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ABSTRACT

The majority of graph theory research on parameters involved with domination, indepen-

dence, and irredundance has focused on either sets of vertices or sets of edges; for example,

sets of vertices that dominate all other vertices or sets of edges that dominate all other edges.

There has been very little research on “mixing” vertices and edges. We investigate several

new and several little-studied parameters, including vertex-edge domination, vertex-edge ir-

redundance, vertex-edge independence, edge-vertex domination, edge-vertex irredundance,

and edge-vertex independence.
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Chapter 1

Introduction

In this dissertation we shall present research of twelve new and several little-studied

parameters, including vertex-edge domination, vertex-edge irredundance, vertex-edge in-

dependence, edge-vertex domination, edge-vertex irredundance, and edge-vertex indepen-

dence. Before we proceed, we give some preliminary definitions. Throughout the remain-

der of this disseration all graphs shall be finite, undirected, loopless, and without multiple

edges. Furthermore, we assume that they are non-trival, connected graphs, here after called

ntc graphs.

Let G = (V, E) be a graph with a vertex set V(G) and edge set E(G) ⊆ V(G) × V(G)

(or simply V and E, respectively, if the graph being considered is clear from the context).

Furthermore, we say that a graph G has order n = |V(G)| and size m = |E(G)|. A vertex v is

adjacent to another vertex u if and only if there exists an edge e = uv ∈ E(G). Two edges e

and f are adjacent if they have a vertex in common. A vertex v is incident to an edge e and

vice versa if e = uv for some vertex u ∈ V(G).

The open neighborhood of a vertex v is N(v) = {u | uv ∈ E(G)}, and the closed neigh-

borhood of a vertex v is N[v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V(G) is

N(S ) = ∪v∈S N(v), and the closed neighborhood of S is N[S ] = ∪v∈S N[v] = N(S ) ∪ S .

A set S is a dominating set if every vertex v ∈ V(G) is either in S or is adjacent to

a vertex in S , that is, S is a dominating set if and only if N[S ] = V(G). The minimum

cardinality of a dominating set of G is called the domination number and is denoted γ(G).

The maximum cardinality of a minimal dominating set of a graph G is called the upper

domination number and is denoted Γ(G). For a dominating set S , if S has cardinality γ(G)



then S is called a γ-set, and if S has cardinality Γ(G) then S is called a Γ-set. We use a

similar notation for other parameters, that is, for a generic parameter µ(G), we call a set

satisfying the property for the parameter and having cardinality µ(G), a µ-set.

A set S is called independent if no two vertices in S are adjacent. The independence

number of a graph G is the maximum cardinality of an independent set of vertices and is

denoted β0(G). Similarly, a set F ⊆ E of edges is independent if no two edges in F have

a vertex in common. Independent sets of edges are usually called matchings. The match-

ing number (or equivalently, the edge independence number) β1(G) equals the maximum

cardinality of a matching in G. The lower matching number β1
1(G) equals the minimum

cardinality of a maximal matching in G.

Notice that by definition if G is a graph of order n, then β1(G) ≤ n
2 , and if β1(G) = n

2 we

say that any matching of cardinality n
2 is a perfect matching.

If a set S is both independent and dominating, then it is an independent dominating

set of G. The minimum cardinality of an independent dominating set is the independent

domination number and is denoted i(G). It is also well known that i(G) also equals the

minimum cardinality of a maximal independent set in G.

A vertex v is a private neighbor of a vertex u in a set S ⊆ V(G) if N[v] ∩ S = {u}.

The private neighbor set of u with respect to S is defined as pn[u, S ] = {v | N[v] ∩ S =

{u}}. A set S is called irredundant if for every vertex u in S , pn[u, S ] , ∅, that is, every

vertex in S has at least one private neighbor. The irredundance number of a graph G is the

minimum cardinality of a maximal irredundant set of vertices and is denoted ir(G). The

upper irredundance number of a graph G is the maximum cardinality of an irredundant set

of vertices and is denoted IR(G).

If a set S is irredundant then every vertex u ∈ S has a private neighbor, say v. From

the definition of a private neighbor we know that either u = v or v ∈ V − S . If u = v then

we know that u is not adjacent to any vertex in S − {u}; in this case we say that u is its

own private neighbor. If v ∈ V − S then we say that v is an external private neighbor of u.

We say that an irredundant set S is open irredundant if every vertex u ∈ S has an external

private neighbor. The open irredundance number oir(G) equals the minimum cardinality

of any maximal open irredundant set in G, while the upper open irredundance number

2



OIR(G) equals the maximum cardinality of an open irredundant set in G. Since every open

irredundant set is also an irredundant set, it follows that for any graph G, OIR(G) ≤ IR(G)

Notice also that every open irredundant set S = {u1, u2, . . . , uk} naturally defines a

matching, let {v1, v2, . . . , vk} be a set of private neighbors for each of the vertices in S .

Then the set of edges u1v2, u2v2, . . . , ukvk is a matching. It follows therefore, that for any

graph G, OIR(G) ≤ β1(G).

Similarly, a set F ⊆ E of edges is called irredundant if for every edge uv ∈ F there

exists an edge, say vw, that is adjacent to uv but to no other edge in F. In this case we say

that vw is a private edge of edge uv. Note that if edge uv is not adjacent to any edge in F,

then uv is its own private edge.

Let P be a property of sets S ⊆ V of vertices in a graph G = (V, E). For example,

P1 : S is an independent set,

P2 : S is a dominating set, or

P3 : S is an irredundant set.

A set S ⊆ V having property P is called a P-set. A property P is called hereditary

if every subset of a P-set is also a P-set. For example, property P1: independent set and

property P3: irredundant set are both hereditary properties.

A property P is called super-hereditary if every superset of a P-set is also a P-set. The

property P2: dominating is a super-hereditary property.

A set S is a maximal P-set if no proper superset of S is a P-set. A set S is a 1−maximal

P-set if for every vertex v ∈ V − S , the set S ∪ {v} is not a P-set.

It follows from these definitions that every maximal P-set is also a 1-maximal P-set,

but it can be seen that there are properties P for which a set can be a 1-maximal P-set but

not a maximal P-set. However the following was observed in [13].

Proposition 1 If P is a hereditary property then every 1-maximal P-set is a maximal P-set.

This proposition is significant because it implies in order to determine if a given P-set

is a maximal P-set for some hereditary property P, all you have to do is verify that it is a

1-maximal P-set, that is, show that for every vertex v ∈ V − S , S ∪ {v} is not a P-set.

3



In a similar manner, we say that a set S is a minimal P-set if no proper subset of S is a

P-set. A set S is a 1-minimal P-set if for every vertex u ∈ S , S − {u} is not a P-set.

It follows from these definitions that every minimal P-set is a 1-minimal P-set, but the

converse statement need not be true. However, as observed in [13]:

Proposition 2 If P is a super-hereditary property then every 1-minimal P-set is a minimal

P-set.

Thus, in order to determine if a set S is a minimal P-set for some super-hereditary

property P, instead of searching if every possible subset of S is a P-set, one need only

check to see if S − {u} is a P-set for every vertex u ∈ S .

This research also considers a number of other well-studied graph parameters, including

the following:

1. α0(G), the vertex covering number, that is, the minimum number of vertices in a set

S ⊆ V , called a vertex cover, having the property that for every edge uv ∈ E, either

u ∈ S or v ∈ S , or both.

2. α1(G), the edge covering number, the minimum number of edges in a set F ⊆ E

having the property that every vertex u ∈ V is incident to at least one edge in F.

3. γ′(G), the edge domination number, the minimum number of edges in a set F such

that every edge not in F has a vertex in common with at least one edge in F.

4. i′(G), the independent edge domination number, the minimum number of edges in an

independent edge dominating set F.

5. β1
1(G), the lower matching number, the minimum number of edges in a maximal

matching.

6. β1(G), the matching number, the maximum number of edges in a maximal matching.

7. Γ′(G), the upper edge domination number, the maximum number of edges in a mini-

mal edge dominating set.

4



8. ir′(G), the edge irredundance number, the minimum number of edges in a maximal

irredundant set F, that is, such that every every edge in F has a private edge.

9. IR′(G), the upper edge irredundance number, the maximum number of edges in an

irredundant set of edges.

The following inequality chain, known as the domination chain, was first stated by

Cockayne et al. in 1978 [5]. This chain has generated a considerable amount of interest

among graph theory researchers, and it has done the same with us.

Theorem 3 [The Domination Chain] [5] For any graph G,

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G).

A similar edge domination chain exist, as follows:

Theorem 4 [The Edge Domination Chain] For any graph G,

ir′(G) ≤ γ′(G) = i′(G) ≤ β1(G) ≤ Γ′(G) ≤ IR′(G).

In Chapter Four of [22], Peters introduced two new graph theory concepts: vertex-edge

domination and edge-vertex domination. We can informally define vertex-edge domination

by saying that a vertex v dominates the edges incident to v as well as the edges adjacent

to these incident edges. Edge-vertex domination can informally be defined by saying that

an edge e = uv dominates vertices u and v as well as all vertices adjacent to u and v.

Theorem 3, along with Chapter Four of [22], motivates much of this dissertation. The

research presented here continues the study of this extension of the definition of domination,

as well as extending the definitions of irredundance and independence to vertex-edge and

edge-vertex variants. We have proved Theorems 5 and 6.

Theorem 5 [The Vertex-Edge Domination Chain] For any graph G,

irve(G) ≤ γve(G) ≤ ive(G) ≤ βve(G) ≤ Γve(G) ≤ IRve(G).

5



Theorem 6 [The Edge-Vertex Domination Chain] For any graph G without isolated ver-

tices,

irev(G) ≤ γev(G) ≤ iev(G) ≤ βev(G) ≤ Γev(G) ≤ IRev(G).

The parameters in Theorems 5 and 6 represent the vertex-edge (ve) and edge-vertex (ev)

variants of the irredundance number, domination number, independent domination number,

independence number, upper domination number, and upper irredundance number. We

define the vertex-edge parameters in Chapter 3 and the edge-vertex parameters in Chapter 4.

The remainder of this dissertation is organized as follows. In Chapter 2 we present a

survey of relevant work that has been published. Of the twelve parameters that we have

defined for this dissertation, only two of them, namely γve and γev, have appeared in the

literature. To our knowledge the other ten are new. Hence, this literature survey primarily

considers γve and γev. Following this, Chapters 3 and 4 present respectively the vertex-edge

and edge-vertex parameters along with the results that we have obtained. In Chapter 5 we

present complexity results for these parameters. Finally in Chapters 6 and 7 we present

some concluding remarks along with a list of open problems.

6



Chapter 2

Literature Review

The majority of research on the parameters involved with domination, independence,

and irredundance has focused on either sets of vertices or sets of edges; for example, sets of

vertices that dominate other vertices or sets of edges that dominate other edges. There has

been little research on “mixing” vertices and edges.

An example where vertices and edges “mix” is in the study of total coverings, which are

closely related to our vertex-edge and edge-vertex variants of domination. In the classical

definition of covering, a vertex (edge) is said to cover all of its incident edges (vertices).

In 1977 Alavi et al. introduced a new invariant for both coverings and matchings, which

they called total coverings and total matchings (respectively) [1]. In these new invariants, a

vertex covers itself, all adjacent vertices, and all incident edges. Also, an edge e = uv covers

itself, all adjacent edges, and its two vertices u and v. In Figure 2.1 (a) the vertex u covers

the shaded vertices as well as the darkened edges and in Figure 2.1 (b), the edge e covers

the vertices u and v as well as the darkened edges. A set S ⊆ (V ∪ E) is a total covering if

every vertex and edge not in S is covered by some vertex or edge in S . The total covering

number of a graph G, denoted by α2(G), is the minimum cardinality of a total covering, and

the upper total covering number of a graph G, denoted α′2(G), is the maximum cardinality

of a minimal total covering. A set S ⊆ (V∪E) is independent with respect to total coverings

if for all elements a ∈ S , there does not exist an element b ∈ S such that b covers a. The

total matching number of a graph G, denoted by β2(G), is the maximum cardinality of a set

S ⊆ (V ∪ E) such that S is independent with respect to total coverings, and the lower total

matching number of a graph G, denoted by β′2(G), is the minimum cardinality of a maximal

independent set S ⊆ (V ∪ E), with respect to total coverings. Only a handful of papers have

been written on total coverings and total matchings. We now summarize the results in these

papers.



u

(a)

v
e

u

(b)

Figure 2.1: Examples of vertex total covers (a) and edge total covers(b)

In [1], Alavi et al. presented exact values and bounds on the total covering number,

upper total covering number, total matching number, and lower total matching number for

several classes of graphs. Table 2.1 is from [1] and summarizes these results.

From Table 2.1 we can derive Theorem 7.

Theorem 7 [1] If G is a connected graph of order n ≥ 2, then

n ≤ α2(G) + β2(G) ≤
⌊
3n
2

⌋
− 1.

Erdös and Meir presented bounds on the total covering numbers and total matching

numbers of graphs and their complements in [8]. We denote the complement of a graph G

by G. The following is a summary of the results of Erdös and Meir.

Theorem 8 [8] For every graph G of order n,

2
⌊n
2

⌋
≤ β2(G) + β2(G) ≤

⌊
3n
2

⌋
.

Theorem 9 [8] For every graph G of order n,

⌊n
2

⌋
+ 1 ≤ α2(G) + α2(G) ≤

⌊
3n
2

⌋
.
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Theorem 10 [8] For every connected graph G of order n,

α2(G) + β2(G) ≤ n +
1
2

⌊n
2

⌋
.

Theorem 11 [8] For every connected graph G of order n,

β2(G) ≤ n − 2
√

n + 2, and

this bound is best possible.

Following [8], Meir [18] published Theorems 12, 13, and 14.

Theorem 12 [18] For every connected graph G of order n ≥ 2 that does not contain a

triangle,

α2(G) + β2(G) ≤
5n
4
, and

this bound is best possible.

Theorem 13 [18] There exist arbitrarily large integers n and connected graphs G of order

n such that

α2(G) + β2(G) >
5n
4
.

Theorem 14 [18] Given ε > 0, there exist arbitrarily large integers n and connected graphs

G of order n such that

β′2(G) > (1 − ε)n.

In 1992 Alavi co-authored with Liu his second paper on total coverings [2]. They began

by presenting the following definitions.

Definition 1 [26] A matching in a graph G is a set of edges no two of which have a vertex

in common. The vertices incident to the edges of a matching M are said to be saturated by

M; the others are unsaturated. A perfect matching (also called a 1-factor) in a graph is a

matching that saturates every vertex.
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Definition 2 [2] A near-perfect matching of G is a perfect matching of G − v for some

v ∈ V(G).

