios significantly larger than one to identify
the posterior fluxes that could contribute to the large dif-
ferences between posterior CO2 and aircraft observations
during ATom 1–2. We run the adjoint model backward for
3 months from the observation time and calculate Si as de-

fined in Eq. (7). The adjoint sensitivity analysis indicates that
the large mismatch between aircraft observations and model
simulations during ATom 1 and -2 off the coast of Africa
could be potentially driven by errors in posterior fluxes over
tropical Africa (Fig. B8). The large posterior CO2 errors and
large ratio between RMSE and RMSEMC over the Southern
Ocean during ATom 1 are driven by flux errors in oceanic
fluxes around 30◦ S and over Australia (Fig. B9), which also
contribute to the large errors in comparison to aircraft obser-
vations over the Southern Ocean shown in Fig. 9h.

During the HIPPO aircraft campaigns, the absolute errors
in posterior CO2 across the Pacific are less than 0.5 ppm,
except over the Arctic Ocean and over Alaska in summer
(Fig. 11), consistent with Fig. 10a. The large errors over the
Arctic Ocean may be related to both transport errors and the
accuracy of high-latitude fluxes. Byrne et al. (2020) provide a
brief summary of the challenges in simulating CO2 over high
latitudes using a transport model with 4◦× 5◦ resolution. In-
creasing the resolution of the transport model may reduce
transport errors over high latitudes.
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Figure 9. Comparison between posterior CO2 mole fraction and aircraft observations. Left panel: detrended posterior CO2 (y axis) vs. de-
trended aircraft CO2 (x axis) over nine regions. The dashed line is the one-to-one line; right panel: the differences between posterior CO2
and aircraft CO2 as a function of time (black), RMSE (blue; unit: ppm), and RMSEMC (red).

We run adjoint sensitivity analyses over the high-latitude
regions where the differences between posterior CO2 and air-
craft observations are large (Fig. 11). The adjoint sensitivity
analysis (Fig. B10) shows that the large errors over these re-
gions could be driven by errors in fluxes over Alaska as well
as broad NH midlatitude regions.

5.3 Comparison to MBL reference sites

Since MBL reference sites sample air over broad regions, the
comparison to detrended MBL observations indirectly eval-
uates the NBE over large regions. Figure 12 shows the com-
parison over four latitude bands. The uncertainty of poste-
rior CO2 concentration is from the MC method. Except over
90–20◦ S, the differences between observations and poste-
rior CO2 are within posterior CO2 uncertainty estimates. The
posterior CO2 concentrations have the smallest bias and ran-
dom errors over the tropical latitude band. The R2 is above
0.9 over NH mid- to high latitudes, consistent with Fig. 9.

Over 90–20◦ S, the posterior CO2 has positive bias in 2013
and 2014 and negative bias and much weaker seasonality be-
tween January 2015–December 2018 compared to observa-
tions, which indicates possible biases in Southern Ocean flux
estimates (Fig. B11). The low bias over the Southern Ocean
is consistent with aircraft comparison during the OCO-2 pe-
riod (Figs. 9–10, B9). The changes of performance after 2013
over 90–20◦ S are most likely due to the prior ocean carbon
fluxes. Evaluation of ocean carbon fluxes is out of the scope
of this study. Note that since we only assimilate land nadir
XCO2 observations in this study due to known issues with the
OCO-2 v9 ocean glint observations (O’Dell et all., 2018), the
constraint of top-down inversion on air–sea CO2 exchanges
is weak (not shown). The ocean glint observations of OCO-2
v10 observations have been improved compared to v9 (Os-
terman et al., 2020). We expect to have a better estimate of
ocean carbon fluxes over the Southern Ocean when assimi-
lating both land and ocean XCO2 observations from GOSAT
and OCO-2 in the future.
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Figure 10. Left column: the mean differences between posterior CO2 and aircraft observations from ATom 1–4 aircraft campaigns between
1–5 km (a–d). Middle column: the root mean square errors (RMSEs) between aircraft observations and posterior CO2 between 1–5 km. The
color bar is the same as in the left column. Right column: the ratio between RMSE and RMSEMC based on ensemble CO2 from the Monte
Carlo uncertainty estimation method.
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Figure 11. Left column: the mean differences between posterior CO2 and aircraft observations from HIPPO 3–5 aircraft campaigns between
1–5 km (a–c) (unit: ppm). The time frame of each campaign is in the figure. Middle column: the root mean square errors (RMSEs) between
aircraft observations and posterior CO2 between 1–5 km (unit: ppm). The color bar is the same as in the left column. Right column: the ratio
between RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo method.

