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Abstract 

Finding novel or non-standard metabolic pathways, possibly spanning multiple species, has 

important applications in fields such as metabolic engineering, metabolic network analysis, 

and metabolic network reconstruction. Traditionally, this has been a manual process, but the 

large volume of metabolic data now available has created a need for computational tools to 

automatically identify biologically relevant pathways. This thesis presents new algorithms 

for automatically finding biologically meaningful linear and branched metabolic pathways 

in multi-genome scale metabolic networks. These algorithms utilize atom mapping data, 

which provides the correspondence between atoms in the substrates to atoms in the products 

of a chemical reaction, to find pathways which conserve a given number of atoms between 

desired start and target compounds. 

The first algorithm presented identifies atom conserving linear pathways by explicitly 

tracking atoms during an exploration of a graph structure constructed from the atom mapping 

data. The explicit tracking of atoms enables finding branched pathways because it provides 

automatic identification of the reactions and compounds through which atoms are lost or 

gained. The thesis then describes two algorithmic approaches for identifying branched 

metabolic pathways based upon atom conserving linear pathways. One approach takes one 

linear pathway at a time and attempts to add branches that connect loss and gain compounds. 

The other approach takes a group of linear pathways and attempts to merge pathways that 

move mutually exclusive sets of atoms from the start to the target compounds. 

Comparisons to known metabolic pathways demonstrate that atom tracking causes the 

algorithms to avoid many unrealistic connections, often found in previous approaches, and 

return biologically meaningful pathways. While the theoretical complexity of finding even 

linear atom conserving pathways is high, by choosing the appropriate representations and 



heuristics, and perhaps due to the structure of the underlying data, the algorithms in this 

thesis have practical running times on real data. The results also demonstrate the potential 

of the algorithms to find novel or non-standard pathways that may span multiple organisms. 
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Illustrations 

2.1 Visualization of the metabolic network of Escherichia coli obtained from 

KEGG. The magenta nodes represent enzymatic reactions and the green 

nodes are chemical compounds. The network contains 2570 nodes and 

5238 edges. The figure was made using Cytoscape [109] 7 

2.2 KEGG's reference pathway for lysine biosynthesis. The small circles 

represent individual chemical compounds and the rectangles represent 

enzymes and are labeled with EC numbers. The solid directed edges 

connect the substrate and products to their enzymatic reactions. The 

rounded ovals are other metabolic pathways and the dotted edges connect 

chemical compounds to other metabolic pathways 12 

2.3 Three MetaCyc pathways for lysine biosynthesis. The pathway on the left 

is lysine biosynthesis I and the one in the top right is lysine biosynthesis IV. 

Both of these pathways contain just one pathway found in the 

corresponding KEGG pathway in Figure 2.2. MetaCyc also offers several 

levels of detail to display, the pathway in the top right and bottom right are 

both lysine biosynthesis IV displayed with two different levels of detail. 

The chemical compounds are connected by directed edges which are 

labeled with the enzyme's name and EC number which catalyzes the reactions. 13 
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4 Atom mapping data obtained from KEGG for the reaction catalyzed by 
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included in the atom mapping data 16 

5 The generic metabolic reactions, Rl, R2, R3 and R4 using the generic 

compounds CI, C2, C3, C4, C5, C6 and C7 in (a) represented using four 

different graph models: (b) compound graph (c) reaction graph (d) bipartite 

graph (e) hypergraph 25 

6 A branched pathway between sn-glycero-3-phosphocholine and 

L-threonine, with the chemical structures of the compounds depicted and 

the reactions that function as branch points highlighted in magenta. This 

pathway corresponds to a result found in Figure 5.9 36 

1 An illustration of a small subgraph of Gam built from KEGG RPAIR data 

containing four compound nodes and three mapping nodes. The identifiers 

for each node are in bold, the compound nodes are also labeled with the 

common name of the compound and the mapping nodes contain the 

mapping between the carbon atoms. The KEGG RPAIR database contains 

information for all non-hydrogen atoms, but only carbons are depicted for 

clarity. The carbons colored in blue are mapped in the mapping nodes while 

the green and pink colored carbons are not in this subgraph 42 
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3.2 A generic Gam is drawn in (a), the compound nodes are ovals containing 

circles representing each atom of the compound and the mapping nodes are 

rectangles. When an exploration of this Gam is started at CI, its atom 

marking contains all of its atoms, as indicated by coloring them green. The 

exploration then identifies all adjacent mapping nodes, which are colored 

magenta. The state of the stack and the list of transition histories is shown 

in (b). Since this is the start of the exploration there are no transition 

histories yet. The next step of the exploration is shown in Figure 3.3. . . . 46 

3.3 The next step of the exploration of generic Gam, continued from Figure 3.2. 

The first item is popped off of the stack from Figure 3.2(b) and the atom 

marking of CI with the atom mapping in Ml is used to compute the 

resulting atom marking of C2, highlighted in green in (a). The transition 

history generated by this traversal is added to the list of transition histories 
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4 The resulting list of transition histories, L, from the exploration of the 

generic Gam, conserving three atoms, found in Figures 3.2 and 3.3 is shown 

in (a). L is then used to construct the auxiliary graph found in (b), with 

nodes created for each atom marking and mapping node and edges from 

input atom markings to the mapping node and from the mapping node to 

the output atom marking. Notice that the traversal of M6 is stored in the list 

of transition histories so that it is not visited again in the exploration, but it 

does not need to be contained in the auxiliary graph because it cannot be 

part of a path conserving three atoms. Also notice that M7 is traversed two 

separate times utilizing different atom markings, this is taken into account 

by appending the identifier of each mapping node with a counter that 

distinguishes the two traversals 

5 Auxiliary graph from Figure 3.4(b) with the nodes corresponding to C5 

merged together for finding pathways between CI and C5 conserving three 

carbons. This graph can now be used with k shortest path algorithms using 

"CI {1,2,3,4,5,6}" as the starting node and "C5" as the target node and the 

returned paths will correspond to linear pathways conserving three atoms 

between CI and C5 

1 A cartoon depicting the approaches taken by BPAT-S and BPAT-M to find 

branched pathways. The linear pathways from LPAT are represented as the 

colored lines and the circles represent the start and target compounds. 

BPAT-S takes each pathway in turn and finds new branches, represented by 

the narrower black lines, that can be attached to the linear pathway. 

BPAT-M does not find new branches, but rather tries to merge the linear 

pathways into branched pathways 
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Chapter 1 

Introduction 
Metabolism refers to the chemical reactions, typically catalyzed by enzymes, that occur to 

sustain life. Experimental studies, coupled with advancements in molecular biology and 

improved computational methods, have generated increasingly large amounts of data on 

metabolic reactions and pathways in the last few decades. As a result, many specialized 

databases have been created in order to store and organize this metabolic data [56, 21]. One 

of the major goals of these databases is to make the data easily navigable and interpretable 

by their users. The data is usually presented as many small subpathways that are manually di­

vided based on function and sometimes by organism. However, it can be difficult to navigate 

these subpathways to find connections between compounds, especially for discovering novel 

or non-standard pathways that may span multiple organisms. These type of pathways can be 

important for a number of applications such as metabolic engineering [9], understanding 

the metabolic scope of multi-species communities [36, 119] and metabolic network recon­

struction [92, 35]. Combining parts of pathways existing in different organisms can lead 

to new ways of considering how metabolism works in complex communities and provide 

novel ways to synthesize important and useful compounds. 

Computational tools can provide a way to automatically find biologically interesting 

pathways in metabolic data and reveal pathways that may have not been identified by manual 

means. The primary problem that computational methods for metabolic pathfinding try 

to solve is given a start and target compound, find "biologically meaningful" or "realistic" 

pathways of enzymatic reactions that make the target compound from the start compound. In 
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many ways, methods for metabolic pathfinding can be thought of as "search engines" which 

try to find metabolic pathways, similar to finding websites, of interest from a large amount 

of data. In both cases, it is not always clear what the best results are, pathways or websites, 

to return for a particular query. Instead, it is dependent on the specific application that the 

user has in mind. While "biologically meaningful" and "realistic" are not well-defined, it 

is important to provide an initial validation of metabolic path finding tools based on their 

ability to find known metabolic pathways or by manual analysis of the results. 

Graphs provide well-suited computational framework for modeling metabolism as a 

network, where the compounds and reactions are the vertices of the graph and the edges 

connect the compounds to the reactions they are involved in. Additionally, finding paths 

in graphs is a well-studied problem with a number of efficient algorithmic solutions for 

finding shortest and k shortest pathways. Unfortunately, as further discussed in the next 

chapter, paths found in standard graph representations of metabolic networks often do 

not correspond to biologically meaningful pathways [6, 35]. The work in this thesis is 

based on the observation that these graph-based methods do not work because they remove 

information about what is really going in a reaction biochemically. Each edge connecting 

the compounds to the reaction are considered the same, but biochemically one compound 

may be just providing the energy to drive the transformation of another chemical. One must 

look at the atomic level to understand which substrate chemicals are being transformed into 

which product chemical. 

In the last few years the availability of atomic level information on which atoms in 

the substrate compounds correspond to which atoms in the product compounds, called 

atom mapping data, has been steadily increasing. The algorithms presented in this thesis 

harness atom mapping data to track atoms through metabolic networks to find pathways 

which conserve atoms from a given start compound to a give target compound. Atom 
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tracking greatly increases the complexity of finding pathways in metabolic networks as 

compared to standard ways of finding paths in graphs. The general problem of finding linear 

pathways that conserve a given number of atoms, using atom mapping data, from the start 

to the target compound has been proven to be PSPACE-complete, and NP-complete when 

pathways are constrained to only use a compound once [17]. Fortunately, experimental 

results demonstrate that linear atom conserving pathways can be found in efficiently in 

practice. This is likely due to the underlying structure of metabolic networks combined with 

the fact that the number of atoms being tracked is often low. Atom tracking is a crucial 

feature, when using graph-based methods, for finding meaningful metabolic pathways 

because it essentially eliminates spurious connections and reactions that do not correspond 

to useful or real biochemical pathways or reactions. Furthermore, atom tracking enables 

finding branched metabolic pathways. 

Branched metabolic pathways refer to pathways that contain linear pathways that interact 

biochemically to produce one molecule of the target compound. For example, a target 

compound may be made of three molecules of glucose, a six carbon compound, that undergo 

different modifications before participating in reactions to combine the molecules into one 

larger final compound. In this case, the number of atoms conserved is the total number of 

atoms that go from the starting molecules of glucose to the target compound. If all carbon 

atoms are conserved from the molecules of glucose, the branched pathway would be said 

to conserve 12 carbon atoms. Finding branched pathways that conserve a give number of 

atoms while using less than a given number of reactions has been shown to be NP-hard 

by reduction from the minimum set cover problem [91]. However, unlike the linear atom 

conserving pathways, finding branched pathways in practice appears to be closer to the 

theoretical complexity of the general problem. Therefore, algorithmic solutions require the 

use of heuristics in order to obtain branched, atom conserving, metabolic pathways. 
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1.1 Contributions 

The main contribution of this thesis are three novel algorithms for finding both linear and 

branched metabolic pathways by using atom mapping data to track the movement of atoms 

through metabolic networks. The goal of these algorithms is to find biologically meaningful, 

possibly novel, metabolic pathways that may utilize reactions from multiple organisms 

without focusing on a particular organism or prior information on the environments in which 

they function. The algorithms all take as input atom mapping data, a start compound, a 

target compound, a minimum number of atoms to conserve and a maximum number of 

pathways to return. A set of metabolic pathways, that conserve at least given number of 

atoms from the start compound to the target compound, are returned. The first algorithm, 

LPAT, guarantees finding the k shortest linear metabolic pathways that conserve a given 

number of number of atoms. Even though this problem is of high theoretical complexity, 

experimental results show that the computational time required for LPAT is on the order 

of minutes in practice. The other algorithms, BPAT-S and BPAT-M, tackle the problem 

of finding branched metabolic pathways. Development of these algorithms revealed that 

finding branched metabolic pathways is a more complex problem in practice than finding 

linear metabolic pathways, even though they are of similarly high theoretical complexity. 

Therefore, BPAT-S and BPAT-M take two different heuristic approaches for finding branched 

metabolic pathways. This thesis also contributes extensive experimental testing of the 

algorithms, using metabolic data spanning multiple organisms, to demonstrate their practical 

performance. The results of the heuristic approaches of BPAT-S and BPAT-M are compared 

and highlight the different advantages and disadvantages of the approaches. The analysis 

of experimental results demonstrate that the algorithms in this thesis can find biologically 

meaningful and interesting pathways and improve on the current state of the art algorithms 

for find metabolic pathways. 
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1.2 Thesis Outline 

The rest of the thesis proceeds by first providing background information and an overview 

of related work in Chapter 2. Chapter 3 describes LPAT, the algorithm developed for finding 

linear metabolic pathways using atom tracking. The computational complexity of finding 

branched metabolic pathways requires the use of heuristics, and so Chapter 4 presents 

two different algorithms, BPAT-S and BPAT-M, utilizing different heuristic approaches, 

for accomplishing this task. Chapter 5 describes the experimental setup and testing of all 

of the algorithms presented. The experimental setup describes how metabolic data was 

obtained and processed and the hardware used, and the experimental testing revolves around 

understanding how well the algorithms find known metabolic pathways. Chapter 6 is the 

final chapter, containing the conclusions and future directions for this work. 
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Chapter 2 

Background 
The study of metabolism, the chemical reactions that occur in cells to maintain life, has a 

long and rich history now spanning hundreds of years. The textbook version of metabolism 

breaks it down into relatively small and easy to understand metabolic pathways, such as 

glycolysis and the citric acid cycle [69]. While there is no denying that understanding the 

central metabolic pathways is important, in the last few decades, advances in molecular 

biology have greatly increased our knowledge and revealed a more complex picture of 

metabolism. The current view of metabolism is a network, rather than a set of straightfor­

ward pathways, containing all of the biochemical reactions which occur within an organism. 

A visualization of the metabolic network of E. coli can be found in Figure 2.1. This network 

view demonstrates the complexity found in just the metabolic network of one organism. 

A closer look reveals that a number of alternative pathways can exist to perform the same 

metabolic function or multiple pathways typically thought of as separate may be intercon­

nected by using the same chemical compounds or enzymes. Finding interconnections and 

alternative pathways is important for understanding metabolism overall as well as how to 

make useful modifications to metabolic networks. 

Modern molecular biology has not only enabled better understanding of metabolic 

networks, but has also brought the ability to manipulate metabolic networks through ge­

netic engineering techniques. This has created a whole area of research, termed metabolic 

engineering, that is focused on the rational design, or redesign, of the genetic and regula­

tory processes in an organism, in order to increase production of a desired substance [9]. 
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Figure 2.1 : Visualization of the metabolic network of Escherichia coli obtained from 
KEGG. The magenta nodes represent enzymatic reactions and the green nodes are chemical 
compounds. The network contains 2570 nodes and 5238 edges. The figure was made using 
Cytoscape [109]. 
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Metabolic engineering has resulted in the successful biosynthesis of a number of compounds 

such as amino acids [71], drugs and drug precursors [68], and biofuels [67]. Metabolic engi­

neering is a complex task which often requires extensive experimental trial and error. The 

metabolic engineering process begins by selecting a desired chemical product. Metabolic 

engineers then must carefully search multiple databases and scientific literature for metabolic 

reactions involving the desired product and possible precursors. These reactions usually 

come from more than one organism. This is a lengthy process with a goal of discovering a 

set of efficient reactions. To test this candidate network, specific genes are inserted into a 

host organism, incorporating the relevant reactions. Therefore, there is need for creating 

computational tools to help assist and accelerate the metabolic engineering process. 

Computational techniques are well suited for automatically finding pathways in multi-

genome scale metabolic networks that could be potentially used for metabolic engineering. 

Automated identification of metabolic pathways also has applications in areas such as 

metagenomics and metabolomics to assist with metabolic network reconstruction and 

understanding the metabolic scope of communities of organisms composed of multiple 

species [36, 119]. The algorithms in this thesis are general enough that they can be used for 

finding metabolic pathways for other applications, but the experimental results are geared 

towards metabolic engineering applications. 

There have been two major areas of previous work on computationally finding metabolic 

pathways that differ primarily on the type of model used: stoichiometric, also known as 

constraint-based, and graph-based, also known as pathfinding, approaches [92, 65]. Both 

approaches have advantages and disadvantages and therefore, as highlighted by a recent 

pair of papers, the choice of approach is related to the specific biological questions that 

one wants to answer [34, 27]. Stoichiometric approaches require that the stoichiometry of 

metabolic reactions be satisfied and require the specification of the compounds that exist in 
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the system. Stoichiometric approaches are better utilized for the analysis of small metabolic 

networks, frequently from a single organism, to understand the properties and behavior 

of the network. Graph-based methods model metabolic networks as graphs and typically 

ignore stoichiometric constraints. This enables graph based approaches to analyze much 

larger metabolic networks and find pathways without knowledge of the compounds that 

exist in the system. However, ignoring stoichiometric constraints also means that graph 

based approaches can return spurious connections and pathways. Therefore, a number of 

heuristics have been introduced in order to overcome this problem. The work in this thesis 

solves the problem of spurious connections by explicitly tracking atoms from the input 

compounds to the output compounds of a reaction. 

The rest of this chapter will first provide an overview of the current state of available 

metabolic data, which is required for any metabolic path finding method. This will be 

followed by a brief discussion of stoichiometric methods, as they were the first computational 

methods for finding metabolic pathways, but not closely related to the work in this thesis. 

The chapter will conclude with a discussion of graph based approaches, which are more 

directly related to the work in this thesis, for finding both linear and branched metabolic 

pathways. 

2.1 Metabolic Data Sources 

A number of databases have been created in recent years to store and organize the ever 

increasing amount of data on metabolism. In April 2010, Pathguide, a listing of biological 

pathway resources, contained 58 currently available biological pathway resources related to 

metabolic data. These resources vary in their focus, size, curation levels, availability and 

popularity [8]. The current trend reveals that both the quality and quantity of metabolic 

data is increasing and becoming more difficult to search through and analysis manually. 
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Therefore, methods which can automatically identify relevant pieces of data are also be­

coming increasingly important. The goal of metabolic path finding applications is to find 

relevant pathways by using data about enzymatic reactions and the input and output chemical 

compounds. There are two major types of online databases that contain this type of the data. 

The first are metabolic pathway databases, which organize the reactions into pathways and 

focuses on the relationship of these pathways. The second are enzyme databases that focus 

on individual enzymes and their properties. 

Two of the largest online databases focusing on metabolic pathway data are the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) PATHWAY [56] database and MetaCyc 

[21], part of the larger BioCyc Database Collection [58]. MetaCyc and KEGG both contain 

similar data about metabolic pathways and their components and are freely available for 

academic use, but they vary in how this data is organized, curated and made available. 

The KEGG PATHWAY database was initially released in December 1995 and contained 

a selected number of metabolic pathways. KEGG PATHWAY is manually curated and 

drawn based on the literature. The database in April 2010 contained 159 reference pathways 

under the metabolism category. Each reference pathway represents a metabolic function 

(e.g., glycolysis) and contains the enzymatic reactions and chemical compounds which 

make up the pathway. The reference pathways contain the union of the reactions and 

compounds found across organisms, one can then select a particular organism of interest 

and the reactions and compounds found in that organism will be highlighted on the pathway. 

Each of the reactions and compounds found in KEGG are given a unique identifier, either 

starting with "R" for reaction or "C" for compound followed by five digits. KEGG is 

continually expanding, in April 2010, KEGG contained 107,071 pathways generated from 

356 reference pathways, including pathways not related to metabolism, and information on 

129 eukaryotes, 1005 bacteria and 79 archaea. 
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KEGG also hosts databases which provide further information about the enzymes 

and compounds, along with cross linking to other databases via GenomeNet [55]. All 

of the data found in KEGG is free for academic users and can be downloaded via FTP 

in different flat file formats or accessed through web services. The reference metabolic 

pathways are also provided in KEGG Markup Language (KGML), an XML-based format 

created by KEGG. More recently, KEGG PATHWAY has been expanding to include other 

biological pathways such as those involved in genetic information processing, environmental 

information processing, cellular processes, human diseases and drug development. However, 

the metabolic pathway maps still remain the most popular feature [56]. 

MetaCyc is also an independent metabolic pathway database which contains manually 

curated information from scientific literature. MetaCyc was first released in 1999, in 

conjunction with EcoCyc, a database containing pathway and genome information about 

Escherichia coli. In April 2010, MetaCyc consisted of more than 1,470 metabolic pathways, 

across more than 1,800 organisms. It also contains information about the compounds and 

enzymes in these pathways and takes great care to provide the primary literature sources that 

the data was obtained from. The MetaCyc data is freely available to all users in different file 

formats, including BioPAX and SBML. There is also a BioCyc software package, free for 

academic usage, called Pathway Tools which provides analysis and visualization capabilities. 

MetaCyc and KEGG are highly similar resources in that their overall goal is to store 

and organize metabolic pathway data. However, there are some important philosophical 

differences in how they accomplish this task. The main being that the MetaCyc pathways 

attempt to capture a metabolic pathway that functions in an individual organism while 

the KEGG pathways are the union of pathways that can be found in multiple organisms. 

This means that the KEGG pathways are typically larger than the corresponding MetaCyc 

pathways. This is highlighted by comparing the lysine biosynthesis pathways as represented 
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Figure 2.2 : KEGG's reference pathway for lysine biosynthesis. The small circles represent 
individual chemical compounds and the rectangles represent enzymes and are labeled with 
EC numbers. The solid directed edges connect the substrate and products to their enzymatic 
reactions. The rounded ovals are other metabolic pathways and the dotted edges connect 
chemical compounds to other metabolic pathways. 

by KEGG in Figure 2.2 and MetaCyc in Figure 2.3. MetaCyc also provides the user with 

several different layers of detail to view each pathway, as shown in Figure 2.3 while there 

is only one level of detail provided for the KEGG pathways. On both the KEGG and 

MetaCyc websites each individual element is clickable and takes the user to a page with 

more information about that element. 

