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Abstract Tracking a target in infrared (IR) sequences is a challenging task because of 

low resolution, low signal-to-noise ratio, occlusion, and poor target visibility. For 

many civil and military applications, real-time performance is also a key requirement 

for tracking algorithms. This inevitably makes the tracking in IR sequences more 

difficult. This paper presents an approach for real-time IR target tracking under 

complex conditions, based on 1l  minimization and compressive features. We adopt 

a sparse measurement matrix technique to project the original high dimensional 

Harr-like features to low dimensional ones in appearance modeling. Such a model 

allows significant reduction in computation complexity and hence the cost of target 

tracking. In particular, the appearance model is utilized within the framework of the 

popular 1l  tracker. Each candidate target is depicted by an appearance template that 

reflects the underlying structure of sparse representation. The candidate that has the 

minimum reconstruction error is selected as the tracking result. This proposed 

approach combines the real-time advantage of compressive tracking and the 

robustness of the 1l  tracker. Systematic experimental results on challenging IR 
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image sequences, including both aerial targets and ground targets, demonstrate that 

the proposed method indeed outperforms two latest state-of-the-art tracking 

algorithms in terms of robustness and real-time performance. 

Keywords infrared target tracking, appearance model, compressive features, sparse 

representation. 

1. Introduction 

Tracking a target in infrared (IR) image sequences is required in many civil and 

military applications such as precision guidance, early warning, and video 

surveillance. However, tracking objects in IR sequences is often a complex and 

difficult process. This is because of a number of entangled factors, including low 

contrast between targets and background, noise and background clutter, sophisticated 

object motion, relevant ego motion, partial and full occlusion, complex object shapes, 

and illumination and scale changes [1].  

Different approaches have been proposed to address this difficult task. For instance, 

Bal and Alam proposed a novel tracking method using intensity variation function and 

template modeling [2]. Paravati et al. provided an alternative algorithm through the 

use of GAs to reduce the cost of computing intensity variation function [1]. In [3], 

Ling et al. presented a tracking technique via the application of kernel-based 

performance metric and eigenvalue-based similarity measures. Also, an improved IR 

target-tracking mechanism is given in [4] which works based on mean shift. There 

have been many other techniques proposed too, e.g., those as reported in [5-10]. 
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Despite such developments, infrared target tracking is still a tough and challenging 

task, especially when real-time requirements have to be taken into account.  

Recently, sparse representation has been successfully applied to visual tracking 

[11-14]. In this case, the tracker models the target appearance using a sparse 

approximation over a template set. This leads to the so-called 1l  tracker [11] as it 

works by resolving a 1 norm−l  related minimization problem. The 1l  tracker can 

effectively handle partial occlusion with a set of trivial templates and show favorable 

tracking accuracy. However, it has to carry out computationally expensive 1 norm−l  

related minimization over each image frame. Furthermore, in a particle filter frame, 

computation cost grows linearly with the number of sampled particles. Obviously, this 

computational bottleneck precludes the use of the 1l  tracker in real-time scenarios.  

In [15] and [16], helpful strategies are proposed to create an efficient solver for the 

1 norm−l  related minimization problems, thereby improving the tracker speed 

considerably. Nevertheless, the nature of expensive computation involved in 

1 norm−l  related minimization problems is caused by the underlying high 

dimensionality of target features. Thus, using low-dimensional target features will 

reduce the computation of the 1l  tracker, but low-dimensional features may not 

contain sufficient information to distinguish the IR target from other candidates.  

Fortunately, the technique of random projection can help project the features from a 

high dimensional space to a low dimensional one whilst preserving almost all the 

information embedded in the original high-dimensional features [17]. Such 

low-dimensional features may offer sufficient information content [18] to allow for 
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the separation of the real target from the rest. For example, Zhang et al. proposed a 

compressive tracking algorithm [19] which employs non-adaptive random projections 

to compress the features to support running the tracking process in real-time. Yet the 

tracking process in this algorithm is formulated within a naïve Bayes classifier 

framework, which has limited robustness for occlusions and noise. 

