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Abstract 

Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the devel-opment of a wide array 

of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of 

metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major 

types of studies are elaborated: stoichiometric identifi-cation models, pathway-based graph analysis and pathfinding approaches in cellular 

metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead 

to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. 
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Introduction 

Metabolism is a biological subsystem in cells, which is respon-sible for 

extracting the energy. The process of generating energy and necessary 

materials is considered as a highly complex cel-lular process. Enzymes play a 

critical role in catalyzing bio-chemical reactions within the cell [1–3]. 

Cooperatively, the reactions of these cellular machinery components produce 

en-ergy metabolism. Metabolism integrates all parts of cells, and its study is 

important to understand the function of the system and furthermore, to 

understand alterations that occur in dis-ease state, [4] and, hence, for 

subsequent applications in drug discovery [5]. Therefore, the reconstruction 

of genome-scale metabolic graph representation from genomics and other 

mo-lecular or biochemical data is now feasible. 

In biological research, one of the most important topics is identifying 

different metabolic pathways within species, which might be exposed to 

subtle shifts or malfunctions. Metabolism

has many important activities that can lead to finding the drug resistance of 

pathogenic bacteria. However, identifying a pathway in the laboratory is a 

complicated process. The process includes difficult subtasks such as 

metabolic flux analyses [6] and labeling techniques for dynamic metabolism 

profiling [7]. All these require advanced technologies, which are expensive 

and time consuming. Another direction is to make use of the quali-fied 

approach by comparing metabolic networks of related spe-cies. A shorter 

pathway might be preferred over a longer pathway because of the smaller 

number of enzymes required. This is both advantageous because the genome 

capacity is often limited and because the shortest pathway is more likely to be 

conserved in evolution. Hence, we classified these approaches into 

stoichiometric approaches and pathfinding approaches. Stoichiometric 

approaches, which underlie flux balance analysis (FBA) approach, 

elementary flux modes (EFMs) and extreme pathways (EPs), define a 

metabolic pathway as a minimal set of 

Zeyad Abd Algfoor is a PhD candidate in Computer Science from Universiti Teknologi Malaysia. 
Mohd Shahrizal Sunar obtained his PhD from National University of Malaysia. He is currently working as a Associate Professor at the Department of Computer Graphics & Multimedia, 

Universiti Teknologi Malaysia. 
Afnizanfaizal Abdullah received his PhD in Computer Science from Universiti Teknologi Malaysia. He is currently working as senior lecturer at the Department of Software Engineering, 

Universiti Teknologi Malaysia. 
Hoshang Kolivand received his PhD in Computer Science from Universiti Teknologi Malaysia. He is currently working as a lecturer at the Department of Computer Graphics & 

Multimedia, Universiti Teknologi Malaysia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/151209656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://bfg.oxfordjournals.org/


biochemical reactions in pseudo steady state. Pathfinding approaches view a 

metabolic pathway as a set of biochemical re-actions that contain a directed 

path from a given source com-pound to a given target compound [8–10]. 

However, pathfinding relies on a metabolism network where compounds 

and reactions are nodes linked by edges represent-ing substrate/product 

relationships [11–13]. Various algorithms can be used to the find single 

shortest path or k-shortest paths between a given pair of start and end nodes. 

Experimental find-ings on various organisms indicate that (despite the 

presence of many possible biochemically feasible pathways) organisms often 

have a single ‘preferred’ pathway when converting a source com-pound into 

a target compound [14]. However, this terminology is not unique, and many 

authors described these pathways using diverse terms, for instance, annotated 

pathway [15], consensus pathway [8], empirically elucidated pathway [16] 

and experimen-tally determined pathway [17]. Of course, it is important to 

note that from the physiological viewpoint, metabolism pathways do not 

operate in isolation, and many pathways work together to produce an overall 

global flux distribution in reactions. Much re-search has been proposed to 

analyze pathways based on graph models for identifying biologically relevant 

pathways in meta-bolic pathways [18]. Graph-based metabolism pathfinder 

algo-rithms complement stoichiometric approaches, as they focus on different 

aspects of modeling and understanding metabolism [19–21]. In addition, they 

are typically used for modeling specific organisms or metabolism systems 

[22]. Most models are based on the steady-state assumption and, therefore, 

require explicit labeling of internal and external compounds [23]. 

In recent years, there has been an increasing amount of lit-erature on the 

metabolic pathway model’s design. Some model design have problems with 

large-scale data for cell biology and the applications of graph theory [24]. 

