A Semi-Induced Subgraph Characterization of Upper Domination Perfect Graphs

Igor E. Zverovich
Faculty of Mechanics and Mathematics
Belarus State University, Minsk 220050
Belarus

Vadim E. Zverovich*
Department II of Mathematics
RWTH Aachen, Aachen 52056
Germany

Abstract

Let $\beta(G)$ and $\Gamma(G)$ be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if $\beta(H)=\Gamma(H)$, for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3 -regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of $K_{1,3}-$ free Γ-perfect graphs in terms of forbidden induced subgraphs. J. Graph Theory 31 (1999), 29-49

Keywords: upper domination perfect graphs; semi-induced subgraph characterization

1 Introduction

All graphs will be finite and undirected without multiple edges. Unless otherwise stated, all graphs have no loops. If G is a graph, $V(G)$ denotes the set, and $|G|$ the number, of vertices in G. Let $N(x)$ denote the neighborhood of a vertex x, and let $\langle X\rangle$ denote the subgraph of G induced by $X \subseteq V(G)$. Also let $N(X)=\cup_{x \in X} N(x)$ and $N[X]=N(X) \cup X$. Denote by $\delta(G)$ the minimal degree of vertices in G. A path, a cycle and a complete graph of order n will be denoted by P_{n}, C_{n} and K_{n}, respectively.

A set $I \subseteq V(G)$ is called independent if no two vertices of I are adjacent. A set X is called a dominating set if $N[X]=V(G)$. An independent dominating set is a vertex subset that is both independent and dominating, or equivalently, is maximal independent. The independence number $\beta(G)$ is the maximum cardinality of a (maximal) independent set of G, and the independent domination number $i(G)$ is the minimum cardinality taken over all maximal independent sets of G. The domination number $\gamma(G)$ is the minimum

[^0]cardinality of a (minimal) dominating set of G, and the upper domination number $\Gamma(G)$ is the maximum cardinality taken over all minimal dominating sets of G. For $x \in X$, the set
$$
P N(x, X)=N[x]-N[X-\{x\}]
$$
is called the private neighborhood of x. If $P N(x, X)=\emptyset$, then x is said to be redundant in X. A set X containing no redundant vertex is called irredundant. The irredundance number $\operatorname{ir}(G)$ is the minimum cardinality taken over all maximal irredundant sets of G, and the upper irredundance number $\operatorname{IR}(G)$ is the maximum cardinality of a (maximal) irredundant set of G.

The following relationship among the parameters under consideration is well-known [7, 9]:

$$
i r(G) \leq \gamma(G) \leq i(G) \leq \beta(G) \leq \Gamma(G) \leq I R(G)
$$

Definition $1 A$ graph G is called irredundance perfect (ir-perfect) if ir $(H)=\gamma(H)$, for every induced subgraph H of G.

Definition 2 A graph G is called domination perfect (γ-perfect) if $\gamma(H)=i(H)$, for every induced subgraph H of G.

Definition 3 A graph G is called upper domination perfect (Γ-perfect) if $\beta(H)=\Gamma(H)$, for every induced subgraph H of G.

Definition $4 A$ graph G is called upper irredundance perfect ($I R$-perfect) if $\Gamma(H)=$ $I R(H)$, for every induced subgraph H of G.

The classes of upper domination perfect graphs and upper irredundance perfect graphs in a sense are dual to the classes of domination perfect graphs and irredundance perfect graphs, respectively. A lot of interesting results on domination perfect graphs $[1,3,12,16$, $17,24,27,28,29,31,33]$ and irredundance perfect graphs $[3,4,10,20,21,25,26,32]$ are known. A finite induced subgraph characterization of the entire class of domination perfect graphs was recently obtained in [33], while the problems of characterizing the entire class of irredundance perfect graphs and upper irredundance perfect graphs are still open. For a short survey on domination perfect graphs, see also [33].

We summarize the known results on Γ-perfect and $I R$-perfect graphs. The following important theorem gives the relationship between the class of Γ-perfect graphs and the class of $I R$-perfect graphs.

Theorem A (Gutin and Zverovich [14]) Any Γ-perfect graph is IR-perfect.

Thus, Γ-perfect graphs form a subclass of $I R$-perfect graphs. On the other hand, a number of well-known classes of graphs are subclasses of Γ-perfect graphs, and consequently, $I R$-perfect graphs. Cockayne et al. [7] proved that bipartite graphs are Γ-perfect, and Jacobson and Peters [23] showed that chordal graphs are Γ-perfect. The next theorem generalizes these results, since bipartite graphs and chordal graphs are strongly perfect graphs. Recall that a graph G is called strongly perfect if every induced subgraph H of G has a stable transversal, where a stable transversal S of H is a vertex subset of H such that $|S \cap C|=1$ for any maximal clique C of H.

Theorem B (Cheston and Fricke [5], Jacobson and Peters [22]) A strongly perfect graph is Γ-perfect.

It may be pointed out that, besides bipartite and chordal graphs, strongly perfect graphs contain comparability graphs, perfectly orderable graphs, peripheral graphs, complements of chordal graphs, Meyniel graphs, parity graphs, i-triangulated graphs, permutation graphs, cographs, and hence all these classes are subclasses of Γ-perfect graphs. Hammer and Maffray [15] defined a graph G to be absorbantly perfect if every induced subgraph H of G contains a minimal dominating set that meets all maximal cliques of H. It turned out that absorbantly perfect graphs are Γ-perfect (Theorem C). Since every strongly perfect graph is absorbantly perfect, we see that Theorem B follows from the more general Theorem C.

Theorem C (Gutin and Zverovich [14]) An absorbantly perfect graph is Γ-perfect.
A graph is called circular arc if it can be represented as the intersection graph of arcs on a circle.

Theorem D (Golumbic and Laskar [13]) A circular arc graph is Γ-perfect.
The following theorem gives a sufficient condition for a graph to be $I R$-perfect.
Theorem E (Cockayne, Favaron, Payan and Thomason [7]) If a graph G does not contain $P_{5}, C_{5}, \operatorname{Pr}_{3}-v_{1}$ and $\operatorname{Pr}_{3}-v_{1}-v_{2} v_{3}$ as induced subgraphs, where Pr_{3} is shown in Fig. 1, then G is $I R$-perfect.

Using Theorem A we see that Theorem F improves Theorem E.
Theorem F (Gutin and Zverovich [14]) If a graph G does not contain P_{5} and $P r_{3}$ in Fig. 1 as induced subgraphs, then G is Γ-perfect.

Other sufficient conditions for a graph to be Γ-perfect or $I R$-perfect can be found in [10, 14, 23, 30], one of them is stated in Corollary 2. A number of authors [6, 7, 8, 11] investigated graphs G having $\beta(G)=\Gamma(G)$, i.e., these parameters are not necessarily equal for a proper induced subgraph of G. Cockayne et al. [8] proved that

$$
\beta(G)=\Gamma(G)=I R(G)
$$

for the representative graph of any hereditary hypergraph. Cheston et al. [6] showed that this equality is valid for upper bound graphs which extend the class of representative graphs of hereditary hypergraphs, while Fellows et al. [11] proved that the same equality holds for trestled graphs. It was also shown by Cheston et al. [6] that $\beta(G)=\Gamma(G)$ for simplicial graphs, which generalize the class of upper bound graphs.

In this article, we introduce the concept of a semi-induced subgraph (Definition 8), and we present two characterizations of the entire class of Γ-perfect graphs in terms of forbidden semi-induced subgraphs (Theorems 1 and 2). Key roles in the characterizations are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization of Γ perfect graphs, we obtain a result of Jacobson and Peters [22] on Γ-perfect graphs (Corollary 1) and also a characterization of $K_{1,3}$-free Γ-perfect graphs in terms of forbidden induced
subgraphs. The latter result implies a known sufficient condition for a $K_{1,3}$-free graph to be Γ-perfect (Corollary 2). Notice here that $K_{1,3}$-free graphs are γ-perfect [1], and that $K_{1,3}$-free $i r$-perfect graphs were characterized by Favaron [10], who also found a sufficient condition for a $K_{1,3}$-free graph to be $I R$-perfect.

2 Basic Definitions

We need the following definitions.
Definition 5 Two vertex subsets A, B of a graph G independently match each other if $A \cap B=\emptyset,|A|=|B|$, and all edges between A and B form a perfect matching in $\langle A \cup B\rangle$.

Definition 6 A graph G of order $2 k$ is called a W-graph if there is a partition $V(G)=$ $A \cup B$ such that A and B independently match each other. Clearly, $|A|=|B|=k$. The sets A and B are called parts, and the graph G is denoted by $G(A, B)$.

It is not difficult to see that a W-graph may have several partitions into parts. Hence a W-graph is considered in Sections 2 and 3 together with a fixed partition into parts.

Definition 7 Let G be a W-graph, $G=G(A, B)$. Edges between the parts A and B are called b-edges and denoted in our figures by bold lines. Edges which are not b-edges are called l-edges and denoted by thin lines.

We can understand the above partition of the edge set as a coloring of the edge set with two colors 'b' and 'l'. Note that if the set E_{b} of b-edges of a connected W-graph G is given, then there is only one partition $V(G)=A \cup B$ such that A and B independently match each other, i.e., $G=G(A, B)$ and E_{b} is the set of b-edges with respect to this partition.