Inspired by the aforementioned observation, this paper presents a real-time IR 

target tracking approach based on the utilization of both 1l  minimization and 

compressive features. The work combines the real-time ability of compressive 

tracking and the robust performance of the 1l  tracker. Note that a typical tracking 

system consists of three key components: an appearance model, a motion model and a 

search strategy for identifying the most likely location in the current frame. In our 

work, to represent the target, we extract the high-dimensional, multi-scale Harr-like 

features [20, 21] from the object region, and select a small subset of them for tracking 

in the compressed domain. As for the motion model, the particle filter framework is 

herein applied to predict the possible targets in the next frame. Each candidate target 

is depicted by sparse representation and the candidate target that has the least 

reconstruction error is chosen as the tracking result in the current frame. Experimental 

results demonstrate that the proposed method can significantly improve the accuracy 

and robustness of target tracking in IR image sequences, in comparison with the 1l  

tracker and the compressive tracking algorithm. 

The remainder of this paper is organized as follows. In Section 2, we review the 

relevant work including both particle filter and sparse representation based tracking. 
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We also reinforce our motivation for the present work. In Section 3, we describe the 

proposed tracking algorithm. In Section 4, we show both qualitative and quantitative 

experimental results, systematically evaluated over infrared video clips, in 

comparison with the 1l  tracker and the compressive tracking algorithm. Finally, we 

conclude the paper in Section 5, including a brief discussion of interesting further 

research. 

2. Background  

As indicated previously, much work has been done in infrared target tracking. In 

this section, we focus on the discussion of the most relevant algorithms, covering the 

tracking techniques based on particle filters and sparse representation. We also 

emphasize our motivation for the subsequent development.    

A. Particle Filters for Tracking 

A particle filter [22] implements the Bayesian sequential importance sampling 

technique for approximately computing the posterior distribution of state variables 

that characterize a dynamic system. In visual tracking, such a filter offers an effective 

means for estimating the target of next frame without presuming concrete observation 

probabilities.  

The particle filter method essentially consists of two steps: prediction and update. 

Formally, let tX  describe the location and shape of the target in frame t , and 

1: 1 1 2 1{ , , , }t ty y y y− −= L  denote the observation of the target from the first frame to 
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frame 1t − . A particle filter operates the above two steps with the following two 

probabilities: 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )t t t t t t tp X y p X X p X y dX− − − − −= ∫  (1) 

 1: 1
1:

1: 1

( | ) ( | )( | )
( | )

t t t t
t t

t t

p y X p X yp X y
p y y

−

−

=  (2) 

The optimal state for frame t  is obtained according to the maximal approximate 

posterior probability: 

 *
1:argmin ( | )t t

X
X p X y=  (3) 

The posterior probability (2) is approximated by using finite samples 

1 2{ , , , }Nt t t tS X X X= L  with different weights 1 2{ , , , }Nt t tW w w w= L , where N  is the 

number of samples. These samples are generated from the sequential importance 

distribution 1: 1: 1( | , )t t tX y X −∏  and the weights are updated by  

 1
1

1: 1: 1

( | ) ( | )
( | , )

i i i
i i t t t t
t t

t t t

p y X p X Xw w
X y X

−
−

−

∝
∏

 (4) 

For tracking systems, an affine image warping is usually used to capture the target 

motion between two consecutive frames. We apply a Gaussian model to describe the 

state transition distribution P(xt | xt-1), and the observation model P(yt|xt) to represent 

the similarity between a target candidate and a certain target template. The latter is 

often formulated using the reconstruction error approximated by the given target 

templates. 

B. Sparse Representation for Tracking 

Sparse representation is a task of reconstructing a given signal by selecting a small 
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subset of bases from a large basis pool, while keeping the reconstruction error to the 

minimal possible. It has been used in many computer vision applications, such as 

visual tracking, image restoration, and image classification [11-16, 23]. In particular, 

in the field of target tracking, the sparse representation model aims at reconstructing 

the target candidate by selecting a relatively small subset of appearance templates for 

use.  

Formally, at frame t , given the appearance template set 1 2{ , , , }nt t t tT t t t= L , let 

1 2{ , , , }Nt t t tO y y y= L  denote the corresponding candidate targets in the current IR 

image. The sparse representation model takes the form  

 
2

2

0

1min
2

. .

c
y Bc

s t c u

−

≤

 (5) 

where y  denotes the target candidate, [ , ]B T I=  denotes the appearance templates 

which include target templates T  and also trivial templates I , and [ ]Tc a e=  

denotes the corresponding coefficients where a  indicates the weights of target 

templates, and e  is an error term (which can be viewed as the weight of trivial 

templates). This model can be resolved via optimizing the following 1 norm−l  

related minimization 

 2

2 1

1min
2c
y Bc cλ− +  (6) 

where 
2
⋅ and 

1
⋅ denote the 2l and 1l norm respectively, and λ  is a 

regularization constant. 

