
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

A UML/OCL Framework for the Analysis of Graph Transformation
Rules

Jordi Cabot1 ?, Robert Clarisó1, Esther Guerra2, Juan de Lara3

1 Universitat Oberta de Catalunya (Spain), e-mail: {jcabot,rclariso}@uoc.edu
2 Universidad Carlos III de Madrid (Spain), e-mail: eguerra@inf.uc3m.es
3 Universidad Autónoma de Madrid (Spain), e-mail: Juan.deLara@uam.es

Received: date / Revised version: date

Abstract In this paper we present an approach for the
analysis of graph transformation rules based on an inter-
mediate OCL representation. We translate different rule
semantics into OCL, together with the properties of in-
terest (like rule applicability, conflicts or independence).
The intermediate representation serves three purposes:
(i) it allows the seamless integration of graph transfor-
mation rules with the MOF and OCL standards, and
enables taking the meta-model and its OCL constraints
(i.e. well-formedness rules) into account when verifying
the correctness of the rules; (ii) it permits the interop-
erability of graph transformation concepts with a num-
ber of standards-based model-driven development tools;
and (iii) it makes available a plethora of OCL tools to
actually perform the rule analysis. This approach is es-
pecially useful to analyse the operational semantics of
Domain Specific Visual Languages.

We have automated these ideas by providing design-
ers with tools for the graphical specification and anal-
ysis of graph transformation rules, including a back-
annotation mechanism that presents the analysis results
in terms of the original language notation.

Key words Graph Transformation – OCL – Meta-
Modelling – Domain Specific Visual Languages – Verifi-
cation and Validation

1 Introduction

Model-Driven Development [58] (MDD) is a software en-
gineering paradigm where models play a fundamental
role. They are used to specify, simulate, test, verify and
generate code for the application to be built. Most of

Send offprint requests to:
? Present address: Estudis d’Informàtica, Multimèdia

i Telecomunicacions, Rbla. del Poblenou 156, E-08018
Barcelona, Spain

these activities are model manipulations, thus, model
transformation becomes a crucial activity. Many efforts
have been spent in designing specialized languages for
model transformation, ranging from textual to visual;
declarative to imperative through hybrid; and semi-for-
mal to formal. The OMG vision of MDD is called Model-
Driven Architecture (MDA) [39] and is founded on stan-
dards like QVT [50] for transformations and MOF [44]
and OCL [45] for modelling and meta-modelling.

Graph Transformation [21,53] is a declarative, rule-
based technique for expressing model transformations. It
has been used for specifying in-place transformations like
animations [23], simulations [36], optimizations and re-
designs [43]. It is now gaining increasing popularity due
to its visual form (making rules intuitive) and formal
nature (making rules and grammars amenable to analy-
sis). For example, it has been used to describe the oper-
ational semantics of Domain Specific Visual Languages
(DSVLs) [36], taking the advantage that it is possible to
use the concrete syntax of the DSVL in the rules, which
then become more intuitive to the designer. As mod-
els and meta-models can be expressed as graphs (with
typed, attributed nodes and edges), graph transforma-
tion can be used for model manipulation in the MDD
approach.

Clearly, the important role of (graph) transforma-
tions in MDD needs to be supported by analysis tech-
niques that help designers in determining the quality
of such transformations. So far, the main formalization
of graph transformation is the so called algebraic ap-
proach [21], which uses category theory in order to ex-
press the rewriting. Prominent examples of this approach
are the double [21] and the single [22] pushout (DPO
and SPO), which have developed interesting analysis
techniques, e.g. to check independence between pairs of
derivations [21,53], or to calculate critical pairs (minimal
context of pairs of conflicting rules) [26]. However, graph
grammar analysis techniques work with simplified meta-
models (so called type graphs), which lack OCL-like con-
straints for expressing the well-formedness rules of the

2 Jordi Cabot et al.

meta-model. By not considering the meta-model con-
straints, one could design incorrect rules violating such
well-formedness rules. We believe that integrating OCL
constraints and graph transformation is crucial for the
applicability of the latter in real software MDD projects.

In this paper, our goal is to integrate OCL and graph
transformation, and provide more advanced analysis tech-
niques for graph transformations by using OCL as an
intermediate representation to express the semantics of
graph transformation rules. Then, this OCL representa-
tion is used to automatically verify the analysis proper-
ties of interest.

Representing rules with OCL, concepts like attribute
computation and attribute conditions in rules can be
seamlessly integrated with the meta-model and its OCL
constraints during the rule analysis. Moreover, it makes
available a plethora of tools able to analyze this kind
of specifications. A secondary benefit of our approach
is that graph transformation is made available to the
increasing number of MDA tools that the community
is building and vice-versa. For example, by using such
MDA tools, it could be possible to (partially) generate
code for the transformations [18], or apply metrics and
redesigns to the rules [38]. In addition, the OCL specifi-
cation derived from graph transformation rules could be
used as a way to add behaviour to meta-models, and con-
tracts for methods. Finally, an intermediate OCL repre-
sentation serves as a neutral language for the integra-
tion of different transformation languages, approaches
and tools.

More in detail, we use OCL to represent fully ex-
pressive DPO and SPO rules with negative application
conditions and attribute conditions. In addition, we have
represented a number of analysis properties with OCL,
taking into account both the rule structure and the rule
and meta-model constraints. These properties include
rule applicability (whether there is a model satisfying the
rule and the meta-model constraints), weak executability
(whether the rule’s post-condition and the meta-model
constraints are satisfiable by some model) and strong
executability (if a rule applied to a legal model – which
conforms to the meta-model and its well-formedness con-
straints – always yields a legal model) among others.

In order to improve the usability of our analysis frame-
work, we have hidden the analysis process behind a graph-
ical front-end tool called AToM3 [34]. This meta-modelling
tool generates customized modelling environments for
DSVLs, and allows defining model manipulations by graph
transformation. In order to analyse the graph transfor-
mation rules, an OCL generator provides the input to
the UMLtoCSP tool [13] in charge of analyzing the rules’
properties. The results are then shown back in AToM3

using the concrete syntax of the DSVL. In this way, the
analysis mechanism is kept transparent to the rule de-
signer. This approach follows the line of hidden formal
methods [7], which advocate an intuitive presentation of

the verification results, probably in terms of the input
language.

This paper extends our previous work in [15] by re-
fining the translation patterns and extending them with
a set of optimization and simplification rules, by adding
validation capabilities to our framework, and by provid-
ing a complete tool support as described above. As part
of our tool support we also discuss some heuristics that
help to scale the analysis when dealing with large meta-
models and rules.
Paper Organization. Section 2 introduces graph trans-
formation using a production system example. Section 3
presents our translation of graph transformation rules
into OCL. Section 4 shows the encoding of some analysis
properties for rule verification and Section 5 shows how
to use our approach for validation purposes. Section 6
presents the tool support for the framework. Section 7
compares with related work and Section 8 ends with the
conclusions. An appendix shows the OCL translation of
all the example rules.

2 Introduction to Graph Transformation

In this section we give an intuition on graph transforma-
tion by presenting some rules that belong to a simula-
tor of a DSVL for production systems. Fig. 1 shows the
DSVL meta-model.

Fig. 1 Meta-model of a DSVL for production systems.

The meta-model defines different kinds of machines
(concrete subclasses of Machine), which can be connected
through conveyors. These can be interconnected and con-
tain pieces (the number of pieces they actually hold is
stored in attribute nelems), up to its maximum capacity
(attribute capacity). The OCL invariants on class Con-
veyor guarantee that the number of elements of a con-
veyor is equal to the number of pieces connected to it and
never exceeds its capacity. Human operators are needed
to operate the machines, which consume and produce
different types of pieces from/to conveyors.

Fig. 2 shows a production model example conformant
to the previous meta-model, expressed using abstract

A UML/OCL Framework for the Analysis of Graph Transformation Rules 3

gc

op1

quality pack

repair
op2

rework

capacity = 5
nelems = 1

capacity = 4
nelems = 2

capacity = 3
nelems = 2

capacity = 3
nelems = 0

capacity = 3
nelems = 0

capacity = 3
nelems = 0

assembler

c

b1

b2

a

gb

b

gb:GenBars b1:Bar

b2:Bar

co1:Conveyor
capacity = 3
nelems = 0

co2:Conveyor
capacity = 3
nelems = 2

co4:Conveyor
capacity = 5
nelems = 1

co5:Conveyor
capacity = 3
nelems = 0

co6:Conveyor
capacity = 3
nelems = 0

co3:Conveyor
capacity = 4
nelems = 2

o1
:O

ut
p

ut
o2

:O
ut

p
ut in1:In

in2:In

s1:Sequence

s2:Sequence

c:Cylinder

b:Bar

in3:In

in4:In

assembler
:Assembler

i1
:In

p
ut

op1:Operator

o1:Operates

o3
:O

ut
p

ut

a:Assembled

in5:In

quality
:Quality

i2
:In

p
ut

o4
:O

ut
p

ut

gc
:GenCylinders

pack
:Package

i3
:In

p
ut

op2:Operator

o2:Operates

repair
:Repair

o5:Output

rework:Rework

i4
:In

p
ut

o6:Output

Abstract Syntax

Concrete Syntax

Fig. 2 Example production system model.

syntax on top, and a visual concrete syntax at the bot-
tom. It contains six machines (one of each type), two
operators, six conveyors and five pieces. In concrete syn-
tax, machines are represented as decorated boxes, except
generators, which are depicted as semi-circles with an
icon representing the kind of piece they generate. Op-
erators are shown as circles, conveyors as lattice boxes,
and each kind of piece has its own shape. In the model,
the two operators are currently operating an assembler
and a package machine respectively. Even though all as-
sociations in the meta-model are bidirectional, we have
assigned arrows in the concrete syntax, but this does not
affect navigability. For the case of the Input and Output
associations, the arrow in the concrete syntax helps iden-
tifying the input and output machines.

We use graph transformation [21,22] for the spec-
ification of the DSVL operational semantics. A graph
grammar is made of a set of rules and an initial graph
(host graph) to which the rules are applied. Each rule
is made of a left and a right hand side (LHS and RHS)
graph. The LHS expresses pre-conditions for the rule to
be applied, whereas the RHS contains the rule’s post-
conditions. In order to apply a rule to the host graph,
a morphism (an occurrence or match) of the LHS has
to be found in it. If several are found, one is selected
randomly. Then, the rule is applied by substituting the
match by the RHS. This process is called direct deriva-
tion. The grammar execution proceeds by applying the
rules in non-deterministic order, until none is applicable.

Next, we show some of the rules describing the DSVL
operational semantics. Rule “assemble” specifies the be-
haviour of an assembler machine, which converts one
cylinder and a bar into an assembled piece. The rule is
shown in concrete syntax in the upper part of Fig. 3, and
in abstract syntax to the bottom. Fig. 4 shows its appli-
cation to a model G (a sub-model of the one in Fig. 2)

Fig. 3 Rule in concrete (up) and abstract syntax (down).

yielding a model H. First, an occurrence of the LHS is
found in the model (dashed area). Then the elements
in the LHS that do not appear in the RHS are deleted,
whereas the elements in the RHS that do not appear
in the LHS are created. Our rules may include attribute
conditions, which must be satisfied by the match, and at-
tribute computations, both expressed in OCL. In Fig. 4,
the match of conveyor co2 makes the rule’s attribute con-
dition co2.nelems+1 <= co2.capacity become 1+1 ≤ 5,
and since it is true, the rule is applicable at that match.
Attributes referenced to the right of an assignment in an
attribute computation refer to the value of the attribute
before the rule application. In the figure, the attribute
nelems of the conveyors matched by the rule are up-
dated.

