A Semi-Induced Subgraph Characterization of Upper Domination Perfect Graphs

Igor E. Zverovich

Faculty of Mechanics and Mathematics Belarus State University, Minsk 220050 Belarus Vadim E. Zverovich*
Department II of Mathematics
RWTH Aachen, Aachen 52056

Germany

Abstract

Let $\beta(G)$ and $\Gamma(G)$ be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ -perfect if $\beta(H) = \Gamma(H)$, for every induced subgraph H of G. The class of Γ -perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ -perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of $K_{1,3}$ -free Γ -perfect graphs in terms of forbidden induced subgraphs. J. Graph Theory 31 (1999), 29-49

Keywords: upper domination perfect graphs; semi-induced subgraph characterization

1 Introduction

All graphs will be finite and undirected without multiple edges. Unless otherwise stated, all graphs have no loops. If G is a graph, V(G) denotes the set, and |G| the number, of vertices in G. Let N(x) denote the neighborhood of a vertex x, and let $\langle X \rangle$ denote the subgraph of G induced by $X \subseteq V(G)$. Also let $N(X) = \bigcup_{x \in X} N(x)$ and $N[X] = N(X) \cup X$. Denote by $\delta(G)$ the minimal degree of vertices in G. A path, a cycle and a complete graph of order n will be denoted by P_n , C_n and K_n , respectively.

A set $I \subseteq V(G)$ is called *independent* if no two vertices of I are adjacent. A set X is called a *dominating set* if N[X] = V(G). An *independent dominating set* is a vertex subset that is both independent and dominating, or equivalently, is maximal independent. The *independence number* $\beta(G)$ is the maximum cardinality of a (maximal) independent set of G, and the *independent domination number* i(G) is the minimum cardinality taken over all maximal independent sets of G. The *domination number* i(G) is the minimum

^{*}On leave from Faculty of Mechanics and Mathematics, Belarus State University, Minsk 220050, Belarus. Supported by the Alexander von Humboldt Foundation.

cardinality of a (minimal) dominating set of G, and the upper domination number $\Gamma(G)$ is the maximum cardinality taken over all minimal dominating sets of G. For $x \in X$, the set

$$PN(x, X) = N[x] - N[X - \{x\}]$$

is called the private neighborhood of x. If $PN(x,X) = \emptyset$, then x is said to be redundant in X. A set X containing no redundant vertex is called *irredundant*. The *irredundance* number ir(G) is the minimum cardinality taken over all maximal irredundant sets of G, and the upper irredundance number IR(G) is the maximum cardinality of a (maximal) irredundant set of G.

The following relationship among the parameters under consideration is well-known [7, 9]:

$$ir(G) \le \gamma(G) \le i(G) \le \beta(G) \le \Gamma(G) \le IR(G).$$

Definition 1 A graph G is called irredundance perfect (ir-perfect) if $ir(H) = \gamma(H)$, for every induced subgraph H of G.

Definition 2 A graph G is called domination perfect (γ -perfect) if $\gamma(H) = i(H)$, for every induced subgraph H of G.

Definition 3 A graph G is called upper domination perfect (Γ -perfect) if $\beta(H) = \Gamma(H)$, for every induced subgraph H of G.

Definition 4 A graph G is called upper irredundance perfect (IR-perfect) if $\Gamma(H) = IR(H)$, for every induced subgraph H of G.

The classes of upper domination perfect graphs and upper irredundance perfect graphs in a sense are dual to the classes of domination perfect graphs and irredundance perfect graphs, respectively. A lot of interesting results on domination perfect graphs [1, 3, 12, 16, 17, 24, 27, 28, 29, 31, 33] and irredundance perfect graphs [3, 4, 10, 20, 21, 25, 26, 32] are known. A finite induced subgraph characterization of the entire class of domination perfect graphs was recently obtained in [33], while the problems of characterizing the entire class of irredundance perfect graphs and upper irredundance perfect graphs are still open. For a short survey on domination perfect graphs, see also [33].

We summarize the known results on Γ -perfect and IR-perfect graphs. The following important theorem gives the relationship between the class of Γ -perfect graphs and the class of IR-perfect graphs.

Theorem A (Gutin and Zverovich [14]) Any Γ -perfect graph is IR-perfect.

Thus, Γ -perfect graphs form a subclass of IR-perfect graphs. On the other hand, a number of well-known classes of graphs are subclasses of Γ -perfect graphs, and consequently, IR-perfect graphs. Cockayne et al. [7] proved that bipartite graphs are Γ -perfect, and Jacobson and Peters [23] showed that chordal graphs are Γ -perfect. The next theorem generalizes these results, since bipartite graphs and chordal graphs are strongly perfect graphs. Recall that a graph G is called strongly perfect if every induced subgraph H of G has a stable transversal, where a stable transversal S of H is a vertex subset of H such that $|S \cap C| = 1$ for any maximal clique C of H.

Theorem B (Cheston and Fricke [5], Jacobson and Peters [22]) A strongly perfect graph is Γ -perfect.

It may be pointed out that, besides bipartite and chordal graphs, strongly perfect graphs contain comparability graphs, perfectly orderable graphs, peripheral graphs, complements of chordal graphs, Meyniel graphs, parity graphs, i-triangulated graphs, permutation graphs, cographs, and hence all these classes are subclasses of Γ -perfect graphs. Hammer and Maffray [15] defined a graph G to be absorbantly perfect if every induced subgraph H of G contains a minimal dominating set that meets all maximal cliques of H. It turned out that absorbantly perfect graphs are Γ -perfect (Theorem C). Since every strongly perfect graph is absorbantly perfect, we see that Theorem B follows from the more general Theorem C.

Theorem C (Gutin and Zverovich [14]) An absorbantly perfect graph is Γ -perfect.

A graph is called *circular arc* if it can be represented as the intersection graph of arcs on a circle.

Theorem D (Golumbic and Laskar [13]) A circular arc graph is Γ -perfect.

The following theorem gives a sufficient condition for a graph to be IR-perfect.

Theorem E (Cockayne, Favaron, Payan and Thomason [7]) If a graph G does not contain P_5 , C_5 , $Pr_3 - v_1$ and $Pr_3 - v_1 - v_2v_3$ as induced subgraphs, where Pr_3 is shown in Fig. 1, then G is IR-perfect.

Using Theorem A we see that Theorem F improves Theorem E.

Theorem F (Gutin and Zverovich [14]) If a graph G does not contain P_5 and Pr_3 in Fig. 1 as induced subgraphs, then G is Γ -perfect.

Other sufficient conditions for a graph to be Γ -perfect or IR-perfect can be found in [10, 14, 23, 30], one of them is stated in Corollary 2. A number of authors [6, 7, 8, 11] investigated graphs G having $\beta(G) = \Gamma(G)$, i.e., these parameters are not necessarily equal for a proper induced subgraph of G. Cockayne et al. [8] proved that

$$\beta(G) = \Gamma(G) = IR(G)$$

for the representative graph of any hereditary hypergraph. Cheston et al. [6] showed that this equality is valid for upper bound graphs which extend the class of representative graphs of hereditary hypergraphs, while Fellows et al. [11] proved that the same equality holds for trestled graphs. It was also shown by Cheston et al. [6] that $\beta(G) = \Gamma(G)$ for simplicial graphs, which generalize the class of upper bound graphs.

In this article, we introduce the concept of a semi-induced subgraph (Definition 8), and we present two characterizations of the entire class of Γ -perfect graphs in terms of forbidden semi-induced subgraphs (Theorems 1 and 2). Key roles in the characterizations are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization of Γ -perfect graphs, we obtain a result of Jacobson and Peters [22] on Γ -perfect graphs (Corollary 1) and also a characterization of $K_{1,3}$ -free Γ -perfect graphs in terms of forbidden induced

subgraphs. The latter result implies a known sufficient condition for a $K_{1,3}$ -free graph to be Γ -perfect (Corollary 2). Notice here that $K_{1,3}$ -free graphs are γ -perfect [1], and that $K_{1,3}$ -free ir-perfect graphs were characterized by Favaron [10], who also found a sufficient condition for a $K_{1,3}$ -free graph to be IR-perfect.

2 Basic Definitions

We need the following definitions.