6 Discussion

Evaluation of posterior flux uncertainty estimates by com-
paring posterior CO2 error statistics (RMSE, Eq. 2) with
the standard deviation of ensemble simulated CO2 from the
Monte Carlo uncertainty quantification method (RMSEMC,
Eq. 3) has its limitations. A comparable RMSE and
RMSEMC indicates a small magnitude of transport errors and
reasonable posterior uncertainty estimates. A much larger
RMSE than RMSEMC could be due to errors in either trans-
port or underestimation of the posterior flux uncertainty or
both. The presence of transport errors makes the interpreta-
tion of the RMSE and RMSEMC complex. A better, indepen-

dent quantification of transport errors is needed in the future
in order to rigorously use the comparison statistics between
aircraft observations and posterior CO2 to diagnose flux er-
rors.

Comparison to aircraft observations shows regionally de-
pendent accuracy in posterior fluxes. ATom observations
show seasonally dependent biases over the Atlantic, imply-
ing possible seasonally dependent errors in posterior fluxes
over northern to central Africa. Therefore, we recommend
combining NBE with other ancillary variables, e.g., GPP, to
better understand carbon dynamics. Combining NBE with
component carbon fluxes can shed light on the processes con-
trolling the changes of NBE (e.g., Bowman et al., 2017; Liu
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Figure 12. Comparison between posterior CO2 and the NOAA marine boundary layer (MBL) reference sites. Black: observations averaged
over each latitude band; blue and shaded area: posterior CO2 and its uncertainty. The global mean CO2 (https://www.esrl.noaa.gov/gmd/ccgg/
trends/global.html, last access: 29 May 2020) was subtracted from both the NOAA MBL reference and posterior CO2 before the comparison.

et al., 2017). NBE can be written as

NBE= TER+fire−GPP, (9)

where TER is total ecosystem respiration (TER) (Fig. 1).
Satellite carbon monoxide (CO) observations provide con-
straints on fire emissions (Arellano et al., 2006; van der Werf,
2008; Jones et al., 2009; Jiang et al., 2017; Bowman et al.,
2017; Liu et al., 2017). In addition to the FLUXSAT GPP
product used here, solar-induced chlorophyll fluorescence
(SIF) can be directly used as a proxy for GPP (e.g., Para-
zoo et al., 2014). Once NBE, fire, and GPP carbon fluxes are
quantified, TER can be calculated as a residual (e.g., Bow-
man et al., 2017; Liu et al., 2017, 2018).

Because of the diffusive manner of atmospheric transport
and the limited observation coverage, the gridded flux values
are not independent from each other. The errors and uncer-
tainties of the fluxes at each individual grid point are larger
than regional aggregated fluxes. Interpreting NBE at each in-
dividual grid point requires caution. But at the same time,
satellite CO2-constrained NBE can potentially resolve fluxes
at spatial scales smaller than the traditional TransCom re-
gions. Here, we provide regional fluxes at two predefined re-
gions in addition to TransCom. We encourage data users to
use the data at appropriate regional scales.

The variability and changes are more robust than the mean
NBE fluxes from top-down flux inversions in general (Baker
et al., 2006b). The errors in transport and potential biases in

observations are mostly stable in time, so biases in the mean
fluxes tend to cancel out when computing interannual vari-
ability and year-to-year changes (Schuh et al., 2019; Crowell
et al., 2019).

The global fossil fuel emissions have ∼ 5 % uncertainty
(GCB-2019). However, they are regionally inhomogeneous.
We neglect the uncertainties in fossil fuel emissions, which
will introduce additional error in regions of rapid fossil fuel
growth or in areas with noisier statistics (Yin et al., 2019).
In the future, we will account for uncertainties in fossil fuel
emissions.

