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Abstract

A set S of vertices in a graph G is called a total irredundant set if, for each vertex v in G; v
or one of its neighbors has no neighbor in S −{v}. We investigate the minimum and maximum
cardinalities of maximal total irredundant sets.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let G=(V; E) be a graph with order |V |= n. For any vertex v ∈ V , the open neigh-
borhood of v, denoted by N (v), is the set {u ∈ V |uv ∈ E} and its closed neighborhood
N [v] =N (v)∪ {v}. For a set S ⊆V , its open neighborhood N (S)=

⋃
v∈S N (v) and its

closed neighborhood N [S] =N (S) ∪ S. The private neighbor set of a vertex v with
respect to a set S; denoted as PN [v; S], is the set N [v]− N [S − {v}]. If PN [v; S] �= ∅
for some vertex v and some S ⊆V , then every vertex of PN [v; S] is called a private
neighbor of v with respect to S; or just an S-pn.
A set S is a dominating set if N [S] =V , or equivalently, every vertex in V −S has a

neighbor in S; and S is a total dominating set if N (S)=V , or equivalently, every vertex
in V has a neighbor in S. The domination number �(G) (total domination number
�t(G), respectively) is the minimum cardinality of any dominating set (total dominating
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set, respectively) of G; while the upper (total) domination number �(G) (�t(G)) is
the maximum cardinality of any minimal (total) dominating set.
A set S is an irredundant set if for every vertex v ∈ S; PN [v; S] �= ∅ (every ver-

tex in S has a private neighbor with respect to S). The irredundance number ir(G)
is the minimum cardinality of any maximal irredundant set of G, while the upper
irredundance number IR(G) is the maximum cardinality of any such set.
To date, an estimated 1500 papers have been written on domination in graphs. The

literature on this subject has been surveyed and detailed in the two books by Haynes
et al. [11,12].
It is felt by some researchers that a deeper understanding of the concept of dom-

ination in graphs can best be obtained by studying the more general concept of ir-
redundance in graphs. This belief stems from the observation, Hrst made in 1978 by
Cockayne et al. [4], that a set is minimal dominating if and only if it is irredun-
dant and dominating. It was subsequently observed by BollobIas and Cockayne [2]
that the class of minimal dominating sets in G is contained within the broader class
of maximal irredundant sets in G. To date, an estimated 100 research papers have
explored the properties of irredundant sets in graphs (e.g. [1,3,6–9,14]). In fact, a re-
search monograph on irredundance in graphs, by Cockayne and Mynhardt, is currently
in preparation [5]. This paper is also motivated by the belief that a better under-
standing of irredundant sets will shed light on properties of dominating sets, and in
particular, that the study of total irredundance will shed light on the concept of total
domination.
Hedetniemi et al. [13] deHned a set S to be a total irredundant set if for every

vertex v ∈ V; PN [v; S] �= ∅ (every vertex in V has a private neighbor with respect to
S). The total irredundance number irt(G) and the upper total irredundance number
IRt(G) are deHned as expected. If a graph G has no total irredundant set, then we
deHne irt(G) and IRt(G) to be 0. Note that an irredundant set S is a maximal total
irredundant set if and only if every vertex of N (S)−S has a neighbor in V −N [S]. In
particular, a total irredundant set is a dominating set if and only if irt(G)= IRt(G)= n
if and only if G= JKn.
Algorithmic aspects of the total irredundance numbers were studied in [13]. In par-

