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Abstract

The definitions of four previously studied parameters related to total coverings and
total matchings of graphs can be restricted, thereby obtaining eight parameters related
to covering and independence, each of which has been studied previously in some form.
Here we survey briefly results concerning total coverings and total matchings of graphs,
and consider the aforementioned twelve covering and independence parameters with
regard to algorithmic complexity. We survey briefly known results for several graph
classes, and obtain new NP-completeness results for the minimum total cover and
maximum minimal total cover problems in planar graphs, the minimum maximal total
matching problem in bipartite and chordal graphs, and the minimum independent
dominating set problem in planar cubic graphs.
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1 Introduction

In graph theory, the notion of covering vertices or edges of graphs by other vertices or
edges has been extensively studied. For instance, covering vertices by other vertices leads
to parameters concerned with vertex domination [45]. When edges are to be covered by
vertices we obtain parameters connected with the classical vertex covering problem [41,
p.94]. Covering vertices by edges, i.e. finding edge covers, is considered by Norman and
Rabin [66]. Finally, when edges are to cover other edges, we obtain parameters associated
with edge domination (introduced by Mitchell and Hedetniemi [62]). Independent sets
of vertices [41, p.95] correspond to the case where vertices are chosen so as not to cover
one another, and matchings [57] of a graph correspond to the similar restriction involving
edges.

It is natural to extend this notion of covering by vertices and edges. Nordhaus [64],
and also Alavi et al. [1], define the elements of a graph G = (V,E) to be the set V ∪ E.
A vertex v is defined to cover itself, all edges incident on v and all vertices adjacent to
v. An edge {u, v} is said to cover itself, vertices u and v, and all edges incident on u or
v. Two elements of V ∪ E are independent if neither covers the other. Thus, a vertex
cover is a subset S of V that covers E, a dominating set is a subset S of V that covers
V (in this paper, the term dominating set will only apply to a set of vertices), an edge
dominating set is a subset S of E that covers E, and an edge cover is a subset S of E
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that covers V (assuming that G has no isolated vertices). A subset C of V ∪E that covers
all elements of G is said to be a total cover for G. Also, an independent set is a subset
S of V whose elements are pairwise independent (in this paper, the term independent set
will only apply to a set of vertices), and a matching is a subset S of E whose elements
are pairwise independent (in this paper, the term matching will only apply to a set of
edges). A subset M of V ∪E whose elements are pairwise independent is said to be a total
matching for G.

Suppose that P is some collection of sets. Denote by P− the minimal elements of P,
i.e. S ∈ P− if and only if S ∈ P and no proper subset of S is a member of P. Similarly,
denote by P+ the maximal elements of P, i.e. S ∈ P+ if and only if S ∈ P and no proper
superset of S is a member of P. Let

C(G) = {C ⊆ V ∪ E : C is a total cover for G}

and
M(G) = {M ⊆ V ∪ E : M is a total matching for G}.

Nordhaus [64] and also Alavi et al. [1] define the following parameters1:

α2(G) = min{|C| : C ∈ C−(G)}, α+
2
(G) = max{|C| : C ∈ C−(G)},

β−

2
(G) = min{|M | : M ∈ M+(G)}, β2(G) = max{|M | : M ∈ M+(G)}.

1.1 Survey of non-algorithmic total covering and total matching results

Some upper and lower bounds involving each of these parameters separately are derived
by Gupta [40], Nordhaus [64], Alavi et al. [1], Meir [61], Kulli et al. [56], Zhang et al. [75],
Alavi et al. [2] and Gimbel and Vestergaard [37]. In particular, it is known [1] that

α2(G) ≤ β−

2
(G) ≤ β2(G) ≤ α+

2
(G).

Peled and Sun [67] derive exact values for these parameters in threshold graphs. Also, Alavi
et al. [2] consider properties of those connected graphs on n vertices having α2(G) = dn

2
e.

Bounds for α2(G) + β2(G) are considered by Alavi et al. [1], Erdös and Meir [26] and
Meir [61]. In addition, some Nordhaus–Gaddum [65] type results have been obtained,
involving each of α2 and β2 [26, 61], and involving β−

2
[37]. Finally, Topp and Vestergaard

[73] characterise those graphs in which every maximal total matching is maximum, and
Topp [72] studies those graphs having a unique maximum total matching. The survey
by Hedetniemi et al. [46] describes the inequalities involving the total covering and total
matching parameters in more detail.

The terminology for total covers and total matchings does not seem to be universally
agreed upon in the literature. Nordhaus [64] and Alavi et al. [1], who introduced these
concepts, define a subset C of V ∪ E to be a total cover if C covers G and C is minimal.
Similarly, they define C to be a total matching if the elements of C are pairwise indepen-
dent and C is maximal. However, several authors [2, 37, 73] have defined total covers and
total matchings without the minimality or maximality requirement, respectively, as is done

1The notation of the covering and independence parameters studied in this paper follows that of Harary
[41] and Alavi et al. [1]. The convention these authors follow is that the α and β symbols refer respectively
to covering and independence properties that are to be satisfied. The subscript of the parameter symbol
is 0, 1, 2 according to whether the parameter is associated with the optimum size of a set of vertices, edges
or both, respectively. A superscript of ‘+’ in the case of an α parameter refers to the ‘maximum minimal’
objective, and a superscript of ‘−’ in the case of a β parameter refers to the ‘minimum maximal’ objective.
When this superscript is missing from an α symbol, the objective is to minimise, and the objective is to
maximise in the case that a β symbol is without superscript.
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here. This can be advantageous, for example, when reasoning about a subset C of V ∪ E
whose elements are pairwise independent, but C is not maximal. Following the terminol-
ogy of Nordhaus [64], such a set is not a total matching. Referring to C as an independent
set or a matching coincides with the usual notion of an independent set or matching when
applied to sets containing vertices or edges only, respectively. Thus we choose to follow
the terminology of [2, 37, 73]. We note in passing that total covers (as defined here) are
referred to as mixed dominating sets by Hedetniemi et al. [46], entire dominating sets by
Kulli et al. [56] and total dominating sets by Gimbel et al. [36]. The latter definition is
quite distinct from the more widely accepted concept of a total dominating set, due to
Cockayne et al. [13].