4 Jordi Cabot et al.

Fig. 4 A direct derivation.

There are two main formalizations of algebraic graph
transformation [21]: DPO and SPO. From a practical
point of view, their difference is that deletion has no side
effects in DPO. That is, when a node in the host graph
is deleted by a rule, the node can only be connected
through those edges explicitly deleted by the rule. When
applying the rule in Fig. 4, if piece “b” in model G would
be connected to more than one conveyor (should that be
allowed by the meta-model), then the rule could not be
applied as those additional edges would become dangling
in the host graph G after removing “b”. This condition is
called dangling edge condition. Instead, in SPO dangling
edges are removed by the rewriting step.

A second difference is related to the injectivity of
matches. A match can be non-injective, which means for
example that two nodes with compatible type in the rule
may be matched to a single node in the host graph. If
the rule specifies that one of them should be deleted and
the other one preserved, DPO forbids applying the rule
at such a match, while SPO allows its application and
deletes both nodes. In DPO, this is called the identifica-
tion condition.

Fig. 5 shows further rules for the DSVL. Rule “move”
describes the movement of pieces through conveyors. The
rule has a Negative Application Condition (NAC) that
forbids moving the piece if the source conveyor is the
input to any kind of machine having an operator. Fol-
lowing [21], we take the match of the NAC as injective for
both DPO and SPO. Rule “move” uses abstract nodes:
piece “p” and machine “m” are abstract, and are visually
represented with asterisks. Abstract nodes in a rule can
get instantiated to nodes of any concrete subtype [35]. In
this way, rules become much more compact. Rule “move”
in the example is equivalent to 24 concrete rules, result-
ing from the substitution of piece and machine by their
children concrete classes.

Rule “change” models an operator changing to a ma-
chine “m1” if the machine has some piece waiting to be
processed and it is unattended. Rule “rest” models the

Fig. 5 Additional rules for the DSVL simulator.

break pause of an operator, by deleting its connection to
a machine. Finally, rule “work” connects an idle operator
(checked by NAC2) to an unattended machine (checked
by NAC1).

3 From Graph Transformation to OCL

This section presents a procedure to translate graph
transformation rules into an OCL-based representation.
The procedure takes as input a graph transformation
system made of a set of rules, together with the MOF-
compliant meta-model used as a context for the rules.
As output, the method generates a set of semantically-
equivalent declarative operations (one for each rule) spec-
ified in OCL. Declarative operations are specified by
means of a contract consisting of a set of pre- and post-
conditions. Roughly speaking, pre-conditions will define
a set of conditions on the source model that will hold iff
the rule can be applied, namely if the model has a match

A UML/OCL Framework for the Analysis of Graph Transformation Rules 5

for the LHS pattern and no match for any NAC, while
post-conditions will describe the new state of the model
after executing the operation as stated by the difference
between the rule’s RHS and LHS.

More precisely, the input of the procedure is a tu-
ple (MM, ruleStyle, injMatch, GTS = {rj}j∈J), where
MM is a meta-model possibly restricted by OCL well-
formedness rules, ruleStyle and injMatch are two flags
indicating DPO or SPO semantics and injectivity of mat-
ches respectively, and GTS is a set of graph transfor-
mation rules. We represent DPO and SPO rules as r =
(LHS, RHS, ATTCOND, ATTCOMP , {NACi, ATT i

COND

}i∈I), where LHS, RHS and NACi are models that
use the types in MM . Note that they do not necessarily
have to satisfy all well-formedness rules in the meta-
model (e.g. lower cardinality constraints), as these are
patterns, not meant to be complete models. For rules
expressing operational semantics, what is important is
that the model to which the rules are applied remains
consistent. Instances are identified across the models in
the rule by their object identifiers, e.g. the elements pre-
served by the rule have the same object identifiers in
LHS and RHS. ATTCOND, ATT i

COND and ATTCOMP

are sets of OCL expressions. The first two contain at-
tribute conditions for the LHS and the i-th NAC, the
latter contains attribute computations to state the new
values for the attributes in the RHS.

The next subsections use this formalization to trans-
late the GTS into a set of OCL operations. The name
of the operations will be the name of the correspond-
ing rule. All operations will be attached to an artificial
class System, typically used in the analysis phase of a
development process to contain the operations with the
behaviour of the system [37]. Alternatively, each oper-
ation could be assigned to one of the existing classes.
The GRASP patterns (General Responsibility Assign-
ment Software Patterns [37]) can be used to choose the
most appropriate class to hold each operation.

3.1 Translating the left-hand side

A rule r can be applied on a host graph (i.e. a model) if
there is a match, that is, if it is possible to assign objects
of the host graph to nodes in the LHS such that (a) the
type in the host graph is compatible with the type in the
LHS, (b) all edges in LHS can be mapped to links in the
host graph and (c) the attribute conditions evaluate to
true when symbols are replaced by the concrete attribute
values in the model.

When defining the translation for condition (a) we
must explicitly encode the set of quantifiers implicit in
the semantics of graph transformation rules: when check-
ing if the host graph contains a match for LHS we have to
try assigning each possible combination of objects from
compatible types in the model to the set of nodes in the
LHS pattern. Thus, we need one quantifier for each node

in LHS. In terms of OCL, these quantifiers will be ex-
pressed as a sequence of embedded exists operators over
the population of each node type (retrieved using the
predefined allInstances operation).

Once we have a possible assignment of objects to the
nodes in LHS we must check if the objects satisfy the
(b) and (c) conditions. To do so, we define an auxil-
iary query operation matchLHSr, which returns true if a
given set of objects complies with the pattern structure
defined in LHS and satisfies its ATTCOND conditions.
In particular, for each edge e linking two objects o1 (of
type t1) and o2 (of type t2) in LHS, matchLHSr must
define a o1.navt2−> includes(o2) condition stating that
o2 must be included in the set of objects retrieved when
navigating from o1 to the related objects of type t2; the
right association end to use in the navigation navt2 is
extracted from MM according to the type of e and the
type of the two participant objects. The ATTCOND con-
ditions, already expressed using an OCL-like syntax in
r, are directly mapped as a conjunction of conditions at
the end of matchLHSr.

Let L = {L1, . . . , Ln} denote the set of nodes in LHS
and E = {(Li, Lj)|Li, Lj ∈ L, and Li connected to Lj}
the set of edges. Then, according to the previous guide-
lines, the LHS pattern of r will be translated into the
following equivalent pre-condition:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln |
matchLHSr(L1, . . . , Ln))...)

context System::matchLHSr(L1 : L1.type, . . . ,
Ln : Ln.type) : Boolean

body: L1.navL2.type−>includes(L2) and
. . . and
Li.navLj.type−>includes(Lj) and ATTCOND

where Li.type returns the type of the node Li. Node
identifiers are used to name the variable in the quanti-
fier. Note that Li.type::allInstances() returns all direct
and indirect instances of Li.type (i.e. it returns also the
instances of its subtypes) and thus abstract objects can
be used in the definition of r. When E and ATTCOND

are empty, the body of matchLHSr just returns true.

As an example, the pre-condition for the “rest” rule
is the following:

context System::rest()
pre: Operator::allInstances()−>exists(op |

Machine::allInstances()−>exists(m |
matchLHSrest(op, m)))

context System::matchLHSrest(op: Operator,
m: Machine) : Boolean

body: op.machine−>includes(m)

6 Jordi Cabot et al.

where matchLHSrest is called for every possible combi-
nation of operators and machines in the given model (be-
cause of the two nested exists iterators). If one of such
combinations satisfies matchLHSrest the pre-condition
evaluates to true, meaning that the “rest” rule can be
applied on the model.

Many graph transformation tools allow restricting
the match to be injective, and this can be enforced in
our translation procedure by setting the injMatch flag
to true. We can emulate injective matches by adding ex-
tra constraints in the pre-condition of the operation stat-
ing that every two objects with compatible type should
be different. That is, the condition Li <> Lj is added
for Li, Lj ∈ L, if Li.type = Lj .type or if one is a sub-
class of the other. This technique is also used to ensure
injectivity of NACs (Section 3.2) and to handle the iden-
tification condition (Section 3.4.2).

3.2 Translating the negative application conditions

In presence of NACs, the pre-condition of r must also
check that the set of objects of the host graph satisfying
the LHS do not match any of the NACs.

The translation of a NAC pattern is similar to the
translation of the LHS: an existential quantifier must
be introduced for each new node in the NAC (i.e. each
node not appearing also in the LHS pattern) and an
auxiliary query operation matchNACr will be created
to determine if a given set of objects satisfy the NAC.
Such matchNACr operation is specified following the
same procedure used to define matchLHSr. In addition,
matches in the NAC must always be injective. There-
fore, as part of the translation we must explicitly add
conditions ensuring that two nodes of compatible types
are not mapped to the same object in the host graph.
These have the form Ni <> Lj (or Ni <> Nj) for each
node Ni in the NAC that is type-compatible with a node
Lj in LHS (or another node Nj in the same NAC).

Within the pre-condition, the translation of the NACs
is added as a negated condition immediately after the
translation of the LHS pattern.

Let N = {N1, . . . , Nm} denote the set of nodes in
a NAC that do not appear in LHS. The extended pre-
condition for r (LHS + NAC) is defined as:

context System::r()
pre: L1.type::allInstances()−>exists(L1 |

. . .
Ln.type::allInstances()−>exists(Ln |
matchLHSr(L1, . . . , Ln)
and not (N1.type::allInstances()−>exists(N1 |
. . .
Nm.type::allInstances()−>exists(Nm |
matchNACr(L1, . . . , Ln, N1, . . . , Nm)
and Ni <> Lj . . . and Ni <> Nl) . . .)) . . .)

If r contains several NACs we just need to repeat
the process for each NAC, creating the corresponding
matchNACir operation each time.

As an example, the translation for the LHS and NAC
patterns of the “work” rule is:

context System::work()
pre: Machine::allInstances()−>exists(m|

Operator::allInstances()−>exists(op|
matchLHSwork(m,op)
and not Operator::allInstances()−>exists(op1|
matchNAC1work(m,op,op1) and op1 <> op)
and not Machine::allInstances()−>exists(m1|
matchNAC2work(m,op,m1) and m1 <> m))

context System::matchLHSwork(m:Machine,
op:Operator): Boolean

body: true

context System::matchNAC1work(m:Machine,
op: Operator, op1: Operator) : Boolean

body: m.operator−>includes(op1)

context System::matchNAC2work(m:Machine,
op: Operator, m1:Machine) : Boolean

body: m1.operator−>includes(op)

For this rule matchLHSwork simply returns true since
as long as a machine object and an operator exist in the
host graph (ensured by the existential quantifiers in the
pre-condition), the LHS is satisfied. The additional con-
ditions imposed by the NACs state that no other opera-
tor (op1 in the NAC1) can be working on that machine,
and that the operator in the LHS cannot be working on
a different machine (m1 in the NAC2).

3.3 Translating the right-hand side

The effect of rule r on the host graph is the following: (1)
the deletion of the objects and links appearing in LHS
and not in RHS, (2) the creation of the objects and links
appearing in RHS but not in LHS, and (3) the update
of attribute values of objects in the match according to
the ATTCOMP computations.

Clearly, when defining the OCL post-condition for
r we need to consider not only the RHS pattern (the
new state) but also the LHS and NAC patterns (the
old state) in order to compute the differences between
them and determine how the objects evolve from the old
to the new state. In OCL, references to the old state
must include the @pre keyword. For instance, a post-
condition like o.atr1 = o.atr1@pre + 1 states that the
value of atr1 for object o is increased upon completion
of the operation.