ticular, a linear algorithm for computing the value of IRt(T ) for any tree T is presented
in [13], and it is shown that UPPER TOTAL IRREDUNDANT SET is an NP-complete
problem for arbitrary graphs. In this paper, we study theoretical aspects of total irredun-
dance numbers. We Hrst consider irt(G) and IRt(G) for selected graphs G in Section
2. From these examples, we observe some rather unexpected results concerning total
irredundance numbers. For instance, the total irredundance number of cycles is not a
monotonic function of their length. Furthermore, we shall see that irt(G) can equal zero
and that irt(G) and �t(G) are incomparable. (Both these results are somewhat surprising
considering the fact that 16 ir(G)6 �(G) for all graphs G.) Regarding these proper-
ties, we characterize the graphs G for which irt(G)= IRt(G)= 0 in Section 3, and then
study regular graphs G for which irt(G)¿ 1 in Section 4. In Section 5, the trees T
having irt(T )= 1 are characterized. Sharp upper bounds on the total irredundance num-
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bers are given in Section 6. In particular, we show that irt(G)6 IRt(G)6 n − �t(G)
for any graph G. Finally, we close with some open problems in Section 7.

2. Special families

In this section, we study the total irredundance numbers of selected graphs. We have
four immediate aims: Hrst, to show that the total irredundance number of a graph can
be zero; second, to show that the total irredundance number can diLer substantially
from the irredundance number and the total domination number; third, to show that
the total irredundance number of a cycle is not monotonic; and fourth, to compute the
total irredundance numbers of paths and cycles. These examples also show that certain
bounds obtained in subsequent sections are sharp.

Proposition 1. For n¿ 2; irt(Kn)= IRt(Kn)= 0.

This example serves to illustrate that, although ir(G)¿ 1 for any graph G; irt(G)
and IRt(G) can equal zero. We show next that the total irredundance numbers can be
arbitrarily large. Since the sets consisting of all except one of the leaves are the only
maximal total irredundant sets in a star of order at least 3, we have the following
result.

Proposition 2. For k¿ 2; irt(K1; k)= IRt(K1; k)= k − 1.

The subdivided star K∗
1; k is obtained from the star K1; k by subdividing every edge

exactly once.

Proposition 3. For k¿ 1; irt(K∗
1; k)= 1.

It is well known that ir(G)6 �(G), so one might expect that irt(G)6 �t(G). How-
ever, from Proposition 2, we see that �t(K1; k)=�t(K1; k)= 2 and the diLerence irt(G)−
�t(G) can be arbitrarily large. On the other hand, since �t(K∗

1; k)= k + 1, Proposition
3 shows that the diLerence �t(G) − irt(G) can also be arbitrarily large. Hence, there
is no general relation between irt(G) and �t(G). Since ir(K1; k)= 1 and ir(K∗

1; k)= k,
Propositions 2 and 3 also show that the diLerences ir(G)− irt(G) and irt(G)− ir(G)
can be arbitrarily large.
Let O2k denote the graph obtained from K2k by deleting a perfect matching (some-

times known as a generalized octahedron). Then every vertex of O2k forms a total
irredundant set of O2k , and so irt(O2k)¿ 1. However, any two vertices form a dom-
inating set of O2k and therefore cannot be a total irredundant set. Consequently, we
have the following result.

Proposition 4. For k¿ 2; irt(O2k)= 1.
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Next, we determine the total irredundance numbers of paths and cycles.

Proposition 5. For n¿ 4;

irt(Cn)=





 n
4�+ 1 if n≡ 2 or 3 (mod 8);


 n
4� otherwise:

Proof. For n=4, the sets consisting of a single vertex are the only maximal total
irredundant sets of Cn, and so irt(Cn)= 1= 
n=4�. For 56 n6 7, the sets consisting
of two adjacent vertices are the only maximal total irredundant sets in Cn, and so
irt(Cn)= 2= 
n=4�.
Let C be the n-cycle v1; v2; : : : ; vn; v1 for n¿ 8. (We note that there is an implied