Additionally, from the beginning MetaCyc has put heavy emphasis on providing the 

primary literature sources coupled with descriptions of each pathway that often discuss the 

variants of the pathway in different organisms. In contrast, KEGG has only recently begun 
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Figure 2.3 : Three MetaCyc pathways for lysine biosynthesis. The pathway on the left is 
lysine biosynthesis I and the one in the top right is lysine biosynthesis IV. Both of these 
pathways contain just one pathway found in the corresponding KEGG pathway in Figure 
2.2. MetaCyc also offers several levels of detail to display, the pathway in the top right 
and bottom right are both lysine biosynthesis IV displayed with two different levels of 
detail. The chemical compounds are connected by directed edges which are labeled with the 
enzyme's name and EC number which catalyzes the reactions. 
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to provide literature sources and typically provides fewer for a given pathway than MetaCyc. 

KEGG has begun to include one paragraph pathway descriptions for their pathways, but this 

is currently only available for a few of the central pathways such as glycolysis and citrate 

cycle and just gives a brief overview of the chemical reactions. 

The differences between KEGG and MetaCyc means that determining which one is 

better depends on the specific application in mind. MetaCyc takes a more organism specific 

role while KEGG takes a broader view of metabolism. Both resources are valuable for 

researchers interested in metabolism and in the ideal case the data from both sources could 

be integrated together. Due to the independent nature of the databases, data integration is 

non-trivial, but MetaCyc has made an effort to cross link to KEGG in order to make data 

integration easier. In version 13.6 of MetaCyc 4292 out of 8334 compounds and 3267 out of 

8540 reactions had corresponding KEGG IDs. While this is a good start, integrating the data 

from the two sources is still no easy task and becomes even more difficult when considering 

different data sources such as enzyme databases. 

Enzyme databases, such as such as BRENDA (BRaunschweig ENzyme DAtabase) [22] 

and ExPASy-ENZYME [11], are also an important source of metabolic data that can be 

used for metabolic path finding. These databases differ from metabolic pathway databases 

such as KEGG and MetaCyc as they focus on data on specific enzymes and do not organize 

the reactions in pathways. Enzyme databases provide more detailed information about each 

reaction, such as functional and kinetic parameters, that may be important in understanding 

the feasibility and dynamics of a metabolic pathway. 

BRENDA was originally created in 1987 and has seen steady growth and improvements 

since its beginning. BRENDA is manually curated and currently contains data for over 5,000 

enzymes acquired from more than 79,000 primary literature references [22]. BRENDA 

is also supplemented by data from FRENDA and AMENDA which contain data from 
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automated text-mining of the literature. The first release of ExPASy-ENZYME was in 

1993 and it has also been greatly expanded and regularly updated through the years. It is 

primarily concerned with storing information on the nomenclature of enzymes and so it does 

not contain as much information as BRENDA does about the properties of each enzyme. 

However, it does provide cross links to a number of other databases and is part of the broader 

ExPASy (EXpert Protein Analysis SYstem) server [40] and could play an important role in 

data integration. 

One of the major issues with integrating the enzyme data with metabolic pathway data 

is that since the enzyme databases are not as concerned with the relationships between 

the reactions, the chemical compounds are not given unique identifiers. Rather, they use 

human-friendly names for the substrates and products of the enzyme and even within the 

database these names may not be consistent. This makes it a challenge to map these names 

to specific compounds found in databases like KEGG and MetaCyc. 

The focus of this thesis is the development of algorithms for metabolic path finding, not 

data integration, and therefore in the current work all of the data used comes from KEGG. 

Additionally, as described in Section 2.1.1, KEGG is the only database that contains corre­

sponding atom mapping data which is required for the algorithms in this work. Integrating 

other data sources is an important direction for future work and is further discussed in the 

conclusions chapter. 

2.1.1 Atom Mapping Data 

Even as metabolic databases have greatly increased the number of reactions and compounds 

they contain, they have traditionally lagged behind in providing atom mapping data. Atom 

mapping data provides a mapping between each atom in the substrate compounds of a 

reaction to the corresponding atom in the product compounds of the reactions. An illustration 
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Figure 2.4 : Atom mapping data obtained from KEGG for the reaction catalyzed by alanine 
transaminase (KEGG ID: R00258, EC Number: 2.6.1.2). Underneath each compound is 
its common name and its KEGG ID. The colors together with the atom labels indicate 
which atoms in the substrates map to which atoms in the products. For example, the 
carbons in alanine, CI, C2 and C3, become CI, C2 and C3 in pyruvate and the carbons 
in 2-oxoglutarate, CO, CI, C2, C3, C5 and C7, become CO, CI, C2, C3, C5 and C7 in 
L-glutamate. No hydrogens are illustrated as they are not included in the atom mapping 
data. 

of the reaction catalyzed by alanine transaminase (KEGG ID: R00258, EC Number: 2.6.1.2) 

using atom mapping data from KEGG can be found in Figure 2.4. The atomic level detail 

of reactions provided by atom mapping data enables explicit tracking of atoms through 

metabolic networks. The ability to track atoms through metabolic networks has a number of 

applications in understanding and manipulating metabolism, such as metabolic path finding 

and radioisotope-tracer experiments [48, 16, 6, 5]. The algorithms presented in this thesis 

are based upon atom mapping data, which has recently become increasingly available. 

The large scale availability of atom mapping data is a result of coupling computational 

methods with manual curation. The problem of finding atom mappings can be formalized 

by representing the chemical structure of the compounds as a graph and attempt to find a 

set of cuts that produce isomorphic components between the substrate and product com­

pounds of the reactions. In the general case, finding a set of cuts of size C is NP-hard 

[1]. However, since chemical compounds are graphs of bounded degree, if the number of 

substrate compounds, p, product compounds, q, and C is held constant then the problem 
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becomes 0((nc)^+^) [1]. While this does cover a number of reactions, it is difficult to 

tell without manual intervention if this is the case for a particular reaction. Therefore, a 

common approach is to use heuristic or approximate algorithms to iteratively find maximum 

common substructures (MCS), an NP-hard problem [39], between the substrate and product 

compounds and then manually fix errors. This approach typically requires an extensive 

amount of manual curation and was used to build the ARM database which contains data 

for carbon, phosphorus and nitrogen atoms for about 3000 reactions [7]. A similar approach 

was taken to build the KEGG RPAIR database, arguably the largest source of atom mapping 

data currently available [57, 62]. 

The experiments in this thesis use data acquired from the KEGG RPAIR database [57,62]. 

The KEGG RPAIR database was built by using a combination of manual curation and the 

computational method SIMCOMP [45, 46]. SIMCOMP differs from the computational 

methods used to create the ARM database in that it does not take into account a whole 

reaction, but rather only finds the MCS between two compounds. The RPAIR entries are 

created by manually examining reactions in KEGG and splitting them into substrate-product 

compounds pairs. These pairs are then used as input to SIMCOMP and the output of 

SIMCOMP is then checked manually and corrected if there are errors. The corrected atom 

mapping of the compound pairs become the RPAIR entries and are assigned a unique 

identifier starting with "RP" followed by five digits. 

Since the RPAIR entries only contain atom mapping between a pair of compounds, the 

atom mapping for most reactions is determined using several RPAIR entries. For example, 

the atom mapping for the reaction in Figure 2.4 is determined by using four different RPAIR 

entries corresponding to the four different colors. Table 2.1 contains the atom mapping 

data obtained from the four different RPAIRs combined together to determine the overall 

atom mapping data for the entire reaction. In turn, each RPAIR entry may be associated 
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with multiple reactions. For example, in the RPAIR entries downloaded from KEGG in 

February 2010, the RPAIR entry between 2-oxoglutarate and L-Glutamate (RP000014) was 

associated with 69 reactions. In the same data, there were 12,079 RPAIR entries involved 

in 7525 reactions out of a total 8098 reactions stored in KEGG. While the KEGG RPAIR 

database has a high level of coverage of the reactions in KEGG, there has been interest in 

developing better computational tools for automatically identifying atom mapping in order 

to reduce the high level of manual curation currently required. 

Computationally solving the atom mapping problem has two major issues, one being 

the complexity, as discussed previously in this section [1]. The other is that the formal 

definition of the atom mapping problem involves finding a set of cuts of size C, but it 

does not provide an optimization criteria. Typically, this is to minimize C, but this is a 

heuristic that does not always correspond to the actual chemistry. Additionally, for the 

minimal C there frequently several solutions and there needs to be criteria to choose between 

them. One solution, proposed by Blum and Kohlbacher, is to cluster reactions by their EC 

number and identify the frequency of different chemical transformations in each cluster [16]. 

When multiple atom mappings exist for the minimal C the one that corresponds to the most 

common chemical transformation in the reaction's EC cluster is chosen. 

Other approaches strive to minimize the number of bonds broken and formed in the 

reaction. Crabtree and Mehta provided five algorithms to find atom mappings based upon 

this criteria, one which is exhaustive and the other four based upon different heuristics 

[25]. They demonstrated that the best performing of their heuristic algorithms, evaluated 

on several benchmarks, finds the optimal solution 84-91% of the time. A similar approach 

by Heinonen et al. uses an A* based algorithm that finds the atom mapping that minimizes 

the number of broken and formed bonds [48]. Additionally, their algorithm can incorporate 

weights on the bonds, which can be used to represent chemical criteria such as the energy 
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Table 2.1 : The four RPAIR entries needed to obtain the atom mapping for the reaction in 
Figure 2.4. The chemical drawing depicts the two compounds in the RPAIR; the atoms 
mapped in each RPAIR entry are colored and labeled the same as in Figure 2.4; the other 
atoms are b 
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required to break or form a particular bond. This recent work on computational methods 

for improving the automated determination of atom mappings bodes well for the increasing 

availability of atom mapping data. 

2.2 Stoichiometric Approaches for Metabolic Pathfinding 

The first approaches for computationally finding metabolic pathways were based upon 

stoichiometric models of metabolic networks [92]. These approaches typically focus on one 

organism or system, and require the user to define which compounds are present or available 

to the cell. Stoichiometric models utilize the steady-state assumption and therefore require 

explicit labeling of internal and external compounds. The internal compounds are balanced, 

that is their creation and consumption are equivalent while the external compounds are free 

to be created or consumed as required. This can be a disadvantage as there are feasible 

biochemical pathways that do not obey the steady-state assumption and/or a compound that 

labeled as internal could easily be provided as an external compound [92]. The algorithms 

found in this thesis strive to find interesting metabolic pathways that may span multiple 

organisms without information such as what organisms or what compounds exist in the 

environment. These algorithms should be perceived as complementary to stoichiometric 

methods; in the future the paths found by the path finding algorithms may be incorporated 

with stoichiometric models in order to further understand how new paths may behave when 

introduced into an organism. However, stoichiometric approaches are widely used and it is 

relevant to understand the differences between stoichiometric and graph based approaches 

for metabolic pathfinding. 

In 1986, Seressiotis and Bailey published the first method, Metabolic Pathway Synthesis 

(MPS) for finding pathways that convert one chemical compound into another in metabolic 

networks [107, 108]. They also introduced the concept of genetically independent pathways. 
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A pathway is genetically independent if no subset of the pathway's reactions is also a 

pathway from the same source and target compound. MPS takes in a source compound, a 

target compound and a metabolic network and then performs an exhaustive search to find all 

stoichiometric balanced, genetically independent pathways. MPS was tested on a network 

containing about 90 reactions and 120 compounds. In the early 1990s, Mavrovouniotis et al. 

presented a branch and bound algorithm for finding genetically independent pathways that 

satisfy stoichiometric constraints [77, 76]. This algorithm allowed for specifying multiple 

compounds as sources and targets and operates by iteratively satisfying constraints. It was 

tested on a network containing about 250 reactions and 400 compounds. 

MPS and Mavrovouniotis' algorithm are both exhaustive algorithms that are exponential 

in the worst case. They were tested on networks that are relatively small compared to 

metabolic networks of interest today that contain thousands to tens of thousands of reactions 

and compounds. While the criteria of genetic independence and the structure of metabolic 

networks helps limit the scope of the search, the exhaustive search of both algorithms 

becomes too computationally expensive to apply to these larger networks. Additionally, it 

may be of interest to identify non-genetically independent pathways because the additional 

reactions may have other implications such as energy production or regulation. 

Stoichiometric models subsequently became a popular way to computationally study 

metabolic networks. Flux balance analysis (FBA) emerged as a powerful, experimentally 

validated, and widely used way to analyze the fluxes through metabolic networks [121, 32, 

96, 86]. It differs from path finding approaches in that it's primary goal is to provide a global 

view of the fluxes through a metabolic network. FBA sets up the stoichiometric constraints 

as a set of linear equations and then creates a heuristic optimization function based upon 

the idea that the cell is trying to optimize its growth. Solving this linear programming 

problem results in a set of fluxes for each reaction which can then be analyzed to find high 



22 

flux pathways or compared to the fluxes that result after a reaction is added or removed. 

Elementary flux modes (EFMs) are a related approach that is directed more towards finding 

"fundamental" or "ideal" pathways in metabolic networks [104, 102, 103]. An EFM is a 

minimal, or non-decomposable, set of reactions that operates at steady state, while also 

respecting any irreversible reactions. The set of EFMs is unique and finite for a metabolic 

network, however the number of EFMs increases combinatorially in relation to the size of 

the network [60]. Therefore, while there is evidence that EFMs can be useful for identifying 

metabolic pathways, it is currently limited to analysis of relatively small networks. 

Other stoichiometric models have been geared more towards identifying new pathways 

for metabolic engineering applications. One such example is OptStrain, whose goal is to 

identify the minimum number of reactions to add to a host organism to produce a desired 

compound while also maximizing the theoretical yield of the compound [90]. This is done 

by first creating a "super" metabolic network, which in the study contained about 4800 

compounds and 5700 reactions. This network is then used to calculate the theoretical 

maximum yield of the desired product. The reactions are labeled as native or non-native 

based upon whether they occur in the host organism and the problem is formulated as a mixed 

integer linear program where the number of non-native reactions are minimized while still 

maintaining the theoretical maximum yield. Several computational results were presented 

on hydrogen production in three different microbes as well as the production of vanillin 

from glucose in E. coli, OptStrain is the most closely related of the pure stoichiometric 

models to the algorithms found in this thesis, as its goal is to find new metabolic pathways 

that can be utilized for metabolic engineering purposes. However, it still is hobbled by the 

disadvantages that face all stoichiometric models in that it does not allow for unbalanced 

pathways. 

Petri nets lie on the boundary of stoichiometric and graph-based path finding methods 
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because of their flexibility in specifying firing rules [23, 61, 133, 63]. Petri nets are an 

attractive modeling tool for metabolic networks because of their rich theoretical foundations 

[82] and the straightforward analogy of compounds as tokens and reactions as transitions. 

The firing rules of petri nets are typically based upon stoichiometric constraints that are 

highly similar to stoichiometric models, and a number of concepts in petri net analysis 

correspond to independently developed stoichiometric analysis methods. For example, the 

T-invariant of such a petri net is the same as the previously discussed elementary modes 

[105]. However, unlike stoichiometric models, petri net firing rules can be relaxed so 

that they do not follow the stoichiometric constraints, thus making them more similar to 

graph-based approaches. Work by Kuffner et al. demonstrates how the pathways found in 

petri nets vary depending on the constraints used [63]. They constructed a large petri net 

containing data from KEGG, MetaCyc and BRENDA. Results were reported for pathways 

from glucose to pyruvate that were constrained to having a maximum length of nine. They 

found over 500,000 unrestricted pathways in the network, when stoichiometric constraints 

were applied this was reduced to about 80,000. They also investigated restricting the cut 

width of the pathways to 2 and 1, which resulted in 541 and 170 pathways respectively. 

Their results demonstrated the large number of alternative pathways in multi-genome scale 

metabolic networks. 

Stoichiometric models are adept at analyzing the metabolic networks under steady 

state conditions and this analysis can be used to identify pathways in metabolic networks. 

However, graph-based approaches arguably provide a more natural framework for directly 

identifying pathways in metabolic networks, especially in large networks and in non-steady 

state conditions. 
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2.3 Graph-Based Approaches for Metabolic Pathfinding 

Graphs provide a solid framework, backed with a rich theoretical foundation, for modeling 

objects and the relationships between them. More formally, a graph is a pair (V, E) where 

V is a finite set, called the vertex set, and E, called the edge set, is a binary relation on V. 

In particular, finding paths in a graph is a well defined problem that a number of efficient 

algorithms have been developed to solve. Therefore, the problem of metabolic path finding 

becomes finding a correct way to associate compounds, reactions and their relationships to 

V and E in an appropriate graph model and applying the proper path finding algorithm. 

The most commonly used graph models for representing metabolic networks are com­

pound graphs, reactions graphs, bipartite graphs and hypergraphs [65, 29]. Examples for 

each of these graph models are depicted in Figure 2.5. The graphs used are typically directed 

graphs in order to take the direction of reactions into account, but may be undirected if 

the direction of reactions is unimportant or unknown. In a compound graph, the vertices 

correspond to compounds and an edge is drawn from one compound to another if one 

compound is a substrate and the other compound is a product in a reaction. The reaction 

graph is a similar concept except the vertices correspond to reactions and an edge is drawn 

from one reaction to another if a product of one reaction is used as the substrate as the 

other reaction. Compound and reaction graphs have been used in analysis related to the 

topological properties of metabolic networks [122, 73, 51]. However, they are limited as 

they only contain information about compounds or reactions and therefore can also be 

ambiguous. That is, two different set of metabolic reactions can create the same reaction or 

compound graph [29]. For example, the graph in Figure 2.5(b) could represent two different 

reactions, one being CI —> C2 and the other being CI —> C3 instead of Rl as found in 

Figure 2.5(a). One way to eliminate the ambiguity is to add edge labels based upon the 

reactions, but a more popular approach is to use a bipartite graph to represent the network. 
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R1:C1 -+C2 + C3 
R2: C2 + C3 -» C4 + C5 
R3: C4 -• C6 
R4: C5 -• C7 

(a) 

\mJ \J %J Xj 

(b) (c) (d) (e) 

Figure 2.5 : The generic metabolic reactions, Rl , R2, R3 and R4 using the generic com­
pounds CI, C2, C3, C4, C5, C6 and C7 in (a) represented using four different graph models: 
(b) compound graph (c) reaction graph (d) bipartite graph (e) hypergraph. 
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In a bipartite graph representation, there are vertices representing reactions and vertices 

representing compounds. A bipartite graph is one where V can be partitioned into two 

disjoint sets, V\ and V2, such that each edge has one node in V\ and the other in V2. When 

modeling a metabolic network as a bipartite graph, the two disjoint sets correspond to the 

set of compounds and the set of reactions. There are no edges in the graph from compound 

to compound or reaction to reaction. Edges are drawn from substrate compounds to the 

reaction they participate in and from the reaction to the resulting product compounds. This 

means the bipartite graph is not ambiguous, as is the case with compound or reaction graphs. 

Hypergraphs provide another unambiguous model of metabolic networks. A hypergraph is 

still a pair (V,E), but now the edge set is no longer restricted to connecting two individual 

vertices. Instead, it contains hyperedges that can connect two arbitrary subsets of vertices. 

For modeling metabolic networks, the vertices of the hypergraph correspond to chemical 

compounds and the hyperedges correspond to the reactions. A hypergraph representation of 

metabolic network is equivalent to the bipartite representation, as a hyperedge corresponds 

to a reaction vertex in the bipartite graph [29]. 

While graph models have a number of advantages for finding pathways in metabolic 

networks, the main disadvantage is that they can contain spurious connections through 

currency metabolites. Therefore, most of the research in the last decade has been on 

developing methods and heuristics to avoid these spurious connections. A discussion of 

these approaches follows in Section 2.3.1. Another disadvantage is that graphs do not 

typically model the splitting and joining of chemical compounds, which can result in 

branched metabolic pathways. The work in this thesis overcomes these disadvantages by 

explicitly tracking the atoms in the network which helps avoid spurious connections as well 

as enables finding branched pathways. According to the current literature, there is only one 

other graph based method, discussed in Section 2.3.2, that is able to find branched pathways. 



27 

2.3.1 Finding Linear Metabolic Pathways 

The early 2000's saw a rise of interest in graph-based analysis of biological networks. Most 

of the work in this field has focused on identifying linear pathways, as they correspond to 

paths, as defined by graph theory, in graph representations of metabolic networks. One of 

the seminal works focused on analyzing the topology of metabolic networks and brought the 

concepts of scale-free and small world to biological networks [52]. In their work, Jeong et 

al. modeled the metabolic networks of 43 organisms, from the now defunct WIT database, 

as directed bipartite graphs. The major conclusion of this work was that topology of the 

metabolic networks are not random but rather scale-free and small-world [52]. A scale-free 

network is one whose degree distribution is characterized by a power law of the form 

P(k) ~ k~? [12]. A small-world network is one where any two vertices in the network can 

be connected by a relatively short path. 

The scale-free property of metabolic networks means that there are a few highly con­

nected compounds and most of the compounds have low degree. Coupled with the small-

world property this means that a few compounds are responsible for the overall connectivity 

of the network. Jeong et al. found that irrespective of size, all of the metabolic networks they 

tested had highly similar diameters, between 3 and 4. A diameter of a network is defined 

as the average over all shortest paths between all pairs of vertices. They demonstrated 

that by removing the highly connected compounds one at a time from the network the 

diameter of the networks increases dramatically. These properties of networks are of further 

interest because a number of real-world networks, such as the Internet and citation networks, 

appear to have similar properties [3]. A number of other papers found that other biological 

networks, such as protein-protein interaction, transcription and signaling networks also are 

scale-free and small-world and there have been number of reviews written about the subject 

[2, 13,3, 113]. 
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The small diameter of metabolic networks was especially surprising as known biosyn-

thetic and degradative metabolic pathways are typically much longer. Further investigation 

revealed that, in graph representations of metabolic networks, many of the shortest pathways 

may be biologically meaningless because they route through highly connected currency 

metabolites [73, 5, 6]. The term currency metabolites refers to compounds that take part in 

a large number of reactions, often as cofactors instead of part of the main chemical transfor­

mation, such as ATP and NADH. Therefore, while the structural analysis of the bipartite 

graph representation of metabolic networks provides a number of interesting insights, the 

actual paths found do not correspond to biochemical pathways for synthesizing or degrading 

compounds. Subsequent studies of metabolic networks attempted to correct these issues by 

either removing edges between current metabolites and reactions or the current metabolites 

themselves from the graphs [122, 98, 73, 41]. 

Wagner and Fell analyzed undirected compound and reaction graph representation of the 

metabolic network of £ coli [122]. They compared the properties of full graphs to graphs 

where ATP, ADP, NAD+, NADH, NADP+ and NADPH were removed. The mean degree 

and standard deviation of degree of the graphs dropped when the compounds were removed. 

