85 research outputs found

    On-The-Go Robot-to-Human Handovers with a Mobile Manipulator

    Full text link
    Existing approaches to direct robot-to-human handovers are typically implemented on fixed-base robot arms, or on mobile manipulators that come to a full stop before performing the handover. We propose "on-the-go" handovers which permit a moving mobile manipulator to hand over an object to a human without stopping. The on-the-go handover motion is generated with a reactive controller that allows simultaneous control of the base and the arm. In a user study, human receivers subjectively assessed on-the-go handovers to be more efficient, predictable, natural, better timed and safer than handovers that implemented a "stop-and-deliver" behavior.Comment: 6 pages, 7 figures, 2 tables, submitted to RO-MAN 202

    Crafting with a Robot Assistant: Use Social Cues to Inform Adaptive Handovers in Human-Robot Collaboration

    Full text link
    We study human-robot handovers in a naturalistic collaboration scenario, where a mobile manipulator robot assists a person during a crafting session by providing and retrieving objects used for wooden piece assembly (functional activities) and painting (creative activities). We collect quantitative and qualitative data from 20 participants in a Wizard-of-Oz study, generating the Functional And Creative Tasks Human-Robot Collaboration dataset (the FACT HRC dataset), available to the research community. This work illustrates how social cues and task context inform the temporal-spatial coordination in human-robot handovers, and how human-robot collaboration is shaped by and in turn influences people's functional and creative activities.Comment: accepted at HRI 202

    Object Transfer Point Estimation for Prompt Human to Robot Handovers

    Get PDF
    Handing over objects is the foundation of many human-robot interaction and collaboration tasks. In the scenario where a human is handing over an object to a robot, the human chooses where the object needs to be transferred. The robot needs to accurately predict this point of transfer to reach out proactively, instead of waiting for the final position to be presented. We first conduct a human-to-robot handover motion study to analyze the effect of user height, arm length, position, orientation and robot gaze on the object transfer point. Our study presents new observations on the effect of robot\u27s gaze on the point of object transfer. Next, we present an efficient method for predicting the Object Transfer Point (OTP), which synthesizes (1) an offline OTP calculated based on human preferences observed in the human-robot motion study with (2) a dynamic OTP predicted based on the observed human motion. Our proposed OTP predictor is implemented on a humanoid nursing robot and experimentally validated in human-robot handover tasks. Compared to using only static or dynamic OTP estimators, it has better accuracy at the earlier phase of handover (up to 45% of the handover motion) and can render fluent handovers with a reach-to-grasp response time (about 3.1 secs) close to natural human receiver\u27s response. In addition, the OTP prediction accuracy is maintained across the robot\u27s visible workspace by utilizing a user-adaptive reference frame

    Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction

    Get PDF
    Meyer zu Borgsen S. Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction. Bielefeld: Universität Bielefeld; 2020.This doctoral thesis investigates the influence of nonverbal communication on human-robot object handover. Handing objects to one another is an everyday activity where two individuals cooperatively interact. Such close interactions incorporate a lot of nonverbal communication in order to create alignment in space and time. Understanding and transferring communication cues to robots becomes more and more important as e.g. service robots are expected to closely interact with humans in the near future. Their tasks often include delivering and taking objects. Thus, handover scenarios play an important role in human-robot interaction. A lot of work in this field of research focuses on speed, accuracy, and predictability of the robot’s movement during object handover. Still, robots need to be enabled to closely interact with naive users and not only experts. In this work I present how nonverbal communication can be implemented in robots to facilitate smooth handovers. I conducted a study on people with different levels of experience exchanging objects with a humanoid robot. It became clear that especially users with only little experience in regard to interaction with robots rely heavily on the communication cues they are used to on the basis of former interactions with humans. I added different gestures with the second arm, not directly involved in the transfer, to analyze the influence on synchronization, predictability, and human acceptance. Handing an object has a special movement trajectory itself which has not only the purpose of bringing the object or hand to the position of exchange but also of socially signalizing the intention to exchange an object. Another common type of nonverbal communication is gaze. It allows guessing the focus of attention of an interaction partner and thus helps to predict the next action. In order to evaluate handover interaction performance between human and robot, I applied the developed concepts to the humanoid robot Meka M1. By adding the humanoid robot head named Floka Head to the system, I created the Floka humanoid, to implement gaze strategies that aim to increase predictability and user comfort. This thesis contributes to the field of human-robot object handover by presenting study outcomes and concepts along with an implementation of improved software modules resulting in a fully functional object handing humanoid robot from perception and prediction capabilities to behaviors enhanced and improved by features of nonverbal communication

