72 research outputs found

    Total irredundance in graphs

    Get PDF
    AbstractA set S of vertices in a graph G is called a total irredundant set if, for each vertex v in G,v or one of its neighbors has no neighbor in S−{v}. We investigate the minimum and maximum cardinalities of maximal total irredundant sets

    The domination parameters of cubic graphs

    Get PDF
    Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers k 1, k 2, k 3, k 4, k 5 there exists a cubic graph G satisfying the following conditions: γ(G) - ir(G) ≤ k 1, i(G) - γ(G) ≤ k 2, β0(G) - i(G) > k 3, Γ(G) - β0(G) - k 4, and IR(G) - Γ(G) - k 5. This result settles a problem posed in [9]. © Springer-Verlag 2005

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    Independence, Domination, Irredundance, and Forbidden Pairs

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1209/thumbnail.jp

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Vertex-Edge and Edge-Vertex Parameters in Graphs

    Get PDF
    The majority of graph theory research on parameters involved with domination, independence, and irredundance has focused on either sets of vertices or sets of edges; for example, sets of vertices that dominate all other vertices or sets of edges that dominate all other edges. There has been very little research on ``mixing\u27\u27 vertices and edges. We investigate several new and several little-studied parameters, including vertex-edge domination, vertex-edge irredundance, vertex-edge independence, edge-vertex domination, edge-vertex irredundance, and edge-vertex independence
    • …
    corecore