They found that the degree distribution of the compound graph, with or without compounds 

removed, follows the power law distribution while the reaction graph did not. This highlights 

how different representations of the same metabolic network can have different structural 

properties. Additionally, they found that both graphs were small-world, with or without 

compounds removed, although the shortest paths in the graphs with compounds removed 

had slightly longer path lengths. In the work of Ma and Zeng, they analyzed the metabolic 

networks of 80 organisms, represented as directed compound graphs [73]. They manually 

examined about 3,000 reactions to determine whether the compounds involved were part of 

the main chemical transformation; if they were not, the corresponding edge was removed in 
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the graph. This resulted in more than half of the edges being removed from the graphs, but 

they still found the small-world property held for these graphs. 

The work of Arita was the first to challenge the notion of metabolic networks being small-

world and introduced the idea that "the biochemical link between metabolites ... depends on 

the conserved structural moieties in the adjacent reactions" [6], Therefore, a valid metabolic 

pathway between two compounds is redefined as a sequence of reactions that conserves at 

least one carbon atom from the starting to the target compound. In order to automatically 

identify these pathways atom mapping data is required. Arita manually created a database 

of atom mapping for over 2,500 reactions contained in the KEGG database [6, 5]. Valid 

pathways were identified by running a k-shortest pathway algorithm until the shortest path 

that conserved at least one carbon atom was found. Using the length of these pathways, 

it was revealed that the small-world property no longer held [6]. This analysis showed 

the importance of not ignoring the biochemical underpinnings of metabolic networks and 

provided evidence that graph models need to be used with care in order to find valid 

metabolic pathways. 

Biochemical intuition says that pathways which move a high percentage of atoms from 

start to finish compounds will be biologically relevant. Boyer and Viari proved that this 

problem is PSPACE-complete by formulating the problem as finding a maximal composition 

of partial injections [17], They also state, but do not prove that when a compound can 

only be used once in a pathway, the problem is NP-complete. Despite the complexity, they 

were able to develop an algorithm that found linear atom conserving pathways efficiently 

in practice, given a number of atoms to conserve and a maximum pathway length. The 

algorithm by Boyder and Viari returns all pathways less than the maximum pathway length 

that conserve the given number of atoms. The algorithm was tested with atom mapping 

data obtained by using the SIMCOMP program on data from KEGG, resulting in a network 
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containing 2920 compounds and 3721 reactions. They present two pathway results, one for 

chorismate to tryptophan, conserving 6 carbon atoms with a maximum pathway length of 

6, and the other for -D-glucose 6-phosphate to phosphoenolpyruvate, conserving 9 heavy 

atoms with a maximum pathway length of 8. Both pathway results contain the known 

metabolic pathways, along with a several other pathways. In the case of tryptophan the 

other pathways are mainly catabolic pathways, which is expected as they considered all 

reactions as reversible. In the case of glycolysis, the other pathways included reactions 

from the pentose phosphate pathway. These results provide evidence that the intuition that 

atom conserving pathways are biologically relevant may be correct. However, in the next 

few years, work on path finding in metabolic networks mostly focused on finding realistic 

linear pathways without using atom tracking, perhaps due to the theoretical complexity and 

the perceived unavailability of atom mapping data. These approaches focused on finding 

realistic metabolic pathways with minimal manual intervention. 

One approach was to use measures of structural or chemical similarity instead of explicit 

atom mapping to avoid avoid spurious connections when finding metabolic pathways 

[78, 95]. The PathMiner program uses a predefined set of 145 descriptors based on atom 

type and bond type [78]. Each compound is then represented by a vector of size 145 where 

each entry corresponds to the number of atoms or bond of each type that the compound 

contains. The cost of a transition from one compound to another is then calculated as the 

difference of the vectors for the two compounds. PathMiner uses the data from the manually 

curated KEGG pathway maps, which typically contain only the compounds involved in 

the main chemical transformation, resulting in 3890 compounds and 2917 transformations. 

PathMiner was tested on four different metabolic pathways using breadth-first and depth-

first search. As expected, it was observed that the BFS finds the shortest path in terms of 

number of reactions and the DFS finds very long pathways. Additionally, an A* search was 
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tested, using a cost function that was the sum of transition costs along the pathway. The A* 

approach showed promise, compared to BFS and DFS, but they note that due to the cost 

function, it is best used for pathways that contain small chemical modifications and may not 

perform as well on pathways that require the addition of large functional groups. 

The Pathway Hunter Tool (PHT) takes a similar approach to PathMiner by creating a 

bit vector based upon the chemical structure of a compound [95]. This was done by using 

the "fingerprinting" algorithm contained in the Chemistry Development Kit [111, 112]. The 

similarity between two compounds is then computed by combining the atom mass value 

and the Tanimoto algorithm [130]. PHT then differs from PathMiner in that it automatically 

maps substrate compounds to product compounds, instead of relying on the manually curated 

KEGG pathway maps. This mapping is done by iteratively assigning substrate-product 

pairs that have the highest similarity. The substrate-product pairs are then used to determine 

valid connections during a search of the graph. PHT does not use the similarity scores in 

the search of the graph, but rather just returns the k-shortest paths based upon the number 

of reactions in the pathway. In the article, they show that the shortest pathway that PHT 

finds, using data obtained from KEGG, from beta-D-glucose to pyruvate is of nine reactions 

in length and corresponds to the known reactions of glycolysis. However, there are no 

guarantees that PHT will find the correct mappings and if multiple substrates and products 

have high similarity it is unclear how the mapping will behave. PHT is currently available 

via a web server located at http://pht.tu-bs.de/PHT/. 

Another approach by Croes et al. avoided using chemical structures by focusing on 

the observation that currency metabolites have high degree in metabolic networks [26]. 

Therefore, they created a weighted, directed, bipartite graph where the compound vertices 

were assigned a weight equal to their degree. They built one graph from the KEGG database 

that contained 4,756 compounds and 5,985 reactions and another graph from the EcoCyc 

http://pht.tu-bs.de/PHT/
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database containing 1,348 reactions and 1,329 compounds. The weighted graph is then 

searched to find the k paths, where k is a user input, with minimal total weight, which they 

term lightest paths. They compared the resulting lightest pathways to shortest paths in the 

unweighted graph as well as shortest pathways in an unweighted graph where 36 manually 

selected currency metabolites were removed. Surprisingly, this relatively simple weighting 

scheme performed quite well in finding known metabolic pathways. 

Croes et al. introduced a quantitative performance measure for the known annotated 

pathways to the computed pathways; true positives (TP) are compounds found in both 

pathways; false negatives (FN) are compounds in the known pathway which are not in the 

computed pathway; false positives (FP) are compounds not in the known pathway which 

are in the computed pathway. Sensitivity (Sn) and positive predictive value (PPV) are used 

to calculate the accuracy (Ac); Sn = TP/(TP+FN), PPV = TP/(TP+FP) and accuracy Ac = 

(Sn+PPV)/2. They built a test set containing 56 pathways from the aMAZE database [70] 

and 104 pathways from the EcoCyc database [58]. In contrast, previous studies took more 

a qualitative approach to evaluating performance by just analyzing a handful of pathways. 

Using this measure, they found that the average accuracy for pathways from the unweighted 

graphs was less than 30%, filtering manually chosen currency metabolites increased the 

performance greatly to about 65% and the lightest paths performed the best with 85%. 

They additionally provided more in depth analysis of three metabolic pathways: heme 

biosynthesis, methionine/adenosyl-methionine biosynthesis and lysine biosynthesis. This 

analysis highlights that there is typically not just one correct metabolic pathway, especially 

when using a network constructed from reactions from multiple organisms, and that in the 

case of methionine and lysine biosynthesis feasible alternative pathways were found in the 

top five lightest pathways. 

Follow up work to the work on degree weighting by Faust et al. coupled using the 
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weighted graph with information obtained from the KEGG RPAIR database [35]. Faust et al. 

performed a qualitative analysis, based on the measures described in the previous paragraph, 

of the different combinations of parameters that can be used to construct metabolic graphs. 

They tested three types of graphs, the standard bipartite graph containing compound and 

reactions nodes, a bipartite RPAIR graph containing nodes corresponding to a RPAIR entry 

and nodes corresponding to compounds and a reaction-specific RPAIR, similar to the RPAIR 

graph, except it contains a node for each RPAIR/reaction combination. When all reactions 

or RPAIRs are considered reversible, the graph can be directed and contain two nodes 

representing each direction, or undirected and only containing one node for each reaction. 

The graphs could also be unfiltered, containing all compounds, or filtered where the 36 

currency metabolites identified from the previous work were removed. The RPAIR graphs 

could also be filtered based upon the RPAIR class, one where it contains all of the RPAIRs, 

one where only RPAIRs classified as "main" are included and one where only "main" and 

"trans" RPAIRs are included. Finally, they tested different weighting schemes, the degree 

based weighting from the previous work and weights based on the RPAIR classes where the 

node weights were based on the RPAIR class: main=l; trans=5; cofac=10; ligase=15 and 

leave=20. It should be noted that in this work, they did not explicitly use the atom mapping 

data contained the KEGG RPAIR data, but rather used it as either a way of constructing or 

weighting the graphs. 

Faust et al. then tested all feasible combinations of these parameters, 104 combinations 

in all, using a set of 55 annotated pathways from the aMAZE database and the accuracy 

score developed in their previous work. The top performing combination used the RPAIR 

graph and the degree based weighting scheme, resulting in an average accuracy of 83% 

across all pathways, 93% for E. coli pathways, 66% for S. cerevisiae pathways and 70% 

on human pathways. One of the most significant results was that the RPAIR graph always 
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produced the most accurate pathways and the degree weighting always performed better 

than no weighting, regardless of the other parameters. They also provided a more detailed 

analysis of several pathways to highlight specific examples where the RPAIR annotation 

helps to remove spurious connections in the metabolic graph. The pathfinding tools used 

in the analysis are freely available through the Network Analysis Tools web server at 

http://rsat.ulb.ac.be/neat/ [19]. 

MetaRoute combined the idea of weighting by degree along with the idea that a valid 

biochemical path should transfer at least one atom, typically a carbon, from the start 

compound to the target compound [15]. MetaRoute uses a different weighting scheme, 

termed combined weight, that takes into account both the degree of the compounds along 

the pathway and the degree of the compounds along the pathway that participate in the 

pathway's reactions. The intuition is that compounds along the pathway should have low 

degree, as in the work of Croes et al., and the other compounds involved in the reaction, 

but not in the pathway, should have high degree so that they're more likely to be available 

currency metabolites. MetaRoute also utilizes computationally computed atom mappings 

from the work of Blum and Kohlbacher [16]. These atom mappings are used to create a graph 

structure where each reaction is broken down into substrate/product pairs (5,-, Pj) where 

at least one atom is conserved from the substrate to the product. Each substrate/product 

pair is then a node in the graph, edges are created in the graph between two nodes (St, Pj) 

and (Sk, Pi) if Pj = S& and at least one atom is conserved from 5,- to S^. Pathways are then 

found by applying Eppstein's ^-shortest path algorithm to the graph using the combined 

weight. The k pathways are then filtered to only return pathways that conserve at least one 

atom from the start to the target compound. MetaRoute was tested on 137 pathways from E. 

coli and demonstrated improved performance over their previous work which used degree 

weighting instead of combined weighting. MetaRoute is freely available via a web server at 

http://rsat.ulb.ac.be/neat/
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http://www-bs.informatik.uni-tuebingen.de/Services/MetaRoute/. 

The previous research done on using graph based methods for linear metabolic pathways 

has helped to shape the philosophy found in this thesis that it is important to explicitly 

track atoms to find biologically meaningful pathways. Atom tracking also enables the use 

of graph based methods to find branched metabolic pathways, a topic that has not been 

explored until the last few years. 

2.3.2 Finding Branched Metabolic Pathways 

Graph-based methods for finding metabolic pathways have focused on finding linear 

metabolic pathways because on the compound/reaction level it is unclear how to deter­

mine the relationships between the different pathways. However, the introduction of atom 

mapping data and atom tracking allows the algorithm to automatically identify where atoms 

are lost and gained along a linear pathway and thus this information can be used to build 

branched pathways. Branched pathways play an important role in metabolic networks as 

the atoms from the source compounds often go through separate reaction paths in order 

synthesize the final target compounds. Furthermore, branched pathways help highlight the 

relationships between different compounds and reactions that may not be as easily found 

by looking at a set of linear pathways. This may play an important role in the choice 

of metabolic pathways for applications such as metabolic engineering. An example of a 

branched pathway between sn-glycero-3-phosphocholine and L-threonine is depicted in 

Figure 2.6. The branched pathway contains two valid linear pathways, one through acetalde-

hyde and the other through glycine. However, only by realizing the two linear pathways 

interact biochemically can the full branched pathway utilized be revealed. 

A recently introduced algorithm, ReTrace, was the first to take a graph based approach 

to find branched pathways [91]. Similar to the algorithms presented in this thesis, ReTrace 

http://www-bs.informatik.uni-tuebingen.de/Services/MetaRoute/


36 

sn-glycero-
3-phosphocholine 

OH 

sn-giycero! m
 H ? ° f 0 * 

3-phosphate " u v * - - - u 

/ 

glycerone L o 
phosphate I « 

HO 

|1 1.1.61 

choline 

Vt1' 0 betaine 
H3<r \ _ ^ aldehyde 

H 

|l.2.1.8| 

CH3 O 
M 3 C - M * II betaine 

methylglyoxaJ H J C Y ^ H 

1.2.1.22 

"T 
o 

pyruvate H c 

OH 

\ 

• ^ ' - ^ . t j 

acetaldehyde H 3 C H H O ' 

C H 3 0 
J, II dimethylglycine 

|1.5.99.2| 

H 

H 3 C ' N - A 

/ 
OH 

glycine 

O OH 

H O ' ^ - ^ C H j 
NH2 

L-Ihreonins 

Figure 2.6 : A branched pathway between sn-glycero-3-phosphocholine and L-threonine, 
with the chemical structures of the compounds depicted and the reactions that function as 
branch points highlighted in magenta. This pathway corresponds to a result found in Figure 
5.9. 



37 

achieves this by using atom mapping data to explicitly track atoms. In this formulation, 

the goal is to find a set of reactions that maximize the number of atoms that are conserved 

from start to target compound while minimizing the number of reactions. More formally, in 

the terminology of Pitkanen et al., g& is the set of reactions, si is the set of atom positions 

for all compounds, an atom mapping is a bijective relation r : & —> si x si describing 

which subtrate atoms become which product atoms. When finding pathways, a pathway is 

a subset of reaction P = r\,..., rk C <%, the set of start atoms is S, the set of target atoms 

is T and Zo is the fraction of atoms conserved by P from S to T. This gives rise to the 

main Find-Branching-Pathways problem which is definied by Pitkanen et al. as "Given 

a set of reactions, sets S,T C si, I G Z+ and w e R, find all pathways, P C j such that 

Zo(P,S,T) >w and |P| < /". Subsequently, they proved that Find-Branching-Pathways is 

NP-hard and developed ReTrace as a heuristic algorithm for finding branching pathways. 

ReTrace is so named because it first identifies linear paths that conserve at least one 

atom from start to target atoms and then recursively attempts to find linear paths that can 

be combined that conserve more atoms, thus resulting in branched pathways. ReTrace 

was tested on a atom graph built from 11,265 KEGG RPAIR entries involved in 7,781 

reactions. They provide a nice analysis of pairwise shortest distances when at least one atom 

was required to be conserved. Their results show that the distance distribution for carbon 

contains a long tail with a mean distance of 21.2, much longer than the mean distance of 8.4 

found in previous work [6]. For branched pathways, they looked at 13 compounds and found 

pathways between all pairs of the compounds. Their results demonstrate that computation 

time and number of pathways found is highly dependent on the compounds specified as the 

start and target sets. They provide a more detailed analysis of the branched pathway found 

from Glucose to 5'-inosine monophosphate (IMP). ReTrace has also been successfully used 

to reconstruct the metabolic network of Trichoderma reesei [54]. 
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The branched pathway algorithms in this thesis, developed independently, also augment 

linear pathways to find branched pathways that maximize the number of atoms conserved 

from the start to the target compound. Since because both methods use various heuristics 

and cutoffs to overcome the high complexity of finding branched pathways, the selection 

of which method to use may be dependent on the specific application or compounds being 

studied. One key difference is that the algorithms in this thesis explicitly use linear pathways 

that conserve at least a given number of atoms. In contrast, ReTrace finds pathways that 

conserve one atom and requires weighting heuristics to help find paths that conserve a larger 

number of atoms. As these methods are adopted, future work should analyze the practical 

performance of these methods to understand the affect of their heuristics and identify areas 

for improvement. 
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Chapter 3 

Finding Linear Metabolic Pathways 
This chapter presents a new algorithm for finding atom conserving linear pathways in 

metabolic networks, called LPAT for Linear Pathfinding with Atom Tracking. LPAT takes as 

input a start compound, a target compound, the minimum number of atoms to be conserved, 

the number of pathways to return, k, and a special data structure, termed an atom mapping 

graph (Gam). LPAT is then guaranteed to return the k shortest pathways between the start 

and target compounds that conserve at least a given number of atoms. Optionally, LPAT 

can utilize weighting schemes, for example those discussed in Section 2.3.1, that associate 

weights with compounds and reactions. If a weighting scheme is used, LPAT will return the 

k shortest pathways where the "length" of the path is equal to the sum of the weights of the 

nodes used in the pathway. LPAT is efficient enough that maximal atom conserving linear 

pathways can be found by starting with the number of atoms in the smaller of the start and 

target compounds and decrementing by one until pathways are found or a minimal number 

of atoms is reached. 

Several general steps are used to find linear metabolic pathways. The first is to construct 

Gam, described in Section 3.1, which contains the atom mapping information in a mini-

malistic way and whose structure important for the efficiency of the algorithm. After the 

construction of Gam, the next series of steps are performed by LPAT, as described in Section 

3.2. 
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3.1 Construction of Gam 

A frequently used representation of metabolic networks is a directed graph where there are 

reaction nodes and compound nodes and edges are drawn between the compounds and the 

reactions they participate in. However, tracking atoms through this representation typically 

results in unreasonably high computational cost, because of compounds, such as cofactors, 

participating in a large number of reactions. Therefore, the atom mapping graph, Gam, is 

built using the observation that the same atom mapping pattern between two compounds 

often appears in multiple reactions [5]. For example, ATP to ADP occurs in many reactions, 

but the atom mapping remains the same between the two compounds. When searching Gam, 

only one node representing the ATP to ADP atom mapping needs to be explored. This is 

more efficient than explicitly exploring all of the reactions containing the atom mapping. In 

practice, this representation is important to help reduce the computational cost required to 

find atom conserving pathways. 

Gam is a directed bipartite graph containing compound nodes and mapping nodes. Build­

ing Gam starts by providing a list of atom mappings between pairs of compounds and the 

associated reactions that utilize the atom mappings. For each compound, a compound node 

is added to Gam that has a unique identifier as well as a unique identifier for each of the 

atoms in the compound. A mapping node is added for each atom mapping entry and two 

directed edges are created, one from the first compound to the mapping node and one from 

the mapping node to the second compound. The mapping nodes contain atom mapping 

information, such that the atom identifiers from the substrate compound are associated with 

the atom indices in the product compound. There are can be multiple mapping nodes for the 

same pair of compounds. Reversibility is handled by adding another mapping node to enable 

the reverse direction; it has the same edges created but in the reverse direction. Typically, if 

no reversibility information is available then all atom mappings are considered reversible. If 
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reversibility information is provided, it is incorporated into Gam by only allowing the corre­

sponding edges to be added to the graph. Additionally, molecular symmetry can be handled 

by adding multiple mapping nodes that correspond to the different possible symmetries. 

The mapping information contained in Gam allows for explicit tracking of an individual 

atom through the graph. Figure 3.1 shows a small subgraph of Gam. In this subgraph, a 

linear path from C00231 to C05345 through RP00080 and RP13340 conserves three carbon 

atoms. An important property of Gam is that all mapping nodes only have one input edge and 

one output edge connected to two different compound nodes. The compound nodes have 

the same number of outgoing and incoming edges equal to the number of atom mapping 

entries they participate in. Therefore, the degree of the nodes of Gam is less than the more 

traditional compound and reaction directed graph, which in turn contributes to the efficiency 

of the path finding methods. 

3.2 LPAT: Linear Pathfinding with Atom Tracking 

LPAT begins with a depth-first exploration of Gam. The exploration, described in Section 

3.2.1, begins with the atoms of the start compound and finds all parts of the atom mapping 

graph that are reachable with at least the given number of minimal atoms. The result of the 

exploration is then used to build an auxiliary graph, described in Section 3.2.2, that has the 

property that all pathways from the start compound conserve the given number of minimal 

atoms. The last step is to run a standard k shortest path algorithms, the choice of which is 

discussed in Section 3.2.3, on the auxiliary graph and the resulting pathways correspond to 

the atom conserving linear pathways. 
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RP00080 
C00231:C2-»C00118:C2 
C00231:C3-»C00118:C1 
C00231:C4-»C00118:CO 

RP13340 
C00118:C0 -* C05345:C0 
C00118:C1 -» C05345:C1 
C00118:C2 -» C05345:C2 

RP01264 
C00118:C0 
C00118:C1 
C00118:C2 

-•C00197:C0 
-» C00197:C1 
- C00197:C2 

Figure 3.1 : An illustration of a small subgraph of Gam built from KEGG RPAIR data 
containing four compound nodes and three mapping nodes. The identifiers for each node 
are in bold, the compound nodes are also labeled with the common name of the compound 
and the mapping nodes contain the mapping between the carbon atoms. The KEGG RPAIR 
database contains information for all non-hydrogen atoms, but only carbons are depicted for 
clarity. The carbons colored in blue are mapped in the mapping nodes while the green and 
pink colored carbons are not in this subgraph. 
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3.2.1 Exploration of Gam 

After the construction of Gam, LPAT begins with an exploration step that traverses Gam in a 

depth-first manner while explicitly tracking where each atom from the starting compound 

goes along the way. The exploration is a modified version of a standard depth-first search 

because the semantics of Gam are different. These semantics require that the exact set of 

atoms visited in each compound are recorded, and not just the fact that the node itself 

is visited as in traditional graph traversals. Therefore, a string containing the compound 

identifier along with an ordered list of atom identifiers is termed an atom marking. When the 

exploration moves through a mapping node, the input atom marking is used to compute the 

output atom marking based upon the mapping contained in the mapping node. The queue 

for the depth-first search then contains mapping nodes along with their input atom marking. 