    Object Handovers: a Review for Robotics

    Full text link
    This article surveys the literature on human-robot object handovers. A handover is a collaborative joint action where an agent, the giver, gives an object to another agent, the receiver. The physical exchange starts when the receiver first contacts the object held by the giver and ends when the giver fully releases the object to the receiver. However, important cognitive and physical processes begin before the physical exchange, including initiating implicit agreement with respect to the location and timing of the exchange. From this perspective, we structure our review into the two main phases delimited by the aforementioned events: 1) a pre-handover phase, and 2) the physical exchange. We focus our analysis on the two actors (giver and receiver) and report the state of the art of robotic givers (robot-to-human handovers) and the robotic receivers (human-to-robot handovers). We report a comprehensive list of qualitative and quantitative metrics commonly used to assess the interaction. While focusing our review on the cognitive level (e.g., prediction, perception, motion planning, learning) and the physical level (e.g., motion, grasping, grip release) of the handover, we briefly discuss also the concepts of safety, social context, and ergonomics. We compare the behaviours displayed during human-to-human handovers to the state of the art of robotic assistants, and identify the major areas of improvement for robotic assistants to reach performance comparable to human interactions. Finally, we propose a minimal set of metrics that should be used in order to enable a fair comparison among the approaches.Comment: Review paper, 19 page

    HOI4ABOT: Human-Object Interaction Anticipation for Human Intention Reading Collaborative roBOTs

    Full text link
    Robots are becoming increasingly integrated into our lives, assisting us in various tasks. To ensure effective collaboration between humans and robots, it is essential that they understand our intentions and anticipate our actions. In this paper, we propose a Human-Object Interaction (HOI) anticipation framework for collaborative robots. We propose an efficient and robust transformer-based model to detect and anticipate HOIs from videos. This enhanced anticipation empowers robots to proactively assist humans, resulting in more efficient and intuitive collaborations. Our model outperforms state-of-the-art results in HOI detection and anticipation in VidHOI dataset with an increase of 1.76% and 1.04% in mAP respectively while being 15.4 times faster. We showcase the effectiveness of our approach through experimental results in a real robot, demonstrating that the robot's ability to anticipate HOIs is key for better Human-Robot Interaction. More information can be found on our project webpage: https://evm7.github.io/HOI4ABOT_page/Comment: Proceedings in Conference on Robot Learning 202

    Kolaboratif robotlarda güven özelliği: Sanal insan robot etkileşim ortamında, sözsüz ipuçlarının deneysel araştırması

    Get PDF
    This thesis reports the development of non-verbal HRI (Human-Robot Interaction) behaviors on a robotic manipulator, evaluating the role of trust in collaborative assembly tasks. Towards this end, we developed four non-verbal HRI behaviors, namely gazing, head nodding, tilting, and shaking, on a UR5 robotic manipulator. We used them under different degrees of trust of the user to the robot actions. Specifically, we used a certain head-on neck posture for the cobot using the last three links along with the gripper. The gaze behavior directed the gripper towards the desired point in space, alongside with the head nodding and shaking behaviors. We designed a remote setup to experiment subjects interacting with the cobot remotely via Zoom teleconferencing. In a simple collaborative scenario, the efficacy of these behaviors was assessed in terms of their impact on the formation of trust between the robot and the user and task performance. Nineteen people participated in the experiment with varying ages and genders.Bu tez insan robot arası etkileşimi geliştirmek amacıyla, yardımcı UR5 robotunun manipülatörü ile, bakış ve kafa davranışları yaratmayı ve etkilerini montaj senaryosu altında test etmeyi hedeflemektedir. Bu doğrultuda çeşitli sözlü olmayan robot davranışları UR5 robotu ve Robotiq çene kıskacı kullanılarak geliştirildi, bunlar; yana ve öne kafa sallama, kafa eğme ve bakış davranışıdır. Bu davranışları uygulayabilmek için daha önceden dizayn edilmiş bir robot duruşu kullanıldı ve son üç robot eklemi, çene kıskacı kullanılarak baş-boyun yapısına çevrildi. Bu duruş yapısı ile birlikte çene kıskacı uzayda bir noktaya doğrultularak bakış davranışı yapabilmektedir. Bakış davranışına ek olarak kafa yapısı ile birlikte kafa sallama gibi davranışlarda modellendi, bunun yanında katılımcıların aktif olarak cobot ile birlikte telekonferans programı olan Zoom üzerinden etkileşime geçebileceği özgün bir deney ortamı geliştirildi. Ortak çalışmaya dayalı bir senaryoda bu davranışların güven kazanımı ve performans üzerindeki etkisi test edildi. Farklı yaş ve cinsiyet gruplarından 19 katılımcı ile birlikte deneyler gerçekleştirildi.M.S. - Master of Scienc
    corecore