Therefore, the translation of the RHS pattern re-
quires, as a first step, to select a set of objects of the host
graph that are a match for the rule. Then, this initial set
of objects will be updated according to the rule defini-
tion. Unsurprisingly, this initial condition is expressed

A UML/OCL Framework for the Analysis of Graph Transformation Rules 7

with exactly the same OCL expression used to define
the pre-condition1 (where the goal was the same: to de-
termine a match for r). The only difference is that in the
post-condition, all references to attributes, navigations
and predefined properties will include the @pre keyword.
Note that when executing the rule it may happen that
the set of objects used to satisfy the pre-condition differs
from the one used in the match for the post-condition,
when there are several possible matches for the rule in
the graph. The goal of the pre-condition is just to check
that at least one match exists. The post-condition se-
lects one of these matches and changes it. This does not
affect the correctness of our approach since graph trans-
formation semantics are non-deterministic. If there are
several possible matches, the rule will be applied again
on these other matches afterwards. When evaluating the
rules (see next section), our checking procedure will try
all possible matches to determine their correctness.

Once a set of objects has been selected, it is passed
to an auxiliary operation changeRHSr in charge of per-
forming the changes defined by the rule. This operation
is defined as a conjunction of conditions, one for each
difference between the RHS and LHS patterns. Table 1
shows the OCL expressions that must be added to chang-
eRHSr depending on the actions specified by r. More-
over, the ATTCOMP expression is added at the end of
the procedure, with all references to previous attribute
values extended with the @pre keyword. As usual, we
assume in the definition of the post-condition for r that
all elements not explicitly modified in the post-condition
remain unchanged (frame problem [54]).

Let L = {L1, . . . , Ln} and E = {(Li, Lj)|Li, Lj ∈
L, and Li connected to Lj} be the set of nodes and
edges in LHS, DN = {DN1, . . . , DNq} ⊆ L and DE =
{(Lk, Ll)} ⊆ E the nodes and edges in LHS but not in
RHS, and NN = {NN1, . . . , NNp} and NE = {(NEx,
NEy)|NEx, NEy ∈ NN∪(L−DN), and NEx connected
to NEy} the set of nodes and edges in RHS but not
in LHS. Then, according to the previous guidelines, the
RHS of r is translated into the following post-condition:

context System::r()
post: L1.type::allInstances@pre()−>exists(L1 |

. . .
Ln.type::allInstances@pre()−>exists(Ln |
matchLHSr’(L1, . . . , Ln) and
changeRHSr(L1, . . . , Ln))...)

context System::matchLHSr’(L1 : L1.type, . . . ,
Ln : Ln.type) : Boolean

body: L1.navL2.type@pre−>includes(L2) . . . and
Li.navLj.type@pre−>includes(Lj)
and ATTCOND@pre

1 Though looking for a match twice is inefficient, OCL does
not offer any mechanism to pass information about variable
values from the pre-condition to the post-condition.

2 This second part of the condition is only required when
neither o1 nor o2 are new objects.

context System::changeRHSr(L1 : L1.type, . . . ,
Ln : Ln.type) : Boolean

body: −− creation of NN nodes
NN1.oclIsNew() and
NN1.oclIsTypeOf(NN1.type) . . . and
NNp.oclIsNew() and
NNp.oclIsTypeOf(NNp.type) and
−− removal of DN nodes
DN1.type::allInstances()−>excludes(DN1) . . . and
DNq.type::allInstances()−>excludes(DNq) and
−− creation of NE links
NE1.navNE2.type−>includes(NE2) and not
NE1.navNE2.type@pre−>includes(NE2) . . . and
NEx.navNEy .type−>includes(NEy) and not
NEx.navNEy .type@pre−>includes(NEy) and
−− removal of DE links
L1.navL2.type−>excludes(L2) . . . and
Lk.navLl.type−>excludes(Ll)
−− attribute computation
and ATTCOMP

The previous translation pattern assumes a rule with-
out NACs. If it has NACs, we should add OCL code
for testing their satisfaction, as described in Section 3.2.
Next we show the generated operations for “rest”, the
translation of the other rules is in the appendix.

context System::rest()
pre: Operator::allInstances()−>exists(op|

Machine::allInstances()−>exists(m|
matchLHSrest(op,m)))

post: Operator::allInstances@pre()−>exists(op|
Machine::allInstances@pre()−>exists(m|
matchLHSrest’(op,m) and changeRHSrest(op,m)))

context System::matchLHSrest(op: Operator,
m: Machine): Boolean

body: op.machine−>includes(m)

context System::matchLHSrest’(op: Operator,
m: Machine): Boolean

body: op.machine@pre−>includes(m)

context System::changeRHSrest(op: Operator,
m: Machine): Boolean

body: op.machine−>excludes(m)

3.4 Taking into account DPO and SPO semantics

The behaviour of the rules is slightly different depending
on whether DPO or SPO semantics are assumed. The
two differences we must consider in our translation are
the dangling edge and the identification conditions.

3.4.1 Dangling edge condition: In DPO, the dangling
edge condition states that a node can be deleted only if
all its incident edges are explicitly deleted by the rule.
With SPO semantics, all edges are implicitly removed
when deleting the node. This is the common assumption

8 Jordi Cabot et al.

Table 1 OCL expressions for changeRHSr

Element ∃ in LHS? ∃ in RHS? Update OCL Expression

Object o of type t No Yes Insert o o.oclIsNew() and o.oclIsTypeOf(t)
Object o of type t Yes No Delete o t::allInstances()−>excludes(o)
Link l between (o1, o2) No Yes Insert l o1.navt2−>includes(o2) and not o1.navt2@pre−>includes(o2)

2

Link l between (o1, o2) Yes No Delete l o1.navt2−>excludes(o2)

in UML/OCL specifications [54] and thus with SPO we
do not need to modify the translation patterns provided
so far. For instance, in the “assemble” operation it is
assumed that all links connecting objects c and b with
other objects are implicitly removed when deleting them.

On the contrary, under DPO semantics we must re-
fine the generated pre-condition for the rule to ensure
that the objects deleted by the rule have no other links
except those appearing in LHS and not in RHS. There-
fore, for each deleted object o instance of a type t and
for each type ti related with t in MM we must include
in matchLHSr the following conditions:

– o.navti−>excludingAll({o1, . . . , on})−>isEmpty(),
when LHS includes edges relating o with a set of
{o1, . . . , on} nodes of type ti.

– o.navti−>isEmpty(), when LHS does not include
edges relating o with nodes of type ti.

As an example, the query operation matchLHSassem-
ble for rule “assemble” under DPO semantics is defined
as follows:

context System::matchLHSassemble(c:Cylinder,
co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor) : Boolean

body: c.conveyor−>includes(co1) and
c.conveyor−>excluding(co1)−>isEmpty() and
b.conveyor−>includes(co1) and
b.conveyor−>excluding(co1)−>isEmpty() and
co1.om−>includes(a) and
a.oc−>includes(co2) and
a.operator−>includes(op) and
co2.nelems+1 <= co2.capacity

3.4.2 Identification condition: The identification con-
dition states that two nodes of the LHS cannot be matched
to the same object if one of the nodes is deleted and the
other preserved. With SPO semantics, the object in the
host graph is simply removed. Again, the SPO seman-
tics coincides with the default UML/OCL behaviour. If
two OCL variables point to the same object and one
of them is used to define that the pointed object is re-
moved, the other automatically becomes undefined. In-
stead, to enforce the DPO semantics we must ensure that
the matching is not injective. Similar to what we have
done to ensure injectivity of the LHS and when translat-
ing the NACs, we extend the matchLHSr operation with
an additional condition. Given that Li and Lj are two
nodes in the LHS pattern, such that Li.type = Lj .type
(or, in general, both types are compatible) and Li but

not Lj appears in RHS (or the other way round), the
condition Li <> Lj should be added in matchLHSr.
This condition forces the problematic existential quan-
tifiers to map to two different objects when evaluating
the pre-condition.

3.5 Preservation of Semantics

Altogether, our translation into OCL preserves the se-
mantics of the original rules. A formal proof of such
preservation is out of the scope of this paper, instead
we provide an intuition. We have to consider two cor-
rectness aspects: (i) a rule is applicable iff the generated
operation pre-condition is satisfied, and (ii) the effects of
a rule are exactly those required by the post-condition.
We consider the DPO semantics because it is more re-
strictive, but a similar reasoning holds for SPO.

For the first aspect, first assume that a rule is ap-
plicable. This means that (a) there is a match of the
LHS pattern in the graph, (b) the matching objects in
the graph satisfy the attribute conditions, (c) if the rule
deletes some element, then the dangling condition is sat-
isfied, (d) if the match is non-injective, then the iden-
tification condition is satisfied, and (e) all NACs are
satisfied. As shown in Section 3.1, the generated OCL
pre-condition contains a number of exists that locate all
potential matching objects, and an auxiliary query op-
eration matchLHSr that checks whether the edges are
present and the attribute conditions are satisfied by the
matching objects. If the dangling edge condition is satis-
fied, then the deleted objects do not have more connec-
tions than those explicitly deleted by the rule, which is
exactly what the conditions we generate in Section 3.4.1
do. If the match is non-injective and the identification
condition is satisfied, this means that all elements mapped
to the same one in the model are preserved. The condi-
tions we generate in Section 3.4.2 ensure that two ele-
ments with compatible type, where one is deleted and
the other not, have to be different. Hence, if (d) holds,
then our conditions are satisfied. Finally, if (e) holds, it
means that no matching objects satisfying the conditions
are found for any NAC. The conditions we generate in
Section 3.2 check that no match exists for the NAC such
that the matching objects satisfy the conditions. Alto-
gether we can conclude that if the rule is applicable then
our pre-condition is satisfied.

In the case a rule is not applicable, it is because
some of the conditions (a-e) fail. If (a) or (b) fails, then
our conditions will fail as they will not find any match

A UML/OCL Framework for the Analysis of Graph Transformation Rules 9

satisfying the conditions. If (c) fails, then our dangling
conditions will fail as there is some link and hence the
isEmpty() query will return false. If (d) fails it is because
the deleted element could not be identified to the same
object as some of the preserved elements. But then, our
condition Li <> Lj will fail. Finally, if (e) fails, then
some valid match for the NAC is found by our condi-
tions, and as they are negated, they will also fail.

It is easy to prove the converse of these two prop-
erties, i.e. if the pre-condition is true then the rule is
applicable, and if it is false the rule is not applicable.

Finally, we show that the effects of a rule are exactly
those required by the post-condition. A rule can create
and delete objects and edges, as well as change attribute
values. The changeRHSr operation includes an appropri-
ate OCL expression for each creation and deletion action
– check Table 1 – whereas the attribute computations are
handled by adding ATTCOMP . Hence, we can conclude
that the effects of the rule are exactly those required by
the post-condition.

3.6 Optimizing the resulting constraints

These general translation patterns can be slightly sim-
plified, yielding optimized OCL constraints, depending
on the specific structure of each rule. In what follows we
comment some possible simplifications.

– LHS nodes with no edges and no attribute condi-
tions do not need to be passed as parameters for
the matchLHSr operation. For those objects it is
just enough to check their existence in the main pre-
condition expression. E.g. in rule “work” we do not
need to pass op and m as parameters for matchLHSwork.

– Similarly, LHS nodes not referenced in a NAC pat-
tern do not need to be passed as parameters for the
matchNACr operation.

– matchLHSr and matchNACr operations with an empty
body (i.e. a body with just the true literal expression)
can be skipped.