For example, in Figure 3.1 the atom marking for all carbon atoms in D-xylulose 5-phosphate 

would be "C00231 C0,C1,C2,C3,C4", then taking the mapping node RP00080 would result 

in the atom marking "C00118 C0,C1,C2". 

Since each possible atom marking is considered a different state during the exploration, 

each compound node can be visited ^ I , ) times where n is the number of atoms in the 
k=m W 

compound and m is the minimum number of atoms to conserve. Theoretically, this means 

there is the potential for a combinatorial explosion in the number of states to visit during 

an exploration of Gam. One standard way to reduce the amount of exploration time is to 

limit the depth of the search. However, in practice the cost of the exploration is dependent 

on a number of interelated factors such as the number of atoms in the start compound, the 

minimum number of atoms to conserve and the connectivity of the graph. In all of the 

linear pathway experiments for this thesis, a complete exploration of Gam was obtained in a 

reasonable amount of time and space without a limit on the depth. 

The states visited during the exploration are recorded using an object containing the 
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input atom marking, the identifier of the mapping node taken and the resulting output atom 

marking is termed a transition history. Using the atom markings and transition history, we 

can now introduce Atom Tracking Depth-First Search in Algorithm 3.2.1. This search starts 

from the starting compound and explores Gam to find all reachable states that conserve the 

given number of atoms. The result of the search is a list of generated transition histories, L, 

which is then used to build an auxiliary graph. An example of how Algorithm 3.2.1 operates 

on a generic Gam is illustrated in Figures 3.2 and 3.3. 

3.2.2 Auxiliary Graph Construction 

The resulting list of transition histories, L, from the previous exploration step of Gam, 

implicitly contains all of the linear atom conserving pathways. It is an implicit representation 

because the search backtracks when it reaches a previously explored state, instead of 

explicitly storing the path consisting of the new exploration path combined with the old 

exploration path. The purpose of the auxiliary graph is to combine all of the states explored 

such that the auxiliary graph can be used as input to standard k shortest path algorithms to 

obtain the final linear pathways. The auxiliary graph can almost be thought of as a filtered 

version of Gam which only contains paths from the start compound that conserve at least 

the given number of atoms. However, Gam can not be filtered directly by the exploration 

because of the atom tracking behavior. The atom tracking causes each compound node to 

take on several atom marking states which are not represented explicitly in Gam. Therefore, 

the auxiliary graph must be constructed separately from Gam so that it explicitly contains all 

of the atom marking states and mapping nodes found during the exploration. 

The construction of the auxiliary graph begins with the resulting list of transition histories, 

L, from the previous exploration step of Gam. The auxiliary graph contains a node labeled 

with each atom marking found in L. For each transition history, a new node containing the 
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Algorithm 3.2.1 Atom Tracking Depth-First Search (LPAT) 

Input: Input Compound Atom Marking c,n, Minimum Number of Atoms to Conserve n, Atom 

Mapping Graph Gam 

Output: List of Transition Histories L 

1: V <— {cam} Set of visited atom markings 

2: S <— {} Stack of partial transition histories containing a mapping node and an input atom 

marking 

3: L ^ { } 

4: for each successor mapping node m from c,„ in Gam do 

5: Add {m, c,„} to S 

6: while S is not empty do 

7: Pop 5 from S 

8: cout <- the output atom marking of traversing the mapping node sm of s using the atom 

marking sam of s 

9: Add transition history {sam, sm, cout} to L 

10: if cout is not in V then 

11: AddcOJrftoV 

12: if cout contains n or more atoms then 

13: for each successor mapping node m from cout in Gam do 

14: Push {m, cOHr} on to S 
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M6 
C3:1 -» C2:1 
C3:2 - C2:2 

M7 
04:1 -> C5:1 
C4:2 - CS:2 
04:3 - C5:3 
C4:4 - C5:4 
C4:5 - C5:5 
C4:6 - C5:6 

Stack: 
C1 {1,2,3,4,5,6}, M1 
C1 {1,2,3,4,5.6}, M2 

Transition Histories: 

(a) (b) 

Figure 3.2 : A generic Gam is drawn in (a), the compound nodes are ovals containing circles 
representing each atom of the compound and the mapping nodes are rectangles. When 
an exploration of this Gam is started at CI , its atom marking contains all of its atoms, as 
indicated by coloring them green. The exploration then identifies all adjacent mapping 
nodes, which are colored magenta. The state of the stack and the list of transition histories 
is shown in (b). Since this is the start of the exploration there are no transition histories yet. 
The next step of the exploration is shown in Figure 3.3. 
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M1 
C1:1 -»C2:1 
C 1 : 2 - C 2 : 2 
C1:3 -> C2:3 

M4 
C3:1 -> C2:1 
C3:2 - C2:2 
C3:3 - C2:3 

M6 
C3:1 -• C2:1 
C3:2 - C2:2 

C4:1 
C4:2 
C4:3 
C4:4 
C4:5 
C4:6 

M7 

-* 
-* 
-» 
-» 
-» 
-

C5:1 
C5:2 
C5:3 
C5:4 
C5:5 
C5:6 

1 
.0©®®©©v 

Stack: 
C2 {1,2,3}, M3 
C2 {1,2,3}, M5 
C1 {1,2,3,4,5.6}, M2 

Transition Histories: 
C1 {1,2,3,4,5,6}, M1.C2 {1,2,3} 

(a) (b) 

Figure 3.3 : The next step of the exploration of generic Gam, continued from Figure 3.2. The 
first item is popped off of the stack from Figure 3.2(b) and the atom marking of CI with the 
atom mapping in Ml is used to compute the resulting atom marking of C2, highlighted in 
green in (a). The transition history generated by this traversal is added to the list of transition 
histories in (b). The adjacent mapping nodes to C2 are then added to the stack with the atom 
marking of C2, highlighted in magenta in (a) and the state of the stack is shown in (b). The 
exploration continues in this manner until the stack is empty. 
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mapping node identifier is added. Since the same mapping node can be traversed using 

different atom markings, the mapping node identifier is appended with a counter that is 

incremented every time the same mapping node is added to the auxiliary graph. Then an 

edge is drawn from the input atom marking node to the node representing the mapping node 

and then from the node representing the mapping node to the output atom marking node. 

Figure 3.4 illustrates the construction of the auxiliary graph from the generic Gam found in 

Figures 3.2 and 3.3. Figure 3.4(a) contains the resulting L from the full exploration of the 

generic Gam and Figure 3.4(b) shows the auxiliary graph constructed from this L. 

3.2.3 Finding k shortest paths 

The final step of LPAT finds the linear atom conserving pathways by using a standard 

k shortest path algorithm run on the auxiliary graph. The auxiliary graph only contains 

one node for the start compound, but it may contain several different nodes for the target 

compound with different atom markings. If a specific atom marking is desired for the target 

compound, then the corresponding node can be used as the target node for the k shortest 

path algorithm. For example, there are two different atom markings of C5 in Figure 3.4(b), 

but they can be easily merged into one node as illustrated in Figure 3.5. Typically, the atom 

markings of the target compound do not matter for linear pathway finding and so all nodes 

corresponding to the target compound are merged into one node. Then, the k shortest path 

algorithm gets as input the auxiliary graph, the node corresponding to the start compound 

and the node corresponding to the target compound and the resulting set of pathways are 

linear atom conserving pathways. 

The implementation of LPAT in this thesis use Eppstein's k shortest path algorithm [33]. 

Eppstein's algorithm was chosen because of its low computational cost, 0(m + nlogn + kn), 

where n is the number of verticies, m is the number of edges and k is the number of paths 
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f M4_0 J ( M5_0 j 

/ 

Stack: 

i f C2 {1,2,3} } ( C 4 {4,5,6} J 

Transition Histories: 
C1 {1,2,3,4,5,6}, M1, C2 {1,2,3} 
C2 {1,2,3}, M3, C4 {1,2,3} 
C4 {1,2,3}, M7.C5 {1,2,3} 
C1 {1,2,3,4,5,6}, M2, C3 {1,2,3} 
C3 {1,2,3}, M6, C2{1,2} 
C3 {1,2,3}, M4, C2 {1,2,3} 
C3{1,2,3},M5,C4 {4,5,6} 
C4 {4,5,6}, M7, C5 {4,5,6} 

(a) 

£ c 5 {4,5,6} j 

C5 {1,2,3} 

(b) 

Figure 3.4 : The resulting list of transition histories, L, from the exploration of the generic 
Gam, conserving three atoms, found in Figures 3.2 and 3.3 is shown in (a). L is then used 
to construct the auxiliary graph found in (b), with nodes created for each atom marking 
and mapping node and edges from input atom markings to the mapping node and from the 
mapping node to the output atom marking. Notice that the traversal of M6 is stored in the 
list of transition histories so that it is not visited again in the exploration, but it does not 
need to be contained in the auxiliary graph because it cannot be part of a path conserving 
three atoms. Also notice that M7 is traversed two separate times utilizing different atom 
markings, this is taken into account by appending the identifier of each mapping node with 
a counter that distinguishes the two traversals. 
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( C2 {1,2,3} J ( M5_0 j 
% ii i\mvmmmM»uun^r \mmmmmmmmmiem' immmmmmmmr ^m 

Figure 3.5 : Auxiliary graph from Figure 3.4(b) with the nodes corresponding to C5 merged 
together for finding pathways between CI and C5 conserving three carbons. This graph 
can now be used with k shortest path algorithms using "CI {1,2,3,4,5,6}" as the starting 
node and "C5" as the target node and the returned paths will correspond to linear pathways 
conserving three atoms between CI and C5. 

file:///mmmmmmmmmiem'
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to return. However, Eppstein's algorithm considers all paths, not just simple paths, and so 

the paths returned can contain cycles. For some applications, finding paths with cycles may 

be useful, but for the most part metabolic paths with cycles are undesirable. Cycles are 

especially undesirable when all reactions are considered reversible, as many pathways will 

contain many cycles from the substrates to the products and back again through the reverse 

direction. This is highly unlikely biochemical behavior and in the current implementation 

of LPAT, k is typically set to a high value and the resulting pathways are filtered to remove 

paths with cycles. Future implementations may investigate using k shortest path algorithms 

that only consider simple paths, such as Yen's algorithm that takes 0(kn(m + nlogn)) [131], 

which have slower run times but do not require the filtering step. 



52 

Chapter 4 

Finding Branched Metabolic Pathways 
In addition to eliminating inappropriate transitions, atom tracking identifies where atoms are 

lost and gained along a linear pathway and enables finding branched pathways. This chapter 

presents two algorithms for Branched Pathfinding using Atom Tracking (BPAT) that both 

begin by identifying linear pathways, using LPAT, between the start and target compounds. 

Due to the high complexity of this problem, as discussed in Section 2.3.2, the BPAT 

algorithms utilize different heuristics and cutoffs to identify biologically relevant pathways. 

Since BPAT-S and BPAT-M are heuristic, they can return different top ranking results. As 

further explored in Chapter 5, BPAT-S and BPAT-M both have their own advantages and 

disadvantages. 

Both algorithms take as input the atom mapping graph, Gam whose construction is 

described in Section 3.1, a correspondence between the atom mappings and the reactions 

they occur in, a start compound, a target compound and a minimal number of atoms to 

conserve and returning a set of branched pathways, ranked first by the number of atoms 

conserved and then by the total length, or weight, of the linear pathways used to construct 

it. The algorithms both begin by passing the appropriate inputs to LPAT and then take two 

different approaches for finding branched pathways from the linear pathways. The first 

algorithm, BPAT-S (S for Seed pathways), is described in Section 4.1. BPAT-S works by 

taking each linear pathway and replacing mapping nodes through which atoms are lost and 

gained with specific reactions to form seed pathways. Branches can then be added to the 

seed pathways, resulting in branched pathways. The second algorithm, BPAT-M (M for 
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Five Pathways From LPAT 

QQQQQ 

0 6 6 6 £ 

Figure 4.1 : A cartoon depicting the approaches taken by BPAT-S and BPAT-M to find 
branched pathways. The linear pathways from LPAT are represented as the colored lines 
and the circles represent the start and target compounds. BPAT-S takes each pathway in turn 
and finds new branches, represented by the narrower black lines, that can be attached to the 
linear pathway. BPAT-M does not find new branches, but rather tries to merge the linear 
pathways into branched pathways. 
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Merging), is described in Section 4.2. BPAT-M attempts to merge linear pathways together 

to form branched pathways. An high level depiction of the general approaches for BPAT-S 

and BPAT-M can be found in Figure 4.1. 

4.1 BPAT-S: Branched Pathfinding Using Seed Pathways 

This section describes how BPAT-S finds branched pathways in metabolic networks. The 

first step of BPAT-S is to use LPAT, described in the previous chapter, to obtain a set of 

linear pathways between the desired start and target compounds. The linear pathways are 

then examined to find the compounds through which atoms are lost or gained through. 

This examination gives rise to the creation of seed pathways, where mapping nodes that 

potentially lose or gain atoms are replaced by specific reactions. Potential branches are then 

identified between reactions through which atoms are lost and gained. All valid combinations 

of these branches are systematically attached to the seed pathways to obtain the resulting set 

of branched pathways. 

4.1.1 Generation of Seed Pathways 

BPAT-S starts by using LPAT to obtain a set of linear atom conserving pathways, P/. Each 

pathway in P/ will potentially give rise to a number of seed pathways. While the atom 

mapping graph, Gam, contains enough information to find linear pathways, it is missing 

information about which substrate and product compounds not along the pathway through 

which the atoms can be lost or gained. Identifying these compounds is important because 

they are the start and target compounds for potential branches. In order to obtain this 

information, the actual reactions associated with the atom mapping must be examined. 

Therefore, a correspondence is stored between mapping nodes and reactions. 

For the experiments in this thesis, the reaction data is obtained from KEGG REACTION 
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Table 4.1 : RPAIR entry RP00080 between D-xylulose 5-phosphate (C00231) and D-
glyceraldehyde 3-phosphate (COO 118). 

RPAIR ID 

RP00080 

Substrate ID 

C00231 

C00231 

C00231 

Atom ID 

C2 

C3 

C4 

Product ID 

C00118 

C00118 

coon 8 

Atom ID 

C2 

CI 

CO 

Chemical Drawing 

0 0 0 

II 1 II 
0̂  ^CK ^G3^ , . 0 - f - O 

co a c« 
1 o 
0 

9 
. 0 ~ - P - 0 

! 
C1 —0 

database and KEGG also provides the correspondence between RPAIR and REACTION 

entries. For example, RP00080 in Table 4.1 is associated with six different reactions in 

KEGG, which use and produce different compounds in addition to D-xylulose 5-phosphate 

and D-glyceraldehyde 3-phosphate. Two of the reactions are illustrated in Figure 4.2. In one 

reaction, D-xylulose 5-phosphate reacts with formaldehyde to produce D-glyceraldehyde 

3-phosphate and glycerone. In the other, D-xylulose 5-phosphate reacts with orthophosphate 

to produce D-glyceraldehyde 3-phosphate and acetyl phosphate. The important difference 

is that in the first reaction the CO and CI carbons of D-xylulose 5-phosphate end up in 

glycerone and in the second reaction they end up in acetyl phosphate. Hence, the starting 

compound of the branch is different depending which reaction is used. 

By using the corresponding reactions, for each p E Pi two types of mapping nodes 

are identified: loss mapping nodes (LMNs) and gain mapping nodes (GMNs). LMNs 

are mapping nodes where the atom mapping does not map all of the atoms in the input 

compound and GMNs are mapping nodes where the atom mapping does not map all of the 

atoms in the output compound. For example, RP00080 in Table 4.1 would be considered a 

LMN. 

The construction of seed pathways begins by (a) replacing each LMN in p with all 
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C00009 
C00231 Orthophosphate 

D-Xylulose 5-phosphate 
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C00231 
D-Xylulose 5-phosphate 
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C00067 
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C00118 
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II ° 
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C00227 
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1 C00001 Water 

= 0 

C00184 
Glycerone 

Figure 4.2 : The reactions R01621 (top) and R01440 (bottom) contain the atom mapping, 
RP00080, found in Table 4.1. If RP00080 was in a linear pathway, it would be considered a 
LMN, R01621 and R01440 would be two of the corresponding LRNs, with R01621 resulting 
in acetyl phosphate being the LCN and R01440 resulting in glycerone being the LCN. 
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possible corresponding reactions - called loss reactions nodes (LRNs), and (b) replacing 

each GMN in p with all possible corresponding reactions - called gain reaction nodes 

(GRNs). Since a mapping node can have multiple corresponding reactions, one seed 

pathway is created for each possible combination of LRNs and GRNs along the pathway. 

For example, since RP00080 in Table 4.1 is found in six reactions in KEGG at least six 

seed pathways would be created, each one containing one of the reactions. Depending on 

the reactions corresponding to the other LMN and GNMs, more seed pathways may be 

generated corresponding to all possible combinations of LRNs and GRNs. 

There exists the theoretical possibility of a combinatorial explosion, as the number 

of seed pathways is equal to the number of possible combinations of reactions along the 

pathway. However, in practice this has never been a problem because most pathways have 

few LMNs and GMNs, which also typically correspond to only a few reactions. Additionally, 

reactions are considered the same if the compound through which atoms could be lost and 

gained through are the same. For example, there are many reactions that include the atom 

mapping from ATP to ADR but many of these reactions are identical in that the phosphorus 

atom is lost through phosphate. Therefore, all of these reactions can be considered as the 

same LRN to reduce the number of seed pathways. 

The final step in constructing seed pathways is to attach the compound nodes through 

which atoms are lost or gained for each LRN and GRN. For each seed pathway, its LRNs are 

examined and the compound nodes through which the atoms are lost, LCNs, are identified 

and attached to the seed pathway. This is done by creating a directed edge from the LRN 

to the LCN. The GRNs are then examined and the compounds nodes through which atoms 

could be gained, GCNs, are also identified and attached to the seed pathway. This is done 

by creating a directed edge from the GCN to the GRN. The final resulting seed pathways 

contain possible attachment points for branches and are used to obtain branched pathways. 
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4.1.2 Attaching Branches to Seed Pathways 

The seed pathways can then be used as input for Algorithm 4.1.1 which returns branched 

pathways first sorted by the total number of atoms conserved and then by the total number of 

nodes. Since the algorithm is based on LPAT, as described in Chapter 3, weighting schemes 

can be easily incorporated and the results sorted by the total weight of the branched pathway. 

Additionally, utilizing multiple molecule of the start compound is a natural extension that 

can be done in two ways. One is for the user to specify the number of start molecules to use. 

Then, a new compound node corresponding to the multiple molecules is added and used 

as the start compound. This new compound node is attached to the graph by creating new 

mapping nodes, one for each molecule desired. These new mapping nodes then correspond 

to a new reaction so that each of the molecules can be used as the starting point for branches. 

This the the method used for the experimental results found in this thesis. Another, more 

general, extension is to allow any branch to start from a molecule of the start compound. 

Either way, the only thing that changes is that the LCNs corresponding to the start compound 

are considered as contributing additional atoms to the pathway when the number of atoms 

conserved are calculated. 

Algorithm 4.1.1 proceeds by examining each augmented seed pathway and obtaining 

potential branches by finding the shortest maximal atom conserving linear pathways between 

all pairs of LCNs and GCNs (lines 7-10). Then, all combinations of possible branches are 

tried systematically for attachment to the augmented seed pathway (lines 11-15). Testing 

all combinations of branches is necessary because adding a branch to an augmented seed 

pathway may affect the atom tracking down the pathway. 

The brute force nature of trying all combinations in Algorithm 4.1.1 may result in 

unreasonable running times, although this was rarely encountered in practice. This is 

partially due to the observation that the start and target compounds for branches were often 
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Algorithm 4.1.1 Find branched pathways using seed pathways (BPAT-S) 
Input: Set of seed pathways S?, Atom mapping graph Gam, max number of branches b 

Output: Sorted list of branched pathways £?>, sorted first by number of atoms conserved, then by 

total number of nodes 

1: &^{} 

2: Mb <— {} (Mj, is map between a pair of compound nodes, cx, cy and the shortest maximal atom 

conserving linear pathway in Gam from cx to cy) 

3: for each p in 5? do 

4: Q f- all compound nodes from p through which atoms may be lost 

5: Cg <— all compound nodes from p through which atoms may be gained 

6: * < - { } 

7: for each C[,cg in Q x Cg do 

8: if Mfc (ci, cg) has not yet been set then 

9: Mb(ci,cg) <— the shortest maximal atom conserving linear pathway in Gam from Q to cg 

10: AddM6(c,,c5) toB 

11: for each n = 1 to b do 

12: for each combination V of cardinality n from B do 

13: if all paths in V start from different c/ £ Q and end at different cg € Cg then 

14: /?/, 4- branched pathway created by attaching all branches in V to p 

15: Determine the number of atoms conserved along pb 

16: A d d ^ t o ^ 
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the same across a number of pathways. This observation resulted in taking extra care to 

maintain any previously computed branches in a global data structure, M&, so that branches 

can be reused for multiple pathways to reduce computation time. Experimentation also led 

to the empirical observation that trying all combinations can lead to long run times without 

substantially improving biological value. Therefore, there is an option to limit the maximum 

number of branches that can be added by b, although this was never used for the results 

presented in this thesis. 

4.2 BPAT-M: Branched Pathfinding by Merging Linear Pathways 

This section describes another algorithm, Branched Pathfinding using Atom Tracking and 

Merging (BPAT-M), for finding branched pathways by combining the linear pathways 

returned by LPAT. The idea of merging the linear pathways is motivated by the observation 

that a significant portion of time is spent finding the branches in BPAT-S, but these branches 

may already be contained in the set of linear pathways found by LPAT. Therefore, better 

performance may be achieved by merging the linear pathways into branched pathways, 

instead of re-finding the same pathways. Furthermore, BPAT-M also has the advantage that 

all pathways are considered equal, there is no division between seed and branch pathways. 

This means that BPAT-M can potentially find pathways with a wider variety topologies, as 

compared to BPAT-S where there is the central seed pathway and the branches must start 

and end on the seed pathway. 