Given the coefficients c , the reconstruction error of each candidate iy  can be 

evaluated by the following equation: 
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 2

2
( )i iE y y Ta= −  (7) 

From this, the candidate with the smallest reconstruction error is selected as the 

tracking result for the current frame. 

C. Motivation for this Research 

Sparse representation has been applied to visual tracking by modeling the target 

appearance using an approximation over a template set. This leads to the so-called 1l  

tracker [11] as the underlying work translates to resolving 1 norm−l  related 

minimization problems. This type of tracker can effectively handle partial occlusion 

with a set of trivial templates and show favorable tracking accuracy. However, 

typically, such a tracker has to solve hundreds of the relevant minimization problems 

for each individual frame during a tracking process, thereby involving expensive 

computation. Clearly, a direct implementation of this technique is not practically 

feasible for real-time applications.  

Interesting strategies have been proposed to create an efficient solver for the 

1 norm−l  related minimization problems, in an effort to improve the speed of the 

resulting tracker [15, 16]. Unfortunately, the underlying limitation due to the need of 

repeatedly performing 1 norm−l  related minimization is not reduced, because of the 

high dimensionality of target features. However, by the use of target features of a 

reduced dimensionality the computation of an 1l  tracker will be reduced accordingly. 

The question is whether the low-dimensional features may still contain sufficient 

information that is required to distinguish the IR target from other candidates.  
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Also, there have been a number of discriminative tracking algorithms proposed in 

the literature, by viewing the task of tracking as a binary classification problem 

between the target and the background. For example, Avidan has extended the optical 

flow approach with a support vector machine classifier for object tracking [24]. In 

[19], Zhang has employed a naïve Bayes classifier to run a real time tracker. These 

algorithms focus on how to train a robust classifier to distinguish the target from the 

background. Generally, they can run with fast speed and may possess good robustness. 

However, when the target suffers from partial occlusion or is blurred with noise, the 

potential of these algorithms is significantly restricted due to the lack of the 

noise-handling ability that an 1l  tracker has.   

As indicated earlier, the technique of random projection may help project the 

features from a high dimensional space onto a low dimensional one, while preserving 

almost all the information contained within the original high-dimensional features [19, 

25]. The resulting low-dimensional features can therefore offer a similar amount of 

information to support distinguishing the real target from the background. The idea of 

utilizing feature selection to aid in the reduction of computation in order to improve 

the efficacy of target tracking is known. For example, Grabner et al. have provided an 

online boosting method to select features for tracking [26]. Yet, little has been done to 

use the same idea to support the development of effective and efficient 1l  trackers. It 

is inspired by this observation that we apply random projection to compress the image 

features and thus, to reduce the computation complexity to be incurred in performing 

target tracking. In so doing, this work exploits the strengths of both techniques: sparse 
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representation for handling partial occlusion and noise and random projection for 

reducing the dimensionality of features.  

3. Proposed Tracking Algorithm 

In this section, we present the real-time infrared target tracking algorithm based on 

the use of 1l  minimization and feature compression. Fig.1 shows the flow chart of 

the proposed approach. In the following subsections, we will detail the three main 

components of this tracking algorithm, including: the appearance model, the motion 

model, and the search strategy. The others are self-explanatory. 

 

Start

Initialize target parameters 

Create the appearance model 

Draw some target candidates

Compute compressive features

Track target via      minimization 

Finish all frames? N

End

Y

Update appearance model 

1ℓ

	  

 
Fig. 1 Flow chart of the proposed algorithm 
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A.  Appearance Model  

In this work, Harr-like features are used to represent given infrared targets, which 

are introduced first below. Then, we describe the method for obtaining compressive 

features based on random projection, in an effort to efficiently reduce the 

dimensionality of the original Harr-like features. Finally, we present the complete 

appearance model at the end of this subsection. 