Definition 3 [2] A graph G is factor-critical if G − v has a 1-factor for any v ∈ V(G).

Definition 4 [2] Given a graph G, we define

D(G) = {v ∈ V(G) | v is not saturated by any maximum matching of G},

A(G) = {v ∈ V(G) − D(G) | v is adjacent to at least one vertex in D(G)}, and

C(G) = V(G) − A(G) − D(G).

Theorem 15 [Galli-Edmonds’ Structure Theorem] [2] For any graph G, the following

structure properties hold:

1. The components of the subgraph induced by D(G) are factor-critical.

2. The subgraph induced by C(G) has a perfect matching.

3. If M is any maximal matching of G, then it contains a near-perfect matching of each

component of 〈D(G)〉, a perfect matching of 〈C(G)〉, and matches all vertices of A(G)

with vertices in distinct components in 〈D(G)〉, where 〈H〉 represents the subgraph

induced by the set H of vertices.

4. β1(G) = 1
2 [|V(G)|−k(〈D(G)〉)+ |A(G)|],where k(G) equals the number of components

in G.

Using Definitions 2, 3, and 4, and Theorem 15, Alavi and Liu derived the following

results.

Lemma 16 [2] If G is a connected graph and A(G) , ∅, then α2(G) ≤ β1(G).

Theorem 17 [2] If G is a connected graph, then α2(G) ≤ β1(G) + 1.

Theorem 18 [2] If G is a connected graph of odd order n and α2(G) =
⌈

n
2

⌉
, then G is

factor-critical and Mv ∪ {v} is a minimum total cover of G for any v ∈ V(G), where Mv is a

perfect matching of G − v.

11



Theorem 19 [2] If G is a connected graph of even order n and α2(G) = n
2 , then G has a

perfect matching.

Theorem 20 [2] If G is a connected graph of even order n and α2(G) = n
2 , then every

minimum total cover of G contains at most one vertex if and only if G is a complete graph.

Theorem 21 [2] If G is a connected graph of odd order n and α2(G) =
⌈

n
2

⌉
, then every

minimum total cover of G contains at most two vertices if and only if G is complete.

In [28], Zhang et al. present several relationships between the arboricity (not defined

here), and the total independence and total covering numbers.

There are two papers on the total covering and total matching numbers for a graph G

when G is restricted to a specific family of graphs. The first of these papers [19] is by

Olejník and František and concentrates on the total covering and total matching numbers

for k-uniform hypergraphs. In [19], they present a bound for the sum of the total covering

number of a k-uniform hypergraph H and the total covering number of the complement of

H; as well as a bound for the sum of the total matching number of a k-uniform hypergraph

J and the total matching number of the complement of J. The second of the two papers

is by Peled and Sun, [21], who determine bounds for the total covering number and total

matching number for threshold graphs.

Domination is a well studied field of graph theory, but the vertex-edge and edge-vertex

domination parameters have received very little attention since their introduction twenty

years ago. In the fourth chapter of his 1986 Ph.D. thesis [22], Peters introduced vertex-

edge and edge-vertex weak domination, which is what we call vertex-edge and edge-vertex

domination. He presented several preliminary results on these two parameters. We now

summarize these results.

We must first define vertex-edge and edge-vertex domination.

Definition 5 For a graph G = (V, E), a vertex u ∈ V(G) ve-dominates an edge vw ∈ E(G) if

1. u = v or u = w (u is incident to vw), or

2. uv or uw is an edge in G (u is incident to an edge that is adjacent to vw).

12



a

e

db

ve-dominates

c

Figure 2.2: Vertex-Edge Domination

a

ed

b c

Figure 2.3: The House Graph

Figure 2.2 gives a graphical representation of the definition of ve-domination. Notice

that the vertex a ve-dominates the edges ae, ab, and bc, but not the edge cd.

Definition 6 A set S ⊆ V(G) is a vertex-edge dominating set (or simply a ve-dominating

set) if for all edges e ∈ E(G), there exists a vertex v ∈ S such that v dominates e.

Definition 7 The minimum cardinality of a ve-dominating set of G is called the vertex-edge

domination number (or simply ve-domination number), and is denoted by γve(G).

The graph in Figure 2.3 is known as the house graph. From Definition 5 it follows that

vertex a ve-dominates the edges ab, ac, bd, bc, and ce. Notice that the set S 1 = {a} is not a

ve-dominating set since the edge de is not ve-dominated by S . But S 2 = {b} and S 3 = {c}

are both ve-dominating sets.

a db

ev-dominates

c

Figure 2.4: Edge-Vertex Domination
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Definition 8 For a graph G = (V, E), an edge e = uv ∈ E(G) ev-dominates a vertex w ∈

V(G) if

1. u = w or v = w (w is incident to e), or

2. uw or vw is an edge in G (w is adjacent to u or v).

Figure 2.4 gives a graphical representation of the definition of ev-domination. Notice

that the edge cd ev-dominates the vertices b, c, and d, but not the vertex a.

Definition 9 A set S ⊆ E(G) is an edge-vertex dominating set (or simply an ev-dominating

set) if for all vertices v ∈ V(G), there exists an edge e ∈ S such that e dominates v.

Definition 10 The minimum cardinality of an ev-dominating set of G is called the edge-

vertex domination number (or simply ev-domination number), and is denoted by γev(G).

Again, referring to Figure 2.3, from Definition 8 it follows that edge de ev-dominates

the vertices d, e, b, and c but not vertex a. Thus, F = {de} is not an ev-dominating set, but

F = {bc} is an ev-dominating set.

Proposition 22 [22] For any graph G of order n, γve(G) = 1 if and only if there exists a

vertex x ∈ V(G) such that every vertex of G is within distance two of x and if Y = {y ∈

V(G) : dist(x, y) = 2} then Y is an independent set of vertices.

Proposition 23 [22] For the complete graph Kn, the complete bipartite graph Km,n, and the

complete r-partite graph Kn1,n2,...,nr , we have:

1. γve(Kn) = γve(Km,n) = γve(Kn1,n2,...,nr ) = 1,

2. γve(Pn) =
⌊

n+2
4

⌋
, where Pn is the path on n vertices,

3. γve(Cn) =
⌊

n+3
4

⌋
, where Cn is the cycle on n vertices.

Proposition 24 [22] For any graph G of order n, γev(G) = 1 if and only if γc(G) ≤ 2,

where γc(G) is the minimum cardinality of a set of vertices that both induces a connected

subgraph and is a dominating-set (the connected domination number of G). Thus:
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1. γev(Kn) = γev(Km,n) = γev(Kn1,n2,...,nr ) = 1,

2. γev(Pn) =
⌊

n+2
4

⌋
,

3. γev(Cn) =
⌊

n+3
4

⌋
.

Proposition 25 [22] For any graph G of order n,

1. γve(G) ≤ γ(G) ≤ {α0(G), α1(G)},

2. γve(G) ≤ β0(G),

3. γve(G) ≤ β1(G) ≤ n
2 ,

4. γve(G) ≤ γ′(G),

5. γve(G) + γve(G) ≤ n + 1.

Proposition 26 [22] For any graph G of order n,

1. γev(G) ≤ γ(G) ≤ {α0(G), α1(G)},

2. γev(G) ≤ β0(G),

3. γev(G) ≤ β1(G) ≤ n
2 ,

4. γev(G) ≤ γ′(G),

5. γev(G) + γev(G) ≤ n + 1, if G and G have no isolates.

Proposition 27 [22] For any graph G, γev(G) ≤ γ(G) ≤ 2γev(G).

Proposition 28 [22] For any graph G with maximum degree ∆(G), γev(G) ≤ ∆(G)γve(G),

or γev
∆(G) ≤ γve.

Theorem 29 [22] For any graph G of order n, γve(G)+γve(G) ≤ n−β0(G)+2 = α0(G)+2.

Proposition 30 [22] For any graph G of size m, maximum degree ∆(G), and minimum

degree δ(G),

γve(G) ≤ m − ∆(G) −
∆(G) ∗ (δ(G) − 1)

2
+ 1.
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Definition 11 [22] For any graph G, let δ∗(G) = min(|D| − m(D)), where D is a minimal

dominating set of G and m(D) is the matching number of 〈D〉.

Theorem 31 [22] For any graph G, δ∗(G) ≤ ir(G).

Proposition 32 [22] For any graph G, δ∗(G) = γev(G).

Theorem 33 [22] For any graph G, γev(G) ≤ ir(G).

16



Chapter 3

Vertex-Edge Parameters

Recall that for a graph G = (V, E), a vertex u ∈ V(G) ve-dominates an edge vw ∈ E(G)

if

1. if u is incident to vw, or

2. u is incident to an edge adjacent to vw.

Also, recall that a set S ⊆ V(G) is a vertex-edge dominating set (or simply a ve-

dominating set) if for all edges e ∈ E(G), there exists a vertex v ∈ S such that v dominates e.

The minimum cardinality of a ve-dominating set of G is called the vertex-edge domination

number (or simply ve-domination number), and is denoted by γve(G). A ve-dominating set

S of size γve(G) is called a γve-set.

We now formally define upper vertex edge-domination.

Definition 12 The maximum cardinality of a minimal ve-dominating set of a graph G is

called the upper vertex-edge domination number (or simply the upper ve-domination num-

ber) and is denoted by Γve(G).

Traditional (vertex-vertex and edge-edge) domination has been extensively studied and

much is known about it. For a thorough survey of the field see [13, 12]. In contrast, very

little research has been conducted on vertex-edge domination. We present some preliminary

results next.

Definition 13 A set S is an independent vertex-edge dominating set (or simply an inde-

pendent ve-dominating set) if S is both an independent set and a minimal ve-dominating

set.

Definition 14 The independent vertex-edge domination number of a graph G is the mini-

mum cardinality of an independent ve-dominating set and is denoted ive(G).



Definition 15 The upper independent vertex-edge domination number of a graph G is the

maximum cardinality of an independent ve-dominating set and is denoted βve(G).

Definition 16 A vertex v ∈ S ⊆ V(G) has a private edge e = uw ∈ E(G) (with respect to a

set S ), if :

1. v is incident to e or v is adjacent to either u or w, and

2. for all vertices x ∈ S − {v}, x is not incident to e and x is not adjacent to either u or w,

that is, v dominates the edge e and no other vertex in S dominates e.

Definition 17 A set S is a vertex-edge irredundant set (or simply a ve-irredundant set) if

every vertex v ∈ S has a private edge.

Definition 18 The vertex-edge irredundance number of a graph G is the minimum cardi-

nality of a maximal ve-irredundant set of vertices and is denoted irve(G).

Definition 19 The upper vertex-edge irredundance number of a graph G is the maximum

cardinality of a ve-irredundant set of vertices and is denoted IRve(G).

Given these definitions, we can now present some basic propositions of ve-independence,

ve-domination, and ve-irredundance.

We first observe that property P4: is a ve-dominating set is super-hereditary and prop-

erty P5: is a ve-irredundant set is hereditary.

Thus from Proposition 2, we know that a set S is a minimal ve-dominating set if and

only if it is a 1-minimal ve-dominating set.

We also know, from Proposition 1, that a set S is a maximal ve-irredundant set if and

only if it is a 1-maximal ve-irredundant set.

We can use this to prove the following:

Proposition 34 Every minimal ve-dominating set of an ntc graph G is a maximal ve-

irredundant set of G.
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Proof. Let S be a minimal ve-dominating set of an ntc graph G. Suppose to the contrary

that S is not a ve-irredundant set of G. Therefore, there exists a vertex v ∈ S such that v

does not have a private edge. Notice that if v does not have a private edge with respect to

S and S dominates all of the edges of G, then S − {v} still dominates all of the edges of

G, which contradicts the minimality of S with respect to ve-domination. Therefore, every

vertex in S must have a private edge with respect to S , and S is ve-irredundant.

But S is also maximal ve-irredundant. For suppose to the contrary that S is not max-

imal ve-irredundant. This implies that there exists a vertex v < S such that S ∪ {v} is

ve-irredundant, and in particular v has a private edge e with respect to S ∪ {v}. If e is a pri-

vate edge of v, then for all u ∈ S , u does not dominate e, which contradicts the assumption

that S is a ve-dominating set. �

Corollary 35 For any graph G,

irve(G) ≤ γve(G) ≤ Γve(G) ≤ IRve(G).

Recall that an independent ve-dominating set by definition is not only a ve-dominating

set, but a minimal ve-dominating set.

Thus, we have the following.

Proposition 36 For any graph G,

γve(G) ≤ ive(G) ≤ βve(G) ≤ Γve(G).

From Corollary 35 and Proposition 36 we have a vertex-edge variant of the Domination

Chain.

Theorem 37 [The Vertex-Edge Domination Chain] For any ntc graph G,

irve(G) ≤ γve(G) ≤ ive(G) ≤ βve(G) ≤ Γve(G) ≤ IRve(G).
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Now that we have established the Vertex-Edge Domination Chain, we would like to

know if it can be expanded to include other parameters.

Proposition 38 Every ve-irredundant set of an ntc graph G is an open irredundant set.

Proof. Let S = {u1, u2, . . . , uk} be a ve-irredundant set, and let S ′ = {v1w1, v2w2, . . . , vkwk}

be a set of k private edges, where for 1 ≤ i ≤ k, viwi is a private edge of ui. Notice that

since viwi is a private edge of ui no vertex u j, j , i, can equal or be adjacent to vi or wi.

Notice also that it is possible that ui = vi or ui = wi, i.e. ui is incident to edge viwi. In this

case assume that ui = wi. Then vi is a private neighbor of ui. If ui , vi and ui , wi, i.e. ui

ve-dominates edge viwi, then either ui is adjacent to vi or ui is adjacent to wi. In this case

assume that ui is adjacent to vi. Then vi must be is a private neighbor of ui (with respect

to S ). Thus, each vertex ui ∈ S has a private neighbor vi in V − S . Thus, S is an open

irredundant set. �

Corollary 39 For any ntc graph G,

1. IRve(G) ≤ OIR(G) ≤ β1(G) ≤ n
2 ,

2. IRve(G) ≤ OIR(G) ≤ IR(G).

In [22] Peters showed that for any ntc graph G, γve(G) ≤ β1(G). The following chain of

inequalities considerably expands this result.

Corollary 40 For any ntc graph G,

irve(G) ≤ γve(G) ≤ ive(G) ≤ βve(G) ≤ Γve(G) ≤ IRve(G) ≤ OIR(G) ≤ β1(G) ≤
n
2
.

It follows from Corollary 40 that the sum of any two of these parameters is at most n.

We are now in a position to compare the parameters in the domination chain to the

corresponding parameters in the ve-domination chain.

Proposition 41 Every dominating set of an ntc graph G is a ve-dominating set of G.
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G

S

Figure 3.1: Example of an independent dominating set S that is also ve-dominating but not
minimal ve-dominating.

Proof. Let S be a dominating set of an ntc graph G. Recall that every vertex v ∈ V is

either in S or adjacent to a vertex in S . Thus for every edge uw ∈ E, either u ∈ S , w ∈ S or

both u,w ∈ V −S . Clearly S ve-dominates uw if u or w is in S . If both u and w are in V −S ,

then without loss of generality, u has a neighbor in S , so S ve-dominates uw. Therefore, S

is a ve-dominating set. �

Corollary 42 [22] For any ntc graph G, γve(G) ≤ γ(G).

Proposition 43 Every independent dominating set of an ntc graph G is an independent

ve-dominating set, but not necessarily a minimal ve-dominating set.

Proof. Let S be an independent dominating set of an ntc graph G. From Proposition 41

we know that S is a ve-dominating set, but as the example in Figure 3.1 shows, S may not

be a minimal ve-dominating set. The set S in Figure 3.1 is independent and ve-dominating,

but not minimal ve-dominating. In fact, in this example, γve(G) = ive(G) = 1 < γ(G) = 2 <

i(G) = 3. �

Corollary 44 For any ntc graph G, ive(G) ≤ i(G).

Proof. Let S be an i-set of G. From Propositions 41 and 43 we know that S is ve-

dominating and independent but may not be a minimal ve-dominating set. Let S ′ be any

minimal ve-dominating subset of S (possibly S ′ = S ). Then ive(G) ≤ |S ′| ≤ |S | = i(G). �

The following theorem summarizes what we know about the inequalities between the

parameters in the ve-domination chain and the corresponding parameters in the domination

chain.

21



Theorem 45 For any ntc graph G, the following inequalities hold:

1. irve(G) ≤ ir(G), [Conjectured]

2. γve(G) ≤ γ(G), [Corollary 42] [22]

3. ive(G) ≤ i(G), [Corollary 44]

4. βve(G) ≤ β0(G), [by definition]

5. Γve(G) ≤ Γ(G), [Conjectured]

6. IRve(G) ≤ OIR(G) ≤ IR(G). [Corollary 39]

The next result provides a class of graphs G for which γve(G) = ive(G). Let us say that a

graph G belongs to family G if for every non-independent γve-set S of G, there exists a pair

of adjacent vertices u and v in S , one of which has exactly one private edge with respect to

S .

Theorem 46 For any graph G ∈ G, γve(G) = ive(G).

Proof. From Proposition 36 we known that γve(G) ≤ ive(G). Thus, it suffices to show that

ive(G) ≤ γve(G) for every G ∈ G. Let G ∈ G and suppose to the contrary that ive(G) >

γve(G). Among all γve-sets of G, let S be one with a minimum number of edges in the

subgraph induced by S . If there are no edges, then we are finished.

Since G ∈ G, there is a pair of adjacent vertices u and v in S such that v has exactly one

private edge, say wx, with respect to S . We may assume that w , v and v is adjacent to w.

Let S ′ = (S −{v})∪{w}. Note that w has no neighbors in S −{v} and that S ′ is a γve-set of G.

But the subgraph induced by S ′ has fewer edges than the one induced by S , contradicting

our choice of S . �

Let S 0 ⊆ V be any set of vertices in a graph G. Let S 1 be the set of vertices in V − S 0

dominated by S 0, that is, S 1 = N[S 0] − S 0. Finally, let S 2 = V − S 0 − S 1. Thus any vertex

set S 0 naturally defines a partition of V(G) into three sets {S 0, S 1, S 2}.

We say that {S 0, S 1, S 2} is a ve-partition, a minimal ve-partition, or a γve-partition of

G, depending on whether S 0 is a ve-dominating set, a minimal ve-dominating set, or a

γve-dominating set, respectively.
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Theorem 47 Let {S 0, S 1, S 2} be a partition of an ntc graph G defined by a set S 0. Then

1. If S 0 is a ve-dominating set, then S 2 is an independent set.

2. If S 0 is a minimal ve-dominating set, then S 1 is a dominating set of G.

3. If S 0 is a ve-irredundant set, then |S 0| ≤ |S 1|.

4. For any ntc graph G, γve(G) ≤ n
2 .

Proof. Let {S 0, S 1, S 2} be a partition of an ntc graph G defined by a set S 0.

1. Let S 0 be a ve-dominating set of G, and suppose to the contrary that S 2 is not an

independent set. Therefore, there exists an edge uv ∈ E(G) such that u, v ∈ S 2. But

then there does not exist a vertex in S 0 that dominates uv, a contradiction.

2. Let S 0 be a minimal ve-dominating set of G, and suppose to the contrary that S 1 is

not a dominating set of G. Then there exist a vertex v ∈ V − S , that is not adjacent to

(or dominated by) any vertex in S 1. Either v ∈ S 0 or v ∈ S 2.

Case 1 Assume that v ∈ S 0. Since we know that S 0 is a minimal ve-dominating set we

know S 0 is a minimal ve-dominating set we know by Proposition 34 that S 0 is

a maximal ve-irredundant set. Therefore v has a private edge, either an edge of

the form vw for some vertex w ∈ S 1 or an edge of the form wx for some w ∈ S 1.

But in this case, v is adjacent to w. Thus, in either case, v is adjacent to a vertex

in S 1.

Case 2 Assume that v ∈ S 2. By Theorem 47.1 we know that S 2 is an independent set.

And since we are assuming that G is a connected graph, it follows that every

vertex in S 2 is adjacent to a vertex in S 1. Thus, S 1 must be a dominating set.

3. Let S 0 be a ve-irredundant set. Therefore, every vertex v in S 0, has a private edge

say vw with respect to S 0. Hence, for all v ∈ S 0 there exists a w ∈ S 1 such that

w < N[S − {v}] and v is adjacent to w. Therefore, |S 0| ≤ |S 1|.

4. Let S be a γve-set in a graph G of order m, and assume that |S | = γve(G) > n
2 . Since S

is a minimal ve-dominating set we know by Proposition 34 that S is also a maximal
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ve-irredundant set. By Theorem 47.3 we therefore know that |S | ≤ |S 1|, where S 1

is the set of vertices dominated by S . Therefore |S | ≤ n
2 , which contradicts our

assumption that |S | > n
2

�

The following is a well-known, classical result in domination theory due to Ore [20].

Theorem 48 [Ore] [20] Let G be any graph without isolated vertices. Then the complement

V − S of any minimal dominating set is a dominating set.

A similar result holds for ve-dominating sets.

Theorem 49 Let G be any ntc graph. Then the complement V − S of any minimal ve-

dominating set is a ve-dominating set. In fact, the complement V − S of any minimal

ve-dominating set is a dominating set.

Proof. This follows immediately from Theorem 47 and Proposition 41. �

Corollary 50 For any ntc graph G,

Γve(G) + γ(G) ≤ n.

Let Ψ(G) denote the maximum number of vertices in a set S ⊆ V that does not contain

an enclave, that is, a vertex v ∈ S , such that N[v] ⊆ S . It is well-known in domination

theory (cf. p. 248 of [13]) that for any graph G of order n,

γ(G) + Ψ(G) = n, or that

γ(G) = n − Ψ(G).

Corollary 51 For any ntc graph G,

Γve(G) ≤ Ψ(G).
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A converse of Theorem 49 is also true.

Proposition 52 Let G be any ntc graph. Then the complement V − S of every minimal

dominating set S is a ve-dominating set.

Proof. This follows immediately from Theorem 48 and Proposition 41. �

Corollary 53 For any ntc graph G,

Γ(G) + γve(G) ≤ n.

A lower bound for γve(G) is easily obtained in terms of m = |E| and ∆(G), the maximum

degree of a vertex in G.

Proposition 54 For any ntc graph G,
⌈

m
∆(G)2

⌉
≤ γve(G).

Proof. Clearly any vertex can have at most ∆(G) neighbors. Furthermore, any vertex can

ve-dominate at most ∆(G) edges for each of its neighbors. Therefore,
⌈

m
∆(G)2

⌉
≤ γve(G). �

Corollary 55 For any k-regular graph G,
⌈

n
2k

⌉
≤ γve(G).

Proof. Let G be a k-regular graph and S be a γve-set of G. Recall that a k-regular graph

on n vertices has m = kn
2 edges. Notice that any vertex can ve-dominate at most k2 edges.

Hence, |S | ≥
⌈

m
k2

⌉
=
⌈

n
2k

⌉
. �

Corollary 56 For any cubic graph G,

⌈n
6

⌉
≤ γve(G).

Proposition 54 can be used to obtain good lower bounds for γve(G) for a variety of

Cartesian product graphs. The Cartesian product of graphs G1 = (V1, E1) and G2 = (V2, E2)

is the graph G1�G2 = (V1×V2, E1� E2), where two vertices (u1, u2) and (v1, v2) are adjacent

in E1� E2 if and only if either u1v1 ∈ E1 and u2 = v2 or u1 = v1 and u2v2 ∈ E2.
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Three classes of Cartesian products are of special interest: products of cycles Cm� Cn,

products of paths, called grid graphs, Pm� Pn, and prisms Cm� P2. For these classes of

graphs we can infer that:

Corollary 57 For Cartesian products of cycles and Cartesian products of paths,

⌈mn
8

⌉
≤ γve(Cm� Cn) ≤ γve(Pm� Pn).

This corollary follows from Corollary 55 and the simple observation that if G is a span-

ning subgraph of a graph H, then γve(H) ≤ γve(G). Corollary 57 is interesting when com-

pared to the simple lower bound for the domination number of a grid graph, namely

⌈mn
5

⌉
≤ γ(Pm� Pn).

A prism Cn� P2 has 3n edges, and any vertex can ve-dominate at most nine edges.

Therefore,

Corollary 58 For any prism Cn� P2, where n > 3 and n , 9 (cf. Figure 3.2)

⌈n
3

⌉
≤ γve(Cn� P2) ≤

⌈n
3

⌉
+ 1.

Proof. It follows from Corollary 56 that

⌈n
3

⌉
≤ γve(Cn� P2).

It only remains to show that this upper bound can be achieved. This can be proved by a

simple induction argument on n using the ve-domination partition indicated in Figure 3.3.

�

One should note that this lower bound does not hold for n = 3 or n = 9, since
⌈

3
3

⌉
<

γve(C3� P2) = 2 and
⌈

9
3

⌉
< γve(C9� P2) = 4

We can also obtain the exact value of γve(G) for 2 × n grid graphs.
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Figure 3.2: A γve-set of prism C6� P2

Figure 3.3: A γve-set of prism C9� P2
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We shall use a standard notation for labeling the vertices of a grid graph Gr,c, where

r ≤ c. In this notation a vertex vi, j in V(G) is defined to be the vertex in the ith row and the

jth column of Gr,c.

Definition 20 For a 2 × c grid graph G2,c we call the edge incident to both of the vertices

in column one and the edge incident to both vertices in column c end-edges.

Proposition 59 For any 2 × c grid graph G2,c with n = 2c, γve(G2,c) =
⌈

c
3

⌉
=
⌈

n
6

⌉
.

Proof. It is a simple exercise to show that the formula holds for c ≤ 6. Hence, let c ≥ 7.

Let S be a γve-set of G2,c. Note that G2,c has 3c − 2 edges. In order to dominate the end-

edges, S must contain at least one vertex from column 1 or column 2 and at least one from

column c − 1 or column c. Each vertex from columns 1, 2, c − 1, and c can dominate at

most 8 edges, and any other vertex can dominate at most 9 edges. Thus |S |−2 vertices must

dominate at least 3c − 18 edges and hence

|S | − 2 ≥
3c − 18

9
=

3
(

n
2

)
− 18

9
=

⌈n
6

⌉
− 2.

Thus γve(G2,c) = |S | ≥
⌈

n
6

⌉
.

To see that γve(G2,c) ≤
⌈

n
6

⌉
, let S =

{
a1,6i+2, a2,6 j+5 | 0 ≤ i ≤

⌊
c−2

6

⌋
and 0 ≤ j ≤

⌊
c−5

6

⌋}
if

c ≡ 0, 2 mod 3, otherwise let S =
{
a1,6i+2, a2,6 j+5, a1,c | 0 ≤ i ≤

⌊
c−2

6

⌋
and 0 ≤ j ≤

⌊
c−5

6

⌋}
.

�

Definition 21 [13] A set S of vertices in a graph G = (V, E) is a distance-2 dominating set

if every vertex in V − S is within distance 2 of at least one vertex in S .

Definition 22 [13] The distance-2 domination number γ≤2(G) of G equals the minimum

cardinality of a distance-2 dominating set in G.

Proposition 60 Given any graph G without isolates, γ≤2(G) ≤ γve(G) ≤ γ(G).

Proof. Let G = (V, E) be a connected graph, let S 0 be a minimum γve-set of G and let

{S 0, S 1, S 2} be the γve-partition. Notice that by definition every vertex in S 1 is distance one
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from at least one vertex in S 0 and every vertex in S 2 is distance two from at least one vertex

in S 0. Thus S 0 is a distance-2 dominating set of G. Therefore, γ≤2(G) ≤ γve(G). �

Theorem 61 For any tree T , γ≤2(T ) ≤ γve(T ) ≤ 2γ≤2(T ).

Proof. Recall that from Proposition 60 we know that γ≤2(T ) ≤ γve(T ), and therefore it

suffices to show that the upper bound holds. Let S be a γ≤2-dominating set for our tree

T . Notice that our tree T can be partitioned into k stars, T1,T2, . . .Tk where k = γ≤2(T ),

where the root of the star Ti is ri ∈ S and the distance from any leaf to ri is at most two.

Furthermore, two stars Ti and T j are connected by at most one edge txty between two leaf

vertices where tx ∈ V(Ti) and ty ∈ V(T j). Notice that the S ve-dominates all of the edges of

the stars but not any of the edges between two stars. Furthermore, since we can have at most

k of these edges, we know that it takes at most k vertices to ve-dominate these remaining

edges. Let R be the collection of vertices that ve-dominate these remaining “inter-star”

edges, and let S ′ = S ∪ R. Notice that S ′ ≤ 2γ≤2(T ) and S ′ is a ve-dominating set of T .

Therefore we have shown that the upper bound of the inequality holds. �

The inequality chains found in Proposition 60 and Theorem 61 are interesting in that

it suggests that γve(G) is something like γ≤ 3
2
(G), that is, a vertex v in a ve-dominating set

dominates all vertices and edges within distance 3
2 , but not vertices at distance 2. This

intuition is helpful in understanding the nature of ve-domination.

In [22] Peters shows that the edge domination number and, therefore, the matching

number provide upper bounds for the ve-domination number.

Proposition 62 [22] For an ntc graph G, γve(G) ≤ γ′(G) ≤ β1(G).

Before we can present the next result, we need a couple of definitions.

A set S of vertices is called matchable if there exists a function f : S
1−1
−→ V − S such

that for every vertex u ∈ S , u is adjacent to f (u). Note that the set of edges {u f (u) | u ∈ S }

defines a matching. The matchability number of G denoted µ(G), equals the minimum

cardinality of a maximal matchable set.
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Proposition 63 Let F = {u1v1, u2v2, . . . , ukvk} be the set of edges in a maximal matching of

an ntc graph G. Then the edges in F can be so oriented such that the set U = {u1, u2, . . . , uk}

is a ve-dominating set.

Proof. Let F = {u1v1, u2v2, . . . , ukvk} be the set of edges in a maximal matching of an ntc

graph G. Without loss of generality, let U = {u1, u2, . . . , uk} and let S = {v1, v2, . . . , vk}. By

definition, if an edge xy ∈ E(G) is not in F, then without loss of generality x = ui or x = vi

for some 1 ≤ i ≤ k. Notice that we only have six classes of edges:

1. Edges in F,

2. Edges between two vertices in U,

3. Edges between two vertices in S ,

4. Edges between a vertex in U and a vertex in S , not in F,

5. Edges between vertices in U and vertices in V(G) − U − S , and

6. Edges between vertices in S and vertices in V(G) − U − S .

It is easy to see that the vertices in U ve-dominate all edges in all six classes. Hence, U is a

ve-dominating set. �

Our next result gives both a descriptive and a constructive characterization of the class

of all trees, of order n ≥ 3, having equal ve-domination and domination numbers. But

before we present these characterizations, we need to give a few definitions. A support

vertex in a tree T is any vertex that is adjacent to a leaf. A dominating set S in a graph G is

said to be efficient if N[u] ∩ N[v] = ∅ for every pair of vertices u, v ∈ S . Finally we define

a family T of trees T that can be obtained from the disjoint union of k ≥ 1 stars, each of

order at least 3, as follows. We refer to the original k stars as the underlying stars of the tree

T . Let C be the set of central vertices of the stars, and add k − 1 edges between the vertices

of V −C so that the resulting graph is a tree and every vertex in C remains a support vertex

in T (that is, at least one leaf from each underlying star is not incident to the added edges).

(cf. example tree in Figure 3.4
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Figure 3.4: A tree T ∈ T having 4 underling stars

Theorem 64 For any tree T of order n ≥ 3, the following statements are equivalent:

1. γve(T ) = γ(T ).

2. T has an efficient dominating set S , where each vertex in S is a support vertex of T .

3. T ∈ T .

Proof of the Equivalence of Statements 1 and 2 of Theorem 64

We first give a descriptive characterization of the trees having γve(T ) = γ(T ).

Theorem 65 For any tree T of order n ≥ 3, γve(T ) = γ(T ) if and only if T has an efficient

dominating set S , where each vertex in S is a support vertex of T .

Proof. Let T be a tree with an efficient γ(T )-set S = {v1, v2, . . . , vγ}, where each vertex

in S is a support vertex. Since γve(T ) ≤ γ(T ), it suffices to show that γve(T ) ≥ γ(T ). Let

S 1, S 2, . . . , S γ be the partition of V(G), where S i = N[vi], for 1 ≤ i ≤ γ(T ). Let ui be a

leaf adjacent to vi. Let D be a γve(T )-set. In order to ve-dominate the edge uivi, at least one

vertex from N[vi] is in D, implying that |D| ≥ γ(T ). Hence, γve(T ) = γ(T ).

For the converse, assume that γve(T ) = γ(T ). Let S be a γ(T )-set containing all support

vertices of T (such a set is always possible). We first show that S is efficient. Assume that

u and v are adjacent vertices in S . Let F be the set of edges incident to a vertex in N(u) but

not to u. Now v ve-dominates all of the edges incident to u. Note that since T is a tree, each

edge in F has a vertex that is not in N[u], so F is ve-dominated by S − {u}. Hence, S − {u}

is a ve-dominating set of T with fewer than γ(T ) vertices, contradicting the assumption that

γve(T ) = γ(T ). Therefore, S must be an independent set.
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Assume that u and v have a common neighbor w in V − S . But then w ve-dominates the

edges incident to u and those incident to v. The edges incident to vertices in N(u) ∪ N(v)

have vertices that are dominated by S − {u, v}, so S − {u, v} ∪ {w} is a ve-dominating set of

T having fewer than γ(T ) vertices, again a contradiction. Thus, S is an efficient dominating

set of T . Partition the vertices of T into the closed neighborhood S i of the vertices in S . To

see that every vertex in S must be a support vertex, assume to the contrary that there is a

vertex vi ∈ S such that no neighbor of vi is a leaf. Then for each x ∈ N(vi), x is adjacent to a

vertex in S j − {v j} for some j. Select one such neighbor of x and call it u j. Since T is a tree,

j , i and no pair of vertices in N(vi) have neighbors in a common S j (otherwise a cycle is

formed). Let U be the collection of these neighbors u j (cf Figure 3.5). Thus |U | = deg(vi).

Note further that for each pair of vertices, say u j and uk, in U, j , k, and there are no edges

between the vertices of S j and S k (because if there, were a cycle would exist). If we let

S = (S − ({vi} ∪ {v j | u j ∈ U}))∪U, then S is a ve-dominating set of T with fewer than γ(T )

vertices; a contradiction. Hence, every vertex of S must be a support vertex. �

v i

um

vm v l

u l

uk

vk

x

u j

v j

Figure 3.5: A tree T with a collection U of neighbors u j

Proof of the Equivalence of Statements 1 and 3 of Theorem 64

To complete the proof of Theorem 64, we provide a constructive characterization of the

nontrivial trees T for which γve(T ) = γ(T ). Let T be the family of trees with k underlying

stars as described previously.
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Theorem 66 For any tree T of order n ≥ 3, γve(T ) = γ(T ) if and only if T ∈ T .

Proof. Suppose T ∈ T . The k central vertices of the k underlying stars of T form an

efficient dominating set in T , and so γ(T ) = k. Since γve(T ) ≤ γ(T ) = k, all we need to

show is that γve(T ) ≥ k. By the way T is constructed, a vertex from an underlying star

cannot dominate an edge from another underlying star. Hence, any γve(T )-set must contain

at least one vertex from each underlying star implying that γve(T ) ≥ k.

To prove the converse, let γve(T ) = γ(T ) = k. We show that T ∈ T . By Theorem 65, T

has an efficient γ-set S = {v1, v2, . . . , vk}, where each vertex in S is a support vertex of T .

Note that S is also a γve-set. Let S 1, S 2, . . . , S k be the partition of V(T ), where S i = N[vi],

for 1 ≤ i ≤ k. Since S is an efficient dominating set and T is a tree, each S i induces a star

with vi as a center. Hence, T has k underlying stars. Since T is a tree there are exactly k − 1

edges in E(T ) that are not in the underlying stars. Let F be the set of these edges. Since

each vi is a support vertex in T , it suffices to show that each S i has at least three vertices.

Clearly, S i has at least two vertices, vi and its leaf neighbor in T . But since T is connected,

at least one vertex of S i is incident to an edge of F. Since vi is a support vertex in T at

least one of the leaves of the underlying star is a leaf in T . If vi is incident to an edge of

F, then vi is at most distance two from some v j, contradicting the fact that S is an efficient

dominating set. Hence, vi must have at least one neighbor that is incident an edge in F and

at least one that is not, implying that |S i| ≥ 3, and hence T ∈ T . �
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Chapter 4

Edge-Vertex Parameters

Recall that for a graph G = (V, E), an edge e = uv ∈ E(G) ev-dominates a vertex

w ∈ V(G) if

1. u = w or v = w, or

2. uw or vw is an edge in G.

Also, recall that a set F ⊆ E(G) is an edge-vertex dominating set (or simply a ev-

dominating set) if for all vertices v ∈ V(G), there exists an edge e ∈ F such that e dominates

v. The minimum cardinality of an ev-dominating set of G is called the edge-vertex domina-

tion number (or simply ev-domination number), and is denoted by γev(G).

We now formally define the ev-parameters.

Definition 23 The maximum cardinality of a minimal ev-dominating set of a graph G is

called the upper edge-vertex domination number (or simply the upper ev-domination num-

ber) and is denoted Γev(G).

Definition 24 A set F is an independent edge-vertex dominating set (or simply an inde-

pendent ev-dominating set) if F is both an independent set of edges and a minimal ev-

dominating set.

Definition 25 The independent edge-vertex domination number of a graph G is the mini-

mum cardinality of an independent ev-dominating set of vertices and is denoted iev(G).

Definition 26 The upper independent edge-vertex domination number of a graph G is the

maximum cardinality of an independent ev-dominating set and is denoted βev(G).

Definition 27 An edge e = uv ∈ F ⊆ E(G) has a private vertex w ∈ V(G) (with respect to

a set F), if :



1. e is incident to w or either v or u is adjacent to w, and

2. for all edges f = xy ∈ F − {e}, f is not incident to w and neither x nor y is adjacent

to w,

that is, e ev-dominates the vertex w and no other edge in F ev-dominates w.

Definition 28 A set F is an edge-vertex irredundant set (or simply an ev-irredundant set) if

every edge e ∈ F has a private vertex.

Definition 29 The edge-vertex irredundance number of a graph G is the minimum cardi-

nality of a maximal ev-irredundant set of edges and is denoted irev(G).

Definition 30 The upper edge-vertex irredundance number of a graph G is the maximum

cardinality of an ev-irredundant set of edges and is denoted IRev(G).

Proposition 67 If F is a minimal ev-dominating set of an ntc graph G, then F is a maximal

ev-irredundant set.

Proof. Let F be a minimal ev-dominating set of an ntc graph G. Clearly if F is minimal

with respect to ev-domination, then every edge in F must have a private vertex. Therefore,

we know that F is also an ev-irredundant set. Suppose to the contrary that F is not maximal

ev-irredundant. Since the property of being an ev-irredundant set is hereditary, this implies

that there exists an edge e < F, such that F ∪ {e} is ev-irredundant, and e has a private

vertex v with respect to F. But if v is a private vertex of e with respect to F, then F does

not ev-dominate v, which is a contradiction. Therefore, F is maximal with respect to ev-

domination. �

Corollary 68 For any graph G,

irev(G) ≤ γev(G) ≤ Γev(G) ≤ IRev(G).

Recall that an independent ev-dominating set, by definition, is also an ev-dominating

set. Clearly this implies the following.
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Proposition 69 For any ntc graph G,

γev(G) ≤ iev(G).

Also, by definition, any independent ev-dominating set is also a minimal ev-dominating

set. Thus, we have the following:

Proposition 70 For any ntc graph G,

γev(G) ≤ iev(G) ≤ βev(G) ≤ Γev(G).

From Corollary 68 and Propositions 69 and 70 we have Theorem 71.

Theorem 71 [The Edge-Vertex Domination Chain] For any ntc graph graph G,

irev(G) ≤ γev(G) ≤ iev(G) ≤ βev(G) ≤ Γev(G) ≤ IRev(G).

As with the Vertex-Edge Domination Chain, we would like to expand the Edge Vertex

Domination Chain to include other parameters. It is well-known in domination theory that

the edge domination number of any graph equals its independent edge domination number,

that is

Theorem 72 For any graph G,

γ′(G) = i′(G).

The same result holds for ev-domination and independent ev-domination.

Theorem 73 For any ntc graph G,

γev(G) = iev(G).

Proof. From Proposition 69 we know that γev(G) ≤ iev(G). Thus, it suffices to show that

γev(G) ≥ iev(G). Suppose to the contrary that there exists a graph G for which γev(G) <

iev(G). This implies that no γev-set of G can be independent. Therefore there exists at least
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two edges that are adjacent in every γev-set of G. Let F be a γev-set of G with a smallest

number of pairs of adjacent edges. If F has zero adjacent edges then we are done. Let

e = uv and f = vw be two adjacent edges in F. Since e, f ∈ F we know that there exists a

private vertex x for e and a private vertex y for f . Notice that if we define F′ = F−{e}∪{ux}

we still have a γev-set of G, and f still has a private vertex (y) as does the new edge ux (x).

Also notice that any vertex adjacent to x, other than u cannot be the sole private vertex of

some edge g ∈ F. For if it was, then F′ − {g} will still dominate all of the vertices of G and

|F′ − {g}| = |F − {e} ∪ {ux} − {g}| < |F|, a contradiction. But since F′ has fewer pairs of

adjacent edges than F we have a contradiction, hence γev(G) ≥ iev(G). �

Theorem 74 For every ev-irredundant set F in an ntc graph G, there exists a matching F′

with |F| = |F′|.

Proof. Let F = {u1v1, u2v2, . . . , ukvk} be an ev-irredundant set of G. Without loss of gen-

erality, we can orient these edges in F such that the u′i s are distinct, but the v′i s don’t neces-

sarily have to be distinct. Recall that every edge in F has a private vertex with respect to F.

We can define a set of edges F′ = {u1w1, u2w2, . . . , ukwk}, where wi is the private vertex for

edge uivi. Clearly F′ defines a matching and |F| = |F′|. �

Corollary 75 For any ntc graph G of order n,

IRev(G) ≤ β1(G) ≤
n
2
.

Corollary 76 For any ntc graph G,

irev(G) ≤ γev(G) = iev(G) ≤ βev(G) ≤ Γev(G) ≤ IRev(G) ≤ β1(G) ≤ Γ′(G) ≤ IR′(G).

This result considerably improves on the result of Peters [22] that: γev(G) ≤ β1(G).

We can now try to compare the parameters in the edge domination chain with their

counterparts in the ev-domination chain.

Proposition 77 For any ntc graph G, every edge dominating set is an ev-dominating set.
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Proof. Let F ⊆ E(G) be an edge dominating set of G. Recall that every edge in E is either

in F or adjacent to an edge in F. Hence every vertex is either incident to an edge in F or is

adjacent to a vertex that is incident to an edge in F. Therefore F is also an ev-dominating

set of G. �

Corollary 78 [22] For any ntc graph G,

γev(G) ≤ γ′(G).

Proposition 79 Every ev-irredundant set of edges in an ntc graph G is an irredundant set

of edges.

Proof. Let F be an ev-irredundant set of edges in an ntc graph G. This implies that every

edge uv ∈ F has a private vertex w. Without loss of generality, let w be adjacent to u. Since

w is a private vertex of uv we know that for all edges xy ∈ F − {uv}, w is not adjacent to x

or y. Therefore uw is a private edge for the edge uv, with respect to the set F. Hence, F is

also an irredundant set of edges. �

Corollary 80 For any ntc graph G,

IRev(G) ≤ IR′(G)

The following theorem summarizes what we know about the inequalities between the

parameters in the ev-domination chain and the corresponding parameters in the edge domi-

nation chain.

Theorem 81 For any ntc graph G, the following inequalities hold:

1. irev(G) ≤ ir′(G), [Conjectured]

2. γev(G) ≤ γ′(G), [Corollary 78] [22]

3. iev(G) ≤ i′(G), [Corollary 78]

4. βev(G) ≤ β1(G), [By Definition]

39



5. Γev(G) ≤ β1(G) ≤ Γ′(G), [Theorem 74 and Proposition 67]

6. IRev(G) ≤ β1(G) ≤ Γ′(G) ≤ IR′(G). [Corollary 75]

Proposition 82 For any ntc graph G,

γ≤3(G) ≤ irev(G).

Proof. Let F = {u1v1, u2v2, . . . , ukvk} be an irev-set, and let U = {u1, u2, . . . , uk}, and

S = {v1, v2, . . . , vk}, where |U | = k but |S | ≤ k. This implies that every edge e = uv ∈ F

has a private vertex. Furthermore, if a vertex w ∈ V(G) is not ev-dominated by an edge in

F then w is at most distance two from a vertex on some edge in F else F is not a maximal

ev-irredundant set. Notice that U distance-three dominates all of the vertices ev-dominated

by F, for these vertices are at most distance two from some vertex in U. The only remaining

vertices are those not ev-dominated by F. Recall that these vertices are at most distance two

from some vertex on an edge in F, and therefore at most distance three from some vertex

in U. Hence, U distance-three dominates all vertices of V(G). �

Proposition 83 For any graph G of order n, without isolates, and maximum degree ∆(G),

⌈
n

2∆(G) − 2

⌉
≤ γev(G).

Proof. Any edge uv in E(G), ev-dominates all vertices in N[u]∪ N[v] and |N[u]∪ N[v]| ≤

2(∆(G) − 2) + 2 = 2∆(G) − 2. Therefore,
⌈

n
2∆(G)−2

⌉
≤ γev(G) ≤ n − 2∆(G) − 1. �

Again, for cubic graphs we get the following:

Corollary 84 For any cubic graph G of order n,

⌈n
4

⌉
≤ γev(G).

Proposition 85 For any 2 × c grid graph G2,c with n = 2c, γev(G2,c) =
⌈

c
3

⌉
=
⌈

n
6

⌉
.
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Proof. Let F be a γev-set of G2,c. Note that each edge uv can dominate at most 6 vertices,

namely the vertices of N[v] ∪ N[u]. Hence to dominate all n vertices of G2,c our γev-set F

must contain at least
⌈

n
6

⌉
edges.

To see that γev(G2,c) ≤
⌈

n
6

⌉
, let F =

{
a1,3i+2a2,3i+2 | 0 ≤ i ≤

⌊
c−2

3

⌋}
if c ≡ 0, 2 mod 3,

otherwise let F =
{
a1,3i+2a2,3i+2, a1,ca2,c | 0 ≤ i ≤

⌊
c−2

3

⌋}
. �

At the end of Chapter 3 we noted that Peters [22] had shown that γve(G) ≤ γ′(G) ≤

β1(G). The same inequality holds for γev(G).

Proposition 86 For any ntc graph G, γev(G) ≤ γ′(G) ≤ β1(G).

Peters [22] also observed the following:

Proposition 87 For any ntc graph G, γev(G) ≤ γ(G) ≤ 2γev(G).

But it does not appear that a similar result holds for γve(G).

A result similar to the classic result, previously mentioned, by Ore can be obtained for

ev-dominating sets.

Proposition 88 Let G be any ntc graph. Then the complement E − F of any minimal

ev-dominating set is an ev-dominating set.

Proof. Let F be a minimal ev-dominating set for an ntc graph G. By definition we know

that every vertex v ∈ V(G) is either incident to an edge in F or adjacent to a vertex incident

to an edge in F. Furthermore, we know that since F is minimal every edge e ∈ F has a

private vertex with respect to F. Thus E − F dominates all of the vertices of G. �

From this we can immediately conclude, as did Peters [22], that

Corollary 89 For any ntc graph G of order n, γev(G) ≤ n
2 .
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Chapter 5

Complexity and Algorithmic Results

In this chapter we investigate the computational complexity and approximability of the

ve- and ev-parameters introduced in this dissertation. A summary of the NP-completeness

and approximation results attained so far is given in Tables 6.3 and 6.4. In Section 5.1 we

state the decision problems associated with our twelve parameters. In Sections 5.2 and 5.3

we determine which of our parameters are NP-complete for various classes of graphs. We

also determine the lower bounds on the approximability of these NP-complete parameters.

In Section 5.4 show that each of our parameters are linearly solvable when we restrict their

respective decision problems to trees.

First we make the following observation concerning the upper bounds on the approx-

imability of two of our twelve parameters.

SET COVER

INSTANCE: A universeU, a family S of subsets ofU, and a positive integer k.

QUESTION: Does there exists a set C ⊆ S of size at most k, such that ∪s∈C s = U?

It is a well known fact that using a greedy algorithm one can derive a solution to the SET

COVER problem that is at mostO(log m) times the optimal, where m = |U| [14]. Notice that

our ve- and ev-domination parameters are special cases of the set cover problem. Clearly

from this we can arrive at Theorem 90.

Theorem 90 There exists a solution that is at most O(log n) times optimal for VE DOMI-

NATING SET and for EV DOMINATING SET.



Family of Graphs
General Tree Bipartite Chordal

irve Linearly Solvable
[Thm. 119]

γve NP-Complete Linearly Solvable NP-Complete NP-Complete
[Thm. 94] [Thm. 116] [Thm. 94] [Thm. 94]

ive NP-Complete Linearly Solvable NP-Complete
[Thm. 103] [Thm. 118] [Cor. 104]

βve Linearly Solvable NP-Complete NP-Complete
[Thm. 119] [Thm. 109] [Thm. 110]

Γve Linearly Solvable NP-Complete
[Thm. 119] [Cor. 111]

IRve Linearly Solvable NP-Complete
[Thm. 119] [Cor. 112]

irev Linearly Solvable
[Thm. 119]

γev

q NP-Complete Linearly Solvable NP-Complete
iev [Thm. 113] [Thm. 119] [Thm. 113]

βev Linearly Solvable
[Thm. 119]

Γev Linearly Solvable
[Thm. 119]

IRev Linearly Solvable
[Thm. 119]

Table 5.1: Summary of complexity results
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Family of Graphs
General Bipartite Chordal

irve

γve c log n c log n
[Cor. 98]1, 3 [Cor. 98]1, 3

ive O
(
n1−ε
)

O
(
n1−ε
)

O
(
n1−ε
)

[Thm. 107]2, 3 [Thm. 107]2, 3 [Thm. 107]2, 3

βve

Γve

IRve

irev

γev

q c log n
iev [Cor. 114]1, 3

βev

Γev

IRev

1 There exists a constant c > 0 such that it is NP-hard to approximate the given
parameter to within a c log n factor.

2 For some constant ε > 0.
3 The above parameter is NP-hard to approximate to within the given factor.

Table 5.2: Summary of inapproximability results
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5.1 Statement of our Decision Problems Associated with our Twelve

Parameters

The following is the formal statement of the decision problems that are associated with our

twelve parameters.

• VE IRREDUNDANT SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G contain a maximal ve-irredundant set of size at most k?

• VE DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have a ve-dominating set of size at most k?

• INDEPENDENT VE DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have an independent ve-dominating set of size at most k?

• UPPER INDEPENDENT VE DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have an independent ve-dominating set of size at least k?

• MAXIMUM MINIMAL VE DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |.

QUESTION: Does G have a minimal ve-dominating set of size at least k?

• UPPER VE IRREDUNDANT SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G contain a ve-irredundant set of size at least k?

• EV IRREDUNDANT SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G contain a maximal ev-irredundant set of size at most k?
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• EV DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have a ev-dominating set of size at most k?

• INDEPENDENT EV DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have an independent ev-dominating set of size at most k?

• UPPER INDEPENDENT EV DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have an independent ev-dominating set of size at least k?

• MAXIMUM MINIMAL EV DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |.

QUESTION: Does G have a minimal ev-dominating set of size at least k?

• UPPER EV IRREDUNDANT SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G contain a EV-irredundant set of size at least k?

5.2 Vertex-Edge Parameters

5.2.1 ve-Domination

Theorem 91 For any graph G, γ(G) = γve(G ◦ K1).

Proof. Let G be a graph with V(G) = {v1, v2, . . . , vn}. Also let V(G ◦ K1) =

{v1, v2, . . . , vn, u1, u2, . . . , un}, and E(G ◦ K1) = E(G) ∪ {v1u1, v2u2, . . . , vnun}. We shall

proceed first by proving that γve(G ◦ K1) ≤ γ(G). Let S ⊆ V(G) be a γ-set of G. Notice that

S ve-dominates all of the edges of E(G), thus we are left with showing that S ve-dominates

the remaining edges of G ◦K1. If a vertex vi ∈ S , then clearly vi ve-dominates the edge viui.

If a vertex v j < S , then we know that there exists a vertex vk ∈ S such that v jvk ∈ E(G).

Notice then that vk also ve-dominate the edge v ju j. Hence all of the edges of G ◦ K1 are

ve-dominated, and S is a ve-dominating set of G ◦ K1.

47



Conversely we prove that γ(G) ≤ γve(G ◦ K1). Let S be a γve-set of G ◦ K1. Notice

that if a vertex ui ∈ S is not in V(G), then we can simply replace ui with vi and still ve-

dominate G ◦ K1. Therefore, without loss of generality, let S ⊆ V(G). Clearly S dominates

all of the vertices of G. For suppose to the contrary that there exist a vertex vi ∈ V(G)

that is not dominated by S . We know that since S ve-dominates G ◦ K1, all edges incident

to vi in G ◦ K1 must be ve-dominated, including the edge viui. To ve-dominate viui, a

vertex v j ∈ N[vi] must be in S , which is a contradiction. Thus, S dominates V(G), and

γ(G) ≤ γve(G ◦ K1). �

DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |.

QUESTION: Does G have a dominating set of size at most k?

Theorem 92 [9, cf. GT2] DOMINATING SET is NP-complete, even when restricted to

bipartite, chordal, or planar graphs with maximum vertex degree 3 and planar graphs that

are regular of degree 4.

Clearly, this implies that DOMINATING SET remains NP-complete for arbitrary planar

graphs, since a polynomial algorithm for DOMINATING SET for planar graphs could be

used to settle these two restricted problems on planar graphs.

Recall that a graph G is a circle graph if G is the intersection graph of chords in a circle.

Theorem 93 [15] DOMINATING SET is NP-complete for circle graphs.

Since the corona reduction found in the proof of Theorem 91 preserves bipartiteness,

chordality, and planarity we can derive Theorem 94 and Corollary 95.

Theorem 94 [17] VE DOMINATING SET is NP-complete, even when restricted to bi-

partite or chordal graphs.

Corollary 95 VE DOMINATING SET is NP-complete, even when restricted to planar

graphs.

Notice that if G is a circle graph, then so is the corona G ◦ K1. This leads us to Corol-

lary 96.
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Corollary 96 VE DOMINATING SET is NP-complete, even when restricted to circle

graphs.

Before we state our next result we must present several definitions relating to approxi-

mation algorithms.

Definition 31 [25] Combinatorial optimization problems are problems of picking the “best”

solution from a finite set. An NP-optimization problem, Π, consists of:

• A set of valid instances, DΠ, recognizable in polynomial time. The size of an instance

I ∈ DΠ, denoted |I|, is defined as the number of bits needed to write I under the

assumption that all numbers occurring in the instance are written as binary.

• Each instance I ∈ DΠ has a set of feasible solutions, SΠ(I). We require that SΠ(I) ,

∅, and that every solution s ∈ SΠ(I) is of length polynomially bounded in |I|. Further-

more, there is a polynomial time algorithm that, given a pair (I, s), decides whether

s ∈ SΠ(I).

• There is a polynomial time computable objective function, objΠ, that assigns a non-

negative rational number to each pair (I, s), where I is an instance and s is a feasible

solution for I. The objective function is frequently given a physical interpretation,

such as cost, length, weight, etc.

• Finally,Π is specified to be either a minimization problem or a maximization problem.

The restriction of Π to unit cost instances is called the cardinality version of Π.

Definition 32 [25] An optimal solution for an instance of a minimization (maximization)

problem is a feasible solution that achieves the smallest (largest) objective function value.

OPTΠ(I) denotes the objective function value of an optimal solution to instance I. We will

shorten to OPT when it is clear that we are referring to a generic instance of the particular

problem being studied.

Definition 33 [25] Let Π1 and Π2 be two minimization problems (the definition for two

maximization problems is quite similar). An approximation factor preserving reduction

from Π1 to Π2 consists of two polynomial time algorithms, f and g such that:
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• for any instance I1 of Π1, I2 = f (I1) is an instance of Π2 such that OPTΠ2(I2) ≤

OPTΠ1(I1), and

• for any solution t of I2, s = g(I1, t) is a solution of I1 such that

objΠ1
(I1, s) ≤ objΠ2

(I2, t).

In [23] Raz and Safra stated that approximating minimum dominating set to within a

logarithmic factor is NP-hard.

Theorem 97 [23] There exists a constant c such that for any graph G DOMINATING

SET is NP-hard to approximate to within a c log n factor, even when restricted to bipartite

graphs.

Since the corona reduction found in the proof of Theorem 91 is an approximation-

preserving reduction, even when restricted to bipartite graphs, we have Corollary 98.

Corollary 98 There exists a constant c such that for any graph G VE DOMINATING SET

is NP-hard to approximate to within a c log n factor, even when restricted to bipartite.

5.2.2 Independent ve-Domination

Theorem 99 For any graph G, i(G) = ive(G ◦ K1).

Proof. Let G be a graph with V(G) = {v1, v2, . . . , vn}. Also let V(G ◦ K1) =

{v1, v2, . . . , vn, u1, u2, . . . , un}, and E(G ◦ K1) = E(G) ∪ {v1u1, v2u2, . . . , vnun}. We shall pro-

ceed first by showing that ive(G ◦ K1) ≤ i(G). Let S ⊆ V(G) be an independent dominating

set of cardinality i(G). By definition S is an independent set of vertices and for all vi < S ,

there exist a v j ∈ S such that viv j ∈ E(G). Clearly S ve-dominates all of the edges of E(G).