Definition 5 Two vertex subsets A, B of a graph G independently match each other if $A \cap B = \emptyset$, |A| = |B|, and all edges between A and B form a perfect matching in $\langle A \cup B \rangle$.

Definition 6 A graph G of order 2k is called a W-graph if there is a partition $V(G) = A \cup B$ such that A and B independently match each other. Clearly, |A| = |B| = k. The sets A and B are called parts, and the graph G is denoted by G(A, B).

It is not difficult to see that a W-graph may have several partitions into parts. Hence a W-graph is considered in Sections 2 and 3 together with a fixed partition into parts.

Definition 7 Let G be a W-graph, G = G(A, B). Edges between the parts A and B are called b-edges and denoted in our figures by bold lines. Edges which are not b-edges are called l-edges and denoted by thin lines.

We can understand the above partition of the edge set as a coloring of the edge set with two colors 'b' and 'l'. Note that if the set E_b of b-edges of a connected W-graph G is given, then there is only one partition $V(G) = A \cup B$ such that A and B independently match each other, i.e., G = G(A, B) and E_b is the set of b-edges with respect to this partition.

Definition 8 Let H = H(A, B) be a W-graph with parts A and B. The graph H is called a semi-induced subgraph of a graph G if H is a subgraph of G, and in the graph G the sets A and B independently match each other.

In other words, let A and B independently match each other in G and let P be the perfect matching between A and B in $\langle A \cup B \rangle$. If $E_1 \subseteq E \langle A \rangle$ and $E_2 \subseteq E \langle B \rangle$, then the graph H having $V(H) = A \cup B$ and $E(H) = E_1 \cup E_2 \cup P$ is a semi-induced subgraph of G. Thus, any semi-induced subgraph of a graph is a W-graph, and if H is not a W-graph, then G cannot contain H as a semi-induced subgraph.

Definition 9 A graph G is called a bl-graph if a partition of the set E(G) into the set of b-edges (bold) and l-edges (thin) is given, provided that the set of b-edges forms a matching in G. If the b-edges form a perfect matching, then G is called a perfect bl-graph. For example, any W-graph is a perfect bl-graph. An even (odd) bl-graph has the even (odd) number of b-edges.

Definition 10 A simple bl-chain P is called alternating if for any two consecutive edges of P one of them is a b-edge and another is an l-edge. The alternating simple chain P is called a b-chain (l-chain) if the end edges of P are b-edges (l-edges). Clearly, b-chains and l-chains always have even order. If we identify the end vertices u_1 and u_{2n} in the l-chain $(u_1, u_2, ..., u_{2n})$, where $n \geq 2$, then we obtain the simple cycle $(u_1, u_2, ..., u_{2n-1})$ which is called an l-cycle starting with u_1 .

Definition 11 For a perfect bl-graph G we define the operation of W-reducibility as follows. Each vertex $u \in V(G)$ is labeled by $c(u) \in \{A, B\}$. Further, each edge $e = vw \in E(G)$ is replaced by an alternating bl-chain P_e with end vertices v, w in accordance with the next rule:

- If e is an l-edge and c(v) = c(w), then P_e is an even l-chain.
- If e is an l-edge and $c(v) \neq c(w)$, then P_e is an odd l-chain.
- If e is a b-edge and c(v) = c(w), then P_e is an even b-chain.
- If e is a b-edge and $c(v) \neq c(w)$, then P_e is an odd b-chain.

Definition 12 The prism Pr_n $(n \ge 3)$ consists of two disjoint cycles

$$C_1 = (u_1, u_2, ..., u_n), \quad C_2 = (v_1, v_2, ..., v_n),$$

and the remaining edges are of the form u_iv_i , $1 \le i \le n$. The prism Pr_1 is two loops connected by the edge u_1v_1 , this is the only case where loops are permitted. If the prism Pr_n is considered as a perfect bl-graph, then its set of b-edges is $\{u_iv_i : 1 \le i \le n\}$.

Definition 13 The Möbius ladder Ml_n is constructed from the cycle $C = (u_1, u_2, ..., u_{2n})$ by adding the edges $u_i u_{n+i}$ $(1 \le i \le n)$ joining each pair of opposite vertices of C. If the Möbius ladder Ml_n is considered as a perfect bl-graph, then its set of b-edges is $\{u_i u_{n+i}: 1 \le i \le n\}$.

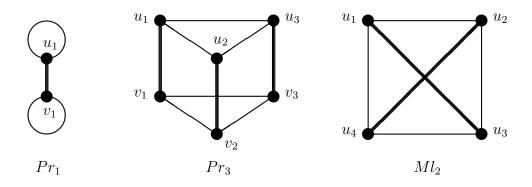


FIGURE 1. Odd prisms Pr_1 , Pr_3 and even Möbius ladder Ml_2 .

The odd prisms Pr_1 and Pr_3 and the even Möbius ladder Ml_2 are shown in Fig. 1. The odd prisms and the even Möbius ladders play a key role in the definition of basis graphs.

Definition 14 A graph G without loops is called a basis if it can be obtained from the odd prism Pr_{2n+1} $(n \geq 0)$ or the even Möbius ladder Ml_{2m} $(m \geq 1)$ by the operation of W-reducibility.

We will prove later that a basis graph is a W-graph whose perfect matching between the parts consists of b-edges determined by the operation of W-reducibility. A basis graph G cannot have loops. Hence, if G is obtained from Pr_1 , then every loop (l-edge) of Pr_1 must be replaced in accordance with Definition 11 by an alternating even l-cycle (l-chain with equal end vertices) having at least two b-edges.

3 Characterization of Γ -Perfect Graphs

The following theorem gives a characterization of upper domination perfect graphs in terms of forbidden semi-induced subgraphs.

Theorem 1 A graph G is a Γ -perfect graph if and only if G does not contain any basis graph as a semi-induced subgraph.

Proof: The proof of Theorem 1 is based on 11 lemmas.

Lemma 1 If G is a W-graph of order 2k, then

$$\Gamma(G) = k \ge \beta(G)$$
.

Proof: Any independent set of G contains at most one vertex of each b-edges, and hence $\beta(G) \leq k$. Since A is a minimal dominating set, we have $\Gamma(G) \geq k$. Let us prove that $\Gamma(G) \leq k$. Let D be a minimal dominating set of G of cardinality $\Gamma(G)$. If $\deg_{\langle D \rangle} d > 0$ for $d \in D$, then there is a vertex $f \in V(G) - D$ such that $N(f) \cap D = \{d\}$. If $\deg_{\langle D \rangle} d = 0$ for $d \in D$, then there is a vertex f such that df is a b-edge. Obviously $f \in V(G) - D$. Thus, for each vertex $d \in D$ we can indicate a vertex f from V(G) - D and evidently that different vertices of D result in different vertices of V(G) - D, i.e., $|D| \leq |V(G) - D|$. We have $\Gamma(G) = |D| \leq k$.

Definition 15 A W-graph G of order 2k is called strong if

$$\beta(G) < k$$
.

Lemma 2 A graph G is Γ -perfect if and only if G does not contain any strong graph as an induced subgraph.

Proof: The necessity follows from the fact that for a strong graph H, $\beta(H) < \frac{1}{2}|H|$, while $\Gamma(H) = \frac{1}{2}|H|$ by Lemma 1. To prove the sufficiency, let G' be an arbitrary induced subgraph of G, and let D be a minimal dominating set in G' of cardinality $\Gamma(G')$. Denote by J the set of all isolated vertices in $\langle D \rangle$, i.e. $J = \{v \in D : \deg_{\langle D \rangle} v = 0\}$, and let A = D - J. Since D is a minimal dominating set, it follows that for each vertex $a \in A$ there is a vertex $b \notin D$ such that $N(b) \cap D = \{a\}$. Taking such a vertex b for each $a \in A$, we define B as the union of these vertices. The graph $H = \langle A \cup B \rangle$ is obviously a W-graph with parts A and B, and |A| = |B| = k. Since B cannot be strong, we have B is independent in B. Let B be an independent set of B of cardinality B. It is evident that the set B0 is independent in B1.

$$\beta(G') \ge |I| + |J| = |A| + |J| = |D| = \Gamma(G').$$

Since $\beta(G') \leq \Gamma(G')$, we have $\beta(G') = \Gamma(G')$. Thus, the graph G is Γ -perfect.