orientation to C, so that we may refer to the next vertices on C.) Let S be a maximal
total irredundant set of C. Then each component in 〈S〉 is either K1 or K2. Let S1
denote the set of isolated vertices in 〈S〉, and let S2 denote the set of all pairs of
adjacent vertices in 〈S〉. Letting |S|= s and |Si|= si, we have s= s1 + 2s2. Let vi and
vj be two non-adjacent vertices of S such that vj is the vertex of S next on C from
vi (in our implied orientation). Then the maximality of S implies that vi and vj are
separated by exactly three vertices on C if one of vi and vj belongs to S1 and by three
to six vertices if both belong to S2. Thus, n6 4s1 + 8s2 = 4s, and so s¿ n=4. Hence,
irt(Cn)¿ 
n=4�.
We show that if n≡ 2 or 3 (mod 8), then irt(Cn)¿ 
n=4�+1. If s2 = 0, then n=4s1

and n≡ 0 (mod 4), while if s2 = 1, then n=4s1 + 5 and n≡ 1 (mod 4). Hence, s2¿ 2.
If s1¿ 1, then at least one pair in S2 is separated from another vertex in S by exactly
three vertices on C (that are not in S), whence n6 4s1 + 8(s2 − 1) + 5=4s − 3 and
s¿ (n + 3)=4. On the other hand, suppose s1 = 0. If n=8s2, then n≡ 0 (mod 4). If
n=8s2−1, then n≡ 7 (mod 8). If n=8s2−2, then n≡ 6 (mod 8). Hence we must have
n6 8s2 − 3=4s − 3, and so once again s¿ (n + 3)=4.
We now show the reverse inequalities by exhibiting sets S that achieve the bounds.

Let k = �n=4� and l= �n=8�. Let
S = {v1; v5; : : : ; v4k−3} if n≡ 0 (mod 4);

S = {v1; v5; : : : ; v4k−3; v4k−2} if n≡ 1 (mod 4);

S = {v1; v9; : : : ; v8l+1; v2; v10; : : : ; v8l+2} if n≡ 6 or 7 (mod 8);

S = {v1; v5; : : : ; v4k−3; v4k−2; vn} if n≡ 2 or 3 (mod 8):

This suNces to complete the proof.

Proposition 6. For n¿ 4,

IRt(Cn)=




� 2n
5 � − 1 if n≡ 3 (mod 5);

� 2n
5 � otherwise:
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Proof. Using the notation employed in the proof of Proposition 5, we have n¿ 4s1 +
5s2, and so 2n=5¿ s+ 3s1=5¿ s. Hence, IRt(Cn)6 �2n=5�. Suppose n≡ 3 (mod 5). If
s1¿ 2, then 2n=5¿ s + 3s1=5¿ s + 6=5, and so s6 (2n − 6)=5= �2n=5� − 1. On the
other hand, if s16 1, then n¿ 4s1 + 5s2 + 1, whence s6 (2n − 2)=5= �2n=5� − 1.
We again show the reverse inequalities by exhibiting sets S that achieve the bounds.

Let k = �n=5� − 1 and let S = {v1} if n=4. For n¿ 5, let

S = {v1; v2; v6; v7; : : : ; v5k+1; v5k+2; vn−3} if n≡ 4 (mod 5);

and

S = {v1; v2; v6; v7; : : : ; v5k+1; v5k+2} otherwise:

This suNces to complete the proof.

Our next result gives the total irredundance numbers of a path. The proof of this
result is very similar to those of Propositions 5 and 6 and is therefore omitted.

Proposition 7. For n¿ 3,

irt(Pn)=
⌈
n − 1
4

⌉
;

and

IRt(Pn)=
⌊
2n
5

⌋
:

3. Graphs G with irt(G ) = IRt(G ) = 0

In this section, our aim is to study graphs whose total irredundance numbers are
zero. For this purpose, we Hrst make some more deHnitions.
For vertices u and v, if N [u] =N [v], we say that u and v are clones (also called

twins in the literature). If N [u]⊂N [v], that is, the neighborhood of v properly contains
the neighborhood of u, then we say that v is superior to u and u is inferior to v. An
inferior vertex that is not superior or clone to any vertex is called a subvertex. If a
vertex v is not inferior, superior, or clone to any other vertex, then we say that v is
normal. If v is superior (inferior) to every vertex in a set S, then we say that v is
superior (inferior) to set S.
Notice that the relation ‘is a clone’ partitions the vertex set V into sets of clones

and singletons (vertices with no clones). We call the sets of the partition clone-sets
(note that each singleton, although not a clone, is referred to as a clone-set). Observe
also that between any pair of clone-sets, either no edge is present or every possible
edge is present. In the latter case, we say that the clone-sets are clone-adjacent.