– For a rule r not including any matchLHSr or match-
NACr operations, we do not need to nest the exists
iterators in its pre-condition but just use a conjunc-
tion of separated quantifiers, improving the efficiency
of its match finding process. For instance, assuming
a hypothetical “assign” rule that given a piece and a
conveyor puts the piece in the conveyor, the gener-
ated pre-condition for “assign” is the following:

context System::assign()
pre: Piece::allInstances()−>exists(p| true)

and Conveyor::allInstances()−>exists(c| true)

– The auxiliary matchLHSr, matchNACr and chang-
eRHSr operations can be reused across different (or
the same) rules sharing common patterns. As an ex-
ample, the NAC1 and NAC2 patterns for the rule
“work” and the NAC for the “change” rule (once

their irrelevant parameters have been removed us-
ing the previous optimizations) can be merged into
a single match operation that will be invoked (with
different arguments) in the pre-conditions.

– Some conditions in the patterns may be subsumed by
the meta-model constraints and thus can be removed
from the operations. As an example, consider the
condition c.conveyor−> excluding(co1) −> isEmpty()
(in matchLHS for “assemble” under DPO semantics)
saying that the piece c cannot be related to other
conveyors except for co1. This condition is already
implied by the maximum multiplicity constraint be-
tween Piece and Conveyor in the meta-model, which
forces pieces to be related to at most one conveyor.

As an example, once we apply these optimizations
to the “work” rule, (part of) its simplified translation
is shown in the next table. First, matchLHSwork can
be eliminated, then the parameters of matchNAC1work
and matchNAC2work can be reduced. Finally, both op-
erations for the NACs can be merged as they share the
same pattern and parameters.

context System::work()
pre: Machine::allInstances()−>exists(m|

Operator::allInstances()−>exists(op|
not Operator::allInstances()−>exists(op1|
matchNAC12work(m,op1) and op1 <> op)
and not Machine::allInstances()−>exists(m1|
matchNAC12work(m1,op) and m1 <> m))

context System::matchNAC12work(m:Machine,
op: Operator) : Boolean

body: m.operator−>includes(op)

4 Verification of Rule Properties with OCL

Translating a graph grammar into a set of operations
with OCL pre/post-conditions allows the analysis of rel-
evant correctness properties of the rules, as described
in this section (later on, in Section 6 we show how to
automate this analysis process). The properties under
analysis will take into account the meta-model invariants
that restrict the possible set of legal instantiations of the
meta-model, as well as the pre- and post-conditions de-
rived from the rules.

The following notation will be used to express these
concepts: I denotes an instantiation of the meta-model,
while I ′ represents the modified instantiation after in-
voking an operation. An instantiation I is called legal,
noted as INV[I], if it satisfies all the invariants of the
meta-model, i.e. both the graphical restrictions such as
multiplicity of roles in associations and the explicit OCL
well-formedness rules. By PREr[I] we denote that an
instantiation I satisfies the pre-condition of an opera-
tion r. Regarding post-conditions, we write POSTr[I, I ′]

10 Jordi Cabot et al.

to express that an instantiation I ′ satisfies the post-
condition of an operation r given that I was the instanti-
ation before executing the operation. As usual, to avoid
the frame problem [8] when interpreting POSTr[I, I ′],
we assume that only the objects referenced in the post-
condition can change their state during the operation
execution [54].

Two families of properties will be studied. First, it
is desirable to verify that for each rule there exists at
least one valid model where it can be applied, as other-
wise the rule is useless. Second, it is interesting to check
whether different rules may interfere among them, mak-
ing the order of application matter. Within each family
of properties, several notions will be presented, each with
a trade-off between the precision and the complexity of
its analysis. The list is the following:

– Applicability (AP): Rule r is applicable if there
is at least one legal instantiation of the meta-model
where it can be applied.

∃I : INV[I] ∧ PREr[I]

– Weak executability (WE): r is weakly executable
if the post-condition is satisfiable in some legal in-
stantiation.

∃I, I ′ : INV[I] ∧ PREr[I] ∧ INV[I ′] ∧ POSTr[I, I ′]

– Strong executability (SE): r is strongly executable
if, for any legal instantiation that satisfies the pre-
condition, there is another legal instantiation that
satisfies the post-condition.

∀I : (INV[I]∧PREr[I]) → ∃I ′ : (INV[I ′]∧POSTr[I, I ′])

– Overlapping rules (OR): Two rules r and s over-
lap if there is at least one legal instantiation where
both rules are applicable.

∃I : INV[I] ∧ PREr[I] ∧ PREs[I]

– Conflict (CN): Two rules r and s are in conflict if
firing one rule can disable the other, i.e. iff there is
one legal instantiation where both rules are enabled,
and after applying one of the rules, the other becomes
disabled.

∃I, I ′ : INV[I] ∧ INV[I ′] ∧ PREr[I] ∧ PREs[I]∧
POSTr[I, I ′] ∧ ¬PREs[I ′]

– Independence (IN): Two rules r and s are inde-
pendent iff in any legal instantiation where both can
be applied, any application order produces the same
result. Four instantiations of the model will be con-
sidered to characterize this property: before applying
the rules (I), after applying both rules (I ′′), after ap-
plying only rule r (I ′r) and after applying only rule s
(I ′s).

I
r−−−−→ I ′rys

ys

I ′s
r−−−−→ I ′′

∀I : (INV[I] ∧ PREr[I] ∧ PREs[I]) →
∃I ′r, I ′s, I ′′ :
(INV[I ′r] ∧ POSTr[I, I ′r] ∧ PREs[I

′
r] ∧

INV[I ′s] ∧ POSTs[I, I ′s] ∧ PREr[I
′
s] ∧

INV[I ′′]∧POSTr[I
′
s, I

′′]∧POSTs[I
′
r, I

′′])

– Causal Dependence (CD): Two rules r and s are
causally dependent iff there is some legal instantia-
tion where one is applicable and the other not, but
applying the former makes the latter applicable.

∃I, I ′ : INV[I] ∧ PREr[I] ∧ ¬PREs[I]∧
POSTr[I, I ′] ∧ PREs[I ′]

As an example of applicability, Fig. 6 shows a model
in which rules “move” and “change” are applicable, since
the model (I in the property definition) satisfies the in-
variants and both rules’ pre-conditions. The matches of
both rules are enclosed in different dotted polygons. The
rules are applicable because the model contains occur-
rences of both LHSs, but not of the NACs. In fact, the
model is also an example of overlapping between the
rules. They overlap because they are applicable on the
same model. Notice that in this match of the “move”
rule, the source and destination conveyors are mapped
to the same conveyor object, as there is no constraint for-
bidding this choice. It is worth noting that this instanti-
ation helps to detect a problem in the system definition:
non-injective matches are inadequate for rule “move”,
which in this case may be solved by adding an additional
invariant to the meta-model stating that a conveyor can-
not be next to itself, or by restricting the match of the
LHS to be injective. This situation was detected when
validating the system (see Section 5).

Fig. 6 Overlapping of rules “move” and “change”.

The difference between weak and strong executabil-
ity is that the former requires the existence of just one
legal model over which the rule can be successfully exe-
cuted, while the strong version of the property asks for
the executability of the rule in any situation in which its
pre-condition is satisfied. If a rule does not satisfy strong
executability, it may mean that it is underspecified re-

A UML/OCL Framework for the Analysis of Graph Transformation Rules 11

garding the OCL meta-model invariants. The needed ex-
tra constraints in rules can be either NACs or attribute
conditions.

For instance, consider the situation in Fig. 7. The
picture shows a rule “lighten” that dynamically recon-
figures the production plant by adding a new connection
from a machine of any type to an empty conveyor, if the
machine is already connected to a full conveyor and does
not have further outputs. This rule is not strongly ex-
ecutable since there are models satisfying the LHS but
where the rule cannot be applied. As an example, below
the rule there is a model that satisfies the LHS by map-
ping the machine in the rule to a quality machine. The
rule cannot be executed on this model, as an OCL con-
straint in the meta-model restricts quality machines to
have at most one output. To make the rule strongly ex-
ecutable, one can add an additional NAC with just one
machine of type quality mapped to m1. This NAC would
ensure that the rule is not applied to quality machines.
On the contrary, the rule is already weak executable be-
cause it can be applied as it is to any machine of type
different from quality. For the same reason, the NACs of
rules “change” and “work” in Fig. 5 are needed to ensure
strong executability.

Fig. 7 Non strongly executable rule.

Some other times we need extra attribute conditions
in the rules to ensure strong executability. For example,
the attribute conditions in rules “assemble” and “move”
in Figs. 3 and 5 are necessary to ensure that both rules
satisfy strong executability.

The conflict and independence properties are related
to the concept of critical pairs. The term critical pair
is used in graph transformation to denote two direct
derivations in conflict (i.e. applying one disables the other),
where the starting model is minimal [21,26]. The set of
critical pairs gives all potential conflicts, and if empty, it
means that the transformation is confluent (i.e. a unique
result is obtained from its application). For technical

reasons, the algebraic approach to graph transformation
usually models any attribute computation as a rewriting
of edges [21]. This means that any two rules changing the
same attribute of a node will be reported as conflicting.
In general, this does not imply that one rule disables
the other, but however ensures confluence. For example,
two rules, one multiplying an attribute x by 2, and the
other adding 1 to the same attribute, would be reported
as a conflict; but no rule disables the other. On the con-
trary, our conflict condition is more precise about at-
tribute computations and considers the OCL invariants,
but by itself does not ensure confluence. In the previous
example, if the rule multiplying by 2 is applied first, the
attribute x becomes 2×x+1. However, if the rule adding
1 is applied first, we obtain (x+1)× 2. Hence the trans-
formation would not be confluent. The advantage of our
approach is that fewer conflicts will be reported by the
conflict property, but confluence has to be checked with
the independence property.

The independence property allows applying two rules
in any order, obtaining the same result. This is a strong
version of the local Church-Rosser theorem in DPO [21],
where we require rule independence for every valid model
I, and ensures confluence (i.e. same result). In the same
way as the technique of critical pairs in graph transfor-
mation [1], we do not have to check each possible model
in which rules overlap, but only the minimal ones.

The causal dependence property detects whether two
rules have some dependency, in such a way that execut-
ing one enables the other. In this way, one rule may add
one element that the other needs (produce-use depen-
dency), or delete some element that is part of the NAC of
the other rule (delete-forbid dependency). For example,
consider rules “work” and “rest”. The former associates
an operator to a machine, while the latter deletes such
connection. There is a produce-use dependency between
the rules because “rest” needs an edge which “work” pro-
duces. These rules have also a produce-use dependency,
because “rest” deletes a connection which is in the NAC
of “work”. Fig. 8 shows two host graphs, together with
two derivations that illustrate these two dependencies.

op1 op2 op1 op2 op1 op2rest work

work

delete-forbid dependency:

assembler

op1 work rest

rest

produce-use dependency:
op1 op1

assembler assembler

assembler assembler assembler

Fig. 8 Causal dependencies.

12 Jordi Cabot et al.

Finally, note that studying whether all these prop-
erties hold in some specific host graph is possible, by
replacing the ∃I with some specific model I1 and then
checking if the formula holds for that I1.

5 Validation of Graph Transformation Systems

The transformation of graph grammars into OCL can
also be used for validation. While verification attempts
to check that the graph transformation rules satisfy some
required correctness properties (“is the transformation
right?”), validation tries to ensure that the graph trans-
formation rules match the intentions of the designer (“is
this the right transformation?”).

A validation tool should let the designer inspect the
application of graph transformation rules on a given host
graph in order to check whether the result is the one ex-
pected by the designer. To this end, the designer should
be able to perform the following steps:

– define an input model I, instance of the meta-model
(i.e. the host graph),

– select the rule to be applied, and
– inspect the result of applying the rule to I.

The UML/OCL definition of the graph transforma-
tion rules enables several possible validation flows using
the same analysis engine required for verification. The
only difference is that now, the input I is fixed by the
designer.

This input can be easily characterized by defining an
OCL constraint which is only satisfied by the desired in-
put meta-model instance to validate. For example, let us
consider how the behaviour of the previous graph trans-
formation rules can be validated in a production system
where there is only one operator and no conveyors, ma-
chines or pieces. Such production system is characterized
by the following OCL constraint:

Operator::allInstances() −>size() = 1 and
Machine::allInstances() −>isEmpty() and
Conveyor::allInstances() −>isEmpty() and
Piece::allInstances() −>isEmpty()

Now it is possible to validate several properties about
the rules by testing their behaviour on that specific in-
put model. In order to do that, it is only necessary to
strengthen the pre-condition of the OCL operations gen-
erated for the rules. The OCL constraint defining the
input graph (denoted as INPUT) is added to the pre-
conditions using a conjunction, e.g. for rule “work”, the
new pre-condition is: PRE′work = PREwork and INPUT3.
With this new pre-condition, we can check whether the
rule is applicable for this instance, using the same anal-
ysis engine as in verification. Similarly, it is possible

3 The INPUT constraint is not added as an OCL invariant
because we want to restrict the input graph, but not the
graph produced by the application of the transformation rule.

to check whether the rule is executable and obtain the
graph produced by the application of the rule, or check
whether two rules overlap for this input instance by
strengthening both pre-conditions.

A more interesting possibility is to define partially
specified input instances. This can be achieved simply
by writing OCL constraints which can be satisfied by
more than one instance. For example, the designer might
want to study the behaviour of a production system in a
scenario where all conveyors are full (the state of other
parts of the model is left undefined). This scenario is
described by the following constraint:

Conveyor::allInstances()−>notEmpty() and
Conveyor::allInstances()−>forAll(c| c.capacity = c.nelems)

As before, properties of interest, e.g. is rule “move”
applicable if all conveyors are full?, can be checked on
this scenario. The advantage is that now we can detect
problems in the definition of the graph transformations
rules by just characterizing the relevant part of the input
state instead of providing its full definition (more time-
consuming).

As an example to illustrate the benefits of the val-
idation process, let us consider the rule “work”. This
rule should provide a mechanism to assign operators to
machines, provided that the machine m does not have
another operator (NAC1) and that the operator op is
not assigned to any other machine (NAC2). The two
NACs are intended to capture the situations where this
rule cannot be applied. If we validate the rule on the fol-
lowing scenario, where op and m are already connected:

Operator::allInstances()−>exists (op |
Machine::allInstances()−>exists (m |
op.machine−>includes(m))) and
Operator::allInstances()−>size() = 1 and
Machine::allInstances()−>size() = 1

it turns out that rule “work” is also applicable. How-
ever, this is not what we would expect: the rule should
not be applicable because it is not possible to add a
new connection between op and m. This scenario is not
captured by the current NACs because their injective
semantics forbids that objects appearing in the NACs
but not in the LHS are matched to the same object as
any of the objects appearing in the LHS. Therefore, ob-
jects op and m from the LHS cannot be equal to objects
op1 and m1 from the NACs. This means that neither of
the NACs forbid the operator and machine matched in
the LHS from being connected. It is necessary to add a
third NAC forbidding op and m from being previously
connected4. Note that the rule “work” as shown in Fig. 5
is not strong executable, and thus this error could have
also been detected by the verification method of previous
section.

4 In fact, we ourselves detected this error when “playing”
with the rule over different scenarios.

A UML/OCL Framework for the Analysis of Graph Transformation Rules 13

Fig. 9 The architecture for rule verification.

6 Tool Support

In this section, we explain how we have automated the
previous ideas using several tools, as shown in Fig. 9.

As a first step, the designer specifies the graph trans-
formation rules and selects the properties to verify us-
ing the graphical modelling environment provided by the
AToM3 tool [34]. This tool allows the definition of the
syntax of DSVLs using meta-modelling and model ma-
nipulation via graph transformation. In this way, the rule
designer uses the concrete syntax of the DSVL for rule
specification, which is more intuitive and closer to the
problem domain. Section 6.1 gives further details on this
step.

Then, using the translation we have shown in Sec-
tion 3, OCL expressions are generated (step 2 of the
figure) that can be analysed using different tools (step
3). In particular, our framework uses the UMLtoCSP
tool [13], based on constraint programming techniques.
Alternative tools that may replace the role of UML-
toCSP within the framework are studied in Subsection 6.4.
Finally, our architecture parses the results reported by
UMLtoCSP during the analysis (step 4), showing them
in the AToM3 front-end tool, employing the same con-
crete syntax used in the definition of the DSVL (step
5). In this way, all the verification process is kept trans-
parent to the user, who is not aware of the method and
internal formalism used for the verification of the rules.
This last step is described in Subsection 6.3.

6.1 Front-end tool

We use the AToM3 [34] tool for the design of the syn-
tax and semantics of DSVLs. The syntax is specified
using meta-modelling, while model manipulations are
expressed using graph transformation rules. Constraints
can be given in two formats: Python and OCL. The for-
mer are meant to be executable inside the tool, while the
latter were merely used for documentation up to now.

From the definition of the meta-model and the rules,
AToM3 generates a modelling tool that allows building
models conformant to the meta-model, as well as execut-
ing the defined graph transformation rules. As an exam-
ple, Fig. 10 shows the generated modelling environment
for the production system example, and a state in the
execution of the graph grammar for its simulation.

Fig. 10 Modelling environment for the production system.

In order to support the procedure given in previous
sections, we have extended AToM3 with the possibility of
exporting the meta-model definition as an XMI file [59],
and the OCL expressions derived from the graph gram-
mar rules as a textual file. The code generator uses the
OCL version of the constraints in meta-models and rules.
The generated meta-model in XMI format includes an
additional class System which contains the operations
for each rule in the grammar. These files can be used by
a number of tools to perform different kinds of analysis.
The next subsection presents the analysis with the tool
UMLtoCSP and Section 6.4 discusses other alternative
analysis tools.

14 Jordi Cabot et al.

6.2 Back-end tool

The correctness properties of graph transformation rules
can be studied by analysing their translation into OCL
declarative operations. In our architecture, this analy-
sis is performed by UMLtoCSP [13], a tool for the for-
mal verification of UML class diagrams annotated with
OCL constraints (invariants, pre-conditions and post-
conditions).

UMLtoCSP has been designed to achieve the max-
imum degree of automation in the verification process
without imposing restrictions on the input notation. Rather
than verifying custom user-defined properties, UMLtoCSP
checks a predefined collection of correctness properties.
For example, it can check whether a class diagram is
satisfiable (i.e. if it is possible to create a non-empty in-
stance without violating any integrity constraint), whether
an invariant is redundant (the remaining integrity con-
straints do not allow the invariant to be false), whether
an operation is applicable (there is an instance which si-
multaneously satisfies the pre-condition and all integrity
constraints) or whether two operations overlap.

The output of UMLtoCSP is an instance of the class
diagram, i.e. an object diagram depicting the set of ob-
jects in each class, the connections between them and
the value of their attributes. For properties that require
the existence of one instance (like satisfiability or ex-
ecutability), the output is an example that proves the
property. On the other hand, for properties that can be
disproved by the existence of an instance, the output is
a counterexample of the property. An example of such
properties is redundancy of an invariant, where an in-
stance satisfying all integrity constraints except the in-
variant certifies that it is not redundant. In any case, the
instance can be shown graphically using the graph lay-
out software GraphViz. We have also modified the tool
to allow its invocation from the command line, so that
it can be used as a back-end from AToM3.

Internally, the search of an example/counterexample
is modelled as a Constraint Satisfaction Problem (CSP).
A CSP consists of a set of variables, a domain for each
variable and a set of constraints over the variables. In-
tuitively, the variables characterize the object diagram
(number of objects of each class, values of attributes,
targets of association ends) while the constraints capture
the graphical and textual restrictions (multiplicities, in-
heritance hierarchies, OCL constraints).

A solution to a CSP is an assignment of values to
variables such that (a) each value is within the domain
of the variable and (b) all constraints are satisfied. The
search of a solution is performed automatically by a con-
straint solver (ECLiPSe [19] in the case of UMLtoCSP).
The solver tries to assign values to variables one at a
time, backtracking every time a constraint is violated by
a partial assignment.

As an example, we show in Fig. 11 the object diagram
automatically computed by UMLtoCSP to prove that

rules “change” and “work” overlap5. The overlapping
between rules “change” and “move” previously depicted
in Fig. 6 has also been computed by UMLtoCSP, and it
is also an example of conflict, because applying “change”
disables “move”.

Fig. 11 Example of an overlapping between rules “change”
and “work” as computed by UMLtoCSP.

6.2.1 Efficiency issues: The analysis of UML class dia-
grams is a computationally complex problem. First, rea-
soning about UML class diagrams without OCL con-
straints is EXPTIME-complete [6]. The addition of OCL
makes the problem undecidable in general.

To avoid undecidability issues, UMLtoCSP offers an
automatic procedure for verification which is not com-
plete. The search for an example or counterexample oc-
curs within a finite search space that is defined by the
user, e.g. by defining the number of objects to be con-
sidered. Finding an example (respectively, counterexam-
ple) proves (disproves) the property, but if none is found
there is no information concerning the validity of the
property, other than there is no example/counterexample
within the defined search space.

Therefore, from the point of view of completeness,
the user is interested in defining a search space which
is as broad as possible: a large number of potential ob-
jects for each type and a wide range of values for each
attribute. However, as a trade-off, the size of the search
space to be explored by UMLtoCSP is the grand product
of the sizes of all the domains of the variables. For exam-
ple, given 3 potential objects, each with 2 attributes and
10 possible values for each attribute, the number of pos-
sible instantiations of those objects is 102 ·102 ·102 = 106

(2 attributes per object with 10 possible values each
where each object is independent of the others). It should

5 The overlapping property is internally expressed as a sat-
isfiability problem (i.e. two rules overlap if it is possible to
create an instance that satisfies the meta-model constraints
and the pre-conditions of both rules at the same time, where
the pre-conditions are treated as additional invariants to be
satisfied by the instance).

A UML/OCL Framework for the Analysis of Graph Transformation Rules 15

be noted that the size of the search space suffers from
a combinatorial explosion, growing very quickly as the
number of objects to be considered increases.

Although this may seem an important problem that
may affect the soundness and scalability of our analysis
approach, we would like to remark that limited search
spaces are sufficient to identify a high proportion of de-
fects. This observation, also called “small scope hypothe-
sis”, is the basis of several verification tools such as the
Alloy analyzer [27] and it has been validated empirically
[3]. In the context of graph transformation rules, the hy-
pothesis implies that analyzing the behaviour of rules for
small graphs is sufficient to identify most defects. For ex-
ample, let us consider the rule “work” from our running
example, which assigns idle operators to machines. It
seems natural that a small number of operators and ma-
chines are required to study the behaviour of this rule,
i.e. at most a busy operator, an idle operator, an empty
machine and an occupied machine. Therefore, even an
inconclusive answer like “considering at most two ob-
jects per class, the rule is not applicable” is a signal of
a potential error in the rule.

Moreover, the search process does not attempt to
explore the search space exhaustively. First of all, the
search stops when a solution (example or counterexam-
ple) is found, something which typically happens quickly
if there exists a solution. Also, the constraint solver used
by UMLtoCSP (ECLiPSe) applies numerous optimiza-
tions to guide the search. For instance, constraints are
evaluated as early as possible to prune partial solutions
which would be unable to satisfy all the constraints. Fur-
thermore, constraint propagation is used to infer infor-
mation about constraints where not all variables have
been assigned, e.g. when one term in a product is zero,
the result is zero regardless of the value of the other
terms. Such optimizations allow the efficient exploration
of very large search spaces.