1. Harr-like Features 

Harr-like features have been widely used for object detection and tracking with 

demonstrated success. The basic types of Harr-like feature are normally designed for 

use in performing tasks different from the present one [20, 21]. In our algorithm, each 

IR target sample w hz ×∈°  is firstly transformed by convoluting it with a series of 

different scale rectangle filters 1,1 1,2 ,{ , , , }w hh h hL , for copying with the scale problem. 

These filters are defined by 

 ,

1, 1 ,1
( , )

0,i j

x i y j
h x y

otherwise
≤ ≤ ≤ ≤⎧

= ⎨
⎩

 (8) 

where ,i j  are the width and height of a rectangle filter, respectively. Then, each 

filtered image is represented as a column vector in w h×°  and these vectors are 

concatenated as a very high-dimensional multi-scale image feature vector 

1 2( , , , )T m
mx x x x= ∈L °  where 2( )m w h= × . The dimensionality m  is usually in 

the order of 610  to 810 . Thus, these feature vectors that would otherwise be directly 

applied to represent the IR target inevitably lead to heavy computational overheads. 
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2. Compressive Features 

In order to track infrared target in real time, we have to efficiently reduce the 

dimensionality of Harr-like features. Inspired by the work of [19], a large set of given 

Harr-like features is to be compressively sensed with non-adaptive random 

projections. The compressive sensing theories [25, 27] ensure that the returned 

features in the compressed domain preserve almost all the information contained 

within the original image. 

For completeness, a brief introduction to random projection [19] is presented here. 

A random matrix n mR ×∈°  whose rows have a unit length projects data from a given 

high-dimensional image space mx∈ °  to a lower-dimensional space nv∈ °   

 v Rx=  (9) 

where n m= . Ideally, R  is expected to provide a stable embedding that 

approximately preserves the distance between all pairs of the original signals. It I 

known that, if the random matrix R  in Eq. (9) satisfies the Johnson-Lindenstrauss 

lemma, we can reconstruct audio or image signal x  with a minimum error from v  

with high probability. Moreover, v  preserves almost all the information contained 

within x . 

In compressive sensing, a typical measurement matrix satisfying the restricted 

isometry property is the random Gaussian matrix n mR ×∈° , where (0,1)ijr N: . 

This measurement matrix can be utilized to project features from a high-dimensional 

space to a low-dimensional one, thereby reducing computational complexity. 

However, if the matrix is dense, the memory and computational loads required to 
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implement this projection process are usually still too large when m  is large. 

To address this issue, we adopt a sparse random measurement matrix n mR ×∈°  to 

accomplish the projection task. The entries of such a sparse matrix R  are defined as  

 

11
2
10 1

11
2

ij

with probability
s

r s with probability
s

with probability
s

⎧
⎪
⎪
⎪

= × −⎨
⎪
⎪
−⎪⎩

 (10) 

Note that as indicated in [18], when / log( )s m m= , the random projections 

achieved are almost as accurate as the conventional random projections where 

~ (0,1)ijr N . In particular, when / 4s m= , the computational complexity is low and 

the required memory to store the nonzero entries of R  is also rather light.  

3. Appearance Model  

A good appearance model is expected to be able to handle the variance of the target 

such as illumination changes, background clutter, occlusion, etc. The appearance 

model adopted in this work comprises both target templates and trivial templates. In 

particular, the target templates are obtained initially, by randomly selecting a number 

of samples (patches) around the true target center in the first frame. Then, the 

aforementioned feature extraction method is used to create the features of these 

samples, forming the set 1 2[ , , , ]nT t t t= L . The set of trivial templates is introduced to 

deal with any partial occlusions and noise in the IR sequences. Here, within the set 

1 2[ , , , ] d d
dI i i i R ×= ∈L  each trivial template d

ii R∈  is implemented with a vector of 

only one nonzero entry such that I is an identity matrix. Fig. 2 illustrates the basic 
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construction of the appearance model. 

 

Fig.2 Appearance model in the proposed algorithm 

B. Motion Model 

As indicated previously, particle filters provide a significant tool for estimating the 

target of the next frame without knowing any concrete observation probability. Such 

filters execute two steps of operation with two different probabilities as formulated in 

Eqs. (1) and (2), respectively. 