The authors used compu-tational approaches to reconstruct the genome-scale 

metabolic models into numerical graphs. In this article, we discuss the main 

purpose of representing cell biology information in a mathematical graph 

model form. Moreover, to present biologic pathway data in a useful graph 

form, the characteristics and mechanisms of the inner workings of the cell 

must be con-sidered [25]. Although the pathway data sets have been col-

lected worldwide through observations and experiments, there is still a lack 

of satisfying explanations and theories to give them sound biological 

meaning [26]. The varieties of data sets available have expanded from a 

handful in the mid-1990s to a several thousand today [27]. These data sets are 

categorized into main roots such as MetaCyc, KEGG, Reactome, Model 

SEED and BiGG families [28]. 

This systematic review focuses on two major points: first, it highlights 

the most relevant mathematical metabolism path-way models with 

pathfinding approaches; second, it exports the progress of pathfinding 

algorithms on metabolic pathways and illustrates the formalization and 

constraint rules. The rest of the article is organized as follows. Section 2 

reviews the relevant previous surveys on metabolism, Section 3 briefly 

reviews the details of metabolic pathways, Section 4 reviews the pathfind-ing 

approaches, Section 5 validates the measurements for pathfinding approaches 

and Section 6 discusses the limitations and gaps in this area. The article is 

concluded in Section 7.

Stoichiometric approaches 

There are two key distinctions between stoichiometric approaches and 

pathfinding approaches. First, the pathfinding approaches focus on searching 

a directed path within the metabolic pathway,

while stoichiometric approaches seek the complete pathway. Second, 

pathfinding approaches do not make direct use of reac-tion stoichiometry, 

while stoichiometric approaches do.

There are two main categories of stoichiometric approaches: flux balance 

analyses (FBAs) and EFMs. The FBA is a fundamen-tal computational 

framework applied to metabolic networks, derived from the steady-state 

assumption and mathematically defined metabolic pathways. The EFMs are 

based on analyzing metabolic networks from a pathway-oriented perspective.

FBA approach 

FBA is a cornerstone in mathematical optimization methods for metabolic 

networks [29–32]. The main objective of this model is to achieve accuracy in 

the reaction metabolic network based on some conditions: First, the 

metabolic network must be complete and must fully cover the metabolic 

network capabilities to be ready for modeling. Second, the metabolic network 

should have no gaps or dead ends, and the representation of the metabolic 

network based on the metabolic phenotype of the organism must be correct. 

Typically, this objective function is the maxi-mization of the flux through the 

biomass formation reaction. Most experiments done for this approach use a 

mixed-integer linear program formulation [33], and with a variety of data sets 

such as KEGG pathway [34] and MetaCyc [35] as in Figure 1. 

The most significant feature of FBA is its ability to make quantitative 

predictions without any need for detailed kinetic descriptions, needing only 

the stoichiometry of reactions. The network stoichiometry (metabolic model), 

a biological objective and the growth and environmental conditions (substrate 

avail-ability) are the only necessary inputs for FBA. One of the draw-backs 

of the FBA approach is that it is somewhat limited in its predictive power, 

unless additional constraints are appended to the optimization problem. This 

approach can be systematically extended into several techniques, such as 

regulatory FBA [36], steady-state regulatory FBA [37], gene inactivity 

moderated by metabolism and expression [38] and probabilistic regulation of 

metabolism [39], all of which have been developed to integrate regulatory 

information with the metabolic network. 

The reason for using these models is to enable the mathemat-ical 

representation of the bio-transformations and metabolic processes occurring 

within the organism. Although a large num-ber of methodologies have been 

proposed, such as flux variability analysis, linear optimization for identifying 

the maximum bio-mass [40] and flux coupling analysis [41], constraints 

imply that not all fluxes in a metabolic network can vary independently. 

Elementary flux modes 

EFMs is a computational technique to analyze metabolic path-ways in 

metabolic networks [42–44]. EFMs can be defined as a minimal set of 

enzymes able to operate at a steady state, with the enzymes weighted by the 

relative flux they need to carry for the mode to function [9]. One significant 

aspect of EFM is that every flux distribution can be decomposed into a set of 

EFMs, and a number of the methods to study flux distributions origin-ate 

from it [45, 46]. Continuous efforts have been made to im-prove the 

computational speed and memory demand required to compute EFMs. 

Nonetheless, the distribution of any particu-lar steady-state flux can be 

represented as a nonnegative linear combination of elementary modes [47, 

48]. 