Observation 8. Every clone-set induces a complete subgraph.
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Observation 9. If a graph G is connected and not complete; then the subgraph
induced by a clone-set of G is not a maximal complete subgraph; that is; is not a
clique of G.

Proof. Let C be a clone-set of G. Then the induced subgraph 〈C〉 is complete. Since
G is connected and not complete, some vertex in C must have a neighbor x in V −C,
and, since C is a clone-set, it follows that 〈C ∪ {x}〉 is complete.

If a vertex u is superior or clone to another vertex v, then v has no private neighbor
with respect to any set containing u. Thus, we have the following result.

Lemma 10. A vertex that is superior or clone to another vertex cannot be in any
total irredundant set.

As a special case of Lemma 10, a vertex adjacent to all others cannot belong to any
total irredundant set. Furthermore, no vertex adjacent to an endvertex is in any total
irredundant set.

Lemma 11. If a graph G has either a subvertex or a normal vertex; then irt(G)¿ 1.

Proof. Let u be a subvertex or a normal vertex and let v be any other vertex. Clearly,
u is its own private neighbor with respect to S = {u}. Also, N [v] − N [u] �= ∅ since u
is neither superior nor clone to v. Hence, PN [v; S] �= ∅. Thus, S is a total irredundant
set (although certainly not maximal in general). Thus, irt(G)¿ 1.

A vertex that is not normal or subvertex must be a superior vertex or clone to some
other vertex. Hence an immediate consequence of Lemmas 10 and 11 now follows.

Theorem 12. A graph G has irt(G)= 0 if and only if every vertex is either superior
or clone to another vertex.

Since no vertex of minimum degree is superior, Theorem 12 implies the following
properties of a graph with total irredundance number zero.

Corollary 13. If G is a graph with irt(G)= 0; then every vertex of minimum degree
must be clone to another vertex.

Corollary 14. The only connected graph G which has "(G)= 1 and irt(G)= 0 is K2.

Corollary 15. If G is a regular graph with irt(G)= 0; then it has no singleton
clone-sets.

We close this section by deHning a unary operation on a graph to construct a family
of graphs H satisfying irt(H)= 0. A graph H is a clone-in>ation of a graph G if
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Fig. 1. The clone-inQation of C6 with clone-sets of cardinality 2.

each vertex of G is replaced with a non-trivial complete subgraph and vertices in
diLerent subgraphs (clone-sets) are adjacent if and only if the corresponding vertices
are adjacent in G. (Note that if the clone-sets have the same cardinality p, then the
clone-inQation of G is the composition graph of G with Kp [10].) For example, the
graph in Fig. 1 is a clone-inQation of the cycle C6 where each clone-set has cardinality
2, that is, G is the composition graph of C6 with K2.
Observe that the graph G in Fig. 1 is a regular graph with irt(G)= 0. In gen-

eral, not every regular graph G with irt(G)= 0 has clone-sets of the same cardinality.
For example, consider the clone-inQation of C6 where for p �= t the clone-sets have
cardinality t; p; t; t; p; t; respectively. This clone-inQation graph has total irredundance
number 0 and is regular of degree 2t + p − 1. Since every vertex in a clone-inQation
graph is clone to another vertex, we have the following consequence of
Theorem 12.

Corollary 16. If G is the clone-in>ation of some graph; then irt(G)= 0.