In general, it is difficult to determine how to merge the pathways to obtain better perfor­

mance because there are typically thousands of linear pathways and testing all combinations 

would be infeasible. Fortunately, the number of possibilities is greatly reduced because of 

biochemical constraints. Only pathways that interact properly biochemically, resulting in 

more atoms conserved in the target compound, can be merged together to make a realistic 
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branched pathway. BPAT-M takes advantage of these constraints by processing the linear 

pathways to construct three data structures Q, C, and M, that are important for performance 

and their construction is detailed in the next two sections. The last section describes Algo­

rithm 4.2.1, which takes Q, M and C as inputs, along with k number of pathways to return, 

and returns k branched pathways ranked first by the number of atoms conserved and second 

by the number of reactions. There is an additional user specified parameter w for Algorithm 

4.2.1 that can be used to further limit the run time and/or storage needs as necessary. 

4.2.1 Construction of Q and C Based on Target Atom Markings (TAMs) 

A target atom marking (TAM) of a linear pathway is a set of indices corresponding to the 

specific atoms in the target compound that have been conserved from the start compound. 

So for a target compound containing six carbon atoms, linear pathways that conserve at least 

three carbons could potentially result in 42 different TAMs as ^ I ) = 42. Typically, the 
fe=3 W 

number of TAMs found is much less than the theoretical maximum number due to chemical 

constraints. Figure 4.3 displays four linear pathways from cn-D-glucose 6-phosphate to 

stachyose and their associated TAMs. TAMs play a central role in the performance of 

BPAT-M because they allow a quick way to determine which linear pathways can not be 

merged together. Two pathways can not be merged together if the intersection of their TAMs 

is nonempty, that is if they contain the same atom index or indices. This is because merging 

two linear pathways that have overlapping TAMs would require that two atoms, one from 

each pathway, would arrive at the same atom position in the target compound and this is 

physically impossible. If two pathways have disjoint TAMs, they can not necessarily be 

merged because it must be checked whether they share a common reaction, as described 

in the next section. However, if two pathways are mergable, then the TAM of the merged 

pathway is the union of the TAMs of the pathways. 
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PATH1 

RP01197 
5.4.2.2; 5.4.2.5 

Rpbiiii 
2.4.1.7 

RP00235 
2.4.1.166; 3.2.1.22; 

2.4,1.82 

PATH 2 

RP02452 
2.7.1.69 

RP00205 
2.4.1.99; 2.4.1.9; 

3.2.1.20; 2.4.1.10; 
3.2.1.48 i 

RP00235 
2.4.1.166; 3.2.1.22; 
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Figure 4.3 : Four linear pathways from a-D-glucose 6-phosphate to stachyose and their 
associated carbon TAMs, as indicated by the magenta circles. 
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The ability to use the TAMs to quickly determine if pathways are not mergable motivates 

the construction of the data structure, Q, which maps a TAM to a set of linear pathways 

containing that TAM. For a particular TAM, t, this means that Q[t] returns all linear pathways 

whose TAM is equal to t. For example, using the pathways depicted in Figure 4.3, g[TAM 1] 

would return the pathways labeled PATH 1 and PATH 2. After Q is constructed, all disjoint 

combinations of the TAMs from the linear pathways are computed and stored in a list C. 

For example, for the TAMs, t\ = {0,1,2}, t2 = {0,1}, t3 = {2,3} and t4 = {4,5}, C would 

contain {^,£4}, {£2,£3^4}, {^2^3}. {h,h} and { ,̂£4} as all disjoint combinations. C is then 

sorted in decreasing order by the total size of the combination. In this example, {̂ 2,̂ 3̂ 4} 

would be first entry in C because it is of size six. Sorting C this way is important because the 

goal is to find pathways that conserve the maximal number of atoms. For each combination 

c EC, the TAMs are accessed by their indices, so if c = {t2,t3,t4}, c[l] = tj, c[2] = tj and 

c[3] = U. C is then used to dictate how the search proceeds to try and merge combinations of 

linear pathways to obtain branched pathways. Since C is sorted and the TAM of the merged 

pathway is the union of the TAMs of the linear pathways; if k pathways have been found 

and the next combination in C is smaller than the number of atoms conserved in the &th 

pathway, the search can be stopped and the pathways returned because any further pathway 

found would result in fewer atoms being conserved. The use of Q and C greatly improves 

the performance of BPAT-M by providing a quick way to identify pathway combinations 

that can potentially be merged. 

4.2.2 Construction of M 

The data structure M maps all pairs of mergable linear pathways to a tuple containing the 

reaction used to merged the pathways and the number of mapping nodes from the target 

compound that the merge point occurs at in each pathway. Two linear pathways, p\ and 
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P2, are considered mergable if they both contain a mapping node that can be replaced by 

the same reaction, r, and the atoms conserved along p\ and p2 are all incorporated into the 

same product molecule by r and subsequently into the same target compound molecule. 

Otherwise, the pathways are not mergable. This means that all mapping nodes from the 

target compound to r in each pathway must be the same. Therefore, the mergability of p\ 

and P2 starts by identifying the first different atom mapping nodes, mi in p\ and w?2 in pi, 

from the target compound and then testing whether m\ and «2 can be replaced by the same 

reaction, r, and merged. The tuple containing r, m\ and mi is called a merge point. 

All pairs of pathways that have disjoint TAMs are tested whether they are mergable; 

if they are, the corresponding entry in M is set to be the merge point, that is, M\p\ ,pz] = 

(r,mi,m2). Figure 4.4 contains two mergable pathways from ct-D-glucose 6-phosphate 

to stachyose that have disjoint TAMs. For example, since the pathways in Figure 4.4 are 

mergable, an entry for them would be created in M that contains (R00803,2,3), because 

the merge point occurs at the second mapping node from stachyose in PATH 1 and at the 

third mapping node from stachyose in PATH 2. The construction of M essentially results 

in branched pathways containing two linear pathways. The next section describes how 

BPAT-M uses M, together with Q and A, to find branched pathways containing more than 

two linear pathways by incrementally merging additional linear pathways. 

4.2.3 Finding Branched Pathways Using Q, C and M 

After processing the linear pathways to construct Q, C and M, they are given as input to 

Algorithm 4.2.1 along with k number of branched pathways to return and w. Algorithm 4.2.1 

then returns the final result of BPAT-M, the top k branched pathways it finds ranked first by 

the number of atoms conserved and then by the number of reactions. Even with the lengths 

taken to reduce the number of combinations of linear pathways that need to be tested, there 
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are still an unreasonable number and a cutoff parameter for the search, w, is introduced. 

Exactly how w limits the search is explained later in the section and its introduction means 

that BPAT-M does not guarantee finding the optimal combination, but the results presented 

in Chapter 5 demonstrate that it performs well in practice. 

Algorithm 4.2.1 works by taking each combination of TAMs c EC in turn and using 

them to build branched pathway combinations. For each combination c, the first two TAMs, 

c[\] and c[2], are used to obtain the set of associated pathways for each TAM from Q and 

all pairs of pathways are tested for mergability using M (lines 6-8). If a pair of pathways 

are mergable, then they are stored in the set of intermediate branched pathways (IBPs), 2?. 

The IBPs store a list of mergable linear pathways and their merge points. Then, for each 

subsequent TAM in C, all of the pathways associated with the TAM c[n], pq G <2[C[n]] are 

retrieved (line 9). Each pq e <2[C[«]] is then tested for mergability with each linear pathway 

in each IBP (lines 12-15), since retrieving pq from <2[C[n]] just means pqs TAM is disjoint 

from the TAMs of the pathways already contained in the IBP, which does not guarantee 

mergability. If pq is mergable with a linear pathway, p\ in IBP, that is M[pq,pi] contains a 

merge point, pq can potentially be merged with the IBP to create a branched pathway that 

conserves more atoms. However, because pi has already been merged with other pathways, 

it must be verified that the merge point between pq and pi is still valid. 

A merge point is always valid if pi has not been merged with another pathway in the 

IBP at the same mapping node it would use to merge with the new pathway, pq. However, 

if pi has been previously merged at the same point with another pathway in the IBP, the 

merge point with pq can still be valid if the reaction in the merge point of pq and pi is the 

same reaction used previously and the substrate in pq is not contained in the other pathways. 

Otherwise, the merge point is invalid. For example, if there is a reaction r that takes the 

substrate compounds a, b and c. If in the IBP pi was merged with another pathway at r with 
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pi containing a and the other containing b, then if the merge point between pi and pq is 

also at the same point but pq contains c then the merge point is still valid. However, if pq 

contained b then the merge point would now be invalid. 

If the merge point is valid, pq is merged with the IBP and the resulting branched pathway 

is stored as another IBP (line 16). Therefore, each IBP gives rise to a number of new IBPs 

equal to the number of pq that have valid merge points with the IBP. This means that there is 

a theoretical combinatorial explosion of IBPs for each C, and unfortunately, unlike previous 

situations, an unreasonable number of IBPs is typically generated. This results in the 

introduction of the parameter r to limit the number of combinations generated. After adding 

the pathways for each TAM, only the top w IBPs, sorted by number of atoms conserved 

and the sum of the length of the linear pathways, are carried over for each subsequent TAM 

(lines 17-18). As previously noted, by sorting C by the size of each combination the k 

top branched pathways can be returned before trying every combination in C if the next 

combination is smaller than the TAM of the Ath pathway (lines 3-4). 

The final way in which the run time and/or space required by BPAT-M is reduced is by 

limiting the number of pathways that are kept for each TAM in Q. This is done because it 

was observed that in some cases a few clusters can be very large and generate unreasonable 

number of IBPs, even with a low limit on r. The hope is that by removing longer pathways 

with the same TAMs, these are linear pathways that would not be contained in the final 

branched pathway set. However, future work is needed to investigate the impact of different 

limits to the number of IBPs and size of the pathway clusters. In Chapter 5, a number of 

results for branched pathways are presented that demonstrate that even with the heuristic 

limits, the search performs well and proves to be complimentary to BPAT-S. 
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Algorithm 4.2.1 Final Step of BPAT-M 

Input: Pathways organized by their TAMs, Q\ Sorted list of all combinations of disjoint TAMs, C; 

Mergable pairs of paths, M; Number of pathways to return, k; Limit on IBPs, w; 

Output: Sorted list of branched pathways SP, containing linear pathways and merge points, sorted 

first by number of atoms conserved, then by total number of nodes 

1: &>^{} 

2: for each c in C do 

3: if SP contains more than k pathways and the fcth pathway conserves more atoms than the size 

of c then 

4: Break 

5: & <r- { } //for storing the IBPs 

6: for each pair of linear pathways (puPj) in (Q[c[l]] x <2[c[2]]) do 

7: if M(pi,pj) exists then 

8: Add IBP containing Pi,Pj,M(pi,pj) to SF 

9: for n = 3 to size of c do 

10: JV 4r- ST 

11: ST^{} 

12: for each IBP P in J/ do 

13: for each linear pathway pq in <2[c[n]] do 

14: for each linear pathway pi in P do 

15: if M(pq,pi) exists and is a valid merge point in P then 

16: Add new IBP containing P merged with pq and M(pq,pi) to SF 

17: if !7 contains more than w pathways then 

18: Truncate ^ to w pathways 

19: Add all pathways in ST to gP and return 2? 
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Chapter 5 

Experimental Setup and Results 

5.1 KEGG Data Collection and Processing 

Until recently the development of automated ways to track atoms through large metabolic 

networks has been hindered by a lack of atom mapping data. Fortunately, as discussed in 

Section 2.1.1, large scale curation efforts have resulted in the increased availability of atom 

mapping data for chemical reactions. Progress has also been made in computational tools 

for automatically generating correct atom mappings, which can be used to fill in the gaps of 

the manual curation process [1, 15, 16]. The experiments in this thesis use data from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) due to the existence of the curated 

KEGG RPAIR database [56]. Each KEGG RPAIR entry contains structural information 

for each compound, an alignment mapping atoms between the two compounds and a list of 

associated reactions [57]. 

The algorithms presented in this thesis require that there is a universal index for each atom 

in each compound. This would usually be provided by the KEGG LIGAND database that 

contains the chemical structures for each compound in a MDL Molfile with a unique index 

for each atom [42]. However, the KEGG RPAIR database was developed independently from 

the the KEGG LIGAND database and RPAIR entries contain their own KEGG Chemical 

Function (KCF) description of the structures being mapped. As such, the atom indices 

contained in the RPAIR data are not necessarily the same indices contained in the LIGAND 

data. This would not normally create a problem except that the RPAIR data is inconsistent 
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with itself, two different RPAIR entries containing the same compound may have different 

indices for the same atoms in the same compound. Since it is important to utilize as much 

of the atom mapping data as possible, several steps are taken to discard as little data as 

possible. 

The processing of the RPAIR data begins by identifying compounds whose atoms are 

consistently indexed and RPAIR entries that contain two consistent compounds are used as 

downloaded. In cases with inconsistency, an attempt is made to determine universal indices 

for the atoms using the structure in the LIGAND database as the reference structure. This 

is done by first checking whether there exists an isomorphism between the structural data 

found in the RPAIR entry and the data found in the LIGAND database. If there exists only 

one isomorphism, this mapping is used to produce a consistent RPAIR. If there is more 

than one isomorphism mapping, the RMSD is calculated between the two mappings and if 

it is equal to zero, that mapping is used. Otherwise, the RPAIR is removed from the data 

set. Additionally, any RPAIRs which consist of an atom mapping where the atom types 

being mapped do not match are discarded, except in the generic compound cases containing 

"R". KEGG contains generic compounds such as "alcohol" where the structure contains a 

"R". Mappings with generic mappings where the "R" is not mapped to a specific atom are 

included, otherwise the mapping is discarded. The overall processing of the RPAIR data 

results in discarding about one percent of the entries. 

All KEGG data used in the experiments of this thesis was downloaded on February 

10, 2010. The processed data contained 11,892 consistent RPAIR entries involving 6,002 

compounds and corresponding to 7,510 reactions. 
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5.2 Reaction Reversibility Information 

A difficulty that has plagued computational approaches to finding metabolic pathways is 

the lack of easily available information on the reversibility of enzymatic reactions. This is 

partially because the direction of the reactions is dependent on the thermodynamics of the 

system, which can change based on the environmental conditions such as pH, temperature 

and concentration. Still, many reactions are more favorable in one direction and are never 

or very rarely observed in biological conditions. Unfortunately, most metabolic databases, 

including the KEGG REACTION database, do not currently include systematic information 

about reversibility of the reactions. However, in the manually drawn KEGG pathway maps 

one will notice that a number of arrows drawn are unidirectional. Therefore, the pathway 

maps contain manually curated reversibility information. This information can be extracted 

from the XML representations of the pathway maps, distributed in the the KEGG Markup 

Language (KGML), an XML representation. 

A KGML file is obtained for each pathway map for a total of 162 files. The KGML 

language contains a tag "reaction" representing a reaction element that has two attributes: 

"name" corresponding to the reaction's KEGG ID and "type" which can be "reversible" or 

"irreversible". A reaction has two possible child elements, "substrate" and "product" which 

contain the substrate and product compounds and their ID's. All of this information is 

extracted from the KGML and used to identify irreversible reactions. However, similar 

to the RPAIR data, when a reaction occurs more than once in the pathway maps, which 

are described in Section 2.1, there are sometimes inconsistencies in the KGML data that 

need to be reconciled. The two major inconsistencies are when the substrate or products 

do not match and/or the reversibility information does not match. If the inconsistencies 

cannot be resolved, the default is to label the reaction as reversible. If only one of the either 

the substrates or products does not match previously seen reactions, then the direction of 
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the reaction is considered correct. If neither the substrates or products match, the reverse 

direction is tried and if that matches then the direction of the reaction is considered the 

opposite given. Otherwise, the reaction is considered reversible. If the substrate and products 

do match but the reversibility information does not, the reaction is then considered reversible. 

The processing of the KGML pathway maps resulted in 4,360 reactions being labeled 

irreversible. Once the reaction direction is determined, this information is then used to 

label RPAIR entries reversible or irreversible, which is used in the atom mapping graph 

construction. This is slightly complicated by the fact that one RPAIR entry can be associated 

with multiple reactions. Therefore, for each RPAIR entry all associated reactions have to 

be checked for directionality. If all of the reactions are irreversible and consistent in the 

labeling of the compounds as substrates and products then the RPAIR entry is considered 

irreversible. Otherwise, the entry is labeled as reversible. This results in 6,386 RPAIR 

entries being considered irreversible. 

5.3 Implementation Details and Hardware Specification 

The implementation was done in Java using the Chemical Development Kit [112] and the 

Java Universal Network/Graph Framework (http://jung.sourceforge.net/). All result figures 

are drawn using Graphviz (http://www.research.att.com/sw/to 

ols/graphviz/). All experiments were run on the Shared University Grid at Rice (SUG@R), 

using a single core from a 2.83GHz Intel Xeon E5440 with access to 16GB of RAM for 

each pathway. For all experiments, except where noted, the input k for Eppstein's k shortest 

paths algorithm was set to one million. 

http://jung.sourceforge.net/
http://www.research.att.com/sw/to
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5.4 Linear Pathway Results 

Properly evaluating metabolic path finding methods can be a difficult task, even for linear 

pathways, because there is no standard test set. Quantitative evaluation can be especially 

troublesome when the goal is to discover previously unknown pathways or pathways 

composed of reactions from multiple organisms. To overcome these difficulties, results are 

presented on two separate test sets composed of known metabolic pathways. One is a set of 

pathways from a previous study that includes a variety of different pathways from E. coli, S. 

cerevisiae and H. sapiens [35]. The other is a set of amino acid biosynthesis pathways that 

was manually curated and constructed from a variety of sources to capture the diversity of 

pathways found in different organisms. 

The construction of the test sets and the resulting evaluation of linear pathway finding 

methods is presented and discussed in Section 5.4.1. Further probing of the performance 

of atom tracking and weighting methods is done by analyzing two specific examples that 

highlight general themes in the results. Section 5.4.2 presents results for pyruvate to 3-

hydroyxpropanoate (3HP), which is a compound of high interest as a target of metabolic 

engineering because of its numerous industrial applications and cost [49, 53]. Lastly, Section 

5.4.3 investigates using clustering techniques to understand the overall diversity of linear 

pathways found by LPAT. 

5.4.1 Evaluation Using Known Linear Metabolic Pathways 

Validation and evaluation of LPAT, as described in Chapter 3, is accomplished by utilizing 

two tests set of known metabolic pathways. One set is constructed by obtaining a test 

set of known metabolic pathways from a recent evaluation on linear pathways [35]. The 

original set was based on metabolic pathways in the aMAZE database, which provides 

cross references to KEGG, and contained 55 pathways from E. coli, S. cerevisiae and H. 
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sapiens. The set was then further processed to remove any pathways that were missing atom 

mapping data or no carbons are conserved from the start to target compounds. The amino 

acid biosynthesis pathways were also removed to avoid redundancy with the second test set. 

This resulted in 43 known metabolic pathways contained in the test set, referred to as the 

NeAT test set, after the Network Analysis Tools (NeAT) used in the previous evaluation [19]. 

A list of all of the pathways in the NeAT set can be found in Table A.l. 

While the NeAT set contains a variety of metabolic pathways, it mostly lacks alternative 

pathways between start and target compounds because it focuses on pathways from only 

three organisms. Finding alternative pathways or pathways composed of reactions from 

multiple organisms is an important application for the algorithms in this thesis. Therefore, 

a second test set, referred to as the amino acid test set, was built with the purpose of 

capturing the diversity of metabolic pathways. The amino acid set is composed of amino 

acid biosynthesis pathways because they have been well studied across many organisms and 

can often be synthesized by several different routes [81, 128]. Additionally, essential amino 

acids, such as lysine, threonine, and tryptophan, have been important successes in metabolic 

engineering efforts and are now primarily produced by engineered strains of bacteria [71]. 

The amino acid set was manually constructed by scouring textbooks, online resources such 

as KEGG and MetaCyc and literature to identify as many known amino acid biosynthesis 

pathways as possible [79, 69, 56, 58, 81, 128, 71]. The resulting amino acid set contained 71 

pathways for the 20 common amino acids between 39 pairs of start and target compounds. 

A list of all of the pathways in the amino acid set can be found in Table A.2. 

The test sets are used to evaluate four different carbon tracking methods in conjunction 

with three different weighting methods. All of the different methods are tested on the atom 

mapping graph built using the processed KEGG RPAIR data, both with the reversibility 

information as described in Section 5.2 or without, where all reactions are considered 
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reversible. The different carbon tracking methods include: 

• no carbon tracking, ignores the atom mapping data and finds the k-shortest paths in 

the graph 

• one carbon tracking, where the k-shortest paths are filtered to only include pathways 

where one carbon is conserved 

• half carbon tracking, finds k-shortest paths that conserve half of the theoretical 

maximum number of carbons (rounded up) 

For example, if the start compound contained 6 carbons and the target compound contained 

5 carbons, the max carbon tracking would find pathways that conserved 5 carbons and 

decrement by one until pathways are found. In contrast, the half carbon tracking would 

identify 5 as the theoretical maximum number of carbons and find pathways that conserved 3 

carbons, again decrementing by one until pathways are found. Both the max carbon and half 

carbon tracking utilize LPAT and will be labeled LPAT-max and LPAT-half in the following 

results. The three different weighting methods include: 

• short, where every node gets weight equal to 1 and is the same as finding the shortest 

path 

• degree, where the compound nodes are given weight equal to their degree 

• context, which is the weighting scheme used by MetaRoute as described in Section 

2.3.1 [15] 

For each combination of carbon tracking and weighting methods, the start and target 

compounds of the known pathways are used as inputs and the accuracy of the computed 

pathways is calculated using measures from previous evaluations of metabolic path finding 
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methods [26, 15, 16, 93, 35]. True positives (TP) are compounds found in both pathways; 

false negatives (FN) are compounds in the known pathway which are not in the computed 

pathway; false positives (FP) are compounds not in the known pathway which are in the 

computed pathway. For each pathway, the sensitivity (Sn), positive predictive value (PPV) 

and accuracy (Ac) are calculated as follows: 

Sn = TP/(TP + FN) 

PPV = TP/(TP + FP) 

Ac=(Sn + PPV)/2 

Positive predictive value is used instead of specificity because true negatives do not exist in 

this comparison. For the NeAT test set, each start and target compound is only associated 

with one known pathway. However, since each start and target compound can be associated 

with more than one pathway in the amino acid test set, for evaluating the accuracy, the 

known pathway is considered the union of all of the known pathways. 

