1,791 research outputs found

    Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo.

    Get PDF
    In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment

    Identification of metabolic pathways using pathfinding approaches: A systematic review

    Get PDF
    Metabolic pathways have become increasingly available for variousmicroorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis ofmetabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches inmetabolic pathway analysis are discussed. Threemajor types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways withmathematical benchmarkingmetrics is provided. This review would lead to better comprehension ofmetabolismbehaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016

    Pathway discovery in metabolic networks by subgraph extraction

    Get PDF
    Motivation: Subgraph extraction is a powerful technique to predict pathways from biological networks and a set of query items (e.g. genes, proteins, compounds, etc.). It can be applied to a variety of different data types, such as gene expression, protein levels, operons or phylogenetic profiles. In this article, we investigate different approaches to extract relevant pathways from metabolic networks. Although these approaches have been adapted to metabolic networks, they are generic enough to be adjusted to other biological networks as well

    Computational discovery and analysis of metabolic pathways

    Get PDF
    Finding novel or non-standard metabolic pathways, possibly spanning multiple species, has important applications in fields such as metabolic engineering, metabolic network analysis, and metabolic network reconstruction. Traditionally, this has been a manual process, but the large volume of metabolic data now available has created a need for computational tools to automatically identify biologically relevant pathways. This thesis presents new algorithms for automatically finding biologically meaningful linear and branched metabolic pathways in multi-genome scale metabolic networks. These algorithms utilize atom mapping data, which provides the correspondence between atoms in the substrates to atoms in the products of a chemical reaction, to find pathways which conserve a given number of atoms between desired start and target compounds. The first algorithm presented identifies atom conserving linear pathways by explicitly tracking atoms during an exploration of a graph structure constructed from the atom mapping data. The explicit tracking of atoms enables finding branched pathways because it provides automatic identification of the reactions and compounds through which atoms are lost or gained. The thesis then describes two algorithmic approaches for identifying branched metabolic pathways based upon atom conserving linear pathways. One approach takes one linear pathway at a time and attempts to add branches that connect loss and gain compounds. The other approach takes a group of linear pathways and attempts to merge pathways that move mutually exclusive sets of atoms from the start to the target compounds. Comparisons to known metabolic pathways demonstrate that atom tracking causes the algorithms to avoid many unrealistic connections, often found in previous approaches, and return biologically meaningful pathways. While the theoretical complexity of finding even linear atom conserving pathways is high, by choosing the appropriate representations and heuristics, and perhaps due to the structure of the underlying data, the algorithms in this thesis have practical running times on real data. The results also demonstrate the potential of the algorithms to find novel or non-standard pathways that may span multiple organisms

    Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    Get PDF
    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omicsdetermined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules

    The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics

    Get PDF
    Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research

    Visualization of Metabolic Networks

    Get PDF
    The metabolism constitutes the universe of biochemical reactions taking place in a cell of an organism. These processes include the synthesis, transformation, and degradation of molecules for an organism to grow, to reproduce and to interact with its environment. A good way to capture the complexity of these processes is the representation as metabolic network, in which sets of molecules are transformed into products by a chemical reaction, and the products are being processed further. The underlying graph model allows a structural analysis of this network using established graphtheoretical algorithms on the one hand, and a visual representation by applying layout algorithms combined with information visualization techniques on the other. In this thesis we will take a look at three different aspects of graph visualization within the context of biochemical systems: the representation and interactive exploration of static networks, the visual analysis of dynamic networks, and the comparison of two network graphs. We will demonstrate, how established infovis techniques can be combined with new algorithms and applied to specific problems in the area of metabolic network visualization. We reconstruct the metabolic network covering the complete set of chemical reactions present in a generalized eucaryotic cell from real world data available from a popular metabolic pathway data base and present a suitable data structure. As the constructed network is very large, it is not feasible for the display as a whole. Instead, we introduce a technique to analyse this static network in a top-down approach starting with an overview and displaying detailed reaction networks on demand. This exploration method is also applied to compare metabolic networks in different species and from different resources. As for the analysis of dynamic networks, we present a framework to capture changes in the connectivity as well as changes in the attributes associated with the network’s elements

    Application of Metabolomics to Cardiovascular Biomarker and Pathway Discovery

    Get PDF
    Emerging technologies based on mass spectrometry and nuclear magnetic resonance enable the monitoring of hundreds of metabolites from tissues or body fluids, that is, “metabolomics.” Because metabolites change rapidly in response to physiologic perturbations, they represent proximal reporters of disease phenotypes. The profiling of low molecular weight biochemicals, including lipids, sugars, nucleotides, organic acids, and amino acids, that serve as substrates and products in metabolic pathways is particularly relevant to cardiovascular diseases. In addition to serving as disease biomarkers, circulating metabolites may participate in previously unanticipated roles as regulatory signals with hormone-like functions. Cellular metabolic pathways are highly conserved among species, facilitating complementary functional studies in model organisms to provide insight into metabolic changes identified in humans. Although metabolic profiling technologies and methods of pattern recognition and data reduction remain under development, the coupling of metabolomics with other functional genomic approaches promises to extend our ability to elucidate biological pathways and discover biomarkers of human disease

    A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and 13C-Labeled Glucose

    Get PDF
    Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C-labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time points were then analyzed by mass spectrometry and/or high performance liquid chromatography. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase [PC; PC/pyruvate dehydrogenase (PDH) ratio = 0.5], malic enzyme (5% of the total pyruvate production), and catabolism of branched-chained amino acids (contributing with ∼40% to total acetyl-CoA produced) confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate–aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (∼0.7 μmol mg prot−1 h−1) was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of energy metabolism
    corecore