4. Regular graphs G with irt(G )¿¿¿ 1

Since a regular graph G contains no superior vertices, every vertex x of G which is
not clone to another vertex forms a total irredundant set (since each neighbor of x has
a neighbor in V − N [x]). Thus, we have the following result.

Observation 17. If G is a regular graph with a normal vertex, then irt(G)¿ 1.

Fig. 2 shows two 4-regular graphs G1 and G2; in each, x is a superior vertex and
{x} is a maximal total irredundant set.
The family O2k for k¿ 2 is an example of (2k−2)-regular graphs with irt(O2k)= 1.

The next result shows that there exist r-regular graphs with irt(G)= 1 for all
r¿ 4.



122 O. Favaron et al. / Discrete Mathematics 256 (2002) 115–127

Fig. 2. Examples of 4-regular graphs G ∈ {G1; G2} with irt(G)= 1.

Proposition 18. For every r¿ 4, there exists an r-regular graph G with irt(G)= 1.

Proof. For r¿ 4, let H be a graph of order r and size r(r − 3)=2 with %(H)= r − 2,
and let A=Kr . Let G be the graph obtained by adding two new (non-adjacent) vertices
x and y and all edges between {x; y} and H , and then adding r edges between A and
H in such a way as to construct an r-regular graph. Then {x} is a total irredundant
set in G. If z ∈ N (x), then y has no {x; z}-pn. If z is a vertex of N (x) of degree r− 2
in H , then z has no {x; y}-pn. If a ∈ A, then no other vertex of A has a {a; x}-pn.
Hence, {x} is in fact a maximal total irredundant set in G. Thus, irt(G)= 1:

Theorem 19. If G is a triangle-free r-regular graph with r¿ 3, then irt(G)¿ 2.

Proof. Let x be a vertex of G and let N (x)= {x1; x2; : : : ; xr}. Since G is triangle-free,
N (x) is independent. We show that x belongs to a maximal total irredundant set of
cardinality at least 2. If no two neighbors of x have a common neighbor diLerent from
x, then {x; x1} is a total irredundant set for any x1 ∈ N (x), a contradiction. Hence we
may assume there exists a vertex y, diLerent from x, that is a common neighbor of
x1 and x2. We claim that {x; y} is a total irredundant set. Since G is triangle-free,
each of x1 and x2 has an {x; y}-pn. For each xi, 36 i6 r, y has at most r − 2
neighbors in N (xi) and thus, xi has an {x; y}-pn. Each neighbor z of y diLerent from
x1 and x2 is adjacent to no other neighbor of y and to at most the r − 2 neighbors
x3; : : : ; xr of x. Hence, z has an {x; y}-pn. Therefore, {x; y} is a total irredundant set.
Thus, every vertex of G belongs to a maximal total irredundant set of cardinality at
least 2.

We show next that every cubic graph, diLerent from K4, has total irredundance
number of at least 2.

Theorem 20. For every cubic graph G �=K4, irt(G)¿ 2.

Proof. It is straightforward to see that if G is cubic and irt(G)= 0, then G=K4. Sup-
pose irt(G)= 1 and let {x} be a maximal total irredundant set and let N (x)= {x1; x2; x3}.
Since x is not clone to another vertex, 〈N (x)〉 contains at most one edge. If any
xi ∈ N (x) has two external N (x)-pns (that is, private neighbors with respect to N (x)),
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then {x; xi} is a total irredundant set containing x, contradicting the fact that {x} is
a maximal total irredundant set. Hence each xi; 16 i6 3, has at most one external
N (x)-pn.
If each xi ∈ N (x) has exactly one external N (x)-pn, then N (x) is independent and

there must exist a vertex y such that y ∈ N (x1) ∩ N (x2) ∩ N (x3) − {x}. Then {x; y}
is a total irredundant set, a contradiction. Thus at least one xi, say x1, has no external
N (x)-pn.
We show next that N (x) is an independent set. If x1x2 ∈ E(G), let {y}=N (x1) −