In the metabolic network, the internal reversible reactions are 

decomposed into pairs of opposite irreversible reactions, where the 

corresponding flux cone is augmented and the run of
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Figure 1. (A) A metabolic network reconstruction consists of a list of stoichiometrically balanced biochemical reactions. (B) This reconstruction is then converted into a mathematical model by forming 

a matrix (labeled S), in which each row represents a metabolite and each column represents a reaction.

the algorithm for the enumeration of extreme rays produces a minimal 

generating set whose augmented space is known as EPs [49]. EPs in the 

original flux cone are not conically independ-ent, unless there are no internal 

reversible reactions. Furthermore, EPs are used in the analysis of the 

metabolic capa-bilities of red blood cell metabolism [50–52]. 

Finally, each of the EFMs and EPs represent a more general and elegant 

concept for metabolic pathways than paths [9, 49]. Both approaches, in terms 

of computational complexity, are more expensive in large metabolic 

networks. Despite several ef-forts that have been made to make EFMs as a 

practical tool to analyze huge metabolic pathways, these approaches still need 

more improvements [53–57]. 

Graph-based metabolic pathfinding 

In graph-theoretic metabolic modeling, the main consideration is the 

connectivity of metabolism network. The basic abstrac-tion level of 

metabolic networks can be represented as

mathematical graphs, using nodes to represent metabolic com-ponents, and 

edges to represent their various types of inter-actions [58]. 

Generally, the exploratory analysis in graph theory, where a metabolic 

network is queried to discover connections between metabolites, is called 

metabolic pathfinding. Here, we introduce some notations from basic graph 

theory:

•
Let G ¼ (V, E) be a weighted graph; V is a node of Vertex set and E is the 

edge set, where E V V.

•
ð u; vÞ 2 E is the degree of the node.

•
W is an edge weight function, where E ! R

þ
.
 

In the context of a metabolite graph, there are the collections of reactions 

R and metabolites M for an organism. The number of reactions will be 

determined by the consumption and pro-duction of the metabolite’s 

processes. Meanwhile, the metabol-ite graph context will be as follows:

•
mi 2 M Set of consumption or production by each reaction rj 2 R

•
dij 2 R Stoichiometric constants, if dij > 0 rj produces mi or if dij < 0, rj 

consume mi

http://bfg.oxfordjournals.org/


•
The substrates S ðri Þ and target products Pð ri Þ of a reaction ri are defined

•

as S rj  ¼ f mijdij < 0g and P rj ¼ f mi jdij > 0g, respectively. 
•

A node ur 2 VR for each reaction, a node um 2 VM for each sub-strate or 

product m 2 Sð rÞ [ Pðr Þ of each reaction.
 

An edge ður; umÞ 2 E for producing metabolite m, and ð u m; urÞ 
2 E for consuming m. 

In a metabolic pathway graph context, a node to reaction or

metabolite can be related. In reaction cases, reactions are repre- 
sented as a directed graph GR, and the edge  ri; rj 2 E exists 

 

whenever P ri Þ \ S r j ø. In the metabolite case, metabolites
ð  6¼

mi; mj  2 E are represented as a directed graph GM and the edge 
 

whenever mi 2 Sðr Þ; mj 2 Pð rÞ for some reactions. 
Several graph-based methods have been proposed for search-ing and 

eventually enumerating pathways in metabolic networks, such as Pathfinding 

[20–22] and the Pathway Hunter Tool [59]. These methods are computing 

pathways and the shortest path-ways in graphs compared with hyper-graphs. 

Practically, these methods concern only the main substrates (start 

compounds), and the main products (target compounds) are considered 

during construction of the pathways. In addition, these main compounds are 

unlike the cofactors such as co-substrates and co-products. 

Subgraph based-metabolic pathway 

A subgraph is represented as a subset of nodes with a specific set of edges 

connecting them, and the total number of subgraphs

exponentially depends on the set of nodes as in Figure 2B. Therefore, 

efficient and scalable heuristics are developed for de-tecting the given 

subgraphs and their frequencies in large meta-bolic networks. Many 

researchers mention that it is equally important to understand the 

organization of infrequently observed subgraphs [60–62]. 