Figures 5.1(a) and 5.1(b) contain the average accuracy results for the NeAT test set and 

the amino acid test set, respectively. The average accuracy values are obtained by identifying 

the pathway with the best accuracy from the top 10 computed pathways and averaging the 

best accuracies for all of the pathways in the test set.The major observation from the results 

is that all linear pathway finding methods, except for short, no carbon and short, one carbon 

perform similarly on average. For all of the path finding methods, the average accuracy was 

higher on the amino acid test set versus the NeAT test set. This is likely due to two factors, 

one is the construction of the amino acid test set to contain multiple pathways for each 

amino acid coupled with the atom mapping graph being built using data for all organisms in 

KEGG. The other factor is that the amino acid test set contains pathways that only consist 
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of one reaction and these are easy to find. While the relative accuracy of the amino acid test 

set was higher, similar conclusions can be drawn from both test sets. 

Using the reversible data from KEGG generally improved the results for all pathway 

finding methods, although the amount of improvement depended on the particular method. 

This is an expected result as information about the reversibility of a reaction eliminates 

finding "short cuts" by going through a reaction in the opposite direction it would normally 

occur. An example is the pathways found from chorismate to tryptophan. Without the 

reversibility information, the shortest path includes a series of reactions that are used in 

tryptophan degradation to make formylanthranilate and L-formylkynurenine. However, it is 

likely infeasiable for these reactions to function in this direction and the KEGG reversibility 

data includes this information. The correct biosynthesis pathway, which is one reaction 

longer than the pathway using the degradation reactions, is found as the shortest path when 

the reversibility data is used. The only exception is in the NeAT test set where the "context, 

LPAT-max" method has a slight decrease in accuracy. This is due to a decrease in accuracy for 

three pathways, L-Homoserine to 2-Oxobutanoate, Cholesterol to Glycochenodeoxycholate 

and L-Lysine to Acetyl-CoA. All of the other pathways have the same accuracy in both 

cases. This decrease occurs because the degree of the compounds change when reversibility 

information is incorporated and thus the weighting changes and the top 10 pathways change, 

in this case causing worse performance. 

The use of LPAT-half was motivated by an observed disadvantage with LPAT-max. While 

LPAT-max works in many cases, it occasionally results in long and unwieldy pathways 

because they conserve more carbons than the known pathway. Thus, the idea behind LPAT-

half is to identify pathways that transfer a significant portion of carbon atoms while allowing 

flexibility for carbons to leave the pathway. When LPAT-half is used for pyruvate to L-

leucine, the known pathway is recovered. A comparison of using the max versus half carbon 
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(a) NeAT Test Set 

AH Reactions Reversible 

Reversible Data from KEGG 

(b) Amino Acid Test Set 

Figure 5.1 : Average accuracies of linear pathway rinding methods evaluated using (a) NeAT 
Test Set and (b) Amino Acid Test Set. 
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approach, while holding the weighting scheme fixed, reveals a slight improvement for using 

the the half carbon in the NeAT test set and a larger improvement in the amino acid test set. 

A further breakdown of the differences between LPAT-max and LPAT-half performances 

can be found in Table 5.1. Only two pathways had reduced accuracy when using LPAT-half 

compared to LPAT-max, while 16 pathways had improved accuracy. This result demonstrates 

a common theme in metabolic pathfinding that while different approaches may on average 

improve the performance, it is rare that the improvement occurs across the board. 

Looking at the improvement of accuracy compared to the "short, no carbon" method, 

the results demonstrate that the improvement using LPAT-max and LPAT-half is similar 

to using the weighting schemes. Interestingly, there is no further systematic improvement 

when the weighting schemes are used in LPAT. Further analysis of the results points towards 

two factors that may account for this observation. The first is that if one excludes the short, 

no carbon and short, one carbon methods, most pathways are found with an accuracy of 

one. Therefore, the maximal performance values may be dominating the average accuracy 

values and minor differences may not be as evident. This is especially true for the amino 

acid test set, where 74% and 80% of pathway experiments find pathways of accuracy one 

without and with reversibility data, respectively. In the NeAT test set these values are lower 

at 58% and 60%, respectively. The second is that the purpose of the weighting schemes 

and the LPAT approaches is to avoid spurious connections. However, if these connections 

are already eliminated using the carbon tracking, the weighting scheme will not necessarily 

further improve the results. Additionally, if the weighting scheme causes the search to avoid 

a highly connected compound in the known pathway the carbon tracking will not correct 

this. While no clear cut examples of the weighting decreasing performance occurred in the 

test sets, a case study of pyruvate to 3-hydroyxpropanoate in Section 5.4.2 highlights the 

potential disadvantages of using weighting schemes. 
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Table 5.1 : Pathways where there was a change in accuracy when using LPAT-half versus 
LPAT-max, when both use the reversibility data. Results above the double line are from the 
amino acid test set; below the line are from the NeAT test set. Most of the pathways saw a 
large increase in accuracy when using LPAT-half versus LPAT-max. Only two pathways, 
highlighted in gray, resulted in a decrease of accuracy when using LPAT-half versus LPAT-
max^ 

Start Compound 

l.-Phenylalanine 

Pyruvate 

Pyruvate 

Pyruvate 

Pyruvate 

Pyruvate 

Pyruvate 

L-Glutamine 

L-Aspartate 

L-Lysine 

L-Lysine 

L-Lysine 

alpha-D-Glucose 6-phosphate 

L-Arginine 

L-Homoserine 

Pyruvate 

Pyruvate 

Pyruvate 

Target Compound 

[.-tyrosine 

L-Leucine 

L-Leucine 

L-Leucine 

L-Isoleucine 

L-Isoleucine 

L-Isoleucine 

L-Arginine 

L-Threonine 

Acetyl-CoA 

Acetyl-CoA 

Acetyl-CoA 

Pyruvate 

Succinate 

2-Oxobutiinoiite 

Acetyl-CoA 

Acetyl-CoA 

Acetyl-CoA 

Weight Type 

context 

short 

degree 

context 

short 

degree 

context 

short 

short 

context 

degree 

short 

short 

degree 

context 

short 

degree 

context 

Max Carbon 

Accuracy 

Half Carbon 

Accuracy 
— T — 

1 . 0.476 

0.582 

0.166 

0.546 

0.602 

0.602 

0.556 

0.505 

0.287 

0.146 

0.144 

0.37 

0.543 

0.264 

0.778 

0.274 

0.274 

0.274 

0.8 

0.752 

0.636 

0.478 

0.239 

0.597 

0.747 

0.543 

0.762 

0.686 

0.686 

0.686 
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The experiments run on the linear pathways also demonstrate the efficiency of LPAT. 

While there could be a theoretical combinatorial explosion in the search, this is never seen 

in practice and all of the test cases run on the order of minutes or less. Two bar graphs 

corresponding to the run times for both test sets using the "short, LPAT-max" and "short, 

LPAT-half" approaches can be found in Figure 5.2. While it is difficult to tease out all 

of the factors affecting run time, one general principle is that for a given start and target 

compound the run time is inversely proportional to the number of carbons tracked. This is 

made clear by sorting the run times of "short, LPAT-max", shown in Figure 5.2(a), and then 

plotting the run times of "short, LPAT-half", in the same order, shown in Figure 5.2(b). For 

almost every pathway, the runtime increased when using half the number of carbons as the 

minimal number of atoms to conserve in LPAT. In the few pathways where there this did not 

occur, such as the first bar, the first run of LPAT, given the maximum number of carbons to 

conserve, could not find any pathways. Therefore, the number of carbons was decremented 

by one and LPAT was run again to find pathways. Since the half carbon approach started 

out with less carbons, it only had to call LPAT once, resulting in shorter run times. 

5.4.2 Pyruvate to 3-hydroyxpropanoate 

While the weighting schemes have similar performance to the LPAT-max and LPAT-half 

approaches, they are heuristics that can perform poorly if the pathways require the use 

of highly connected compounds. The results of finding pathways between pyruvate and 

3-hydroyxpropanoate (3HP) demonstrate the pitfalls of relying on weighting schemes. While 

weighting schemes perform poorly on this pathway, it was chosen as a test case initially 

because the high interest in the production of 3HP using metabolic engineering approaches 

makes it an excellent test case for metabolic pathfinding approaches [49]. 3HP is used in 

a number of important industrial applications such polymer production as well as being a 
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Figure 5.2 : Run times over both test sets for (a) short, LPAT-max and (b) short, LPAT-half. 
The short, LPAT-max pathways are sorted by run time and the corresponding run times for 
the pathways using short, LPAT-half are plotted in the same order. The green represents 
the total time used for the exploration of Gam and the magenta represents the total time for 
obtaining the k shortest paths from the auxiliary graph. 
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Figure 5.3 : Known pathways for 3HP obtained from [49]. 

precursor to number of other valuable compounds such as acrylic acid or acrylamide [120]. 

Therefore, a number of pathways for 3HP biosynthesis in several different microorganisms, 

often starting from pyruvate, have been discovered and analyzed. Several of these pathways, 

constructed in microorganisms using recombinant techniques, have resulted in patents 

[115, 106]. Figure 5.3 depicts the known pathways between pyruvate and 3HP obtained 

from a recent study [49]. 

Pyruvate and 3HP were used as the start and target for all of the linear pathway ap­

proaches described in the previous section. In recovering the known pathways, the short, 

LPAT-half performed the best; three different known pathways were contained in the top 

ten pathways returned. The pathway through oxaloacetate and beta-alanyl-CoA was the 

100th pathway returned. None of the approaches were able to identify the pathways through 

alpha-alanine because the reaction between alpha-alanine and beta-alanine are not contained 

in KEGG. The LPAT-max approach did not perform as well, only finding the pathway 
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acryloys-CoA 3-HP-CaA 3HP 

Figure 5.4 : Pathways for pyruvate to 3HP found in the top ten pathways returned by "short, 
LPAT-half". 

pyruvate aca!y-CoA •nalar'yl-ccA 

acrytov-CoA 3-WP-Ca4 3HP 

Figure 5.5 : Pathway from pyruvate to 3HP through lactate. This is the only pathway found 
using LPAT-max, as well in the top ten pathways when degree or context weighting in 
conjuction with any carbon tracking approach. 
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through lactate highlighted in Figure 5.5. This result occurs because the pathways through 

lactate conserves three carbons, the maximum amount, but the other pathways only conserve 

two carbons, due to a release of carbon dioxide. As this issue with maximizing the number 

of carbons was also observed in the test sets, it lends credence to preferring the half carbon 

approach over the max carbon approach. 

When either the degree or context weighting were used, irregardless of the carbon 

tracking approach they were paired with, the only known pathway found in the top ten 

results was through the lactate pathway, shown in Figure 5.5. Using degree weighting, not 

only were the other known pathways not found in the top ten pathways, but they were not 

found in the entire returned set of pathways. The context weighting scheme, unlike the 

degree weighting, was able to find the pathway through oxaloacetate and 3-oxopropanoate 

and caused them to be ranked 92, 88 and 58 using no, one and LPAT-half respectively. 

The context weighting scheme arguably performed better finding the pathway through 

oxaloacetate and beta-alanyl-CoA as compared to the "short, LPAT-half" approach as it 

returned it ranked 74, 71 and 43 using no, one and LPAT-half respectively. However, the 

context weighing scheme did not return the pathway through acetyl-CoA in any of the 

pathways returned using context weighting. 

Both the degree and context weighting scheme fail to find the pathway through acetyl-

CoA because acetyl-CoA is involved in a large number of reactions. For example, using the 

"degree, LPAT-half" approach, the last path in the set of 323 return pathways had a weight of 

184. However, the degree of acetyl-CoA is 264. The computed 3HP pathways demonstrate 

that when intermediate compounds are of high weight, the atom tracking approach is better 

equipped to find the known pathways. The atom tracking approach is able to avoid spurious 

connections without relying on a heuristic weighting scheme, but is flexible enough to be 

used with one if so desired. Furthermore, by utilizing atom tracking branched pathways can 
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be identified using graph-based approaches, as demonstrated in the following sections. 

5.4.3 Linear Pathway Cluster Analysis 

For most analysis of pathfinding results for linear pathways, only the top ranking ones 

are analyzed. However, it is interesting that such a large number of pathways are found 

and raises a number of questions about the pathways not manually examined. One way to 

begin answering these questions is to cluster the linear pathways to understand how similar 

or different the pathways are. Applying a clustering method requires a distance measure 

between pathways. A version of levenshtein distance, or edit distance, was chosen because 

it incorporates the notion of order along the pathway and it is relatively quick to compute 

[44]. 

To calculate the levenshtein distance between two pathways, only the compounds along 

the pathway were used and the "edits" are on the compound level. This can be thought of 

as computing the levenshtein distance of two strings representing each pathway built by 

assigning a letter to each unique compound and adding the letters to the string in the order 

they appear in the pathway from start to target compound. So in the case of KEGG, the 

"alphabet" would need to contain 6,002 letters, each one representing a different compound. 

No chemical similarity information was taken into account, each edit is considered as having 

the same weight. 

The "agnes" agglomerative clustering method from the R language was used to cluster 

the linear pathways between a given start and target compound [94], using the levenshtein 

distance as described. To validate the idea of clustering the set of linear pathways three 

examples were chosen: pyruvate to L-lysine conserving 2 carbons, G6P to L-tryptophan 

conserving 4 carbons and pyruvate to 3HP conserving 2 carbons and. The pathways from 

G6P to L-tryptophan are expected to have the least amount of variation because it is made 
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primarily through the shikimate pathway and is not known to have any major variations. 

As discussed in the previous section, pyruvate to 3HP should have more variation because 

several alternative pathways. The pyruvate to L-lysine pathways should also contain a lot 

of variation because there are two general pathways for L-lysine, through asparate and 

homocitrate, and each of those have more minor variants. The clustered distance matrices 

for each set are plotted as heat maps in Figures 5.6 for pyruvate to L-lysine, 5.7 for G6P to 

L-tryptophan, and 5.8 for pyruvate to 3HP, with red meaning the most dissimilar and blue 

meaning the most similar. 

The distance matrices for each set of linear pathways, even with a relatively simple 

clustering technique, clearly shows that there is structure in each set of linear pathways and 

that the pathways for L-lysine and 3HP are more variable than those found for L-tryptophan. 

To further assist in the interpretation of the clustered results, the known pathways were 

identified and are labeled on the distance matrices. Then, the pathways belonging to the 

same cluster as the known pathways can be extracted and manually examined and analyzed 

to understand how they relate to the known pathway. 

LPAT returned 318 pathways conserving 2 carbons from pyruvate to lysine and they were 

all used in the cluster analysis. The clustering of pyruvate to L-lysine pathways is illustrated 

in Figure 5.6 and has a relatively clear interpretation when the known pathways are labeled. 

Even without the known pathway labels, the distance matrix reveals that there are two major 

classes of pathways, which then have variations within them. Using the known pathways, 

it is found that the large cluster in the upper right of the distance matrix corresponds to 

pathways related to the aspartate pathways. The middle, smaller cluster corresponds to 

pathways related to the homocitrate pathway. The other small clusters appear to contain 

pathways that take very long routes between pyruvate and asparate or homocitrate. 

LPAT returned 14,533 pathways conserving 4 carbons from G6P to L-tryptophan and the 
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Figure 5.6 : Clustered distance matrix for 318 pathways found using LPAT from pyruvate 
to L-lysine that conserves at least two carbons. ASP 1-4 corresponds to the four known 
pathways through aspartate and HC 1-3 corresponds to the three known pathways through 
homocitrate. 
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top 1,000 pathways were taken for the cluster analysis. The clustered distance matrix for the 

tryptophan pathways, illustrated in Figure 5.7, reveals that there is a high level of similarity 

between the pathways. This is the expected result because tryptophan is not known for 

having a wide variation of biosynthetic pathways. The known tryptophan biosynthesis 

through the shikimate pathway is labeled on the distance matrix and it belongs to the smaller 

cluster in the top right. Inspection of the pathways belonging to the larger cluster in the lower 

left indicates that they mostly correspond to pathways that find a two reaction shortcut from 

3-dehydroshikimate through protocatechuate and 4-hydroxybenzoate to chorismate; rather 

than the four reactions typically utilized by the shikimate pathway from 3-dehydroshikimate 

to chorismate. 

The top 1,000 pathways out of 1,464 from pyruvate to 3HP conserving 2 carbons, found 

by LPAT, were used for the cluster analysis. The resulting clustered distance matrix is 

illustrated in Figure 5.8. While there are identifiable clusters around each of the known 

pathways, the clustered distance matrix for 3HP is not as well structured as the ones for 

the lysine and tryptophan pathways, and thus the interpretation is not as clear. This result 

may be due to several different factors such as, the 3HP pathways may not be as well suited 

for agglomerative clustering, the distance measure, the increased number of pathways used 

for clustering or there really are many distinct pathways for making 3HP. Initial manual 

inspection seems to indicate that there is likely a better clustering of the pathways than is 

provided by the agglomerative pathways using the levenshtein distance. For example, many 

of the pathways containing acetyl-CoA that appear similar are not clustered together, which 

may be the cause of in the relatively unstructured clusters in the lower left. 

The initial clustering results presented in this section should indicate that it may be 

worthwhile to analyze the resulting linear pathways as a whole, instead of just inspecting the 

top ranking pathways. By clustering the pathways, interesting patterns and pathways may be 
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Figure 5.7 : Clustered distance matrix for 1,000 shortest pathways found using LPAT from 
G6P to L-tryptophan that conserves at least four carbons. TRP corresponds to the known 
tryptophan pathway through shikimate. 
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Figure 5.8 : Clustered distance matrix for 1,000 shortest pathways found using LPAT from 
pyruvate to 3HP that conserve at least two carbons. A-CoA corresponds to the known 
pathway through acetyl-CoA, OA 1 corresponds to the known pathway through oxaloacetate 
and 3-oxopropanoate, LA corresponds to the known pathway through lactate and OA 2 
corresponds to the known pathway through oxaloacetate and beta-alanyl-CoA. 
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revealed that would not have been found by examining each pathway individually. While it 

is difficult to tease out all of the different properties that the cluster analysis may reveal, the 

analysis lends itself well to interactive inspection of the resulting set of pathways as a whole 

and may be important for use in future visualizations. Additionally, there are many clustering 

methods and distance measures to choose from and one future direction, highlighted by 

the 3HP case, is to study the affect of using different methods and measures. Furthermore, 

extending the cluster analysis to branched pathways is likely to provide interesting results, 

but what distance measure to use for branched pathways is an open question and provides 

fodder for future work. 

5.5 Branched Pathway Results 

Due to the emphasis on finding linear pathways in metabolic networks, there are very few 

test cases for branched metabolic networks in the literature. Therefore, the performance of 

the branched pathway finding algorithms is evaluated on a manually selected set of branched 

metabolic pathways. The pathways were selected based on biological interest, especially 

target compounds with industrial or medical applications, and how well studied they are 

to enable evaluation of the quality of the pathways returned by the algorithms. All of the 

pathways were tested with both BPAT-S and BPAT-M, described in Chapter 4, utilizing the 

reversibility data from KEGG as described in Section 5.2. A qualitative analysis is presented 

for the computed pathways based on what is known about the functioning of the branched 

pathways. For a number of pathways, a-D-Glucose 6-Phosphate is used as the starting 

compound because it is what D-Glucose, a common carbon source, is converted into upon 

being imported into the cell. A list of the start and target compounds tested, along with the 

number of carbons conserved and the total size of the top ranked pathway found by BPAT-S 

or BPAT-M can be found in Table 5.2. The resulting pathways found by BPAT-S and BPAT-
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Table 5.2 : Branched pathways, listed in the order they appear in this section, with the 
number of carbons conserved and the total size of the top ranking pathway returned by 
BPAT-S or BPAT-M. 

Start Compound 

Sn-glycero-3-

phosphocholine 

Chorismate 

G6P 

G6P 

G6P 

G6P 

G6P 

G6P 

G6P 

G6P 

G6P 

Target Compound 

L-threonine 

(5)-norcoclaurine 

Stachyose 

L-Tryptophan 

(-)-Carvone 

Inosine 

Monophosphate 

Streptomycin 

Penicillin 

Cephalosporin C 

Erythromycin 

Lycopene 

BPAT-S Top Pathway 

Number of 

Carbons 

Conserved 

4 

16 

24 

11 

9 

8 

14 

9 

15 

34 

21 

Total Size 

10 

10 

15 

28 

37 

24 

36 

30 

48 

95 

102 

BPAT-M Top Pathway 

Number of 

Carbons 

Conserved 

4 

16 

24 

n/a 

6 

6 

12 

6 

9 

33 

24 

Total Size 

10 

10 

15 

n/a 

26 

22 

23 

21 

39 

86 

136 

M demonstrate the ability of the algorithms to find known branched metabolic pathways 

and highlight a number of biologically interesting properties. The results sometimes contain 

biologically unrealistic reactions, likely due to both the high computational and biological 

complexity, but this provides inspiration for future improvements to the algorithms. 

Unless otherwise specified, BPAT-S was used without limits on the number of branches 

for each seed pathway; BPAT-M was run with r set to 1,000 and the number of pathways 



94 

associated with each target atom marking was limited to 5,000. In all of the branched 

pathway figures, compound nodes are ovals, mapping nodes are boxes containg the KEGG 

RPAIR ID and associated EC numbers and reactions are diamonds containing the KEGG 

REACTION ID and associated EC numbers. Each edge in the branched pathway figures 

corresponds to one molecule, for example if there are four edges from G6P that means 

that the pathway utilizes four molecules of G6P. Many of the pathways are long and have 

been split into two in order to fit on the page better, in these cases numbers are provided 

on the figures to help follow the pathways. The following results are roughly sorted by the 

complexity of the pathways, from least to most complex. The section concludes with a 

discussion of the branched pathway run times. 

5.5.1 Sn-glycero-3-phosphocholine to L-threonine 

Threonine is an essential amino acid primarily manufactured by using engineered strains 

of bacteria, and therefore there has been a major focus toward improving the yield [71]. A 

strategy to increase yield may include using pathways which transform degradation products, 

which otherwise might be lost, into the desired product. Sn-glycero-3-phosphocholine is 

a common degradation intermediate of triglycerides containing eight carbons [47]. Figure 

5.9 depicts two resulting branched pathways from the BPAT algorithms starting with sn-

glycero-3-phosphocholine to threonine which contains four carbons. In this case, both 

BPAT-S and BPAT-M returned the same pathways for the top ranked pathways. BPAT-S was 

given as input to conserve at least two carbons from start to finish and generated 29661 seed 

pathways, with the shortest seed pathway containing six reactions. The linear pathways used 

by BPAT-M also conserved two carbons, resulting in three different target atom markings 

and only one mutually exclusive combination. 