1.2 More covering and independence parameters

Nordhaus [64] shows how we may use C and M to derive some existing graph parameters.
Define

C0(G) = {C ∈ C(G) : C ⊆ V } and C1(G) = {C ∈ C(G) : C ⊆ E}

and similarly define

M0(G) = {M ∈ M(G) : M ⊆ V } and M1(G) = {M ∈ M(G) : M ⊆ E}.

Then we obtain, as in [64],

α0(G) = min{|C| : C ∈ C−

0
(G)} − IG, α+

0
(G) = max{|C| : C ∈ C−

0
(G)} − IG,

β−

0
(G) = min{|M | : M ∈ M+

0
(G)}, β0(G) = max{|M | : M ∈ M+

0
(G)},

where α0 and α+
0

are the minimum and maximum over all minimal vertex covers of G
respectively, and β−

0
and β0 are the minimum and maximum over all maximal independent

sets of G respectively, and IG denotes the number of isolated vertices of G. Similarly we
obtain2

α1(G) = min{|C| : C ∈ C−

1
(G)}, α+

1
(G) = max{|C| : C ∈ C−

1
(G)},

β−

1
(G) = min{|M | : M ∈ M+

1
(G)}, β1(G) = max{|M | : M ∈ M+

1
(G)},

where α1 and α+
1

are the minimum and maximum over all minimal edge covers of G
respectively, and β−

1
and β1 are the minimum and maximum over all maximal matchings

of G respectively. Thus definitions relating to the total covering and total matching
parameters α2, α

+

2
, β−

2
, β2 can be restricted, in order to obtain the eight covering and

independence parameters αi, α
+

i , β−

i , βi for i = 0, 1. This implies a possible framework for
twelve covering and independence parameters of graphs. Each of αi, α

+

i and β−

i , βi has
been studied previously in some form, for 0 ≤ i ≤ 2.

Nordhaus [64] investigates relations between the parameters α2, α
+
2
, β−

2
, β2 and αi, α

+

i ,
β−

i , βi for i = 0, 1, and obtains the inequalities

α2(G) ≤ αi(G) ≤ α+

i (G) ≤ α+
2
(G)

for i = 0, 1, and

β2(G) ≥ max{β0(G), β1(G)} and β−

2
(G) ≥ max{β−

0
(G), β−

1
(G)}.

Let γ(G) and Γ(G) denote respectively the minimum and maximum over all minimal
dominating sets of a graph G. For a graph G = (V,E), let T (G) denote the total graph
of G – this is the graph with vertex set V ∪ E, and two vertices are adjacent in T (G)
if and only if the corresponding elements are adjacent or incident as vertices or edges
of G. It is clear that α2(G) = γ(T (G)), α+

2
(G) = Γ(T (G)), β−

2
(G) = β−

0
(T (G)) and

β2(G) = β0(T (G)).

2In the case of α1 and α+

1 , we assume that G has no isolated vertices, for the concept of edge covering
is undefined for graphs with isolated vertices.
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1.3 Organisation of the paper

We study the algorithmic complexity of the twelve decision problems related to αi, α
+

i and
β−

i , βi for 0 ≤ i ≤ 2 over several classes of graph. The classes that we consider include, in
each case, four extensively studied classes of graphs, namely planar, bipartite, and chordal3

graphs, and trees. Definitions of other graph classes mentioned here but not defined may
be found in [38] and [52]. Henceforth we refer to ‘the complexity of α’ when we mean
‘the complexity of the decision problem related to parameter α’. We survey briefly known
results for graph classes that include at least the four mentioned above, and obtain new
NP-completeness results for the following problems:

• Minimum total cover in planar graphs.

• Maximum minimal total cover in planar graphs.

• Minimum maximal total matching in bipartite and chordal graphs.

• Minimum independent dominating set in planar cubic4 graphs.

In addition, we demonstrate that the complexities of the maximum minimal edge cover,
maximum minimal vertex cover, and maximum total matching parameters are identical
to the complexities of the minimum dominating set, minimum independent dominating
set, and minimum edge dominating set parameters respectively, over all graph classes.
These results do not appear to have been noted explicitly in the literature previously.
Appropriate transformations are given for the new results, and references are supplied for
the known results.

The remainder of this paper is organised as follows. In Sections 2-6, we consider each of
the twelve covering and independence parameters. The total covering and total matching
parameters are discussed in Sections 2 and 3 respectively, as their definition gives rise to
the framework for the remaining parameters. Then, in Sections 4, 5 and 6, we consider
the vertex covering and independence parameters, the edge covering parameters, and the
matching parameters, respectively. In Section 7, we give a summary of the algorithmic
results in this paper, and finally, we present some concluding remarks in Section 8.

2 Total covering

We begin by considering the total covering parameters. Majumdar [59, p.52] shows that α2

is NP-complete for general graphs, using a transformation from 3-sat [33, problem LO2],
and gives a linear-time algorithm for trees. Hedetniemi et al. [46] show that α2 remains
NP-complete for bipartite and chordal graphs. The proof involves a transformation from
exact cover by 3-sets [33, problem SP2], which may be defined as follows:

Name: exact cover by 3-sets (x3c)
Instance: Set A = {a1, a2, . . . , a3q} of elements, for some q ∈ Z

+, and a collec-
tion C = {c1, c2, . . . , cm} of subsets of A (clauses), where |ci| = 3 for each i.
Question: Does C contain an exact cover for A, i.e. is there a set C ′ (C ′ ⊆ C)
of pairwise disjoint sets whose union is A?