Definition 16 A connected strong graph G(A, B) of order 2k is called critical if $\delta(G) \geq 2$ and for any l-edge $e \in E(G)$,

$$\beta(G - e) = k.$$

Lemma 3 Any strong graph G with parts A and B contains a critical subgraph G^* with parts $A^* \subseteq A$ and $B^* \subseteq B$.

Proof: Let E' be the maximum set of l-edges in G such that $\beta(G') < k$, where V(G') = V(G) and E(G') = E(G) - E'. Since E' is maximum and deleting all l-edges from G produces the graph with independence number k, we obtain $\beta(G' - e) = k$ for any l-edge $e \in E(G')$. Suppose that G' contains a vertex u of degree 1, and denote by uv the b-edge incident to u. Let us show that $\deg_{G'} v = 1$. Suppose to the contrary that there is an l-edge vw in G'. Since $\beta(G' - vw) = k$, there is an independent set I in G' - vw of cardinality k. We have $v, w \in I$, for otherwise I is independent in G', contrary to the fact that $\beta(G') < k$. Now the set $I' = (I - \{v\}) \cup \{u\}$ is independent in G' and |I'| = |I| = k, a contradiction again. Consequently, $\deg_{G'} v = 1$. Thus, if $\deg_{G'} u = 1$, then the b-edge incident to u is an isolated edge in G'.

Consider now the connected component $G^*(A^*, B^*)$ of the graph G' such that $A^* \subseteq A$, $B^* \subseteq B$ and $\beta(G^*) < k^*$, where $k^* = |A^*| = |B^*|$. Such a component does exist, for otherwise $\beta(H) = \frac{1}{2}|H|$ for each connected component H of G' and hence $\beta(G') = \frac{1}{2}|G'| = k$, a contradiction. We see that G^* is a connected strong graph of order $2k^*$. If $\delta(G^*) = 1$, then G^* is an isolated b-edge in G' and so $\beta(G^*) = k^* = 1$, a contradiction. Hence $\delta(G^*) \geq 2$. If there exists an l-edge e in G^* such that $\beta(G^* - e) < k^*$, then obviously $\beta(G' - e) < k$, contrary to the maximality of E'. Thus, $\beta(G^* - e) = k^*$ for any l-edge $e \in E(G^*)$. We conclude that G^* is a critical graph.

Lemma 4 A graph G is Γ -perfect if and only if G contains no critical graph as a semi-induced subgraph.

Proof: Let G be a Γ -perfect graph and suppose that G contains a critical graph H(A, B) as a semi-induced subgraph. We have $\beta(H) < k$, where k = |A| = |B|. Consider in the graph G the induced subgraph $F = \langle A \cup B \rangle$. This graph is obtained from H by adding some edges in the parts A, B. Therefore, $\beta(F) < k$ and F is a W-graph, i.e., F is a strong graph. This is a contradiction, since, by Lemma 2, the graph G does not contain any strong graph as an induced subgraph.

Now let G contain no critical graph as a semi-induced subgraph, and suppose that G is not Γ -perfect. By Lemma 2, the graph G contains a strong graph H as an induced subgraph. Now, by Lemma 3, H(A,B) contains a critical subgraph $H^*(A^*,B^*)$ such that $A^* \subseteq A$ and $B^* \subseteq B$, i.e., H^* is a semi-induced subgraph of H. Therefore, the critical graph H^* is a semi-induced subgraph of G, a contradiction.

In the remaining part of the proof we give a description of the class of critical graphs. In fact we prove that a graph is critical if and only if it is a basis. This result together with Lemma 4 will provide the characterization of Γ -perfect graphs.

Lemma 5 If G' is obtained from a perfect bl-graph G by the operation of W-reducibility, then G' is a W-graph whose perfect matching between the parts consists of b-edges determined by the operation of W-reducibility.

Proof: Let G' be obtained from a perfect bl-graph G by the operation of W-reducibility. Note that the graph G may have loops only if $G = Pr_1$. In that case the loops (l-edges) of

G are replaced in accordance with Definition 11 by alternating even l-cycles. If $u \in V(G')$ is an old vertex, i.e. $u \in V(G)$, then u is labeled by c(u) in G'. If $u \in V(G')$ is a new vertex, then u is a non-end vertex of some chain P_e . We label all vertices from V(G') - V(G) by the following inductive rule. If e = uv is an edge of G' such that u has a label but v has no label yet, then we put:

- c(v) = A if c(u) = A and e is an l-edge.
- c(v) = B if c(u) = A and e is a b-edge.
- c(v) = A if c(u) = B and e is a b-edge.
- c(v) = B if c(u) = B and e is an l-edge.

Now, the vertices of G' with label A form the part A, the vertices with label B form the part B, and the set of b-edges of G' forms a perfect matching between A and B, i.e., the sets A, B independently match each other in G'. Thus, the graph G' is a W-graph.

Lemma 6 Let G be a perfect bl-graph of order 2k and let $C = (u_1, u_2, ..., u_{2n+1})$ be an l-cycle in G starting with u_1 . If $\beta(G) = k$, then the vertex u_1 belongs to no maximum independent set of G.

Proof: By definition, the edge $u_{2i}u_{2i+1}$ is a b-edge for any $i, 1 \le i \le n$. Suppose that there is a maximum independent set I containing u_1 . Since $\beta(G) = k$, the set I contains exactly one vertex of each b-edge. We have $u_1 \in I$ and hence $u_2 \notin I$. Therefore, $u_3 \in I$. If we continue this process, we finally arrive at $u_{2n+1} \in I$. This is a contradiction, since the set I contains two adjacent vertices u_1 and u_{2n+1} .

Definition 17 A perfect bl-graph G is called a semi-basis if G consists of two l-cycles C and C' starting with u and u' ($u \neq u'$), respectively, and also of a b-chain P connecting u and u'. Note that C, C' and P do not necessarily contain different vertices. However, any of the graphs C, C' or P has no self-intersections, since it is simple.

Lemma 7 If a perfect bl-graph G of order 2k contains a semi-basis subgraph, then

$$\beta(G) < k$$
.

Proof: Suppose to the contrary that G has an independent set I of cardinality k. Then, obviously, $\beta(G) = k$. By Lemma 6, the starting vertices u, u' of the l-cycles C, C' do not belong to the set I. Let $P = (u_1, u_2, ..., u_{2m})$ be a b-chain connecting $u = u_1$ and $u' = u_{2m}$. The edges $u_{2i-1}u_{2i}$ $(1 \le i \le m)$ are b-edges and the set I contains exactly one vertex of each b-edge, since $\beta(G) = k$. The vertex $u = u_1$ does not belong to I, and so $u_2 \in I$. Hence $u_3 \notin I$ and $u_4 \in I$. Going on in the same way, we obtain $u_{2i} \in I$ for all $i, 1 \le i \le m$. This is a contradiction, since the vertex $u' = u_{2m}$ does not belong to the set I.

Lemma 8 A critical graph G is a semi-basis. The graph G-e does not contain a semi-basis subgraph for any l-edge $e \in E(G)$.