The posterior NBE includes all types of land fluxes except
fossil fuel emissions, which is equivalent to the sum of land
use change fluxes, land sinks, and residual imbalance pub-
lished by the GCB-2019. The sum of regional NBE and fossil
fuel emissions is an index of the contribution of any specific
region to the changes of the atmospheric CO2 growth rate.
Since the predicted changes of NBE in the future have large
uncertainties (Lovenduski and Bonan, 2017), quantifying re-
gional NBE is critical to monitoring regional contributions to
atmospheric CO2 growth rate and ultimately to guiding miti-
gation to limit warming to 1.5 ◦C above pre-industrial levels
(IPCC, 2021).
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Table 7. Lists of data sources used in producing and evaluating the posterior NBE product.

Data name Data source

ECCO-Darwin ocean fluxes https://doi.org/10.25966/4v02-c391 (last access: 10 June 2020)
CARDAMOM NBE and uncertainties https://doi.org/10.25966/4v02-c391 (last access: 10 June 2020)
ODIAC http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html (last access: 15 September 2019)
GOSAT b7.3 https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2S.7.3/ (last ac-

cess: 4 October 2019)
OCO-2 b9 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2 (last access: 4 October 2019)
ObsPack https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php (last access: 4 October 2019)
ATom 1–4 https://daac.ornl.gov/ATOM/guides/ATom_merge.html (last access: 10 March 2020)
HIPPO 3–5 https://www.eol.ucar.edu/field_projects/hippo (last access: 10 March 2020)
INPE https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=_obspack_co2_1_INPE_

RESTRICTED_v2.0_2018-11-13 (last access: 10 March 2020) and
FLUXSAT GPP https://gs614-avdc1-pz.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ (last access: 10 March 2020)
NOAA MBL reference https://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html (last access: 1 September 2020)
CarbonTracker Europe NBE https://www.carbontracker.eu/download.shtml (last access: 1 September 2020)
Jena CarbonScope NBE http://www.bgc-jena.mpg.de/CarboScope/?ID=s (last access: 1 September 2020)
CAMS NBE https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/?date_month_slider=2009-12,

2018-12&param=co2&datatype=ra&version=v17r1&frequency=mm&quantity=surface_flux
(last access: 1 September 2020)

Posterior NBE https://doi.org/10.25966/4v02-c391 (last access: 10 June 2020)

7 Data availability

The CMS-Flux NBE 2020 data are available at
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).
The regional aggregated fluxes are provided as csv files
with file size ∼ 10 MB, and the gridded data are provided in
NetCDF format with file size∼ 1.4 GB. The full ensemble of
posterior fluxes used to estimate posterior flux uncertainties
is provided in NetCDF format with file size ∼ 30 MB.
Table 7 lists the sources of the data used in producing and
evaluating the CMS-Flux NBE 2020 data product.

The quality of XCO2 from satellite observations is con-
tinually improving. The OCO-2 v10 XCO2 was released in
June 2020 along with the full GOSAT record (June 2009–
January 2020) processed by the same retrieval algorithm as
OCO-2. Continuing to improve the quality of satellite ob-
servations and extending the NBE estimates beyond 2018 in
the future will help us better understand interactions between
the terrestrial biosphere carbon cycle and climate and pro-
vide support in monitoring the regional contributions to the
changes of atmospheric CO2. Thus, we plan a future update
of the dataset on an annual basis, with a goal to support cur-
rent scientific research and policy making.