Finally, the analysis of graph transformation rules
has some specific traits that make it more amenable to
analysis using tools like UMLtoCSP. First, the verifica-
tion of properties involves one or at most two rules of
the graph grammar, but not all of them simultaneously.
The number of rules may affect the number of proper-
ties to be checked if, for instance, a designer wants to
check whether there is conflict among any pair of rules.
Nevertheless, the size of the grammar does not have any
impact in the complexity of each individual verification
problem.

A second trait which helps the analysis is the exis-
tence of a LHS, as this provides a strong indicator of
the number of objects that will be necessary for its ap-
plicability, executability, overlapping or conflict. For in-
stance, in order to check the applicability of a rule, we
need to find an instance of the model with as many ob-
jects as its LHS. The multiplicities of associations and
the invariants of the meta-model may require the cre-
ation of additional objects, however the structure of the

LHS provides a very good heuristic for choosing the size
of the search space.

To illustrate these heuristics, let us consider two ex-
amples of overlapping analyzed with UMLtoCSP and
presented in Figs. 6 and 11. We can compare the CPU
time required for the computation of the overlapping in-
stance in two scenarios: without heuristics, i.e. using the
default search space defined in UMLtoCSP; and with
heuristics, i.e using the search space (number of objects)
inferred from the LHS of the rules. The CPU time in
seconds, measured on a Pentium 4 2Ghz with 256Mb of
memory, is the following:

Example Without heuristics With heuristics

Fig. 6 43,26 seconds 0,16 seconds
Fig. 11 115,15 seconds 0,34 seconds

Verification can be quickly completed with and with-
out heuristics, but the LHS heuristic provides a signif-
icant reduction in CPU time. These results show that,
even though the problem is computationally very com-
plex, the proposed approach is efficient enough to be us-
able within an interactive graphical modelling tool like
AToM3.

6.3 Back-annotation of results

From a user perspective, the adoption of a verification
framework such the one presented herein largely depends
on usability aspects. In particular, apart from being an
automatic process, the framework should also hide the
analysis tool and its underlying formalism to the user.

In our framework this is achieved by expressing the
input and output of the verification process with the con-
crete syntax of the DSVL the user has designed. There-
fore, the feedback becomes more intuitive and easier to
interpret.

As showed in Fig. 9, our architecture hides the verifi-
cation process by using the graphical interface provided
by the AToM3 tool as a front-end for both defining the
DSVL and showing the analysis results. More in detail,
the user selects the rules to be analysed and the property
to be verified using AToM3. Then, the XMI/OCL code
generator produces two intermediate files, which are au-
tomatically fed into UMLtoCSP. The results of the anal-
ysis (a GraphViz file) are then parsed and loaded into
AToM3 again, and shown to the user in the concrete syn-
tax of the DSVL. In this way, the designer is not aware
of the internal analysis mechanisms.

As an example, Fig. 12 shows the invocation of the
rule analysis from AToM3. The dialog box allows select-
ing the rules to be analysed, the semantics used for the
transformation (DPO or SPO), and the property to be
verified. In the figure, the designer has selected to check
the overlapping of rules “assemble” and “move” using
SPO semantics.

16 Jordi Cabot et al.

Fig. 12 Invoking the rule analysis from AToM3.

Fig. 13 shows the result of the analysis, which is a
model in the concrete syntax of the DSVL showing an ex-
ample of overlapping. In case no example/counterexample
exists for the given property, the user is warned using a
dialog box.

Fig. 13 Analysis results shown back in AToM3.

6.4 Alternative analysis tools

Even though UMLtoCSP was chosen as the back-end
tool, it is not the only candidate tool available. Other ex-
isting tools for the validation and verification of UML/OCL
models (e.g. [2,10,17,25,47,49]) can be used instead.

Each tool follows a different approach and internal
formalism to cope with the verification process, with its
own set of advantages and drawbacks: bounded verifica-
tion, need for user guidance, termination and so forth.
Moreover, the richness of constructs in OCL constitutes
a challenge for all existing tools. As a result, the degree
of support for some OCL constructs varies from one tool
to another. An example is the support for the operator
@pre in the post-condition, which must be used to ver-
ify properties that use POSTr. Therefore some tools may

have to be adapted for the verification of those proper-
ties. All these issues should be taken into account by the
designer when choosing a particular tool to verify the
graph transformation rules. In the remainder of this sec-
tion, we present several tools, their capabilities and their
suitability to operate in the tool architecture proposed
in this paper.

HOL-OCL [10] is a theorem prover for OCL based
on the Higher-Order Logic theorem prover Isabelle. It
is capable of proving complex properties on UML/OCL
specifications like the correctness properties defined in
Section 4. The decision procedures provided by HOL-
OCL are complete: given a UML/OCL specification and
a correctness property expressed in Higher-Order Logic,
the tool is able to either prove or disprove the property.
In this way, the tool is able to formally prove proper-
ties using logic deduction rules rather than looking for
a counterexample within a bounded search space. How-
ever, due to the expressiveness of the underlying logic,
some properties are undecidable. This means that, even
though HOL-OCL uses heuristics to increase automa-
tion, it usually requires user guidance to complete proofs.
In this sense, HOL-OCL might fail to hide the details of
the verification process from the user. Moreover, there
are still some parts of the OCL language not covered by
this tool [11].

The Constructive Query Containment (CQC) method
is a technique proposed for the analysis of database queries
which can also be applied to reason on UML/OCL mod-
els [47,49]. Although this approach imposes some restric-
tions on the expressiveness of OCL constraints (e.g. no
arithmetics), this decision procedure is complete. Re-
garding decidability, as the verification of UML/OCL
models is undecidable in general the method may not
terminate, but it is possible to analyse the UML/OCL
model a priori to ensure the termination of the analysis
in some cases [48].

Alloy [27] is a toolkit for the verification of soft-
ware specifications. Even though it uses its own input
notation based on first-order relational logic, there is
a graphical front-end (UML2Alloy [2]) which partially
maps UML/OCL constructs to their Alloy counterpart.
Regarding its functionality, Alloy permits the definition
of custom properties which can be checked using SAT
solvers and bounded model checkers. Thus, it can check
the correctness properties defined in Section 4. However,
the Alloy notation provides limited support for arith-
metic operators (e.g. no multiplication or division), re-
stricting the set of expressions allowed in attribute condi-
tions. On the other hand, as Alloy supports model check-
ing, we would be able to check more complex properties
on sequences of rule firings [5].

USE [25] is a validation environment for UML/OCL
models. It provides both textual and graphical interfaces
to instantiate classes, establish associations between ob-
jects and evaluate OCL constraints. From this point of
view, USE can be useful to validate the correctness prop-

A UML/OCL Framework for the Analysis of Graph Transformation Rules 17

erties of graph transformations. However, USE does not
support a completely automatic verification process. It
can check whether there is an instance satisfying all the
invariants, but the user needs to guide this computa-
tion by providing a script which specifies, among other
things, the structure of the instances to be tested and the
order in which constraints should be checked to improve
performance. The MOVA tool [17] presents a similar set
of advantages and drawbacks.

7 Related Work

There are two main sources of related work in the anal-
ysis of graph transformation rules: those analysing rules
using DPO and SPO theory, and those that translate
rules to other domains for analysis. In the former di-
rection, graph transformation has developed a number
of analysis techniques [21,26,53], but they usually work
with simple type graphs (i.e. without OCL constraints).
Our work redefines some of these analysis properties,
but taking into consideration a full-fledged meta-model
which includes OCL integrity constraints, as well as OCL
constraints in rules. Some preliminary efforts to inte-
grate graph transformation with meta-modelling can be
found in [35], where type graphs were extended with in-
heritance, and in [55], where edge inheritance and edge
cardinalities were incorporated into type graphs. How-
ever, none of these works provides analysis capabilities.

With respect to graph-based tools, AGG [1] imple-
ments some graph transformation analysis techniques,
like dependency analysis, critical pairs, sequence appli-
cability and checks sufficient criteria for grammar termi-
nation. However, even though AGG handles type graphs
with inheritance and cardinality constraints, it does not
consider OCL in meta-models or in rules. Many other
graph-based tools are moving towards supporting richer
meta-modelling concepts. For example, the TGraph ap-
proach [20] allows ordered nodes and edges, and is sup-
ported by a number of tools to define, manipulate, ana-
lyze, query, visualize and transform graphs. Constraints
are formulated using the GReQL query language, while
transformations are specified by using the MOLA (Model
Transformation Language) transformation engine [29].
Fujaba [24] is another graph-based tool, which allows
defining graph transformation rules and includes advanced
code generation capabilities. However, it does not pro-
vide rule analysis facilities. Altogether, we believe that
the approach presented in this paper can be used with
other tools and transformation approaches. Moreover,
the use of OCL as a common target language enables in-
teroperability of different transformation languages and
tools.

Regarding the transformation of graph rules into other
domains, their translation into OCL pre- and post-con-
ditions was first presented in [12]. Here we give a more
complete OCL-based characterization of rules that con-

siders DPO and SPO semantics, NACs, and that en-
codes the LHS’s matching algorithm as additional pre-
conditions. In [12] the match is passed as parameter
to the OCL expressions, assuming a predefined existing
external mechanism. In addition, we exploit the result-
ing OCL expressions in order to enable the tool-assisted
analysis of different rule properties.

In [4], rules are analysed using Petri net techniques to
check safety properties. In particular, they use an unfold-
ing construction that approximates the original graph
grammar, in the sense that for any reachable state in
the grammar, there is an equivalent one in the construc-
tion (but not the other way round). Hence, this analysis
technique is useful to verify reachability properties like
deadlocks. Although able to approximate infinite state
grammars, as it is, the technique does not cope with
attributes or meta-model restrictions.

In [5], rules are translated into Alloy in order to study
the applicability of sequences of rules and the reachabil-
ity of models. Even though Alloy is equipped with a
SAT solver (so that similar properties to the ones we
verify could be analysed), the properties in [5] are only
related to reachability. Moreover, the integration with
meta-model integrity constraints is not discussed. In our
case, an encoding of reachability properties like the one
proposed by the authors is also possible, but left for fu-
ture work.

In this line of work, other approaches like [51,52,
57] rely on model-checking techniques to analyse reach-
ability and invariants. In particular, in [57], rules, mod-
els and meta-models are transformed into Promela for
model-checking with SPIN. The Groove tool [51] allows
also model-checking of graph grammars, by using a ded-
icated explicit checker. Finally, in [52] a transformation
of rules into the rewriting logic system Maude is pro-
posed, where reachability analysis and LTL model check-
ing is performed, using the Maude model checker. These
three approaches do not take into account meta-models
with integrity constraints or OCL constraints in rules.
However, there are several efforts for supporting OCL in
Maude, and integrating OCL in the approach of [52] is
feasible. Our use of OCL as intermediate representation
has the benefit that it is a tool independent, standard
language, and moreover we can easily integrate attribute
conditions and meta-model constraints. Finally, the kind
of properties we analyse is also different. While these
approaches focus on reachability and model checking,
our use of UMLtoCSP – and the fact that it formulates
the UML/OCL model as a CSP – makes it possible to
analyse properties like applicability, overlapping and ex-
ecutability of rules, based on model finding capabilities,
in contrast with space-state generation and exploration
techniques.