Definition 8 Let $H=H(A, B)$ be a W-graph with parts A and B. The graph H is called a semi-induced subgraph of a graph G if H is a subgraph of G, and in the graph G the sets A and B independently match each other.

In other words, let A and B independently match each other in G and let P be the perfect matching between A and B in $\langle A \cup B\rangle$. If $E_{1} \subseteq E\langle A\rangle$ and $E_{2} \subseteq E\langle B\rangle$, then the graph H having $V(H)=A \cup B$ and $E(H)=E_{1} \cup E_{2} \cup P$ is a semi-induced subgraph of G. Thus, any semi-induced subgraph of a graph is a W-graph, and if H is not a W-graph, then G cannot contain H as a semi-induced subgraph.

Definition 9 A graph G is called a bl-graph if a partition of the set $E(G)$ into the set of b-edges (bold) and l-edges (thin) is given, provided that the set of b-edges forms a matching in G. If the b-edges form a perfect matching, then G is called a perfect bl-graph. For example, any W-graph is a perfect bl-graph. An even (odd) bl-graph has the even (odd) number of b-edges.

Definition 10 A simple bl-chain P is called alternating if for any two consecutive edges of P one of them is a b-edge and another is an l-edge. The alternating simple chain P is called a b-chain (l-chain) if the end edges of P are b-edges (l-edges). Clearly, b-chains and l-chains always have even order. If we identify the end vertices u_{1} and $u_{2 n}$ in the l-chain $\left(u_{1}, u_{2}, \ldots, u_{2 n}\right)$, where $n \geq 2$, then we obtain the simple cycle $\left(u_{1}, u_{2}, \ldots, u_{2 n-1}\right)$ which is called an l-cycle starting with u_{1}.

Definition 11 For a perfect bl-graph G we define the operation of W-reducibility as follows. Each vertex $u \in V(G)$ is labeled by $c(u) \in\{A, B\}$. Further, each edge $e=v w \in E(G)$ is replaced by an alternating bl-chain P_{e} with end vertices v, w in accordance with the next rule:

- If e is an l-edge and $c(v)=c(w)$, then P_{e} is an even l-chain.
- If e is an l-edge and $c(v) \neq c(w)$, then P_{e} is an odd l-chain.
- If e is a b-edge and $c(v)=c(w)$, then P_{e} is an even b-chain.
- If e is a b-edge and $c(v) \neq c(w)$, then P_{e} is an odd b-chain.

Definition 12 The prism $\operatorname{Pr}_{n}(n \geq 3)$ consists of two disjoint cycles

$$
C_{1}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \quad C_{2}=\left(v_{1}, v_{2}, \ldots, v_{n}\right),
$$

and the remaining edges are of the form $u_{i} v_{i}, 1 \leq i \leq n$. The prism Pr_{1} is two loops connected by the edge $u_{1} v_{1}$, this is the only case where loops are permitted. If the prism $P r_{n}$ is considered as a perfect bl-graph, then its set of b-edges is $\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Definition 13 The Möbius ladder $M l_{n}$ is constructed from the cycle $C=\left(u_{1}, u_{2}, \ldots, u_{2 n}\right)$ by adding the edges $u_{i} u_{n+i}(1 \leq i \leq n)$ joining each pair of opposite vertices of C. If the Möbius ladder $M l_{n}$ is considered as a perfect bl-graph, then its set of b-edges is $\left\{u_{i} u_{n+i}\right.$: $1 \leq i \leq n\}$.

$P r_{1}$

Pr_{3}

$M l_{2}$

FIGURE 1. Odd prisms $\operatorname{Pr}_{1}, \operatorname{Pr}_{3}$ and even Möbius ladder $M l_{2}$.
The odd prisms Pr_{1} and Pr_{3} and the even Möbius ladder $M l_{2}$ are shown in Fig. 1. The odd prisms and the even Möbius ladders play a key role in the definition of basis graphs.

Definition 14 A graph G without loops is called a basis if it can be obtained from the odd prism $\operatorname{Pr}_{2 n+1}(n \geq 0)$ or the even Möbius ladder $M l_{2 m}(m \geq 1)$ by the operation of W-reducibility.

We will prove later that a basis graph is a W-graph whose perfect matching between the parts consists of b-edges determined by the operation of W -reducibility. A basis graph G cannot have loops. Hence, if G is obtained from $P r_{1}$, then every loop (l-edge) of $P r_{1}$ must be replaced in accordance with Definition 11 by an alternating even l-cycle (l-chain with equal end vertices) having at least two b-edges.

3 Characterization of $Г$-Perfect Graphs

The following theorem gives a characterization of upper domination perfect graphs in terms of forbidden semi-induced subgraphs.

Theorem $1 A$ graph G is a Γ-perfect graph if and only if G does not contain any basis graph as a semi-induced subgraph.

Proof: The proof of Theorem 1 is based on 11 lemmas.
Lemma 1 If G is a W-graph of order $2 k$, then

$$
\Gamma(G)=k \geq \beta(G) .
$$

Proof: Any independent set of G contains at most one vertex of each b-edges, and hence $\beta(G) \leq k$. Since A is a minimal dominating set, we have $\Gamma(G) \geq k$. Let us prove that $\Gamma(G) \leq k$. Let D be a minimal dominating set of G of cardinality $\Gamma(G)$. If $\operatorname{deg}_{\langle D\rangle} d>0$ for $d \in D$, then there is a vertex $f \in V(G)-D$ such that $N(f) \cap D=\{d\}$. If $\operatorname{deg}_{\langle D\rangle} d=0$ for $d \in D$, then there is a vertex f such that $d f$ is a b-edge. Obviously $f \in V(G)-D$. Thus, for each vertex $d \in D$ we can indicate a vertex f from $V(G)-D$ and evidently that different vertices of D result in different vertices of $V(G)-D$, i.e., $|D| \leq|V(G)-D|$. We have $\Gamma(G)=|D| \leq k$.

Definition $15 A W$-graph G of order $2 k$ is called strong if

$$
\beta(G)<k .
$$

Lemma $2 A$ graph G is Γ-perfect if and only if G does not contain any strong graph as an induced subgraph.

Proof: The necessity follows from the fact that for a strong graph $H, \beta(H)<\frac{1}{2}|H|$, while $\Gamma(H)=\frac{1}{2}|H|$ by Lemma 1 . To prove the sufficiency, let G^{\prime} be an arbitrary induced subgraph of G, and let D be a minimal dominating set in G^{\prime} of cardinality $\Gamma\left(G^{\prime}\right)$. Denote by J the set of all isolated vertices in $\langle D\rangle$, i.e. $J=\left\{v \in D: \operatorname{deg}_{\langle D\rangle} v=0\right\}$, and let $A=D-J$. Since D is a minimal dominating set, it follows that for each vertex $a \in A$ there is a vertex $b \notin D$ such that $N(b) \cap D=\{a\}$. Taking such a vertex b for each $a \in A$, we define B as the union of these vertices. The graph $H=\langle A \cup B\rangle$ is obviously a W-graph with parts A and B, and $|A|=|B|=k$. Since H cannot be strong, we have $\beta(H) \geq k$. Let I be an independent set of H of cardinality k. It is evident that the set $I \cup J$ is independent in G^{\prime}. Consequently,

$$
\beta\left(G^{\prime}\right) \geq|I|+|J|=|A|+|J|=|D|=\Gamma\left(G^{\prime}\right) .
$$

Since $\beta\left(G^{\prime}\right) \leq \Gamma\left(G^{\prime}\right)$, we have $\beta\left(G^{\prime}\right)=\Gamma\left(G^{\prime}\right)$. Thus, the graph G is Γ-perfect.

Definition 16 A connected strong graph $G(A, B)$ of order $2 k$ is called critical if $\delta(G) \geq 2$ and for any l-edge $e \in E(G)$,

$$
\beta(G-e)=k .
$$

Lemma 3 Any strong graph G with parts A and B contains a critical subgraph G^{*} with parts $A^{*} \subseteq A$ and $B^{*} \subseteq B$.

Proof: Let E^{\prime} be the maximum set of l-edges in G such that $\beta\left(G^{\prime}\right)<k$, where $V\left(G^{\prime}\right)=$ $V(G)$ and $E\left(G^{\prime}\right)=E(G)-E^{\prime}$. Since E^{\prime} is maximum and deleting all l-edges from G produces the graph with independence number k, we obtain $\beta\left(G^{\prime}-e\right)=k$ for any l-edge $e \in E\left(G^{\prime}\right)$. Suppose that G^{\prime} contains a vertex u of degree 1 , and denote by $u v$ the b-edge incident to u. Let us show that $\operatorname{deg}_{G^{\prime}} v=1$. Suppose to the contrary that there is an l-edge $v w$ in G^{\prime}. Since $\beta\left(G^{\prime}-v w\right)=k$, there is an independent set I in $G^{\prime}-v w$ of cardinality k. We have $v, w \in I$, for otherwise I is independent in G^{\prime}, contrary to the fact that $\beta\left(G^{\prime}\right)<k$. Now the set $I^{\prime}=(I-\{v\}) \cup\{u\}$ is independent in G^{\prime} and $\left|I^{\prime}\right|=|I|=k$, a contradiction again. Consequently, $\operatorname{deg}_{G^{\prime}} v=1$. Thus, if $\operatorname{deg}_{G^{\prime}} u=1$, then the b-edge incident to u is an isolated edge in G^{\prime}.