In particular, the highest performance of pathfinding identifi-cation in a 

subgraph is through a sub-pathway mining module [63]. Substantially, the 

complex structure of metabolic pathways drives the sub-pathway to become a 

general problem. Generally, the metabolic pathways are represented as 

directed graphs, and the protein-to-protein interaction pathways are 

represented as undirected graphs. On the other hand, it is possible to identify 

the path based on enzymes, and subgraphs will be represented as un-directed 

graphs. The disadvantage of undirected subgraphs is that pathfinding 

approaches will not differentiate between reac-tion products and substrates 

[62, 64]. 

Bipartite graph-based-metabolic pathway 

Recently, many researchers have analyzed the metabolic net-work by 

transforming the biochemical reactions into a bipartite graph, where the 

nodes and links take the form of metabolites and enzymatic reactions. 

Generally, a metabolic network con-sists of enzymes, reactions and 

metabolites. Based on a bipart-ite model graph, each enzyme is shared by two 

nodes, and

Figure 2. (A) A graph G is metabolic pathway for genome-scale, which consist set of compounds and reactions. (B) The yellow 

reactions and compounds represent sub-graph. (C) All chemical reactions and compounds in graph G represent the bipartite graph. 

(D) The hyper-graph, where each compound connects at least more than two reactions.
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edges define the biological relationship between a set of metab-olites and 

enzymes as in Figure 2C. However, this model graph only facilitates drug 

discovery and ranking of choke points and load points, and both points are 

used to find enzymes (edges), which uniquely consume or produce a 

particular metabolite (nodes) [65, 66]. 

There are online databases available as bipartite graphs, ob-tained from 

43 different organisms, which were collected and published in recent studies 

[12, 67]. The bipartite graph has been used in some works related to 

pathfinding via the use of the metabolic data set KEGG [68]. RPAIR is a 

database from KEGG categorized into ‘main’, ‘trans’, ‘cofac’, ‘ligase’ and 

‘leave’, depending on their roles in a chemical reaction [20]. 

Hyper-graph based-metabolic pathway 

A hyper-graph is a generalization of an ordinary graph where an edge, called 

a hyper-edge, can connect more than two verti-ces [69], as in Figure 2D. The 

vertices in the hyper-graph are the compounds, and the hyper-edges are the 

reactions connecting the compounds. The metabolism of living cells can be 

repre-sented using a metabolic network in the form of a directed hyper-graph 

that encodes a set of elementary biochemical reac-tions taking place within 

the cell. In this hyper-graph, the nodes represent the involved metabolites, 

and the edges represent the metabolic fluxes or reaction rates. 

Identification of the most relevant pathways based on hyper-graphs have 

been proposed by [70]. The hyper-graph can model the metabolic network 

where the reactions are repre-sented by hyper-arc. The hyper-arc will be used 

as an enzyme-catalyzed reaction, which in turn leads to transforming the set 

of substrates’ compounds into product compounds [71]. In a hyper-graph, 

each hyper-arc connects a set of vertices, corres-ponding to reactants, to a 

disjoint set of vertices, representing the products. Each hyper-arc corresponds 

to a reaction that can be catalyzed by an enzyme. The hyper-graph models 

have al-ready been used to find minimal sets of metabolites sufficient to 

produce a set of target metabolites [72]. 

Pathfinding approaches for metabolic pathway 

identification 

calculated using the Euclidean metric or the Manhattan metric are given in 

Equations (1) and (2), respectively. Both distance metrics (Euclidean or 

Manhattan) are heuristics functions H that always represent the shortest 

distance between any two compounds or reactions. However, the Manhattan 

distance is computationally more efficient than the Euclidean distance in 

terms of identifying the path in discrete chemical changes [73, 

77]. Below are the general formalizations and constraints: 

k¼N

jDxjE ¼ 
X

 ð DxkÞ2 (1) 
k¼0

k¼N

jDxjM ¼ 
X

 Dxk (2) 
k¼0

Using metric distance to identify the shortest path leads to evaluation of the 

functions F, G and H, which are required for a heuristic search [78, 79]. F is 

the heuristic evaluation function, which can be calculated using different 

methods, G is the cost if reaching the current state to the initial state and H is 

the greedy search, which minimizes the cost of reaching the goal state from 

the current state. 

By considering the hypothetical pathway as p
0;L ¼ x

0
 ! x1

 . . . x
m

 ! xL
 , 

which begins with the initial state x
0
, ends with the final state x

L
 and has any 

intermediate state x
m

, the total cost can be calculated by G and H at the 

intermediate state, x
m,

 as given in Equations (3) and (4), respectively.