In [16], we applied similar techniques to the analysis
of declarative model-to-model transformation specifica-
tions, in particular triple graph grammars (TGGs) and
QVT-relational transformations. However, there the in-

18 Jordi Cabot et al.

termediate representation was based on the definition of
invariants between the source and target meta-models
(more suited to the relational semantics of declarative
transformations) instead of pre/post-condition contracts.
The properties that we are interested in both cases are
also different. For relational transformations we are more
interested in checking whether the transformation is to-
tal, exhaustive or injective.

In our approach we analyse rules (or pairs of rules) in
isolation, but we do not consider sequences of rules yet.
Some recent works have started to analyse sequences,
such as [33], where sufficient conditions for sequence ap-
plicability are stated, or [46] where the minimal graph
enabling (or forbidding) the application of a sequence
is calculated. We leave the study of rule sequences for
future work.

Finally, this paper focuses on the analysis of graph
transformation rules. However, some properties under
consideration are also relevant to other transformation
paradigms, e.g. the potential dependencies among differ-
ent transformation steps. For example, two areas where
dependency analysis is especially relevant are program
refactoring [41], where different code restructuring oper-
ations may enable/disable each other, and aspect-oriented
development [40], where aspects encode cross-cutting con-
cerns in a software system and unexpected interactions
may arise when composing different aspects. Graph trans-
formation approaches and tools like AGG can be applied
to this dependency analysis [40,42]. However alterna-
tive approaches for other transformation notations have
also been proposed [30]. For example, the Condor tool
[31,32] analyses dependencies among aspects formalized
as conditional transformations, i.e. program transforma-
tions where a pre-condition controls whether the trans-
formation is applied or not. Using a logic-based inference
engine, Condor considers notions like rule conflict, causal
dependence and rule sequences (which are not studied in
this paper). Nevertheless, the graph transformation no-
tation considered in our paper takes into account not
only the structure of the graph but also the values of
attributes. This type of analysis is outside the scope of
Condor, as it is intended as an efficient light-weight ap-
proach.

8 Conclusions and Future Work

In this paper we have presented a new method for the
analysis of the operational semantics of DSVLs expressed
as graph transformation rules. Our method takes into ac-
count the (meta-)model structure of the DSVL and its
well-formedness OCL constraints during the verification.
This way, properties like applicability, which are funda-
mental to detect inconsistencies in graph transformation
rules, can be studied while simultaneously checking for
semantic consistency with the meta-model definition.

Our method translates the graph transformation rules
into an OCL-based representation. Then, the resulting

OCL expressions are combined with the OCL constraints
specified for the (meta-)models and passed on to exist-
ing OCL tools for their joint verification. The translation
supports rules with NACs, attribute conditions, injective
and non-injective matches, attribute computations and
distinguishes DPO and SPO semantics.

We have automated the verification process by devel-
oping a bridge between AToM3 (for specifying the meta-
model and the graph transformation rules) and UML-
toCSP (for verifying the resulting UML/OCL transla-
tion). We have also implemented a back-annotation mech-
anism that hides the analysis method and permits the
designer to work in terms of the original DSVL only.

We believe this translation can be useful for other
purposes as well. Indeed, once the graph transformation
rules are expressed in OCL, we can benefit from all tools
designed for managing OCL expressions (spawning from
code-generation to documentation, metrics analysis, ...)
when dealing with the rules. Moreover it promotes the
interoperability of transformation languages and tools.

As future work we would like to extend our analy-
sis framework with the inclusion of model transforma-
tion testing capabilities [9], where relevant test models
are automatically synthesized from our translation and
passed on to the testing tool. We believe that our in-
termediate representation can also be useful to express
model transformations specified with other model trans-
formation languages (e.g. QVT). In this sense, we plan
to explore the benefits of using our method when trying
to compare and combine partial model transformations
expressed in different languages.

We would also like to explore the automatic synthe-
sis of attribute conditions and NACs for the rules, given
the rule’s actions and the meta-model constraints, in a
similar way as graph constraints are converted into rule’s
pre-conditions [21]. The derived conditions should con-
strain the rule to ensure that it is strongly executable (in
the sense of the definition of Section 4), improving this
way the user experience when using the rules. Finally,
we plan to combine our approach with others devoted to
the verification and testing of rule sequences.

Acknowledgements. We thank the referees for their
useful comments, which helped us to improve the pa-
per. This work is sponsored by the Spanish Ministry of
Science and Innovation, under projects “MODUWEB”
(TIN2006-09678), “METEORIC” (TIN2008-02081) and
“Design and construction of a Conceptual Modeling As-
sistant” (TIN208-00444/TIN - Grupo Consolidado), and
UOC-IN3 research grant.

References

1. AGG graph transformation analysis tool:
http://tfs.cs.tu-berlin.de/agg/

2. Anastasakis, K., Bordbar, K., Georg, G., Ray, I. 2007.
UML2Alloy: A challenging model transformation. Proc.
MODELS’07, LNCS 4735, pp. 436–450. Springer.

A UML/OCL Framework for the Analysis of Graph Transformation Rules 19

3. A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov.
Evaluating the ”Small Scope Hypothesis”. Technical Report
MIT-LCS-TR-921, MIT CSAIL, 2003.

4. Baldan, P., Corradini, A., König, B. 2001. A static analy-
sis technique for graph transformation systems. Proc. CON-
CUR’01, LNCS 2154, pp. 381–395. Springer.

5. Baresi, L., Spoletini, P. 2006. On the use of Alloy to ana-
lyze graph transformation systems. Proc. ICGT’06, LNCS
4178, pp. 306–320. Springer.

6. D. Berardi, D. Calvanese, and G. D. Giacomo. 2005. Rea-
soning on UML class diagrams. Artificial Intelligence. Vol.
168(1-2), pp. 70-118. Elsevier.

7. Berry, D. M. Formal methods: the very idea. Some
thoughts about why they work when they work. Science
of Computer Programming 2002; 42(1): 11-27.

8. Borgida, A., Mylopoulos, J., Reiter, R. On the Frame
Problem in Procedure Specifications. IEEE Trans. Software
Eng. 1995; 21(10): 785-798.

9. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon,
Y. 2006. Metamodel-based Test Generation for Model
Transformations:an Algorithm and a Tool. Proc. ISSRE’06,
pp. 85–94, IEEE Computer Society.

10. Brucker, A. D., Wolff, B. 2006. The HOL-OCL book.
Tech. Rep. 525, ETH Zurich.

11. Brucker, A. D., Wolff, B. 2009. Semantics, Calculi, and
Analysis for Object-oriented Specifications. Acta Informat-
ica 56(4):255-284.

12. Büttner, F., Gogolla, M. 2006. Realizing graph trans-
formations by pre- and postconditions and command
sequences. Proc. ICGT’06, LNCS 4178, pp. 398–413.
Springer.

13. Cabot, J., Clarisó, R., Riera, D. 2007. UMLtoCSP: A
tool for the formal verification of UML/OCL models using
constraint programming. Proc. ASE’07, pp. 547–548.

14. Cabot, J., Clarisó, R., Riera, D. 2008. Verification of
UML/OCL Class Diagrams Using Constraint Program-
ming. MoDeVVa 2008, ICST Workshop, pp. 73–80.

15. Cabot, J., Clarisó, R., Guerra, E., de Lara, J. 2008.
Analysing Graph Transformation Rules through OCL.
Proc. ICMT 2008, LNCS 5063, pp. 229-244. Springer.

16. Cabot, J., Clarisó, R., Guerra, E., de Lara, J. 2008.
An Invariant-Based Method for the Analysis of Declarative
Model-to-Model Transformations. Proc. MODELS 2008,
LNCS 5301, pp. 37-52. Springer.

17. Clavel, M., Egea, M. 2006. A rewriting-based valida-
tion tool for UML+OCL static class diagrams. Proc.
AMAST’06, LNCS 4019, pp. 368–373. Springer.

18. Dresden OCL Toolkit. http://dresden-ocl.

sourceforge.net/ (visited October 2008).
19. The ECLiPSe Constraint Programming System, http:

//www.eclipse-clp.org.
20. Ebert, J., Riediger, V., Winter, A. 2008. Graph Technol-

ogy in Reverse Engineering. The TGraph Approach. Proc.
10th Workshop Software Reengineering. GI Lecture Notes
in Informatics. pp. 67–81.

21. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006. Fun-
damentals of Algebraic Graph Transformation. Springer.

22. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L.,
Wagner, A., Corradini, A. 1999. Algebraic Approaches to
Graph Transformation - Part II: Single Pushout Approach
and Comparison with Double Pushout Approach. In [53],
pp. 247–312.

23. Ermel, C., Hölscher, K., Kuske, S., Ziemann, P. 2005.
Animated simulation of integrated UML behavioral models
based on graph transformation. Proc. IEEE VL/HCC 2005,
pp. 125–133.

24. Fujaba tool suite home page:
http://wwwcs.uni-paderborn.de/cs/fujaba/

25. Gogolla, M., Bohling, J., Richters, M. 2005. Validating
UML and OCL models in USE by automatic snapshot gen-
eration. SoSyM 4(4):386–398. Springer.

26. Heckel, R., Küster, J.-M-., Taentzer, G. 2002. Confluence
of typed attributed graph transformation systems. Proc.
ICGT’02, LNCS 2505, pp. 161–176. Springer.

27. Jackson D. 2002. Alloy: a lightweight object modelling
notation, ACM TOSEM, vol. 11(2), pp. 256–290.

28. Jouault, F., Allilairem, F., Bézivin, J., Kurtev, I., Val-
duriez, P. 2006. ATL: a QVT-like transformation language.
OOPSLA Companion, pp. 719–720, ACM.

29. Kalnins, A., Barzdins, J., Celms, E. 2004. Model Trans-
formation Language MOLA, Proc. MDAFA’04, LNCS
3599, pp. 62–76. Springer.

30. Katz, S. 2005. A survey of verification and static analy-
sis for aspects. Technical Report AOSD-Europe Milestone
M8.1, AOSD-Europe-Technion-1, Technion Israel.

31. Kniesel, G., Bardey, U. 2006. An analysis of the Correct-
ness and Completeness of Aspect Weaving. WCRE’06, pp.
324–333, IEEE Computer Society.

32. Kniesel, G. 2009. Detection and Resolution of Weav-
ing Interactions. Proc. TAOSD, LNCS 5490, pp. 135–186.
Springer.

33. Lambers, L., Ehrig, H., Taentzer, G. 2008. Sufficient Cri-
teria for Applicability and Non-Applicability of Rule Se-
quences. Proc. GT-VMT’08, Electronic Communications of
the EASST, Vol(10).

34. de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool
for Multi-Formalism Modelling and Meta-Modelling. Proc.
FASE’02, LNCS 2306, pp. 174–188.

35. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange,
U., Taentzer G. 2007. Attributed graph transformation with
node type inheritance. Theor. Comput. Sci. 376(3):139–163.

36. de Lara, J., Vangheluwe, H. 2004. Defining visual nota-
tions and their manipulation through meta-modelling and
graph transformation. J. Vis. Lang. Comput. 15(3-4):309–
330. Elsevier.

37. Larman, C. Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design. 2004. Prentice
Hall, 3rd Edition.

38. Markovic, S., Baar, T. 2008. Refactoring OCL annotated
UML class diagrams. SoSyM 7(1):25–47. Springer.

39. Mellor, S. J., Scott, K., Uhl, A., Weise, D. 2004. MDA
Distilled. Addison-Wesley Object Technology Series.

40. Mehner, K., Monga, M., and Taentzer, G. 2006. Interac-
tion Analysis in Aspect-Oriented Models. RE’06, pp. 66–75,
IEEE Computer Society.

41. Mens, T. and Tourwé, T. 2004. A Survey of Soft-
ware Refactoring. IEEE Trans. Softw. Eng., 30(2):126–139,
IEEE.

42. Mens, T., Kniesel, G., Runge. O. 2006. Transformation
dependency analysis – a comparison of two approaches.
LMO’06 12:167–182. Hermes Science Publishing.