Consider now the connected component $G^{*}\left(A^{*}, B^{*}\right)$ of the graph G^{\prime} such that $A^{*} \subseteq A$, $B^{*} \subseteq B$ and $\beta\left(G^{*}\right)<k^{*}$, where $k^{*}=\left|A^{*}\right|=\left|B^{*}\right|$. Such a component does exist, for otherwise $\beta(H)=\frac{1}{2}|H|$ for each connected component H of G^{\prime} and hence $\beta\left(G^{\prime}\right)=\frac{1}{2}\left|G^{\prime}\right|=$ k, a contradiction. We see that G^{*} is a connected strong graph of order $2 k^{*}$. If $\delta\left(G^{*}\right)=1$, then G^{*} is an isolated b-edge in G^{\prime} and so $\beta\left(G^{*}\right)=k^{*}=1$, a contradiction. Hence $\delta\left(G^{*}\right) \geq 2$. If there exists an l-edge e in G^{*} such that $\beta\left(G^{*}-e\right)<k^{*}$, then obviously $\beta\left(G^{\prime}-e\right)<k$, contrary to the maximality of E^{\prime}. Thus, $\beta\left(G^{*}-e\right)=k^{*}$ for any l-edge $e \in E\left(G^{*}\right)$. We conclude that G^{*} is a critical graph.

Lemma $4 A$ graph G is Γ-perfect if and only if G contains no critical graph as a semiinduced subgraph.

Proof: Let G be a Γ-perfect graph and suppose that G contains a critical graph $H(A, B)$ as a semi-induced subgraph. We have $\beta(H)<k$, where $k=|A|=|B|$. Consider in the graph G the induced subgraph $F=\langle A \cup B\rangle$. This graph is obtained from H by adding some edges in the parts A, B. Therefore, $\beta(F)<k$ and F is a W-graph, i.e., F is a strong graph. This is a contradiction, since, by Lemma 2, the graph G does not contain any strong graph as an induced subgraph.

Now let G contain no critical graph as a semi-induced subgraph, and suppose that G is not Γ-perfect. By Lemma 2, the graph G contains a strong graph H as an induced subgraph. Now, by Lemma $3, H(A, B)$ contains a critical subgraph $H^{*}\left(A^{*}, B^{*}\right)$ such that $A^{*} \subseteq A$ and $B^{*} \subseteq B$, i.e., H^{*} is a semi-induced subgraph of H. Therefore, the critical graph H^{*} is a semi-induced subgraph of G, a contradiction.

In the remaining part of the proof we give a description of the class of critical graphs. In fact we prove that a graph is critical if and only if it is a basis. This result together with Lemma 4 will provide the characterization of Γ-perfect graphs.

Lemma 5 If G^{\prime} is obtained from a perfect bl-graph G by the operation of W-reducibility, then G^{\prime} is a W-graph whose perfect matching between the parts consists of b-edges determined by the operation of W-reducibility.

Proof: Let G^{\prime} be obtained from a perfect bl-graph G by the operation of W-reducibility. Note that the graph G may have loops only if $G=P r_{1}$. In that case the loops (l-edges) of
G are replaced in accordance with Definition 11 by alternating even l-cycles. If $u \in V\left(G^{\prime}\right)$ is an old vertex, i.e. $u \in V(G)$, then u is labeled by $c(u)$ in G^{\prime}. If $u \in V\left(G^{\prime}\right)$ is a new vertex, then u is a non-end vertex of some chain P_{e}. We label all vertices from $V\left(G^{\prime}\right)-V(G)$ by the following inductive rule. If $e=u v$ is an edge of G^{\prime} such that u has a label but v has no label yet, then we put:

- $c(v)=A$ if $c(u)=A$ and e is an l-edge.
- $c(v)=B$ if $c(u)=A$ and e is a b-edge.
- $c(v)=A$ if $c(u)=B$ and e is a b-edge.
- $c(v)=B$ if $c(u)=B$ and e is an l-edge.

Now, the vertices of G^{\prime} with label A form the part A, the vertices with label B form the part B, and the set of b-edges of G^{\prime} forms a perfect matching between A and B, i.e., the sets A, B independently match each other in G^{\prime}. Thus, the graph G^{\prime} is a W -graph.

Lemma 6 Let G be a perfect bl-graph of order $2 k$ and let $C=\left(u_{1}, u_{2}, \ldots, u_{2 n+1}\right)$ be an l-cycle in G starting with u_{1}. If $\beta(G)=k$, then the vertex u_{1} belongs to no maximum independent set of G.

Proof: By definition, the edge $u_{2 i} u_{2 i+1}$ is a b-edge for any $i, 1 \leq i \leq n$. Suppose that there is a maximum independent set I containing u_{1}. Since $\beta(G)=k$, the set I contains exactly one vertex of each b-edge. We have $u_{1} \in I$ and hence $u_{2} \notin I$. Therefore, $u_{3} \in I$. If we continue this process, we finally arrive at $u_{2 n+1} \in I$. This is a contradiction, since the set I contains two adjacent vertices u_{1} and $u_{2 n+1}$.

Definition 17 A perfect bl-graph G is called a semi-basis if G consists of two l-cycles C and C^{\prime} starting with u and $u^{\prime}\left(u \neq u^{\prime}\right)$, respectively, and also of a b-chain P connecting u and u^{\prime}. Note that C, C^{\prime} and P do not necessarily contain different vertices. However, any of the graphs C, C^{\prime} or P has no self-intersections, since it is simple.

Lemma 7 If a perfect bl-graph G of order $2 k$ contains a semi-basis subgraph, then

$$
\beta(G)<k .
$$

Proof: Suppose to the contrary that G has an independent set I of cardinality k. Then, obviously, $\beta(G)=k$. By Lemma 6, the starting vertices u, u^{\prime} of the l-cycles C, C^{\prime} do not belong to the set I. Let $P=\left(u_{1}, u_{2}, \ldots, u_{2 m}\right)$ be a b-chain connecting $u=u_{1}$ and $u^{\prime}=u_{2 m}$. The edges $u_{2 i-1} u_{2 i}(1 \leq i \leq m)$ are b-edges and the set I contains exactly one vertex of each b-edge, since $\beta(G)=k$. The vertex $u=u_{1}$ does not belong to I, and so $u_{2} \in I$. Hence $u_{3} \notin I$ and $u_{4} \in I$. Going on in the same way, we obtain $u_{2 i} \in I$ for all $i, 1 \leq i \leq m$. This is a contradiction, since the vertex $u^{\prime}=u_{2 m}$ does not belong to the set I.

Lemma 8 A critical graph G is a semi-basis. The graph $G-e$ does not contain a semibasis subgraph for any l-edge $e \in E(G)$.

Proof: Let v be an arbitrary vertex of a critical graph $G(A, B)$, say $v \in A$. Put $X_{0}=\{v\}$ and $X_{0}^{\prime}=N(v) \cap A$. For $i \geq 0$, we define the sets X_{i+1} and X_{i+1}^{\prime} as follows:

$$
\begin{gathered}
X_{i+1}=\left\{x \in V(G): x y \text { is a b-edge, } y \in X_{i}^{\prime}\right\}, \\
X_{i+1}^{\prime}=N\left(X_{i+1}\right)-\left(\cup_{j=0}^{i} X_{j}^{\prime} \cup\left\{v^{\prime}\right\}\right),
\end{gathered}
$$

where $v^{\prime} \in B$ and $v v^{\prime}$ is a b-edge. The construction of the sequence

$$
X_{0}, X_{0}^{\prime}, X_{1}, X_{1}^{\prime}, \ldots, X_{n}, X_{n}^{\prime}
$$

is finished for minimal n such that $X_{n}^{\prime}=\emptyset$. Clearly, the above sets are pairwise disjoint. Put

$$
\begin{gathered}
X=\cup_{j=0}^{n} X_{j}, \\
X^{\prime}=\cup_{j=0}^{n-1} X_{j}^{\prime} \cup\left\{v^{\prime}\right\} .
\end{gathered}
$$

Let us show that the set X is not independent. The graph G is critical, and so $\delta(G) \geq 2$. Hence there is a vertex $w \in A$ adjacent to v. Moreover, $\beta(G-v w)=k=|A|=|B|$. Let I be an independent set of $G-v w$ of cardinality k. Since I is not independent in G, we have $v, w \in I$. Put

$$
\begin{aligned}
A_{1} & =A-\left(X \cup X^{\prime}\right) \\
B_{1} & =B-\left(X \cup X^{\prime}\right) \\
I_{1} & =A_{1} \cap I \\
I_{2} & =B_{1} \cap I
\end{aligned}
$$

By the definitions, no vertex of X is adjacent to a vertex of $A_{1} \cup B_{1}$. The set $I^{\prime}=X \cup I_{1} \cup I_{2}$ has cardinality k, and hence I^{\prime} is not independent in G. On the other hand, $I_{1} \cup I_{2}$ is independent in G and there is no edge between $I_{1} \cup I_{2}$ and X in G. We conclude that X is not independent, and hence $x_{s} \in X_{s}$ is adjacent to $y_{t} \in X_{t}$. Clearly, s and t have the same parity. If $s<t$, then we have a contradiction, since y_{t} must belong to X_{s}^{\prime} but $X_{s}^{\prime} \cap X_{t}=\emptyset$. Thus, $s=t$, i.e., $x_{s} \in X_{s}$ is adjacent to $y_{s} \in X_{s}$. Now we construct two alternating simple chains. Put

$$
\begin{aligned}
P_{1} & =\left(x_{s}, x_{s-1}^{\prime}, x_{s-1}, x_{s-2}^{\prime}, \ldots, x_{0}^{\prime}, x_{0}=v\right), \\
P_{2} & =\left(y_{s}, y_{s-1}^{\prime}, y_{s-1}, y_{s-2}^{\prime}, \ldots, y_{0}^{\prime}, y_{0}=v\right),
\end{aligned}
$$

where $x_{i}, y_{i} \in X_{i}$ and $x_{i}^{\prime}, y_{i}^{\prime} \in X_{i}^{\prime}(0 \leq i \leq s)$. Let z be the first common vertex of P_{1} and P_{2} if we go from x_{s} to v (possibly, $z=v$). Obviously, $z \in X$. Now, the edge $x_{s} y_{s}$, the $\left(x_{s}, z\right)$-subchain of P_{1} and the $\left(y_{s}, z\right)$-subchain of P_{2} form the l-cycle C starting with z. If $z \neq v$, then the (z, v)-subchain of P_{1} is an alternating (z, v)-chain in which z is incident to a b-edge and v is incident to an l-edge.