{x; x2}. If N (y)=N (x), let z=N (x3) − {x; y}. Then {x; z} is a total irredundant set,
again contradicting the maximality of {x}. If N (y) ∩ N (x)= {x1; x3}, then {x; x2} is
a total irredundant set, a contradiction. If N (y) ∩ N (x)= {x1; x2}, then {x; x3} is a
total irredundant set, a contradiction. Hence, x1x2 =∈E(G). Similarly, x1x3 =∈E(G). If
x2x3 ∈ E(G), then the two neighbors of x1 diLerent from x are adjacent to x2 and x3,
respectively. But then {x; x2} is a total irredundant set, a contradiction. Hence, N (x) is
an independent set.
Without loss of generality, we may assume that one of the following three cases

occurs, where all the vertices yi are distinct: (1) N (x1) − {x}= {y1; y2}, N (x2) −
{x}= {y1; y3}, and N (x3)−{x}= {y2; y4}; (2) N (x1)−{x}= {y1; y2}, N (x2)−{x}=
{y1; y3}, and N (x3) − {x}= {y2; y3}; (3) N (x1) − {x}=N (x2) − {x}= {y1; y2} and
N (x3) − {x}= {y1; y2} or {y1; y3}. If Case (1) holds, then either y1y2 ∈ E(G), in
which case {x; x2} is a total irredundant set, or y1y2 =∈E(G), in which case {x; x1}
is a total irredundant set. If Case (2) holds, then the subgraph 〈{y1; y2; y3}〉 either
has no edges or contains a unique edge, say y1y2. In any event, {x; x3} is a total
irredundant set. If Case (3) holds, then {x; y2} is a total irredundant set. All the
three cases contradict the fact that {x} is a maximal total irredundant set. Hence,
irt(G)¿ 2.

We close this section with lower bounds on the total irredundance numbers of an
r-regular graph, r¿ 4, with girth at least 5.

Theorem 21. If G is an r-regular graph of degree r¿ 4 and girth g¿ 5, then IRt(G)
¿ r and irt(G)¿ 3.

Proof. Let x be any vertex of G. Since G is triangle-free, x is not a clone and {x} is
a total irredundant set (not maximal by Theorem 19). Let N (x)= {x1; x2; : : : ; xr}, and
for each 16 i6 r, let yj

i ; 16 j6 r−1, be the neighbors of xi diLerent from x. Since
g¿ 5, the r(r − 1) vertices yj

i are all distinct.
First, consider the set A= {x; x1; x2; : : : ; xr−1}. The vertex xr is an A-pn of x; y1

i

is an A-pn of xi for 16 i6 r − 1, and y1
r is an A-pn of xr . Each neighbor yj

i

of a vertex xi, 16 i6 r − 1, has no neighbor in N (xi), since g¿3; and at most
one neighbor in each N (xk), k �= i, since g¿4. Hence, yj

i has at most r − 1 neigh-
bors in N [A] and thus has an A-pn. Therefore, A is a total irredundant set and thus,
IRt(G)¿ r.
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We choose now x belonging to an irt-set I . By Theorem 19, we have that |I |¿ 2. If
I contains some xi, then, since {x; xi} is not maximal (as the above argument shows),
|I |¿ 3. Hence, we may assume that I contains a vertex t =∈N [x].
Let y be the predecessor of t on a shortest path Pxt from x to t (y is possibly an xi).

Consider the set B= {x; y; t}. By the choice of Pxt and since g¿ 5, the three vertices
of B have pairwise no common neighbor not in Pxt . Since r¿ 4, B is an irredundant
set. From the deHnition of x; y; t and since g¿ 5, any neighbor z of y (respectively,
t) which is not in B is adjacent to at most one vertex of N [x] ∪ N [t] (respectively,
N [x] ∪ N [y]). Hence, since r¿ 4, z has a B-pn. Any neighbor xi of x, with xi �=y in
the case of d(x; t)= 2, is adjacent to at most two vertices of N [y] ∪ N [t]. Therefore,
xi has a B-pn. Hence, B is a total irredundant set implying that {x; t} is not maximal
and thus, IRt(G)¿ irt(G)¿2.

