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Abstract: Chronic diseases are becoming more widespread. Treatment and monitoring of these
diseases require going to hospitals frequently, which increases the burdens of hospitals and patients.
Presently, advancements in wearable sensors and communication protocol contribute to enriching the
healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring
(RPM) is the foremost of these advancements. RPM systems are based on the collection of patient
vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to
physicians. These data may help physicians in taking the right decision at the right time. The main
objective of this paper is to outline research directions on remote patient monitoring, explain the
role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages,
its challenges, and its probable future directions. For studying the literature, five databases have
been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard
methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based
on the combination of a set of selected search terms including RPM, data mining, clinical decision
support system, electronic health record, cloud computing, internet of things, and wireless body
area network. The result of this study approved the effectiveness of RPM in improving healthcare
delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease
monitoring system as a case study to provide enhanced solutions for RPMs.

Keywords: electronic health; electronic health record; clinical-decision support system; AI; remote
patient monitoring; cloud computing; internet of things; wireless body area network

1. Introduction

Chronic diseases are physical or mental conditions such as hypertension, diabetes,
cardiovascular, obesity, stroke, etc. These diseases constitute the bulk of human health risks,
responsible for more than two-thirds of all deaths worldwide [1]. The incidence of chronic
disease has increased along with population growth, hospital capacity is insufficient to
accommodate all patients. Besides, chronic diseases require special home care to fulfill
patients’ needs or administer therapy programs. Besides, most caregivers and families do
not have the time or skills, as a result, patients’ quality of life is always at risk [2].

Developing e-health systems (e.g., remote patient monitoring (RPM), electronic health
record (EHR) systems, mobile health (m-health), telemedicine, e-visits, e-consultations, etc.)
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is an increasing need. Such systems are used for continuous monitoring, diagnosis, pre-
diction, and treatment. Consequently, they contribute to reducing healthcare costs and
allow patients to perform their daily activities while their vital signs are fully monitored [3].
Besides, these systems allow physicians to follow up with patients at any time, not just
when patients are physically present at a hospital. Patient monitoring (PM) systems work
to empower patients with knowledge about their symptoms and treatments, helping them
live independently which helps to increase their quality of life [4]. On the other hand, PM
systems are important in hospitals; for example, they can be used to rank patients based on
their conditions, allowing hospitals to prioritize critical patient care.

The widespread use of smart mobile devices has significantly affected the number
of patients using healthcare systems. The number of patients using mobile devices has
increased from 35,000 in 2013 to 7 million in 2018 [5]. Therefore, RPMs have a significant
impact on patients with various domains. In [6], the authors provide a survey that studies
the effect of RPM systems on a patient with spinal cord injury (SCI), it concluded that
PM systems were influential and promising in the control or prevention of complication
for SCI patients and could be considered in therapy planning. Others such as [7] provide
a literature review for RPM. It concluded by highlighting the importance of RPM as it
allowed physicians to monitor several patients in parallel. The authors of [8] provide a
Systematic review for RPM, which concentrated on the role of PMs with different diseases.
Others like [9] concentrate on the most recent application developed for PMs.

The Internet of things (IoT) is a new technology used to make all objects smart. The IoT
has a high impact on various domains [10], among which the medical domain is considered
the most attractive. IoT has the potential to automatically connect sensors, devices, and
patients without human intervention through remote monitoring systems. A wireless body
area network (WBAN) is an IoT subdomain. It is a wireless sensor network that connects
wearable devices, called sensors, on a patient’s body, to the network, allowing remote
monitoring for the patient’s vital signs. In the medical domain, a WBAN consists of a small
network of sensors, such as a pulse oximeter, gyroscopes, a spirometer, a global positioning
system (GPS), and electrooculography (ECO) [11,12],

Decision support systems (DSS) have a major role in both physician and patient.
They not only help physicians in diagnosis and treatment but also improve healthcare
remotely, which affects the patients’ quality life [13,14]. However, the quality of CDSS
is highly dependent on the quality of clinical data. If the collected data is imprecise,
CDSS will result in wrong decisions. In this case, it will not be applicable in the medical
domain and acceptable by physicians. CDSS is mainly based on a knowledge base. To
improve its knowledge, the semantic web is an efficient solution for knowledge sharing
and representation. Ontology is one of the pillars of the semantic web. It is defined
as “an adapted technology for knowledge representation” [15]. It acts like a dictionary
for a specific domain that defines objects, properties, and the relationship between these
objects [16,17]. In this regard, this paper contributes by:

(a) Studying 56 papers in the period of (2015–2019) that cover several features related to
RPMS, including IoT, WBAN, cloud computing, fog computing, and CDSS.

(b) Providing a comprehensive survey that summarizes the state of the art of RPM
systems, tools, technologies, recent applications, and techniques.

(c) Highlighting all the steps in building efficient and effective RPMs, in addition to the
challenges and future directions at each stage.

(d) Discussing the importance of artificial intelligence (AI) in building medically intuitive
monitoring systems.

(e) Providing a case study of remote patient monitoring for chronic diseases patients that
tries to cover several limitations of the state-of-the-art architectures.

The significance of our study is to highlight the importance of RPMs as a technological
innovation in the healthcare sector and show the progression of the related technologies.
The paper is organized as the following: Section 2 introduces the search strategy. The
literature review for all components is discussed in Section 3. Section 4 summarizes disease-
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specific remote patient monitoring systems. In Section 5, the paper provides an overview
of the role of AI in building efficient patient monitoring systems. While Section 6 provides
a case study for a chronic disease monitor system, Section 7 summarizes the current RPMs
challenges and provides future directions. The final section concludes this review. For the
convenience of readers, the most commonly used abbreviations are listed at the end of
the manuscript.

2. Materials and Methods

Our research embraces the (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) PRISMA methodology that includes all search details such as (research
questions, literature review, and strategy details).

In this research we concentrate on the following questions:
What is the main role of RPMs in the healthcare sector?
To what extent do patients and their relatives become confident on PMs?
What is the role of ontology in unifying electronic medical records across all the hospitals?
What is the importance of RPMs from a physician’s perspective?

2.1. Selection Criteria

First, we concentrate on five main search engines (IEEE, Springer, PubMed, Scince.Gov,
and Science Direct); second, selection-based RPMs’ relevancy degree to the following
keywords (Clinical decision support systems, internet of things, wireless body area network,
cloud computing). Third, some papers were excluded due to duplications. Finally, all
literature was screened, and we finally ended up with 52 articles. Figure 1 shows the
selection and evaluation process. The paper concentrated on studying the literature of
RPMs in the last five years (i.e., from 2015 to 2019). We decided to exclude 2020 from
the survey because the study was finished before the end of this year. Table 1 shows the
keywords that were used to obtain eligible articles and the aggregated articles according to
each keyword.

Figure 1. Steps used to select articles.
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Table 1. Keywords used to obtain eligible articles.

Key Words Databases Total Publication
Identified

# Science
Direct IEEE Springer Scince.gov PubMed

1 Remote patient monitoring 326 619 506 699 800 2950

2
Remote patient monitoring

AND clinical decision
support system

4 160 118 267 29 578

3 Remote patient monitoring
AND ontology 16 18 23 237 44 338

4 Remote Patient monitoring
AND data mining 24 46 42 84 23 219

5
Remote patient monitoring

AND wireless body
Area network

16 15 30 102 10 173

6
Remote patient monitoring
AND ontology AND (cloud

computing OR Fog computing)
8 7 85 42 2 144

7

Remote patient monitoring
AND ontology AND cloud

computing and wireless body
area network AND clinical

decision support system

1 0 5 2 3 11

Total 395 865 809 1433 911 4413

2.2. Results Statistical Analysis

This section provides a statistical analysis of the search results from various points of
view (different domains, differences in each year). Figure 2a shows the distribution of the
published articles during the period of our study (2014 to 2019). As shown, the number
of studies rapidly increases from 18% in 2014 to 33% in 2019. It indicates the growth in
the research related to RPMs. Figure 2b shows the distribution of the gathered articles
according to the paper’s application diseases. According to these distributions, we can
notice that PMs for the elderly take the largest percentage (28%) followed by PMs for heart
failure (26%). Other diseases such as cancer, diabetes, and post-surgical take proximate
percentage ranges from 8 to 14%.

Figure 2. (a) Number of articles per year; (b) Distribution of RPMs according to diseases.
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3. Main Components of the RPM System

According to the literature, standard RPMs are intended to continuously capture
many clinical data from patients and allow physicians to be continuously monitored using
various internal and external sensors. The main steps of building PMs can be summarized
as follows, (1) Data acquisition: Vital signs are continuously monitored using invasive and
no invasive techniques. This step is used to extract vital signs such as (EEG, ECG, blood
pressure, heart rate, etc.). In addition to these vital signs, devices are used to gather other
context variables such as (room temperature, pressure, etc.). (2) Data transmitting and
storing: All data are aggregated and transmitted to the cloud side for analyzing, sorting,
and processing. Cloud data could be accessed from different sources include (laboratory,
ambulance, clinics, pharmacy, etc.). (3) Backend systems: All data are analyzed, then used
to help physicians with real-time decisions about patient status. The following points detail
the advantages of RPMS in the medical domain.

• Provide patient assurance: RPMs could provide (24/7) care at home through wearable
sensors, which are used to frequently measure patient vital signs, provide a real-time
recommendation based on patient status.

• Increase patient awareness and responsibility: the continuous collecting of patient
data increase patient awareness about his/her health status.

• Provision of low-cost solutions: depending on RPMs decreases the cost of hospital-
ization and admissions, consequently, saving on the total cost of healthcare services.
Figure 3 shows the general form of the patient monitoring system.

Figure 3. The general architecture of RPMs.

3.1. Data Acquisition

Sensors play an essential role in most RPMs. They are considered a bridge between
the patient and the physical world [18]. RPMs used various sensors to aggregate patient’s
vital signs and health data such as (EEG, ECG, heart rate, etc.), in addition to context
such as (room temperature, room oxygen level, etc.). Internet of things (IoT) devices are
used to transmit data among several networks [19,20]. This provides human-to-human,
thing-to-thing interactions through a set of sensors and devices. A wireless body area
network is a set of wearable sensors that are usually attached to a patient’s body using
invasive and noninvasive techniques. WBAN sensor nodes are classified into two main
types as follows:
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• Implanted sensors: sensors that are implanted inside the patient’s body (under the
patient’s skin).

• External sensors: sensors that attached directly to the patient’s skin or separated with
about (2–5) CM.

WBAN Challenges in RMS

Despite the advantages of WBAN sensors in RPMs. It still has several challenges and
limitations which affect efficiency and reliability, these challenges could be listed as follows:

Transmission protocols: Most healthcare systems need to transmit data across lo-
cal and global networks using wireless standards such as ZigBee, Lora, Bluetooth [21].
Each wireless standard has limitations related to power, energy, and range of transmis-
sion. For limited area applications, ZigBee is considered suitable [20]. Table 2 includes a
summarization of transmission protocols.

Table 2. Transmission protocols.

Power Requirement Frequency Coverage Transmission
Protocol

Very Low 2.4 GHz 70–100 m Zigbee
Medium 1 MHZ 10 M Bluetooth

High 2.4 GHZ 100 M Wi-Fi
Low 10 KM LoRa

Data privacy and security: Most patients using RPMs are usually concerned about
their health data, therefore various studies are concerned with data privacy and secu-
rity [22,23]. For example, in [24], the authors proposed a management schema based on
elliptic curve cryptography (ECC). ECC is a security schema that divides into three steps.
(1) Identification of data skin and consumers, (2) Registration confirms the identification
step and creates a secret channel, (3) Verify the communication between skin and consumer.
The authors concluded that this schema enhances the reliability of the system. Table 3
showed a description of the collected articles according to various factors include (Diseases,
collected data, the sensor used and the transmission protocol). The authors of [25], provide
a comprehensive survey about security and privacy among WS devices.

Table 3. Description of selected articles.

# Diseases Collected Data Sensor Transmission
Protocol

[26] Heart diseases ECG ECG monitor node Wi-Fi (HTTP,
MQTT)

[27] Heart diseases ECG
ECG fabric sensor
embedded on the

patient’s chair
Bluetooth

[28] Pain assessment Facial expression
(sEMG)

Wearable sensor with a
bio-sensing facial mask Wi-Fi

[29] Heart diseases Spo2, blood
pressure, ECG Wi-Fi

[30] Heart diseases ECG Wearable smart clothing Bluetooth

[31] Dementia
Changes in

behaviors and
Functional health

Electrodermal
Activity (EDA),

Photoplenthys (PPG),
Accelerometer (ACC)

Wi-Fi

[32] Chronic diseases Monitor medication
adherence Smart home sensors Wi-Fi

[33] Chronic diseases Monitor medication
adherence

Wristband wearable
sensor Bluetooth

[34] Fall detection Monitor mentions
and predict falls

Accelerometer,
Cardiotachometer ZigBee

[19] Heart diseases Spo2, HR Wireless pulse oximeter Wi-Fi

[35] Hypertension Blood pressure Electronic blood pressure
measurement Bluetooth
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Interoperability and integration: Health data are usually big and heterogeneous;
therefore, interoperability is a critical issue. In PMs, interoperability works on two main
sides. (1) Sensor interoperability: integrated sensors and remote devices in an integrated
sensing system. (2) Data interoperability: combine data from heterogeneous resources
(i.e., XML, CSV, SQL, etc.). provide surveys of WSN interoperability [20,36,37].

Interference: WBAN system interference is divided into two main types. (1) Intra-
interference usually occurs in a single WBAN. Various studies use flexible time division
multiple access (TDMA) as the most suitable that decreases interference and decreases
power consuming. In [25], the author details more interference techniques in WBAN.
Table 3 includes a summarization of some selected studies according to the used sensors,
collected data, and the transmission protocols.