In fact we proved the following lemma.
Lemma 9 For any vertex v of a critical graph G, there exists an l-cycle C starting with z and such that if $v \neq z$, then there is an alternating (v, z)-chain in which v is incident to an l-edge, and z is incident to a b-edge, and moreover, z is the only common vertex of this chain and C.

We go on with the proof of Lemma 8. Denote by $z z_{1}$ the b-edge incident to the vertex z, and apply Lemma 9 to the vertex z_{1}. Let C^{\prime} be the l-cycle starting with z^{\prime}. If $z_{1} \neq z^{\prime}$, let P be the alternating $\left(z^{\prime}, z_{1}\right)$-chain in which z_{1} is incident to an l-edge and z^{\prime} is incident to a b-edge. If $z_{1}=z^{\prime}$, then put $P=\emptyset$. Let $P^{+}=P \cup z_{1} z$, thus P^{+}is the b-chain connecting the starting vertices z and z^{\prime} of the l-cycles C and C^{\prime}. The union of the cycles C, C^{\prime} and the chain P^{+}produces a semi-basis subgraph G^{\prime} of the graph G. The semi-basis graph G^{\prime} is shown in Fig. 2 provided that it has no self-intersections.

Let e be an l-edge of the graph G and suppose that the graph $G-e$ contains a semibasis subgraph. By Lemma $7, \beta(G-e)<k$. On the other hand, G is critical, and so $\beta(G-e)=k$, a contradiction. Thus, the graph $G-e$ does not contain a semi-basis subgraph for any l-edge $e \in E(G)$. Therefore, the semi-basis subgraph G^{\prime} of G contains all l-edges of G. Since G is critical, we have $\delta(G) \geq 2$. Hence $V\left(G^{\prime}\right)=V(G)$. Taking into account that any semi-basis graph is a perfect bl-graph, we conclude that G^{\prime} must contain all b-edges of G. Thus, $G^{\prime}=G$. The proof of Lemma 8 is complete.

Remark 1 The proof of Lemma 8 implies that the cycle C^{\prime} and the chain $P-\left\{z_{1}\right\}$ may intersect the set $V(C)-\{z\}$ in the critical graph G, all other intersections are impossible.

FIGURE 2. Semi-basis graph without self-intersections.

Lemma 10 Any critical graph is a basis.
Proof: Let G be a critical graph. By Lemma 8, the graph G is a semi-basis. Employing the notation used in Lemma 8 and taking into account Remark 1, we consider all possible intersections of $V\left(C^{\prime}\right) \cup\left(V(P)-\left\{z_{1}\right\}\right)$ and $V(C)-\{z\}$. Suppose that the intersection of these sets is empty. The graph G is a W -graph, since G is critical. Hence the cycles C and C^{\prime} have the even number of b-edges. Therefore, G can be obtained from Pr_{1} by the operation of W-reducibility, i.e., G is a basis.

Suppose that u is a common vertex of $C^{\prime} \cup P$ and C. Let Q be a maximal common subchain of $C^{\prime} \cup P$ and C such that Q contains u. Since every vertex in G is incident to exactly one b-edge, it follows that Q is a b-chain. Maximal common b-chains will be called intersection intervals. Obviously, $\operatorname{deg}_{G} v=2$ for any non-end vertex v of any intersection interval.

Let us show that the set $V(P)-\left\{z_{1}\right\}$ does not intersect the set $V(C)-\{z\}$. Suppose to the contrary that $u \in\left(V(P)-\left\{z_{1}\right\}\right) \cap(V(C)-\{z\})$ and u is the nearest vertex to the vertex z in the chain P^{+}. Denote by $\left(u, u^{\prime}\right)$ the corresponding intersection interval. Let L be the (z, u)-subchain of C such that $u^{\prime} \in L$, and let $y \in L$ be adjacent to z. Thus, $z y$ is an l-edge. The (z, u)-subchain of P^{+}and the (u, z)-subchain of C not containing u^{\prime} form the l-cycle $C^{\prime \prime}$ starting with u. The $\left(u, z^{\prime}\right)$-subchain P^{\prime} of the chain P^{+}connects $C^{\prime \prime}$ with the l-cycle C^{\prime} starting with z^{\prime}. Thus, for the l-edge $z y$ the graph $G-z y$ contains a semi-basis subgraph formed by $C^{\prime}, C^{\prime \prime}$ and P^{\prime}, contrary to Lemma 8 . Therefore, $V(P) \cap V(C)=\emptyset$.

Now consider possible intersections of $C^{\prime}-\left\{z^{\prime}\right\}$ and $C-\{z\}$. Passing round the cycle C^{\prime} from the vertex z^{\prime}, denote all intersection intervals by

$$
\left(u_{1}, u_{1}^{\prime}\right),\left(u_{2}, u_{2}^{\prime}\right), \ldots,\left(u_{t}, u_{t}^{\prime}\right),
$$

where $u_{i}, u_{i}^{\prime}(1 \leq i \leq t)$ are end vertices of the intervals. Since $C^{\prime} \cap C \neq \emptyset$, we have $t \geq 1$. In what follows it is always supposed that we pass round the cycle C in the direction from u_{1}^{\prime} to u_{1}. We will prove that, passing round the cycle C in this direction, the end vertices of the above intersection intervals are arranged in the following sequence:

$$
\begin{equation*}
u_{1}^{\prime}, u_{1}, u_{2}^{\prime}, u_{2}, \ldots, u_{t}^{\prime}, u_{t} \tag{1}
\end{equation*}
$$

and moreover the vertex z belongs to the $\left(u_{t}, u_{1}^{\prime}\right)$-subchain of C. These statements hold for $t=1$, and so we may assume that $t \geq 2$.

Suppose that passing round C we arrive to the vertex u_{1}^{\prime} from $u_{s}(s>1)$, i.e. the (u_{s}, u_{1}^{\prime})-subchain R of C contains no end vertices of any intersection interval excepting u_{s} and u_{1}^{\prime}, and the vertex z does not belong to the chain R. We see that R is an l-chain. Hence the chain R and the (u_{s}, u_{1}^{\prime})-subchain of C^{\prime} containing z^{\prime} form the l-cycle $C^{\prime \prime}$ starting with z^{\prime}. Let $e=v u_{1}^{\prime}$ be the l-edge of C^{\prime}. Obviously, $e \notin C^{\prime \prime}$ and $e \notin C$, since $\left(u_{1}^{\prime}, u_{1}\right)$ is a maximal common b-chain of C and C^{\prime}. Thus, $G-e$ contains a semi-basis subgraph consisting of $C, C^{\prime \prime}$ and P^{+}, contrary to Lemma 8 . Now suppose that passing round C we arrive to u_{1}^{\prime} from u_{s}^{\prime}, and z does not belong to the $\left(u_{s}^{\prime}, u_{1}^{\prime}\right)$-subchain R of C. Therefore, R is an l-chain. The chain R and the ($u_{1}^{\prime}, u_{s}^{\prime}$)-subchain of C^{\prime} not containing z^{\prime} form the l-cycle $C^{\prime \prime}$ starting with u_{1}^{\prime}. Let $e=v u_{s}^{\prime}$ be the l-edge of C^{\prime}. Obviously, $e \notin C^{\prime \prime}$ and $e \notin C$. Thus, $G-e$ contains a semi-basis subgraph consisting of $C, C^{\prime \prime}, P^{+}$and the ($z^{\prime}, u_{1}^{\prime}$)-subchain of C^{\prime} not containing u_{s}^{\prime}, contrary to Lemma 8 . Therefore, passing round C we arrive to the vertex u_{1}^{\prime} from z, and the $\left(z, u_{1}^{\prime}\right)$-subchain of C contains no end vertex of any intersection interval excepting u_{1}^{\prime}.

