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Abstract—We present a real-time 3D Automatic Target 

Recognition approach appropriate for future Light Detection and 

Ranging (LIDAR) based missiles. Our technique extends the 

Speeded-Up Robust Features method into the third dimension by 

solving multiple 2-dimensional problems and performs template 

matching based on the extreme case of a single pose per target. 

Evaluation on military targets shows higher recognition rates 

under various transformations and perturbations at lower 

processing time compared to state-of-the-art approaches. 

 
Index Terms—3D ATR, Hough pose clustering, LIDAR, Real-

time, Target recognition 

 

I. INTRODUCTION 

ilitary Automatic Target Recognition (ATR) systems 

and specifically future Light Detection and Ranging 

(LIDAR) missiles with ATR capabilities, must have a high 

true and low false positive recognition rate in order to avoid 

incorrect targeting and collateral damage. The missile data 

acquiring subsystem (seeker) and the guidance section of a 

LIDAR based missile need to have low cost, low demand 

upon computing resources and resistance to obscuration 

smoke or camouflage type countermeasures. In addition, the 

image matching system needs to cope with the change of scale 

as the missile closes on the target as well as the change in 

orientation as the missile maneuvers during target acquisition 

and tracking phases of the engagement. Moreover, the 

recognition procedure has to be real-time. Hence, the 

processing time afforded to a missile to perform ATR under 

the aforementioned demanding conditions is quite strict. These 

demands take place in a noisy battlefield environment with a 

great number of non-targets (clutter) such as non-military 

vehicles, ground, trees etc. that the missile has to avoid. In 

terms of hardware, the computing and sensor unit need to fit 

into the missile’s guidance section, which requires a high 

packing density for the sensor and process electronics. 

Existing [1] and future expansions [2], [3] of ATR 

algorithms incorporated in missiles operate in the Infrared (IR) 

domain taking advantage of the thermal signature of the target. 

These approaches have a major disadvantage. Specifically, 
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they have a large template size to gain a higher recognition  

rate that rises substantially their memory storage needed 

onboard the missile and the template matching time. 

Moreover, their performance highly dependents on the target’s 

pose and therefore constrained by the number of viewings per 

target stored as templates to perform the matching. An 

additional disadvantage is that the templates need to be up-to-

date from a priori information and that warm and cold images 

of the target set must be stored. Warm images present the hot 

areas of the target, e.g. exhaust, brighter than the 

corresponding colder ones. Cold images are the complement 

version of the warm images.  

Object recognition in 3-dimensions (3D) is an active 

research area as it presents numerous advantages over its 2-

dimensional (2D) counterpart. Indicatively, 3D data take 

advantage of the geometric properties and the underlying 

structure of an object. These are more informative compared 

to 2D image information [4] providing enhanced object 

recognition capabilities. In addition, features extracted from 

the 3D domain (data) are less affected by illumination 

variation and pose changes [5], [6].  

With respect to future LIDAR based missiles, 3D ATR can 

improve weapon effectiveness against camouflage, 

concealment and deception techniques because the laser beam 

has a small spot size, which enables penetration of sparse 

structures. In addition, the short wavelength in which laser 

scanners operate, provides high-resolution data and the 

capability to acquire details of the target reinforcing 

recognition applications. 

Simply transferring common 3D pattern recognition 

approaches from the computer vision area to future LIDAR 

based missiles is not an optimum solution, as these methods 

do not meet time response criteria, computational limits and 

memory requirements to store the database templates. Missile 

based ATR algorithms have to achieve simultaneously a high 

recognition rate and real-time performance in order to handle 

the missile’s high velocity and agility. An advantage of 

military-oriented ATR algorithms is that they do not aim at 

registering the target into the scene or determining its pose, 

but are restricted to decide if the tracked object is a target of 

interest. In the latter case, the LIDAR and associated ATR 

must keep lock while the pose, scale and degree of obscuration 

are changing. If the tracked object is not of interest, the seeker 

has to break its tracking loop and search for the correct target. 

The solution we propose to the defense industry is an 

extension of the state-of-the-art Speeded-Up Robust Features 
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(SURF) algorithm into the third dimension. Our approach 

named the SURF Projection Recognition (SPR), significantly 

reduces the processing time compared to the existing 3D 

object recognition techniques and mainly meets time response 

restrictions of LIDAR based missiles. SPR accomplishes the 

speedup by transforming the recognition problem from the 3D 

space into multiple ones in the 2D space. Furthermore, unlike 

common ATR approaches, the proposed technique reduces the 

database size to only one pose per target providing a twofold 

advantage. Template matching time and memory requirement 

to store the database are substantially reduced by shrinking the 

database entries by two orders of magnitude compared to a 

multi-pose and multi-azimuth approach that is the norm in 

ATR systems. In conclusion, SPR is fast to execute and is 

robust to a number of rigid transformations and perturbations 

applied to the target. 

The rest of the paper is organized in the following sections. 

Section II presents a literature review of the existing 3D 

pattern recognition algorithms. Section III refers to the 

proposed approach, the SPR, and introduces the point cloud 

manipulation and range image creation, the SURF algorithm, 

the Hough pose filtering procedure, the simulation of viewing 

dependent point clouds, and finally a synopsis of the proposed 

ATR workflow. Section IV deals with the evaluation results 

on two uncluttered datasets, on several forestry scenes, and 

compares and contrasts our approach to the Rotational 

Projection Statistics (RoPS) algorithm. Finally, Section V 

concludes the paper. 