The restriction of x3c known as planar exact cover by 3-sets (px3c) demands that
the graph G = (V,E), associated with an instance (A,C) of x3c, with vertex set V = A∪C

3A graph G is chordal if every cycle in G of length four or more contains a chord, i.e. an edge connecting
two non-adjacent points on the cycle

4A graph is cubic if every vertex has degree 3.
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and edge set E = {(a, c) : a ∈ c ∈ C}, is planar. px3c is NP-complete [23], even if each
element occurs in either two or three clauses. It may be verified that the construction of
Hedetniemi et al. [46], showing NP-completeness for α2 in bipartite graphs, preserves the
planarity of this graph G. Moreover, the maximum degree of the graph constructed is 4.
Thus, by considering the same transformation, but from px3c rather than x3c, we obtain
the following result. (Let minimum total cover be the decision problem related to α2,
which takes a graph G and an integer K ∈ Z

+ and asks whether α2(G) ≤ K.)

Theorem 2.1. minimum total cover is NP-complete, even for planar bipartite graphs
of maximum degree 4.

Investigating the computational complexity of α+
2

is given as an open problem by
Hedetniemi et al. [46]. Let maximum minimal total cover be the decision problem
related to α+

2
, which takes a graph G and integer K ∈ Z

+ and asks whether α+
2
(G) ≥ K.

We show that maximum minimal total cover is NP-complete for planar graphs.

Theorem 2.2. maximum minimal total cover is NP-complete, even for planar graphs.

Proof. Clearly maximum minimal total cover is in NP. For, given K ∈ Z
+ and a set

S of at least K elements, it is straightforward to verify in polynomial time that S is a
minimal total cover.

To show NP-hardness, we give a transformation from px3c, defined above. Given an
arbitrary instance of px3c, we construct a planar graph G, with the property that there
exists an exact cover for the px3c instance if and only if there exists a minimal total cover
of G with at least K elements, for a particular K ∈ Z

+.
Suppose that a set of elements A = {a1, a2, a3, . . . , a3q} and a collection of clauses

C = {c1, c2, c3, . . . , cm} (for some q,m ∈ Z
+) is an arbitrary instance of px3c. Suppose

further that, for each j (1 ≤ j ≤ m), cj = {ai3j−2
, ai3j−1

, ai3j
}, where i1, i2, i3, . . . , i3m is

some sequence of integers such that

{i1, i2, i3, . . . , i3m} = {1, 2, 3, . . . , 3q}.

Construct an instance – graph G = (V,E) and positive integer K – of maximum minimal

total cover as follows:

• Subset vertices: For each j (1 ≤ j ≤ m) create a subset vertex sj.

• Communication edges: For each j (1 ≤ j ≤ m), add three communication edges,
{sj , ti3j−2

}, {sj , ti3j−1
}, {sj, ti3j

}, where cj = {ai3j−2
, ai3j−1

, ai3j
}.

• Element components: For each i (1 ≤ i ≤ 3q), create an element vertex ti. Form a
clique among three vertices ui, vi, wi, and join ui to ti. Create N (where N is to be
defined) leaf vertices xr

i , and join each xr
i to ti, for 1 ≤ r ≤ N .

• Target value: Set K = m + (3N + 8)q.

Denote by Si the following elements in the ith element component:

Si = {ti, {ti, ui}, ui, {ui, vi}, vi, {vi, wi}, wi, {wi, ui}}.

Apart from the leaf vertices and their incident edges, G has a total of 12q+m vertices and
12q +3m edges. Set N to be the sum of these totals, i.e. N = 24q +4m. The construction
is partly illustrated in Figure 1. Clearly, this construction is polynomial with respect to
the size of the px3c instance, and preserves the planarity of the graph constructed from
this instance. First we show that if the px3c instance has an exact cover, then G has a
minimal total cover S, with |S| = K. From an exact cover C ′ for the px3c instance, we
construct a set S as follows. For each j (1 ≤ j ≤ m):

5



  

j

 

 
3j−2iCC

1
C

3j−1i C   
3ji C3q

s

N
i

i

i

i
1

Cii
t

u

v w

x 2
ix ix

Figure 1: Part of the graph G constructed as an instance of maximum minimal total

cover, showing typical subset and element components.

• If cj ∈ C ′, add to S the three edges {sj, ti3j−2
}, {sj , ti3j−1

} and {sj , ti3j
}.

• If cj /∈ C ′, add to S the vertex sj.

For each i (1 ≤ i ≤ 3q):

• Add to S the vertices vi, wi.

• Add to S the vertices xr
i for 1 ≤ r ≤ N .

Now S is a total cover, for, clearly the leaf vertices cover themselves, their incident edges
and ti, for 1 ≤ i ≤ 3q. Also sj is covered either by itself or by an incident edge, for each j
(1 ≤ j ≤ m). As C ′ is an exact cover, then for each i (1 ≤ i ≤ 3q), all edges incident on
ti are covered by some communication edge of S. Finally, all other vertices and edges in
each element component are clearly covered.

S is minimal, for it is clear that each of the leaf vertices are are covered by no other
element of S. Also S\{vi} does not cover the edge {ui, vi} and S\{wi} does not cover
the edge {ui, wi}, for any i (1 ≤ i ≤ 3q). If sj ∈ S for any j (1 ≤ j ≤ m), then no
communication edge of S is incident on sj, so that S\{sj} does not cover sj. Finally, if
a communication edge {sj, ti} is in S, for any i and j (1 ≤ i ≤ 3q, 1 ≤ j ≤ m), then
S\{{sj , ti}} does not cover {ti, ui}, since C ′ is an exact cover.