G 0; m i¼m xi  xi  1  (3)  
Þ ¼

X

j
 

ð j

i¼1

H ðm; LÞ ¼ jxm
    x

Lj  (4) 
 

For pathfinding algorithms, the main target is to identify the path with 

minimum total cost, F ¼ G þ H, as shown in Equation 

(5), where G (0, m) is the actual distance through chemical tran-sitions 

between x
0
 to x

m
, and H (m, L) is ‘estimation’ for the shortest path to the 

target state x
L
 . 

Fð0; m; LÞ ¼ Gð0; mÞ þ H ð m; LÞ ¼ 
Xi¼m

ðjx
i
 þ x

i 1
jÞ þ jx

m x
Lj

(5)

i¼1

An interactive navigation through metabolic networks is pos-sible, given a set 

of biochemical reactions belonging to a par-ticular organism or cell, by using 

different algorithms based on artificial intelligence to compute the 

meaningful metabolic pathways from a source compound to a target 

compound as in Figure 3. However, searching without information other than 

the connectivity (for example, two successive reactions are con-nected if they 

have a metabolite in common) often delivers meaningless results. Several 

pathfinding algorithms have been proposed, such as A* (A star), best-first 

search and depth-first-search (DFS; backtracking) [15, 57, 73–76]. Because 

the algo-rithms do not depend on predefined pathways, they can effi-ciently 

identify plausible routes using known biochemical transformations. 

Metabolic networks in any living organism can be repre-sented as a direct 

graph. Practically, to formalize the traveling cost in state-space, we need to 

define the difference between any two compounds as Dx. We denote a 

compound as x and state-space describe it by a set of chemical descriptors, 

xk. Thus, every metabolite m can be placed at a point in hyper-space, which 

is defined by x ¼ (x1, x2, x3 . . . xn). The formulation t ¼ Dx, simply state-

transition, and jDxj, the distance, that can be 

The pathfinding approach based on a heuristic search can provide a series 

of efficient biochemical transformations that transform the start compound 

into a target compound. The heuristic function will monitor any chemical 

proximity for an intermediate compound to target compound. Equation (5) is 

used to evaluate and select the pathway that efficiently con-verts the input 

compound to the output compound. The effi-ciency of transforming is not 

based on the length of the path, but is determined by an optimal value of the 

heuristic function 

F [73]. 

Identification-based-weighted pathway 

Here, the metabolic network is described as a weighted graph, in which all 

the compounds are included, and each compound is assigned a weight equal 

to the number of reactions in which it participates. The simplest one (‘unit 

weight’) sets all node weights to one. The complex one (‘compound degree 

weight’) penalizes highly connected compounds by assigning each com-

pound a weight equal to its degree, while setting each reaction to a weight of 

one. The result from shortest-pathfinding is also
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Figure 3. (A) A simple example of metabolic pathway for converting compound_1 ‘source’ into compound_3 ‘goal’. (B) Shows a possible pathway to convert com-pound_1 into compound_3 and (C) is 

another possible way to reach the compound_3.

dependent on the weights associated with nodes or edges, which are modeled 

differently in various approaches [68]. The weights are assigned to the edges 

based on compound structure similarity [59]. In a degree-weighted graph 

representing a meta-bolic network [15], each node is assigned a weight equal 

to its degree. A weighted graph will reduce the probability of finding 

unfeasible biotransformation paths during the pathfinding pro-cess [80]. 

Recently, the weighted graph representation has all the compounds included 

in the graph, whereas the weight (cost) is associated with each compound 

equaling its connectiv-ity in the entire metabolic network. Pathfinding 

algorithms will tend to avoid highly connected compounds whenever possible 

[81, 82]. 

Several researchers have proposed the use of metabolic pathfinding 

methods that use weighted atom maps [10, 20, 83– 85]. In metabolic paths, at 

least one atom is transferred between adjacent metabolites and computed. 

Additionally, the edges are weighted according to the degree of metabolite 

nodes, to reduce the number of paths that traverse via high-connectivity 

metab-olites [86, 87]. To cope with this problem, high-degree metabol-ites 

can be removed from the network, or edges of a metabolite graph can be 

weighted according to the degree of metabolite nodes, such that low-degree 

nodes are preferred [62, 68, 88]. 

Furthermore, branched pathways enable the analysis of meta-bolic processes 

with a more comprehensive perspective as com-pared with the limited picture 

provided by linear pathways [89, 90]. However, pathfinding requires 

specifying a single start and a single end node. It cannot deal with branched 

pathways or with sets of query reactions. A more challenging question is to 

predict pathways from multiple seed nodes (e.g. reactions catalyzed by a 

cluster of co-expressed genes) by extracting the subnetwork that connects 

them best [20, 57, 62]. 