Suppose now that passing round C we arrive to the vertex u_{r} and the next end vertex of the intersection intervals is u_{s}. It is evident that we arrived to the vertex u_{r} from the vertex u_{r}^{\prime}. Since $u_{s} \neq u_{1}^{\prime}$, the $\left(u_{r}, u_{s}\right)$-subchain of C does not contain z and hence it is an l-chain. Let $s>r$. Let us define the cycle $C^{\prime \prime}$ consisting of the $\left(u_{r}, u_{s}\right)$-subchain of C and the $\left(u_{r}, u_{s}\right)$-subchain of C^{\prime} containing u_{r}^{\prime}. The cycle $C^{\prime \prime}$ is an l-cycle starting with u_{s}. Let P^{\prime} be the $\left(u_{s}, z^{\prime}\right)$-subchain of C^{\prime} containing u_{s}^{\prime}. Thus, $P^{\prime} \cup P^{+}$is a b-chain from u_{s} to z. Let $e=z^{\prime} w$ be the l-edge of C^{\prime} such that $e \notin P^{\prime}$. Since $z^{\prime} \notin C$, we have $e \notin C$. Also, $e \notin C^{\prime \prime}$. We conclude that the graph $G-e$ contains a semi-basis subgraph consisting of C, $C^{\prime \prime}$ and $P^{\prime} \cup P^{+}$, contrary to Lemma 8. Now let $s<r$. Let us define the cycle $C^{\prime \prime}$ consisting of the $\left(u_{r}, u_{s}\right)$-subchain of C and the $\left(u_{s}, u_{r}\right)$-subchain of C^{\prime} containing u_{s}^{\prime}. The cycle $C^{\prime \prime}$ is an l-cycle starting with u_{r}. Let P^{\prime} be the $\left(u_{r}, z^{\prime}\right)$-subchain of C^{\prime} containing u_{r}^{\prime}. Thus,
$P^{\prime} \cup P^{+}$is a b-chain from u_{r} to z. Let $e=z^{\prime} w$ be the l-edge of C^{\prime} such that $e \notin P^{\prime}$. We have, $e \notin C$ and $e \notin C^{\prime \prime}$. We conclude that the graph $G-e$ contains a semi-basis subgraph consisting of $C, C^{\prime \prime}$ and $P^{\prime} \cup P^{+}$, contrary to Lemma 8. Thus, if we arrive to the vertex u_{r} passing round C, then the next end vertex of the intersection intervals must be u_{s}^{\prime}, i.e., passing round the cycle C the end vertices of the intersection intervals are arranged in the following sequence:

$$
u_{1}^{\prime}, u_{1}, u_{f(2)}^{\prime}, u_{f(2)}, \ldots, u_{f(t)}^{\prime}, u_{f(t)}
$$

where $f:\{2,3, . ., t\} \rightarrow\{2,3, \ldots, t\}$ is a bijection. Clearly, z belongs to the $\left(u_{f(t)}, u_{1}^{\prime}\right)$ subchain of C. Assume that there is $j \in\{2,3, \ldots, t\}$ such that $f(j-1)>f(j)$. Denote $r=f(j-1)$ and $s=f(j)$. Thus, $r>s$. Let L be the $\left(u_{r}, u_{s}^{\prime}\right)$-subchain of C. We see that $z \notin L$ and hence L is an l-chain. Let L^{\prime} be the $\left(u_{s}^{\prime}, u_{r}\right)$-subchain of C^{\prime} not containing z^{\prime}. Obviously, L^{\prime} is an l-chain. Replace the chain L^{\prime} in C^{\prime} by the chain L and denote the resulting cycle by $C^{\prime \prime}$. The cycle $C^{\prime \prime}$ is an l-cycle starting with z^{\prime}. Let $e=u_{r} w$ be the l-edge of L^{\prime}. It is evident that $e \notin C^{\prime \prime}$ and $e \notin C$. We deduce that the graph $G-e$ contains a semi-basis subgraph consisting of $C, C^{\prime \prime}$ and P^{+}, contrary to Lemma 8. Consequently, the end vertices of intersection intervals while passing round C are arranged in accordance with (1).

The graph $G(A, B)$ is a W -graph, since G is critical. We label all vertices of G as follows. Put $c(v)=A$ if $v \in A$, and $c(v)=B$ if $v \in B$. Denote $u_{0}=z$ and $u_{0}^{\prime}=z^{\prime}$. Furthermore, we construct the graph G^{*} by the following rule. Let

$$
\mathcal{P}_{b}=\left\{\left(u_{i}, u_{i}^{\prime}\right): 0 \leq i \leq t\right\}
$$

be the set of b-chains of G consisting of the chain P^{+}and the intersection intervals. Replace each chain $\left(u_{i}, u_{i}^{\prime}\right)$ from \mathcal{P}_{b} by the b-edge $u_{i} u_{i}^{\prime}$. Note that the chain $\left(u_{i}, u_{i}^{\prime}\right)$ is an even bchain if u_{i} and u_{i}^{\prime} have the same label, and this chain is an odd b-chain otherwise. Now let

$$
\mathcal{P}_{l}=\left\{\left(u_{t}, u_{0}\right),\left(u_{t}^{\prime}, u_{0}^{\prime}\right),\left(u_{i-1}, u_{i}^{\prime}\right),\left(u_{i-1}^{\prime}, u_{i}\right): 1 \leq i \leq t\right\}
$$

be the set of l-chains of G. Replace each chain L from \mathcal{P}_{l} by the l-edge connecting the end vertices of L. Note that L is an even l-chain if its end vertices have the same label, and L is an odd l-chain otherwise. The resulting graph G^{*} is the odd prism $P r_{t+1}$ whenever $t \geq 1$ is even, and G^{*} is the even Möbius ladder $M l_{t+1}$ whenever $t \geq 1$ is odd. Moreover, using the mapping $c: V\left(G^{*}\right) \rightarrow\{A, B\}$ constructed above, the graph G is obtained from G^{*} by the operation of W-reducibility. Therefore, G is a basis graph. The proof of Lemma 10 is complete.

Lemma 11 All basis graphs are critical.

Proof: Let G be a basis graph, i.e., G is obtained from $\operatorname{Pr}_{2 n+1}(n \geq 0)$ or $M l_{2 n}(n \geq 1)$ by the operation of W-reducibility. By Lemma $5, G$ is a W-graph, $G=G(A, B)$. Obviously, $\delta(G) \geq 2$ and G is a connected graph. Let us show that $\beta(G)<k$. By Lemma 7, it is sufficient to find a semi-basis subgraph in G. If G is obtained from $P r_{1}$, then G is evidently a semi-basis subgraph. Now let G be obtained from $P r_{2 n+1}$ or $M l_{2 n}, n \geq 1$. Since the operation of W -reducibility preserves semi-basis subgraphs, it is sufficient to find such a graph in $P r_{2 n+1}$ or $M l_{2 n}, n \geq 1$. In fact we will show that both $P r_{2 n+1}$ and $M l_{2 n}$ are semi-basis graphs.

Recall that in $\operatorname{Pr}_{2 n+1}$, the cycles $\left(u_{1}, u_{2}, \ldots, u_{2 n+1}\right)$ and $\left(v_{1}, v_{2}, \ldots, v_{2 n+1}\right)$ consist of ledges, and $\left\{u_{i} v_{i}: 1 \leq i \leq 2 n+1\right\}$ is the set of b-edges. Define two cycles as follows:

$$
C=\left(u_{1}, u_{2}, v_{2}, v_{3}, u_{3}, u_{4}, \ldots, u_{2 n}, v_{2 n}, v_{2 n+1}, u_{2 n+1}, u_{1}\right)
$$

and

$$
C^{\prime}=\left(v_{1}, v_{2}, u_{2}, u_{3}, v_{3}, v_{4}, \ldots, v_{2 n}, u_{2 n}, u_{2 n+1}, v_{2 n+1}, v_{1}\right)
$$

The cycle C starting with u_{1} and the cycle C^{\prime} starting with v_{1} are l-cycles connected by the b-chain $\left(u_{1}, v_{1}\right)=u_{1} v_{1}$, i.e., $P r_{2 n+1}$ is a semi-basis graph for $n \geq 1$.

Consider now the Möbius ladder $M l_{2 n}$. Recall that the cycle ($u_{1}, u_{2}, \ldots, u_{4 n}$) in $M l_{2 n}$ consists of l-edges, and $\left\{u_{i}, u_{2 n+i}: 1 \leq i \leq 2 n\right\}$ is the set of b-edges of $M l_{2 n}$. Define two cycles as follows:

$$
C=\left(u_{1}, u_{2}, u_{2 n+2}, u_{2 n+3}, u_{3}, u_{4}, u_{2 n+4}, u_{2 n+5}, \ldots, u_{2 n}, u_{4 n}, u_{1}\right),
$$

and

$$
C^{\prime}=\left(u_{2 n+1}, u_{2 n+2}, u_{2}, u_{3}, u_{2 n+3}, u_{2 n+4}, u_{4}, u_{5}, \ldots, u_{4 n}, u_{2 n}, u_{2 n+1}\right)
$$

The cycle C starting with u_{1} and the cycle C^{\prime} starting with $u_{2 n+1}$ are l-cycles connected by the b-chain $\left(u_{1}, u_{2 n+1}\right)=u_{1} u_{2 n+1}$, i.e., $M l_{2 n}$ is a semi-basis graph.