By construction of S, all 3q of the element vertices are covered by exactly one commu-
nication edge. As C ′ is an exact cover, these edges cover exactly q subset vertices. There
are then m− q = |C\C ′| subset vertices in S. Each element component contributes N +2
vertices and no edges. Thus

|S| = 3q + (m − q) + 3q(N + 2)
= K

as required.

Conversely, suppose that G has a minimal total cover S such that |S| ≥ K. We
show that the px3c instance has an exact cover C ′. From all minimal total covers for
G with cardinality at least K, choose S to be such a set that has the fewest number of
communication edges. We now establish a number of facts about the elements that S
contains.
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1. S does not contain ti, for any i (1 ≤ i ≤ 3q). For, suppose ti ∈ S for some i
(1 ≤ i ≤ 3q). Then by minimality xr

i /∈ S for 1 ≤ r ≤ N and {ti, x
r
i } /∈ S for

1 ≤ r ≤ N . Thus, an upper bound for S in this case must be:

|S| ≤ N + (3q − 1)N
< K

which is a contradiction.

2. There are 3qN elements in S such that each element is either a leaf vertex or is an
edge incident on a leaf vertex. Furthermore, these elements cover each of the vertices
ti, for 1 ≤ i ≤ 3q. This observation follows from Fact 1.

3. |S ∩ Si| = 2, for any i (1 ≤ i ≤ 3q). For, let 1 ≤ i ≤ 3q be given. From Fact 1,
ti /∈ S. Suppose {ti, ui} ∈ S. If S\{{ti, ui}} does not cover some edge {sj , ti}, for
some j (1 ≤ j ≤ m) then S does not cover sj, since tk /∈ S, for any k (1 ≤ k ≤ 3q),
a contradiction. Thus S\{{ti, ui}} covers all communication edges of G, but does
not cover some element of Si. It follows that exactly one more element of Si is in S.
In the case that {ti, ui} /∈ S, it may also be verified that exactly two elements of Si

belong to S.

4. S does not contain an edge {sj, ti} together with vertex sj, for any i and j (1 ≤ i ≤ 3q
and 1 ≤ j ≤ m). For, suppose S did. Since, by Fact 2, each of ti3j−2

, ti3j−1
, ti3j

is
covered by a leaf vertex or an edge incident on a leaf vertex, then S\{sj} also covers
G, contradicting the minimality of S.

5. S does not contain more than one communication edge incident on a vertex ti, for
any i (1 ≤ i ≤ 3q). For, suppose S did – let {sj, ti} and {sk, ti} be two such edges,
for some j, k (1 ≤ j 6= k ≤ m) and i (1 ≤ i ≤ 3q). Then by Fact 4, sk /∈ S, and by
minimality, no edge incident on sk other than {sk, ti} is in S. Since, by Fact 2, each
of ti3k−2

, ti3k−1
, ti3k

is already covered by a leaf vertex or an edge incident on a leaf
vertex, then S ′ = (S\{{sk, ti}})∪{sk} is a minimal total cover of G, with one fewer
communication edge, and satisfies |S ′| = |S|, contradicting the choice of S.

Let there be l communication edges in S. Then Fact 5 implies that these l edges are
incident on exactly l of the element vertices, so that l ≤ 3q. Suppose that S contains r
subset vertices. Now suppose that the l communication edges in S are incident on a total
of s subset vertices. Then 3s ≥ l and by Fact 4, these s subset vertices are all distinct
from the r subset vertices defined above. Thus r + s ≤ m. But r + s = m, or else some sj

(1 ≤ j ≤ m) is not covered, since ti /∈ S, for any i (1 ≤ i ≤ 3q), by Fact 1. Finally, Facts
2 and 3 imply that S contains N + 2 elements from each of the 3q element components.
Hence, having accounted for all the elements in S,

|S| = r + l + 3q(N + 2)

= m + l − s + 3q(N + 2) (since r + s = m). (1)

Assume firstly that s < q. Then by Equation 1,

|S| ≤ m + 2s + 3q(N + 2) (since 3s ≥ l)
< K (since s < q)

which is a contradiction. Thus s ≥ q. Now assume for a contradiction that l < 3q. Then
by Equation 1,

|S| < m + 3q − s + 3q(N + 2) (since l < 3q)
≤ K (since s ≥ q)
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which is also a contradiction. Hence l = 3q. Finally, assume for a contradiction that s > q.
Then by Equation 1,

|S| = m + 3q − s + 3q(N + 2) (since l = 3q)
< K (since s > q)

which gives a contradiction. Hence s = q and r = m − q, so that exactly q of the subset
vertices are covered by communication edges. Also, each of the 3q element vertices is
covered by exactly one edge. Thus, for exactly q of the the subset vertices sj (1 ≤ j ≤ m),
we have {sj, ti3j−2+r

} ∈ S, for 0 ≤ r ≤ 2; let C ′ contain the q corresponding cj triples.
Since the m − q other subset vertices cover themselves, then C ′ is an exact cover.

As pointed out in Section 1.2, α+
2
(G) = Γ(T (G)) for a graph G. Yannakakis and Gavril

[74] show that a connected graph is a tree if and only if its total graph is chordal. Jacobson
and Peters [50] show that Γ = β0 for chordal graphs. Hence, as β0 is polynomial-time
solvable for this class of graphs [35], the same is true for Γ, so that α+

2
is polynomial-time

solvable for trees. In addition, the remarks of this paragraph also imply that α+
2

= β2 for
trees.