Proof: Let v be an arbitrary vertex of a critical graph G(A, B), say $v \in A$. Put $X_0 = \{v\}$ and $X'_0 = N(v) \cap A$. For $i \geq 0$, we define the sets X_{i+1} and X'_{i+1} as follows:

$$X_{i+1} = \{x \in V(G) : xy \text{ is a b-edge}, y \in X_i'\},\$$

$$X'_{i+1} = N(X_{i+1}) - (\bigcup_{j=0}^{i} X'_{j} \cup \{v'\}),$$

where $v' \in B$ and vv' is a b-edge. The construction of the sequence

$$X_0, X'_0, X_1, X'_1, ..., X_n, X'_n$$

is finished for minimal n such that $X'_n = \emptyset$. Clearly, the above sets are pairwise disjoint. Put

$$X = \bigcup_{j=0}^{n} X_{j},$$

$$X' = \bigcup_{j=0}^{n-1} X'_{j} \cup \{v'\}.$$

Let us show that the set X is not independent. The graph G is critical, and so $\delta(G) \geq 2$. Hence there is a vertex $w \in A$ adjacent to v. Moreover, $\beta(G - vw) = k = |A| = |B|$. Let I be an independent set of G - vw of cardinality k. Since I is not independent in G, we have $v, w \in I$. Put

$$A_1 = A - (X \cup X'),$$

 $B_1 = B - (X \cup X'),$
 $I_1 = A_1 \cap I,$
 $I_2 = B_1 \cap I.$

By the definitions, no vertex of X is adjacent to a vertex of $A_1 \cup B_1$. The set $I' = X \cup I_1 \cup I_2$ has cardinality k, and hence I' is not independent in G. On the other hand, $I_1 \cup I_2$ is independent in G and there is no edge between $I_1 \cup I_2$ and X in G. We conclude that X is not independent, and hence $x_s \in X_s$ is adjacent to $y_t \in X_t$. Clearly, s and t have the same parity. If s < t, then we have a contradiction, since y_t must belong to X'_s but $X'_s \cap X_t = \emptyset$. Thus, s = t, i.e., $x_s \in X_s$ is adjacent to $y_s \in X_s$. Now we construct two alternating simple chains. Put

$$P_1 = (x_s, x'_{s-1}, x_{s-1}, x'_{s-2}, ..., x'_0, x_0 = v),$$

$$P_2 = (y_s, y'_{s-1}, y_{s-1}, y'_{s-2}, ..., y'_0, y_0 = v),$$

where $x_i, y_i \in X_i$ and $x'_i, y'_i \in X'_i$ $(0 \le i \le s)$. Let z be the first common vertex of P_1 and P_2 if we go from x_s to v (possibly, z = v). Obviously, $z \in X$. Now, the edge $x_s y_s$, the (x_s, z) -subchain of P_1 and the (y_s, z) -subchain of P_2 form the l-cycle C starting with z. If $z \ne v$, then the (z, v)-subchain of P_1 is an alternating (z, v)-chain in which z is incident to a b-edge and v is incident to an l-edge.

In fact we proved the following lemma.

Lemma 9 For any vertex v of a critical graph G, there exists an l-cycle C starting with z and such that if $v \neq z$, then there is an alternating (v, z)-chain in which v is incident to an l-edge, and z is incident to a b-edge, and moreover, z is the only common vertex of this chain and C.

We go on with the proof of Lemma 8. Denote by zz_1 the b-edge incident to the vertex z, and apply Lemma 9 to the vertex z_1 . Let C' be the l-cycle starting with z'. If $z_1 \neq z'$, let P be the alternating (z', z_1) -chain in which z_1 is incident to an l-edge and z' is incident to a b-edge. If $z_1 = z'$, then put $P = \emptyset$. Let $P^+ = P \cup z_1 z$, thus P^+ is the b-chain connecting the starting vertices z and z' of the l-cycles C and C'. The union of the cycles C, C' and the chain P^+ produces a semi-basis subgraph G' of the graph G. The semi-basis graph G' is shown in Fig. 2 provided that it has no self-intersections.

Let e be an l-edge of the graph G and suppose that the graph G-e contains a semi-basis subgraph. By Lemma 7, $\beta(G-e) < k$. On the other hand, G is critical, and so $\beta(G-e) = k$, a contradiction. Thus, the graph G-e does not contain a semi-basis subgraph for any l-edge $e \in E(G)$. Therefore, the semi-basis subgraph G' of G contains all l-edges of G. Since G is critical, we have $\delta(G) \geq 2$. Hence V(G') = V(G). Taking into account that any semi-basis graph is a perfect bl-graph, we conclude that G' must contain all b-edges of G. Thus, G' = G. The proof of Lemma 8 is complete.

Remark 1 The proof of Lemma 8 implies that the cycle C' and the chain $P - \{z_1\}$ may intersect the set $V(C) - \{z\}$ in the critical graph G, all other intersections are impossible.

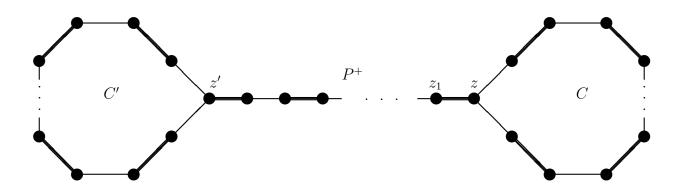


FIGURE 2. Semi-basis graph without self-intersections.

Lemma 10 Any critical graph is a basis.

Proof: Let G be a critical graph. By Lemma 8, the graph G is a semi-basis. Employing the notation used in Lemma 8 and taking into account Remark 1, we consider all possible intersections of $V(C') \cup (V(P) - \{z_1\})$ and $V(C) - \{z\}$. Suppose that the intersection of these sets is empty. The graph G is a W-graph, since G is critical. Hence the cycles C and C' have the even number of b-edges. Therefore, G can be obtained from Pr_1 by the operation of W-reducibility, i.e., G is a basis.

Suppose that u is a common vertex of $C' \cup P$ and C. Let Q be a maximal common subchain of $C' \cup P$ and C such that Q contains u. Since every vertex in G is incident to exactly one b-edge, it follows that Q is a b-chain. Maximal common b-chains will be called intersection intervals. Obviously, $\deg_G v = 2$ for any non-end vertex v of any intersection interval.

Let us show that the set $V(P) - \{z_1\}$ does not intersect the set $V(C) - \{z\}$. Suppose to the contrary that $u \in (V(P) - \{z_1\}) \cap (V(C) - \{z\})$ and u is the nearest vertex to the vertex z in the chain P^+ . Denote by (u, u') the corresponding intersection interval. Let L be the (z, u)-subchain of C such that $u' \in L$, and let $y \in L$ be adjacent to z. Thus, zy is an l-edge. The (z, u)-subchain of P^+ and the (u, z)-subchain of P^+ containing P^+ connects P^+ of the chain P^+ connects P^+ with the l-cycle P^+ starting with P^+ the l-edge P^+ the graph P^+ contains a semi-basis subgraph formed by P^+ and P^+ contrary to Lemma 8. Therefore, P^+ of P^+ defined by P^+ contrary to Lemma 8. Therefore, P^+ defined by P^+ contrary to Lemma 8.

Now consider possible intersections of $C' - \{z'\}$ and $C - \{z\}$. Passing round the cycle C' from the vertex z', denote all intersection intervals by

$$(u_1, u_1'), (u_2, u_2'), ..., (u_t, u_t'),$$

where u_i, u'_i $(1 \le i \le t)$ are end vertices of the intervals. Since $C' \cap C \ne \emptyset$, we have $t \ge 1$. In what follows it is always supposed that we pass round the cycle C in the direction from u'_1 to u_1 . We will prove that, passing round the cycle C in this direction, the end vertices of the above intersection intervals are arranged in the following sequence:

$$u'_1, u_1, u'_2, u_2, ..., u'_t, u_t,$$
 (1)

and moreover the vertex z belongs to the (u_t, u'_1) -subchain of C. These statements hold for t = 1, and so we may assume that $t \geq 2$.

Suppose that passing round C we arrive to the vertex u_1' from u_s (s > 1), i.e. the (u_s, u_1') -subchain R of C contains no end vertices of any intersection interval excepting u_s and u_1' , and the vertex z does not belong to the chain R. We see that R is an l-chain. Hence the chain R and the (u_s, u_1') -subchain of C' containing z' form the l-cycle C'' starting with z'. Let $e = vu_1'$ be the l-edge of C'. Obviously, $e \notin C''$ and $e \notin C$, since (u_1', u_1) is a maximal common b-chain of C and C'. Thus, G - e contains a semi-basis subgraph consisting of C, C'' and P^+ , contrary to Lemma 8. Now suppose that passing round C we arrive to u_1' from u_s' , and z does not belong to the (u_s', u_1') -subchain R of C. Therefore, R is an l-chain. The chain R and the (u_1', u_s') -subchain of C' not containing z' form the l-cycle C'' starting with u_1' . Let $e = vu_s'$ be the l-edge of C'. Obviously, $e \notin C''$ and $e \notin C$. Thus, G - e contains a semi-basis subgraph consisting of C, C'', P^+ and the (z', u_1') -subchain of C' not containing u_s' , contrary to Lemma 8. Therefore, passing round C we arrive to the vertex u_1' from z, and the (z, u_1') -subchain of C' contains no end vertex of any intersection interval excepting u_1' .