II. RELATED WORK 

3D object recognition techniques can broadly be divided 

into global and local feature based. Global feature based 

techniques process the object as one entity providing adequate 

performance in target class recognition. A prerequisite for 

their implementation is the segmentation of the object from 

the scene. An example of that technique is the geometric 3D 

moment [7]. Local feature based techniques describe local 

patches of the object and provide an appropriate solution to 

detecting partially visible objects in occluded scenes, object 

registration, pose estimation and afford good performance in 

object recognition. Some intelligence-based data, providing 

unique object features will greatly assist this. Due to these 

advantages, many pattern recognition attempts have been 

made in the 3D local feature based domain with the trend 

being an extension of the already mature 2D pattern 

recognition algorithms to entirely new 3D approaches or 

solutions based on range images. 

The main contributors in the extension of 2D to 3D feature 

based pattern recognition are THRIFT [8], 3D SURF [9], 3D 

Harris [10] and 3D Features from Accelerated Segment Tests 

(3D FAST) [11]. The drawback of these approaches is that a 

LIDAR sensor provides non-volumetric data. Hence, 

additional processing time is required to transform the data 

into voxels with the total computational time exceeding the 

constraints of a military real-time application. Even the fastest 

3D SURF requires approximately 8s for pattern recognition on 

a high-performance computer for a cloud of 50,000 points and 

2003 voxels [12]. 

Pure 3D approaches are applicable directly to the point 

cloud or to its mesh. If the mesh information is required, some 

extra time is needed to calculate the mesh itself, since LIDAR 

provides only the relative distance between the target and the 

sensor. Among the most well-known algorithms for 3D 

recognition are Signatures of Histograms (SHOT) [13], Spin 

Images [14], Intrinsic Shape Signatures (ISS) [15], Rotational 

Projection Statistics (RoPS) [16] and Tensor [17].  

Range image pattern recognition is based on 2D projections 

of a 3D object on a defined reference frame. Although it is a 

2D approach, incorporating information from the 3D world, it 

has not been extensively investigated. In recent applications, 

the SURF [18] and the Scale Invariant Feature Transform 

(SIFT) [19] are applied to previously pre-processed range 

images. Indicatively, Lei et al. [6] convert the raw range 

image to a multi-level B-spline approximation to achieve a 

detailed and smoothed image. Onto those images, they applied 

SURF. Even though this approach works well in face 

recognition, it is quite time consuming and exceeds the 

constraints of a military application. Bayramoglu and Atalan 

[20] as well as Lo and Siebert [21] convert the range image 

into its shape index representation to enhance the details and 

then apply SIFT. Although this method achieves correct 

recognition, its out-of-plane rotation invariance is limited. 

Recent approaches are the Normal Aligned Radial Features 

(NARF) [22] and the Binary Robust Appearance and Normals 

Descriptor (BRAND) [23]. Some of the 3D algorithms like 

BRAND or the Color SHOT (C-SHOT) [24], which is a 

variant of SHOT, combine depth and texture information to 

achieve a higher performance. 

The standard, but extremely time-consuming policy in 2D 

pattern recognition problems is to create a database with a 

collection of templates representing possible viewings of each 

potential target. The number of viewings per target is 

inversely proportional to the invariance of the local features. 

The invariance should be such to bridge the gap between the 

templates. Gray et al. [25] in their successful ATR approach in 

the infrared domain, create a database consisting of 12 

azimuthal viewings of each of the four naval targets. In total, 

they have a database of 48 viewings on which SIFT based 

strategy is applied. This type of approach in the 3D case 

demands 123 viewings per target (12 viewings per pitch, roll 

and yaw rotation) leading to 6912 different poses for the same 

number of targets. Assuming that each pose provides at least 

20 keypoints in a low-resolution image, the database contains 

a list of 138,240 entries that have to be matched with the ones 

detected in the scene. Instead of that typical approach, we use 

only one pose per target in the 3D domain leading to three 

orthographic projections in the 2D domain. For the same sized 

database instead of 6912 different poses, our proposed 

approach needs only 12. Hence, both matching time and 

memory requirements to store the templates are considerably 

reduced. 

To the best of our knowledge, the only open source military 

oriented ATR algorithms are based on Spin Images [26], 
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geometric fitting [27], multi-hypothesis sequential testing 

[28], the Baseline Processing Pipeline [29] and the Projection 

Density Energy based solution [30]. Although Spin Images 

perform well in target recognition, their calculation time 

exceeds the constraints of a LIDAR based missile. Also, as the 

target becomes sparse or noisy, the performance of Spin 

Image degrades [31]. Geometric fitting decomposes the scene 

into a set of rectangles, based on the assumption that man-

made objects are approximately rectangular in nature. Multi-

hypothesis sequential testing deals with multi-hypothesis 

sequential probability ratio tests, motivated by Bayesian 

settings. In this approach, the recognition time per target is 

reduced compared to that of the Spin Images but still beyond 

that of military type requirements. Although the Baseline 

Processing Pipeline is within time response constraints, it 

presents a number of strict assumptions difficult to fulfill in a 

battlefield scenario. The Projection Density Energy based 

recognition algorithm, although being very fast, it assumes 

that the target is already segmented from the scene. 