3 Total matching

The total matching parameter β2 is related to β−

1
: Gupta [40] shows that β2(G)+β−

1
(G) =

n for any graph G = (V,E), where n = |V |. Therefore we have the following result, which
does not seem to have been explicitly noted in the literature previously.

Theorem 3.1. The complexities of β2 and β−

1
are identical, for any graph class.

It is interesting to consider how we may construct a maximum total matching from a
minimum maximal matching, and vice versa. Since Gupta’s result is stated without proof,
we provide, for completeness, one possible method. We use the following result, whose
proof is straightforward, and is omitted.

Proposition 3.2. Let G = (V,E) be a graph and let M ⊆ V ∪ E be a total matching.
Then M is a maximal total matching if and only if M is a total cover.

Proposition 3.3. Let G = (V,E) be a graph, where n = |V |. Then if M ⊆ E is a maximal
matching for G, where m = |M |, we may find a maximal total matching M ′ ⊆ V ∪ E for
G, where |M ′| = n − m, in polynomial time. Conversely, if M ⊆ V ∪ E is a maximum
total matching for G, where m = |M |, we may find a maximal matching M ′ ⊆ E for G,
where |M ′| = n − m, in polynomial time.

Proof. Suppose that M ⊆ E is a maximal matching for G, where m = |M |. Then M
covers 2m vertices of V , so that there is a set V ′ of vertices not covered by M , where
|V ′| = n − 2m. Set M ′ = M ∪ V ′. Then M ′ is a total matching, since by maximality of
M , no pair of vertices in V ′ are adjacent in G. Also M ′ is maximal by Proposition 3.2,
since M ′ is a total cover of G. Finally |M ′| = m + (n − 2m) = n − m.

Conversely, suppose that M ⊆ V ∪ E is a maximum total matching for G, so that
|M | = β2(G). We may construct a set M ′′ ⊆ V ∪E, where |M ′′| = |M |, such that M ′′ is a
total matching for G and for every edge {u, v} of E, some edge of M ′′ is incident on u, or
incident on v, or {u, v} ∈ M ′′. For, suppose there is an edge {u, v} such that no edge of
M is incident on u or v. Then as M is maximal, M covers the edge {u, v}, by Proposition
3.2. Thus, without loss of generality u ∈ M . Hence we may replace u with {u, v} in M .
Repeating this procedure with every such edge gives rise to M ′′, which is clearly a total
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matching, and must be maximal, since |M ′′| = β2(G). Now let M ′ = M ′′ ∩ E. Then
M ′ ⊆ E is a matching and is maximal, since no two vertices that are not covered by M ′

are adjacent in G, by construction of M ′′. Let |M ′| = n − m, for some m > 0. Then M ′

covers 2n − 2m vertices of G. Thus there are 2m − n elements (all vertices) in M ′′\M ′,
since M ′′ is a total cover of G. Thus |M | = |M ′′| = (n − m) + (2m − n) = m.

Corollary 3.4. There is a polynomial time algorithm to transform a minimum maximal
matching into a maximum total matching, and vice versa.

In order to resolve the complexity of β−

2
, we make the following definition. Given

an arbitrary graph G = (V,E), where V = {v1, v2, . . . , vn}, construct the pendant graph
G′ = (V ′, E′) of G by adding two new vertices ui and wi to V , for each i (1 ≤ i ≤ n), and
two new edges {ui, vi} and {wi, vi} to E, for each i (1 ≤ i ≤ n).

Theorem 3.5 (Gimbel and Vestergaard [37]). Given a graph G = (V,E), where
n = |V |,

β−

2
(G′) = 2n − β0(G)

where G′ = (V ′, E′) is the pendant graph of G.

By Theorem 3.5 and the complexity of β0 (discussed in Section 4), we deduce that
β−

2
is NP-complete for an arbitrary graph. In fact, as β0 remains NP-complete for planar

cubic graphs (see Section 4), we may deduce that β−

2
remains NP-complete for planar

graphs of maximum degree 5.
We also note that it is possible to use the transformation of Hedetniemi et al. [46],

showing NP-completeness for α2 in bipartite and chordal graphs, in order to obtain NP-
completeness for β−

2
in the same two classes of graphs. Let minimum maximal total

matching be the decision problem related to β−

2
, which takes a graph G and integer

K ∈ Z
+ and asks whether β−

2
(G) ≤ K.

Theorem 3.6. minimum maximal total matching is NP-complete for bipartite and
chordal graphs.

Proof. Clearly, the problem is in NP for both graph classes. To show NP-hardness, we
focus on the transformation of Hedetniemi et al. [46], showing NP-completeness for α2 in
bipartite or chordal graphs. The reduction begins from the NP-complete problem x3c [33,
problem SP2], defined in Section 2. A bipartite/chordal graph G is constructed, and an
integer K is defined, with the property that the x3c instance has an exact cover if and
only if G has a total cover of size at most K.

Corresponding to an exact cover for the x3c instance, the total cover constructed by
Hedetniemi et al. [46] is in fact a total matching, and hence a maximal total matching
by Proposition 3.2. Conversely, if G has a maximal total matching M of size at most
K, then M is a total cover for G by Proposition 3.2, and the corresponding argument of
Hedetniemi et al. [46] shows that the x3c instance has an exact cover.

Thus the same reduction may be used to prove NP-completeness for minimum maxi-

mal total matching in bipartite or chordal graphs.

As pointed out in Section 1.2, β−

2
(G) = β−

0
(T (G)) for a graph G. Majumdar [59, p.26]

shows that a connected graph is a tree if and only if its total graph is strongly chordal5.
Farber [28] shows that β−

0
is polynomial-time solvable for strongly chordal graphs. Hence

β−

2
is polynomial-time solvable for trees.