Thus, $\beta(G)<k$. It remains to prove that $\beta(G-e)=k$ for each l-edge $e \in E(G)$. Let G be obtained from $P r_{1}$ by the operation of W -reducibility. Obviously for any l-edge $e \in E(G)$, the graph $G-e$ contains 1 or 2 vertices of degree 1 . Starting with a vertex (vertices) of degree 1 , it is easily to construct the desired independent set of cardinality k.

Now let G be obtained from $H=\left\{P r_{2 n+1}, M l_{2 n}: n \geq 1\right\}$ by the operation of Wreducibility, i.e., b-edges are replaced by alternating b-chains and l-edges are replaced by alternating l-chains. There are two cases to consider.

Case 1. The l-edge e belongs to an l-chain P_{f}, where f is an l-edge of H. If $H=P r_{2 n+1}$, then without loss of generality we may suppose that $f=u_{1} u_{2 n+1}$. Put

$$
I=\left\{u_{1}, u_{2 i+1}, v_{2 i}: 1 \leq i \leq n\right\} .
$$

If $H=M l_{2 n}$, then we may assume that $f=u_{1} u_{2}$. In that case put

$$
I=\left\{u_{1}, u_{2 i}, u_{2 n}, u_{2 n+2 i+1}: 1 \leq i \leq n-1\right\} .
$$

The set I is an independent set of $H-f$ of cardinality $\frac{1}{2}|H|$. Now it is not difficult to construct an independent set of $G-e$ of cardinality $k=\frac{1}{2}|G|$. Indeed, let $u v \in E(H)$ be a b-edge replaced by a b-chain P. Since $|I|=\frac{1}{2}|H|$, we have $|\{u, v\} \cap I|=1$, say $u \in I$. From each b-edge of P we add in I one vertex which is nearer to the vertex u in the chain P. If $u v \neq f$ is an l-edge of H replaced by an l-chain P, then $|\{u, v\} \cap I| \leq 1$ and we can add vertices in I in the same way as above. Now suppose that $u v=f$, and let $e=x y$. Then, from each b-edge of $P_{f}-e$ we add in I one vertex which is nearer to the vertices x, y in the chain P_{f}. The constructed set I^{\prime} is an independent set of $G-e$. Since I^{\prime} contains one vertex of each b-edge in $G-e$, we have $\left|I^{\prime}\right|=k$. Consequently, $\beta(G-e)=k$.

Case 2. The l-edge e belongs to a b-chain P_{f}, where f is a b-edge of H. If $H=P r_{2 n+1}$, then without loss of generality we may suppose that $f=u_{1} v_{1}$. Put

$$
I=\left\{u_{2 i}, v_{2 i+1}: 1 \leq i \leq n\right\}
$$

If $H=M l_{2 n}$, then we may assume that $f=u_{1} u_{2 n+1}$. In that case put

$$
I=\left\{u_{2 i}, u_{2 n}, u_{2 n+2 i+1}: 1 \leq i \leq n-1\right\} .
$$

The set I is an independent set of $H-f$ such that each b-edge of $H-f$ has one vertex in I and $|I|=\frac{1}{2}|H|-1$. Note also that the end vertices of f do not belong to I. Adding vertices in the set I in the same way as in Case 1, we obtain the set I^{\prime} such that I^{\prime} contains one vertex of each b-edge of the graph $G-e$. Therefore, $\left|I^{\prime}\right|=k=\frac{1}{2}|G|$, i.e., $\beta(G-e)=k$.

Thus, Lemmas 10 and 11 imply that a graph is critical if and only if it is a basis. Now the proof of Theorem 1 follows from Lemma 4.

4 Corollaries

In this section we illustrate some applications of the characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. We say that a graph G is 2-homeomorphic to H if G can be obtained from H by replacing edges of H by chains of even order $2 k, k \geq 1$. Let the family \mathcal{H} consist of graphs 2-homeomorphic to the odd prism $\operatorname{Pr}_{2 n+1}(n \geq 0)$ or the even Möbius ladder $M l_{2 m}(m \geq 1)$.

Proposition 1 If H belongs to \mathcal{H}, then $\beta(H)<\frac{1}{2}|H|$.
Proof: For the odd prism we have $\beta\left(P r_{2 n+1}\right)=2 n$, i.e., $\beta\left(P r_{2 n+1}\right)<\frac{1}{2}\left|P r_{2 n+1}\right|$. For the even Möbius ladder we have $\beta\left(M l_{2 m}\right)=2 m-1$, i.e., $\beta\left(M l_{2 m}\right)<\frac{1}{2}\left|M l_{2 m}\right|$. Let F^{\prime} be obtained from a graph F by the single 2-partition of the edge $u v$, i.e., $u v$ is replaced by the chain $P=(u, x, y, v)$. Let U be a maximum independent set of F^{\prime}. Obviously, $1 \leq|U \cap P| \leq 2$. If $|U \cap P|=1$, then $U-P$ is an independent set of F of cardinality $|U|-1=\beta\left(F^{\prime}\right)-1$. If $|U \cap P|=2$, then at least one vertex from $\{u, v\}$ belongs to U, say $u \in U$. Now $U-\{x, y, v\}$ is an independent set of F of cardinality $|U|-1=\beta\left(F^{\prime}\right)-1$. In any case, $\beta(F) \geq \beta\left(F^{\prime}\right)-1$. Thus, if $\beta(F)<\frac{1}{2}|F|$, then

$$
\beta\left(F^{\prime}\right) \leq \beta(F)+1<\frac{1}{2}|F|+1=\frac{1}{2}\left|F^{\prime}\right| .
$$

Since H is obtained from the odd prism or the even Möbius ladder by applying the operation of 2-partition, we conclude that $\beta(H)<\frac{1}{2}|H|$.

In our next theorem, the graphs from the family \mathcal{H} are forbidden as semi-induced subgraphs for a graph to be Γ-perfect. Using the fact that a semi-induced subgraph of a graph is a W-graph, we see that the class of forbidden semi-induced subgraphs of Theorem 2 actually consists of W -graphs from the family \mathcal{H}. Note that the class of W -graphs from \mathcal{H} is larger than the class of basis graphs used in Theorem 1. For example, $M l_{4}=$ $M l_{4}\left(\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\},\left\{u_{1}, u_{4}, u_{5}, u_{8}\right\}\right)$ is a W -graph from \mathcal{H} and hence it is forbidden in Theorem 2. On the other hand, $M l_{4}$ is not a basis graph. Another difference between Theorem 1 and Theorem 2 is that a basis graph has a fixed partition into parts determined by the set of its b-edges, while for a W -graph from \mathcal{H} the partition into parts is not fixed.

Theorem $2 A$ graph G is Γ-perfect if and only if G does not contain a semi-induced subgraph 2-homeomorphic to the odd prism $\operatorname{Pr}_{2 n+1}(n \geq 0)$ or the even Möbius ladder $M l_{2 m}(m \geq 1)$.

Proof: Let G be a Γ-perfect graph and let H belong to \mathcal{H}. If H is not a W -graph, then H cannot be a semi-induced subgraph of G. Suppose now that $H=H(A, B)$ is a W-graph and H is a semi-induced subgraph of G. By Proposition 1, $\beta(H)<\frac{1}{2}|H|$. Let $H^{\prime}=\langle A \cup B\rangle$. Evidently, $\beta\left(H^{\prime}\right) \leq \beta(H)$ and H^{\prime} is a W-graph. Therefore, by Lemma 1,

$$
\Gamma\left(H^{\prime}\right)=\frac{1}{2}\left|H^{\prime}\right|=\frac{1}{2}|H|>\beta(H) \geq \beta\left(H^{\prime}\right) .
$$

Thus, $\Gamma\left(H^{\prime}\right)>\beta\left(H^{\prime}\right)$. This is a contradiction, since G is a Γ-perfect graph.
Suppose that G does not contain any graph from \mathcal{H} as a semi-induced subgraph. Any basis graph F is obtained from the odd prism or the even Möbius ladder by replacing its edges by alternating chains of even order, and the partition into parts of F is determined by the set of its b-edges. Thus, the graph F is 2-homeomorphic to the odd prism or the even Möbius ladder and F has a fixed partition into parts. For a W -graph H from \mathcal{H}, the partition into parts of H is not fixed, and hence we may take any partition $V(H)=A \cup B$ such that A and B independently match each other. Therefore, $F \in \mathcal{H}$ and the graph G does not contain any basis graph as a semi-induced subgraph. The result now follows from Theorem 1.

Jacobson and Peters [22] considered the class of graphs G having $\beta(H)=I R(H)$ for all induced subgraphs H of G. By Theorem A, this class is exactly the class of Γ-perfect graphs.

Corollary 1 (Jacobson and Peters [22]) A graph G is Γ-perfect if and only if for any vertex subsets $A, B \subset V(G)$ that independently match each other, the graph $\langle A \cup B\rangle$ has an independent set of order $|A|$.

Proof: Let G be a Γ-perfect graph and A, B independently match each other. The set A is minimal dominating in $F=\langle A \cup B\rangle$. Hence, $\beta(F)=\Gamma(F) \geq|A|$. To prove the sufficiency, suppose that G is not Γ-perfect. By Theorem 2, G contains a semi-induced subgraph $H=H(A, B) \in \mathcal{H}$. By Proposition $1, \beta(H)<|A|$. Thus, the sets A, B independently match each other in G and $\beta\langle A \cup B\rangle<|A|$, a contradiction.