The computer vision community has made many positive 

attempts in 3D object recognition but military type recognition 

in real-time combined with the hardware constraints of a 

missile system is still challenging. Another drawback is that 

current computer vision approaches aim at high quality feature 

matching for 3D image registration and pose estimation. The 

requirement for a real-time 3D ATR LIDAR based missile 

application is to achieve a lock-on to the preferred target with 

a high confidence level neglecting registration and pose 

estimation capabilities. Hence, considering that: 

 Military-oriented ATR algorithms can rely on state-of-

the-art 2D ATR methods 

 State-of-the-art 2D ATR methods can be implemented 

on range images 

 A 2D problem is less complex than a 3D one  

we propose a 3D ATR algorithm based on multiple range 

images. Its main characteristics are the high recognition 

performance, the sufficiently shorter processing time and the 

reduced memory demand, that may be appealing to the 

defense industry. SPR lies on the range image pattern 

recognition category and extends the concept of our previous 

work [30] which decomposes the recognition problem from 

the 3D space into multiple 2D ones. Specifically, in this paper 

we remodel the recognition problem from the highly complex 

3D space into multiple 2Ds in order to gain processing time 

speedup while in parallel we exploit the appealing advantages 

of the local feature recognition strategy. In addition, we 

further reduce processing time by restricting the templates for 

matching to a single pose per target. 

III. PROPOSED APPROACH 

Current section describes thoroughly the online and the 

offline pipeline of SPR both for the model and the scene. Fig. 

1 presents a schematic of the proposed approach. 

A. Point cloud manipulation and range image construction 

Given a point cloud 3P   , each point of the cloud can be 

represented as  ( , , ) , 0,T
u u u uP i j k u M   where M is the total 

number of points. Initially the raw point cloud is uniformly 

quantized with a quantization step Δ in order to reduce the 

amount of points and hence overall processing time: 

  
1

2

u
qu u

P
P sign P

 
   

 
 (1) 

Each point  , 0,quP qu L   of the quantized cloud 

containing L  points with L M , is then transformed from the 

missile reference frame  , ,i j k  to an external world based 

reference frame  , ,X Y Z  by exploiting information from the 

missile’s gyroscopes, which provide the pitch (θ), roll (φ) and 

yaw (ψ) angles. Both reference frames are centered at the 

missile seeker. Additionally, we choose the  , ,X Y Z  

reference frame as external world based in order to reduce 

complexity and improve time efficiency. The latter is achieved 

because the  , ,X Y Z  reference frame does not align with 

each target in the scene individually, but with the real world 

coordinate system, that includes both the missile and the 

scene.  

The coordinates of each point quP   are transformed from 

the missile reference frame  , ,i j k  into the world based 

reference frame  , ,X Y Z  by applying the Euler – Rodrigues 

rotation formulas: 
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for the x-axis and equally for the y-axis and the z-axis: 
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Where, I is the identity matrix, xi   is the cross product 

matrix of I  and i i  is the tensor product. The 

transformation of the initial coordinates of each quantized 

point quP  from the missile to the world based reference frame 

provides a new set of points ' quP : 

 

'

' '
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qu qu

qu qu

qu qu

qu

x x

P y R R R y

z z

   

   
   
   
   

 (4) 

Where , ,qu qu qux y z are the quantized coordinates in the 

 , ,i j k  missile reference frame and ', ', 'qu qu qux y z  are the 

corresponding coordinates in the  , ,X Y Z  world reference 

frame. 

The projection of each point ' quP  to every plane of the 

world based reference frame is described by the orthographic 

projection matrix orthoP  by zeroing the appropriate binary 

remapping coefficients  1 2 3, , 0,1c c c   from the 3D to the 2D 

space, depending on the plane on which the cloud will be 
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projected. For example, if 1 2 1c c  and 3 0c   then the X-Y 

projection is received. In parallel, the point cloud is translated 

to the origin of the world reference frame, set at the missile’s 

seeker, by applying the proper translation coefficients 1 2 3, ,t t t . 

The coordinates P  of the orthographically projected point 

cloud after being quantized, rotated to the world based 

reference frame and translated to the origin, are given by: 

1 1 1

2 2 2

3 3 3

0 0 0 '

0 0 0 '
'

0 0 0 '

1 1 0 0 0 1 1 1

qu qu

qu qu

ortho qu

qu qu

x t c x t

y t c y t
P P P

z t c z t

         
         
             
         
         
         

 (5) 

where , ,qu qu qux y z  are the coordinates of the orthographically 

projected points on the XZ, YZ planes. The three orthographic 

projections (fXY, fXZ, fYZ) are range images, which are 

simplified versions of the 3D point cloud ' quP . In these 

images, the depth value of each plane i.e. ( , )XY qu qu quf x y z  is 

unique and represents the distance between the target and the 

LIDAR seeker. Fig. 2 presents an illustration of the reference 

frame conversion and the 2D projections. 

The size of each projection is variable depending on the 

amplitude of the point cloud values after quantization. During 

the final pre-processing step, before the keypoint detection and 

description stage, we rescale the range images into a fixed size 

of 128pixels*W or W*128pixels, where W is the width of the 

projection, with W≥128. This strategy assists at maintaining 

the aspect ratio [32] and avoid image distortion. In parallel, 

the fixed sized projections aim at further reducing the 

processing time and improving the recognition performance 

over a greater range of scales.  

Although the quantization process improves the processing 

time, it inevitably leads to information loss that can 

downgrade the recognition quality. Thus, a balance between 

recognition performance and the time response is crucial. 

B. Local Features 

Based on the scale space theory, Bay et al. [18] proposed a 

combination of a 2D keypoint detector and descriptor under 

the name SURF, as a faster counterpart of the popular SIFT 

[19]. Initially SURF creates a response map and detects points 

of interest based on the local extreme of the approximated 

determinant of the Hessian ( )approxH : 

   2arg max ( ) arg max (0.9 )approx xx yy xylocal Det H local D D D   (6) 

where , ,xx yy xyD D D  are the discretized versions of the 

corresponding Gaussian second order kernel convolved with 

the projection of interest, e.g.: 
2

2

| ( ) | 1
( , , ) ( ( ( )) )* ( , )

2
xx qu qu qu qu

qu

g
D x y sign g f x y

x


 

  
     

(7) 

where f is the 2D orthographic projection, g is the Gaussian 

kernel of standard deviation σ and Δ the quantization step.  

