2,260 research outputs found

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    Machine learning for large-scale wearable sensor data in Parkinson disease:concepts, promises, pitfalls, and futures

    Get PDF
    For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice

    Protocol for PD SENSORS:Parkinson’s Disease Symptom Evaluation in a Naturalistic Setting producing Outcomes measuRes using SPHERE technology. An observational feasibility study of multi-modal multi-sensor technology to measure symptoms and activities of daily living in Parkinson’s disease

    Get PDF
    Introduction The impact of disease-modifying agents on disease progression in Parkinson’s disease is largely assessed in clinical trials using clinical rating scales. These scales have drawbacks in terms of their ability to capture the fluctuating nature of symptoms while living in a naturalistic environment. The SPHERE (Sensor Platform for HEalthcare in a Residential Environment) project has designed a multi-sensor platform with multimodal devices designed to allow continuous, relatively inexpensive, unobtrusive sensing of motor, non-motor and activities of daily living metrics in a home or a home-like environment. The aim of this study is to evaluate how the SPHERE technology can measure aspects of Parkinson’s disease.Methods and analysis This is a small-scale feasibility and acceptability study during which 12 pairs of participants (comprising a person with Parkinson’s and a healthy control participant) will stay and live freely for 5 days in a home-like environment embedded with SPHERE technology including environmental, appliance monitoring, wrist-worn accelerometry and camera sensors. These data will be collected alongside clinical rating scales, participant diary entries and expert clinician annotations of colour video images. Machine learning will be used to look for a signal to discriminate between Parkinson’s disease and control, and between Parkinson’s disease symptoms ‘on’ and ‘off’ medications. Additional outcome measures including bradykinesia, activity level, sleep parameters and some activities of daily living will be explored. Acceptability of the technology will be evaluated qualitatively using semi-structured interviews.Ethics and dissemination Ethical approval has been given to commence this study; the results will be disseminated as widely as appropriate

    On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing

    Get PDF
    Objective: While Parkinson’s disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. Method: EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Results: Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. Conclusion: These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients

    Future Opportunities for IoT to Support People with Parkinson’s

    Get PDF
    Recent years have seen an explosion of internet of things (IoT) technologies being released to the market. There has also been an emerging interest in the potentials of IoT devices to support people with chronic health conditions. In this paper, we describe the results of engagements to scope the future potentials of IoT for supporting people with Parkinson’s. We ran a 2-day multi-disciplinary event with professionals with expertise in Parkinson’s and IoT, to explore the opportunities, challenges and benefits. We then ran 4 workshops, engaging 13 people with Parkinson’s and caregivers, to scope out the needs, values and desires that the community has for utilizing IoT to monitor their symptoms. This work contributes a set of considerations for future IoT solutions that might support people with Parkinson’s in better understanding their condition, through the provision of objective measurements that correspond to their, currently unmeasured, subjective experiences

    Human activity detection based on mobile devices

    Get PDF
    Aquesta tesi se centra en la detecció d'activitat humana a partir de dispositius mòbils i portàtils. Escollim Hexiwear com el nostre dispositiu portàtil per recollir les dades de l'activitat humana diària, com ara l'acceleració de tres eixos, l'orientació de tres eixos, la velocitat angular i la posició de tres eixos. Aquest projecte consisteix en el desenvolupament d'una aplicació per a telèfon intel·ligent per a l'usuari en l'anàlisi de dades, la visualització de dades i la generació de resultats. L'objectiu és construir un prototip obert i modular que pugui servir d'exemple o plantilla per al desenvolupament d'altres projectes. L'aplicació està desenvolupada amb JAVA per Android Studio. L'aplicació permet a l'usuari connectar-se amb el dispositiu portàtil i reconèixer la seva activitat diària. Per a l'algorisme de classificació de l'activitat diària, hem utilitzat dos mètodes diferents, el primer és mitjançant l'establiment de diferents llindars, el segon és mitjançant l'aprenentatge automàtic. L'aplicació es va provar i els resultats van ser satisfactoris, ja que l'aplicació generada va funcionar correctament. Malgrat les òbvies limitacions, la feina feta és un punt de partida per a desenvolupaments futurs。Esta tesis se centra en la detección de actividad humana basada en dispositivos móviles y portátiles. Elegimos Hexiwear como nuestro dispositivo portátil para recopilar los datos de la actividad humana diaria, como la aceleración de tres ejes, la orientación de tres ejes, la velocidad angular de tres ejes y la posición. Este proyecto implica la creación de una aplicación de teléfono para usuarios de análisis de datos, visualización de datos y generación de resultados. El objetivo es construir un prototipo abierto y modular que pueda servir como ejemplo o plantilla para el desarrollo de otros proyectos. La aplicación está desarrollada usando JAVA por Android Studio. La aplicación permite al usuario conectarse con el dispositivo portátil y reconocer su actividad diaria. Para el algoritmo de clasificación de la actividad diaria, usamos dos métodos diferentes, el primero es establecer umbrales diferentes, el segundo es usar el aprendizaje automático. La aplicación fue probada y los resultados fueron satisfactorios, ya que la aplicación generada funcionó correctamente. A pesar de las limitaciones evidentes, el trabajo realizado es un punto de partida para futuros desarrollos.  This thesis focuses on human activity detection based on mobile and wearable devices. We choose Hexiwear as our wearable device to collect the human daily activity data, like tri-axis acceleration, tri-axis orientation, tri-axis angular velocity and position. This project consists in the development of a smartphone application for the user in data analysis, data visualization and generates results. The objective is to build an open and modular prototype that can serve as an example or template for the development of other projects. The application is developed using JAVA by Android Studio. The application allows the user to connect with the wearable device, and recognize their daily activity. For the daily activity classify algorithm, we used two different methods, the first one is by set different thresholds, the second is by using the machine learning. The application was tested and the results were satisfactory, as the generated application worked properly. Despite the obvious limitations, the work done is a starting point for future developments

    Neurological Tremor: Sensors, Signal Processing and Emerging Applications

    Get PDF
    Neurological tremor is the most common movement disorder, affecting more than 4% of elderly people. Tremor is a non linear and non stationary phenomenon, which is increasingly recognized. The issue of selection of sensors is central in the characterization of tremor. This paper reviews the state-of-the-art instrumentation and methods of signal processing for tremor occurring in humans. We describe the advantages and disadvantages of the most commonly used sensors, as well as the emerging wearable sensors being developed to assess tremor instantaneously. We discuss the current limitations and the future applications such as the integration of tremor sensors in BCIs (brain-computer interfaces) and the need for sensor fusion approaches for wearable solutions

    Contactless finger tapping detection at C band

    Get PDF
    The rapid finger tap test is widely used in clinical assessment of dyskinesias in Parkinson’s disease. In clinical practice, doctors rely on their clinical experience and use the Parkinson’s Disease Uniform Rating Scale to make a brief judgment of symptoms. We propose a novel C-band microwave sensing method to evaluate finger tapping quantitatively and qualitatively in a non-contact way based on wireless channel information (WCI). The phase difference between adjacent antennas is used to calibrate the original random phase. Outlier filtering and smoothing filtering are used to process WCI waveforms. Based on the resulting signal, we define and extract a set of features related to the features described in UPDRS. Finally, the features are input into a support vector machine (SVM) to obtain results for patients with different severity. The results show that the proposed system can achieve an average accuracy of 99%. Compared with the amplitude, the average quantization accuracy of the phase difference on finger tapping is improved by 3%. In the future, the proposed system could assist doctors to quantify the movement disorders of patients, and it is very promising to be a candidate for clinical practice
    corecore