From the viewpoint of Bayes theorem, Eq. (1) can be seen as a prior probability of 

the relationship between the observations gathered so far, from the first frame up to 

frame 1t − , and the target at frame t . While obtaining the observation at time t , the 

probability is revised by Eq. (2). This probability is referred to as posterior probability 

due to the influence of observation in frame t . It is approximated by using finite 

samples 1 2{ , , , }Nt t t tS X X X= L  with different weights 1 2{ , , , }Nt t tW w w w= L  where 

N  is the number of samples. 

In the proposed tracking algorithm, we apply four parameters [ , , , ]x y w h  to model 

the target, where ,x y  represent the coordinates of the target center, and ,w h  

denote the width and height of the target, respectively. Here, we simply adopt the 

target parameters ( , , , )t t t tx y w h  to model the state transition 1( | )t tp x x −  which is 
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formulated by random walk, i.e., 1 1( | ) ( ; , )t t t tp x x N x x− −= Ψ , where Ψ  is a diagonal 

covariance matrix.  

C. Search Strategy 

The search strategy used in this work is based on sparse representation. Given 

certain infrared candidate targets produced by the motion model in the current frame, 

we firstly adopt the sparse representation algorithm to describe each candidate in the 

target temple space. Then, we compute the reconstruction error of each candidate and 

choose the candidate that has the minimum reconstruction error as the track result in 

current frame. 

1. Sparse Representation of Infrared Targets 

Given the target template set 1 2{ , , , }nt t t tT t t t= L , an IR target y  can be 

approximately represented by the linear combination of the elements of this set, that is 

 1 1 2 2 n ny Ta a t a t a t≈ = + + +L  (11) 

where 1 2( , , , )Tna a a a= L  is the target coefficient vector. 

The trivial template 1 2[ , , , ]dI i i i= L  ( I is an identity matrix) is introduced to take 

the occlusion and noise into consideration, so Eq. (11) can be rewritten as  

 [ ],
a

y T I Bc
e
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

 (12) 

where 1 2( , , , )Tde e e e= L  is the trivial coefficient vector.  

For a good IR target candidate, there should be only a limited number of nonzero 

coefficients in e  that account for the noise and partial occlusion. Therefore, we 
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pursue the minimum reconstruction error to meet the requirements of sparseness in 

the coefficient c  in Eq. (12). Recall that the sparse representation model takes the 

form as formulated in Eq. (5). For each target candidate iy , the corresponding 

coefficient ic  can thus be computed by  

 2

2 1

1( ) min
2i

i i i ic
L c y Bc cλ= − +  (13) 

where λ  is a regularization constant which denotes the weight of the sparseness in 

coefficient. The larger λ  is, the more important the weight of sparseness signifies.  

2. Reconstruction Error 

From above it is known that for each target candidate iy  in the current frame, its 

coefficient is i
i

i

a
c

e
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. Then, the reconstruction error can be computed by  

 2

2

1( ) exp{ }i i iE y y Taα= − −
Γ

 (14) 

where α  is a constant controlling the shape of the Gaussian kernel, Γ  is a normal 

factor, and ia  is the corresponding target template coefficient. Thus, the optimal 

target candidate *
iy  can be obtained by  

 * argmin ( )
i

i i
y Y

y E y
∈

=  (15) 

This means that we choose the candidate which has the minimum reconstruction error 

as the target result in the current frame. 

3. Target Template Update 

In the above description, it is assumed that the target is tracked through the infrared 
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sequences by initially extracting a template from the first frame and then searching 

the target in successive frames. Due to the changes in the background of IR sequences, 

a fixed target template in appearance model is not sufficient to handle the variance of 

the target [28]. However, a rapidly changing template is susceptible to drift. That is, if 

we do not update the template, the template cannot capture the target appearance 

variations. If however, we update the template too frequently, small errors are 

introduced each time as the template is updated and, as such, errors may be 

accumulated and the tracker may drift from the target.  

To balance, we adopt a dynamical template update scheme as introduced in [12], 

especially to overcome pose and illumination changes. The update scheme is 

summarized in Algorithm 1.  