In our SPR solution and during the keypoint detection phase 

on each of the three range images, SURF is based on three 

octaves and four scale intervals per octave. The threshold of 

the approximated determinant of the Hessian is set to 10-5.  

The quantization step Δ applied to the initial point cloud is 

crucial as it affects the number of detected keypoints and the 

overall performance. Specifically, as the quantization step Δ 

decreases, SURF detects more keypoints as shown in Fig. 3. In 

contrast to the B-spline [6], this pre-processing step has almost 

no time cost. 

The SURF descriptor is based on Haar wavelet responses, 

which can be efficiently calculated by exploiting integral 

images. In our approach, the default 64 elements long 

descriptor is used. Keypoint matching is carried out via the 

Nearest Neighbor Distance Ratio (NNDR) criterion [19], 

which was set to 0.6. 

According to the developer of SURF, the latter has a stable 

performance in the scale range from one up to 2.5. However, 

beyond that region repeatability scores are dramatically 

decreasing. ATR algorithms that have to exceed the above 

restriction include a training set with representations of the 

expected target in various scales. In this case, the size of the 

database and the matching time are significantly increased. 

In our approach, the recognition capability over several 

scales is increased by resizing both the template’s and the 

target’s range images to a fixed size of 128pixels*W or 

W*128pixels, where W≥128. The aspect ratio is preserved in 

order to avoid image distortion and the resizing procedure is 

approximated by nearest-neighbor interpolation for time 

efficiency. In addition, the database includes a set of potential 

target templates using small sized range images, simulating

 
Fig. 1.  Flow chart of the SPR target recognition algorithm. The Model module is performed offline and the Scene one online. The self-occlusion process is 

optional depending on the nature of the scene (real or synthetic) 
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the target being at the furthest range or in equivalence, in the 

smaller scale that the sensor can detect. This methodology 

provides a number of advantages: 

 Scale variability can exceed the restriction of 1 - 2.5 

without increasing the size of the database. 

 As the missile moves towards the target, the size of the 

target increases with a direct influence on the number of the 

detected keypoints and the substantial growth of the 

processing time to detect, extract and match the features. In 

our solution, resizing the range images to a small and fixed 

size, regardless of the true size, provides a predictable number 

of keypoints in less time if an efficient method like nearest-

neighbor interpolation is used. 

 SURF achieves most matches when both the target and 

the template are in the same scale. By resizing, as in our 

approach, the target’s range images to a fixed size, the number 

of matches is maximized maintaining a relatively stable and 

high recognition performance. 

 Additionally, as the missile – target range reduces, each 

range image of the target is downscaled creating a smoothed 

version neglecting some of its details. The smoothed images 

allow the robust recognition performance even under the 

thermal noise of the sensor or sparse representation of the 

target. 

C. Hough Pose Filtering 

Even after matching the SURF features outliers may still 

exist. Outliers can be discarded by applying a coarse Hough 

Pose clustering [19]. This filtering method is based on a voting 

process where the already matched keypoints are re-matched 

in a Hough space over scale σ and rotation θ [33]. 

Specifically, for the SPR, the matched keypoints of the 

target and each template are plotted on a 2D accumulator 

plane where the x-axis represents the scale bins and the y-axis 

the orientation bins in which the matched keypoints are 

detected. An accumulator plane is a plane where each 

keypoint occupies a bin based on its σ and θ combination 

where it is detected. So each matched keypoint from the 

NNDR stage, votes for a single bin in the accumulator plane 

of the target and the template respectively. Finally, a cluster of 

matches is created as the intersecting bins of both accumulator 

planes. These intersecting bins correspond to the refined 

matches. In case more than one matched pair of keypoints 

occupies the same bin, only the first pair is considered as 

being valid. In order to reduce discretization errors, the scale 

bins have a size of one and a range from 1 - 20 and the 

rotation bins are of size 15° in the 0° - 360° range.  

Fig. 4 presents an example where the NNDR threshold 

provides 76 matches between two dissimilar targets. Each 

matched pair depending on the scale σ and orientation θ 

occupies a single bin in the template and the target 

accumulator plane in respect of the Hough space. The 

intersection of both accumulator planes creates clusters that 

provide a refined set of matched keypoints reducing the 

mismatches by 91%.  

D. Simulating viewing dependent point clouds 

All freely available models are in a 3D ideal representation 

while in reality the LIDAR seeker can only receive a part of 

the target depending on its pose. Typical land based missile 

applications rely on top attack and side view poses in order to 

defeat the target where armor is thinnest. Thus, the Hidden 

Point Removal (HPR) [34] algorithm is used to create self-

occluded point cloud views emulating realistic views of the 

LIDAR missile seeker. HPR includes three stages. Initially, it 

remaps the coordinates of each point uP of the raw point 

cloud. This is done by exploiting an imaginary a ray 

connecting each point uP and the viewpoint. The remapping is 

a mirror image of the raw point cloud as observed from the 

viewpoint, which is set at the LIDAR seeker of the missile. 

The next step incorporates the projection of the remapped 

point cloud onto a sphere of radius R centered at the missile 

seeker. This procedure is called “spherical flipping” and the 

resulting point cloud consists of the sfuP  points: 

 2( )
u

sfu u u

u

P
p P R P

P
    (8) 

 In this work, the radius R is automatically calculated as 

suggested by Alsadik, Gerke and Vosselman [35]. Finally, the 

convex hull of the resulting point cloud, associated with a 

weight factor ua for each point of the cloud is given by:  

 

 
Fig. 2.  Outline of the transformation from 3D to multiple 2D. M1A1 Abrams 

Main Battle Tank (MBT - red) as observed from the missile’s reference frame 

(blue). The MBT is quantized and transformed to the world based reference 
frame (black) after incorporating information from the gyroscopes of the 

missile. Range images are created from the projection of the MBT onto the 

planes of the world reference frame. 