5A graph G is strongly chordal if G is chordal and every cycle of length at least six has an ‘odd’ chord,
i.e., a chord joining two vertices that are separated by an odd number of edges.
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4 Vertex covering and vertex independence

The decision problems related to determining α0 and β0 are the well-known NP-complete
problems minimum vertex cover and maximum independent set (problems GT1
and GT20 of [33] respectively). The complexities of α0 and β0 for any class of graphs are
identical, as is indicated by the following proposition, whose proof is trivial.

Proposition 4.1. Given a graph G = (V,E) and a set V ′ ⊆ V , V ′ is a vertex cover for
G if and only if V \V ′ is an independent set for G.

From Proposition 4.1, we deduce the classical result of Gallai [30], namely that for a
graph G with n vertices, α0(G) + β0(G) = n. The parameter β0 is NP-complete, even
for planar cubic graphs. This fact may be deduced from separate results due to Garey
et al. [34], Garey and Johnson [31], and Maier and Storer [58]. On the other hand, β0 is
polynomial-time solvable for bipartite graphs (by matching – see Harary [41], for example),
chordal graphs [35] and trees [22]. Many other classes of graphs for which β0 remains NP-
complete and for which β0 is polynomial-time solvable are discussed in [33, problem GT20]
and [52].

Similarly the complexities of α+
0

and β−

0
are identical, as the following result shows.

Again the proof is simple, and is omitted.

Lemma 4.2. Given a graph G = (V,E) and a set V ′ ⊆ V , V ′ is a minimal vertex cover
for G if and only if V \V ′ is a maximal independent set for G.

From Lemma 4.2 we may deduce another Gallai type identity, that for a graph G with
n vertices, α+

0
(G) + β−

0
(G) = n, as observed by McFall and Nowakowski [60]. In fact the

complexities of α+
0

and β−

0
are related to that of i, the cardinality of a minimum indepen-

dent dominating set. A set of vertices S is an independent dominating set for a graph G
if S is both an independent set and a dominating set for G. Independent dominating sets
are related to maximal independent sets, as the following lemma demonstrates.

Lemma 4.3 (Berge [4, Thm.2, p.309]). Given a graph G = (V,E) and a subset V ′ of
V , V ′ is a maximal independent set if and only if V ′ is an independent dominating set.

Thus Lemma 4.3 implies that i(G) = β−

0
(G) for any graph G. Lemmas 4.2 and 4.3

together give the following result.

Theorem 4.4. α+
0
, β−

0
, i each have the same complexity, over every graph class.

The parameter i is NP-complete for bipartite graphs [19, 49] and dually chordal graphs
[8], though polynomial-time algorithms have been found for chordal graphs [27], interval
and circular-arc graphs [11], permutation graphs [29, 9], cocomparability graphs [55],
asteroidal triple-free graphs [10], k-polygon graphs (for fixed k) [25], series-parallel graphs
[68, 39], partial k-trees (for fixed k) [71] and trees [6].

The complexity of i for planar graphs does not seem to be mentioned explicitly in the
literature. However, the transformation of Corneil and Perl [19], showing NP-completeness
for i in bipartite graphs, begins from minimum dominating set (which is the decision
problem associated with γ, taking a graph G and integer K ∈ Z

+ as input, and asking
whether γ(G) ≤ K) in general graphs and preserves planarity. By transforming from
the NP-complete restriction of minimum dominating set to planar cubic graphs [53], we
obtain NP-completeness for i in planar bipartite graphs, where all vertices in one part have
degree at most 3, and all vertices in the other part have degree at most 2. An alteration to
the transformation of Corneil and Perl gives NP-completeness for i in planar cubic graphs.
To aid exposition, we present the proof in its entirety. (In what follows, we refer to the
minimum independent dominating set problem, which takes a graph G and integer
K ∈ Z

+ as input and asks whether i(G) ≤ K.)
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Figure 2: A typical edge component from the constructed instance of minimum indepen-

dent dominating set.

Theorem 4.5. minimum independent dominating set is NP-complete, even for pla-
nar cubic graphs.

Proof. Clearly minimum independent dominating set is in NP. For, given K ∈ Z
+

and a set S of at most K vertices, it is straightforward to verify in polynomial time that
S is an independent dominating set.

To show NP-hardness, we give a transformation from the NP-complete minimum dom-

inating set problem for planar cubic graphs, as discussed above. Hence let G = (V,E)
(a planar cubic graph) and K (a positive integer) be an instance of minimum dominating

set. Assume that |E| = m. We construct an instance G′ = (V ′, E′) (planar cubic graph)
and K ′ (positive integer) of minimum independent dominating set. Corresponding
to every edge e = {u, v} of E, construct an edge component of G′ as follows: replace the
edge e by a path on five vertices, namely u, au

e , be, a
v
e , v, connected in that order. Create

an additional vertex, ce, adjacent to au
e , be, a

v
e . It may be verified that G′ is planar and

cubic. An example edge component is shown in Figure 2. Denote by Ve the vertices in the
edge component corresponding to edge e, i.e.

Ve = {u, au
e , av

e , be, ce, v}.

Denote by Xe the internal vertices in this edge component, i.e.

Xe = {au
e , av

e , be, ce}.

Set K ′ = K + m. We claim that G has a dominating set of cardinality at most K if and
only if G′ has an independent dominating set of cardinality at most K ′.

For, suppose that D is a dominating set for G, where |D| = k ≤ K. We construct an
independent dominating set D′ for G′. Initially, let D′ contain the vertices of D. For any
edge e = {u, v} of G, we add vertices to D ′, according to four cases:

1. u /∈ D, v /∈ D. Add the vertex be to D′.

2. u ∈ D, v /∈ D. Add the vertex av
e to D′.

3. u /∈ D, v ∈ D. Add the vertex au
e to D′.

4. u ∈ D, v ∈ D. Add the vertex be to D′.