Several algorithms have been proposed to handle branched pathways, in a 

multi-genome scale, and metabolic data such as the KEGG RPAIR data set 

[91]. BPAT-M is a graph-based algo-rithm for identifying branched 

metabolic pathways [92]. This al-gorithm is based on two techniques; the 

first is the rapid search algorithm ‘Linear Pathfinding with Atom Tracking’, 

which can track across thousands of reactions and compounds from mul-tiple 

species; and the second is Branched Pathfinding using Atom Tracking, 

‘BPATS’, which is based on seed pathways [93]. The BPAT-M algorithms 

will perform better if all branches con-serve at least the given number of 

atoms and are of similar length. In contrast, the algorithm does not perform 

well with all pathways such as the ‘inosine monophosphate’ pathway. 

Branched metabolic pathway 

Branched pathways are the nonlinear pathways that can arrive at a target 

compound through combinations of pathways that split compounds into 

smaller ones, work in parallel with many compounds and join compounds 

into larger ones. The identifica-tion of branched pathways has a number of 

important applica-tions in areas that require deeper understanding of 

metabolism, including metabolic engineering and drug target identification.

Metabolic pathway tools and systems 

Metabolic pathway tools treat a genome as far more than a se-quence and a 

set of annotations. Moreover, it links the molecu-lar parts list of the cell to 

the genome, and to a carefully constructed web of functional interactions. 

The Pathway Tools ontology is defined as an extensive set of object attributes 

and object relations that allows a rich conceptualization of biology to be 

represented within a Pathway/Genome database (PGDB),
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Table 1. Pathway tools and types of MODs

Tool Task Link Accessibility (URL) Reference

PathFinder Dynamically represents and provides visualization http://bibiserv.TechFak.Uni-Bielefeld. [95] 

of biochemical information DE/pathfinder 

PathMiner Identifies plausible routes using known biochemical http://pathminer.uchsc.edu/ [73] 

transformations

Pathway Hunter Analyzes the shortest paths and calculates the average http://www.pht.uni-koeln.de [59, 65] 

Tool (PHT) shortest paths

aMAZE Web interface to the aMAZE relational database http://www.amaze.ulb.ac.be [96] 

Pathway Prediction Predicts microbial catabolism of organic compounds http://umbbd.ahc.umn.edu/predict/ [97] 

System (PPS)

KEGG genes Identifies the link between genomic information http://www.genome.jp/kegg [98] 

in the GENES database

MetaRoute Explores genome-scale metabolic networks http://www-bs.informatik.uni-tuebingen. [86] 

de/Services/ 

KEGG pathway Provides reference knowledge for pathway mapping http://www.genome.jp/kegg/ [99] 

Pathway Tools Allows the user to interrogate and explore relationships http://www.biocyc.org/download.shtml [94] 

version 13.0 within the network

Pathway projector Provides intuitive browser pathway map with the addition http://www.g-language.org/PathwayProjector/ [100] 

of gene and enzyme nodes

PathPred Functions as knowledge-based prediction system http://www.genome.jp/tools/pathpred/ [101] 

Atom tracking system Enables pathfinding algorithms to avoid unrealistic http://www.kavrakilab.org/atommetanet [93] 

connections

EcoCyc Database Provides pathway/genome navigator software with the http://ecocyc.org/ [102] 

EcoCyc database

MetaCyc Database Provides a uniquely high-quality resource for metabolic http://metacyc.org/ [103] 

pathways and enzymes

which is queried and manipulated by the user [94]. Pathway Tools provides a 

broad range of functionalities. It can manipu-late genome data, metabolic 

networks and regulatory networks. For each data type, it provides query, 

visualization, editing and analysis functions. It also provides model-organism 

databases (MODs), development capabilities, editors who allow for refine-

ment of a PGDB, web publishing and comparative analysis. A family of 

curated PGDBs has been developed using these tools for modeling important 

organisms. The software also provides visual tools for analysis of omics data 

sets, and tools for the analysis of biological networks. Table 1 shows the 

investigated pathway tools and the common types of MODs. 

Evaluating pathfinding approaches 

Evaluating pathfinding approaches to metabolic pathways can be hard, even 

for linear pathways, because there is no standard test set [93]. In other words, 

the effectiveness of any pathfinding approach is tested by seeing how well it 

performs with respect to a known metabolic pathway. If the source and goal 

com-pound and the entire metabolic network are given, how well does a 

specific pathfinding approach perform at navigating the reactions and 

compounds involved in a known metabolic path or pathway? Generally, by 

using benchmarking metrics func-tions commonly used for computed path. 