Notice that if vi ∈ S , then vi ve-dominates the edge viui ∈ E(G ◦ K1). Furthermore, S

ve-dominates the edges v ju j ∈ E(G ◦ K1) where v j < S . For if v j < S , the there exists a

vertex vk ∈ S such that v jvk ∈ E(G). Clearly vk ve-dominates the edge v ju j. Thus, S is an

independent ve-dominating set, and therefore ive(G ◦ K1) ≤ i(G).
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We now show that ive(G ◦ K1) ≥ i(G). Let S be an independent minimal ve-dominating

set of G ◦ K1 of cardinality ive(G ◦ K1). Notice that we have two cases, either:

Case 1: S ⊆ V(G), or

Case 2: S * V(G).

If the latter is the case, then notice that we have two sub-cases.

Case 2a: There exist at least two vertices ui, v j ∈ S such that v j ∈ N(vi). Notice that if v j ∈ S ,

then v j ve-dominates all of the edges ve-dominated by ui, contradicting the minimal-

ity of S with respect to ve-domination. Therefore for all ui ∈ S , there does not exist

a vertex v j such that v j ∈ S and v j ∈ N(vi).

Case 2b: For all vertices ui ∈ S where ui ∈ V(G◦K1)−V(G), there does not exist a vertex v j ∈ S

where v j ∈ N(vi). If Case 2a holds, then notice that we can define S ′ = S −{ui}∪ {vi},

for all ui ∈ S . Notice that by construction S ′ is an independent set of vertices. To

show that S ′ is a minimal ve-dominating set, notice that for all vi ∈ S ′ − S there does

not exist a vertex v j ∈ S ′ such that v j ∈ N(vi), and thus vi has viui as a private edge.

Furthermore, the vertex v j ∈ S has as a private edge with respect to S ′ the edge v ju j.

Therefore we only need to consider Case 1.

Without loss of generality, let S ⊆ V(G). Suppose to the contrary that there exists a

vertex vi ∈ V(G) that is not dominated by S . We know that since S ve-dominates G ◦ K1,

all edges incident to vi in G ◦ K1 must be ve-dominated, including the edge viui. To ve-

dominate viui, a vertex v j ∈ N[vi] must be in S , which is a contradiction. Thus S dominates

V(G). �

INDEPENDENT DOMINATING SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G have an independent dominating set of size at most k?

Theorem 100 [9, cf. GT2] INDEPENDENT DOMINATING SET is NP-complete.

Theorem 101 [6] INDEPENDENT DOMINATING SET is NP-complete, even when re-

stricted to bipartite graphs.
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In [4] Chang published the following result.

Theorem 102 [4] Minimum Weight INDEPENDENT DOMINATING SET is NP-complete

for chordal graphs.

Using the coronal reduction found in the proof of Theorem 99 we can derive Theo-

rem 103.

Theorem 103 INDEPENDENT VE DOMINATING SET is NP-complete.

Since the corona reduction found in the proof of Theorem 99 preserves bipartiteness

and chordality we can derive Corollary 104.

Corollary 104 INDEPENDENT VE DOMINATING SET is NP-complete, even when re-

stricted to bipartite and chordal graphs.

Definition 34 [10] Zero-Error Probabilistic Polynomial Time (ZPP) is the class of lan-

guages recognized by probabilistic Turing machines with polynomial bounded average run

time and zero error probability.

Theorem 105 is from [11], and gives a lower bound on the approximability of a INDE-

PENDENT DOMINATING SET.

Theorem 105 [11] For any graph G, INDEPENDENT DOMINATING SET is NP-hard to

approximate to within a O
(
n1−ε
)

factor, for any constant ε > 0, unless NP = ZPP.

Theorem 106 [7] For any graph G, INDEPENDENT DOMINATING SET is NP-hard to

approximate to within a O
(
n1−ε
)

factor, for any constant ε > 0, even when restricted to

bipartite and chordal graphs.

Since the corona reduction found in the proof of Theorem 99 is an approximation-

perserving reduction, even when restricted to bipartite and chordal graphs, we have Theo-

rem 107.
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Theorem 107 For any graph G, INDEPENDENT VE DOMINATING SET is NP-hard to

approximate to within an O
(
n1−ε
)

factor, for any constant ε > 0, even when restricted to

bipartite and chordal graphs.

INDEPENDENT SET

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |

QUESTION: Does G contain an independent set of size at least k?

Theorem 108 [9, cf. GT20] INDEPENDENT SET is NP-complete.

Theorem 109 UPPER INDEPENDENT VE DOMINATING SET is NP-complete for bi-

partite graphs.

Proof. The NP-Completeness of UPPER INDEPENDENT VE DOMINATING SET for

bipartite graphs follows from a polynomial transformation from EXACT COVER BY THREE

SETS.

EXACT COVER BY THREE SETS (X3C)

INSTANCE: Set X = {x1, x2, . . . , x3q} of elements, Collection C of 3 element subsets of X.

QUESTION: Is there a subcollection C′ ⊆ C of q subsets such that every element of X

appears in exactly one subset?

Given an arbitrary instance X and C of X3C, with |X| = 3q, and |C| = m, create an

instance of UPPER INDEPENDENT VE DOMINATING SET for a bipartite graph G, and

positive integer k for in this way:

The graph G is made up of three types of components:

1. Element components: For each xi ∈ X, create a P3 (Figure 5.1 shows an element

component).

2. Subset components: For each subset c j ∈ C, create the component found in Fig-

ure 5.2.

3. Communication edges: Add edges from the subset component c j1 , c j2 , c j3 vertices to

the element xi vertices corresponding to the three elements that appear in the subset -

one edge from each c j. (see the arrows in Figures 5.1 and 5.2)
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Figure 5.1: Example of an Element Component used for the NP-Completeness proof of βve

when restricted to bipartite graphs.
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Figure 5.2: Example of a Subset Component used for the NP-Completeness proof of βve

when restricted to bipartite graphs.

Finally Set k = 3q + m + 3q + m − q = 5q + 2m

Given an exact cover C′ for the X3C instance, find an independent ve-dominating set

S in this way: select all the z vertices from the element components. Also select all the a

vertices from the subset components. Then, in the subset components that correspond to

subsets in C′, select all three c vertices. In the subset components that correspond to subsets

that are not in C′, select the f vertex. It is easy to verify that all edges are dominated, that

S is independent, and that each vertex in S has a private edge. In any subset component,

(vertices a and f (or a and all the c vertices) dominate the entire subset component as

well as the communication edges. The z vertices dominate all the edges in the element

components. The a vertices have the ab edges as private edges. The f vertices have the e f
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edges as private edges, (the c vertices have their incident communication edges as a private

edges), and the z vertices have the yz edges as private edges. Notice there will be 5q + 2m

vertices in S .

Given an independent ve-dominating set S of cardinality ≥ 5q + 2m, one can find an

exact cover C′ in this way: for each subset component that has all of its c vertices in S , add

that subset to C′. The following argument shows the only way to have 5q + 2m vertices in

S is if exactly q of the subset components have all their c vertices in S , and that these are

adjacent to all different elements of X.

In any minimal findependent ve-dominating set, there is exactly one representative in

S from each element component. Also, there is exactly one representative of the a, b,

and e vertices from any one subset component. These representatives account for 3q + m

of the vertices in S . Since |S | ≥ 5q + 2m, at least 2q + m vertices in S come from the

c and f vertices. To account for these vertices, define subsets S 1 ⊂ S and S 2 ⊂ S as

follows: S 1 = {v | v ∈ { f j, c j1 , c j2 , c j3} ∩ S , and |S ∩ { f j, c j1 , c j2 , c j3}| = 1} S 2 = {v | v ∈

{ f j, c j1 , c j2 , c j3} ∩ S , and |S ∩ { f j, c j1 , c j2 , c j3}| > 1} In other words, any vertex in S 1 is the

only f or c representative in S chosen from its respective subset component. Subset S 2 is

made up of the other f and c vertices, from those components with at least two of these

vertices in S . Actually since S is an independent set, subset S 2 can contain only c vertices.

Let r = |S 1| and s = |S 2|. Since no subset component may have more than three vertices

in S 2, at least s/3 subset components have more than one representative in S . Therefore,

r + s/3 ≤ m. Recall that r + s ≥ 2q +m. The vertices in S 2 must have private edges. These

edges only can be communication edges. Therefore no other vertex in S can be adjacent to

the same x vertex as a vertex in S 2. It follows that s ≤ 3q. Since, r + 3q ≥ r + s ≥ 2q + m,

it follows that r + q ≥ m. From r + q ≥ m ≥ r + s/3, it follows that s ≥ 3q. So s = 3q.

Each of these 3q vertices in S 2 must be adjacent to a different x vertex, and these x vertices

can have no other neighbors in S . So the vertices in S 1 must come from the f vertices. At

least s/3 = q of the subset components have vertices in S 2, so at most m − q of the subset

components can have vertices in S 1. Further 2q+m ≤ r+ s ≤ mq+ s = m+2q. Therefore, r

= m - q. Exactly q of the subset components are responsible for the 3q vertices in S 2, three

from each component. �
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Theorem 110 UPPER INDEPENDENT VE DOMINATING SET is NP-complete for chordal

graphs.

Proof. For this proof we are using a transformation from X3C to UPPER INDEPENDENT

VE DOMINATING SET when restricted to chordal graphs.

Given an arbitrary instance X and C of X3C, with |X| = 3q, and |C| = m, create an

instance of UPPER INDEPENDENT VE DOMINATING SET with a chordal graph G, and

a positive integer k in this way:

The graph G is made up of four types of components:

1. Element components: For each xi ∈ X, create a single vertex xi (Figure 5.3 has an

example of an element component).

2. Subset components: For each subset c j ∈ C, create the component found in Fig-

ure 5.4.

3. Communication edges: Add edges from the subset component c j1 , c j2 , c j3 vertices to

the element xi vertices corresponding to the three elements that appear in the subset -

one edge from each c j. (see the arrows in Figures 5.3 and 5.4)

4. Chordal edges: Form a clique among all 3m of the c vertices.

x i

Figure 5.3: Example of an Element Component used for the NP-Completeness proof of βve

when restricted to chordal graphs.

Finally Set k = 3q + m + (m − q) = 2q + 2m

Given an exact cover C′ for the X3C instance, find an independent ve-dominating set S

in this way: select all the x vertices and in the subset components that correspond to subsets

in C′, select the vertex b. In the subset components that correspond to subsets that are not

in C′, select the f vertex and the a vertex. You can verify that all edges are dominated

(vertices a and f or vertices b and the x’s dominate the entire subset component as well as

the communication edges), that S is independent, and that each vertex in S has a private
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Figure 5.4: Example of a Subset Component used for the NP-Completeness proof of βve

when restricted to chordal graphs.

edge. The a j vertices have the ab edge as a private edge as the b vertices. The f vertices

have the e f edge as a private edge. The x vertices have the communication edge between

it and its corresponding c j vertex as a private edge. Notice there will be 2q + 2m vertices

chosen. (3q of the x vertices, q of the b vertices, and 2(m − q) total of a and f vertices,

which equals 3q + q + 2m − 2q = 2q + 2m.)

Given an independent ve-dominating set S of cardinality ≥ 2q + 2m, one can find an

exact cover C′ as follows: for each subset component that does not have its corresponding

f vertex in S , add that subset to C′. We must now show that the only way to have 2q + 2m

vertices in S is if exactly q of the subset components do not have their f vertices in S .

Note that in any independent ve-dominating set S for G, there are exactly one S rep-

resentative of any subset component from among its a, b, and e vertices. Those vertices

account for m of the vertices in S . If |S | = 2q + 2m, there needs to be at least m + 2q more

vertices selected from the f , c, and x vertices. Because the c vertices form a clique, at most

one c vertex could appear in any independent ve-dominating set. Actually no c vertex can

appear in an independent ve-dominating set of cardinality 2q + 2m. Any one c vertex dom-

inates every clique edge and every communication edge, and every edge from a c vertex to

an f vertex. The set of edges dominated by any one c vertex is a proper superset of a set of

edges dominated by any x vertex. If a c vertex is in S , then no x vertex can be in S because
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it would not have a private edge. Discounting x vertices, there are not enough vertices left

in the graph to get a set of cardinality 2q + 2m (there are only m of the f vertices left!)

Therefore, the m + 2q vertices must come from the f and x vertices. Since there are only m

of the f vertices, at least 2q of the x vertices must be chosen.

Let r be the number of f vertices and s be the number of x vertices in S . Each x

vertex in S must have a private edge, and that private edge is incident with some c vertex.

Clearly that c vertex must not be dominated by another vertex in S , so the f vertex cannot

be taken in that component. So taking an x vertex rules out an f vertex. It is possible

that up to three of the x vertices would rule out the same f vertex. Since there are only

3q of the x vertices in the graph, it is obvious s ≤ 3q. Therefore, r ≤ ms/3. It follows

m + 2q ≤ r + s ≤ ms/3 + s = m + 2s/3 ≤ m + 2(3q)/3 = m + 2q. Therefore, all of the x

vertices are in S , and there must be m − q of the f vertices, chosen which happens when

only q of the f vertices are ruled out. That means that there are private edges from the x

vertices to a limited q of the subset components (those without the f vertices in S ), and

these q components form an exact cover. �

The exact same construction works for the Γve and IRve decision problems (MAXIMUM

MINIMAL VE DOMINATING SET and UPPER VE IRREDUNDANT SET respectively).

Note that the argument changes slightly because it would be possible to have more than

one c vertex in an irredundant set, but if so, the corresponding c f edges are the only private

edges the c vertices could have. So at most m total of the c and f vertices could be chosen,

and if any c is in, none of the x’s can be in S . The most S could be in this case is 2m, which

is not enough. Therefore, we have Corollaries 111 and 112.

Corollary 111 MAXIMUM MINIMAL VE DOMINATING SET is NP-Complete for chordal

graphs.

Corollary 112 UPPER VE IRREDUNDANT SET is NP-Complete for chordal graphs.
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5.3 Edge-Vertex Parameters

5.3.1 ev-Domination

Theorem 113 EV DOMINATING SET is NP-complete, even when restricted to bipartite

graphs.

Proof. We begin with a reduction from DOMINATING SET to EV DOMINATING SET.

Given a graph G = (V, E) with V = {v1, v2, . . . , vn}, we construct a graph G′ = (V ′, E′) as

follows. Let V ′ = V1 ∪ V2 ∪ V3, where V1 = {v1,1, v1,2, . . . , v1,n}, V2 = {v2,1, v2,2, . . . , v2,n}

and V3 = {v3,1, v3,2, . . . , v3,n}. We add edges between the vertices of V1 and V2 so that the

subgraph induced by V1∪V2 is a complete bipartite graph Kn,n. We say that the edge v1,iv2,i

represents the vertex vi ∈ V(G). Lastly, if viv j ∈ E(G), then let v2,iv3, j and v3,iv2, j ∈ E(G′).