 

 
Fig. 3.  Top view projection of the M1A1 MBT with the FAST Hessian 

keypoints shown at different quantization steps 
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Summarizing, a point uP  of the raw point cloud is 

considered as visible, only if its spherical flipped form sfuP  is 

on the convex hull. The HPR concept is shown in Fig. 5. 

E. ATR workflow 

The SPR procedure can be split into an offline and an online 

part. Offline, a database of potential targets to be recognized is 

created. The ideal 3D point cloud of each target is quantized 

and orthographically projected on the three main planes XY, 

XZ, YZ of the  , ,X Y Z  external world based reference 

system and then resized to a fixed size. SURF is then applied 

on the range images created. Each target is represented by 

three range images and for each point of interest detected on 

those range images the coordinates, scale σ, orientation θ, and 

the SURF descriptor are stored. During this stage, it is 

important to align in 3D the point cloud of each template in 

the canonical pose. The online procedure is the same as the 

offline one, except that HPR is applied in order to simulate the 

self-occlusion effect. The extracted SURF keypoints are then 

matched via an NNDR criterion and the template that receives 

the most matches over all planes is considered as the 

recognized target. The NNDR criterion is set to 0.6 such as to 

balance recognition performance and robustness to 

perturbations like noise and sparsity. In case more than one 

template provides the same number of maximum matches, we 

establish a matching quality criterion. The quality of each 

match is based on the average difference of the responses of 

the matched SURF keypoints as given from the approximated 

determinant of the Hessian. The template providing the 

smallest difference to the target over the three planes is chosen 

as the recognized one. The processing flow of SPR is 

graphically presented in Fig. 1. 

Matching time and memory demands are further reduced as 

the database consists of SURF features obtained only from 

three range images. The later result from the projection of 

each potential target, which is in its canonical pose and is 

viewed from 45° angle in any axis. 

Fig. 6 presents a matching example. It shows the case where 

a MBT as the target is in 60° rotation in pitch, roll and yaw, 

self-occluded and at scale x2s and is matched with the 

database consisting of two models (one similar and one 

dissimilar - different class of MBT) which are in their 

canonical pose, without any occlusion and at scale s. Each 

target and template are orthogonally projected to the planes of 

the world reference frame in order to create three distinct 

range images. SPR successfully matches the target with its 

corresponding template providing in total 28 matches over the 

three projection planes. On the contrary, for the dissimilar 

target (different class of MBT) SPR provides only 9 matches. 

These mismatches mostly occur at the barrel of the MBT as 

both templates possess one. The availability of more detailed 

target set data, which gives turret shape or road wheel 

configuration, would assist in further enhancing the 

discrimination. 

IV. EXPERIMENTS 

The effectiveness of SPR is evaluated by a number of 

experiments on military targets of the Princeton Shape 

Benchmark [36] database and on a set of military ground 

surface targets [37] with both inter and intra-class variation. 

The term inter-class variation refers to recognizing different 

classes of targets e.g. a fighter aircraft from a warship. The 

intra-class variation refers to recognizing different types of the 

same class, e.g. a M1A1 Main Battle Tank (MBT) from a T-

90 MBT.  

Each target is rotated in pitch, roll and yaw in the 0° - 360° 

region with an increment of 30° neglecting non-applicable 

poses. We define as non-applicable poses those that are not 

likely to occur, e.g. the LIDAR seeker of the missile cannot 

observe a warship from inside the sea. We select a 30° rotation 

increment due to the limit of the affine transformation that 

SURF can manage [18].  

Experiments comprise of a number of combined rigid 

transformations and perturbations such as thermal noise and 

uniform sparse representation of the target. Trials are 

performed while the target is at scale s and x10s. Initial 

experiments assume uncluttered targets, while more 

complicated scenarios are examined in Section IV-C. 

According to open source data, the processing power of a 

missile is in the order of a Quad Core PowerPC G4 from the 

74xx processor family and ATR algorithms for missiles are 

implemented in C/C++ [38]. The SPR is developed in 

MATLAB 2015a and the processing platform for all trials is 

an AMD Dual Core 2.1 GHz laptop exploiting a single core. 

Although our developing scheme differs in relation to a 

final missile implementation, affecting the measured 

processing time during trials, we consider that SPR meets the 

time response criteria. Specifically, the efficiency of C/C++ 

compared to MATLAB is in the range of x9 – x500 [39], [40] 

and the processing efficiency of a missile processor is x2.5 

[41] compared to our platform. Hence, the overall processing 

gain of a final missile implementation is x22 up to x1250. 

That gain increases even more if ordinary processors are 

 
Fig. 4.  Hough pose filtering. NNDR matches are re-matched in the Hough 
space and fill the accumulator plane of the target and the template. Common 

scale and orientation bins of both accumulator planes create clusters of 
matches from which only the first pair is considered. Hough filtered matches 

preserve only the strong matches. The color of the bin represents the number 

of the matches inside that σ and θ combination. 
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substituted by Field-Programmable Gate Arrays (FPGA). 

According to future upgrades to the US Navy SM-3 missile, 

proposed by the MIT Lincoln Laboratory [38], the desired 

missile latency should be 16.7ms which we adopt in our paper. 