3.2. Storage Server
3.2.1. Cloud Computing

Cloud computing in conjunction with a WSN enables promising monitoring systems
that can enhance the quality of service (QoS) [38,39]. The combination offers physicians
the ability to monitor all patient data sensed with biosensors regardless of the type of
patient data, it contributes to reducing the burden of hospitals and clinics. For example, a
cloud system for knee rehabilitation after surgery (App. A) was provided in [40], which
monitored falls in elderly patients by providing a continuous monitoring system and
real-time alerts. A hospital sends a request to the patient to start the monitoring process;
then, a hospital doctor monitors and makes decisions based on the collected patient data. In
this system, the cloud side acts as a bridge between the patients and the hospital. Another
monitoring system was developed and connected to intelligent ambulance service in [41].
The idea behind this system was to link health monitoring systems with traffic control
systems through the cloud, thus helping ambulances reach hospitals in the minimum
amount of time, which can save patients’ lives. In [42], the authors propose a healthcare
system that could access patients’ health status and predict risks. The system integrated
healthcare clouds with WSNs through smartphones. Smartphone apps provided real-time
updates concerning a patient’s health status to healthcare professionals via the cloud. The
system also provided a filter system that compared a patient’s vital signs with normal
readings saved in a lookup table. When a patient’s condition was found to be abnormal,
the system sent an SMS to their doctors automatically with included patient health status
and a link to the patient’s medical record saved on the cloud. In [43], the authors developed
a cloud-based mobile system (CMS) for chronic diseases. This system was divided into
three parts. (1) Cloud backend service acted as a storage server that gathered patient data
through HTTP calls connected directly to PubNub. (2) A mobile application that performed
data analysis and raised alerts of risks. (3) Mobile applications enhanced communications
between the patients and his/her relatives or caregivers, authors used the impact on the
family-scale (IFS) to measure the effectiveness of this system and to improve the quality
of life for both patients and caregivers. Other than this, in [44], the authors developed a
virtual cloud care (VCC) project to monitor elderly people. This project was based on a
cloud system that stored patient sensor data in a cloud and developed logical processes
to assess patient data and generate alarms. In addition to service-oriented architecture
(SOA) that was utilized for standardization, in [45], authors used cloud services to build a
gerontology and geriatrics healthcare system (GGHCS). The main goal of this system was
to include different functions, including data querying, online diagnosis, and patient data
uploading. This system worked on two sides. The server-side used a web page deployed
on a cloud, while the client-side used intelligent terminals (smartphones and medical
devices). Any patient can log into a web page and perform a heart-rate query and visualize
heart rate curves to display heart status for the specific period range. In other words, it
combined rich Internet technology with a web client to enhance analyzing and accessing
medical data. In [46], the authors provided a monitoring system for chronic diseases
(VISIGNET) that constantly monitored patient vital signs and reduced patient visits to
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the hospital or physician. This system gathered all the vital signs sensed by biosensors
and automatically uploaded them to a cloud service (Xively), permitting physicians and
other caregivers to remotely monitor patients in real-time. The same idea is in [47], where
the authors provided a monitoring system for heart diseases. This system provided real-
time monitoring and predicted future risk over the next 12 months using data mining
techniques. Other researchers used cloud computing to develop teleconsultations and
video conferencing systems [48,49].

Cloud computing also helps to provide uniform EHRs between hospitals [50], enhance
issues related to interoperability, maintainability, scalability, portability, and so on. In [51],
the authors proposed a cloud-based EHR system (CHISTAR) to address the problems faced
by traditional EHR systems. This system can easily handle massive amounts of patient
data from different data sources (e.g., file servers and relational databases). Ultimately,
cloud computing helps to reduce costs and improve efficiency and effectiveness while
developing healthcare systems, but to take full advantage of it, several challenges and
limitations should be handled.

Cloud computing allows developers of cloud-based software to be away from op-
erational and hardware concerns [52]. Therefore, most developers relied on platform-as-
a-service (PaaS) and software-as-a-service (SaaS) to implement their software systems.
Following a durable trend of miniaturization and commoditization of software services, we
see a high concern with executing functions without putting much management burdens
on the developer [53–55]. This architecture is associated with terms such as function-as-a-
service (FaaS), which addressed various needs that were not handled by PaaS and SaaS. A
comprehensive survey about FaaS is available in [56].

Limitations and challenges of cloud computing in PMs are confined to the power and
time consumption, privacy, and security of the transmitted data. Several systems have
been proposed to address these issues. First, some studies have focused on increasing
the transmission speed by providing routes with low end-to-end delay, as in [57], a cloud
health monitoring system (CHMS) was proposed to track non-hospitalization patients and
improve QoS. The authors in this work try to address many challenges. First, it overcomes
the delay in the delivery time of urgent data. They classified patient data as urgent and non-
urgent at different frequencies, the urgent data was immediately transmitted to the medical
staff, while lower-frequency data was aggregated and transmitted at a low frequency.
Second, they worked on the mutual interference problem by using a dynamic channel
policy that distributed WBANs to the available channel. This system also switched and
selected the available channel using the master node concept. Another system has been
proposed to schedule and prioritize the transmission of vital signs over multiple channels
based on the patient’s current status [58]. In this system [59], The authors [60] proposed a
system that suggests running some parts of the application components in parallel which
helps save batteries and avoids draining too quickly.

Regarding privacy, security, and accuracy of the transmitted data. Many solutions
have been proposed to address these problems. Authors [61] provided system to handle
the issues of security and privacy of transmitted data in system works from two aspects.
First, it works on the secure interconnection between sensors (WBAN) and the cloud using
multi-biometric key generation; second, it responds dynamically to simultaneous changes
in any of patients, such as their locations. Researchers have proposed several solutions to
this challenge using virtual Machines and parallel autoscaling mechanisms. Despite many
attempts to find solutions to the challenges related to the use of the cloud in RPMs, many of
these did not reach an acceptable result. For example, in rea-time monitoring systems, the
delay result from transmitting data to the cloud and back is not acceptable. From the other
hand, the continuous transmitting to the cloud server will cause high battery consumption.
Relative to this context, many researchers in RPMs use the concept of fog computing which
will discussed in the following subsection.
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3.2.2. Fog Computing in RPMs

In 2012, cisco innovated the term fog computing [62]. Fog computing allows In 2012
cisco innovated the term of fog computing [62]. Fog computing allows applications to run
on the edge of the network rather than work rather than on cloud [63]. Fog can be described
as “a lightweight cloud that provide many facilities at the proximity of user’s smart device”.
Fog is not a subtitle of the cloud, but it a powerful supplementary, it provides processing
at the fog node, while still offering the possibility to directly interact with the cloud. The
point of using fog computing is to transfer the processing of some sensitive application to
the edge (near the end device), while others cane done over the cloud. Problems related
to location awareness, reliability, latency and many other challenges are resolved by fog
computing [64]. The fog computing in PM systems in a new concept in this domain. It
provides many advantages over cloud that could summarized in the following points:
(1) In fog computing, data processed and analyzed locally instead of sending it to the
cloud, this led to less amount of bandwidth consuming, decrease the overall cost [65].
(2) Processing data locally will decrease the time-latency during transmission which help
to avoid problems especially for time-sensitive application (e.g. real-time monitoring, self-
driving car, etc.). (3) Providing better privacy to users, as patient’s data can be analyzed
locally instead of sending it to the cloud (4) Deploying fog servers in PMs decrease the
required bandwidth for transmission, providing real-time data to doctors without the need
of internet connection [66]. (5) Utilizing fog computing will not only help people to get
ease on their basic health monitoring, but will also help those countries where there is
less doctor to patient ratio [63]. (6) Utilizing fog nodes provides additional advantages
such as save power consumption while continuous transmitting to cloud servers [67]. Fog
IoT systems divided into three main layers include (device layer, fog layer and cloud
layer) instead of (device layer, cloud layer) in cloud computing systems. Table 4 show
the differences between fog computing and cloud computing. In [68] authors provide a
tutorial that discuss the differences between edge computing, fog computing and cloud
computing, in addition to the advantages of using fog computing. Others survey [63,69]
have been discussed the role of fog computing in various domains. Figure 4 show the basic
of fog computing model for PMs.

Table 4. Difference between cloud computing and fog computing.

Factor Cloud Computing Fog Computing

Delaying High Low
Mobility ability Limited Supported

Geo-distribution Centralized Distributed
Bandwidth consumption High Low

Storage capabilities Strong Weak
Power consumption High Low

Location identification Partially supported Fully supported
Number of servers Few Large

Real-time interaction Supported Supported
security Undefined Defined

Service location With the Internet At the edge of the local
network
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Figure 4. Fog computing layers in RPMs.

In [70] authors provide smart health monitoring system based on fog nodes. In this
system, edge users are equipped with various kinds of wearable sensors and devices used to
aggregate medical measurements. they used LoRaWAN to send aggregated measurements
directly to the closer fog nodes or health centers. Authors use LoRAWAN as it could
transmit across one ten kilometers even if there is no internet connection. This will not
only help patients with continuous monitoring regardless of internet connection but also
decrease the overall bandwidth, the battery consumption. Others in [71] provide low-cost
monitoring system of ECG and temperature. Authors use sensor node to collect data and
wireless transmit to the nearest gateway accessed by caregivers. It provides real-time
monitoring and help in decision making process. The same in [72], they exploiting the
fog computing concept to provide enhancing health monitoring system. They depend on
the smart gateway in analysis of ECG, extract the critical features such s P and T waves.
Achieving bandwidth efficiency and decrease latency. In [73], authors provide system to
control and prevent Zika virus. They used fog computing as an intermediary layer between
users and the cloud server to decrease the latency and cost of communication in such high
cloud-based systems. In [39] N.El-Rahsidy et al provided system for monitoring patient’s
with COVID_19, it depends on combination between cloud and fog computing to improve
the performance of the monitoring.

3.3. Back-End System
Knowledge Base

This section will focus on the knowledge base layer (third layer), and its role in remote
patient monitoring. A clinical decision support system (CDSS) is considered to be the
brain of a healthcare system, it used to assist healthcare teams in the decision-making
process [14]. The literature indicates that the use of CDSSs has an important impact on
monitoring systems. CDSSs may include many functions, described as follows. (I) It
provides a comprehensive health care view of the patient’s medical history. (II) Helps
non-expert physicians by providing clinical guidelines, practice standards, and differential
diagnoses. (III) help a patient by offering several assistive tools such as drug-schedule
reminders, drug prescriptions, drug doses, drug alternatives and interactions with other
drugs, devices and recommendations based on patient EHRs and knowledge bases (KB).

All these factors improve the importance of using DSS in remote monitoring systems
especially in remote areas. Building decision support systems (DSSs) in health care sys-
tems gradually developed as follows. Firstly, DSSs relied on information collected from
physicians, such as knowledge bases [74], but these information was insufficient alone to
provide physicians with information that helped them make accurate decisions for each
patient. With the widespread of RPM systems that are highly dependent on DSSs, vital
signs measurements and domain experts are taking into consideration when building DSS.
For example, in [75] the authors proposed a CDSS that could perform early abnormal detec-
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tion using correlations between vital signs. This system used high volume cloud resources
to serve many patients, reduce the hospital and predict early risks. Others [76] provided
CDSS that could predict mortality based on the data of the first 24 h. In [77], the authors
provided a telemonitoring system for diabetes designed to automatically evaluate patient
glycemic data that uploaded according to an embedded CDSS. Despite the importance
of this contribution, but it did not provide a complete view of a patient’s medical history.
Therefore, a complete patient’s electronic health record (HER) consider important to build
effective DSS. This importance returned to two main reasons (1) physicians may not be
expert in all sub-specialties or may not have enough time for every case. (2) symptoms,
information, and even vital signs supplied by patients may be interrelated in medical
diagnoses, especially for elderly people suffering from more than one disease category.

Patient EHRs considered complete source for all patient health data. It includes
the patient’s medical history, vital signs, heritable diseases, radiology reports, lab tests,
latest diagnoses, time, and place of their last hospital visit, etc. EHRs could provide
physicians with large amounts of continuously updated information. One study that
measured physician satisfaction with EHRs was presented in [50], the authors reported
that physicians change to CDSS based on EHR systems, improve decision accuracy, reduce
the time spent on computers, ameliorate physician fatigue and save time for patients.
EHR systems have two main architectures. First, centralized EHR (local EHR) are used
to communicate among healthcare systems inside hospitals, such as RIS, pharmacy, LIS,
etc. Second, distributed EHRs between hospitals. These systems require considerable
pre-processing and preparation work [78], since each EHR ecosystem may use different
data models and/or different standards such as openEHR, HL7 RIM, ISO and CEN TC,
as well as different medical terminology standards such as SNOMED CT, ICD, LOINC,
and UMLS [79]. Therefore, maintaining semantic interoperability is a primary challenge
in distributed EHR systems. In [80], the authors provide an EHR data model that uses
object-relational data to solve problems related to dynamic design changes and sparse,
time-varying or high-dimensional data. They built a model by combining both standard
and generic tables to support various types of data and solve interoperability problems [78].
This model was based on the HL7 v3 RIM standard and the medical terminology SNOMED
CT standard, which facilitates EHR data sharing and building distributed EHRs. A CDSS
should be used as an embedded system along with an EHR and other health information
system (HIS) sources (e.g., laboratories, sonograms, radiology, etc.) to support making
real-time accurate decisions. In [81], authors developed a distributed CDSS that fully
integrated with a distributed EHR system and distributed knowledge bases (multiple
knowledge bases, i.e., heart diseases). The idea behind this study was to identify every
patient with a unique number (Universal ID), which would be shared between all hospitals.
When any patient visits a hospital, the system automatically supplies the patient’s profile
based on the patient’s ID. Both the patient profile and current diagnoses are integrated
into an XML file based on HL7 v3 to assure semantic interoperability between the patient
profile and the knowledge bases in the CDSS. The CDSS will then decide and suggest any
needed medication. To assure the CDSS efficiency, data mining continuously analyses
various KBs and EHRs to extract the most recent knowledge and update the CDSS.

Health level seven (HL7) is one of the main standards that support clinical delivery
and exchange of electronic healthcare information, and administration of various health
services. HL7 does not have specific software, but it provides healthcare organizations
with specifications that make the system interoperable. Several studies have been used
HL7 to resolve interoperability issues [82,83]. For example, in [84], the authors provide
an EHR data model that uses object-relational data to solve problems related to dynamic
design changes and sparse, time-varying, or high-dimensional data. They built a model
by combining both standard and generic tables to support various types of data and solve
interoperability problems [82]. This model was based on the HL7 v3 RIM standard and
the medical terminology SNOMED CT standard, which facilitates EHR data sharing and
building distributed EHRs. A CDSS should be used as an embedded system along with
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an EHR and other health information system (HIS) sources (e.g., laboratories, sonograms,
radiology, etc.) to support making real-time accurate decisions. In [85], the authors
developed a distributed CDSS that fully integrated with a distributed EHR system and
distributed knowledge bases (multiple knowledge bases, i.e., heart diseases). The idea
behind this study was to identify every patient with a unique number (Universal ID),
which would be shared between all hospitals. When any patient visits a hospital, the
system automatically supplies the patient’s profile based on the patient’s ID. Both the
patient profile and current diagnoses are integrated into an XML file based on HL7 v3 to
assure semantic interoperability between the patient profile and the knowledge bases in the
CDSS. The CDSS will then decide and suggest any needed medication. To assure the CDSS
efficiency, data mining continuously analyzes various KBs and EHRs to extract the most
recent knowledge and update the CDSS. Table 5 shows different DSSs for various diseases.
Unless HL7 v3 is developed to overcome the shortage in HL7 v2, it is criticized widely
by the industry, as it is internally inconsistent, too expensive, and complex to implement.
Thus, HL7 embarked on the creation of new standards known as FHIR (Fast Healthcare
Interoperability Resources) [82–86]. FHIR belongs to the HL7 family and it took advantage
of the earliest version of HL7 (HL7 v1, HL7 v2, and HL7 v3) [80]. However, it takes a
different technique to maintain interoperability issues, rather than the traditional centric
approach in HL7 [82]. FIHR follows the modular approach and represents the atomic
healthcare data (i.e., medication, blood pressure, allergies) as independent entities called
resources. All of these resources are managed (i.e., created, shared, and updated) via APSs
and web services (RESTful web service) [87]. A systematic review about medical data
interoperability reported that FHIR is one of the messaging standards that most satisfied
the requirement of healthcare interoperability and provided several client-side features
(i.e., privacy, reliability, security, flexibility, and compatibility) [88]. Therefore, FHIR is
expected to have a high adoption rate. Table 6 show a comparison between HL7 v3 and
HL7 FIHR.

Table 5. Description of CDSS papers.

Performance Methods Data Collection Diseases #

99.30% Ontology, interoperability,
CDSS

115,477 records collected from of
36,162 type 2 diabetic patients Chronic diseases [15]

- Ontology, sensors Ontology tested on “SPARQL” Query Cardiovascular [2]

87% Fuzzy logic,
ontology reasoning

The system evaluated in Taichung
Hospital in central Taiwan Diabetes [89]

97.67% Fuzzy ontology CBR 60 real cases from Mansoura
university hospitals Diabetes [90]

Machine learning 90 patients with gestational diabetes Diabetes [77]
92% Case base finding 323 real cases COPD diseases [91]

90–95% Machine learning
(24 classifier combination) 85 patients Real time monitoring [92]

89% Machine learning, ontology Real-time patient data form Biosensors Mental disorders [93]

- Ontology-driven
English lung cancer dataset

(LUCADA), approximate (115,000)
patient recode

Lung cancer [94]
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Table 6. Comparison between HL7 v3 and HL7 FIHR [84].

Factor HL7 v3 HL7 FIHR

Year of initiation 1997 2011
Development Methodology Top-down Incremental

Semantic ontology Yes Yes
Architecture Massages RESTful web services

Tooling required Yes, just compiler No
Industry support Weak Yes
Adoption degree Low Expected to be high
Industry support Weak n/a

Character support? Yes (conceptually) Yes (UTF8)
Massage format support Realm Global standard

Regarding build efficient knowledge base, fuzzy logic also has a large impact due to
the special nature of medical data [95]. For example, a system was presented to predict
the risks of heart diseases using fuzzy logic in [14]. they compute the frequency of specific
diseases from the training dataset and then calculates a fuzzy weight used when building
the CDSS. Others [96] built an assessment and evaluation expert system for heart disease
patients, based on a fuzzy interference system and a fuzzy analytical hierarchy process
(AHP). The AHP assigns weights to every criterion and sub-criterion and then builds a
fuzzy interference system to integrate the criteria and weights in a CDSS. Fuzzy logic
also helps in building case-based reasoning (CBR) systems. CBR is a paradigm that uses
previously solved problems to diagnose new cases. It is based on the concept that “similar
problems have similar solutions”. In [97], the author provided a case-based relational model
for diabetes diagnosis and used it to build a CBR system. System based on patient EHRs,
HL7 RIM, and SNOMED SCT, collect and organize data from EHRs in the form of a problem
list. It contained a patient number (POMR structure), EHRs included symptoms, physical
screening, lab tests, and so on. The main contribution of this system is to provide patient’s
diagnosis (whether they have diabetes, the type of diabetes, the severity and complications).
In [90], the authors provided a fuzzy ontology CBR to convert EHRs to a CDSS. This CBR
covered symptoms, medical history, lab tests, therapy plans and treatments for all patients.
Three preparation steps used to convert EHRs to a DSS (data processing, encoding, and
fuzzification). First, data are pre-processed through machine learning algorithms. This step
handles missing data, data normalization, and aggregation and extracts important features.
The second step is unification, which converts EHRs into unified and standardized forms
(e.g., HL7 RIM v3). Third, the unification step is used to enhance the representation of the
patient’s data and to increase the implementation similarity.

Regrading to retrieving data from different EHR in a human-readable form, an on-
tology is a computer science methodology for representing knowledge as a conceptual
model for a specific domain [98]. Ontologies are used to represent attributes, domain terms,
concepts and the relations between them. In various systems, ontology used to store and
represent knowledge in both human-readable and machine-readable forms that facilitate
information retrieval tasks [93,99,100]. In [15], the authors created an ontology knowledge
base for assessing diabetes patients. This ontology-based framework semantically syn-
thesized, integrates and modeled information of patients with diabetes, including patient
data, domain knowledge, and assessment parameters. Then, a service oriented CDSS
was implemented within this framework to automatically adapt to the patient’s condition
based on standard assessments. In [94], DSS system was developed based on an ontology
to identify mental disorders (e.g., Alzheimer’s, depression, Parkinson’s and psychosis)
according to a patient’s symptoms, conditions and signs. This ontology defined three
classes include symptom, condition and sensor which acts as a map for making diagnoses
based on signs and symptoms. Other researchers have used clinical guidelines based on
ontologies to classify patient status. In [101], an ontology-based CDSS was developed



Diagnostics 2021, 11, 607 14 of 32

for lung cancer patients. The developed ontology classified patients based on written
guidelines (British Thoracic Society Guidelines) through a Lung Cancer Assistant system.

4. Disease-Specific Remote Patient Monitoring Systems

In this section we will discuss the patient monitoring system form different diseases
perspective to present the challenges and the importance of each of them.

4.1. Heart Disease Monitoring Systems

Heart problems are the most common diseases that need monitoring system [102].
This is due to heart problems are related to many illnesses and chronic diseases such as
cardiac arrhythmia, chronic heart diseases. The possibility to measure and aggregate heart
rate, respiratory rate, ECG, respiratory rate through wearable sensors have been discussed
previously in literature.

Some telemedicine scenario that include telecommunication center located in remote
areas showed that using web applications through devices are better than specialized
network protocols in emergency telemedicine system. In [103] author provide monitoring
system that obtain vital signs include O2 saturation, and heart pulses. It consists of smart
phone acts as hub and processor, in addition to personal area network for android. In [104]
provide monitoring system that used to aggregate physiological data that related to ECG
and pulmonary artery pressure (PAP), then encoding it as text. They mentioned that
the continuous aggregation of medical data with the 5th generation mobile network will
contribute to improve the 24*7 monitoring system. In [105] authors discuss and compare
five remote monitoring system according to the monitoring method. They concluded with
the efficiency of contact-based method over other contact less methods.

Unless the existence of much heart monitoring systems, there are several challenges
that related to aggregate the patient’s still needing further work. For example, detect
respiratory breathing abnormalities consider a challenge, as it mainly depends on breath-
ing sound detection and the upper body produce many sounds. Therefore, it considers
difficult to differentiate between them. Second, extracting heart rate and ECG that based in
autonomous nervous system consider complex to implemented.

4.2. Fall Detection Monitoring Systems

Falls are a primary cause of injuries, especially for elderly people [106]. In [34], the
authors provided a fall detection system based on both wearable and environmental
sensors. The concept was authors use a microcontroller unit (MCU) to detect falls based
on prior sensor measurements. also [107], the authors proposed a safety alert system
that used an accelerometer, cardio meter, and smartphone. They constructed a network
between these sensors via Bluetooth. When any abnormal sensor readings occurred, it
automatically informed health care professionals and the family and identified the patient
and their location

In [108], authors provide (IF-Then rules) for fall detection that depend on embedded
sensor, the sensor used to detect falling without any database connection. [103] provide
fall detection monitoring system based on android system, in [106] author provide fall
detection system that based IoT. This system depends on echo device, webcam, and speaker.
All these devices connected by hub (raspberry pi). When any fall detected, the device
connected to the hub and the speaker speak to the patient quickly. The main challenges
with fall detection system is differentiate the fall from the daily activities of the patient,
therefor; the false alarms are common on these kind of monitoring systems. Another
challenge with this system is the lack of data to improve the research in this domain.

4.3. Mental Health Systems

Mental health systems are usually used to help patients with memory impairment
like a patient with Alzheimer’s. In [109] provide literature review for all technologies of
mental health monitoring systems. In [110], authors proposed a system that reminded
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patients with medication dosages at pre-determined times, monitored patient compliance
using a Microsoft Kinect and embedded sensors. Others [111], used wristband sensors
to enable a medication-compliance monitoring system, the idea behind this system was
to use a machine-learning algorithm to build and train a classifier to track wrist motion
and interference to the schedule for medication adherence. Other medication adherence
monitoring and reminder systems were provided in [32,33] in [112] authors provide moni-
toring system for patients with mental bipolarity. It based on gathering speech and other
features during patient’s activities, in addition to sleep and medication activities using
nervous sensor system. In [113] provide system for monitoring patients with Parkinson’s
that have passive and active monitoring system. Other for Alzheimer’s [114]. The main
challenge with this system is the complexity of designing, this is because mental health
diseases may associate with other diseases, which demands continuous monitoring for
vital signs, nervous and psychiatric response [115].

4.4. Diabetes Monitoring System

A recent research in diabetes monitoring systems aim to compare the continuous
monitoring system with the traditional monitoring in terms of acceptability, efficient and
accuracy. In [115,116] provide monitoring system for diabetes that based on automatic
feedback massage, it record patient blood glucose level, food intake and blood pressure,
in addition to patient physical activity, all of them used to make chatting with patient
and manage the glucose prescription. In [117] propose complete framework for diabetes
patients, it integrate with CDSS capabilities. They depend on FASTO ontology to con-
struct semantic CDSS that could manage patient health status regardless of the quality of
knowledge.

4.5. Vital Sign Monitoring and Health Assessment Systems

Real-time patient monitoring and continuous assessment systems are a particularly
useful tool that helps in analyzing patients’ health status. It used to monitor patient’s
activities, predict early risks, and so on. In our study period, several studies were concerned
with providing PM systems. For example, [29] authors proposed a monitoring system
for heart diseases, monitor a patient’s vital signs (SpO2, ECG, blood pressure) and then
transmit the data according to the patient’s health status through four main transmission
modes (continuous transmission for all data, continuous transmission at special times,
event-triggered transmission and transmission on demand). Other studies [30,118,119]
have proposed similar ideas and provided health monitoring systems for elderly people
that support continuous follow-up and risk prediction. In [31], a health assessment system
was provided for patients with dementia, authors hypothesized that cognitive health
could be estimated by continuously monitoring patients’ daily activities. Their system
applied signal processing to data aggregated from wearable sensors (i.e., accelerometer and
electrodermal activity (EDA)). Machine learning techniques are used to evaluate cognitive
health status and its correlation with patient daily activities. In [120], authors provided
a health cognitive assessment system according to activity behavior (CAAB). System
extracted features that model activity performance, then use supervised and unsupervised
machine learning algorithms to evaluate the patient’s cognitive health status. The same
idea was discussed in [121], the authors built a classification model that classified patients
into one of three groups based on their cognitive health status.

4.6. Other Diseases Monitoring Systems

In [122], the authors proposed mobile PMs for chronic patients that need continuous
and long-term monitoring. This system aims to decrease the need for hospital visits as well
as nursing. The same in, authors provide both passive and active monitoring systems for
chronic disease patients [123]. In [124] authors provide the DeStress mobile monitoring
system that is used to collect, analyze, and share stress data between physicians to provide
real-time interactions in response to critical events and provide specialized feedback for
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each patient. In [125], the authors provide indoor PMs, they developed a mechanism to
locate patients inside their activities and detect any changes in their behaviors that could
be used to detect any critical health events.

5. The role of Artificial Intelligence in RPMs

In recent years, there has been an increased emphasis on using Artificial Intelligence
(AI) to solve complex problems in different domains. In the healthcare sector, AI contributes
to changing the way of healthcare delivery in different healthcare settings including clinics,
hospitals, etc. The main objective of AI is to build systems that can simulate human
thinking, using a collection of technologies to perform various healthcare tasks with a
better than human performance, and utilizing AI techniques in analyzing patient’s data
and predicting future events, building an intelligent interface that interacts with the patient
and increases his/her engagement with the therapy plan. Then, using this information
to increase patient independence and awareness. For example, in [126], Sturiale et al.
presented a large survey on 5800 colorectal patients. They analyzed the correlation between
using the internet and social media for work and the time for consultations. They reported
that patients that used the internet made the first consultation after six months of symptoms
appearance (p < 0.0001), and likely to know about their diseases before diagnosis. This
study confirmed the effective role of the internet and social media in increasing patient
participation in therapy plans. In this section, we concentrate on the most important AI
technologies related to PMs, spotlight their potential to automate various aspects, and
overcome barriers in building PMs. It is summarized in the following points.

5.1. Rule-Based Systems (Expert Systems)

Most PMs involve the observation and the examination of patients through prognosis
and diagnosis systems. AI is used for building these medical tasks, it compares the
medical diagnosis with the intelligent agent system, where the medical experts consult the
intelligent agent and patient data and the diagnosis considers the input and the output.
Several AI techniques could be used to assist medical experts on this side; one way is to use
what is known as expert systems. Expert systems based on several “IF-Then” rules map
between inputs and outputs. These rules are built with the help of medical experts who
have deep experience in a specific domain [127]. The success of these systems depends on
the representation of knowledge in the form of logical rules. However, if the number of
rules is large, they may conflict with each other and result in a difficult and time-consuming
system. Consequently, it is slowly being replaced with more sophisticated approaches
based on data mining and machine learning techniques.

5.2. Machine Learning Techniques

Machine learning (ML) is a broad AI technique used to build models that could learn
from data. As patients increase, ML and AI help in providing healthcare systems that
could deliver care more appropriately and efficiently. In RPMs, ML is used to build models
that help predict risks and provide diagnosis and treatment based on medical data. The
following sub-section serves ML applications and techniques used in RPMs.

(1) Supervised and non-supervised algorithms: Several types of supervised machine
learning algorithms are used in RPMs, analyzing medical data in order to predict pa-
tient future events. For example, El-Rashidy et al. [80] used supervised ML algorithms
(i.e., rule-based classifier, non-linear classifier, instance-based classifier, tree-based
classifier, etc.) to analyze patient’s medical records and predict mortality among
them. Each classifier used a different learning algorithm to build a model that best fit
between input and output with a good generalization capability. Shamer et al. [128]
developed a quality assessment model that was used to predict readmission, several
ML algorithms were integrated to build an ensemble model to make predictions. The
same model was used for predicting complications in ICU units [125], cardiovascu-
lar [129,130] Diabetes [131–134], sepsis [135,136], and COVID-19 [136–138]. ML is also
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used to provide timely medical services to patients. One such example is called Home
Smart Health (HSH) [139]. HSH used a body sensor network and a personal sensor
network for building a smart environment that has the capability to meet patient’s
needs. ML (supervised and non-supervised) is used to analyze patients’ data (sensor
data) to understand patient behavior and provide specific services for each patient.

(2) Reinforcement learning (RL): ML models that learn by the trial-and-error concept,
the learning process is repeated until the optimal solution is reached. RL is used
in various monitoring systems. For example, Nuayto et al. [140] built RPMs for
continuous monitoring of bio signs through a heterogeneous sensor transceiver. The
proposed architecture used reinforcement learning (constrained Markov decision
process (CMDP)) to minimize cost while maintaining the optimal quality of service
(QoS). Wipawee et al. [141] used Q-learning (reinforcement learning) to provide a
monitoring system. They used a distributed routing mechanism to route information
to the nearest sink. Others use reinforcement learning to find the optimal treatment
for a patient with anemia.

(3) Deep learning (DL): This is a new area of ML that simulates the human thinking
process. DL provides healthcare applications the ability to analyze huge data at
exceptional speed with promising accuracy. For example, El-Sappagh et al. [115]
used the DL model to predict patients with Alzheimer’s based on patient vital signs
and X-ray images. Other common applications use DL models to specify the most
critical features in patients’ imaging data, it is considered a promising solution in
oncology image analysis. DL also has an increasing impact on natural language
processing (NLP) [142]. In RPMs, NLP contributes to understanding the clinical notes
on patients to provide efficient monitoring, transcribe interactions from patients,
and provide conversational AI supportive tools such as chatbots [143]. For more
details, [21,141,144] provide comprehensive surveys about using ML in RPMs.

5.3. Human-Computer Interaction

Human-computer interaction (HCI) is concerned with building intelligent interfaces
that could communicate with patients. It studies the relationship to build two-way, unob-
structed communication between patient and system [145]. Along with the development
of monitoring systems, one of the main goals is to carry out close monitoring of patients’
physiological features and meeting the needs of each patient according to his/her status,
which is the main objective of HCI. Mustfa et al. [146] provide a comprehensive survey
about the importance of HCI in the healthcare sector. Good HCI design of RPMs facilitates
the effective monitoring of patient physiological parameters, assists patient to the cure, and
interacts effectively and quickly. For example, Liu et al. [147] provide the design of an HCI
monitoring system for the ICU. This system aims to reduce the workload by developing a
system that could adaptively respond to patient’s needs.

5.4. Physical and Processing Robots

The shortage of healthcare expertise has been a big challenge in the last years, es-
pecially in the developed countries. Hospitals are overcrowded with critical cases that
need continuous monitoring. With stressed-out medical experts, the probability of medical
errors may be high frequency. In the healthcare sector, robots help by providing safer and
less costly medical procedures. Recently, robots have become more intelligent, as various
AI techniques are being embedded in their operating systems. Formerly robots could work
as medical assistants that continuously monitor patient’s vital signs and provide alerts to
the nurse if the patient needs human presence, they can also assist in conducting critical
surgeries [148]. With the growing spread of the coronavirus (COVID-19), robots participate
in various applications including a telemedicine robot that helps doctors in monitoring the
physiological parameter of large-scale patients remotely. Nursing robots [149], which were
developed to assist physicians in the same manner as humans, provide care to various pa-
tients while limiting the spread of infection. Radiologist robots [150] can take several X-ray
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images and permit a physician to see the 3D images in real-time through the robot rather
than the patient. There are also rehabilitation robots [127] and ambulance robots [151].

Unless we believe in the ability of AI to reshape the future of the healthcare sector
through various technologies and applications, the greatest challenge that AI faces is not to
develop useful applications but to ensure their adaptability to patients’ clinical practice.
AI applications should integrate with patient’s EHR systems, standardized in a way that
permits the application to interact with the other applications in the same domain. In the
future, we expect that AI will not replace physicians and nurses but will save their effort to
provide more care for patients.

6. Case Study: Chronic Diseases Monitoring System

In this section, we discuss a case study for RPMs to provide a framework that utilizes
various technologies to handle some challenges of the literature. In this case study, we pro-
pose a framework that could be used to monitor all chronic diseases. Patients with chronic
diseases need continuous monitoring for all vital signs to avoid patient deterioration. Most
of the monitoring systems focus only on monitoring specific vital signs. For example, most
diabetes monitoring focuses on blood glucose as it is the most appropriate way when diag-
nosing diabetes. Despite the importance of blood tests in diabetes diagnosis [16], the other
vital signs should be considered in monitoring diabetics, as when glucose level increases,
blood vessels negatively affect the kidney, heart, vision, etc. Therefore, it is important to
measure other factors besides the glucose level such as blood pressure, body temperature,
conscious level, respiratory rate, etc. to avoid diabetes complications. In this case study,
we try to overcome some challenges that were previously mentioned in this study. The
execution of the proposed monitoring system can be summarized in the following steps,
see Figure 5.

(1) Lightweight biosensors are attached to a patient body. They continuously monitors
patient vital signs like glucose level, vision level, fatigue level (EEG), activity level,
blood pressure, body temperature, etc. Then all vital signs are gathered and sent to
the central control unit. Note that ZigBee is used to deliver vital signs from sensors to
central devices. If mobile applications notice that there is no patient record, the system
will send a message to the patient via text or call to check the sensor or batteries. In
case of no response after a short time system will automatically call the caregiver to
check the patient’s state.

(2) Social media patient’s activities (Facebook comments and tweets) are also tracked
continuously and analyzed using components for handling unstructured data. All
gathered raw data are then transported to the central control unit (CCU). In some
cases, a smartphone may be used as a central control unit.

(3) Our proposed framework provides two monitoring modes, the online and offline
monitoring systems. The offline mode runs via the first layer CDSS that is installed on
a personal server (discussed in the next step), and online via a cloud server (discussed
in step 4), distributed her, and second layer CDSS. In the personal server, each patient
transmits his/her vital signs, then all patient’s data are transmitted to the cloud
hospital server.

(4) In case the internet connection is interrupted or unplugged, the system will not work
properly, and the patient will not be able to connect with the system. To overcome
this challenge, a light CDSS was added to the patient side to monitor the patient until
the internet problem was fixed. The CDSS’s first layer helps patients with advice and
recommendations based on the patient profile (i.e., EHR) and a small knowledge base.
The knowledge base will continually update by discovering and extracting knowledge
from the EHR. CDSS in the first layer resolves the human-computer interaction issues
and provides a simple and user-friendly GUI that does not require experience in
dealing with computers or smart apps.

(5) Periodically, patient data is transmitted to a stand-alone device where a wireless area
network is created between it and another system component (Caregiver provider,
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family, emergency system), which permits them to access and check the patient status
and retrieve patient information during monitoring system. In case the system detects
abnormal signs, it will fire the alarm and send an alarm message to the network. Note
that Wi-Fi IEEE 802 is used to transmit data between CCU, cloud server, and the CDSS
second layer.

The CDSS service provider’s side provides comprehensive and complicated decision
support based on the patient’s entire historical data (second layer CDSS). The knowledge
base for this CDSS updates periodically with the most recent updates in each cloud-EHR
for each hospital. This CDSS system utilizes the semantics of ontology and fuzzy logic to
optimize the resulting decisions. It supports the prediction of the patient’s future conditions
and suggests preventive actions by mining the temporal data collected. Finally, if the two
CDSS systems fail, the healthcare personnel are contacted. The first and second CDSSs act
as a virtual doctor. This framework will be implemented in our next paper.

Figure 5. Case study for monitoring system for chronic disease patients.

7. Study Results

In Table 7, we make a comparison of the similarities and differences and classify patient
monitoring systems according to six criteria (use of data mining technique, collecting vital
signs with WBAN sensors, sharing data in cloud servers for storage process and sharing,
using ontology and semantic interoperability in diagnosis and EHR environment, CDSS
as real-time advice). The symbol (3) indicates that the research paper uses the checked
technology and the opposite is indicated by the symbol (5).
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Table 7. Comparison between RPM Papers.

# Diseases DM IoT WBAN Cloud Ontology Interoperability CDSS

[15] Chronic diseases 3 5 5 5 3 3 3

[2] Cardiovascular 3 5 5 5 3 5 5

[26] Heart diseases 5 3 5 3 5 5 5

[152] Ubiquitous monitoring system 3 3 3 3 5 3 3

[28] Pain assessment 5 3 3 5 5 5 5

[29] Heart diseases 5 3 3 3 5 5 5

[40] Knees rehabilitation 5 5 3 3 5 5 5

[153] Vital signs gathering
and processing 3 5 5 3 5 5 5

[46] Chronic diseases 5 5 3 3 5 3 3

[47] Hypertension 3 5 3 3 5 5 3

[57] Tracking daily activities 5 5 3 3 5 5 5

[61] EXP carried on healthy volunteers 5 3 3 3 5 5 5

[92] Context aware monitoring 5 3 3 3 5 5 5

[77] Diabetes and Diet monitoring 5 3 5 5 5 5 3

[96] Heart diseases 5 5 5 5 5 5 3

[97] Diabetes 5 5 5 5 3 3 3

[90] Diabetes 3 5 5 3 3 3 3

[93] Mental disorder 3 5 5 5 3 5 3

[154] Chronic diseases 3 5 5 5 3 5 3

[155] Monitor patients with depression 3 5 3 3 5 3 3

[131] Cardiovascular diseases 3 5 3 5 5 3 3

[156] Hypertension, hypotension 3 3 3 3 5 5 3

[157] Diabetes 3 5 3 5 5 5 5

[158] Heart diseases 3 5 3 3 5 5 5

[159] Knee arthroplasty 3 5 3 3 5 5 5

[160] Elderly 3 5 3 3 5 5 3

[161] Diabetes 3 5 3 5 5 5 5

[162] Parkinson’s disease 3 5 3 5 5 5 3

[106] Fall detection 3 5 3 5 5 5 3

[117] Diabetes 3 5 3 5 3 3 3

[116] Alzheimer’s 5 5 5 5 5 3 3

Currently, many health monitoring projects and applications have been initiated that
use different architectures. Health monitoring systems are heterogeneous and have been
developed for various diseases and disabilities. Table 8 shows a list of remote patient moni-
toring projects and applications associated with WBAN-based health monitoring systems.
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Table 8. Remote patient monitoring projects and applications.

System Year Description Accuracy

Help4Moodproject
[155] 2014

Health care system designed to help people with depression
to return to their normal life, the system consists of three
main component, (1) personal server to monitor patient
behavior such as sleep activity, (2) interactive agent that
interact and collect information from the user through

questionnaire (3) DSS that analyze patient collected

SHARE
[47] 2015

RPM system based on cloud computing, system propose
proactive monitoring based on data mining functions,

system combine CDSS that designed to respectively train
and test the new data and adapt the system to predict

vascular for whole the next year.

67%

VISIGNET
[46] 2014

RPM system for chronic diseases, system monitor vital signs
(Body temperature, blood pressure, and heart rate) then

send it to the cloud, the system permits patients and
physicians to watch health data. In addition to that, they
also provide visualization watch that classifies each vital

sign according to special criteria.

95%

M4CVD
[131] 2015

RPM for monitoring cardiovascular diseases that use
wearable sensors to collect vital signs (Blood pressure,
galvanic skin response (GSR) that indicate stress level,

Electrocardiogram (ECG)), the system proposes a
contribution to optimizing system effectiveness by

analyzing data in the local device (smartphone), it was done
using a machine learning algorithm (SVM) that classify

patient data and extract the clinical features to determine
patient condition “continued risk” or “no longer risk”.

90.5%

WANDA
[163] 2019

A monitoring system for Cognitive heart failure (CHF)
patients, it consists of three tiers (first layer: biosensors for
monitoring patient data. Second layer: a web server that
store and maintain data integrity layer between different

healthcare providers, this layer also analyze data and sends
an alert message via text message or emails. Third layer:

back-end server backup and recovery layer by making an
offline backup)

—-

Health@Home project
[164] 2016

A remote monitoring system for cardiovascular diseases,
the system has client/server architecture. Client-side:

located at the patient side, consists of a set of biomedical
sensors that measure patients of vital signs (ECG, SPO2,
Chest impedance, respiration, blood pressure), then the

measured sensors send through the gateway to the
server-side. ADSL or mobile broadband (UTMS/GSM) used

to transmit data. Server Side: installed at health service
facilities, process and analyze data from gateway using the
expert system, and make it available for consultation, and

finally patient record in the patient information system
(HIS). The system also provides an alarm system that sent
by a short message to the physician, patient, and relatives.

Nevonprojects
[165]

The system is used to track patient health status via two
main sensors (temperature sensor and blood pressure

sensor). Sensors are connected to a microcontroller that
tracks patient status.
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Challenges and Future Directions

According to the previous literature surveys and despite the benefits of RPM systems,
current systems have many limitations and challenges that affect the effectiveness of diag-
nosis and treatment and generally affect the appetite for using e-health systems. Handling
these challenges will improve system capabilities and increase patient stratification and
acceptance. In this subsection, we summarize the common challenges and discuss the
possible solutions that could help to reduce their impact in the future.

• Not all smart devices support the automatic transmission of patient data to the cloud
or the fog nodes without patient intervention. Therefore, a new generation of mobiles
should work on providing the automatic and accurate transfer of data [166]. For
example, in 2016 Android worked on improving the sampling rate constraints and
permitting third-party applications to sample from various sensors.

• The accuracy of sensing devices (i.e., sensors) has still not reached a stable state; there-
fore, various challenges include working on enhancing signal processing and transmis-
sion. For example, Kim et al. [167] introduced a group of analog-front-end solutions
that address the tradeoff between the quality of transmission and power consumption.

• The RPM systems are developed to solve the problem of patient monitoring regard-
less of time and place. Therefore, the design of WSN should maintain the mobility,
transmission rate, data rate, and network coverage issues [168]. For example, building
monitoring systems that utilize both fog computing and cloud computing may provide
various capabilities such as mobility, low latency, and low bandwidth consumption.

• Managing and integrating the massive data extracted during patient monitoring are
considered a daunting task. To take full advantage of the extracted data, various data
mining and knowledge extraction tools should be developed to have deep insights
into these data to improve knowledge outcomes and decrease costs [76].

• The internet is considered the primary medium for data transmission in any RPMs.
This raises the need for ironclad privacy and security protocols to protect data from
different attacks such as data eavesdropping modification and impersonations. The
problem worsens due to the fact that most wireless body area network devices used
in patient monitoring are limited in memory, processing, and energy capabilities [169].
Therefore, it is considered impossible to provide full monitoring systems based on
them. Accordingly, privacy and security issues need additional work, to provide an
acceptable solution in the different layers of monitoring [170,171]. A comprehensive
survey of security and privacy in patient monitoring can be found in [172].

• Encryption could be used to prevent data eavesdropping. Therefore, working on
symmetric and asymmetric key encryption algorithms could help to provide a high
level of security for patient’s data [173].

• Managing large networks is also a complex challenge. Therefore, working on de-
veloping role-based access control systems may help in reducing the complexity in
administration, especially with large healthcare systems.

• Monitoring systems could be used for a small number of patients in clinics or may be
scaled up to be used by a large number of users in hospitals. This results in the rapid
growth of demands for physicians as well as healthcare organizations. Accordingly,
RPMs should be scalable in terms of applications, networks, and services [8].

• RPM systems are very time-sensitive and require the guarantee of several QoS criteria
such as maintainability, reliability, and availability. This is due to the fact that such
systems put patient’s lives in danger in critical health problems [174].

• The power consumption of WBAN sensors is a big challenge for RPMs. Usually,
the capacity of batteries is consumed in sensing, processing, and transmitting of
data, so that it requires frequent recharging. It may be considered the weakest point
in RPMs as frequent charging for batteries is considered a big burden for patients.
Therefore, the optimization of power consumption is considered one of the main
points in various studies. Some studies working on improving the current protocols
such as Zigbee and Bluetooth are [11,132,175]. Others work on extending the lifetime
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of the sensor battery by utilizing medium access control (MAC) protocols with low
power consumption [176].

• Providing continuous monitoring in the healthcare sector requires the use of various
sensors that are mostly manufactured by different manufacturers. The lack of stan-
dardization techniques hinders the ability of devices to communicate and transmit
data among them effectively. Therefore, working on standards and data integration
protocols is considered a pressing need to provide data and device interoperability.
From the application side, some monitoring applications require approval for use from
some bodies such as the FDA. To overcome this delay, participants must come up with
medical guidelines that work on speeding up the deployment of medical applications.

• The development of complete RPMs that allow patients to integrate with various
hardware and software service providers and different sources of data (heterogeneous
sources with different standards and formats) is a challenge that needs to be addressed
in future studies.

• The patient’s EHR system may include various components such as laboratory sys-
tems, hospital information systems, etc. Each component may have different stan-
dards (i.e., HL7, OpenEHR, and ISO/IEEE) and different terminologies (i.e., LONIC,
SNOMED CT, and CPT4). Therefore, working on a unified standard is essential to
maintaining syntax and semantic interoperability [177].

• CDSS should work based on a patient’s EHR data, in addition to vital signs data
sensed from wearable sensors. Therefore, CDSSs should provide specific services
based on each patient’s data. On the other hand, CDSSs interfaces should maintain
a brain-computer interface (BCI) and human-computer interaction (HCI) in order
to support the dynamic creation of an application interface according to patient’s
moods [178].

• Based on the surveyed literature presented in this paper, we could not categorize
whether the existing RPM solutions are easily compatible with security and privacy
legislation. Nonetheless, as healthcare solutions undergo a digital transformation,
the paradigm needs to be implemented with the compliance of different legislative
frameworks such as the general data protection regulation (GDPR) and network and
information security (NIS) directive (NISD) requirements [82]. While the GDPR is a
privacy directive that instructs how organizations should handle personal data, the
NISD emphasizes strengthening organizations’ security capability from the service
infrastructure viewpoints. The work in [83] identified a set of different measures
that can be integrated with m-health systems to adopt GDPR-compliant security and
privacy schemes. Recently, the work in [179] provides a case study of the “WELCOME”
research project, an integrated system for chronic patients’ monitoring, diagnosis,
detection, and treatment. In the study, the authors propose a framework for the
security and privacy of m-health applications adhering to the GDPR guidelines. Policy
enforcement is necessary to monitor and guarantee that the digital information systems
strictly follow specific policies in dealing with medical information.

• The advanced message queuing protocol (AMQP) and message queuing telemetry
transport (MQTT) are the two most common data transfer protocols used to exchange
data between IoT systems and edge or cloud servers. Although both of these schemes
are non-healthcare-specific protocols, they can be integrated with HL7, which is here
and now the most widely adopted data interaction standard in medical applica-
tions [180]. In MQTT, a broker receives messages from the publishers then routes
the messages to the respective subscribers. While AMQP provides similar function-
ality as MQTT, it also facilitates queues in the broker to store the message when the
consumer does not access the messages. Large organizations that include many IoT
devices require a higher level of data integrity. Therein, both AMQP and MQTT can
simultaneously be deployed for different clusters and regions [181,182]. As such, the
coexistence of AMQP and MQTT protocols is conceivable in HL7-facilitated organiza-
tions. However, to determine the suitability for the HL7 framework, more research
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on lightweight publish-subscribe network protocols is required from practical and
implementation contexts.

Despite having overcome many previous challenges, one of the main challenges
still facing RPMs is how to convince chronic disease patients, particularly elderly people
and their relatives, to alter the way they look at RPMs and ensure peoples’ trust when
using them. In a report conducted by the Deloitte Center for Healthcare, RPMs not only
face technological challenges from sensors and protocols but also social, cultural, and
educational challenges from patients and their convictions. Most of the challenges in
current RPMs revolve around the inability to access all patient data in real-time, and this
deficiency prevents physicians from gaining a continuous and complete view of the status
and condition of their patients. These drawbacks make RPMs less effective in the diagnosis,
monitoring, and treatment of chronic diseases.

8. Conclusions

In this paper, we tried to provide a comprehensive survey about RPMs. RPMs are
usually built on three layers. The first layer is concerned with data acquisition, it is used
to gather data using invasive or non-invasive sensors. All patient measurements are
transmitted to the second layer using various transmission protocols. The second layer
consists of cloud and web servers that receive, process, and store data for further use. The
third layer is the back-end layer. It uses all the patient data to develop a complete patient
EHR, it may also include CDSS, KB, CPG, CBR, etc. that are based on patient EHR and
medical knowledge, etc. This layer helps in early detection and intervention. Each layer
faces several complexities and challenges that hamper building effective real-time RPMs.
In this review, we tried to highlight challenges related to each layer. To achieve this goal,
we surveyed 56 papers related to RPMSs for different diseases according to the current
technology. We expect that in the near future, continuous monitoring could be done using
cheap sensors, all recording patient’s data transmitted into a complete EHR. This study
may help researchers interested in PMs to better understand the current state of evidence
that is available in the literature and assist in the planning of future research to address
challenges and limitations, which may address the gap identified in this review. In the
future, we intend to conduct another study that covers other issues such as privacy and
security issues, hardware and sensors, and other related points.

As with the majority of studies, the design of the current study is subject to some
limitations. The current study focused on RPMs for chronic disease, we tried to address it
from different perspectives. However, some limitations should be noted. First, we mainly
focused on RPMs from the software side, while hardware (i.e., type of sensors, servers,
and network components) is out of our interest in this study. Second, privacy and security
issues in PMs spans the overall lifecycle of the monitoring systems, from wireless sensors
and devices, cloud systems, to backend systems are discussed briefly. Third, we did not
include the different ways of data transmission in RPMs, and how the transmission could
be varying according to the data type (i.e., text, image, video, signal, etc.). Fourth, issues
related to the physical positioning of patient data in terms of legal and governmental
regulations should also be discussed. As some countries prevent storing and processing
patient’s data outside hospitals. Overall, although limitations are acknowledged from a
general viewpoint, our contributions in this study will ideally motivate others to resolve
the existing problems in the field because the highlighted limitations are not contradictory
to the primary objectives.
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Abbreviations

AHP Analytical hierarchy process
CBR Case-based reasoning
CC Cloud computing
CDSS Clinical decision support system
CHMS Cloud health monitoring system
COPD Chronic obstructive pulmonary diseases
ECG Electrocardiogram
EEG Electroencephalogram
EHR Electronic health record
EMG Electromyogram
HL7 Health Level Seven
IoT Internet of Things
KB Knowledge bases
MAC Medium Access Control
PMS Patient monitoring systems
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QoS Quality of service
SCI Spinal cord injury
SNOMED-CD Systematized nomenclature of medicine-clinical terms
TDMA Flexible time division multiple access
Term Abbreviation
UMLS Unified Medical Language System
WBAN Wireless body area network
XML Extensible Markup Language
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22. Kovačević, T.; Perković, T.; Čagalj, M. LIRA: A new key deployment scheme for wireless body area networks. In Proceedings of

the SoftCOM 2013: 21th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia,
18–20 September 2013.

23. Tian, Y.; Peng, Y.; Peng, X.; Li, H. An attribute-based encryption scheme with revocation for fine-grained access control in wireless
body area networks. Int. J. Distrib. Sens. Netw. 2014, 2014. [CrossRef]

24. Shou, Y.; Guyennet, H.; Lehsaini, M. Parallel Scalar Multiplication on Elliptic Curves in Wireless Sensor Networks. In Distributed
Computing and Networking; Springer: Berlin/Heidelberg, Germany, 2013; pp. 300–314.

25. Pathak, G.; Gutierrez, J.; Rehman, S.U. Security in Low Powered Wide Area Networks: Opportunities for Software Defined
Network-Supported Solutions. Electronics 2020, 9, 1195. [CrossRef]

26. Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. J.
Med. Syst. 2016, 40. [CrossRef]

27. Fong, E.M.; Chung, W.Y. Mobile cloud-computing-based healthcare service by Noncontact ECG monitoring. Sensors 2013, 13,
16451–16473. [CrossRef]

28. Yang, G.; Jiang, M.; Ouyang, W.; Ji, G.; Xie, H.; Rahmani, A.M. IoT-based Remote Pain Monitoring System: From Device to Cloud
Platform. IEEE J. Biomed. Health Inform. 2017, 22, 1711–1719. [CrossRef]

29. Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci.
2017, 112, 2328–2334. [CrossRef]

30. Guan, K.; Shao, M.; Wu, S. A remote health monitoring system for the elderly based on smart home gateway. J. Healthc. Eng. 2017,
2017. [CrossRef] [PubMed]

31. Alam, M.A.U.; Roy, N.; Holmes, S.; Gangopadhyay, A.; Galik, E. Automated Functional and Behavioral Health Assessment of
Older Adults with Dementia. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 140–149.

32. Silva, V.J.; Rodrigues, M.A.S.; Barreto, R.; de Lucena, V.F. UbMed: A ubiquitous system for monitoring medication adherence. In
Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom),
Munich, Germany, 14–17 September 2016; pp. 16–19.

33. Hezarjaribi, N.; Fallahzadeh, R.; Ghasemzadeh, H. A machine learning approach for medication adherence monitoring using
body-worn sensors. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 14–18 March 2016; pp. 842–845.

34. Wang, J.; Zhang, Z.; Li, B.; Lee, S.; Sherratt, R. An enhanced fall detection system for elderly person monitoring using consumer
home networks. IEEE Trans. Consum. Electron. 2014, 60, 23–29. [CrossRef]

35. Zhang, L.; Xing, B.; Gao, Z.; Wang, J.; Sun, S.; Zhang, K. Smart blood pressure monitoring system based on internet of things. In
Proceedings of the CHI’13: CHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013.

36. Ballari, D.; Manso-callejo, M.A.; Wachowicz, M. The Interoperability of Wireless Sensor Networks; Technical University of Madrid:
Madrid, Spain, 2004; pp. 1–4.

37. Brandt, P.; Basten, T.; Stuiik, S.; Bui, V.; de Clercq, P.; Pires, L.F.; van Sinderen, M. Semantic interoperability in sensor applications
making sense of sensor data. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Healthcare and
e-health (CICARE), Singapore, 15–19 April 2013; pp. 1–8.

38. Mahmoud, N.; El-Sappagh, S.; El-Bakry, H.M.; Abdelrazek, S. A Real-time Framework for Patient Monitoring Systems based on a
Wireless Body Area Network. Int. J. Comput. Appl. 2020, 176, 12–21. [CrossRef]

39. El-rashidy, N.; El-sappagh, S.; Islam, S.M.R.; El-bakry, M.H.; Abdelrazek, S. End-To-End Deep Learning Framework for Coron-
avirus (COVID-19) Detection and Monitoring. Electronics 2020, 9, 1439. [CrossRef]

40. Balasubramanian, V.; Stranieri, A. A scalable cloud Platform for Active healthcare monitoring applications. In Proceedings of the
IC3e 2014—2014 IEEE Conference on e-Learning, e-Management and e-Services, Melbourne, Australia, 10–12 December 2014;
pp. 93–98.

http://doi.org/10.1109/TMM.2016.2589160
http://doi.org/10.1016/j.jbi.2017.06.021
http://www.ncbi.nlm.nih.gov/pubmed/28676255
http://doi.org/10.3390/s17040711
http://www.ncbi.nlm.nih.gov/pubmed/28353681
http://doi.org/10.26483/ijarcs.v9i2.5743
http://doi.org/10.3390/electronics9071135
http://doi.org/10.1155/2014/259798
http://doi.org/10.3390/electronics9081195
http://doi.org/10.1007/s10916-016-0644-9
http://doi.org/10.3390/s131216451
http://doi.org/10.1109/JBHI.2017.2776351
http://doi.org/10.1016/j.procs.2017.08.265
http://doi.org/10.1155/2017/5843504
http://www.ncbi.nlm.nih.gov/pubmed/29204258
http://doi.org/10.1109/TCE.2014.6780921
http://doi.org/10.5120/ijca2020920274
http://doi.org/10.3390/electronics9091439


Diagnostics 2021, 11, 607 27 of 32

41. Ahir, P.D.; Bharade, S.; Botre, P.; Nagane, S.; Shah, M. Intelligent Traffic Control System for Smart Ambulance. IRJET 2018,
5, 355–358.

42. Rana, J.; Bajpayee, A. HealthCare Monitoring and Alerting System Using Cloud Computing. Int. J. Recent Innov. Trends Comput.
Commun. 2015, 3, 102–105.

43. Risso, N.A.; Neyem, A.; Benedetto, J.I.; Carrillo, M.J.; Farías, A.; Gajardo, M.J.; Loyola, O. A cloud-based mobile system to
improve respiratory therapy services at home. J. Biomed. Inform. 2016, 63, 45–53. [CrossRef]

44. Paez, D.G.; Aparicio, F.; de Buenaga, M.; Rubio, M. Highly personalized health services using cloud and sensors. In Proceedings
of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
Taichung, Taiwan, 3–5 July 2013; pp. 451–455.

45. Hsu, T.C.; Chang, C.H.; Chu, W.C.; Ho, S.Y.; Hsueh, N.L.; Lee, W.B. Applying cloud computing technologies to Gerontology and
Geriatrics Health Care System (GGHCS). In Proceedings of the 2013 13th International Conference on Quality Software, Nanjing,
China, 29–30 July 2013.

46. Hidalgo, J.A.; Cajiao, A.; Hern, C.M.; Diego, M.L. VISIGNET: A wireless body area network with cloud data storage for the
telemonitoring of vital signs. Health Technol. 2015, 5, 115–126. [CrossRef]

47. Melillo, P.; Orrico, A.; Scala, P.; Crispino, F.; Pecchia, L. Cloud-Based Smart Health Monitoring System for Automatic Cardiovas-
cular and Fall Risk Assessment in Hypertensive Patients. J. Med. Syst. 2015, 39. [CrossRef]

48. Rassias, G.; Andrikos, C.O.; Tsanakas, P.; Maglogiannis, I. Versatile Cloud Collaboration Services for Device-Transparent Medical
Imaging Teleconsultations. Proc. IEEE Symp. Comput. Med. Syst. 2017, 2017, 306–311.

49. Saechow, S.; Kamolphiwong, S.; Chandeeying, V. Web-based teleconsultation for clinical diagnosis. In Proceedings of the 13th
International Conference on Electronics, Information, and Communication, ICEIC 2014, Kota Kinabalu, Malaysia, 15–18 January
2014; pp. 2–3.

50. Guo, U.; Chen, L.; Mehta, P.H. Electronic health record innovations: Helping physicians—One less click at a time. Health Inf.
Manag. J. 2017, 46, 140–144. [CrossRef] [PubMed]

51. Bahga, A.; Madisetti, V.K. A cloud-based approach for interoperable electronic health records (EHRs). IEEE J. Biomed. Health
Inform. 2013, 17, 894–906. [CrossRef] [PubMed]

52. Van Eyk, E.; Iosup, A.; Seif, S.; Thömmes, M. The spec cloud group’s research vision on faas and serverless architectures. In
Proceedings of the WoSC’17: 2nd International Workshop on Serverless Computing, Las Vegas, NV, USA, 5–11 December 2017;
pp. 1–4.

53. Kim, J.; Park, J.; Lee, K. Network resource isolation in serverless cloud function service. In Proceedings of the 2019 IEEE 4th
International Workshops on Foundations and Applications of Self* Systems (FAS* W), Umea, Sweden, 16–20 June 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 182–187.

54. Leitner, P.; Wittern, E.; Spillner, J.; Hummer, W. A mixed-method empirical study of Function-as-a-Service software development
in industrial practice. J. Syst. Softw. 2019, 149, 340–359. [CrossRef]

55. Al-Ameen, M.; Spillner, J. Systematic and open exploration of FaaS and Serverless Computing research. CEUR Workshop Proc.
2019, 2330, 30–35.

56. Rajan, R.A.P. A review on serverless architectures-Function as a service (FaaS) in cloud computing. Telkomnika 2020, 18, 530–537.
[CrossRef]

57. Almashaqbeh, G.; Hayajneh, T.; Vasilakos, A.V.; Mohd, B.J. QoS-Aware Health Monitoring System Using Cloud-Based WBANs.
J. Med. Syst. 2014, 38. [CrossRef] [PubMed]

58. Almashaqbeh, G. A Cloud-based interference-aware remote health monitoring system for non-hospitalized patients. In Proceed-
ings of the IEEE Conference and Exhibition on Global Telecommunications (GLOBECOM), Austin, TX, USA, 8–12 December
2014; pp. 2436–2441.

59. Chen, B.; Varkey, J.P.; Pompili, D.; Li, J.K.-J.; Marsic, I. Patient vital signs monitoring using Wireless Body Area Networks. In
Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), New York, NY, USA, 26–28 March
2010; pp. 1–2.

60. Ahnn, J.H.; Potkonjak, M. mHealthMon: Toward Energy-Efficient and Distributed Mobile Health Monitoring Using Parallel
Offloading. J. Med. Syst. 2013, 37, 1–5. [CrossRef] [PubMed]

61. Khan, F.A.; Ali, A.; Abbas, H.; Haldar, N.A.H. A cloud-based healthcare framework for security and patients’ data privacy using
wireless body area networks. Procedia Comput. Sci. 2014, 34, 511–517. [CrossRef]

62. Paper, W. Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things; Cisco: San Jose, CA, USA, 2015; pp. 1–6.
63. Stojmenovic, I. Fog computing: A cloud to the ground support for smart things and machine-to-machine networks. In Proceedings

of the 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC), Melbourne, Australia, 26–28
November 2014; pp. 117–122.

64. Verma, P.; Sood, S.K. Fog Assisted-IoT Enabled Patient Health Monitoring in Smart Homes. IEEE Internet Things J. 2018. [CrossRef]
65. Yi, S.; Li, C.; Li, Q. A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 Workshop on Mobile

Big Data, Mobidata’15, Hangzhou, China, 21 June 2015; pp. 37–42.
66. Paul, A.; Pinjari, H.; Hong, W.H.; Seo, H.C.; Rho, S. Fog computing-based IoT for health monitoring system. J. Sens. 2018, 2018.

[CrossRef]

http://doi.org/10.1016/j.jbi.2016.07.006
http://doi.org/10.1007/s12553-015-0108-0
http://doi.org/10.1007/s10916-015-0294-3
http://doi.org/10.1177/1833358316689481
http://www.ncbi.nlm.nih.gov/pubmed/28671038
http://doi.org/10.1109/JBHI.2013.2257818
http://www.ncbi.nlm.nih.gov/pubmed/25055368
http://doi.org/10.1016/j.jss.2018.12.013
http://doi.org/10.12928/telkomnika.v18i1.12169
http://doi.org/10.1007/s10916-014-0121-2
http://www.ncbi.nlm.nih.gov/pubmed/25123456
http://doi.org/10.1007/s10916-013-9957-0
http://www.ncbi.nlm.nih.gov/pubmed/23897403
http://doi.org/10.1016/j.procs.2014.07.058
http://doi.org/10.1109/JIOT.2018.2803201
http://doi.org/10.1155/2018/1386470


Diagnostics 2021, 11, 607 28 of 32

67. Kraemer, F.A.; Braten, A.E.; Tamkittikhun, N.; Palma, D. Fog Computing in Healthcare—A Review and Discussion. IEEE Access
2020, 5, 9206–9222. [CrossRef]

68. Chiang, M.; Ha, S.; Risso, F.; Zhang, T. Clarifying fog computing and networking: 10 questions and answers. IEEE Commun. Mag.
2017, 55, 18–20. [CrossRef]

69. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016, 49, 112–116.
[CrossRef]

70. Kharel, J.; Reda, H.T.; Shin, S.Y. An architecture for smart health monitoring system based on fog computing. J. Commun. 2017, 12,
228–233. [CrossRef]

71. Gia, T.N.; Jiang, M.; Sarker, V.K.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Low-cost fog-assisted health-care
IoT system with energy-efficient sensor nodes. In Proceedings of the 13th International Wireless Communications and Mobile
Computing Conference (IWCMC 2017), Valencia, Spain, 26–30 June 2017; pp. 1765–1770.

72. Gia, T.N.; Jiang, M.; Rahmani, A.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog Computing in Healthcare Internet of Things: A
Case Study on ECG Feature Extraction. In Proceedings of the 2015 IEEE International Conference on Computer and Information
Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing, Pervasive Intelligence
and Computing, Liverpool, UK, 26–28 October 2015; pp. 356–363.

73. Sareen, S.; Gupta, S.K.; Sood, S.K. An intelligent and secure system for predicting and preventing Zika virus outbreak using Fog
computing. Enterp. Inf. Syst. 2017, 11, 1436–1456. [CrossRef]

74. Pattekari, S.A.; Parveen, A. Prediction system for heart disease using Naive Bayes. Int. J. Adv. Comput. Math. Sci. 2012,
3, 2230–9624.

75. Rahim, A.; Forkan, M.; Khalil, I. A clinical decision-making mechanism for context-aware and patient-specific remote monitoring
systems using the correlations of multiple vital signs. Comput. Methods Programs Biomed. 2017, 139, 1–16.

76. El-rashidy, N.; El-sappagh, S.; El-Bakry, H.M.; Abuhmed, T.; Abdelrazek, S. Intensive Care Unit Mortality Prediction: An
Improved Patient-Specific Stacking Ensemble Model. IEEE Access 2020, 8. [CrossRef]

77. Caballero-Ruiz, E.; García-Sáez, G.; Rigla, M.; Villaplana, M.; Pons, B.; Hernando, M.E. A web-based clinical decision support
system for gestational diabetes: Automatic diet prescription and detection of insulin needs. Int. J. Med. Inform. 2017, 102, 35–49.
[CrossRef] [PubMed]

78. El-Sappagh, S.; el Mogy, M.; Riad, A.M. A standard fragment of EHR relational data model for diabetes mellitus diagnosis. In
Proceedings of the 2017 9th International Conference on Informatics and Systems, INFOS 2017, Cairo, Egypt, 15–17 December
2017; pp. DEKM1–DEKM9.

79. Ganzha, M.; Paprzycki, M.; Pawłowski, W.; Szmeja, P.; Wasielewska, K. Semantic interoperability in the Internet of Things: An
overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 2017, 81, 111–124. [CrossRef]

80. El-Sappagh, S.H.; El-Masri, S.; Riad, A.M.; Elmogy, M. Electronic Health Record Data Model Optimized for Knowledge Discovery.
Int. J. Comput. Sci. 2012, 9, 329–338.

81. El-Sappagh, S.H.; El-Masri, S. A distributed clinical decision support system architecture. J. King Saud. Univ. Comput. Inf. Sci.
2014, 26, 69–78. [CrossRef]

82. Maxhelaku, S.; Kika, A. Improving interoperability in healthcare using Hl7 Fhir. In Proceedings of the 47th International
Academic Conference, Prague, Czech Republic, 17–20 June 2019.

83. Girardi, F.; de Gennaro, G.; Colizzi, L.; Convertini, N. Improving the healthcare effectiveness: The possible role of EHR, IoMT and
Blockchain. Electronics 2020, 9, 884. [CrossRef]

84. Semenov, I.; Osenev, R.; Gerasimov, S.; Kopanitsa, G.; Denisov, D.; Andreychuk, Y. Experience in developing an FHIR medical
data management platform to provide clinical decision support. Int. J. Environ. Res. Public Health 2020, 17, 73. [CrossRef]
[PubMed]

85. Plischke, S.; Machutova, J.; Stasa, P.; Unucka, J. Development of SW interface between healthcare standards-DASTA and HL7.
Sustainability 2020, 12, 7649. [CrossRef]

86. Saripalle, R.; Runyan, C.; Russell, M. Using HL7 FHIR to achieve interoperability in patient health record. J. Biomed. Inform. 2019,
94, 103188. [CrossRef] [PubMed]

87. Lee, Y.L.; Lee, H.A.; Hsu, C.Y.; Kung, H.H.; Chiu, H.W. Implement an international interoperable phr by fhir—A Taiwan
innovative application. Sustainability 2021, 13, 198. [CrossRef]

88. Storck, M.; Hollenberg, L.; Dugas, M.; Soto-Rey, I. Interoperability Improvement of Mobile Patient Survey (MoPat) Implementing
Fast Health Interoperability Resources (FHIR). Stud. Health Technol. Inform. 2019, 258, 141–145.

89. Chen, R.C.; Jiang, H.Q.; Huang, C.Y.; Bau, C.T. Clinical Decision Support System for Diabetes Based on Ontology Reasoning and
TOPSIS Analysis. J. Healthc. Eng. 2017, 2017, 9–12. [CrossRef] [PubMed]

90. El Sappagh, S.; Elmogy, M. A Decision Support System for Diabetes Mellitus Management. Diabetes Case Rep. 2016, 1, 1–13.
[CrossRef]

91. Velickovski, F.; Ceccaroni, L.; Roca, J.; Burgos, F.; Galdiz, J.B.; Marina, N.; Lluch-Ariet, M. Clinical decision support systems
(CDSS) for preventive management of COPD patients. J. Transl. Med. 2014, 12, 1–10. [CrossRef] [PubMed]

92. Lakshmanaprabu, S.; Mohanty, S.N.; Rani, S.; Krishnamoorthy, S.; Uthayakumar, J.; Shankar, K. Online clinical decision support
system using optimal deep neural networks. Appl. Soft Comput. 2019, 81, 105487.

http://doi.org/10.1109/ACCESS.2017.2704100
http://doi.org/10.1109/MCOM.2017.7901470
http://doi.org/10.1109/MC.2016.245
http://doi.org/10.12720/jcm.12.4.228-233
http://doi.org/10.1080/17517575.2016.1277558
http://doi.org/10.1109/ACCESS.2020.3010556
http://doi.org/10.1016/j.ijmedinf.2017.02.014
http://www.ncbi.nlm.nih.gov/pubmed/28495347
http://doi.org/10.1016/j.jnca.2016.08.007
http://doi.org/10.1016/j.jksuci.2013.03.005
http://doi.org/10.3390/electronics9060884
http://doi.org/10.3390/ijerph17010073
http://www.ncbi.nlm.nih.gov/pubmed/31861851
http://doi.org/10.3390/su12187649
http://doi.org/10.1016/j.jbi.2019.103188
http://www.ncbi.nlm.nih.gov/pubmed/31063828
http://doi.org/10.3390/su13010198
http://doi.org/10.1155/2017/4307508
http://www.ncbi.nlm.nih.gov/pubmed/29312655
http://doi.org/10.4172/2572-5629.1000102
http://doi.org/10.1186/1479-5876-12-S2-S9
http://www.ncbi.nlm.nih.gov/pubmed/25471545


Diagnostics 2021, 11, 607 29 of 32

93. Ivascu, T.; Manate, B.; Negru, V. A multi-agent architecture for ontology-based diagnosis of mental disorders. In Proceedings of
the 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara,
Romania, 21–24 September 2015; pp. 423–430.

94. Sesen, M.B.; Banares-Alcantara, R.; Fox, J.; Kadir, T.; Brady, J.M. Lung cancer assistant: An ontology-driven, online decision
support prototype for lung cancer treatment selection. In Proceedings of the CEUR Workshop, Heraklion, Greece, 27–28 May
2012; Volume 849.

95. Bystrov, J.W.D. Practice. Neuro-Fuzzy Logic Systems Matlab Toolbox Gui. Cross-Cult. Manag. J. 2015, XVII, 69–76.
96. Nazari, S.; Fallah, M.; Kazemipoor, H.; Salehipour, A. A Fuzzy Inference- Fuzzy Analytic Hierarchy Process-Based Clinical

Decision Support System for Diagnosis of Heart Diseases. Expert Syst. Appl. 2017, 95, 261–271. [CrossRef]
97. El Sappagh, S.; Elmogy, M.; Riad, A.E.M. A CBR system for diabetes mellitus diagnosis: Case-base standard data model. Int. J.

Med. Eng. Inform. 2015, 7, 191. [CrossRef]
98. Mekruksavanich, S. Medical expert system based ontology for diabetes disease diagnosis. In Proceedings of the 7th IEEE

International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 383–389.
99. Lasierra, N.; Alesanco, A.; Guillén, S.; García, J. A three stage ontology-driven solution to provide personalized care to chronic

patients at home. J. Biomed. Inform. 2013, 46, 516–529. [CrossRef]
100. Hussain, A.; Farooq, K.; Luo, B.; Slack, W. A novel ontology and machine learning inspired hybrid cardiovascular decision

support framework. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence SSCI 2015, Cape Town,
South Africa, 7–10 December 2015; pp. 824–832.

101. Sesen, M. Evaluating OWL 2 reasoners in the context of clinical decision support in lung cancer treatment selection. In Proceedings
of the 2nd OWL Reasoning Evaluation Workshop, Oxford, UK, 22 July 2013.

102. Huddar, V.; Desiraju, B.K.; Rajan, V. Predicting Complications in Critical Care using Heterogeneous Clinical Data. IEEE Access
2016. [CrossRef]

103. Alves, R.C.A.; Gabriel, L.B.; de Oliveira, B.T.; Margi, C.B.; dos Santos, F.C.L. Assisting Physical (Hydro)Therapy with Wireless
Sensors Networks. IEEE Internet Things J. 2015, 2, 113–120. [CrossRef]

104. Mishra, A.; Agrawal, D.P. Continuous health condition monitoring by 24 × 7 sensing and transmission of physiological data over
5-G cellular channels. In Proceedings of the 2015 International Conference on Computing, Networking and Communications
(ICNC), Anaheim, CA, USA, 16–19 February 2015; pp. 584–590.

105. Papon, M.T.I.; Ahmad, I.; Saquib, N.; Rahman, A. Non-invasive heart rate measuring smartphone applications using on-board
cameras: A short survey. In Proceedings of the 2015 International Conference on Networking Systems and Security (NSysS),
Dhaka, Bangladesh, 5–7 January 2015; pp. 1–6.

106. Ajerla, D.; Mahfuz, S.; Zulkernine, F. A Real-Time Patient Monitoring Framework for Fall Detection. Wirel. Commun. Mob. Comput.
2019, 2019. [CrossRef]

107. Singh, N.R.; Rothe, P.R.; Rathkanthiwar, A.P. Implementation of safety alert system for elderly people using multi-sensors.
In Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology ICECA 2017,
Coimbatore, India, 20–22 April 2017; Volume 2017, pp. 282–286. [CrossRef]

108. Sannino, G.; de Falco, I.; de Pietro, G. A supervised approach to automatically extract a set of rules to support fall detection in an
mHealth system. Appl. Soft Comput. 2015, 34, 205–216. [CrossRef]

109. Naslund, J.A.; Marsch, L.A.; McHugo, G.J.; Bartels, S.J. Emerging mHealth and eHealth interventions for serious mental illness: A
review of the literature. J. Ment. Health. 2015, 24, 321–332. [CrossRef]

110. Wang, X.; Desalvo, N.; Zhao, X.; Feng, T.; Loveland, K.A.; Shi, W.; Gnawali, O. Eye contact reminder system for people with
autism. In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services, Austin, TX, USA,
6–7 November 2014.

111. Moshnyaga, V.; Koyanagi, M.; Hirayama, F.; Takahama, A.; Hashimoto, K. A medication adherence monitoring system for people
with dementia. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics SMC 2016, Budapest,
Hungary, 9–12 October 2016; pp. 194–199.

112. Lanata, A.; Valenza, G.; Nardelli, M.; Gentili, C.; Scilingo, E.P. Complexity index from a personalized wearable monitoring system
for assessing remission in mental health. IEEE J. Biomed. Health Inform. 2015, 19, 132–139. [CrossRef]

113. Zhan, A.; Little, M.A.; Harris, D.A.; Abiola, S.O.; Dorsey, E.; Saria, S.; Terzis, A. High Frequency Remote Monitoring of Parkinson’s
Disease via Smartphone: Platform Overview and Medication Response Detection. arXiv 2019, arXiv:1601.00960.

114. El-Sappagh, S.; Abuhmed, T.; Islam, S.R.; Kwak, K.S. Multimodal Multitask Deep Learning Model for Alzheimer’s Disease
Progression Detection Based on Time Series Data. Neurocomputing 2020, 412, 197–215. [CrossRef]

115. Dos Costa, D.S.; Turco, S.H.N.; Ramos, R.P.; Silva, F.M.F.M.; Freire, M.S. Electronic monitoring system for measuring heart rate
and skin temperature in small ruminants. Eng. Agric. 2018, 38, 166–172. [CrossRef]

116. Rghioui, A.; Lloret, J.; Harane, M.; Oumnad, A. A Smart Glucose Monitoring System for Diabetic Patient. Electronics 2020, 9, 678.
[CrossRef]

117. El-Sappagh, S.; Ali, F.; Hendawi, A.; Jang, J.H.; Kwak, K.S. A mobile health monitoring-and-treatment system based on integration
of the SSN sensor ontology and the HL7 FHIR standard. BMC Med. Inform. Decis. Mak. 2019, 19, 97. [CrossRef]

118. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 2013, 17,
579–590. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eswa.2017.11.001
http://doi.org/10.1504/IJMEI.2015.070116
http://doi.org/10.1016/j.jbi.2013.03.006
http://doi.org/10.1109/ACCESS.2016.2618775
http://doi.org/10.1109/JIOT.2015.2394493
http://doi.org/10.1155/2019/9507938
http://doi.org/10.1109/ICECA.2017.8203688
http://doi.org/10.1016/j.asoc.2015.04.060
http://doi.org/10.3109/09638237.2015.1019054
http://doi.org/10.1109/JBHI.2014.2360711
http://doi.org/10.1016/j.neucom.2020.05.087
http://doi.org/10.1590/1809-4430-eng.agric.v38n2p166-172/2018
http://doi.org/10.3390/electronics9040678
http://doi.org/10.1186/s12911-019-0806-z
http://doi.org/10.1109/JBHI.2012.2234129
http://www.ncbi.nlm.nih.gov/pubmed/24592460


Diagnostics 2021, 11, 607 30 of 32

119. Avgerinakis, K.; Briassouli, A.; Kompatsiaris, I. Recognition of activities of daily living for smart home environments. In
Proceedings of the 9th International Conference on Intelligent Environments, Athens, Greece, 18–19 July 2013; pp. 173–180.

120. Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M. Automated Cognitive Health Assessment from Smart Home-Based Behavior
Data. IEEE J. Biomed. Health Inform. 2016, 20, 1188–1194. [CrossRef] [PubMed]

121. Dawadi, P.N.; Member, S.; Cook, D.J.; Fellow, I.; Schmitter-edgecombe, M. Smart Home Monitoring of Complex Tasks. IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev. 2013, 43, 1302–1313. [CrossRef]

122. Liu, C.H.; Wen, J.; Yu, Q.; Yang, B.; Wang, W. HealthKiosk: A family-based connected healthcare system for long-term monitoring.
In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China,
10–15 April 2011; pp. 241–246.

123. Majeed, Q.; Hbail, H.; Chalechale, A. A comprehensive mobile e-healthcare system. In Proceedings of the 2015 7th Conference on
Information and Knowledge Technology (IKT 2015), Urmia, Iran, 26–28 May 2015; pp. 1–4.

124. Zhang, J.; Tang, H.; Chen, D.; Zhang, Q. deStress: Mobile and remote stress monitoring, alleviation, and management platform.
In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012;
pp. 2036–2041.

125. Duarte, J.M.G.; Cerqueira, E.; Villas, L.A. Indoor patient monitoring through Wi-Fi and mobile computing. In Proceedings of the
2015 7th International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–29 July 2015; pp. 1–5.

126. Sturiale, A.; Pata, F.; De Simone, V.; Pellino, G.; Campennì, P.; Moggia, E. Internet and social media use among patients with
colorectal diseases (ISMAEL): A nationwide survey. Color. Dis. 2020, 22, 1724–1733. [CrossRef] [PubMed]

127. Ktsui, H. Assistive, Rehabilitation, and Surgical Robots from the Perspective of Medical and Healthcare Professionals; AAAI Press: Menlo
Park, CA, USA, 2007.

128. Shameer, K.; Johnson, K.W.; Yahi, A.; Miotto, R.; Li, L.I.; Ricks, D. Predictive modeling of hospital readmission rates using
electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort. Pac. Symp. Biocomput.
2017, 22, 276–287.

129. Meyer, A.; Zverinski, D.; Pfahringer, B.; Kempfert, J.; Kuehne, T.; Sündermann, S.H. Machine learning for real-time prediction of
complications in critical care: A retrospective study. Lancet Respir. Med. 2018, 6, 905–914. [CrossRef]

130. Ismail, A.; Abdlerazek, S.; El-Henawy, I. Big data analytics in heart diseases. J. Theor. Appl. Inf. Technol. 2020, 98, 1970–1980.
131. Boursalie, O.; Samavi, R.; Doyle, T.E. M4CVD: Mobile Machine Learning Model for Monitoring Cardiovascular Disease. Procedia

Comput. Sci. 2015, 63, 384–391. [CrossRef]
132. Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A personalized healthcare monitoring system for

diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors 2018, 18, 2183. [CrossRef]
133. Plis, K.; Bunescu, R.; Marling, C.; Shubrook, J.; Schwartz, F. A machine learning approach to predicting blood glucose levels

for diabetes management. In Proceedings of the Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence,
Québec City, QC, Canada, 27–28 July 2014; pp. 35–39.

134. Whippy, A. Hospital Deaths in Patients with Sepsis From 2 Independent Cohorts. JAMA 2014, 312, 90–92.
135. Shashikumar, S.P.; Stanley, M.D.; Sadiq, I.; Li, Q.; Holder, A.; Clifford, G.D.; Nemati, S. Early sepsis detection in critical care

patients using multiscale blood pressure and heart rate dynamics. J. Electrocardiol. 2017, 50, 739–743. [CrossRef]
136. Rello, J.; Leblebicioglu, H. Sepsis and septic shock in low-income and middle-income countries: Need for a different paradigm.

Int. J. Infect. Dis. 2016, 48, 120–122. [CrossRef]
137. Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019

(COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [CrossRef] [PubMed]
138. Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential

evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020. [CrossRef] [PubMed]
139. Kumar, P.; Kumari, S. Detection of coronavirus Disease (COVID-19) based on Deep Features. Preprints 2020. [CrossRef]
140. Mshali, H.; Lemlouma, T.; Moloney, M.; Magoni, D. A survey on health monitoring systems for health smart homes. Int. J. Ind.

Ergon. 2018, 66, 26–56. [CrossRef]
141. Nithya, B.; Ilango, V. Predictive analytics in health care using machine learning tools and techniques. In Proceedings of the 2017

International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 492–499.
142. Khianjoom, S.; Usaha, W. Anycast Q-routing in wireless sensor networks for healthcare monitoring. In Proceedings of the 2014

11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 1–6.

143. Jin, M.; Bahadori, M.T.; Colak, A.; Bhatia, P.; Celikkaya, B.; Bhakta, R. Improving Hospital Mortality Prediction with Medical
Named Entities and Multimodal Learning. arXiv 2018, arXiv:1811.12276.

144. Bhattacharya, B.; Mohapatra, S.; Mukhopadhyay, A.P.; Sah, S. Remote cardiovascular health monitoring system with auto-
diagnosis. In Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and
Networking (ViTECoN), Vellor, India, 30–31 March 2019; pp. 1–5.

145. Liu, L.; Wei, W.; Chow, K.H.; Loper, M.; Gursoy, E.; Truex, S.; Wu, Y. Deep Neural Network Ensembles against Deception:
Ensemble Diversity, Accuracy and Robustness. arXiv 2019, arXiv:1908.11091.

146. Tomar, D.; Agarwal, S. A survey on data mining approaches for healthcare. Int. J. Bio-Sci. Bio-Technol. 2013, 5, 241–266. [CrossRef]
147. Ponsa, P.; Guasch, D. A human-computer interaction approach for healthcare. Univ. Access Inf. Soc. 2018, 17, 1–3. [CrossRef]

http://doi.org/10.1109/JBHI.2015.2445754
http://www.ncbi.nlm.nih.gov/pubmed/26292348
http://doi.org/10.1109/TSMC.2013.2252338
http://doi.org/10.1111/codi.15245
http://www.ncbi.nlm.nih.gov/pubmed/32645247
http://doi.org/10.1016/S2213-2600(18)30300-X
http://doi.org/10.1016/j.procs.2015.08.357
http://doi.org/10.3390/s18072183
http://doi.org/10.1016/j.jelectrocard.2017.08.013
http://doi.org/10.1016/j.ijid.2016.04.017
http://doi.org/10.1148/radiol.2020200642
http://www.ncbi.nlm.nih.gov/pubmed/32101510
http://doi.org/10.1007/s10096-020-03901-z
http://www.ncbi.nlm.nih.gov/pubmed/32337662
http://doi.org/10.20944/preprints202003.0300.v1
http://doi.org/10.1016/j.ergon.2018.02.002
http://doi.org/10.14257/ijbsbt.2013.5.5.25
http://doi.org/10.1007/s10209-016-0515-7


Diagnostics 2021, 11, 607 31 of 32

148. Calp, M.H.; Akcayol, M.A. The importance of human computer interaction in the development process of software projects. arXiv
2019, arXiv:1902.02757. [CrossRef]

149. Liu, P.; Liu, Y. Human computer interaction design for intensive care unit monitors. In Proceedings of the 2nd International
Conference on Control, Automation and Artificial Intelligence (CAAI 2017), Sanya, China, 25–26 June 2017; Volume 134, pp. 5–8.

150. Grespan, L.; Fiorini, P.; Colucci, G. Patient Safety in Robotic Surgery BT—The Route to Patient Safety in Robotic Surgery; Springer
International Publishing: Cham, Switzerland, 2019; pp. 7–23.

151. Kumar, B.; Sharma, L.; Wu, S. Job allocation schemes for Mobile Service Robots in hospitals. In Proceedings of the 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1323–1326.

152. Twin Robotic X-ray. Available online: https://www.siemens-healthineers.com/robotic-x-ray/twin-robotic-x-ray (accessed on 13
August 2020).

153. Samani, H. Robotic Automated External Defibrillator Ambulance for Emergency Medical Service in Smart Cities. IEEE Access
2016. [CrossRef]

154. Rahmani, A.M.; Thanigaivelan, N.K.; Gia, T.N.; Granados, J. Smart e-health gateway: Bringing intelligence to internet-of-things
based ubiquitous healthcare systems. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 826–834.

155. Elgazzar, K.; Aboelfotoh, M.; Martin, P.; Hassanein, H.S. Ubiquitous health monitoring using mobile web services. Procedia
Comput. Sci. 2012, 10, 332–339. [CrossRef]

156. Help4Mood Project. Available online: http://www.help4mood.info/site/default.aspx. (accessed on 22 July 2018).
157. Hassan, M.K.; el Desouky, A.I.; Elghamrawy, S.M.; Sarhan, A.M. Intelligent hybrid remote patient-monitoring model with

cloud-based framework for knowledge discovery. Comput. Electr. Eng. 2018, 70, 1–15. [CrossRef]
158. Zulj, S.; Seketa, G.; Dzaja, D.; Sklebar, F.; Drobnjak, S.; Celic, L.; Magjarevic, R. Supporting diabetic patients with a remote patient

monitoring systems. In II Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26–28
October 2016; Springer: Singapore, 2017; Volume 60, pp. 577–580.

159. Rani, N.S.; Vimala, K.; Kalaivani, V. A remote healthcare monitoring system for faster identification of cardiac abnormalities from
compressed ECG using advanced data mining approach. In Proceedings of the Fourth International Conference on Signal and
Image Processing 2012 (ICSIP 2012); Springer: New Delhi, India, 2013; Volume 222.

160. Msayib, Y.; Gaydecki, P.; Callaghan, M.; Dale, N.; Ismail, S. An Intelligent Remote Monitoring System for Total Knee Arthroplasty
Patients. J. Med. Syst. 2017, 41, 1–6. [CrossRef] [PubMed]

161. Zanjal, S.V.; Talmale, G.R. Medicine Reminder and Monitoring System for Secure Health Using IOT. Procedia Comput. Sci. 2016,
78, 471–476. [CrossRef]

162. Vivekanandan, S.; Devanand, M. Remote monitoring for diabetes disorder: Pilot study using InDiaTel prototype. Eur. Res.
Telemed. 2015, 4, 63–69. [CrossRef]

163. Delrobaei, M.; Memar, S.; Pieterman, M.; Stratton, T.W.; McIsaac, K.; Jog, M. Towards remote monitoring of Parkinson’s disease
tremor using wearable motion capture systems. J. Neurol. Sci. 2018, 384, 38–45. [CrossRef] [PubMed]

164. Woodbridge, J.; Tu, M.K. A Remote Patient Monitoring System for Congestive Heart Failure. J. Med Syst. 2011, 35, 1165–1179.
165. HEALTH@HOME Project. Available online: http://www.aal-europe.eu/projects/healthhome/ (accessed on 22 July 2018).
166. Neveon Projects. Available online: https://nevonprojects.com/iot-patient-health-monitoring-project (accessed on 19 January 2011).
167. Banerjee, A.; Ramanujan, R.A.; Agnihothri, S. Mobile health monitoring: Development and implementation of an app in a

diabetes and hypertension clinic. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2016, 2016, 3424–3436.
168. Kim, I.; Bhagat, Y.A.; Homer, J.; Lobo, R. Multimodal Analog Front-End for Wearable Bio-Sensors. EEE Sens. J. 2016, 16, 8784–8791.

[CrossRef]
169. Sneha, S.; Varshney, U. A framework for enabling patient monitoring via mobile ad hoc network. Decis. Support Syst. 2013, 55,

218–234. [CrossRef]
170. Sagahyroon, A. Remote patients monitoring: Challenges. In Proceedings of the CCWC 2017: The 7th IEEE Annual Computing

and Communication Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017.
171. Zhou, J.; Cao, Z.; Dong, X.; Xiong, N.; Vasilakos, A.V. 4S: A secure and privacy-preserving key management scheme for

cloud-assisted wireless body area network in m-healthcare social networks. Inf. Sci. 2015, 314, 255–276. [CrossRef]
172. Alasaarela, E. Secure key management scheme based on ECC algorithm for patient’s medical information in healthcare system.

In Proceedings of the International Conference on Information Networking 2014 (ICOIN2014), Phuket, Thailand, 10–12 February
2014; pp. 453–457.

173. Al-Janabi, S.; Al-Shourbaji, I.; Shojafar, M.; Shamshirband, S. Survey of main challenges (security and privacy) in wireless body
area networks for healthcare applications. Egypt. Inform. J. 2017, 18, 113–122. [CrossRef]

174. Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey.
IEEE Access 2015, 3, 678–708. [CrossRef]

175. Morón, M.J.; Luque, J.R.; Botella, A.A.; Cuberos, E.J.; Casilari, E.; Diaz-Estrella, A.A.A.; Cuberos, E.J.; Casilari, E.; Diaz-Estrella, A.
A smart phone-based personal area network for remote monitoring of biosignals. In 4th International Workshop on Wearable and
Implantable Body Sensor Networks (BSN 2007); Springer: Berlin/Heidelberg, Germany, 2007; Volume 13, pp. 116–121.

176. Elhayatmy, G.; Dey, N.; Ashour, A.S. Internet of Things and Big Data Analytics toward Next-Generation Intelligence; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 30, pp. 3–20.

http://doi.org/10.18844/gjit.v0i0.114
https://www.siemens-healthineers.com/robotic-x-ray/twin-robotic-x-ray
http://doi.org/10.1109/ACCESS.2016.2514263
http://doi.org/10.1016/j.procs.2012.06.044
http://www.help4mood.info/site/default.aspx.
http://doi.org/10.1016/j.compeleceng.2018.02.032
http://doi.org/10.1007/s10916-017-0735-2
http://www.ncbi.nlm.nih.gov/pubmed/28421308
http://doi.org/10.1016/j.procs.2016.02.090
http://doi.org/10.1016/j.eurtel.2015.04.002
http://doi.org/10.1016/j.jns.2017.11.004
http://www.ncbi.nlm.nih.gov/pubmed/29249375
http://www.aal-europe.eu/projects/healthhome/
https://nevonprojects.com/iot-patient-health-monitoring-project
http://doi.org/10.1109/JSEN.2016.2564942
http://doi.org/10.1016/j.dss.2013.01.024
http://doi.org/10.1016/j.ins.2014.09.003
http://doi.org/10.1016/j.eij.2016.11.001
http://doi.org/10.1109/ACCESS.2015.2437951


Diagnostics 2021, 11, 607 32 of 32

177. Focsa, M.; Mihalas, G.I. EHR Ecosystem. In Pervasive and Mobile Sensing and Computing for Healthcare: Technological and Social
Issues; Mukhopadhyay, S.C., Postolache, O.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 251–268.

178. El-Sappagh, S.; Ali, F.; El-Masri, S.; Kim, K.; Ali, A.; Kwak, K.-S. Mobile Health Technologies for Diabetes Mellitus: Current State
and Future Challenges. IEEE Access 2018, 7, 21917–21947. [CrossRef]

179. Slavíček, K.; Dostál, O.; Lieskovan, T.; Hajný, J. Ensuring security of a telemedicine project in compliance with GDPR. In
Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–4.

180. Mustafa, U.; Pflugel, E.; Philip, N. A novel privacy framework for secure M-Health applications: The Case of the GDPR. In
Proceedings of the 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3), London, UK,
16–18 January 2019; pp. 1–9.

181. Liang, Y.; Chen, Z. Intelligent and Real-Time Data Acquisition for Medical Monitoring in Smart Campus. IEEE Access 2018, 6,
74836–74846. [CrossRef]

182. Uy, N.Q.; Nam, V.H. A comparison of AMQP and MQTT protocols for Internet of Things. In Proceedings of the 2019 6th
NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 292–297.

http://doi.org/10.1109/ACCESS.2018.2881001
http://doi.org/10.1109/ACCESS.2018.2883106

	Introduction 
	Materials and Methods 
	Selection Criteria 
	Results Statistical Analysis 

	Main Components of the RPM System 
	Data Acquisition 
	Storage Server 
	Cloud Computing 
	Fog Computing in RPMs 

	Back-End System 

	Disease-Specific Remote Patient Monitoring Systems 
	Heart Disease Monitoring Systems 
	Fall Detection Monitoring Systems 
	Mental Health Systems 
	Diabetes Monitoring System 
	Vital Sign Monitoring and Health Assessment Systems 
	Other Diseases Monitoring Systems 

	The role of Artificial Intelligence in RPMs 
	Rule-Based Systems (Expert Systems) 
	Machine Learning Techniques 
	Human-Computer Interaction 
	Physical and Processing Robots 

	Case Study: Chronic Diseases Monitoring System 
	Study Results 
	Conclusions 
	References