Suppose now that passing round C we arrive to the vertex u_r and the next end vertex of the intersection intervals is u_s . It is evident that we arrived to the vertex u_r from the vertex u_r' . Since $u_s \neq u_1'$, the (u_r, u_s) -subchain of C does not contain z and hence it is an l-chain. Let s > r. Let us define the cycle C'' consisting of the (u_r, u_s) -subchain of C and the (u_r, u_s) -subchain of C' containing u_r' . The cycle C'' is an l-cycle starting with u_s . Let P' be the (u_s, z') -subchain of C' containing u_s' . Thus, $P' \cup P^+$ is a b-chain from u_s to z. Let e = z'w be the l-edge of C' such that $e \notin P'$. Since $z' \notin C$, we have $e \notin C$. Also, $e \notin C''$. We conclude that the graph G - e contains a semi-basis subgraph consisting of C, C'' and $P' \cup P^+$, contrary to Lemma 8. Now let s < r. Let us define the cycle C'' consisting of the (u_r, u_s) -subchain of C and the (u_s, u_r) -subchain of C' containing u_s' . The cycle C'' is an l-cycle starting with u_r . Let P' be the (u_r, z') -subchain of C' containing u_s' . Thus,

 $P' \cup P^+$ is a b-chain from u_r to z. Let e = z'w be the l-edge of C' such that $e \notin P'$. We have, $e \notin C$ and $e \notin C''$. We conclude that the graph G - e contains a semi-basis subgraph consisting of C, C'' and $P' \cup P^+$, contrary to Lemma 8. Thus, if we arrive to the vertex u_r passing round C, then the next end vertex of the intersection intervals must be u'_s , i.e., passing round the cycle C the end vertices of the intersection intervals are arranged in the following sequence:

$$u'_1, u_1, u'_{f(2)}, u_{f(2)}, ..., u'_{f(t)}, u_{f(t)},$$

where $f:\{2,3,..,t\}\to\{2,3,...,t\}$ is a bijection. Clearly, z belongs to the $(u_{f(t)},u_1')$ -subchain of C. Assume that there is $j\in\{2,3,...,t\}$ such that f(j-1)>f(j). Denote r=f(j-1) and s=f(j). Thus, r>s. Let L be the (u_r,u_s') -subchain of C. We see that $z\not\in L$ and hence L is an l-chain. Let L' be the (u_s',u_r) -subchain of C' not containing z'. Obviously, L' is an l-chain. Replace the chain L' in C' by the chain L and denote the resulting cycle by C''. The cycle C'' is an l-cycle starting with z'. Let $e=u_rw$ be the l-edge of L'. It is evident that $e\not\in C''$ and $e\not\in C$. We deduce that the graph G-e contains a semi-basis subgraph consisting of C, C'' and P^+ , contrary to Lemma 8. Consequently, the end vertices of intersection intervals while passing round C are arranged in accordance with (1).

The graph G(A, B) is a W-graph, since G is critical. We label all vertices of G as follows. Put c(v) = A if $v \in A$, and c(v) = B if $v \in B$. Denote $u_0 = z$ and $u'_0 = z'$. Furthermore, we construct the graph G^* by the following rule. Let

$$\mathcal{P}_b = \{(u_i, u_i') : 0 \le i \le t\}$$

be the set of b-chains of G consisting of the chain P^+ and the intersection intervals. Replace each chain (u_i, u'_i) from \mathcal{P}_b by the b-edge $u_i u'_i$. Note that the chain (u_i, u'_i) is an even b-chain if u_i and u'_i have the same label, and this chain is an odd b-chain otherwise. Now let

$$\mathcal{P}_l = \{(u_t, u_0), (u_t', u_0'), (u_{i-1}, u_i'), (u_{i-1}', u_i) : 1 \le i \le t\}$$

be the set of l-chains of G. Replace each chain L from \mathcal{P}_l by the l-edge connecting the end vertices of L. Note that L is an even l-chain if its end vertices have the same label, and L is an odd l-chain otherwise. The resulting graph G^* is the odd prism Pr_{t+1} whenever $t \geq 1$ is even, and G^* is the even Möbius ladder Ml_{t+1} whenever $t \geq 1$ is odd. Moreover, using the mapping $c: V(G^*) \to \{A, B\}$ constructed above, the graph G is obtained from G^* by the operation of W-reducibility. Therefore, G is a basis graph. The proof of Lemma 10 is complete.

Lemma 11 All basis graphs are critical.

Proof: Let G be a basis graph, i.e., G is obtained from Pr_{2n+1} $(n \ge 0)$ or Ml_{2n} $(n \ge 1)$ by the operation of W-reducibility. By Lemma 5, G is a W-graph, G = G(A, B). Obviously, $\delta(G) \ge 2$ and G is a connected graph. Let us show that $\beta(G) < k$. By Lemma 7, it is sufficient to find a semi-basis subgraph in G. If G is obtained from Pr_1 , then G is evidently a semi-basis subgraph. Now let G be obtained from Pr_{2n+1} or Ml_{2n} , $n \ge 1$. Since the operation of W-reducibility preserves semi-basis subgraphs, it is sufficient to find such a graph in Pr_{2n+1} or Ml_{2n} , $n \ge 1$. In fact we will show that both Pr_{2n+1} and Ml_{2n} are semi-basis graphs.

Recall that in Pr_{2n+1} , the cycles $(u_1, u_2, ..., u_{2n+1})$ and $(v_1, v_2, ..., v_{2n+1})$ consist of ledges, and $\{u_i v_i : 1 \le i \le 2n+1\}$ is the set of b-edges. Define two cycles as follows:

$$C = (u_1, u_2, v_2, v_3, u_3, u_4, ..., u_{2n}, v_{2n}, v_{2n+1}, u_{2n+1}, u_1),$$

and

$$C' = (v_1, v_2, u_2, u_3, v_3, v_4, ..., v_{2n}, u_{2n}, u_{2n+1}, v_{2n+1}, v_1).$$

The cycle C starting with u_1 and the cycle C' starting with v_1 are l-cycles connected by the b-chain $(u_1, v_1) = u_1 v_1$, i.e., Pr_{2n+1} is a semi-basis graph for $n \ge 1$.

Consider now the Möbius ladder Ml_{2n} . Recall that the cycle $(u_1, u_2, ..., u_{4n})$ in Ml_{2n} consists of l-edges, and $\{u_i, u_{2n+i} : 1 \le i \le 2n\}$ is the set of b-edges of Ml_{2n} . Define two cycles as follows:

$$C = (u_1, u_2, u_{2n+2}, u_{2n+3}, u_3, u_4, u_{2n+4}, u_{2n+5}, ..., u_{2n}, u_{4n}, u_1),$$

and

$$C' = (u_{2n+1}, u_{2n+2}, u_2, u_3, u_{2n+3}, u_{2n+4}, u_4, u_5, ..., u_{4n}, u_{2n}, u_{2n+1}).$$

The cycle C starting with u_1 and the cycle C' starting with u_{2n+1} are l-cycles connected by the b-chain $(u_1, u_{2n+1}) = u_1 u_{2n+1}$, i.e., Ml_{2n} is a semi-basis graph.

Thus, $\beta(G) < k$. It remains to prove that $\beta(G - e) = k$ for each l-edge $e \in E(G)$. Let G be obtained from Pr_1 by the operation of W-reducibility. Obviously for any l-edge $e \in E(G)$, the graph G - e contains 1 or 2 vertices of degree 1. Starting with a vertex (vertices) of degree 1, it is easily to construct the desired independent set of cardinality k.

Now let G be obtained from $H = \{Pr_{2n+1}, Ml_{2n} : n \geq 1\}$ by the operation of W-reducibility, i.e., b-edges are replaced by alternating b-chains and l-edges are replaced by alternating l-chains. There are two cases to consider.