Considering the aforementioned processing gain due to the 

platform, the coding differences and the desired this latency, 

we set an upper processing time limit of 500ms for our 

developing platform. The literature suggests measuring the 

computational complexity in seconds [26], [28], [29]. But due 

to the processing time limit set and the high-speed the missile 

is flying at, we set the computational complexity on a 

millisecond basis [30]. 

A. Princeton shape benchmark 

As this paper is military oriented, one representative of each 

military target class is used, namely a MBT, a Warship, a 

Helicopter and a Fighter aircraft as shown in Fig. 7.  

This database has a collection of point clouds generated 

from CAD models with a relatively small number of points 

and with the planar surfaces not fully represented as they have 

points only at their edges. To provide a realistic representation 

of those models, points are populated with Poisson sampling 

[42] increasing their ideal 3D point cloud to 140,000 points 

per target on average. In all the following experiments, we 

take into account the non-recognition case and self-occlusion. 

During the first set of trials the observation range is the 

generic s while in the second set of trials it is at scale x10s. 

Each batch of experiments includes the cases of target 3D 

rotation, 3D rotation combined with noise, 3D rotation 

combined with 50% sparse representation and finally all the 

aforementioned cases applied simultaneously. During all trials 

SPR provided high recognition performance with detailed 

results shown in Fig. 8. 

In the first experiment, we forced the target to simultaneous 

rotation in pitch, roll and yaw. SPR manages 100% 

recognition rate in 238ms. The 3D rotational invariance of 

SPR is expected due to the complementary nature of the three 

range images. 

 

 
 

 (a) (b) (c) 

 

Fig. 5.  Hidden Point Removal (HPR) concept. (a) LIDAR based missile looking at a MBT (b) The raw point cloud of the MBT is initially flipped and projected 

onto a sphere of radius R. (c) On the spherical flipped point cloud the convex hull is calculated and only points belonging on the convex hull are considered as 

points of the self-occluded target. 

 
Fig. 6.  Matched keypoints between two similar (left – 28 matches) and dissimilar (right – 9 matches) Main Battle Tanks (MBT’s) in all projection planes 

(XZ – XY – YZ planes from top to bottom). For each plane, left point cloud represents the template and right the target. 

 

 
Fig. 7.  Typical military targets from the Princeton database benchmark 
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The next experiment incorporates sensor noise to 

investigate its effect on the recognition performance while the 

target rotates in 3D. Sensor noise mainly being thermal can be 

simulated with white Gaussian noise [43]. Consequently, we 

add to the target white Gaussian noise with zero mean and 

variance equal to 0.5 of the average mesh resolution (mr). The 

chosen variance is one of the highest values experimented in 

the current 3D object recognition literature [16], [44]. 

Although the addition of noise creates virtual keypoints that 

can be mismatched, the average recognition capability is still 

high at 95.3%. However, since SPR incorporates SURF, 

robustness to noise [45] is anticipated. Finally, we note that 

although SPR achieves a high average recognition rate, the 

performance of the fighter aircraft is affected. The addition of 

noise to the fighter aircraft modifies largely its smooth 

surfaces, forcing the FAST Hessian keypoint detector to create 

false points of interest. Hence, depending on the viewing 

angle, these keypoints create mismatches which lead to a 

performance drop.  

The atmospheric conditions may attenuate the laser beam 

resulting in a reduced point cloud density. Hence, we evaluate 

SPR against 3D rotation and 50% uniform sparse 

representation of the target. The results show that the overall 

performance is unaffected achieving 99.9%. This can be 

explained by the fact that by resizing each range image it 

becomes smoother overcoming the target’s sparsity. Finally, 

even though inducing the target to all the aforementioned rigid 

transformations and perturbations simultaneously (i.e. 3D 

rotation and 0.5mr Gaussian noise and 50% point cloud 

decimation) SPR still provides a 94.5% recognition rate. 

Incorporating noise to the targets modifies the flat surfaces of 

the fighter, reducing its recognition rate in the same manner as 

in the pure noise case.  

The same set of trials is executed with the target at scale 

x10s. Increasing the target’s scale, does not affect the 

recognition rate of SPR (Fig. 8). As expected, the influence of 

noise is now eliminated through the resizing procedure of the 

three projection planes. Therefore, the fighter’s recognition 

performance is unaffected by noise. 

Through this dataset, the SPR solution is shown to be quite 

robust to target class recognition under 3D rotation combined 

with noise, uniform sparse representation and scale change. 

The next dataset challenges the proposed technique with 

targets having both inter and intra-class variation. 

B. Surface target CAD model database 

A database fitting the scenarios of the ground target case is 

created. It consists of a missile battery, a Leopard 2A6 MBT 

(GER), an M1A1 Abrams MBT (USA), a T-90 MBT (RUS) 

and an auxiliary vehicle the Raba H25 as shown in Fig. 9. On 

average, each 3D ideal target consists of 115,000 points after 

being populated with Poisson sampling. This database is more 

challenging compared to the previous one since it comprises 

of three similar 3rd generation MBTs while at the same time 

the anti-air missile battery has the body of a MBT. As 

previously done, in all experiments, the non-recognition case 

is considered and self-occlusion via HPR is taken into 

account. 

Overall, SPR maintains its high recognition performance 

during all trials with detailed results presented in Fig. 10. At 

scale s, with self-occlusion, SPR manages for the 3D rotation 

case 99.8% in 469ms. Compared to the Princeton Shape 

Benchmark, the processing time has increased because this 

database is larger and has more complex targets, which 

provide more keypoints that have to be matched.  

In the next experiment we evaluate SPR against simultaneous 

3D rotations with the addition of artificial 0.5mr thermal 

noise. Initially the target is at scale s. Although targets have a 

great similarity, SPR correctly recognizes 95.8% of the cases. 