It may be verified that D′ is an independent dominating set for G′, and |D′| = k+m ≤ K ′.

Conversely, suppose that D′ is an independent dominating set for G′ of size at most
K ′. We construct a set D′′ as follows. Initially let D′′ = D′. For any edge e = {u, v} of
G, consider the elements of Qe = Ve ∩ D′. By domination, |Qe| ≥ 1, and if |Qe| = 1, then

11



Qe = {be} or Qe = {ce}. By independence, |Qe| ≤ 3, and if |Qe| = 3, then Qe = {u, be, v}
or Qe = {u, ce, v}. If |Qe| = 2, then either |Qe ∩ Xe| = 1, or Qe = {au

e , av
e}. In the latter

case, replace av
e by v in D′′.

It may be verified that D′′ is a dominating set for G′, and |D′′| ≤ |D′|. Now let
D = D′′ ∩ V . We claim that D is a dominating set for G. For, suppose that u ∈ V \D.
Then u /∈ D′′, so by the domination property of D′′, there is some e = {u, v} ∈ E such
that au

e ∈ D′′. By construction of D′′, |D′′ ∩ Xe| = 1. Hence, av
e /∈ D′′, but as av

e must
be dominated by D′′, the only outcome is v ∈ D′′. Hence v ∈ D as required. Finally,
|D| = |D′′| − m ≤ |D′| − m ≤ K ′ − m = K.

5 Edge covering

In this section, we consider only graphs with no isolated vertices, since the concept of edge
covering is undefined for graphs with isolated vertices.

Norman and Rabin [66] demonstrate that there is a polynomial time algorithm to
transform a maximum matching to a minimum edge cover, and vice versa. Hence the
complexity of α1 is identical to that of β1. The proof of this result also demonstrates that
a further Gallai type identity holds, i.e., for a graph G with n vertices, α1(G)+β1(G) = n.

The parameter α+
1
(G), the cardinality of a maximum minimal edge cover, seems to have

received relatively little attention in the literature. However, the parameter is considered
by Hedetniemi [47], who shows that α+

1
(G) = ε(G) for a non-trivial connected graph G,

where ε(G) denotes the maximum number of pendant edges among all spanning forests
for G. (Given a spanning forest F for G, {u, v} ∈ F is a pendant edge for F if the degree
of u or v in F is one.) Nieminen [63] shows that, for a non-trivial connected graph G with
n vertices,

γ(G) + ε(G) = n (2)

and hence γ(G) + α+

1
(G) = n. It is clear that these results extend to arbitrary graphs

with no isolated vertices. Hence we obtain the following theorem.

Theorem 5.1. For graphs with no isolated vertices, the complexity of α+
1

is identical to
that of γ.

The domination number, γ, remains NP-complete for planar cubic graphs [32, 53],
bipartite graphs [5] and undirected path graphs (a subclass of chordal graphs) [7], though
γ is polynomial-time solvable for strongly chordal graphs [28] and trees [16]. Polynomial-
time algorithms and NP-completeness results for γ have been obtained for many other
classes of graphs. Chapter 8 of [44] and Chapter 12 of [45] contain two recent algorithmic
surveys of γ in various graph classes. See also [33, problem GT2] and [51, 52, 20].

It is also of interest to consider how we may construct a maximum minimal edge cover
from a minimum dominating set, and vice versa. For a given graph G and a spanning
forest F of G, let e(F ) denote the number of pendant edges of F . A spanning forest F
of G such that e(F ) = ε(G) is called a maximum spanning forest of G. Nieminen’s proof
of Equation 2 involves constructing in polynomial time a maximum spanning forest F (D)
from a minimum dominating set D, where e(F (D)) = |V | − |D|. Hedetniemi’s proof of
α+

1
(G) = ε(G) involves constructing a maximum minimal edge cover from a maximum

spanning forest. Together, these two constructions give a polynomial-time procedure for
transforming a minimum dominating set into a maximum minimal edge cover. For the
converse, we make the following observation about minimal edge covers (the proof is
straightforward, and is omitted):
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Proposition 5.2. Let G be a graph with no isolated vertices and let S ⊆ V ∪ E. Then
S is a minimal edge cover if and only if S is a spanning forest for G that satisfies the
following two properties:

1. S ⊆ E.

2. Every edge of S is a pendant edge.

Thus a minimal edge cover of G is a spanning forest S such that each connected component
of S is a non-trivial star (i.e. is a K1,r for some r ≥ 1).

Given a graph G = (V,E) with no isolated vertices, and a maximum minimal edge
cover S of G, we construct a set of vertices P ⊆ V as follows. For each edge e ∈ S, we
know that e is a pendant edge, so that at least one endpoint vertex u of e has degree one
in S; add u to P . Thus P contains exactly one vertex corresponding to every edge of S,
so that |P | = |S|. Let D = V \P . Then |D| = γ(G), and it may be verified that D is a
dominating set for G, by Proposition 5.2. Thus, we have the following result.

Theorem 5.3. There is a polynomial time algorithm to construct a maximum minimal
edge cover from a minimum dominating set and vice versa, for arbitrary graphs with no
isolated vertices.

6 Matching

Computation of β1(G) is the usual problem of finding a maximum matching of a graph.
The famous algorithm due to Edmonds [24] is described in detail by Lovász and Plummer
[57], for example.

The decision problem related to the parameter β−

1
, the cardinality of a minimum

maximal matching, is problem GT10 of [33]. In fact, β−

1
is equal to γ ′, the cardinality of

a minimum edge dominating set, as we now show. Two propositions follow, the proof of
the first of which is trivial. Both propositions involve the concept of an independent edge
dominating set, which is a set of edges that is both a matching and an edge dominating
set.