When we use a particular pathfinding approach, it is neces-sary to 

compare the results with other methods or other works. Thus, we need some 

measurement to evaluate the accuracy of metabolic pathways. Here, we 

present some criteria frequently used by researchers for comparison [14, 15, 

20, 86]. These crite-ria are used to compare algorithm results with the ground 

truth labeling, to define the following corresponding values which in-dicate, 

numerically, correspondence between the computed path and the metabolic 

path. Here, we introduce some criteria 

to measure the degree of correspondence between any com-puted path and 

metabolic path:

•
True Positives (TP), in which the total number of metabolic path of reactions 
and compounds are found (except for source and target nodes whether reaction 
or compound are not considered).

 

•
False Negatives (FN), signifies the total number of computed path found for 
number of reactions and compounds.

 

•
False Positives (FP), signifies the total number of reactions and compounds 

found in the computed path that are not in the metabolic path.
 

For each pathway, measurements found previously in the literature are 

used to calculate the

•
Sensitivity (Sn) ¼ TP/(TP þ FN), which is the fraction of the reac-tions and 
compounds in the metabolic path,

 

•
Positive Predictive Value (PPV) ¼ TP/(TP þ FP) and

•
Accuracy (Ac) ¼ (Sn þ PPV)/2

The above measurement criteria are used to compare the com-puted path 

(by pathfinding approach) and the metabolic path or pathway. Next to these 

criteria, we must take into account the exe-cution time and the memory 

overhead for pathfinding approaches. Table 2 shows the summary results for 

pathfinding approaches in different databases. The most common data set that 

has been used frequently by researchers is the KEGG network. For each of 

A* (A-star) search, breadth-first search (BFS) and depth-first search (DFS), 

heuristic search algorithms have been used to predict meta-bolic pathways 

that are based on a biochemical state-space. The results show that using these 

algorithms always produces bio-chemical paths that are optimal in terms of 

the heuristic. Recently, DFS search strategy was used to generate EFMs, 

where its shows the scalability, low memory overhead, a CPU-limited 

problem and can incorporate additional flux constraints to generate a full 

subset of EFMs of interest. Another approach of pathfinding is k-shortest 

http://bibiserv.techfak.uni-bielefeld.de/pathfinder
http://bibiserv.techfak.uni-bielefeld.de/pathfinder
http://pathminer.uchsc.edu/
http://www.pht.uni-koeln.de/
http://www.amaze.ulb.ac.be/
http://umbbd.ahc.umn.edu/predict/
http://www.genome.jp/kegg
http://www-bs.informatik.uni-tuebingen.de/Services/
http://www-bs.informatik.uni-tuebingen.de/Services/
http://www.genome.jp/kegg/
http://www.biocyc.org/download.shtml
http://www.g-language.org/PathwayProjector/
http://www.genome.jp/tools/pathpred/
http://www.kavrakilab.org/atommetanet
http://ecocyc.org/
http://metacyc.org/
http://bfg.oxfordjournals.org/
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path, where ‘shortest path’ is interpreted as minimizing the number of 

arcs (reactions) involved in the path, and k refers to the number of 

shortest paths; for instance, k ¼1 corresponds to the shortest path, k ¼ 

2 corresponds to the second shortest and k ¼ 3 to the third shortest 

path, etc. Giving weights to a metabolic graph can reflect various 

kinetic and thermo-dynamic parameters.

Discussion 

Pathfinding-based distance metric 

Finding shortest paths in metabolic pathways constitutes a considerable 

advance with respect to stoichiometric approaches. In genome-scale 

metabolic networks, k-shortest path is a well-known graph theory 

problem for computa-tional tracking in metabolic networks. The most 

suitable dis-tance metric will determine the computed k-shortest paths 

instead of computing all paths because not all computed paths will have 

biological significance. Because analysis of the computed paths 

becomes simpler, k is usually restricted to a small number to determine 

biologically meaningful metabolic paths; thus, the distance metric 

appears to be the most effective metric presented to date [15, 80]. The 

found paths are implicitly and completely determined by the dis-tance 

metric adopted, thus having biological significance. 