Many of the resulting branched pathways split sn-glycero-3-phosphocholine into sn-
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Figure 5.9 : The solid edges shows the known pathway, containing 11 reactions, ranked 
third in both the BPAT-S and BPAT-M results. The solid pathway is the shortest pathway for 
sn-glycero-3-phosphocholine to threonine, containing 10 reactions. 
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glycerol-3-phophate and choline, which begin paths that conserve two carbons and end 

at acetaldehyde and glycine, which then join to make the four carbon threonine. This 

general branching scheme is an expected result and no linear pathways were found that 

conserved all four carbons. The top ranked result is depicted by the dashed edges in Figure 

5.9. This result takes an unusual, likely infeasible, shortcut through acetyl phosphate. The 

reaction from acetyl phosphate to glycine is only observed in the reverse direction, but 

this is not captured by the reversibility information because the reaction is not contained 

in any of the pathway maps. However, the reaction from betaine to acetyl phosphate is a 

feasible reaction that may not typically be considered and could lead to other interesting 

pathways. Therefore, interesting paths and reactions may be automatically revealed that 

might normally not be foremost to those familiar with specific subpathways. Additionally, 

the known pathway from choline to glycine via demethylation is in the next longest set 

of pathways, with 11 reactions, and is depicted by the solid edges in Figure 5.9. The 

pathway from sn-glyerol-3-phosphate to acetaldehyde demonstrates the difficulty in finding 

the balance between finding unusual but likely shortcuts and very unlikely shortcuts. In this 

pathway, most likely pyruvate is generated from glycerone phosphate via glycolysis instead 

of through methylglyoxal. However, the overall scheme returned by the branched pathway 

search is correct and potential ways to help address shortcuts around standard pathways like 

glycolysis are discussed in the last chapter. 

5.5.2 Chorismate to (S)-norcoclaurine 

(5')-norcoclaurine is a key intermediate in the formation of benzylisoquinoline alkaloids, 

leading to more complex molecules such as morphine and codeine [80]. Chorismate, 

produced by the shikimate pathway, is an important precursor for a number of aromatic 

secondary metabolites, including (S)-norcoclaurine [50]. Each molecule of chorismate 
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contains 10 carbons and (5)-norcoclaurine contains 16 carbons. Both branched pathway 

searches conserve 7 carbons and BPAT-S is given two molecules of chorismate as the start 

compound. This resulted in 1534 seed pathways of length ranging from 4 to 14 reactions. 

The merge pathway search identified 6 different target atom markings which resulted in 5 

different mutually exclusive combinations. The top four ranked branched pathways found 

by both BPAT-S and BPAT-M correspond to the four known pathways for the synthesis of 

(S)-norcoclaurine. An illustration of these pathways can found in Figure 5.10. 

All of the pathways share the same path from chorismate to (S)-norcoclaurine through 4-

hydroxyphenylacetaldehyde, which is the shortest linear pathway. The other branch through 

dopamine is two reactions longer and much further down in the list of linear pathways. This 

means that these pathways may be missed if just the shortest linear pathways are reviewed. 

However, by searching for branched pathways these longer pathways are incorporated into 

the branched pathway and rise to the top of results over other unlikely linear pathways. This 

illustrates that identifying branched pathways may help to eliminate undesirable pathways 

and reveal important relationships. 

5.5.3 a-D-Glucose 6-Phosphate to Stachyose 

Stachyose is part of the raffinose family oligosaccharides (RFOs), which are found in many 

plant species. RFOs can be used for carbon transport and storage and can make up 25-80% 

of the dry weight of certain plants [110]. Notably, raffinose and stachyose are found in 

high concentration in soybeans, an important staple crop [30], Other functions of RFOs 

are unclear, but studies have indiciated that they may act as protective agents for seeds 

and against cold temperatures [118, 10]. RFOs have have traditionally been perceived as 

anti-nutritional because humans and other monogastric organisms lack the enzymes to break 

them down. However, it has been suggested that RFOs be beneficial to gut flora [117]. 
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Figure 5.10 : The top four pathways for two molecules of chorismate to (S)-norcoclaurine, 
as identified by both BPAT-S and BPAT-M, merged together with the dashed lines showing 
how the pathways differ. 
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Additionally, outcome of lung transplantation was improved when raffinose was included in 

the lung storage solution, although the specific mechanisms are still being studied [37]. 

The starting compound for the stachyose branched pathway search was chosen as a-D-

Glucose 6-Phosphate (G6P), even though the pathway is typically viewed as starting from 

sucrose. The top ranking pathway returned using either BPAT-S or BPAT-M was the same 

and is depicted in Figure 5.11. The computed pathway corresponds to the known stachyose 

biosynthesis pathway. While the pathway used to produce sucrose may vary in different 

organisms, the top ranked pathways also primarily vary in the paths from G6P to sucrose. 

The stachyose pathway is the most topologically complex pathway where the top ranking 

results from the merge and seed approaches are the same. Both algorithms were given as 

input to conserve at least 3 carbons for the linear pathway search. BPAT-M identified 14 

different target atom markings in the linear pathways, resulting in 19 mutually exclusive 

combinations. BPAT-S started from four molecules of G6P and tested 8746 seed pathways 

containing 4 to 11 reactions. 

5.5.4 a-D-Glucose 6-Phosphate to L-Tryptophan 

Tryptophan, similar to threonine, is an essential amino acid mainly produced by microbial 

fermentation [71]. The tryptophan biosynthesis pathway is relatively complex, with a 

number of places where carbons are lost and gained along the way. BPAT-S was initialized 

with two molecules of a-D-glucose 6-phosphate (G6P). The minimum number of carbons to 

conserve for the linear pathways was 4, resulting in 14079 seed pathways of length between 

13 and 21 reactions. BPAT-M was tried with 3 and 4 carbons to conserve, but neither search 

resulting in any returned branched pathways. The lack of resulting branched pathways 

occurs because the known pathway conserves four carbons through the shikimate pathway, 

which is relatively long, with carbons being added three carbons along the way. Therefore, 
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Figure 5.11 : Top ranking pathway returned by both BPAT-S and BPAT-M from G6P to 
Stachyose, with the linear pathways conserving 3 carbons. 
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the search with four carbons results in linear pathways that go through the shikimate pathway 

and have the same target atom marking, and thus cannot be merged. When BPAT-M uses 

3 as the minimal number of carbons to conserve, the linear pathways found are so much 

shorter that the shikimate pathway is not in the set of linear pathways returned and again 

none of the pathways can be merged. This demonstrates how the performance of the two 

approaches can widely vary based on the underlying structure of the metabolic pathways. In 

this case, the tryptophan pathway is more easily discovered by the seed pathway approach. 

The results for the tryptophan pathway are greatly improved by using the reversibility 

information. When considering all reactions reversibile, there are a number of "shortcuts" 

revealed by the search. Many of these shortcuts utilized reactions from tryptophan degrada­

tion that are unlikely to occur in the direction used by the pathway, such as ones through 

L-formylkynurenine to tryptophan and catechol to anthranilate. However, the top ranked 

result returned by BPAT-S takes a shorter route from 3-dehydroshikimate to chorismate that 

is 3 reactions long, rather than the standard 4 reactions of the shikimate pathway. The shorter 

route uses a reaction from 4-hydroxybenzoate to chorismate that is drawn as reversible on 

the KEGG pathway maps, but primarily goes from chorismate to 4-hydroxybenzoate. 

The shortest pathway that utilizes the reactions in the standard shikimate pathway is 

ranked forth in the returned pathways, but this pathway utilizes a degradation reaction that 

typically uses tryptophan as the substrate in the reverse direction as an attachment point 

for a branch. Therefore, the best result in the top ten pathways returned by BPAT-S is 

the seventh result, which captures major features of the known pathway, and is depicted 

in Figure 5.12. As with other results, the two molecules of phosphoenolpyruvate would 

typically be created via glycolysis, but here they are created by a different scheme because 

pathways conserving the same number of carbons are ordered by length. Additionally, only 

one molecule of G6P would be required which cannot be found because the seed pathway 



102 

approach currently only finds branches off of the seed pathway. At the same time, this result 

illuminates a number of interesting properties of the tryptophan pathway, such as serine and 

5-phospho-a-D-ribose 1-diphosphate both can be made from compounds further upstream. 

These complex relationships, automatically discovered by the algorithm, are of importance 

for metabolic pathway analysis and design and may not typically be considered. 

5.5.5 a-D-Glucose 6-Phosphate to (-)-Carvone 

Plants have evolved to produce a wide variety of secondary metabolites, often used as 

defense mechanisms to against herbivory or infection [14]. Many of these metabolites 

have medicinal and other important uses and thus are the target of metabolic engineering 

approaches to produce them on a larger scale. The monoterpene (-)-carvone is a compo­

nent of spearmint essential oil and has potential antimicrobial, anticancer and insecticial 

effects [88, 135, 66]. The known (-)-carvone biosynthesis pathway functions by combining 

isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) to form geranyl 

diphosphate. IPP and DMAPP can be produced either by the mevalonate (MVA) pathway 

or the methylerythritol phosphate (MEP) pathway, which was more recently discovered 

[72]. The MVA pathway is known to function in eukaryotes, archeabacteria and in the 

cytosol of plants and the MEP pathway is known to function in eubacteria, green algae and 

chloroplasts of plants [64]. Three more reactions then transform geranyl diphosphate into 

(-)-carvone, which contains 10 carbons [74]. The enzyme forming geranyl diphosphate and 

three enzymes that subsequently drive the chemical reactions to form (-)-carvone have been 

succesfully installed into E. coli in a study to understand it's capability to produce foreign 

metabolites [20]. 

BPAT-S and BPAT-M were used to find the (-)-carvone biosynthesis pathway by giving 

as the start compound a-D-Glucose 6-Phosphate, (-)-carvone as the target compound and 3 
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as the minimal number of carbons to conserved. This resulted in 21976 seed pathways for 

BPAT-S ranging in length of 14 to 21. With the default limits on the number of pathways in 

each target atom marking cluster and r for BPAT-M, the search would run out of memory 

and the results were obtained by setting r to 500 and limit the number of pathways in each 

cluster is 2500. BPAT-M identified four different target atom markings from the linear 

pathways that resulted in three different mutually exclusive combinations. 

The resulting branched pathways for (-)-carvone are the first example where both BPAT-

S and BPAP-M find branched pathways but the resulting top pathways are different. The 

BPAT-S pathway contained the MEP pathway to make DMAPP and this is used as the 

seed pathway, the MVA pathway is found as a branch to make IPP. However, the branch 

is only realistic from acetoacetyl-CoA. This is because acetoacetyl-CoA contributes four 

carbons to isopentenyl disphosphate through the mevalonate pathway and the branch tries 

to find a path of four carbons from G6P. Therefore a long, unrealistic linear pathway is 

found that does conserve four carbons instead of the more realistic branched pathway where 

acetoacetyl-CoA is synthesized by two molecules of acetyl-CoA. On the other hand, the top 

ranking pathway from BPAT-M only utilizes the MEP pathway, as it is the shorter of the 

two pathways, to make both IPP and DMAPP. Overall, this is a more realistic pathway, but 

it does not reveal the variety of pathways that can be used like the BPAT-S result does. 

5.5.6 a-D-Glucose 6-Phosphate to Inosine Monophosphate 

Inosine monophosphate (IMP) is an important intermediate in the formation of purine 

nucleotides and nucleosides. The de novo biosynthesis of IMP from glucose proceeds 

by first forming the ribose component (PRPP) from D-ribose 5-phosphate, a product 

of the pentose phosphate pathway and incrementally building the purine ring from a 

number of donor compounds, with glycine contributing the largest component of two 
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carbons and one nitrogen [79]. The de novo incremental construction begins with 5-

phosphoribosylamine and proceeds through 5'-phosphoribosylglycinamide (GAR), 5'-

phosphoribosyl-N-formylglycinamide(FGAR), 2-(formamido)-Nl-(5'-phosphoribosyl)acetamidine 

(FGAM), aminoimidazole ribotide (AIR), l-(5-phospho-D-ribosyl)- 5-amino-4-imidazolecarboxylate 

(CAIR), l-(5'-phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole (SAICAR), 

l-(5'-phosphoribosyl)-5-amino-4-imidazolecarboxamide (AICAR) and l-(5'-Phosphoribosyl)-

5-formamido-4-imidazolecarboxamide (FAICAR) which is made into IMP. Plants, animals 

and microrganisms all perform de novo synthesis of IMP in a similar manner [136]. In 

addition to the de novo pathway, because of the importance and energenic costs of synthe­

sizing purine nucleotides and nucleosides, there are a number of purine salvage pathways 

that go through IMP [83]. These salvage pathways makes finding the de novo pathway a 

challenging case for computational metabolic pathfinding methods. 

In the recent work by Pitkanen et al., the ReTrace algorithm is tested on the IMP pathway, 

using D-glucose as the start compound [91]. The presented pathway found by ReTrace 

has a general branching scheme that combines hypoxanthine and D-ribose 5-phosphate to 

form IMP. However, this corresponds to a known salvage pathway and is not the de novo 

pathway, which the authors note that ReTrace had difficulty finding. While the hypoxanthine 

pathway is a valid branching scheme, it is unlikely to be the one from glucose. Furthermore, 

the reactions in the depicted branched pathway between glycine and hypoxanthine are 

typically degradation reactions that would proceed in the opposite direction needed by the 

computed pathway. This occurs because no reversibility information was included when 

testing ReTrace and demonstrates the importance of using reversibility information. Since 

BPAT-S and BPAT-M are tested using reversibility information it is impossible to do a direct 

comparison with the ReTrace results. 

For the IMP pathway, BPAT-S obtained better results than BPAT-M. The methodology of 
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BPAT-S enables it to start with a seed pathway for the ribose component and then search for 

a branch that corresponds to the construction of the purine base. BPAT-S used 25310 linear 

pathways ranging in length from 5 to 13 reactions. The top ranked pathway found by BPAT-

S is depicted in Figure 5.15. In this pathway, due to the use of reversibility information, 

one of the branches contains the proper sequence of reactions through glycine to AICAR. 

However, because the original seed pathway utilized a reversible salvage reaction, a strange 

connection occurs at the join point of this branch. Typically AICAR already has the ribose 

component incorporated, but in order to attach the branch, the ribose component is removed 

from AICAR to make 5-amino-4-imidazolecarboxyamide, which is then combined with 

PRPP from the seed pathway to make FAICAR. 

BRAT-M was thwarted by the fact that there are a number of short salvage pathways that 

conserve carbons from G6P to IMP through the ribose component and therefore the set of 

linear pathways found by LPAT do not contain the pathways that build the purine base of IMP 

BPAT-M was only able to find branched pathways when it used one carbon as the minimal 

number of atoms to conserve. When conserving one carbon, BPAT-M found 14 different 

target atom markings resulting in 190 different mutually exclusive combinations. The top 

ranking result from BPAT-M conserving one carbon is depicted in Figure 5.16. This pathway 

contains the same seed pathway used by BPAT-S to find the pathway in Figure 5.15 and also 

the pathway through formate which contributes one carbon. The pathway through formate 

is found in both the BPAT-S and the BPAT-M result and is interesting because the standard 

pathway for IMP biosynthesis is folate dependent, typically 10-formyltetrahydrofolate, 

as the source for the formyl group added to AICAR to form FAICAR [79]. However, 

archea perform this reaction without folate or modified folates and utilize formate instead 

[129, 134]. The automatic finding of the formate reactions from archea demonstrates how 

searching over all organisms can retrieve interesting or non-standard reactions that might 
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not be considered otherwise. 

The IMP biosynthesis pathway underscores the challenges that branched pathway finding 

algorithms face because of the complexities and nuances that occur in nature. The results 

of BPAT-S show that a number of these challenges can be overcome to produce reasonable 

results, but there is still room for future improvement as discussed in the final chapter of this 

thesis. The IMP pathway is particularily difficult because its synthesis is highly intertwined 

with a number of important compounds. Both BPAT-S and BPAT-M perform much better on 

the rest of the pathways included in this thesis because, while the pathway topology may be 

more complicated, they are secondary metabolites. 

5.5.7 a-D-Glucose 6-Phosphate to Streptomycin 

Quite a bit of research has been done to to understand and characterize the biosynthetic 

pathways related to antibiotic production, which coupled with their complex topologies 

makes them good test cases for branched pathway finding. Streptomycin is an aminoglyco­

side antibiotic that was isolated in the 1940s and subsequently became the first antibiotic 

treatment for tuberculosis [84]. Streptomycin, along with the majority of clinicially useful 

antibiotics, are synthesized by bacteria in the genus Streptomyces that primarily live in 

soil [126]. The pathway for streptomycin biosynthesis is known to be composed of three 

major pathways resulting in streptidine 6-phosphate, dTDP-L-dihydrostreptose and NDP-N-

methyl-L-glucosamine. The three compounds are incorporated in two sequential reactions 

to form dihydrostreptomycin 6-phosphate, which then becomes streptomycin via two more 

reactions [38]. 

BPAT-S and BPAT-M are used to find the streptomycin biosynthesis pathway using G6P 

as the starting compound and conserving at least three carbons. BPAT-S used 73749 linear 

pathways identified by LPAT ranging in length from 10 to 18 reactions. BPAT-M found five 
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different target atom markings that resulted in six different mutually exclusive combinations. 

The top ranking pathways for BPAT-S and BPAT-M are illustrated in Figures 5.17 and 5.18, 

respectively. The top ranking pathways found by both of the searches contains the known 

pathways to streptidine 6-phosphate and dTDP-L-dihydrostreptose and subsequently to 

streptomycin. However, the pathway to NDP-N-methyl-L-glucosamine is missing because 

it has not been well characterized experimentally and thus not contained in the KEGG 

REACTION database. Therefore, any search method using the KEGG data would fail to 

find this pathway and finding the pathway containing the other two pathways is the best that 

one could expect. 

BPAT-S additionally identifies the use of arginine in the synthesis of streptomycin. In 

each reaction, the amidino group of arginine, containing one carbon, is attached to the 

precursor compound of streptomycin. While the pathways from G6P to arginine shortcut 

through C02, the use of arginine is correct. BPAT-M does not find these branches because 

they only conserve one carbon and thus are not contained in the original set of linear 

pathways. This difference between BPAT-S and BPAT-M is a consistent theme through the 

antibiotic biosynthesis pathway test cases. 

5.5.8 a-D-Glucose 6-Phosphate to Penicillin 

Penicillin is a widely used beta lactam antibiotic that is synthesized by filamentous fungi 

and its discovery is an important landmark in the development of the biotechnology industry 

[31]. Initial work to characterize the biosynthesis pathways for penicillin and related 

compounds was stymied by difficulties with genetically analyzing the fungi and purifying 

the relevant enzymes [18]. However, with the great advances in molecular biology these 

pathways are very well characterized and have become the target of metabolic engineering 

techniques to improve the production of beta lactam antibiotics [116]. The biosynthesis 
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of penicillin is typically viewed as beginning with a reaction, catalyzed by ACV synthase, 

which condenses three amino acids, L-valine, L-cysteine and L-2-aminoadipate to form 

5-(L-a-aminoadipyl)-L-cysteinyl-D-valine (ACV) [18]. ACV then becomes isopenicillin N 

which can subsequently made into a number of compounds in the penicillin family. 

The ability of BPAT-S and BPAT-M to find the penicillin pathway was tested by using 

G6P as the start compound and penicillin as the target compound. The "penicillin" compound 

in KEGG (ID: C00395) is a generic compound that contains the chemical structure for the 

beta-lactam ring and the five-membered thiazolidine ring, characteristic of all penicillins. 

A "R" is used to represent the other chemical structures that can be attached to create 

different penicillin variants. BPAT-S and BPAT-M were given as input to conserve at least 

three carbons and the resulting top ranked pathways are depicted in Figures 5.19 and 5.20, 

respectively. BPAT-S used 71845 linear pathways ranging in length of 9 to 15 reactions. 

BPAT-M identified three different target atom markings, resulting in two different mutually 

exclusive combinations. 

In both of the results from BPAT-S and BPAT-M, the general branching scheme through 

L-valine and L-cysteine are found. The pathway through L-2-aminoadipate is not found 

because the carbons from L-2-aminoadipate are removed in the reaction between isopenicillin 

N and penicillin. This pathway is identified in the next example of cephalosporin C which 

proceeds through a similar pathway but retains the carbons of L-2-aminoadipate. The 

pathways to valine and cysteine from G6P are correct starting with pyruvate, but go through 

the shortcuts from G6P to pyruvate instead of more likely proceeding through glycolysis. 

As discussed with previous results, this is a common issue that computational methods for 

finding metabolic pathways face. 

The BPAT-S pathway, similary to the streptomycin result, presents a more complete 

picture of the biosynthesis of penicillin than the pathway found by BPAT-M. Since the 
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seed pathway used proceeds through valine, BPAT-S is able to correctly identify that valine 

is produced by using two molecules of pyruvate. Notably, this pathway is 12 reactions 

long and is in the middle of the tens of thousands of linear pathways used by BPAT-S. Yet, 

because BPAT-S is able to analyze a large number of these pathways efficiently this result is 

pulled to the top of the branched pathways. Additionally, BPAT-S finds the pathway through 

acyl-CoA that contributes one carbon to penicillin along with the "R" that represents the 

different side chains that can be attached to penicillin. Although the pathway from G6P 

to acyl-CoA is unusual, and likely toxic due to proceeding through hydrogen cyanide, it is 

found because of the generic nature of the acyl-CoA compound. Pathway searches for more 

specific varieties of penicillin may have better results. BPAT-M does not identify the second 

pathway through valine or through acyl-CoA because they both conserve less than three 

carbons and are therefore not contained in the linear pathways. 

5.5.9 a-D-Glucose 6-Phosphate to Cephalosporin C 

Cephalosporin C is also a beta lactam antibiotic that is synthesized by certain bacteria and 

fungi. Cephalosporin C is a broader spectum antibiotic than penicillin, but is not used 

clinicially because of its low potency [28]. However, it is an important precursor for a 

number of related antibiotics and has also been a target for increased production using 

metabolic engineering approaches [116]. The biosynthetic pathway for cephalosporin C is 

similar to penicillin as it begins with the the synthesis of ACV from L-valine, L-cysteine 

and L-2-aminoadipate [18]. The pathway then proceeds through isopenicillin N which then 

undergoes a series of reactions resulting in cephalosporin C. 