Proposition 6.1. Given a graph G = (V,E) and a set E ′ ⊆ E, E′ is a maximal matching
for G if and only if E ′ is an independent edge dominating set for G.

Proposition 6.2 (Yannakakis and Gavril [74]). Given a graph G = (V,E) and an
edge dominating set E ′ for G, we may construct, in polynomial time, an independent edge
dominating set E ′′ for G, with |E ′′| ≤ |E′|.

From Propositions 6.1 and 6.2, it follows that β−

1
(G) = γ′(G) for any graph G, which

implies that the complexities of β−

1
and γ′ are identical. The minimum edge domination

parameter, γ ′, remains NP-complete for planar or bipartite graphs of maximum degree
3 [74], planar bipartite graphs, their subdivision, line and total graphs, perfect claw-free
graphs, planar cubic graphs and iterated total graphs [48]. The problem of computing γ ′ is
polynomial-time solvable for bipartite permutation graphs and cotriangulated graphs [70],
trees [62, 74], k-outerplanar graphs [3] and a number of other classes of graphs including
claw-free chordal graphs [48].

Proposition 6.1, together with the algorithm implied by the proof of Proposition 6.2,
indicates how we may construct a minimum maximal matching from a minimum edge
dominating set in polynomial time. The converse is trivial, since any minimum maximal
matching is, of course, a minimum edge dominating set.
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Graph class ⇒ Arbitrary Planar Bipartite Chordal Tree

Parameter ⇓

α0 as for β0

α+
0

as for β−

0

β−

0
NPC(†) NPC(*) NPC[19] P[27] P[6]

β0 NPC(†) NPC[34] P[41] P[35] P[22]

α1 as for β1

α+
1

as for γ, i.e.

NPC(†) NPC[33] NPC[5] NPC[7] P[16]

β−

1
as for γ′, i.e.

NPC(†) NPC[74] NPC[74] ? P[62]

β1 P[24] P(†) P(†) P(†) P(†)

α2 NPC[59] NPC(*) NPC[46] NPC[46] P[59]

α+

2
NPC(†) NPC(*) ? ? P[50, 35]

β−

2
NPC(†) NPC[37] NPC(*) NPC(*) P[28]

β2 as for β−

1

Table 1: Summary of complexity results in this paper.

7 Summary of results

Table 1 summarises the complexity results for the decision problems associated with each
of the parameters discussed in this paper. In a table entry, ‘NPC’ denotes NP-completeness
and ‘P’ denotes polynomial-time solvability. Appropriate references are indicated. The
symbol ‘†’ denotes the fact that either NP-completeness follows by restriction from another
result in the same table row, or polynomial-time solvability follows by noting polynomial-
time solvability from a class of graphs that contain the class in question. An asterisk
indicates that the result is new and the proof is given here, and a question mark indicates
that the corresponding problem is open. The classes of graphs dealt with in the table are
of course far from exhaustive, but extending our attention beyond planar, bipartite and
chordal graphs and trees would give rise to many additional open problems.

8 Conclusion and open problems

The twelve covering and independence parameters studied in this paper are treated col-
lectively as a result of a framework suggested by Nordhaus [64]. However, alternative
characterisations of covering and packing parameters in graphs are possible – for exam-
ple Majumdar [59] presents a framework for such parameters in terms of neighbourhood
hypergraphs and Slater [69] considers graphical subset parameters in terms of linear pro-
gramming and integer programming constructions, using certain matrices defined on a
graph.

Relatively speaking, the parameters α2, α
+
2
, β2, β

−

2
have not been extensively studied,

despite their very natural definitions. In particular, there is scope for investigating whether
Gallai type identities hold [30]. A survey of such results involving the parameters αi, α

+

i ,
βi, β

−

i for i = 0, 1 appears in [17]. As mentioned in Section 1.1, bounds for α2(G) +β2(G)
have been investigated [1, 26, 61], and the identity β2(G) + β−

1
(G) = n holds [40], but

it is open as to whether bounds exist involving α+
2
(G) + β−

2
(G) that improve on those

obtained by simply considering the sum of known upper and lower bounds for α+

2
and β−

2

separately.
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Similarly, the existence of Nordhaus–Gaddum [65] type inequalities are of interest.
Such results have been obtained for the parameters β0 and β1 [12], β−

0
[18, 14, 15, 43],

γ and γ′ (see [42] for a survey). As reported in Section 1.1, Nordhaus–Gaddum inequal-
ities involving α2, β2 and β−

2
have been obtained [26, 61, 37], but there is still scope for

investigating such bounds involving the other parameters treated in this paper.
Table 1 indicates some of the open problems regarding the complexity of the param-

eters considered in this paper when restricted to certain classes of graphs. One, perhaps
significant, open problem is the complexity of minimum edge dominating set for chordal
graphs – that this problem is open is noted by Horton and Kilakos [48].

The NP-completeness results for the parameters considered here imply that their prop-
erties of approximability are of interest. Results have been obtained for the parameters
α0, β0, β

−

0
and are surveyed in [21]. Regarding the approximability of β−

1
, any maximal

matching is a 2-approximation to β−

1
[54]. Proposition 6.2 implies that we may construct,

in polynomial time, a maximal matching E ′′ from an edge dominating set E ′, such that
|E′′| ≤ |E′|. Thus, since β−

1
= γ′, and minimum edge dominating set admits a PTAS

for planar graphs [3], then minimum maximal matching also admits a PTAS for planar
graphs. Also, β−

1
is APX-complete, even for graphs of maximum degree 3 [76] (definitions

of the terms 2-approximation, PTAS and APX-complete may be found in [21], for exam-
ple). However it appears that the approximability of the parameters α+

0
, α+

1
, α2, α

+

2
, β−

2
, β2

is open.
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