We also add the n edges v2,iv3,i. Figure 5.5 has an example of a graph G and the constructed

graph G′.

1

5

4

2

3

G

V1 V2 V3

v1

v2

v3

v4

v5

G'

Figure 5.5: Example of the graphs G and G′ used for the NP-Completeness proof of γev

when restricted to bipartite graphs.

Claim: a graph G has a dominating set of size ≤ k if and only if the bipartite graph G′

has an ev-dominating set of size ≤ k.

Let S ⊆ V(G) be a dominating set of G of size ≤ k. Then let F′ = {v1,iv2,i | vi ∈ S }. It is

easy to see that F′ is an ev-dominating set of G′ of size ≤ k.
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Conversely, let F ⊆ E(G′) be an ev-dominating set of G′. Notice that if v2,iv3, j ∈ F, we

can define F′ = F−{v2,iv3, j}∪{v1,iv2,i} and F′ is still an ev-dominating set of G′. Therefore,

without loss of generality, let F contain only edges between V1 and V2. Furthermore, if

v1,iv2, j ∈ F where i , j we can define F′ = F − {v1,iv2, j} ∪ {v1, jv2, j} and clearly F′ is still an

ev-dominating set of G′. Thus, without loss of generality, let F contain only edges v1,iv2,i

for 1 ≤ i ≤ n.

Recall that the edge v1,iv2,i ∈ E(G′) represents the vertex vi ∈ V(G). Notice that if we let

S = {vi | v1,iv2,i ∈ F}, then S is a dominating set for the graph G. Therefore, if one can find

an ev-dominating set F for G′ of size at most k, then we have a dominating set S for G of size

at most k. Hence, using this reduction we have a transformation from DOMINATING SET

to EV DOMINATING SET and from Theorem 92 DOMINATING SET is NP-complete.

Since the above transformation preserves bipartiteness, EV DOMINATING SET is NP-

complete, even for bipartite graphs. �

Since the 3-partite reduction found in the proof of Theorem 113 is an approximation-

perserving reduction, even when restricted to bipartite graphs, we have Corollary 114.

Corollary 114 There exists a constant c such that for any graph G EV DOMINATING

SET is NP-hard to approximate to within a c log n factor, even when restricted to bipartite

graphs.

5.4 Complexity Results for Trees

Definition 35 [12] For a positive integer k ≥ 1, a set S of vertices in a graph G = (V, E) is

a distance-k dominating set of G if every vertex in V − S is at most distance k from some

vertex in S .

Definition 36 [12] The distance-k domination number γ≤k(G) of a graph G equals the min-

imum cardinality of a distance-k dominating set in G.

If we add weights to each of the vertices of V(G), then we can modify Definition 36

by letting the weighted distance-k domination number γw
≤k equal the minimum weight of a

60



distance-k dominating set in G. We use this modified definition of distance-k domination

below.

WEIGHTED DISTANCE 3 DOMINATION

INSTANCE: Graph G = (V, E), positive integer k.

QUESTION: Does G have a weighted distance-3 dominating set with a weight at most k?

In [24] Slater presented a linear time algorithm for solving the less general problem of

finding a minimum cardinality distance-k dominating set (which he called a k-basis) for a

forest. We require an algorithm for solving the weighted version of the problem. We present

a proof of Theorem 115 using the Wimer method.

Theorem 115 [24] WEIGHTED DISTANCE 3 DOMINATION is solvable in linear time

for trees.

Proof. The weighted distance-3 domination problem can be solved on trees using the

Wimer method [27]. Let us construct a recurrence system with only seven classes.

Given a tree T with root r and a weighted distance-3 dominating set S , consider how

the (tree, set) pair (T, S ) can be constructed (or decomposed) using the composition rule for

rooted trees. What we must be able to do is to completely characterize the possible classes

of (T, S ) pairs which can be used to build weighted distance-3 dominating sets in trees.

Fortunately, in this case there are only seven possible classes, whose characterizations can

be found in Table 5.3 and examples of each class can be found in Figure 5.6.

r
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[0]

r
1

1

[1]

r
1
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1
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r
1

1

1

[3]

1w

w

w

r
1

1

[5]

r
1

1

1

[6]

u

v

Figure 5.6: Examples of the seven Wimer classes for the γw
≤3 Algorithm
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Class Definition
[0] = {(T, S ) | 1. r is in S

2. S is a distance-3 dominating set in T },
[1] = {(T, S ) | 1. r is not in S

2. S is a distance-3 dominating set in T
3. minw∈S {dist(w, r)} = 1},

[2] = {(T, S ) | 1. r is not in S
2. S is a distance-3 dominating set in T
3. minw∈S {dist(w, r)} = 2},

[3] = {(T, S ) | 1. r is not in S
2. S is a distance-3 dominating set in T
3. minw∈S {dist(w, r)} = 3},

[4] = {(T, S ) | 1. r is not in S
2. S is a distance-3 dominating set in T − {r}}.

[5] = {(T, S ) | 1. r is not in S
2. S is a distance-3 dominating set in T − ({r} ∪ R) †

3. maxw∈R{dist(w, r)} = 1,
4. R , ∅},

[6] = {(T, S ) | 1. r is not in S
2. S is a distance-3 dominating set in T − ({r} ∪ R) †

3. maxw∈R{dist(w, r)} = 2,
4. R , ∅}.

† /∗Vertices in R are not yet distance-3 dominated∗/

Table 5.3: Definitions of the seven possible classes of (T, S ) pairs used to build weighted
distance-3 dominating sets in trees.
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[0] [1] [2] [3] [4] [5] [6]
[0] [0] [0] [0] [0] [0] [0] [0]
[1] [1] [1] [1] [1] [1] [1] X
[2] [1] [2] [2] [2] [2] X X
[3] [1] [2] [3] [3] X X X
[4] [1] [2] [3] [4] [5] [6] X
[5] [1] [2] [5] [5] [5] [6] X
[6] [1] X X [6] [6] [6] X

Table 5.4: Composition table for the seven classes of (T, S ) pairs used to build weighted
distance-3 dominating sets in trees.

[0] = [0] ◦ [0] ∪ [0] ◦ [1] ∪ [0] ◦ [2] ∪ [0] ◦ [3] ∪ [0] ◦ [4] ∪ [0] ◦ [5] ∪ [0] ◦ [6]
[1] = [1] ◦ [0] ∪ [1] ◦ [1] ∪ [1] ◦ [2] ∪ [1] ◦ [3] ∪ [1] ◦ [4] ∪ [1] ◦ [5] ∪ [2] ◦ [0] ∪

[3] ◦ [0] ∪ [4] ◦ [0] ∪ [5] ◦ [0] ∪ [6] ◦ [0]
[2] = [2] ◦ [1] ∪ [2] ◦ [2] ∪ [2] ◦ [3] ∪ [2] ◦ [4] ∪ [3] ◦ [1] ∪ [4] ◦ [1] ∪ [5] ◦ [1]
[3] = [3] ◦ [2] ∪ [3] ◦ [3] ∪ [4] ◦ [2]
[4] = [4] ◦ [3]
[5] = [4] ◦ [4] ∪ [5] ◦ [2] ∪ [5] ◦ [3] ∪ [5] ◦ [4]
[6] = [4] ◦ [5] ∪ [6] ◦ [3] ∪ [6] ◦ [4] ∪ [6] ◦ [5] ∪ [5] ◦ [5]

Table 5.5: Closed recurrence system for the seven classes of (T, S ) pairs used to build
weighted distance-3 dominating sets in trees.

Next, we build a composition table, where ‘X’ means that this composition never can

occur in the process of constructing a weighted distance-3 dominating set. This composition

table can be found in Table 5.4.

Since these seven classes are ‘closed’ under the ‘composition’ operation, we can build

the closed recurrence system found in Table 5.5.

Finally, we need to determine our initial vector, where W(r) is the weight of vertex r:

( W(r) , +∞ , +∞ , +∞ , 0 , 0 , 0 )

[0] [1] [2] [3] [4] [5] [6]

That is, we want to compute the smallest weight of a weighted distance-3 dominating

set of each class in the graph consisting of a single vertex. We can now write the pseudocode

for our algorithm, found in Algorithm 5.1, whose input is the parent array for the input tree

T .
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0. Procedure MinimumWeightedDistance3DominatingSet(Parent, N);
2. for i := 0 to N do
3. V(i, ∗) := (W(r),+∞,+∞,+∞, 0, 0, 0); // V is our vector
4. end for
5. for j := N to 2 do // Postorder scan through vertices.
6. k :=Parent[ j];
7. Combine(V, k, j);
8. end for
9. RETURN min(V(0, 0),V(0, 1),V(0, 2),V(0, 3));

10. END MinimumWeightedDistance3DominatingSet

11. Procedure Combine(V, k, j);
12. V(k, 0) := min(V(k, 0) + V( j, 0),V(k, 0) + V( j, 1),V(k, 0) + V( j, 2),V(k, 0) + V( j, 3),

V(k, 0) + V( j, 4),V(k, 0) + V( j, 5),V(k, 0) + V( j, 6));
13. V(k, 1) := min(V(k, 1) + V( j, 0),V(k, 1) + V( j, 1),V(k, 1) + V( j, 2),V(k, 1) + V( j, 3),

V(k, 1) + V( j, 4),V(k, 1) + V( j, 5),V(k, 2) + V( j, 0),V(k, 3) + V( j, 0),
V(k, 4) + V( j, 0),V(k, 5) + V( j, 0),V(k, 6) + V( j, 0));

14. V(k, 2) := min(V(k, 2) + V( j, 1),V(k, 2) + V( j, 2),V(k, 2) + V( j, 3),V(k, 2) + V( j, 4),
V(k, 3) + V( j, 1),V(k, 4) + V( j, 1),V(k, 5) + V( j, 1));

15. V(k, 3) := min(V(k, 3) + V( j, 2),V(k, 3) + V( j, 3),V(k, 4) + V( j, 2));
16. V(k, 4) := V(k, 4) + V( j, 3);
17. V(k, 5) := min(V(k, 4) + V( j, 4),V(k, 5) + V( j, 2),V(k, 5) + V( j, 3),V(k, 5) + V( j, 4));
18. V(k, 6) := min(V(k, 4) + V( j, 5),V(k, 6) + V( j, 3),V(k, 6) + V( j, 4),V(k, 6) + V( j, 5),

V(k, 5) + V( j, 5));
19. END Combine;

Algorithm 5.1: Algorithm for finding the minimum weight of a weighted distance-3 dom-
inating set for a tree T
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Note that our algorithm guarantees that we do not select a final value from classes

[4], [5], or [6], for this will leave us with a set S that does not distance-3 dominate the entire

tree, in particular the root r is not dominated. �

An implementation of 5.1, in the programming language of C, is given in Appendix A.

We can now use Theorem 115 to arrive at Theorem 116.

Theorem 116 WEIGHTED VE DOMINATING SET is solvable in linear time for trees.

Proof. Given a tree T = (V, E), we first define a new weighted tree T ′ = (V ′, E′) by sub-

dividing each edge of E(T ). Next we place a weight of one on each vertex of V(T ) and a

weight of +∞ on each vertex of V(T ′) − V(T ). Notice that solving the ve-dominating set

problem for our tree T is the same as solving the weighted distance-3 dominating set prob-

lem for our tree T ′. From Theorem 115 we know that the weighted distance-3 dominating

problem is solvable in linear time for trees. �

If we require that our set S be independent along with weighted distance-k dominat-

ing then we have a weighted independent distance-k dominating set and the weighted in-

dependent distance-k domination number iw
≤k equals the minimum weight of a weighted

independent distance-k dominating set in G.

WEIGHTED INDEPENDENT DISTANCE 3 DOMINATION

INSTANCE: Graph G = (V, E), positive integer j.

QUESTION: Does G have a weighted independent distance-3 dominating set with a weight

at most j?

Theorem 117 WEIGHTED INDEPENDENT DISTANCE 3 DOMINATION is solvable in

linear time for trees.

Proof. If we modify the Wimer table found in the proof of Theorem 115 to have an ‘X’

for class [1] ◦ class [1] and then make the appropriate changes to the remainder of the

proof we have an algorithm for solving the weighted independent distance-3 dominating

set problem. �

Using the same argument found in the proof of Theorem 117, we get Theorem 118.
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Theorem 118 WEIGHTED INDEPENDENT VE DOMINATING SET is solvable in lin-

ear time for trees.

We now state a few definitions and observations from [16] which are used to prove

Theorem 119.

A family of graphs is recursive if every graph of the family can be generated by a

finite number of of applications of composition operations starting with a finite set of basis

graphs [16]. A family of graphs is k-terminal recursive if it is a recursive family which

has k distinguished vertices called terminals, and each composition operation is defined in

terms of certain primitive operations on terminals [16]. A property is locally verifiable if

it can be verified by examining a bounded neighborhood of each vertex in a graph [16]. A

property P is regular with respect to a family of graphs if the number of equivalence classes

induced by each extended composition operation is finite (and therefore can be represented

as a finite binary multiplication table) [16].

Mahajan and Peters [16] note that “the k-terminal recursive families of graphs include

trees, series-parallel graphs, outerplanar graphs, and partial k-trees.” Their paper concludes

with the following observation:

“We have shown that any optimal subgraph or vertex partition problem based

on a property that is locally verifiable in [amortized] constant time per vertex is

regular with respect to all k-terminal recursive families of graphs. This implies

the existence of a linear-time algorithm for any such problem (when the input

is in the form of a parse tree) and we have given an effective procedure for

constructing these algorithms. Although we have not proved [it] here, it should

be obvious that our results can be extended to problems involving edge-induced

bounded partitions by suitable changes to the definitions.”

Furthermore, any graph G which is a member of some k-terminal recursive family can

be represented by some parse-tree [16].Notice that each of our twelve parameters are either

a “vertex [or an edge] partition problem based on a property which is locally verifiable

in [amortized] constant time per vertex [(edge)].” From this observation we clearly have

Theorem 119.
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Theorem 119 The following decision problems are solvable in linear time for trees:

1. VE IRREDUNDANT SET,

2. VE DOMINATING SET,

3. INDEPENDENT VE DOMINATING SET,

4. UPPER INDEPENDENT VE DOMINATING SET,

5. MAXIMAL MINIMAL VE DOMINATING SET,

6. UPPER VE IRREDUNDANT SET,

7. EV IRREDUNDANT SET,

8. EV DOMINATING SET,

9. INDEPENDENT EV DOMINATING SET,

10. UPPER INDEPENDENT EV DOMINATING SET,

11. MAXIMAL MINIMAL EV DOMINATING SET, and

12. UPPER EV IRREDUNDANT SET.
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Chapter 6

Conclusions

Nearly all of domination theory in graphs is concerned with sets S of vertices that

dominate all of the vertices in V − S , subject to certain conditions, either on S or on V − S ,

or both. A relatively small amount of research has been conducted on edge domination

theory, on sets of edges that dominate all other edges, again subject to certain conditions. In

this dissertation we have considerably expanded the work of Peters [22]. We have not only

continued the study of the vertex-edge and edge-vertex domination numbers, but we have

expanded and considered vertex-edge and edge-vertex invariants of classical independence

and irredundance.