Case 1. The l-edge e belongs to an l-chain P_f , where f is an l-edge of H. If $H = Pr_{2n+1}$, then without loss of generality we may suppose that $f = u_1 u_{2n+1}$. Put

$$I = \{u_1, u_{2i+1}, v_{2i} : 1 \le i \le n\}.$$

If $H = Ml_{2n}$, then we may assume that $f = u_1u_2$. In that case put

$$I = \{u_1, u_{2i}, u_{2n}, u_{2n+2i+1} : 1 \le i \le n-1\}.$$

The set I is an independent set of H-f of cardinality $\frac{1}{2}|H|$. Now it is not difficult to construct an independent set of G-e of cardinality $k=\frac{1}{2}|G|$. Indeed, let $uv\in E(H)$ be a b-edge replaced by a b-chain P. Since $|I|=\frac{1}{2}|H|$, we have $|\{u,v\}\cap I|=1$, say $u\in I$. From each b-edge of P we add in I one vertex which is nearer to the vertex u in the chain P. If $uv\neq f$ is an l-edge of H replaced by an l-chain P, then $|\{u,v\}\cap I|\leq 1$ and we can add vertices in I in the same way as above. Now suppose that uv=f, and let e=xy. Then, from each b-edge of P_f-e we add in I one vertex which is nearer to the vertices x,y in the chain P_f . The constructed set I' is an independent set of G-e. Since I' contains one vertex of each b-edge in G-e, we have |I'|=k. Consequently, $\beta(G-e)=k$.

Case 2. The l-edge e belongs to a b-chain P_f , where f is a b-edge of H. If $H = Pr_{2n+1}$, then without loss of generality we may suppose that $f = u_1v_1$. Put

$$I = \{u_{2i}, v_{2i+1} : 1 \le i \le n\}.$$

If $H = Ml_{2n}$, then we may assume that $f = u_1u_{2n+1}$. In that case put

$$I = \{u_{2i}, u_{2n}, u_{2n+2i+1} : 1 \le i \le n-1\}.$$

The set I is an independent set of H-f such that each b-edge of H-f has one vertex in I and $|I| = \frac{1}{2}|H| - 1$. Note also that the end vertices of f do not belong to I. Adding vertices in the set I in the same way as in Case 1, we obtain the set I' such that I' contains one vertex of each b-edge of the graph G-e. Therefore, $|I'| = k = \frac{1}{2}|G|$, i.e., $\beta(G-e) = k$.

Thus, Lemmas 10 and 11 imply that a graph is critical if and only if it is a basis. Now the proof of Theorem 1 follows from Lemma 4.

4 Corollaries

In this section we illustrate some applications of the characterization of Γ -perfect graphs in terms of forbidden semi-induced subgraphs. We say that a graph G is 2-homeomorphic to H if G can be obtained from H by replacing edges of H by chains of even order $2k, k \geq 1$. Let the family \mathcal{H} consist of graphs 2-homeomorphic to the odd prism Pr_{2n+1} $(n \geq 0)$ or the even Möbius ladder Ml_{2m} $(m \geq 1)$.

Proposition 1 If H belongs to \mathcal{H} , then $\beta(H) < \frac{1}{2}|H|$.

Proof: For the odd prism we have $\beta(Pr_{2n+1})=2n$, i.e., $\beta(Pr_{2n+1})<\frac{1}{2}|Pr_{2n+1}|$. For the even Möbius ladder we have $\beta(Ml_{2m})=2m-1$, i.e., $\beta(Ml_{2m})<\frac{1}{2}|Ml_{2m}|$. Let F' be obtained from a graph F by the single 2-partition of the edge uv, i.e., uv is replaced by the chain P=(u,x,y,v). Let U be a maximum independent set of F'. Obviously, $1\leq |U\cap P|\leq 2$. If $|U\cap P|=1$, then U-P is an independent set of F of cardinality $|U|-1=\beta(F')-1$. If $|U\cap P|=2$, then at least one vertex from $\{u,v\}$ belongs to U, say $u\in U$. Now $U-\{x,y,v\}$ is an independent set of F of cardinality $|U|-1=\beta(F')-1$. In any case, $\beta(F)\geq \beta(F')-1$. Thus, if $\beta(F)<\frac{1}{2}|F|$, then

$$\beta(F') \le \beta(F) + 1 < \frac{1}{2}|F| + 1 = \frac{1}{2}|F'|.$$

Since H is obtained from the odd prism or the even Möbius ladder by applying the operation of 2-partition, we conclude that $\beta(H) < \frac{1}{2}|H|$.

In our next theorem, the graphs from the family \mathcal{H} are forbidden as semi-induced subgraphs for a graph to be Γ -perfect. Using the fact that a semi-induced subgraph of a graph is a W-graph, we see that the class of forbidden semi-induced subgraphs of Theorem 2 actually consists of W-graphs from the family \mathcal{H} . Note that the class of W-graphs from \mathcal{H} is larger than the class of basis graphs used in Theorem 1. For example, $Ml_4 = Ml_4(\{u_2, u_3, u_6, u_7\}, \{u_1, u_4, u_5, u_8\})$ is a W-graph from \mathcal{H} and hence it is forbidden in Theorem 2. On the other hand, Ml_4 is not a basis graph. Another difference between Theorem 1 and Theorem 2 is that a basis graph has a fixed partition into parts determined by the set of its b-edges, while for a W-graph from \mathcal{H} the partition into parts is not fixed.

Theorem 2 A graph G is Γ -perfect if and only if G does not contain a semi-induced subgraph 2-homeomorphic to the odd prism Pr_{2n+1} $(n \geq 0)$ or the even Möbius ladder Ml_{2m} $(m \geq 1)$.

Proof: Let G be a Γ -perfect graph and let H belong to \mathcal{H} . If H is not a W-graph, then H cannot be a semi-induced subgraph of G. Suppose now that H = H(A, B) is a W-graph and H is a semi-induced subgraph of G. By Proposition 1, $\beta(H) < \frac{1}{2}|H|$. Let $H' = \langle A \cup B \rangle$. Evidently, $\beta(H') \leq \beta(H)$ and H' is a W-graph. Therefore, by Lemma 1,

$$\Gamma(H') = \frac{1}{2}|H'| = \frac{1}{2}|H| > \beta(H) \ge \beta(H').$$

Thus, $\Gamma(H') > \beta(H')$. This is a contradiction, since G is a Γ -perfect graph.

Suppose that G does not contain any graph from \mathcal{H} as a semi-induced subgraph. Any basis graph F is obtained from the odd prism or the even Möbius ladder by replacing its edges by alternating chains of even order, and the partition into parts of F is determined by the set of its b-edges. Thus, the graph F is 2-homeomorphic to the odd prism or the even Möbius ladder and F has a fixed partition into parts. For a W-graph H from \mathcal{H} , the partition into parts of H is not fixed, and hence we may take any partition $V(H) = A \cup B$ such that A and B independently match each other. Therefore, $F \in \mathcal{H}$ and the graph G does not contain any basis graph as a semi-induced subgraph. The result now follows from Theorem 1.

Jacobson and Peters [22] considered the class of graphs G having $\beta(H) = IR(H)$ for all induced subgraphs H of G. By Theorem A, this class is exactly the class of Γ -perfect graphs.

Corollary 1 (Jacobson and Peters [22]) A graph G is Γ -perfect if and only if for any vertex subsets $A, B \subset V(G)$ that independently match each other, the graph $\langle A \cup B \rangle$ has an independent set of order |A|.

Proof: Let G be a Γ -perfect graph and A, B independently match each other. The set A is minimal dominating in $F = \langle A \cup B \rangle$. Hence, $\beta(F) = \Gamma(F) \geq |A|$. To prove the sufficiency, suppose that G is not Γ -perfect. By Theorem 2, G contains a semi-induced subgraph $H = H(A, B) \in \mathcal{H}$. By Proposition 1, $\beta(H) < |A|$. Thus, the sets A, B independently match each other in G and $\beta\langle A \cup B \rangle < |A|$, a contradiction.

Now we turn to the problem of characterizing Γ -perfect graphs in terms of forbidden induced subgraphs. A graph G is called *minimal* Γ -imperfect if G is not Γ -perfect and $\beta(H) = \Gamma(H)$, for every proper induced subgraph H of G.

Proposition 2 If G is a minimal Γ -imperfect graph, then G contains a basis graph F(A, B) of order 2k as a semi-induced subgraph, G = G(A, B) is a connected W-graph of order 2k, $\delta(G) \geq 2$, and $\beta(G) = k - 1$.