Algorithm 1 Template Update  

Input: the original template set T , the newly chosen tracking target y , the 

solution a  to (16), the current weights w  (
2i iw t← ), the predefined threshold 

τ  

1: Update weights according to the coefficients of the target templates by 

exp( )i i iw w a← ∗  
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2: If ( ( , )msim y t τ< ), where ( )sim ⋅  is the SSD between two vectors after 

normalization, and mt  has the largest coefficient ma , that is, 
1

argmax i
i n

m a
≤ ≤

=   

Then  

0
1
argmin i

i n
i w

≤ ≤
←  

0i
t y←   /* replace an old template*/ 

0 ( )iw median w←   /* replace an old weight*/ 

End If 

3: Normalize w  such that ( ) 1sum w =  

4: Adjust w  such that max( ) 0.3w =  to prevent skewing 

5: Normalize it  such that 
2i it w=  

Output: the updated template set T  

 

4. Experimental Results  

The performance of the proposed target tracking algorithm was evaluated by 

computer simulation. All experiments are implemented using MATLAB 2012a on a 

PC with Intel(R) Core(TM) i5, 3.20GHz CPU and 3.20GB RAM. Five challenging 

infrared image sequences (denoted respectively as Seq.1, Seq.2, Seq.3, Seq.4 and 

Seq.5 in the following) were used as test sequences. For each sequence, the location 

of the target is manually labeled in the first frame. As a trade-off between 

computation efficiency and effectiveness, the implementation of the proposed 

approach is empirically set to use 600 particles. The appearance model is updated by 
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the above template-updating algorithm. We compare our work with the 1l  tracker 

and the compressive tracking algorithm, both qualitatively and quantitatively. 

A. Qualitative Comparison 

Seq.1 is set in the background of cloud and sky with a size of 256×200 pixels for 

each frame and the tracked target is a small moving aircraft somewhat similar to the 

background [29]. The target-to-background contrast is low and the noise level is high 

for these IR frames. Samples of the final tracking results are shown in Fig. 3. The 

frame indexes are 9, 30, 51, 69, 90 and 134. Due to the low target-to-background 

contrast, the 1l  tracker loses the target easily because the gray features cannot 

distinguish the target from the background. The compressive tracking algorithm is 

superior to the 1l  tracker and successfully tracks the target. The proposed algorithm 

adopts the compressive Harr-like features to effectively represent the target, which not 

only reduces the dimensionality of features but also improves the tracking accuracy 

further. 

Seq.2 is a very challenging infrared sequence, again of the size of 256 200×  

pixels per frame. The target-to-background contrast is very low, and the target is a 

dim point object embedded in heavy clutter background [29]. Six representative 

frames with indices 8, 12, 24, 52, 88 and 120 are shown in Fig. 4. From this, we can 

see that the 1l  and compressive trackers both lose target quickly. In contrast, the 

proposed algorithm is capable of successfully tracking the small dim infrared target in 

the entire sequence even with severe occlusions by the clouds.  
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Seq.3 is the PkTest02 sequence (size 320×256) that is obtained from the VIVID 

benchmark dataset [30]. It is a vehicle sequence with significant pose, lighting and 

scale variations in a cluttered scene. Frames with indices 250, 300, 350, 400, 410 and 

420 are shown in Fig. 5. It can be observed that the compressive tracking algorithm 

drifts apart in several frames. The 1l  tracker and the proposed method can track the 

target car well.  

Seq.4 is also a vehicle sequence (but of a size 320 240× ) with very low 

target-to-background contrast and partial occlusions. We give the tracking results on 

six representative frames with indices 27, 59, 86, 107, 138 and 171 as shown in Fig. 6. 

The results demonstrate both the 1l  tracker and the compressive tracking method 

fail to track the target when the car is occluded by the trees. Although the proposed 

tracking algorithm also loses the target temporarily for a few frames, it is able to 

relocate on the target during the following tracking. 

Seq.5 is an IR sequence taken from the popular OSU thermal database (size 

320 240× ) [31]. We present the tracking results on six representative frames with 

indices 6, 135, 159, 274, 358 and 424 in Fig. 7. The proposed algorithm and the 

compressive tracking method perform better than the 1l  tracker. The proposed 

algorithm can deal with the partial occlusion, while the 1l  tracker fails to capture the 

object using appropriate features. 

B. Quantative Comparison 

To quantitatively compare the performance of the tracking methods, we use two 
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different metrics, namely, the mean distance to the ground truth and the percentage of 

correctly tracked frames. A frame is correctly tracked if the tracked target and its 

underlying ground truth have an overlap that is larger than half of the union of their 

areas. This is, if the tracked target is of an area A, and the ground truth is of an area B, 

then a frame is correctly tracked if ( ) / ( ) 0.5A B A B∩ ∪ > . The second metric is 

much more informative than the distance, since once the track is lost the distance to 

the ground truth is somewhat arbitrary, and may bias the average distance. 