One major drawback of pathfinding approaches is that they are 

relatively inflexible in terms of adding additional biologically 

meaningful constraints. Currently, for instance, extracting 

stoichiometric information for a metabolic path must be done as a 

separate stage (e.g. by balancing inter-mediate compounds in the path) 

once the path has been computed without using stoichiometric 

information. Being able to add biologically-based constraints (e.g. 

stoichiometric, regulatory [105], topological or energetic [106]) as an 

intrinsic part of the pathfinding process would significantly refine the 

search for biologically meaningful metabolic paths, provided this can 

be done without excessively complicating the algo-

rithmic/computational expense of finding k-shortest paths. 

Metabolic pathfinding limitation 

A limitation of metabolic pathfinding in the graph-theoretical setting is 

that all metabolites are by default considered equal in importance. 

Many currency and cofactor metabolites ap-pear in a large number of 

reactions, constituting a large frac-tion of high-degree metabolites in a 

typical metabolic network. Because of their high degree of connectivity, 

a ran-dom shortest path traverses through such a metabolite with a high 

probability. However, in many cases, the biological relevance of such a 

path is low. For instance, almost all func-tionally dissimilar parts of 

metabolism can be connected with short paths using adenosine 

triphosphate as an inter-mediate. To cope with this problem, high-

degree metabolites can be removed from the network or edges of a 

metabolite graph can be weighted according to the degree of metabolite 

nodes, such that low-degree nodes are preferred [80]. However, non-

cofactor metabolites with a high degree, such as pyruvate, then become 

a challenge to metabolic pathfind-ing. Indeed, deciding a suitable set of 

cofactor metabolites is a nontrivial problem, depending on the modeling 

task [107]. 

Several pathfinding algorithms are not efficient, such as A*, BFS 

and DFS (backtracking). For example, they either have a large 

overhead, yield far from optimal paths, do not

http://bfg.oxfordjournals.org/


easily scale upto many cores or are cache unfriendly. Therefore, in recent 

years, many researchers have proposed several new algorithms to solve these 

weaknesses of previous algorithms. Algorithms such as Jump point Search 

[108, 109] and Sub [110] are high-performance algorithms in terms of time 

and memory overhead complexities, and they can provide optimality paths 

(shortest paths). Finally, an important topic of metabolic path-finding is 

further refinement of the approach and integration with other techniques, 

which is a useful methodology. For bet-ter results in the future, we suggest 

using these algorithms or new algorithms for biological purposes such as 

metabolic pathways. 

Conclusion and future works 

In this article, we have described stoichiometric and pathfinding approaches 

that are related with metabolic pathways. Notwithstanding that stoichiometric 

approaches have a theoret-ical basis, FBA, EFMs and EPs face many 

difficulties from both the computational and analytic points of view when 

applied to large-scale experimental data for metabolic biology pathways. 

Contrary to stoichiometric approaches, pathfinding approaches do enable 

analysis of genome-scale metabolic networks to be performed. We believe 

the key research challenges are choice of an appropri-ate distance metric and 

addition of biologically based constraints. We would emphasize here that 

pathways produced by any math-ematical/computational approach need a 

clear validation with experimentally determined metabolic pathways from the 

bio-chemical literature. Being better able to model mathematically metabolic 

pathways will help in the metabolic engineering of or-ganisms to create 

(currently) unknown, novel pathways useful for biotechnological or 

biomedical purposes.

Most importantly, each algorithm should guarantee the opti-mality of the 

routes found when the cost of the atoms is lost in the routes as a part of the 

optimality criteria. Future work should take into account the symmetry of 

compounds for atom mappings, where the atoms lost and conserved in routes 

are more precisely tracked. In addition, any pathfinding algorithm should 

consider the cost of side compounds, the toxicity of some of the metabolites 

produced and the taxonomic range of the new enzymes introduced in routes. 

Another worthy re-search topic of metabolic pathfinding in the near future is 

to find optimal routes from multiple start compounds, and to identify more 

complex multiple target compounds because the possible candidate solutions 

are no longer linear routes but multiple linear routes merged together.

Key points 

•
A computational problem in metabolic engineering is finding 
efficient metabolic routes from a source to a target compound in 
genome-scale reaction networks.

 

•
There exist a multitude of tools freely available for metabolic 
pathway analysis.

 

•
The article clearly reviews stoichiometric approaches, graph theory 
and pathfinding approaches to metabolic pathways.

 

•
Pathfinding approaches use shortest path and k-short-est path 
concepts.

 

•
Stoichiometric approaches involve FBA, EFMs and EPs.
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