The largest performance reduction is observed in the auxiliary 

vehicle case as noise altered its flat surfaces, creating false 

keypoints, which lead to mismatches. Although the 

recognition rate for the auxiliary reduced, SPR still achieved 

92% for that target which is considered adequate. 

The following trial combines simultaneous 3D rotation and 

50% uniform sparse representation of the target. The average  

 
Fig. 8.  Performance of SPR under different trials on segmented targets of the Princeton database benchmark 

 

 
Fig. 9.  Surface target set: missile battery, T90 MBT, auxiliary vehicle Raba 

H25, M1A1 Abrams MBT and Leopard 2A6 MBT 
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recognition rate is 98.6%. The anti-air missile battery has the 

lowest performance (95.5%), largely because of its main body 

which is quite similar to the other targets. 

We investigate the SPR’s performance under simultaneous 

3D rotation, 0.5mr Gaussian noise and 50% point cloud 

decimation. Although this trial combined all perturbations and 

3D rotation, SPR still achieves high performance managing 

91.6% recognition rate. In this case, although the flat surfaces 

of the Auxiliary vehicle are influenced by noise, recognition is 

still greater than 85%. Considering the difficulty of the 

simultaneous disturbances that are applied, this performance is 

still notable. 

Finally, we evaluate SPR under the same perturbations and 

transformations with the target at scale x10s. The average 

recognition rate of all trials is now 94.7% in 495ms showing 

again the strong robustness of SPR even under scale change. 

Similarly, to the previous trials, the flat surfaces of the 

auxiliary vehicle are affected by noise creating false keypoints 

and influencing recognition. Even in the case where we 

combine all perturbations and transformations simultaneously, 

the recognition rate of the auxiliary vehicle is greater than 

83%, which is still considered notable. 

The high performance and low processing time of the 

proposed SPR solution can be explained by the following 

three facts:  

 SPR achieves 3D rotation invariance due to the 

complimentary nature of the three range images. 

 Robustness to scale is possible due to the resizing 

strategy applied to each range image. 

 SPR can successfully handle perturbations like noise 

and sparse representation of the target due to the combination 

of the resizing strategy and the discretization applied to the 

point cloud. 

C. Evaluation on military forested scenes 

Depth variation due to the relative position of the target 

inside the scene is crucial for the performance of SPR. To 

overcome that, automatic target detection and then recognition 

in various forested scenes is performed by rejecting the ground 

and the tree tops [46]. 

Three forested scenes with increasing difficulty are 

evaluated, including a number of targets per scene and several 

objects as clutter. Fig. 11 presents the scenarios under 

evaluation as observed from the seeker. In addition, Fig. 11 

shows the top template match along with the point-to-point 

correspondences between the top template match and the 

scene. 

The first scenario considers the case of a T90 MBT, which 

is partially occluded by a tree. Our method detects and 

recognizes the target in 502ms. Specifically, SPR manages to 

match two out of the three projections of the T90 MBT 

template. 

In the second scenario, the scene comprises of a T90 MBT, 

which is occluded by trees. It is worth noting that the MBT in 

the scene has a different pose and scale compared to the 

template. Still under these conditions, SPR is able to detect 

and recognize the MBT in 395ms. 

In the third scenario, the scene contains two targets, namely 

an anti-air missile battery and a T90 MBT. Both targets are 

partially occluded by trees and have a different scale 

compared to the templates. Positive detection and recognition 

of both targets, is achieved in 307ms. Even though in both 

cases a small number of mismatches occur, SPR is still 

capable to provide correct target recognition.  

D. Comparison with the Rotational Projection Statistics 

(RoPS) algorithm 

We compare SPR with RoPS [16], which outperforms the 

Spin Image, THRIFT and SHOT based recognition techniques 

[4]. In order our trials to be fair we compare the proposed 

technique with RoPS and with a faster to execute variant of 

RoPS. 

The first trials include the RoPS recognition procedure 

exploiting the optimal parameters as set by its authors [47]. 

Specifically, we select randomly 5000 keypoints in the model 

object and 1000 in the scene. For these keypoints, RoPS 

features are calculated and then matched via an NNDR 

criterion. Finally, for each keypoint correspondence, the 

transformation hypothesis is generated. Verification of the 

correct transformation is performed through the Iterative 

Closest Point (ICP) method and then the model is segmented 

from the scene. Hereafter, this RoPS configuration will be 

named as RoPS (5000-1000). 

For a LIDAR based missile, the segmentation and pose 

estimation subroutines are time-consuming processes. Hence, 

we substitute the segmentation capability, the transformation 

 
Fig. 10.  Performance of SPR under different trials on segmented targets of the ground surface dataset 
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hypothesis generation and verification process with a 

matching quality criterion in order to speed up the RoPS and 

make it more appropriate for military type oriented ATR. This 

quality measure considers as the correct template match the 

one providing the smallest average Euclidean feature distance. 

This modification maintains the matching quality of RoPS and 

discards the pose estimation capability, which is unnecessary 

for LIDAR based missiles. 

We consider the same experiments as in Section IV-B but 

restrain them to the observation scale s, as RoPS is scale 

dependent. RoPS (5000-1000) achieves an average recognition 

performance of 96.4% and the processing time per pose is 

118.7s exceeding by far the time constraints of a LIDAR 

based missile application. The reason is the time-consuming 

calculation of the local reference frame and the large amount 

of features that have to be matched. Focusing on the average 

recognition capability, SPR is marginally higher than the 

RoPS (5000-1000) by 0.1% and most important it is 253 times 

faster. In in contrast to SPR, RoPS is not scale invariant, 

which is a mandatory demand for missile type ATR. In 

conclusion, SPR is more appealing than RoPS for LIDAR 

based missiles as it combines high quality recognition 

performance, processing efficiency and scale invariance. 