Proof: By Theorem 1, G contains a basis graph F as a semi-induced subgraph. Since G is minimal, we have V(G) = V(F). By Lemma 11, F is critical, i.e., F = F(A, B) is a connected W-graph of order 2k, $\delta(F) \geq 2$ and $\beta(F) < k$. The graph G is obtained from F by adding edges in the parts A, B. Therefore, G(A, B) is a connected W-graph of order 2k,

 $\delta(G) \geq 2$ and $\beta(G) < k$. Let uv be a b-edge of G. The graph $G' = G - \{u, v\}$ is Γ -perfect. Hence, using Lemma 1, $\beta(G') = \Gamma(G') = k - 1$. We obtain $\beta(G) \geq \beta(G') = k - 1$. Thus, $\beta(G) = k - 1$.

By Proposition 2, every minimal Γ -imperfect graph has even order $n \geq 6$. Let μ_n denote the number of nonisomorphic minimal Γ -imperfect graphs of order n. It was proved in [14] that $\mu_6 = 1$ and $\mu_8 = 14$. Using a computer search, we discovered that $\mu_{10} = 228$ and the number μ_{12} considerably exceeds μ_{10} . Therefore, it seems unlikely to obtain an explicit list of all minimal Γ -imperfect graphs, i.e., to provide an induced subgraph characterization of the entire class of Γ -perfect graphs. However, for $K_{1,3}$ -free Γ -perfect graphs Theorem 1 enables us to obtain such a characterization.

We define the family S consisting of the following classes S_1 , S_2 and S_3 . Let $C = C_{4m}$ and $C' = C_{4n}$ $(m, n \ge 1)$ be two cycles, let $uv \in E(C)$ and $xy \in E(C')$, and let $(z_1, z_2, ..., z_{2l})$ $(l \ge 1)$ be a chain. Add the edges uz_1 , vz_1 and xz_{2l} , yz_{2l} . The resulting graph belongs to S_1 . Now let $(u_1, ..., u_k)$, $(v_1, ..., v_l)$ and $(w_1, ..., w_m)$ be three chains such that $k, l, m \ge 2$ and either $k, l, m \equiv 0 \pmod{4}$ or $k, l, m \equiv 2 \pmod{4}$. Adding the edges u_1v_1 , v_1w_1 , w_1u_1 and u_kv_l , v_lw_m , w_mu_k , we obtain a graph of the class S_2 . Lastly, let $C = C_{4m}$ and $C' = C_{4n}$ $(m, n \ge 1)$ be two cycles and let $uv \in E(C)$ and $xy \in E(C')$. Add the edges ux, uy, vx, vy. The resulting graph belongs to S_3 .

Theorem 3 A $K_{1,3}$ -free graph G is Γ -perfect if and only if G does not contain any member of S as an induced subgraph.

Proof: Any graph H from the family S contains a semi-induced subgraph 2-homeomorphic to Pr_1 , Pr_3 or Ml_2 . By Theorem 2, H is not Γ -perfect. To prove the sufficiency, let G be a minimal counterexample, i.e., G is a $K_{1,3}$ -free graph not containing any member of S as an induced subgraph, G is not Γ -perfect and G has minimal order. Obviously, G is a minimal Γ -imperfect graph. By Proposition 2, G contains a basis graph F = F(A, B) as a semi-induced subgraph, G = G(A, B) is a connected W-graph of order 2k, $\delta(G) \geq 2$, and $\beta(G) = k - 1$. If the induced subgraph $\langle A \rangle$ or $\langle B \rangle$ of the graph G contains the induced chain P_3 , then G has the induced $K_{1,3}$, a contradiction. Hence both $\langle A \rangle$ and $\langle B \rangle$ are disjoint unions of complete graphs.

Lemma 12 Let G(A, B) be a minimal Γ -imperfect graph of order 2k. If $\langle A \rangle$ and $\langle B \rangle$ are disjoint unions of complete graphs, then the following statements hold:

- 1. If k is odd, then $\langle A \rangle \cong \langle B \rangle \cong \frac{k-3}{2} K_2 \cup K_3 \ (k \geq 3)$.
- 2. If k is even, then one of the graphs $\langle A \rangle$, $\langle B \rangle$ is $\frac{k}{2}K_2$ and the other is either $\frac{k-4}{2}K_2 \cup K_4$ $(k \geq 4)$ or $\frac{k-6}{2}K_2 \cup 2K_3$ $(k \geq 6)$.

Proof: Let $\langle A \rangle$ be a disjoint union of the complete graphs $H_1, ..., H_p$. Since $\delta(G) \geq 2$, we have $|H_i| \geq 2$ for any $i \in \{1, ..., p\}$, and hence $p \leq k/2$. Let I be an independent set in G of cardinality $k-1=\beta(G)$. Put $I_A=I\cap A$ and $I_B=I\cap B$. The set I contains at most one vertex of each H_i , and hence $|I_A| \leq p \leq k/2$. Analogously, $|I_B| \leq k/2$. Further, $|I_A| = |I| - |I_B| \geq k - 1 - k/2 = k/2 - 1$. Thus,

$$k/2 - 1 \le |I_A| \le k/2. \tag{2}$$

Analogously,

$$k/2 - 1 \le |I_B| \le k/2. \tag{3}$$

Put

$$s = \sum_{i=1}^{p} (|H_i| - 2) \ge 0.$$

We have,

$$k = |A| = \sum_{i=1}^{p} |H_i| = s + 2p \ge s + 2|I_A|.$$

Therefore, using (2),

$$s \le k - 2|I_A| \le 2.$$

Thus,

$$s \in \{0, 1, 2\}.$$

If k=|A| is odd, then s is also odd, since s=k-2p. Hence $s=1,\ k\geq 3$, and $\langle A\rangle\cong \frac{k-3}{2}K_2\cup K_3$. Analogously, $\langle B\rangle\cong \frac{k-3}{2}K_2\cup K_3$.

Now let k be even. Using (2) and (3), we see that one of the sets I_A and I_B has cardinality k/2-1 and the other has cardinality k/2. Without loss of generality, let $|I_A|=k/2-1$ and $|I_B|=k/2$. Since $\langle B\rangle$ is a disjoint union of complete graphs and $\delta(G)\geq 2$, we have $\langle B\rangle\cong \frac{k}{2}K_2$. Further, s=k-2p and k is even. Hence s is even and s=0 or 2. If s=0, then $\langle A\rangle\cong \frac{k}{2}K_2$ and therefore G is a disjoint union of even simple cycles. We obtain $\beta(G)=k$, a contradiction. Thus, s=2. Hence $k\geq 4$ and $\langle A\rangle\cong \frac{k-4}{2}K_2\cup K_4$ or $k\geq 6$ and $\langle A\rangle\cong \frac{k-6}{2}K_2\cup 2K_3$. The proof of Lemma 12 is complete.

By Lemma 12, G has either exactly 6 vertices of degree 3 or exactly 4 vertices of degree 4, and all other vertices have degree 2. The basis graph F is a spanning subgraph of G. Therefore, either F has at most 6 vertices of degree 3 and all other vertices have degree 2, or F has at most 4 vertices of degree 3 and 4 and all other vertices have degree 2. Consequently, F is obtained from Pr_1 , Pr_3 or Ml_2 (see Fig. 1) by the operation of W-reducibility. By Lemma 5, any l-edge of F belongs to A or B.

Suppose that F is obtained from Pr_1 . Let uu_1 , u_1u' be l-edges of one l-cycle of F and let vv_1 , v_1v' be l-edges of the other l-cycle of F. The vertices u, u', u_1 belong to the same part, and v, v', v_1 belong to the same part. We have, $uu' \in E(G)$ and $vv' \in E(G)$, since G is a $K_{1,3}$ -free graph. The restrictions on the degrees of vertices of G imply $G = F \cup \{uu', vv'\}$. Since G is a W-graph, we see that the cycle C of G such that $u, u' \in C$ and $u_1 \notin C$ has length 4m, and the cycle C' of G such that $v, v' \in C'$ and $v_1 \notin C'$ has length 4n. Thus, $G \in \mathcal{S}_1$, a contradiction.

