12,974 research outputs found

    Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    Full text link
    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado

    Get PDF
    We describe an experiment, located in south-east Colorado, USA, that measured aerosol optical depth profiles using two Lidar techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40km distant, viewed the laser beam from the side. This detector featured a 3.5m2 mirror and measured elastically scattered light in a bistatic Lidar configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic Lidar detectors.Comment: 34 pages, 16 figure

    Combined MASS-DIMM instrument for atmospheric turbulence studies

    Full text link
    Several site-testing programs and observatories currently use combined MASS-DIMM instruments for monitoring parameters of optical turbulence. The instrument is described here. After a short recall of the measured quantities and operational principles, the optics and electronics of MASS-DIMM, interfacing to telescopes and detectors, and operation are covered in some detail. Particular attention is given to the correct measurement and control of instrumental parameters to ensure valid and well-calibrated data, to the data quality and filtering. Examples of MASS-DIMM data are given, followed by the list of present and future applications.Comment: Accepted by MNRAS, 11 pages, 8 figure

    Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Get PDF
    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes

    Laboratory Hyperspectral Image Acquisition System Setup and Validation

    Get PDF
    Hyperspectral Imaging (HSI) techniques have demonstrated potential to provide useful information in a broad set of applications in different domains, from precision agriculture to environmental science. A first step in the preparation of the algorithms to be employed outdoors starts at a laboratory level, capturing a high amount of samples to be analysed and processed in order to extract the necessary information about the spectral characteristics of the studied samples in the most precise way. In this article, a custom-made scanning system for hyperspectral image acquisition is described. Commercially available components have been carefully selected in order to be integrated into a flexible infrastructure able to obtain data from any Generic Interface for Cameras (GenICam) compliant devices using the gigabyte Ethernet interface. The entire setup has been tested using the Specim FX hyperspectral series (FX10 and FX17) and a Graphical User Interface (GUI) has been developed in order to control the individual components and visualise data. Morphological analysis, spectral response and optical aberration of these pushbroom-type hyperspectral cameras have been evaluated prior to the validation of the whole system with different plastic samples for which spectral signatures are extracted and compared with well-known spectral libraries.Laboratory Hyperspectral Image Acquisition System Setup and ValidationpublishedVersio

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore