407 research outputs found

    Seven HCI Grand Challenges

    Get PDF
    This article aims to investigate the Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled with increased and widened societal needs, as well as individual and collective expectations that HCI, as a discipline, is called upon to address. A perspective oriented to humane and social values is adopted, formulating the challenges in terms of the impact of emerging intelligent interactive technologies on human life both at the individual and societal levels. Seven Grand Challenges are identified and presented in this article: Human-Technology Symbiosis; Human-Environment Interactions; Ethics, Privacy and Security; Well-being, Health and Eudaimonia; Accessibility and Universal Access; Learning and Creativity; and Social Organization and Democracy. Although not exhaustive, they summarize the views and research priorities of an international interdisciplinary group of experts, reflecting different scientific perspectives, methodological approaches and application domains. Each identified Grand Challenge is analyzed in terms of: concept and problem definition; main research issues involved and state of the art; and associated emerging requirements

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    A UX model for the evaluation of learners' experience on lms platforms over time

    Get PDF
    Although user experience (UX) is dynamic and evolves over time, prior research reported that the learners' experience models developed so far were only for the static evaluation of learners' experiences. So far, no model has been developed for the dynamic summative evaluation of the UX of LMS platforms over time. The objective of this study is to build a UX model that will be used to evaluate learners' experience on LMS over time. The study reviewed relevant literature with the goal of conceptualizing a theoretical model. The Stimuli-Organism-Response (SOR) framework was deployed to model the experience engineering process. To verify the model, 6 UX experts were involved. The model was also validated using a quasi-experimental design involving 900 students. The evaluation was conducted in four time points, once a week for four weeks. From the review, a conceptual UX model was developed for the evaluation of learners' experience with LMS design over time. The outcome of the model verification shows that the experts agreed that the model is adequate for the evaluation of learners' experience on LMS. The results of the model validation indicate that the model was highly statistically significant over time (Week 1: x2(276) = 273 I 9.339, Week2: x2(276) = 23419.626, Week3: x2(276) =18941.900, Week4: x2(276) = 27580.397, p=000<0.01). Each design quality had strong positive effects on the learners' cognitive, sensorimotor and affective states respectively. Furthermore, each of the three organismic states: cognitive, sensorimotor, and affective, had strong positive influence on learners' overall learning experience. These results imply that the experience engineering process was successful. The study fills a significant gap in knowledge by contributing a novel UX model for the evaluation of learners' experience on LMS platforms over time. UX quality assurance practitioners can also utilize the model in the verification and validation of learner experience over tim

    Proceedings from NordiCHI 2008 Workshop Sunday October 19, 2008

    Get PDF
    This paper raises themes that are seen as some of the challenges facing the emerging practice and research field of Human Work Interaction Design. The paper has its offset in the discussions and writings that have been dominant within the IFIP Working Group on Human Work Interaction Design (name HWID) through the last two and half years since the commencement of this Working Group. The paper thus provides an introduction to the theory and empirical evidence that lie behind the combination of empirical work studies and interaction design. It also recommends key topics for future research in Human Work Interaction Design
    corecore