In order to speed up the RoPS we optimized the number of 

keypoints to achieve a balance between recognition 

performance and efficiency in processing time. The 

equilibrium is set at matching 10 keypoints of the scene to 

2000 from each model. This provides to RoPS a speedup of 

x23 while a notable recognition performance is still 

maintained. Hereafter this RoPS configuration will be named 

as RoPS (2000-10). We evaluated this version of RoPS under 

the same transformations and perturbations as in Section IV-B 

at scale s. On average RoPS (2000-10) achieves 80% 

recognition performance in 7.2s. In contrast, the proposed SPR 

solution gains a recognition rate of 96.5% while in parallel it 

is x15.6 faster. Fig. 12 presents detailed SPR and ROPS 

(2000-10) comparison per target and trial. In all trial and target 

combination, except the combined 3D rotation, noise and 

sparsity for the missile battery target, SPR achieves a higher 

recognition rate with a large margin.  

With respect to the overall performance, as a combination 

of recognition performance, processing time, and scale 

invariance, SPR is shown to outperform both variants of 

RoPS. Detailed comparison between SPR and both RoPS 

variants is shown in Fig. 13. Implementing RoPS with its 

default parameters provides a recognition performance that is 

marginally higher to SPR in the cases of combined 3D rotation 

and noise as well as combined 3D rotation, noise and sparsity. 

Nevertheless, the total processing time of RoPS is greater by a 

large margin, exceeding by far the time constraints of a 

LIDAR based missile and thus prohibiting RoPS for missile 

ATR applications. Limiting the number of keypoints to 

balance the RoPS recognition performance and processing 

time, SPR achieves much higher recognition rates and is still 

x17 faster. Furthermore, RoPS operates only on a fixed scale 

of the target while SPR is scale invariant which is a big 

advantage of the latter in a missile seeker type of application, 

which is the subject of this study.  

Finally, SPR has a notable lower memory demand to store 

the templates compared to its RoPS based competitors. 

Specifically, SPR requires 380KB/template on average, while 

RoPS (5000-1000) 5,400KB/template and RoPS (2000-10) 

2,160KB/template. 

V. CONCLUSION 

In this paper, we propose the SURF Projection Recognition 

(SPR) solution, which is a real-time 3D ATR algorithm robust 

to rigid transformations and perturbations. Specifically, SPR is 

robust to 3D rotation combined with scale change, thermal 

  
Fig. 12.  Comparison per target between SPR and the RoPS (2000-10). 

Graph shows average processing time and bar plot the recognition 

performance 

Fig. 13.  Comparison per trial between SPR and both RoPS variants. Graph 

shows average processing time and bar plot the average recognition 

performance 
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noise, and sparse representation of the target. Appealing 

features of our approach are the combination of high 

recognition performance, fast execution time and low memory 

demand. These characteristics provide an initial step towards 

future LIDAR based missile seekers with Automatic Target 

Recognition capabilities. 

SPR meets time restrictions by discretizing the initial point 

cloud and decomposing the 3D recognition problem into three 

2D ones. In addition, the required database entries per target 

are reduced to the minimum of one pose per target, which is 

considered as a massive reduction compared to a multi pose 

and multi azimuth approach that is the norm in ATR systems. 

Further enhancements of performance are gained by using a 

point cloud manipulation that transforms the points from a 

missile reference frame to an external world reference frame. 

This is achieved by using data from the missile gyroscopes 

such as to create a triplet of orthographic projections. The 

resulting data are then processed using an extension of the 

SURF algorithm, which we name SPR or SURF Projection 

Recognition. SPR is tested for pose, scale and obscuration 

tolerance against various target types and in various scenarios. 

Comparative experimental results show that the SPR 

technique is highly processing efficient. Specifically, SPR is 

x17 faster than RoPS (2000-10) and x253 faster than RoPS 

(5000-1000). In addition, SPR has a higher recognition rate, is 

scale invariant and is able to operate successfully in occluded 

targets and forested backgrounds. Finally, SPR’s memory 

demand is substantially lower by a factor of x14.2 and 5.7 

compared to RoPS (5000-1000) and RoPS (2000-10) in 

respect. 

Linking the SPR’s performance to current military tactics, 

we conclude that: 

 Pose independence is an important factor for land 

based anti-armor missiles as they usually fly towards the target 

getting a downward but side-on or end-on view. In the late 

phase of engagement, they then have to pop-up in order to 

perform a top attack where the armor is thinnest. Thus, the 

view the seeker head sees changes when the target is very 

close compared to that seen at longer ranges. The SPR 

technique is fairly pose and scale independent and hence 

suitable for this. 

 Most anti-shipping missiles aim for the center of mass, 

but approach the target at wave height, thus the target is seen 

from this pose. If there is a rogue wave, they will perform a 

pop-up to avoid it, which will suddenly change the viewpoint. 

Linking SPR to missile gyroscope data may alleviate this 

problem compared to the disturbance suffered by conventional 

techniques. 

 LIDAR has good smoke obscurant penetration and if 

combined with ATR using SPR would probably render it fully 

ineffective against LIDAR SPR type seeker heads. 

FPGA implemented SURF [48] and the SPR executed in 

C++ would be considered as future work to further improve 

time efficiency such as to accommodate this approach to high 

speed missile applications where requirement in terms of 

processing time is more demanding than considered in this 

work. 
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 Fig. 11.  SPR applied in various forestry scenarios with occlusion. Colored boxes show the detected target inside the scene and the 2D projection

 