5. Trees T with irt(T) = 1

Since every tree T with n¿ 3 vertices has at least one inferior vertex, it follows that
irt(T )¿ 1. By Proposition 3, we know that the subdivided star has total irredundance
number 1. Next we characterize those trees T having irt(T )= 1.

Theorem 22. A nontrivial tree T satis?es irt(T )= 1 if and only if it can be obtained
from a star K1;m by

(a) subdividing one edge for m¿ 1,
(b) subdividing m − 1 edges for m¿ 3, or
(c) subdividing m edges for m¿ 2.

Proof. Let T be obtained from a star K1;m by one the operations of the theorem. If
T is obtained by (a), let x be the endvertex of the subdivided edge. If T is obtained
by (b), let x be the endvertex adjacent to the center. Finally, if T is obtained by
(c), let x be the center. For each tree T , {x} is a maximal total irredundant set and
irt(T )= 1.
Conversely, let T be a non-trivial tree such that irt(T )= 1, and let {x} be a maximal

irredundant set. Note Hrst that T �=K2 for otherwise irt(T )= 0. Also note that x is not
adjacent to an endvertex. Moreover, if T contains a vertex at distance of at least 4
from x, then it contains a leaf y at distance of at least 4 from x and {x; y} is a total
irredundant set, a contradiction. Hence, ecc(x)6 3 and every vertex at distance 3 from
x is a leaf.
Case 1: If x is a leaf with support vertex y, let N (y) − {x}= {y1; y2; : : : ; yk} and

N (yi) − {y}= {y1
i ; y

2
i ; : : : ; y

si
i }. Since ecc(x)6 3, every yj

i is a leaf. If k =1, then
since ecc(x)6 3 and T �=K2, T can be obtained from a star K1;m using operation (a).
If k¿ 2 and d(yi)= 2 for all 16 i6 k, then, by ecc(x)6 3, T can be obtained from
K1;m by operation (b). If k¿ 2 and, say, d(y1)= 1, then {x; y1} is a total irredundant
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set, a contradiction. If k¿ 2 and, say d(y1)¿ 3, then {x; y1
1} is a total irredundant

set, a contradiction.
Case 2: If x is not a leaf, let N (x)= {x1; x2; : : : ; xk}, k¿ 2, and N (xi) − {x}=

{x1i ; x2i ; : : : ; xsi
i } with si �=0 since x is not adjacent to a leaf. Suppose x has a neighbor,

say x1, of degree more than 2. If x1 is adjacent to an endvertex, say x11 is a leaf,
then {x; x11} is a total irredundant set, a contradiction. Hence, d(xj

1)¿ 2; 16 j6 si,
and {x; xi} is a total irredundant set, a contradiction. Thus, d(xi)= 2 for all 16 i6 k.
If some x1i , say x11, is not a leaf, then {x; x1} is a total irredundant set, a contradiction.
Therefore, T can be obtained from K1;m by operation (c).

6. Upper bounds on total irredundance numbers

We now turn our attention to upper bounds on the total irredundance numbers. As
we mentioned in the introduction, irt( JKn)= IRt( JKn)= n. In fact, it follows from the
deHnition of total irredundance that IRt(G)= n (or, irt(G)= n) if and only if G= JKn.
We can improve the upper bound slightly for graphs with no isolated vertices. First
we prove the following Gallai-type result.