BPAT-S and BPAT-M were given as input G6P as the start compound, cephalosporin C 

as the target compound and three as the minimal number of carbons to conserve. BPAT-S 

used 31280 linear pathways of length ranging from 10 to 16 reactions. BPAT-M found 5 
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different target atom markings resulting in 18 different mutually exclusive combinations. 

The top ranked pathways for BPAT-S and BPAT-M are depicted in Figures 5.21 and 5.22, 

respectively. The top ranking pathways from BPAT-S and BPAT-M capture all three of the 

pathways to the reaction utilizing L-valine, L-cysteine and L-2-aminoadipate. 

The introduction of the L-2-aminoadipate pathway causes some interesting changes 

in the BPAT-S results as compared to the penicillin results. Since the pathway through 

glycerone phophate and L-2-aminoadipate is used as a seed pathway, BPAT-S can no longer 

identify the branched pathway from two molecules of pyruvate that creates valine. Instead, 

it tries to conserve all of the carbons through valine and finds a long and unlikely pathway 

instead. This is a tradeoff because L-2-aminoadipate is also created via a branched pathway 

and therefore using a pathway through valine results in a long and unlikely pathway for 

L-2-aminoadipate. In this case, the seed pathway through L-2-aminoadipate resulted in a 

smaller overall branched pathway. BPAT-S also identifies the branch through acetyl-CoA 

which contributes its acetyl group to deacetylcephalosporin C to make cephalosporin C. 

BPAT-M does not identify this branch because it only contributes two carbons, but obtains 

better pathways for the other parts of the pathway. 

Since the shorter pathways through valine and L-2-aminoadipate were both contained in 

the linear pathway set, BPAT-M is able to merge them together and obtain a more realistic 

pathway for cephalosporin C. The pathway correctly matches the known pathway from 

pyruvate and 2-oxoadipate on down. As with many of the results, the pathways from G6P to 

those compounds take some unusual shortcuts, in the pyruvate case it would be more likely 

to be made by glycolysis. It is interesting to note that BPAT-M is able to reveal more variety 

between the compounds as compared to BPAT-S, which will use the same branch between 

two different compounds. 
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5.5.10 a-D-Glucose 6-Phosphate to Erythromycin 

Erythromycin is a highly successful, broad-spectrum, macrolide antibiotic discovered in 

the early 1950s and quickly became the preferred drug for a wide variety of infections 

[124, 125]. Erythromycin is produced by bacteria Saccharopolyspora erythraea and is 

difficult to synthesize in the laboratory [87]. Therefore, several metabolic engineering 

approaches have been taken to improve the production of erythromycin and erythromycin 

precursors, both by modifying S. erythraea or inserting the genes required into other 

microorganisms such as E. coli [85, 89, 24, 99]. The biosynthesis of erythromycin has been 

well studied and proceeds in two major steps. The first is the construction of the macrocyclic 

lactone intermediate, 6-Deoxyerythronolide B (6DB) by 6DB synthase from six molecules 

of methylmalonyl-CoA and one propanoyl-CoA [59]. 6DB then undergoes a series of 

modifications that includes the attachment of two sugars, L-mycarose and D-desosamine, in 

order to produce erythromycin [127, 114]. 

Both BPAT-S and BPAT-M are able to find the relatively complex branched pathway for 

the biosynthesis of erythromycin using G6P as the start compound and conserving three 

carbons. BPAT-S was initialized with eight molecules of G6P and due to the large number 

of branches, k was limited to 200000, resulting in 2902 linear pathways ranging in length 

from 10 to 17 reactions. The default limits were retained for BPAT-M, which found 15 

different target atom markings, resulting in 4592 mutually exclusive combinations. The top 

ranking result for BPAT-S is found in Figure 5.23, with the seed pathway going through 

(S)-lactate. Overall, the pathway found by BPAT-S is similar to the top ranking result for 

BPAT-M, depicted in Figure 5.24. Both results find the proper pathway from pyruvate 

to the synthesis of 6DB and the addition of the two sugars to complete the synthesis of 

erythromycin. The branched pathways contain the known pathway for the D-desosamine 

and a pathway highly similar to the known pathway for the L-mycarose, except for a slight 
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Figure 5.23 : Top ranked pathway returned by BPAT-S for G6P to erythromycin, with the 
linear pathways conserving 3 carbons. 

shortcut through dTDP-4-dehydro-6-deoxy-L-mannose. 

The differences between the two reinforce a number of general trends that appear when 

comparing the results of BPAT-S and BPAT-M in previous results. BPAT-S is able to find a 

branch that conserves less carbons than the initial seed pathway, the one through S-adenosyl-

L-methionine, which does not appear in the BPAT-M results because it is not included in 

the original set of linear pathways. BPAT-M reveals more variety in the pathways between 

G6P to pyruvate, although the likely pathway through glycolysis is not found due to its 

length. There is a pathway from G6P to (S)-lactate in the BPAT-S pathway that is not in 

the BPAT-M pathway. BPAT-S is able to find that one molecule of G6P is able to result in 
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Figure 5.24 : Top ranked pathway returned by BPAT-M for G6P to erythromycin, with the 
linear pathways conserving 3 carbons. 
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one molecule of (5')-lactate and S-adenosyl-L-methionine. Although, due to their search 

methods, neither algorithm is able to identify that each molecule of G6P can result in two 

molecules of pyruvate. This occurs in BPAT-S because branches are not allowed to branch 

and in BPAT-M because pathways only merge at one point. This may be corrected in future 

work through either adding a post processing step or improving the algorithms to find these 

occurrences, which is further discussed in Section 6.1.1. 

5.5.11 a-D-Glucose 6-Phosphate to Lycopene 

Lycopene is a C40 carotenoid having a bright red color and is typically found in fruits and 

vegetables, such as tomatoes and watermelons. Popular interest in lycopene has grown 

because it is an antioxidant and studies indicate it may be helpful in the prevention and 

treatment of diseases such as cancer [97]. Lycopene's nutritional and pharmaceutial potential 

has resulted in a number of investigations on using metabolic engineering techniques to 

increase yield and/or produce lycopene in microbial hosts [101, 4, 132, 123], The biosyn­

thesis pathway of lycopene is relatively well understood and it utilizes several molecules of 

isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) [100], As discussed 

in result for (-)-carvone, IPP and DMAPP can be produced by either the mevalonate (MVA) 

pathway or the mefhylerythritol phosphate (MEP) pathway, depending on the organism. 

Lycopene proves to be an interesting test case for the branched pathfinding algorithms 

because it is a case where BPAT-M performs better than BPAT-S, likely due to the underlying 

structure of the lycopene biosynthesis pathway. BPAT-S and BPAT-M are given as the start 

compound G6P, the target compound lycopene and three as the number of carbons to 

conserve. Several of the default parameters to be readjusted because of the large number of 

carbons in lycopene and the complexity of the overall pathway. For BPAT-S, k was reduced 

to 500,000 because it would reach the maximum time allowed of 24 hours at the default 
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value. For BPAT-M, the number of pathways in each cluster was limited to 2,500 and r was 

set to 500 because it would run out of memory using the default values. BPAT-S analyzed 

22,064 linear pathways of length ranging from 14 to 21 reactions and BPAT-M found 16 

mutually exclusive target atom markings that generated 6,301 combinations. The top ranked 

results for BPAT-S and BPAT-M can be found in Figures 5.25 and 5.26, respectively. 

BPAT-M correctly finds the lycopene pathway that utilizes the MEP pathway to synthe­

size IPP and DMAPP. This pathway has an interesting topology as IPP and DMAPP are 

produced using the same reactions and then the GMAPP combines with IPP to make two 

molecules of geranyl diphosphate which are combined with IPP in two more sequential 

reactions resulting in two molecules of geranylgeranyl diphosphate, which combine to make 

the C40 molecule prephytoene diphosphate that becomes lycopene. This pathway topology 

lends itself well to discovery by BPAT-M because it is naturally a merging of several linear 

pathway of similar length that result in a complex branched pathway. 

BPAT-S has greater difficulty identifying the overall pathway, mainly because branches 

off of the seed pathway cannot further branch and this is required to generate the topology 

found by BPAT-M. Still, quite a bit of the general topology is contained in the top ranked 

pathway. Additionally, the result from BPAT-S does utilize both the MEP pathway for 

DMAPP and MVA pathway for IPP, thus revealing the variety available. However, similar 

to the (-)-carvone result, the pathway found from G6P to acetoacetyl-CoA to begin the MVA 

pathway is long and unwieldy because the branch is trying to conserve the maximum number 

of carbons without being able to branch. Lastly, the top ranked BPAT-S pathway contains 

cis forms of the intermediate compounds between prephyonene diphosphate and lycopene. 

These are valid reactions and compounds contained in the KEGG databases, and there is 

some evidence that they perhaps could occur, but they do not appear to be well characterized 

[43, 75]. The third ranked BPAT-S pathway contains the more well characterized trans forms 
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Figure 5.25 : Top ranked pathway returned by BPAT-S for G6P to lycopene, with the linear 
pathways conserving 2 carbons. 
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of the compounds from prephyonene diphosphate to lycopene and it is promising that the 

algorithm is capable of finding both pathways. 

5.5.12 Wall Time for Finding Branched Pathway 

The wall time taken on the system described in Section 5.3 to find the branched pathways 

by BPAT-S or BPAT-M is plotted in Figures 5.27 and 5.28, respectively. The maximum 

time allowed for a pathway search was 24 hours. The overall height of each bar indicates 

the total time and then the bars are partitioned into sections representing the times required 

for different stages of the algorithms. The plots reveal that for all pathways, except the 

one to (S)-norcoclaurine, BPAT-S took signficantly more time than BPAT-M. In the case of 

(S)-norcoclaurine, it took about a minute with BPAT-S and 14 seconds with BPAT-M. The 

wide variation of run times indicates that the time required is dependent on the start and 

target compound and is difficult to predict beforehand. 

Without any limits on the number of atoms conserved by the branches or the number 

of branches per seed pathways, BPAT-S typically takes on the order of hours to run. The 

run time of BPAT-S does not appear to be dependent on the complexity of the expected 

result, as the L-threonine pathway is a relatively simple branched pathway that took a long 

time to compute. There is also no clear trend in the relatively amount of times spent finding 

branches versus trying different combinations of branches. In several cases, finding branches 

appear to dominate the computation time. This happens in the L-threonine pathway as well 

and it seems to be because there are a large number of one carbon branches, if one limits the 

branches to conserve at least two carbons the run time falls dramatically to about 25 minutes. 

Other pathways,such as erythromycin and lycopene, are dominated by the time it takes to 

try combinations of branches. This is to be expected because these pathways require a large 

number of branches to synthesize their final target compounds. 



130 

Figure 5.27 : Wall times for BPAT-S for each branched pathway as indicated by the target 
compound labels. The dark teal is the time required for using LPAT to find the branches. 
The light green is the time required to try all combination of branches. The time required 
for finding the original set of linear pathways is so relatively negligible that it is not visible. 
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Figure 5.28 : Wall times for BPAT-M for each branched pathway as indicated by the target 
compound labels. The red is the time used by LPAT to find the set of linear pathways. The 
dark teal is the time used to construct M and the light green is the time used to merge the 
pathways using Q and C and M. The time required to construct Q and C is so relatively 
negligible that it is not visible. 
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The wall times for BPAT-M are significantly shorter for the same branched pathways 

than BPAT-S. However, this is likely because BPAT-M utilizes stricter cutoffs through the 

number of pathways kept for each TAM in Q and w. When these cutoffs were raised, the 

search would run out of memory before running out of time. Therefore, it is interesting 

that, at least by analyzing the top returned pathway, BPAT-M was able to perform as well as 

BPAT-S for many pathways. Since the times are so much shorter the time required to find 

the original linear pathways by LPAT is relatively more significant and shows up on the plot 

as the bottom, red section of the bars. For all of the pathways, the time to do the pairwise 

mergable comparisons of pathways to construct M took a few minutes or less. In the case of 

lycopene, and to a lesser extent stachyose, which took greater amounts of time to compute, 

the time required to merge the pathways dominated the computation. It is of note that the 

the lycopene pathway took the longest to compute and was the only one where BPAT-M 

was able to outperform BPAT-S. 

5.5.13 General Summary of Branched Pathway Results 

BPAT-S and BPAT-M take two different heuristic approaches for finding metabolic pathways 

and the experimental results reveal that their performance depends on the underlying struc­

ture of the pathway they seek to find. The approach taken by BPAT-S will perform better if 

there is one main linear pathway that transfers a significant portion of the mass from the 

start to target compound and the branches are smaller modifications. This occurs in the case 

of the tryptophan pathway, where four carbons are conserved through the shikimate pathway 

and the other carbons are lost and gained in shorter, two or three carbon branches. In other 

cases, BPAT-S is able to identify branches that conserve less carbons than the original linear 

pathways, something that BPAT-M is unable to do. However, the merging approach used 

by BPAT-M will perform better if all of the branches conserve at least the given number 
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of atoms and are of similar length. If this is the case, then BPAT-M can also find more 

complex topologies, because it is not limited to requiring all branches to start and end from 

the same pathway. This is typical of large compounds made from similar components, 

and the lycopene result highlights this ability of BPAT-M. The lycopene pathway utilizes 

a complex "interwoven" pattern that BPAT-S is unable to find, but is returned as the top 

result by BPAT-M. While it can be difficult to identify a priori which method will perform 

better, it is reasonable to try both approaches and analyze the results. By utilizing both 

approaches, researchers may gain insight into different metabolic schemes. Additionally, 

since the algorithms are complementary, future work may improve the performance by 

combining them as discussed in Section 6.1.1. 
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Chapter 6 

Conclusions and Future Directions 
The metabolic path finding algorithms presented in this thesis are part of a growing set 

of analysis tools that will assist in understanding metabolic networks and designing novel 

metabolic pathways for applications such as metabolic engineering and synthetic biology. 

Chapter 3 described a new algorithm, LPAT, that guarantees finding linear metabolic path­

ways between a start and target compound that conserve a given number of atoms. Chapter 

4 presented BPAT-S and BPAT-M, two new algorithms for heuristically finding branched 

metabolic pathways between a start and target compound. The experimental results in 

Chapter 5 demonstrated that while the theoretical complexity of finding even linear atom 

conserving pathways is high that the algorithms in this thesis have reasonable running 

times in practice. This is due to several factors including the appropriate representations 

and heuristics and the structure of the underlying metabolic network. The experimental 

results also provide inspiration for a number of future directions for improving metabolic 

pathfinding and the analysis of the resulting pathways. 

6.1 Future Directions 

The work presented in this thesis provides a solid foundation for future work on metabolic 

pathfinding. There are a number of interesting future directions to persue, some related to 

algorithmic improvements and other focusing on the analysis and visualization of the found 

pathways. 
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6.1.1 Improvements to BPAT-S and BPAT-M 

One of the clearest algorithmic extensions to the current work is to combine the complemen­

tary approaches taken by BPAT-S and BPAT-M. Currently, BPAT-S attaches branches to a 

single seed pathway generated from a single linear pathway returned by LPAT. However, 

it may improve results to generate "seed pathways" from the branched pathway results 

of BPAT-M. The combined method would proceed by processing each branched pathway 

returned by BPAT-M in the same manner as the linear pathways from LPAT by BPAT-S to 

identify places where atoms can be lost and gained. Then BPAT-S would go through the 

same method to attach new branches to the branched pathway from BPAT-M. In this way, 

the combined method takes advantage of the BPAT-M's ability to identify more complex 

topologies with BPAT-S's ability to identify branches that do not exist in the original set of 

linear pathways. Since the experimental results reveal that the time needed by BPAT-M is 

relatively small to the amount of time required by BPAT-S, combining the methods in this 

manner should not greatly increase the overall time required. 

Still, a combined method may not find certain topologies of branched pathways because 

the more complex topologies found by BPAT-M rely on the pathways being in the set of 

original linear pathways. An important question to ask is how common complex topologies 

are in biochemical systems and how useful are they for producing compounds of interest. 

As discussed in Chapter 2, there have been a number of studies on the average or overall 

topologies of metabolic networks, but there has not been as much work understanding the 

networks required to synthesize, or breakdown, one compound. A better understanding 

of the topologies that algorithms like BPAT-S and BPAT-M should be able to find can 

be used to guide the design of future extensions. If it turns out there are topologies that 

BPAT-M combined with BPAT-S cannot handle, another direction to explore would be 

to extend BPAT-S to allow branching from the branches, but how to proceed while still 
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having reasonable search times is less clear. One way to reduce the wall time required is to 

parallelize the algorithm, and in some sense it is embarrassingly parallel as each processor 

can be assigned a set of seed pathways. However, storing previously identified branches is 

important to the efficiency of BPAT-S, and so the algorithm may be better suited to shared 

memory systems, which are becoming more common with the rise of multi-core processors. 

6.1.2 Incorporating Known Biochemical Information 

A theme found in a number of the experimental results is that the computed pathways contain 

unusual shortcuts around glycolysis. This is because pathways are ranked by the number 

of reactions they use and glycolysis is a relatively long pathway. However, glycolysis is a 

highly conserved and universal metabolic pathway that generates energy and therefore, while 

perhaps interesting, the unusual shortcuts are unlikely to be used in reality. In some way, 

not identifying glycolysis could be perceived as a failing of the computational methods, but 

the end goal of these methods is to discover new and interesting pathways, not to rediscover 

well known pathways. At the same time, when finding branched pathways, better overall 

pathways may be found if well known pathways such as glycolysis are treated differently. 

One way to incorporate known metabolic pathways is to postprocess the resulting 

pathways. If the resulting pathways contain a different pathway between two compounds 

that are connected in a known pathway, then the known pathway can replace the found 

pathway. This may make the size of the overall pathway larger and experimentation would 

need to be done to understand how to count the size of the known pathway in the final 

ranking of the results. Another approach would be to incoporate the known metabolic 

pathways in the search itself. How to exactly do this raises a number of questions and would 

likely result in a redesign of the algorithms. For example, one way would be to search from 

both the start compound and target compound at the same time. If the search from the start 
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compound and the search from the target compound arrive at compounds that are connected 

by a known pathway then the searches can stop and the known pathway can just be used 

to connect the two pathways. In the end, the decision to incorporate known pathways will 

likely depend on the specific application. While the known pathways may make the results 

look better in terms of validation and testing, it is a balancing act between returning what is 

already known versus finding new or unusual pathways. 

6.1.3 Clustering and Analysis of Returned Pathways 

The experimental results in this thesis provide an initial cluster analysis of linear pathways 

that reveals that it may be of interest to consider the resulting pathways as a whole, instead 

of just manually analyzing the top ranked pathways. The analysis presented used a rela­

tively simple distance measure and agglomerative clustering method. Future work should 

investigate how the choice of measure and method change the results. For example, the 

distance measure used currently considers each compound as a completely independent 

entity, but this is not true because there is a notion of chemical similarity. Therefore, it is 

possible that incorporating chemical similarity when comparing two pathways may return 

more chemically relevant clusterings. Another important extension to understand how to 

cluster branched pathways. The main challenge is the development of a proper distance 

measure. Should the emphasis be placed on topological or chemical similarity, both, or 

something else entirely? Once the distance measure is developed, then based on the linear 

pathway results, it is likely that standard clustering methods will produce interesting results 

and hopefully further understanding of different metabolic schemes. 
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6.1.4 Visualization and Interactivity 

In the end, it is highly unlikely that any algorithm or ranking scheme will be able to return 

a perfect list of metabolic pathways for any application. This means, along with the large 

number of pathways typically returned, that it is important to develop good visualization 

tools that will allow researchers to interact with the results in a meaningful way. Some 

initial work has been done in implementing a webserver for these algorithms and enabling 

users to filter the pathways based on their compounds and reactions. However, providing 

interactive and useful visualizations of large numbers of metabolic pathways, especially 

branched pathways, pose a number of unique challenges that deserve future investigation. 

The goal of finding "biologically meaningful" and "realistic" metabolic pathways is not 

well-defined and while much effort has been put into validating and testing the algorithms in 

this thesis, the true test will be experimental validation of new and interesting computational 

results. 
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Table A.2 : Pathways in the Amino Acid Test Set 

Start Compound Target Compound Number of Number of 

Pathways Reactions 

in Longest 

Pathway 

PRPP 

Pyruvate 

Homocitrate 

L-Aspartate 

Pyruvate 

L-Glutamate 

L-Glutamate 

Propanoate 

L-Aspartate 

L-Threonine 

Pyruvate 

Chorismate 

L-Arginine 

L-Glutamine 

L-Aspartate 

L-Glutamate 

C02 

Chorismate 

Chorismate 

3-Phospho-D-glycerate 

L-Ornithine 

Cysteine 

Continued on Next Page 

L-Histidine 

L-Leucine 

L-Lysine 

L-Lysine 

L-Isoleucine 

L-Isoleucine 

L-Arginine 

L-isoleucine 

L-Methionine 

L-Isoleucine 

L-Valine 

L-Tryptophan 

L-Proline 

L-Arginine 

L-Threonine 

L-Proline 

L-Arginine 

L-Tyrosine 

L-Phenylalanine 

L-Serine 

L-Proline 

L-Asparagine 

2 

5 

2 

4 

1 

1 

2 

1 

3 

1 

2 

2 

2 

1 

1 

2 

1 

2 

2 

1 

3 

1 

10 

10 

9 

9 

9 

8 

8 

7 

7 

6 

6 

5 

5 

4 

4 

4 

4 

3 

3 

3 

3 

2 



Table A.2 - Continued 

Start Compound Target Compound Number of Number of 

Pathways Reactions 

in Longest 

Pathway 

Cysteine 

L-Threonine 

L-Serine 

Pyruvate 

L-Asparagine 

L-Cysteine 

L-Phenylalanine 

L-Serine 

L-Aspartate 

L-Aspartate 

Glyoxylate 

Oxaloacetate 

2-Oxoglutarate 

L-Glutamate 

Pyruvate 

C02 

L-Aspartate 

L-Glycine 

L-Cysteine 

L-Alanine 

L-Aspartate 

L-Alanine 

L-Tyrosine 

L-Glycine 

L-Asparagine 

L-Alanine 

L-Glycine 

L-Aspartate 

L-Glutamate 

L-Glutamine 

L-Serine 

L-Glycine 

1 

2 

2 

4 

1 

1 

1 

1 

2 

1 

3 

1 

4 

5 

1 

1 
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