43. Mens, T., Taentzer, G., Runge, O. 2007. Analysing refac-
toring dependencies using graph transformation. SoSyM
6(3):269–285. Springer.

20 Jordi Cabot et al.

44. MOF 2.0 standard specification at:
http://www.omg.org/spec/MOF/2.0/

45. OCL 2.0 standard specification at:
http://www.omg.org/technology/documents/formal/ocl.

htm

46. Pérez Velasco, P.P., de Lara, J. 2008. Using Matrix Graph
Grammars for the Analysis of Behavioural Specifications:
Sequential and Parallel Independence. Electr. Notes Theor.
Comput. Sci. 206, pp. 133–152.

47. Queralt, A., Teniente, E. 2006. Reasoning on UML Class
Diagrams with OCL constraints. ER 2006, LNCS 4215, pp.
497–512. Springer.

48. Queralt, A., Teniente, E. 2008. Decidable Reasoning in
UML Schemas with Constraints. CAISE 2008, pp.: 281-295.
Springer.

49. Queralt, A., Teniente, E. 2008. Validation of UML Con-
ceptual Schemas with Operations. CAISE Forum 2008, pp.
101–104. CEUR Workshop Proceedings.

50. QVT standard specification at:
http://www.omg.org/docs/ptc/05-11-01.pdf

51. Rensink, A. 2008. Explicit State Model Checking for
Graph Grammars. Concurrency, Graphs and Models,
LNCS 5065, pp. 114–132. Springer.

52. Rivera, J. E., Guerra, E., de Lara, J., Vallecillo, A. 2008.
Analyzing Rule-Based Behavioral Semantics of Visual Mod-
eling Languages with Maude. Proc. SLE’08, LNCS 5452, pp.
54–73. Springer.

53. Rozenberg, G. (ed.). 1997. Handbook of Graph Gram-
mars and Computing by Graph Transformations, Volume
1: Foundations. World Scientific.

54. Sendall, S., Strohmeier, A. 2002. Using OCL and UML
to specify system behavior. In Object Modeling with the
OCL 2002, LNCS 2263, pp. 250–280. Springer.

55. Taentzer, G., Rensink, A. 2005. Ensuring structural con-
straints in graph-based models with type inheritance. Proc.
FASE’05, LNCS 3442, pp. 64–79. Springer.

56. A. Schürr. 1994. Specification of graph translators with
triple graph grammars. In WG’94, LNCS 903, pp. 151–163.
Springer.

57. Varró, D. 2004. Automated formal verification of visual
modeling languages by model checking. SoSyM 3(2):85–113.
Springer.

58. Völter, M., Stahl T. 2006. Model-Driven Software Devel-
opment. Wiley.

59. XML Metadata Interchange (XMI),
v2.1.1 standard specification at:
http://www.omg.org/cgi-bin/doc?formal/2007-12-01

Appendix

This appendix provides the (non-simplified) OCL trans-
lations for the rules “assemble”, “work”, “move” and
“change”, not included in Section 3. For the “assemble”
rule, the matchLHS operation is provided in two differ-
ent versions, depending on the DPO or SPO semantics.

Rule assemble

context System::assemble()
pre: Cylinder::allInstances()−> exists(c|

Conveyor::allInstances()−> exists(co1, co2|
Bar::allInstances()−> exists(b|
Assembler::allInstances()−> exists(a|
Operator::allInstances()−> exists(op|
matchLHSassemble(c,co1,b,a,op,co2))))))

post: Cylinder::allInstances@pre()−> exists(c|
Conveyor::allInstances@pre()−> exists(co1, co2|
Bar::allInstances@pre()−> exists(b|
Assembler::allInstances@pre()−> exists(a|
Operator::allInstances@pre()−> exists(op|
matchLHSassemble’(c,co1,b,a,op,co2) and
changeRHSassemble(c,co1,b,a,op,co2))))))

SPO Semantics
context System::matchLHSassemble(c:Cylinder,

co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor): Boolean

body: c.conveyor−> includes(co1)
and b.conveyor−> includes(co1) and
co1.om−> includes(a) and a.oc−> includes(co2)
and a.operator−> includes(op) and
co2.nelems+1 <= co2.capacity

context System::matchLHSassemble’(c:Cylinder,
co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor): Boolean

body: c.conveyor@pre−> includes(co1) and
b.conveyor@pre−> includes(co1) and
co1.om@pre−> includes(a) and
a.oc@pre−> includes(co2)
and a.operator@pre−> includes(op) and
co2.nelems@pre+1 <= co2.capacity@pre

DPO Semantics
context System::matchLHSassemble(c:Cylinder,

co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor): Boolean

body: c.conveyor−> includes(co1) and
c.conveyor−> excluding(co1)−> isEmpty() and
b.conveyor−> includes(co1) and
b.conveyor−> excluding(co1)−> isEmpty() and
co1.om−> includes(a) and a.oc−> includes(co2)
and a.operator−> includes(op) and
co2.nelems+1 <= co2.capacity

context System::matchLHSassemble’(c:Cylinder,
co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor): Boolean

body: c.conveyor@pre−> includes(co1) and
c.conveyor@pre−> excluding(co1)−> isEmpty()
and b.conveyor@pre−> includes(co1) and
b.conveyor@pre−> excluding(co1)−> isEmpty()
and co1.om@pre−> includes(a) and
a.oc@pre−> includes(co2) and
a.operator@pre−> includes(op) and
co2.nelems@pre+1 <= co2.capacity@pre

A UML/OCL Framework for the Analysis of Graph Transformation Rules 21

context System::changeRHSassemble(c:Cylinder,
co1:Conveyor, b:Bar, a:Assembler,
op:Operator, co2:Conveyor): Boolean

body: Cylinder::allInstances()−> excludes(c) and
Bar::allInstances()−> excludes(b) and
co2.nelems=co2.nelems@pre+1 and
co1.nelems=co1.nelems@pre-2 and
as.oclIsNew() and as.oclIsTypeOf(Assembled) and
as.conveyor−> includes(co2)

Rule work

context System::work()
pre: Machine::allInstances()−>exists(m|

Operator::allInstances()−>exists(op|
matchLHSwork(m,op)
and not Operator::allInstances()−>exists(op1|
matchNAC1work(m,op,op1) and op1 <> op)
and not Machine::allInstances()−>exists(m1|
matchNAC2work(m,op,m1) and m1 <> m))

post: Machine::allInstances@pre()−>exists(m|
Operator::allInstances@pre()−>exists(op|
matchLHSwork’(m,op)
and not Operator::allInstances@pre()−>exists(op1|
matchNAC1work’(m,op,op1) and op1 <> op)
and not Machine::allInstances@pre()−>exists(m1|
matchNAC2work’(m,op,m1) and m1 <> m)
and changeRHSwork(m,op)))

context System::matchLHSwork(m:Machine,
op:Operator): Boolean

body: true

context System::matchLHSwork’(m:Machine,
op:Operator): Boolean

body: true

context System::matchNAC1work(m:Machine,
op: Operator, op1: Operator): Boolean

body: m.operator−>includes(op1)

context System::matchNAC1work’(m:Machine,
op: Operator, op1: Operator): Boolean

body: m.operator@pre−>includes(op1)

context System::matchNAC2work(m:Machine,
op: Operator, op1: Operator): Boolean

body: op.machine−>includes(m1)

context System::matchNAC2work’(m:Machine,
op: Operator, op1: Operator): Boolean

body: op.machine@pre−>includes(m1)

context System::changeRHSwork(m:Machine,
op:Operator): Boolean

body: m.operator−>includes(op)
and not m.operator@pre −>includes(op)

Rule move

context System::move()
pre: Conveyor::allInstances()−>exists(co1,co2|

Piece::allInstances()−>exists(p|
matchLHSmove(co1,co2,p) and not
(Machine::allInstances()−>exists(m |
Operator::allInstances()−>exists(op|
matchNACmove(co1,co2,p,m,op)))))

post: Conveyor::allInstances@pre()−>exists(co1,co2|
Piece::allInstances@pre()−>exists(p|
matchLHSmove’(co1,co2,p) and not
(Machine::allInstances@pre()−>exists (m |
Operator::allInstances@pre()−>exists(op |
matchNACmove’(co1,co2,p,m,op)))) and
changeRHSmove(co1,co2,p)))

context System::matchLHSmove(co1:Conveyor,
co2: Conveyor, p:Piece): Boolean

body: p.conveyor−>includes(co1) and
co1.next−>includes(co2) and
co2.nelem+1 <= co2.capacity

context System::matchLHSmove’(co1:Conveyor,
co2: Conveyor, p:Piece): Boolean

body: p.conveyor@pre−>includes(co1) and
co1.next@pre−>includes(co2) and
co2.nelem@pre+1 <= co2.capacity@pre

context System::matchNACmove(co1:Conveyor,
co2: Conveyor, p: Piece, m: Machine,
op: Operator): Boolean

body: co1.om−>includes(m) and
m.operator−>includes(op)

context System::matchNACmove’(co1:Conveyor,
co2: Conveyor, p: Piece, m: Machine,
op: Operator): Boolean

body: co1.om@pre−>includes(m) and
m.operator@pre−>includes(op)

context System::changeRHSmove(co1:Conveyor,
co2: Conveyor, p:Piece): Boolean

body: p.conveyor−>excludes(co1) and
p.conveyor−>includes(co2) and
not p.conveyor@pre−>includes(co2) and
co1.nelems=co1.nelems@pre−1 and
co2.nelems=co2.nelems@pre+1

22 Jordi Cabot et al.

Rule change

context System::change()
pre: Piece::allInstances() −>exists (p |

Conveyor::allInstances() −>exists (co |
Machine::allInstances()−>exists (m1,m2 |
Operator::allInstances()−>exists (op |
matchLHSchange(p,co,m1,m2,op) and not

(Operator::allInstances()−>exists (op1 |
matchNACchange(p,co,m1,m2,op,op1)
and op<>op1))))))

post: Piece::allInstances@pre() −>exists (p |
Conveyor::allInstances@pre() −>exists (co |
Machine::allInstances@pre()−>exists (m1,m2 |
Operator::allInstances@pre()−>exists (op |
matchLHSchange’(p,co,m1,m2,op) and not

(Operator::allInstances@pre()−>exists (op1 |
matchNACchange’(p,co,m1,m2,op,op1)
and op1<>op)) and

changeRHSchange(p,co,m1,m2,op)))))

context System::matchLHSchange(p: Piece,
co: Conveyor, m1: Machine,
m2: Machine, op: Operator): Boolean

body: p.conveyor−>includes(co) and
co.om−>includes(m1) and
op.machine−>includes(m2)

context System::matchLHSchange’(p: Piece,
co: Conveyor, m1: Machine,
m2: Machine, op: Operator): Boolean

body: p.conveyor@pre−>includes(co) and
co.om@pre−>includes(m1) and
op.machine@pre−>includes(m2)

context System::matchNACchange(p: Piece,
co: Conveyor, m1: Machine,
m2: Machine, op: Operator,
op1: Operator): Boolean

body: m1.operator−> includes(op1)

context System::matchNACchange’(p: Piece,
co: Conveyor, m1: Machine,
m2: Machine, op: Operator,
op1: Operator): Boolean

body: m1.operator@pre−> includes(op1)

context System::changeRHSchange(p: Piece,
co: Conveyor, m1: Machine,
m2: Machine, op: Operator): Boolean

body: op.machine−>excludes(m2)
and op.machine−>includes(m1)
and not op.machine@pre−> includes(m1)