Now we turn to the problem of characterizing Γ-perfect graphs in terms of forbidden induced subgraphs. A graph G is called minimal Γ-imperfect if G is not Γ-perfect and $\beta(H)=\Gamma(H)$, for every proper induced subgraph H of G.

Proposition 2 If G is a minimal Γ-imperfect graph, then G contains a basis graph $F(A, B)$ of order $2 k$ as a semi-induced subgraph, $G=G(A, B)$ is a connected W-graph of order $2 k$, $\delta(G) \geq 2$, and $\beta(G)=k-1$.

Proof: By Theorem 1, G contains a basis graph F as a semi-induced subgraph. Since G is minimal, we have $V(G)=V(F)$. By Lemma 11, F is critical, i.e., $F=F(A, B)$ is a connected W-graph of order $2 k, \delta(F) \geq 2$ and $\beta(F)<k$. The graph G is obtained from F by adding edges in the parts A, B. Therefore, $G(A, B)$ is a connected W -graph of order $2 k$,
$\delta(G) \geq 2$ and $\beta(G)<k$. Let $u v$ be a b-edge of G. The graph $G^{\prime}=G-\{u, v\}$ is Γ-perfect. Hence, using Lemma $1, \beta\left(G^{\prime}\right)=\Gamma\left(G^{\prime}\right)=k-1$. We obtain $\beta(G) \geq \beta\left(G^{\prime}\right)=k-1$. Thus, $\beta(G)=k-1$.

By Proposition 2, every minimal Γ-imperfect graph has even order $n \geq 6$. Let μ_{n} denote the number of nonisomorphic minimal Γ-imperfect graphs of order n. It was proved in [14] that $\mu_{6}=1$ and $\mu_{8}=14$. Using a computer search, we discovered that $\mu_{10}=228$ and the number μ_{12} considerably exceeds μ_{10}. Therefore, it seems unlikely to obtain an explicit list of all minimal Γ-imperfect graphs, i.e., to provide an induced subgraph characterization of the entire class of Γ-perfect graphs. However, for $K_{1,3}$-free Γ-perfect graphs Theorem 1 enables us to obtain such a characterization.

We define the family \mathcal{S} consisting of the following classes $\mathcal{S}_{1}, \mathcal{S}_{2}$ and \mathcal{S}_{3}. Let $C=$ $C_{4 m}$ and $C^{\prime}=C_{4 n}(m, n \geq 1)$ be two cycles, let $u v \in E(C)$ and $x y \in E\left(C^{\prime}\right)$, and let $\left(z_{1}, z_{2}, \ldots, z_{2 l}\right)(l \geq 1)$ be a chain. Add the edges $u z_{1}, v z_{1}$ and $x z_{2 l}, y z_{2 l}$. The resulting graph belongs to \mathcal{S}_{1}. Now let $\left(u_{1}, \ldots, u_{k}\right),\left(v_{1}, \ldots, v_{l}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ be three chains such that $k, l, m \geq 2$ and either $k, l, m \equiv 0(\bmod 4)$ or $k, l, m \equiv 2(\bmod 4)$. Adding the edges $u_{1} v_{1}$, $v_{1} w_{1}, w_{1} u_{1}$ and $u_{k} v_{l}, v_{l} w_{m}, w_{m} u_{k}$, we obtain a graph of the class \mathcal{S}_{2}. Lastly, let $C=C_{4 m}$ and $C^{\prime}=C_{4 n}(m, n \geq 1)$ be two cycles and let $u v \in E(C)$ and $x y \in E\left(C^{\prime}\right)$. Add the edges $u x, u y, v x, v y$. The resulting graph belongs to \mathcal{S}_{3}.

Theorem 3 A $K_{1,3}$-free graph G is Γ-perfect if and only if G does not contain any member of \mathcal{S} as an induced subgraph.

Proof: Any graph H from the family \mathcal{S} contains a semi-induced subgraph 2-homeomorphic to $P r_{1}, \mathrm{Pr}_{3}$ or $M l_{2}$. By Theorem 2, H is not Γ-perfect. To prove the sufficiency, let G be a minimal counterexample, i.e., G is a $K_{1,3}$-free graph not containing any member of \mathcal{S} as an induced subgraph, G is not Γ-perfect and G has minimal order. Obviously, G is a minimal Γ-imperfect graph. By Proposition 2, G contains a basis graph $F=F(A, B)$ as a semi-induced subgraph, $G=G(A, B)$ is a connected W-graph of order $2 k, \delta(G) \geq 2$, and $\beta(G)=k-1$. If the induced subgraph $\langle A\rangle$ or $\langle B\rangle$ of the graph G contains the induced chain P_{3}, then G has the induced $K_{1,3}$, a contradiction. Hence both $\langle A\rangle$ and $\langle B\rangle$ are disjoint unions of complete graphs.

Lemma 12 Let $G(A, B)$ be a minimal Γ-imperfect graph of order $2 k$. If $\langle A\rangle$ and $\langle B\rangle$ are disjoint unions of complete graphs, then the following statements hold:

1. If k is odd, then $\langle A\rangle \cong\langle B\rangle \cong \frac{k-3}{2} K_{2} \cup K_{3}(k \geq 3)$.
2. If k is even, then one of the graphs $\langle A\rangle,\langle B\rangle$ is $\frac{k}{2} K_{2}$ and the other is either $\frac{k-4}{2} K_{2} \cup K_{4}$ $(k \geq 4)$ or $\frac{k-6}{2} K_{2} \cup 2 K_{3}(k \geq 6)$.

Proof: Let $\langle A\rangle$ be a disjoint union of the complete graphs H_{1}, \ldots, H_{p}. Since $\delta(G) \geq 2$, we have $\left|H_{i}\right| \geq 2$ for any $i \in\{1, \ldots, p\}$, and hence $p \leq k / 2$. Let I be an independent set in G of cardinality $k-1=\beta(G)$. Put $I_{A}=I \cap A$ and $I_{B}=I \cap B$. The set I contains at most one vertex of each H_{i}, and hence $\left|I_{A}\right| \leq p \leq k / 2$. Analogously, $\left|I_{B}\right| \leq k / 2$. Further, $\left|I_{A}\right|=|I|-\left|I_{B}\right| \geq k-1-k / 2=k / 2-1$. Thus,

$$
\begin{equation*}
k / 2-1 \leq\left|I_{A}\right| \leq k / 2 \tag{2}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
k / 2-1 \leq\left|I_{B}\right| \leq k / 2 \tag{3}
\end{equation*}
$$

Put

$$
s=\sum_{i=1}^{p}\left(\left|H_{i}\right|-2\right) \geq 0
$$

We have,

$$
k=|A|=\sum_{i=1}^{p}\left|H_{i}\right|=s+2 p \geq s+2\left|I_{A}\right| .
$$

Therefore, using (2),

$$
s \leq k-2\left|I_{A}\right| \leq 2
$$

Thus,

$$
s \in\{0,1,2\} .
$$

If $k=|A|$ is odd, then s is also odd, since $s=k-2 p$. Hence $s=1, k \geq 3$, and $\langle A\rangle \cong \frac{k-3}{2} K_{2} \cup K_{3}$. Analogously, $\langle B\rangle \cong \frac{k-3}{2} K_{2} \cup K_{3}$.

Now let k be even. Using (2) and (3), we see that one of the sets I_{A} and I_{B} has cardinality $k / 2-1$ and the other has cardinality $k / 2$. Without loss of generality, let $\left|I_{A}\right|=k / 2-1$ and $\left|I_{B}\right|=k / 2$. Since $\langle B\rangle$ is a disjoint union of complete graphs and $\delta(G) \geq 2$, we have $\langle B\rangle \cong \frac{k}{2} K_{2}$. Further, $s=k-2 p$ and k is even. Hence s is even and $s=0$ or 2 . If $s=0$, then $\langle A\rangle \cong \frac{k}{2} K_{2}$ and therefore G is a disjoint union of even simple cycles. We obtain $\beta(G)=k$, a contradiction. Thus, $s=2$. Hence $k \geq 4$ and $\langle A\rangle \cong \frac{k-4}{2} K_{2} \cup K_{4}$ or $k \geq 6$ and $\langle A\rangle \cong \frac{k-6}{2} K_{2} \cup 2 K_{3}$. The proof of Lemma 12 is complete.

By Lemma 12, G has either exactly 6 vertices of degree 3 or exactly 4 vertices of degree 4 , and all other vertices have degree 2 . The basis graph F is a spanning subgraph of G. Therefore, either F has at most 6 vertices of degree 3 and all other vertices have degree 2 , or F has at most 4 vertices of degree 3 and 4 and all other vertices have degree 2. Consequently, F is obtained from $\mathrm{Pr}_{1}, \mathrm{Pr}_{3}$ or $M l_{2}$ (see Fig. 1) by the operation of W-reducibility. By Lemma 5, any l-edge of F belongs to A or B.

Suppose that F is obtained from Pr_{1}. Let $u u_{1}, u_{1} u^{\prime}$ be l-edges of one l-cycle of F and let $v v_{1}, v_{1} v^{\prime}$ be l-edges of the other l-cycle of F. The vertices u, u^{\prime}, u_{1} belong to the same part, and v, v^{\prime}, v_{1} belong to the same part. We have, $u u^{\prime} \in E(G)$ and $v v^{\prime} \in E(G)$, since G is a $K_{1,3}$-free graph. The restrictions on the degrees of vertices of G imply $G=F \cup\left\{u u^{\prime}, v v^{\prime}\right\}$. Since G is a W-graph, we see that the cycle C of G such that $u, u^{\prime} \in C$ and $u_{1} \notin C$ has length $4 m$, and the cycle C^{\prime} of G such that $v, v^{\prime} \in C^{\prime}$ and $v_{1} \notin C^{\prime}$ has length $4 n$. Thus, $G \in \mathcal{S}_{1}$, a contradiction.