8 Summary

Terrestrial biosphere carbon fluxes are the largest contrib-
utor to the interannual variability of the atmospheric CO2
growth rate. Therefore, monitoring its change at regional
scales is essential for understanding how it responds to CO2,
climate, and land use. Here, we present the longest terrestrial

flux estimates and their uncertainties constrained by XCO2

from 2010–2018 on self-consistent global and regional scales
(CMS-Flux NBE 2020). We qualitatively evaluate the NBE
estimates by comparing its variability with GPP variability
and provide a comprehensive evaluation of posterior fluxes
and the uncertainties by comparing posterior CO2 with in-
dependent CO2 observations from aircraft and the NOAA
MBL reference sites. This dataset can be used in understand-
ing controls on regional NBE interannual variability, evalu-
ating biogeochemical models, and supporting the monitoring
of regional contributions to changes in atmospheric CO2.
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Appendix A

As shown in Kalnay (2003),

RMSE2
=

1
n

n∑
i=1

(Ri,i + (HPaHT )i,i), (A1)

where Ri,i is the ith aircraft observation error variance, and
Pa is the posterior flux error covariance. The H is the lin-
earized observation operator, which transfers posterior flux
errors to aircraft observation space, and HT is its adjoint. In
the Monte Carlo method, the posterior flux error covariance
Pa is approximated by

Pa =
1
nens

XaXaT , (A2)

where Xa is the ensemble perturbations written as

Xa = xa − x̄a, (A3)

where xa is the ensemble posterior fluxes from the Monte
Carlo simulations, and x̄a is the mean.

Therefore, HPaHT can be written as

HPaHT
=

1
nens
[h(xa)−h(x̄a)][h(xa)−h(x̄a)]T . (A4)

The sum of diagonal elements in the right-hand side of
Eq. (A4) is the same as the definition of RMSEMC in the
main text.

Therefore, when the posterior flux uncertainty estimated
by the Monte Carlo method represents the actual uncertainty
in posterior fluxes, Eq. (A1) can be written as

RMSE2
=

1
n

n∑
i=1

Ri,i +RMSE2
MC. (A5)

It is the same as Eq. (4) in the main text.
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Appendix B

In this Appendix, we include figures to support the main text.

Figure B1. Annual mean net biosphere exchanges from CARDAMOM (a) and its interannual variability between 2010 and 2017 (b).

Figure B2. An example of absolute mean NBE (a) and its uncertainty (b) simulated by CARDAMOM. This is for July 2010.
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Figure B3. Daily number of ACOS-GOSAT b7.3 (a) and OCO-2 super observations (b) assimilated in the top-down inversions.

Figure B4. Regional mean FLUXSAT GPP and its variability between 2010–2018. (a, b, c) Regional mean GPP aggregated with the three
regional masks; (d, e, f) GPP variability between 2010–2018. Unit: Gt C/yr.
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Figure B5. The relative sensitivity of root mean square errors (RMSEs) of posterior CO2 (Fig. 9 in the main text) relative to NBE at every
grid point. The adjoint model is carried out over September 2014–December 2018.

Figure B6. Differences between posterior CO2 and ATom 1–4 aircraft CO2 observations over the Pacific (A1–D1) and Atlantic Ocean (A2–
D2) as a function of latitude and altitude (unit: km). Unit: ppm.
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Figure B7. Differences between posterior CO2 and HIPPO 3–5 aircraft CO2 observations over the Pacific (A–C) as a function of latitude
and altitude. Unit: ppm.
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Figure B8. The relative sensitivity of RMSE of posterior CO2 to NBE over land and air–sea net carbon exchange over ocean at every grid
point. The RMSE is calculated against aircraft CO2 observations from ATom 1 (a) and ATom 2 (b) between 40◦W–0◦, 20◦ S–20◦ N. The
adjoint model is carried out over June–August 2016 (a) and December 2016–February 2017 (b). Unit: %.

Figure B9. The relative sensitivity of RMSE of posterior CO2 to NBE over land and air–sea net carbon exchange over ocean at every grid
point. The RMSE is calculated against aircraft CO2 observations from ATom 1 between 175–20◦W, 80–30◦ S. The adjoint model is carried
out over June–August 2016. Unit: %.

Figure B10. The relative sensitivity of RMSE of posterior CO2 to NBE over land and air–sea net carbon exchange over ocean at every
grid point. The RMSE is calculated against aircraft CO2 observations from HIPPO 4 between 180–130◦W, 50–90◦ N. The adjoint model is
carried out over April–July 2011. Unit: %.
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Figure B11. Monthly posterior air–sea CO2 exchanges between 85–30◦ S. Unit: g C/m2/d.
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