The comparison results, obtained by the use of the above two metrics over four 

sequences are shown in Tables 1 and 2, respectively. It is clear that both tables show 

superior results of the proposed method to the others, over all four sequences.  

Finally, in terms of runtime performance, the average temporal cost for each of the 

tracking methods to process one frame on the MATLAB platform is shown in Table 3. 

The proposed algorithm runs much faster than the 1l  tracker, and almost as fast as 

the compressive tracking algorithm. Importantly, of course, the efficiency of the 

proposed approach is achieved while it gains overall tracking accuracy (as shown 

above). 
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Fig. 3 Tracking results of Seq.1 by (a) the compressive tracking algorithm, (b) the 1l  tracker, (c) 

the proposed tracking method. Frames 9, 30, 51, 69, 90 and 134 are displayed. 
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Fig. 4 Tracking results of Seq.2 by (a) the compressive tracking algorithm, (b) the 1l  tracker, (c) 

the proposed tracking method. Frames 8, 12, 24, 52, 88 and 120 are displayed. 
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(c) 

Fig. 5 Tracking results of Seq.3 by (a) the compressive tracking algorithm, (b) the 1l  tracker, (c) 

the proposed tracking method. Frames 250, 300, 350, 400, 410 and 420 are displayed. 
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Fig. 6 Tracking results of Seq.4 by (a) the compressive tracking algorithm, (b) the 1l  tracker, (c) 

the proposed tracking method. Frames 27, 59, 86, 107, 138 and 171 are displayed. 
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Fig. 7 Tracking results of Seq.6 by (a) the compressive tracking algorithm, (b) the 1l  tracker, (c) 

the proposed tracking method. Frames 16, 135,159, 274, 358 and 424 are displayed. 

 

Table 1 Mean distance to the ground truth 

Image sequence 
1l  tracker Compressive tracking Proposed 

Seq.1 41.36 10.23 4.34 

Seq.2 58.54 50.49 3.72 

Seq.3 12.23 42.64 11.68 

Seq.4 47.45 46.34 4.12 

Seq.5 28.73 5.31 5.06 

 

 

Table 2 Percentage of correctly tracked frames 
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Image sequence 
1l  tracker Compressive tracking Proposed 

Seq.1 17.51 92.37 100.00 

Seq.2 6.67 19.80 96.55 

Seq.3 94.50 70.62 96.00 

Seq.4 33.33 36.59 91.20 

Seq.5 18.70 93.60 94.68 

 

 

Table 3 Average run time for one frame (in second) 

Image sequence 
1l  tracker Compressive tracking Proposed 

Seq.1 1.2936 0.0741 0.0762 

Seq.2 1.2886 0.0632 0.0698 

Seq.3 1.2847 0.0602 0.0641 

Seq.4 1.2853 0.0617 0.0667 

Seq.5 1.2886 0.0602 0.0642 

 

C. Conclusion 

In this paper, we have proposed a real-time infrared target tracking approach based 

on the use of 1l  minimization and compressive features. This work combines the 

real-time advantage of the compressive tracking algorithm and the robust performance 

of the 1l  tracker. Systematic experimental results on infrared image sequences 

demonstrate that the proposed approach outperforms both 1l  and compressive 

trackers.  
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Although generally performing well, the existing implementation occasionally 

encounters the target drift problem. An investigation into how this may be better 

addressed remains active research, together with building a more effective appearance 

model. Also, there have been other advanced techniques that may be adopted to 

perform feature selection in support of sparse representation-based target tracking. 

We intend to conduct such research next, especially to examine the potential benefits 

of utilizing those methods (e.g., [32], [33]) which have proven to be successful in 

complex image handling tasks [34]. In addition, we plan to exploit prior knowledge 

with online learning for more effective object tracking. Finally, it is important to note 

that this paper has focused on tracking of infrared targets in image sequences. 

However, there have been many different approaches that address visual target 

tracking in the literature. In particular, the work in [35] covers many important 

datasets and gives experimental comparative results of such interesting tracking 

algorithms. An investigation into how experience gained from these techniques may 

be used to strengthen our work will be undertaken in future. 
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