3,789 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Target Centroid Position Estimation of Phase-Path Volume Kalman Filtering

    Get PDF
    For the problem of easily losing track target when obstacles appear in intelligent robot target tracking, this paper proposes a target tracking algorithm integrating reduced dimension optimal Kalman filtering algorithm based on phase-path volume integral with Camshift algorithm. After analyzing the defects of Camshift algorithm, compare the performance with the SIFT algorithm and Mean Shift algorithm, and Kalman filtering algorithm is used for fusion optimization aiming at the defects. Then aiming at the increasing amount of calculation in integrated algorithm, reduce dimension with the phase-path volume integral instead of the Gaussian integral in Kalman algorithm and reduce the number of sampling points in the filtering process without influencing the operational precision of the original algorithm. Finally set the target centroid position from the Camshift algorithm iteration as the observation value of the improved Kalman filtering algorithm to fix predictive value; thus to make optimal estimation of target centroid position and keep the target tracking so that the robot can understand the environmental scene and react in time correctly according to the changes. The experiments show that the improved algorithm proposed in this paper shows good performance in target tracking with obstructions and reduces the computational complexity of the algorithm through the dimension reduction

    Application of augmented reality and robotic technology in broadcasting: A survey

    Get PDF
    As an innovation technique, Augmented Reality (AR) has been gradually deployed in the broadcast, videography and cinematography industries. Virtual graphics generated by AR are dynamic and overlap on the surface of the environment so that the original appearance can be greatly enhanced in comparison with traditional broadcasting. In addition, AR enables broadcasters to interact with augmented virtual 3D models on a broadcasting scene in order to enhance the performance of broadcasting. Recently, advanced robotic technologies have been deployed in a camera shooting system to create a robotic cameraman so that the performance of AR broadcasting could be further improved, which is highlighted in the paper

    Twofold Structured Features-Based Siamese Network for Infrared Target Tracking

    Full text link
    Nowadays, infrared target tracking has been a critical technology in the field of computer vision and has many applications, such as motion analysis, pedestrian surveillance, intelligent detection, and so forth. Unfortunately, due to the lack of color, texture and other detailed information, tracking drift often occurs when the tracker encounters infrared targets that vary in size or shape. To address this issue, we present a twofold structured features-based Siamese network for infrared target tracking. First of all, in order to improve the discriminative capacity for infrared targets, a novel feature fusion network is proposed to fuse both shallow spatial information and deep semantic information into the extracted features in a comprehensive manner. Then, a multi-template update module based on template update mechanism is designed to effectively deal with interferences from target appearance changes which are prone to cause early tracking failures. Finally, both qualitative and quantitative experiments are carried out on VOT-TIR 2016 dataset, which demonstrates that our method achieves the balance of promising tracking performance and real-time tracking speed against other out-of-the-art trackers.Comment: 13 pages,9 figures,references adde
    corecore