Assume that F is obtained from Pr_{3}. The prism Pr_{3} has 6 vertices of degree 3. Hence, $G=F$. Suppose that an l-edge of $P r_{3}$ was replaced by an l-chain having more than 2 vertices. Then F has the induced $K_{1,3}$, a contradiction. Therefore, only b-edges of $P r_{3}$ could be replaced by b-chains to obtain F. These chains must be odd b-chains if $C_{1}=\left(u_{1}, u_{2}, u_{3}\right)$ and $C_{2}=\left(v_{1}, v_{2}, v_{3}\right)$ belong to different parts of F, and they must be even b-chains if C_{1} and C_{2} belong to the same part of F. Any odd b-chain has $4 k+2$ vertices, and any even b-chain has $4 m$ vertices. Therefore, $G=F \in \mathcal{S}_{2}$, a contradiction.

Finally, suppose that F is obtained from $M l_{2}$ by the operation of W-reducibility. It is easy to see that $M l_{2}$ has 4 different labelings of $V\left(M l_{2}\right)$ by $c(u) \in\{A, B\}$ up to replacing A by B. Hence there are 4 cases to consider.

Case 1: $c\left(u_{1}\right)=c\left(u_{4}\right)=A$ and $c\left(u_{2}\right)=c\left(u_{3}\right)=B$. By the definition of W-reducibility, the l-edges $u_{1} u_{2}$ and $u_{3} u_{4}$ had to be replaced by the odd l-chains $\left(u_{1}, v_{1}, \ldots, v_{k}, u_{2}\right), k \geq 2$, and $\left(u_{3}, w_{1}, \ldots, w_{m}, u_{4}\right), m \geq 2$. Each of the vertices $v_{1}, v_{k}, w_{1}, w_{m}$ is an end vertex of P_{3} or P_{4} consisting of l-edges and hence belonging to A or B. Since any part of G is a disjoint union of complete graphs, we see that each of the above vertices will have degree at least 3 in G. Thus, G has at least 8 vertices of degree at least 3 , a contradiction.

Case 2: $c\left(u_{1}\right)=c\left(u_{3}\right)=A$ and $c\left(u_{2}\right)=c\left(u_{4}\right)=B$. This case is analogous to Case 1, since the l-edges $u_{1} u_{2}$ and $u_{3} u_{4}$ had to be replaced by odd l-chains.

Case 3: $c\left(u_{1}\right)=c\left(u_{2}\right)=c\left(u_{3}\right)=A$ and $c\left(u_{4}\right)=B$. The l-edges $u_{1} u_{4}$ and $u_{3} u_{4}$ had to be replaced by the odd l-chains $\left(u_{1}, v_{1}, \ldots, v_{k}, u_{4}\right), k \geq 2$, and $\left(u_{3}, w_{1}, . ., w_{m}, u_{4}\right), m \geq 2$. Each of the vertices $v_{1}, v_{k}, w_{1}, w_{m}$ is an end vertex of $P_{r}(r \geq 3)$ consisting of l-edges. Hence, each of these vertices has degree at least 3 in G. Thus, G has at least 8 vertices of degree at least 3, a contradiction.

Case 4: $c\left(u_{i}\right)=A, 1 \leq i \leq 4$. If some two l-edges from $\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{1}\right\}$ were replaced by even l-chains having at least two b-edges, then we derive a contradiction in the same way as above. Suppose that only one l-edge, say $u_{1} u_{2}$, was replaced by the even l-chain $\left(u_{1}, v_{1}, \ldots, v_{k}, u_{2}\right), k \geq 4$. Then $\left\langle v_{k}, u_{2}, u_{3}, u_{4}, u_{1}, v_{1}\right\rangle$ is a P_{6} in F consisting of l-edges. Therefore, G contains K_{6}, a contradiction. Thus, only the b-edges $u_{1} u_{3}$ and $u_{2} u_{4}$ of $M l_{2}$ were replaced by even b-chains and $\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle$ is a C_{4} in F consisting of l-edges. Hence $\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle$ is a K_{4} in G, and so all other vertices in G must have degree 2, i.e., $G=F \cup\left\{u_{1} u_{3}, u_{2} u_{4}\right\}$. Since even b-chains have $4 m$ vertices ($m \geq 1$), we have $G \in \mathcal{S}_{3}$. This contradiction completes the proof of Theorem 3.

FIGURE 3. Graph H of Corollary 2.
The next result follows directly from Theorem 3 and Theorem A, since each graph from \mathcal{S} contains either C_{4} or the graph H of Fig. 3 as an induced subgraph.

Corollary 2 (Jacobson and Peters [23]) If a graph G does not contain either $K_{1,3}, C_{4}$ or the graph H of Fig. 3 as an induced subgraph, then G is Γ-perfect and IR-perfect.

Note in conclusion that using properties of minimal Γ-imperfect graphs stated in Proposition 2, it is not difficult to prove Theorems B, C, D, E, or F from Section 1.

Acknowledgment The authors thank the referees for valuable suggestions.

References

[1] R.B. Allan and R. Laskar, On domination and independent domination numbers of a graph. Discrete Math. 23 (1978) 73-76.
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
[3] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theory 3 (1979) 241-249.
[4] G. Chartrand and L. Lesniak, Graphs 83 Digraphs, Chapman \& Hall, 3rd ed. (1996).
[5] G.A. Cheston and G. Fricke, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance. Discrete Appl. Math. 55 (1994) 241-258.
[6] G.A. Cheston, E.O. Hare, S.T. Hedetniemi and R.C. Laskar, Simplicial graphs. Congr. Numer. 67 (1988) 105-113.
[7] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33 (1981) 249-258.
[8] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs. Canad. Math. Bull. 21 (1978) 461-468.
[9] E.J. Cockayne and C.M. Mynhardt, The sequence of upper and lower domination, independence and irredundance numbers of a graph. Discrete Math. 122 (1993) 89102.
[10] O. Favaron, Stability, domination and irredundance in a graph. J. Graph Theory 10 (1986) 429-438.
[11] M. Fellows, G. Fricke, S.T. Hedetniemi and D. Jacobs, The private neighbor cube. SIAM J. Discrete Math. 7 (1994) 41-47.
[12] J. Fulman, A note on the characterization of domination perfect graphs. J. Graph Theory 17 (1993) 47-51.
[13] M.C. Golumbic and R.C. Laskar, Irredundancy in circular arc graphs. Discrete Appl. Math. 44 (1993) 79-89.
[14] G. Gutin and V.E. Zverovich, Upper domination and upper irredundance perfect graphs. Discrete Math. 190 (1998) 95-105.
[15] P.L. Hammer and F. Maffray, Preperfect graphs. Combinatorica 13 (1993) 199-208.
[16] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).
[17] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers. Congr. Numer. 55 (1986) 121-150.
[18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York (1998).
[19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
[20] S.T. Hedetniemi, R. Laskar and J. Pfaff, Irredundance in graphs: a survey. Congr. Numer. 48 (1985) 183-193.
[21] M.A. Henning, Irredundance perfect graphs. Discrete Math. 142 (1995) 107-120.
[22] M.S. Jacobson and K. Peters, A note on graphs which have upper irredundance equal to independence. Discrete Appl. Math. 44 (1993) 91-97.
[23] M.S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence. Discrete Math. 86 (1990) 59-69.
[24] R. Laskar and H.B. Walikar, On domination related concepts in graph theory. Lecture Notes in Math. 885 (1981) 308-320.
[25] R. Laskar and J. Pfaff, Domination and irredundance in graphs. Tech. Report 434, Dept. Mathematical Sciences, Clemson Univ., 1983.
[26] R. Laskar and J. Pfaff, Domination and irredundance in split graphs. Tech. Report 430, Dept. Mathematical Sciences, Clemson Univ., 1983.
[27] S. Mitchell and S. Hedetniemi, Edge domination in trees. Congr. Numer. 19 (1977) 489-509.
[28] D.P. Sumner, Critical concepts in domination. Discrete Math. 86 (1990) 33-46.
[29] D.P. Sumner and J.I. Moore, Domination perfect graphs. Notices Am. Math. Soc. 26 (1979) A-569.
[30] J. Topp, Domination, independence and irredundance in graphs. Dissertationes Math. 342 (1995) 99 pp.
[31] J. Topp and L. Volkmann, On graphs with equal domination and independent domination numbers. Discrete Math. 96 (1991) 75-80.
[32] L. Volkmann and V.E. Zverovich, A proof of Favaron's conjecture on irredundance perfect graphs. (submitted)
[33] I.E. Zverovich and V.E. Zverovich, An induced subgraph characterization of domination perfect graphs. J. Graph Theory 20 (1995) 375-395.

[^0]: *On leave from Faculty of Mechanics and Mathematics, Belarus State University, Minsk 220050, Belarus. Supported by the Alexander von Humboldt Foundation.