Assume that F is obtained from Pr_3 . The prism Pr_3 has 6 vertices of degree 3. Hence, G = F. Suppose that an 1-edge of Pr_3 was replaced by an 1-chain having more than 2 vertices. Then F has the induced $K_{1,3}$, a contradiction. Therefore, only b-edges of Pr_3 could be replaced by b-chains to obtain F. These chains must be odd b-chains if $C_1 = (u_1, u_2, u_3)$ and $C_2 = (v_1, v_2, v_3)$ belong to different parts of F, and they must be even b-chains if C_1 and C_2 belong to the same part of F. Any odd b-chain has 4k + 2 vertices, and any even b-chain has 4m vertices. Therefore, $G = F \in \mathcal{S}_2$, a contradiction.

Finally, suppose that F is obtained from Ml_2 by the operation of W-reducibility. It is easy to see that Ml_2 has 4 different labelings of $V(Ml_2)$ by $c(u) \in \{A, B\}$ up to replacing A by B. Hence there are 4 cases to consider.

Case 1: $c(u_1) = c(u_4) = A$ and $c(u_2) = c(u_3) = B$. By the definition of W-reducibility, the l-edges u_1u_2 and u_3u_4 had to be replaced by the odd l-chains $(u_1, v_1, ..., v_k, u_2)$, $k \ge 2$, and $(u_3, w_1, ..., w_m, u_4)$, $m \ge 2$. Each of the vertices v_1, v_k, w_1, w_m is an end vertex of P_3 or P_4 consisting of l-edges and hence belonging to A or B. Since any part of G is a disjoint union of complete graphs, we see that each of the above vertices will have degree at least 3 in G. Thus, G has at least 8 vertices of degree at least 3, a contradiction.

Case 2: $c(u_1) = c(u_3) = A$ and $c(u_2) = c(u_4) = B$. This case is analogous to Case 1, since the l-edges u_1u_2 and u_3u_4 had to be replaced by odd l-chains.

Case 3: $c(u_1) = c(u_2) = c(u_3) = A$ and $c(u_4) = B$. The l-edges u_1u_4 and u_3u_4 had to be replaced by the odd l-chains $(u_1, v_1, ..., v_k, u_4)$, $k \ge 2$, and $(u_3, w_1, ..., w_m, u_4)$, $m \ge 2$. Each of the vertices v_1, v_k, w_1, w_m is an end vertex of P_r $(r \ge 3)$ consisting of l-edges. Hence, each of these vertices has degree at least 3 in G. Thus, G has at least 8 vertices of degree at least 3, a contradiction.

Case 4: $c(u_i) = A$, $1 \le i \le 4$. If some two l-edges from $\{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$ were replaced by even l-chains having at least two b-edges, then we derive a contradiction in the same way as above. Suppose that only one l-edge, say u_1u_2 , was replaced by the even l-chain $(u_1, v_1, ..., v_k, u_2)$, $k \ge 4$. Then $\langle v_k, u_2, u_3, u_4, u_1, v_1 \rangle$ is a P_6 in F consisting of l-edges. Therefore, G contains K_6 , a contradiction. Thus, only the b-edges u_1u_3 and u_2u_4 of Ml_2 were replaced by even b-chains and $\langle u_1, u_2, u_3, u_4 \rangle$ is a C_4 in F consisting of l-edges. Hence $\langle u_1, u_2, u_3, u_4 \rangle$ is a K_4 in G, and so all other vertices in G must have degree 2, i.e., $G = F \cup \{u_1u_3, u_2u_4\}$. Since even b-chains have 4m vertices $(m \ge 1)$, we have $G \in \mathcal{S}_3$. This contradiction completes the proof of Theorem 3.

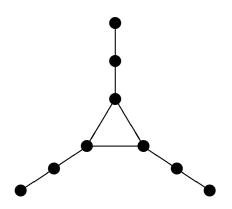


FIGURE 3. Graph H of Corollary 2.

The next result follows directly from Theorem 3 and Theorem A, since each graph from S contains either C_4 or the graph H of Fig. 3 as an induced subgraph.

Corollary 2 (Jacobson and Peters [23]) If a graph G does not contain either $K_{1,3}$, C_4 or the graph H of Fig. 3 as an induced subgraph, then G is Γ -perfect and IR-perfect.

Note in conclusion that using properties of minimal Γ -imperfect graphs stated in Proposition 2, it is not difficult to prove Theorems B, C, D, E, or F from Section 1.

Acknowledgment The authors thank the referees for valuable suggestions.

References

- [1] R.B. Allan and R. Laskar, On domination and independent domination numbers of a graph. *Discrete Math.* **23** (1978) 73–76.
- [2] N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
- [3] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance. *J. Graph Theory* **3** (1979) 241–249.
- [4] G. Chartrand and L. Lesniak, *Graphs & Digraphs*, Chapman & Hall, 3rd ed. (1996).
- [5] G.A. Cheston and G. Fricke, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance. *Discrete Appl. Math.* **55** (1994) 241–258.
- [6] G.A. Cheston, E.O. Hare, S.T. Hedetniemi and R.C. Laskar, Simplicial graphs. Congr. Numer. 67 (1988) 105–113.
- [7] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs. *Discrete Math.* **33** (1981) 249–258.
- [8] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs. *Canad. Math. Bull.* **21** (1978) 461–468.
- [9] E.J. Cockayne and C.M. Mynhardt, The sequence of upper and lower domination, independence and irredundance numbers of a graph. *Discrete Math.* 122 (1993) 89– 102.
- [10] O. Favaron, Stability, domination and irredundance in a graph. *J. Graph Theory* **10** (1986) 429–438.
- [11] M. Fellows, G. Fricke, S.T. Hedetniemi and D. Jacobs, The private neighbor cube. SIAM J. Discrete Math. 7 (1994) 41–47.
- [12] J. Fulman, A note on the characterization of domination perfect graphs. J. Graph Theory 17 (1993) 47–51.
- [13] M.C. Golumbic and R.C. Laskar, Irredundancy in circular arc graphs. *Discrete Appl. Math.* **44** (1993) 79–89.
- [14] G. Gutin and V.E. Zverovich, Upper domination and upper irredundance perfect graphs. *Discrete Math.* **190** (1998) 95–105.

- [15] P.L. Hammer and F. Maffray, Preperfect graphs. Combinatorica 13 (1993) 199–208.
- [16] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).
- [17] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers. *Congr. Numer.* **55** (1986) 121–150.
- [18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc., New York (1998).
- [19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [20] S.T. Hedetniemi, R. Laskar and J. Pfaff, Irredundance in graphs: a survey. Congr. Numer. 48 (1985) 183–193.
- [21] M.A. Henning, Irredundance perfect graphs. Discrete Math. 142 (1995) 107–120.
- [22] M.S. Jacobson and K. Peters, A note on graphs which have upper irredundance equal to independence. *Discrete Appl. Math.* 44 (1993) 91–97.
- [23] M.S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence. *Discrete Math.* **86** (1990) 59–69.
- [24] R. Laskar and H.B. Walikar, On domination related concepts in graph theory. *Lecture Notes in Math.* **885** (1981) 308–320.
- [25] R. Laskar and J. Pfaff, Domination and irredundance in graphs. *Tech. Report 434*, Dept. Mathematical Sciences, Clemson Univ., 1983.
- [26] R. Laskar and J. Pfaff, Domination and irredundance in split graphs. *Tech. Report* 430, Dept. Mathematical Sciences, Clemson Univ., 1983.
- [27] S. Mitchell and S. Hedetniemi, Edge domination in trees. Congr. Numer. 19 (1977) 489–509.
- [28] D.P. Sumner, Critical concepts in domination. Discrete Math. 86 (1990) 33–46.
- [29] D.P. Sumner and J.I. Moore, Domination perfect graphs. *Notices Am. Math. Soc.* **26** (1979) A-569.
- [30] J. Topp, Domination, independence and irredundance in graphs. *Dissertationes Math.* **342** (1995) 99 pp.
- [31] J. Topp and L. Volkmann, On graphs with equal domination and independent domination numbers. *Discrete Math.* **96** (1991) 75–80.
- [32] L. Volkmann and V.E. Zverovich, A proof of Favaron's conjecture on irredundance perfect graphs. (submitted)
- [33] I.E. Zverovich and V.E. Zverovich, An induced subgraph characterization of domination perfect graphs. *J. Graph Theory* **20** (1995) 375–395.