Theorem 23. If G has no isolated vertices, then

IRt(G) + �t(G)6 n:

Proof. Let G be a graph with "(G)¿ 1 and let S be an IRt-set of G. Then any
isolated vertex in 〈S〉 must have a neighbor in V − S. Furthermore, any vertex in S
that is not an isolated vertex in 〈S〉 has a private neighbor with respect to S in V − S.
Hence, V − S is a dominating set. To see that V − S is in fact a total dominating set,
partition the vertices of V − S into two sets A and B where A=N (S) ∩ (V − S) and
B=V −N [S]. Since S is a total irredundant set, each vertex in A must have a neighbor
in B. And since G has no isolated vertices, each vertex in B has a neighbor in V − S.
Hence, V − S is a total dominating set, which implies that IRt(G) + �t(G)6 |S| +
|V − S|= n.

Corollary 24. If G has no isolated vertices, then

irt(G) + �t(G)6 n:

Since �t(G)¿ 2, we now have a slightly improved bound on IRt(G).

Corollary 25. If G has no isolated vertices; then

irt(G)6 IRt(G)6 n − 2

and these bounds are sharp.
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Fig. 3. The graphs G with IRt(G)= n − 3 where i + j + k¿0.

These bounds are sharp as we saw with stars K1; k where irt(K1; k)= IRt(K1; k)= k−1.
In fact, stars are the only graphs attaining the upper bound.

Theorem 26. For a graph G with no isolated vertices; irt(G)= IRt(G)= n− 2 if and
only if G=K1; n−1.

Proof. By Proposition 2, irt(K1; n−1)= IRt(K1; n−1)= n − 2. Conversely, assume that
IRt(G)= n − 2 and let S be an IRt-set of G. Now |V − S|=2, and as shown in
the proof of Theorem 23, V − S is a total dominating set. Let V − S = {u; v}. Then
uv ∈ E(G) and every vertex in S has a neighbor in V − S. But since S is a total
irredundant set, at least one vertex in V − S, say v, is not dominated by S. Hence
every vertex in S is adjacent to u (and no vertex in S is adjacent to v). Now suppose
S is not independent, that is, there is an edge, say xy, in 〈S〉. But then neither x nor
y has a private neighbor with respect to S, contradicting the fact that S is a total
irredundant set. Hence, G is a star.

We make another slight improvement.

Theorem 27. If G is not a star and has no isolated vertices; then

IRt(G)6 n − 3;

and this bound is attained if and only if G is one of the graphs shown in Fig. 3.

Proof. The bound follows directly from Theorem 26. Let IRt(G)= n − 3 and let S
be an IRt-set of G. Then V − S is a total dominating set, so either 〈V − S〉=P3 or
〈V − S〉=K3 and every vertex in S has a neighbor in V − S. Furthermore, at least one
vertex in V − S is not dominated by S. If there is an edge xy in 〈S〉, then both x and
y must have a S-pn in V − S, and each vertex in V − S must have a S-pn in V − S.
Thus, G is the cycle C5 (Fig. 3(a)) or the house graph (Fig. 3(b)). Hence assume
that S is independent. Assume that V − S induces a P3 = u; v; w. If the center vertex
v has a neighbor in S, then neither u nor w can have a neighbor in S (since if one
of them has a neighbor in S, then it would have no S-pn). Then every vertex of S is
adjacent to v and S ∪ {w} is a total irredundant set, contradicting the maximality of
S. Hence vertex v has no neighbors in S. Thus, S ⊂N (u)∪N (w) and G is a graph in
the family of graphs shown Fig. 3(c) where at least one of i; j, and k is greater than
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zero. If 〈V − S〉=K3, then G is in the family of graphs shown in Fig. 3(d) where at
least one of i; j, and k is greater than zero.

7. Open questions

We close with some questions that we have yet to settle.

(1) Which graphs have independent maximal total irredundant sets?
(2) Characterize the graphs G satisfying ir(G)= irt(G)= 1.
(3) Find bounds on irt(G) with minimum degree conditions.
(4) Characterize the graphs G that achieve IRt(G) + �t(G)= n.
(5) Characterize the regular graphs G having irt(G)= 0.
(6) Characterize the graphs G with irt(G)= IRt(G).
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