In Chapter 2 we presented the results that Peters [22] had for the ve- and ev-domination

numbers. In Chapter 3 we defined the six vertex-edge parameters and presented the Vertex-

Edge Domination Chain. In this chapter we also presented various bounds on the different

parameters. These bounds are summarized in Table 6.1. Furthermore, in Chapter 3 we

characterized the family of graphs for which γve = ive, as well as the family of trees for

which γve = γ

Parameter Bound
γve ≥

⌈
m
∆2

⌉
=
⌈

n
6

⌉
, for 2 × c grid graphs

ive ≤ i
βve β0

Γve ≤ Ψ

IRve ≤ OIR ≤ β1 ≤
n
2

≤ OIR ≤ IR

Table 6.1: Summary of the bounds on the vertex-edge parameters

In Chapter 4 we defined the six edge-vertex parameters and presented the Edge-Vertex

Domination Chain. In this chapter we also presented various bounds on the different param-

eters. These bounds are summarized in Table 6.2. In both Chapters 3 and 4 we presented a

result similar to the classic result by Ore for both ve- and ev-dominating sets (respectively).



Parameter Bound
irev ≥ γ≤3

γev = iev

≤ γ′ ≤ β1

≥
⌈

n
2∆−2

⌉
=
⌈

n
6

⌉
, for 2 × c grid graphs

iev = γev

IRev ≤ β1 ≤
n
2

≤ β1 ≤ Γ
′ ≤ IR′

Table 6.2: Summary of the bounds on the edge-vertex parameters

In Chapter 5 we presented various complexity and algorithm approximation results for

our twelve parameters. These results are summarized in Tables ?? and ??. We also pre-

sented linear time algorithms for solving WEIGHTED DISTANCE-3 DOMINATION for

trees as well as WEIGHTED INDEPENDENT DISTANCE-3 DOMINATION for trees.

These two algorithms were then used to prove that WEIGHTED VE DOMINATION and

WEIGHTED INDEPENDENT DOMINATION are solvable in linear time for trees. We

then finish Chapter 5 by proving that all twelve of our parameters are solvable in linear time

when restricted to trees.

Finally, in Appendix A we present an implementation of the weighted distance-3 algo-

rithm mentioned above.
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Family of Graphs
General Tree Bipartite Chordal

irve Linearly Solvable
[Thm. 119]

γve NP-Complete Linearly Solvable NP-Complete NP-Complete
[Thm. 94] [Thm. 116] [Thm. 94] [Thm. 94]

ive NP-Complete Linearly Solvable NP-Complete
[Thm. 103] [Thm. 118] [Cor. 104]

βve Linearly Solvable NP-Complete NP-Complete
[Thm. 119] [Thm. 109] [Thm. 110]

Γve Linearly Solvable NP-Complete
[Thm. 119] [Cor. 111]

IRve Linearly Solvable NP-Complete
[Thm. 119] [Cor. 112]

irev Linearly Solvable
[Thm. 119]

γev

q NP-Complete Linearly Solvable NP-Complete
iev [Thm. 113] [Thm. 119] [Thm. 113]

βev Linearly Solvable
[Thm. 119]

Γev Linearly Solvable
[Thm. 119]

IRev Linearly Solvable
[Thm. 119]

Table 6.3: Summary of complexity results
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Family of Graphs
General Bipartite Chordal

irve

γve c log n c log n
[Cor. 98]1, 3 [Cor. 98]1, 3

ive O
(
n1−ε
)

O
(
n1−ε
)

O
(
n1−ε
)

[Thm. 107]2, 3 [Thm. 107]2, 3 [Thm. 107]2, 3

βve

Γve

IRve

irev

γev

q c log n
iev [Cor. 114]1, 3

βev

Γev

IRev

1 There exists a constant c > 0 such that it is NP-hard to approximate the given
parameter to within a c log n factor.

2 For some constant ε > 0.
3 The above parameter is NP-hard to approximate to within the given factor.

Table 6.4: Summary of inapproximability results
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Chapter 7

Open Problems

In conducting this research, virtually any of more than 1,800 papers published in dom-

ination theory can be used to develop new or similar ve or ev results. As expected, quite

a few open problems have emerged since beginning this research. Among these are the

following:

Let � represent any of:


irve, γve, ive βve, Γve, IRve

irev, γev iev, βev, Γev, IRev



1. What is:

• �(Kn)?

• �(Km,n)?

• �(Kn1,n2,...,nr )?

• �(K1,n)?

• �(Pn)?

• �(Cn)?

2. When is �(G) = 1?

3. Is �(G) + �G) ≤ n + 1?

4. What is �(G2×n) and �(G3×n) equal to?

5. For what trees of order n does �(T ) achieve its minimum/maximum value?

6. If γve + γve ≤ n − β0 + 1 = α0 + 2, what is γev + γev ≤?

7. Is irev ≤ ir′?

8. Is irve ≤ ir?

9. Is Γve ≤ Γ?

10. We know that Γve + γ ≤ n is:



• IRve + γ ≤ n?

• Γve + i ≤ n?

11. We know that Γ + γve ≤ n is:

• IR + γve ≤ n?

• Γ + ive ≤ n?

12. Is every maximal ve-irredundant set also a maximal open irredundant set?

13. Is γ′
≤2 ≤ γev ≤ γ

′?
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Appendix A
An Implementation of Algorithm 5.1 Using the C
Programming Language

1 /*
2 * main.c
3 *
4 * Created by Jason Robert Lewis on 4/27/07.
5 * Copyright 2007 Jason Robert Lewis. All rights reserved.
6 *
7 * This program will find a minimum weight distance-3 dominating set for a tree.
8 * Input: Order (n) of the tree,
9 * the parent array

10 * the weight array (weights for each of the n vertices)
11 */
12

13 #include <stdio.h>
14 #include <stdlib.h>
15

16 #define INFTY 100000
17

18 int minimumWeightedDistance3DominatingSet(int *parent, int *weights, int order);
19 void combine(int **V, int k, int j);
20 int minRootValue(int **V, int vertex);
21 int minCombine(int **V, int k, int j, int position);
22

23 FILE *outputFile;
24

25 int main (int argc, const char * argv[]) {
26

27 int *parent; // pointer to the parent array
28 // index 0 represents the root and it’s parent will be 0
29 int *weights; // stores the weights for each of the order vertices
30 int i;
31 int order; // number of vertices in tree
32 FILE *parentFile;
33 FILE *weightFile;
34

35

36 parentFile = fopen("parentArray.dat", "r");
37 weightFile = fopen("weightArray.dat", "r");
38 outputFile = fopen("output.dat", "w");
39 fscanf(parentFile,"%d", &order);
40

41 parent = (int *) calloc(order, sizeof(int));
42 for (i = 0; i < order; i++){
43 fscanf(parentFile, "%d", &parent[i]);
44 }
45

46 weights = (int *) calloc(order, sizeof(int));
47 for (i = 0; i < order; i++){
48 fscanf(weightFile, "%d", &weights[i]);
49 }
50 fprintf(outputFile, "\n\nYour parent array is:\n[");



51 for (i = 0; i < order-1; i++)
52 fprintf(outputFile, "%d, ", parent[i]);
53 fprintf(outputFile, "%d]", parent[i]);
54 fprintf(outputFile, "\n\nYour weights are:\n[");
55 for (i = 0; i < order-1; i++)
56 fprintf(outputFile, "%d, ", weights[i]);
57 fprintf(outputFile, "%d]", weights[i]);
58 fprintf(outputFile, "\n\nThe Minimum Weight of a Distance-3 Dominating Set
59 for your tree is: %d\n\n", minimumWeightedDistance3DominatingSet(parent,
60 weights, order));
61 printf("\n\nThe Minimum Weight of a Distance-3 Dominating Set for your
62 tree is: %d\n\n", minimumWeightedDistance3DominatingSet(parent, weights, order));
63 fclose(parentFile);
64 fclose(weightFile);
65 return 0;
66

67 }
68

69 int minimumWeightedDistance3DominatingSet(int *parent, int *weights, int order){
70 int i;
71 int **V; // Vector double array, first index is the vertex number
72 // second index is the class number
73 // V[i] = [X,X,X,X,X,X,X]
74

75 // Create space for our vector array V
76 V = (int **) calloc (order, sizeof(int *));
77 for(i = 0; i < order; i++)
78 V[i] = (int *) calloc(7, sizeof(int));
79

80 // initialize our vector, INFTY is used since we don’t have +infinity
81 for(i = 0; i < order; i++){
82 V[i][0] = weights[i];
83 V[i][1] = INFTY;
84 V[i][2] = INFTY;
85 V[i][3] = INFTY;
86 V[i][4] = 0;
87 V[i][5] = 0;
88 V[i][6] = 0;
89 }
90

91 // "combine" subtrees
92 for(i = order-1; i > 0; i--)
93 combine(V, parent[i], i);
94

95 for(i = 0; i < order; i++)
96 fprintf(outputFile, "\nminRootValue for vertex %d is: %d\n\n", i,
97 minRootValue(V,i));
98

99 return minRootValue(V,0);
100 }
101

102 // This function is used to combine subtree k with subtree j
103 void combine(int **V, int k, int j){
104 int i;
105 for(i = 0; i < 7; i++)
106 V[k][i] = minCombine(V, k, j, i);
107

108 return;
109 }
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110

111 // This function finds the minimum value in the root’s vector, exluding the 5th class
112 int minRootValue(int **V, int vertex){
113 int min=INFTY; // stores the minimum value from the root vector (V[0])
114 int i;
115

116 for(i = 0; i < 4; i++){
117 if(min > V[vertex][i])
118 min = V[vertex][i];
119 fprintf(outputFile, "\nThe value of V[%d][%d]=%d",vertex,i,V[vertex][i]);
120 }
121 fprintf(outputFile, "\nThe value of V[%d][%d]=%d",vertex,i,V[vertex][i]);
122 fprintf(outputFile, "\nThe value of V[%d][%d]=%d",vertex,i+1,V[vertex][i+1]);
123 fprintf(outputFile, "\nThe value of V[%d][%d]=%d",vertex,i+2,V[vertex][i+2]);
124

125 return min;
126 }
127

128 // This function is used to find the minimum value for a given position in a vector
129 // during the combining of the kth and jth subtrees
130 int minCombine(int **V, int k, int j, int position){
131 int min=INFTY; // stores the minimum value
132

133 switch(position){
134 case 0:
135 if(min > (V[k][0]+V[j][0]))
136 min = V[k][0]+V[j][0];
137 if(min > (V[k][0]+V[j][1]))
138 min = V[k][0]+V[j][1];
139 if(min > (V[k][0]+V[j][2]))
140 min = V[k][0]+V[j][2];
141 if(min > (V[k][0]+V[j][3]))
142 min = V[k][0]+V[j][3];
143 if(min > (V[k][0]+V[j][4]))
144 min = V[k][0]+V[j][4];
145 if(min > (V[k][0]+V[j][5]))
146 min = V[k][0]+V[j][5];
147 if(min > (V[k][0]+V[j][6]))
148 min = V[k][0]+V[j][6];
149 break;
150 case 1:
151 if(min > (V[k][1]+V[j][0]))
152 min = V[k][1]+V[j][0];
153 if(min > (V[k][1]+V[j][1]))
154 min = V[k][1]+V[j][1];
155 if(min > (V[k][1]+V[j][2]))
156 min = V[k][1]+V[j][2];
157 if(min > (V[k][1]+V[j][3]))
158 min = V[k][1]+V[j][3];
159 if(min > (V[k][1]+V[j][4]))
160 min = V[k][1]+V[j][4];
161 if(min > (V[k][1]+V[j][5]))
162 min = V[k][1]+V[j][5];
163 if(min > (V[k][2]+V[j][0]))
164 min = V[k][2]+V[j][0];
165 if(min > (V[k][3]+V[j][0]))
166 min = V[k][3]+V[j][0];
167 if(min > (V[k][4]+V[j][0]))
168 min = V[k][4]+V[j][0];
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169 if(min > (V[k][5]+V[j][0]))
170 min = V[k][5]+V[j][0];
171 if(min > (V[k][6]+V[j][0]))
172 min = V[k][6]+V[j][0];
173 break;
174 case 2:
175 if(min > (V[k][2]+V[j][1]))
176 min = V[k][2]+V[j][1];
177 if(min > (V[k][2]+V[j][2]))
178 min = V[k][2]+V[j][2];
179 if(min > (V[k][2]+V[j][3]))
180 min = V[k][2]+V[j][3];
181 if(min > (V[k][2]+V[j][4]))
182 min = V[k][2]+V[j][4];
183 if(min > (V[k][3]+V[j][1]))
184 min = V[k][3]+V[j][1];
185 if(min > (V[k][4]+V[j][1]))
186 min = V[k][4]+V[j][1];
187 if(min > (V[k][5]+V[j][1]))
188 min = V[k][5]+V[j][1];
189 break;
190 case 3:
191 if(min > (V[k][3]+V[j][2]))
192 min = V[k][3]+V[j][2];
193 if(min > (V[k][3]+V[j][3]))
194 min = V[k][3]+V[j][3];
195 if(min > (V[k][4]+V[j][2]))
196 min = V[k][4]+V[j][2];
197 break;
198 case 4:
199 if(min > V[k][4] + V[j][3])
200 min = V[k][4]+V[j][3];
201 break;
202 case 5:
203 if(min > (V[k][4]+V[j][4]))
204 min = V[k][4]+V[j][4];
205 if(min > (V[k][5]+V[j][2]))
206 min = V[k][5]+V[j][2];
207 if(min > (V[k][5]+V[j][3]))
208 min = V[k][5]+V[j][3];
209 if(min > (V[k][5]+V[j][4]))
210 min = V[k][5]+V[j][4];
211 break;
212 case 6:
213 if(min > (V[k][4]+V[j][5]))
214 min = V[k][4]+V[j][5];
215 if(min > (V[k][5]+V[j][5]))
216 min = V[k][5]+V[j][5];
217 if(min > (V[k][6]+V[j][3]))
218 min = V[k][6]+V[j][3];
219 if(min > (V[k][6]+V[j][4]))
220 min = V[k][6]+V[j][4];
221 if(min > (V[k][6]+V[j][5]))
222 min = V[k][6]+V[j][5];
223 break;
224 default:
225 break;
226 }
227
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228 return min;
229 }
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