7,156 research outputs found

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Recommender systems in model-driven engineering: A systematic mapping review

    Full text link
    Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research interest on recommendation approaches that assist with modelling tasks and model-based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers) that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations, the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of researchThis work has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 813884 (Lowcomote [134]), by the Spanish Ministry of Science (projects MASSIVE, RTI2018-095255-B-I00, and FIT, PID2019-108965GB-I00) and by the R&D programme of Madrid (Project FORTE, P2018/TCS-431

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Haiku - a Scala combinator toolkit for semi-automated composition of metaheuristics

    Get PDF
    There is an emerging trend towards the automated design of metaheuristics at the software component level. In principle, metaheuristics have a relatively clean decomposition, where well-known frameworks such as ILS and EA are parametrised by variant components for acceptance, perturbation etc. Automated generation of these frameworks is not so simple in practice, since the coupling between components may be implementation specific. Compositionality is the ability to freely express a space of designs ‘bottom up’ in terms of elementary components: previous work in this area has used combinators, a modular and functional approach to componentisation arising from foundational Computer Science. In this article, we describeHaiku, a combinator tool-kit written in the Scala language, which builds upon previous work to further automate the process by automatically composing the external dependencies of components. We provide examples of use and give a case study in which a programatically-generated heuristic is applied to the Travelling Salesman Problem within an Evolutionary Strategies framework
    • …
    corecore