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 

Abstract—The rapid finger tap test is widely used in clinical 

assessment of dyskinesias in Parkinson's disease. In clinical 

practice, doctors rely on their clinical experience and use the 

Parkinson's Disease Uniform Rating Scale to make a brief 

judgment of symptoms. We propose a novel C-band microwave 

sensing method to evaluate finger tapping quantitatively and 

qualitatively in a non-contact way based on wireless channel 

information (WCI). The phase difference between adjacent 

antennas is used to calibrate the original random phase. Outlier 

filtering and smoothing filtering are used to process WCI 

waveforms. Based on the resulting signal, we define and extract a 

set of features related to the features described in UPDRS. Finally, 

the features are input into a support vector machine (SVM) to 

obtain results for patients with different severity. The results show 

that the proposed system can achieve an average accuracy of 99%. 

Compared with the amplitude, the average quantization accuracy 

of the phase difference on finger tapping is improved by 3%. In 

the future, the proposed system could assist doctors to quantify the 

movement disorders of patients, and it is very promising to be a 

candidate for clinical practice. 

 
Index Terms—finger taps, non-contact, phase difference, SVM, 

UPDRS, WCI 

 

I. INTRODUCTION 

uantification of human dyskinesia has been a one of the 

prominent smart health research area in recent years. Take 

Parkinson as an example, Medical manifestations mainly 

include motor symptoms and non-motor symptoms. Among 

them [1] the main symptoms of exercise are static tremor, 

myotonic, bradykinesia and posture balance disorder. Non-

motor symptoms are mainly sleep disorders, autonomic 

dysfunction, and mental disorders [2]. Dyskinesia is the main 

cause of disability in Parkinson's patients. It not only affects the 

life of patients but also increases the liability of care takers.  

   In order to identify Parkinson's patients and accurately 

assess their motor function, the researchers have been trying 

various means to quantify dyskinesia in patients with 

Parkinson's disease, including frozen gait [3-4], repetitive eye-

hand movement [5] and finger tapping. Especially for the 

evaluation of Parkinson's disease (PD), finger tapping is widely 

used in clinical practice. The reasons are as follows: the rhythm 

of finger movement is an effective index to evaluate the 
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function of brain movement [6]. Measuring the ability of 

individuals to fingers tap is an important method to evaluate the 

integrity of neuromuscular. In addition, there is a strong 

correlation between dopamine receptor and motor task of finger 

tapping in Parkinson's disease, the rhythm, amplitude and speed 

of the finger tapping movement vary with the patient's motor 

ability and symptoms. 

In recent decades, the medical community has been 

developing clinical tools, such as rating scales to quantify the 

severity of motor and other symptoms of Parkinson's disease. 

UPDRS is still the preferred method because it is currently the 

most mature dyskinesia rating scale and easy to manage [6]. 

While observing several patients’ motions such as upper-limb 

motion, walking, and “finger-tapping” motions, a doctor 

evaluates the degree of motor deterioration according to 

UPDRS. However, there are still some problems in clinical 

application: First, the assessment of dyskinesia mainly relies on 

the doctor's clinical experience and subjective judgment, which 

leads to the quantitative results not being completely objective. 

Second, the patient needs to go to the hospital for a diagnosis. 

When performing the test in the UPDRS motor part (III), the 

patient did not show any symptoms, which may lead to an 

inaccurate assessment.  

Finger taps (patient taps thumb with index finger in rapid 

succession) severity is an indicator of quantifying Parkinson's. 

The severity of finger taps is divided into a total of 5 ratings 

ranges from 0 to 4 according to the UPDRS.  
0: Normal. 

1: Mild slowing and/or reduction in amplitude. 

2: Moderately impaired. Definite and early fatiguing. May 

have occasional arrests in movement. 

3: Severely impaired. Frequent hesitation in initiating 

movements or arrests in ongoing movement. 

4: Can barely perform the task. 

Many researchers are currently working on finding effective 

ways to quantify finger taps. The existing study on quantifying 

the severity of finger taps is mainly divided into two categories: 

one based on Micro-Electro-Mechanical System (MEMS) and 

the other based on computer vision. The advantages of MEMS, 

such as small size, low power consumption, low cost and wide 

range of uses, make it a tool for a large number of researchers 

and used to evaluate patients' movement disorders. These 
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devices need to be worn on the patient. Gyro wearable systems 

are widely used to evaluate finger fitting tasks [ 7, 8,9 ,10]. The 

gyroscope is worn on the index finger of the subject [8,9] or 

wear on the index finger and thumb [9]. The severity of finger 

taps is quantified by evaluating speed, finger movement 

amplitude and motion rhythm. The tapping amplitudes can be 

quantified through angle excursions [11,12]. Acceleration 

sensors are also used to quantify the degree of damage to the 

finger [13,14 ,15,16]. Yokoe. M et al. [17] finds the opening 

and closing speed is the best parameter. These studies extract 

time domain features such as finger taps frequency [18], pause 

duration, number of halts and so on [19]. In addition, Yuko 

Sano et al. [20] proposed a system for measuring the severity of 

finger taps based on magnetic force. The subject's thumb and 

forefinger were attached to a magnetometer. The system 

outputs parameters such as distance, speed, acceleration and 

interval of finger movement during the finger taps task. 

Taha Khan et al. [21] used a video camera to record the 

patient's finger taps video. They use computer vision algorithms 

to track moving fingers. Extracting different features from the 

time series estimates finger taps speed, amplitude, and rhythm. 

Stefan et al. [22] used DeepLabCut to track frame by frame 

video recordings of finger tapping on standard smartphones. 

They tracked hand localization points (including fingertips and 

thumb tips) by evaluating network capabilities, and extracted 

amplitude, distance, and rhythm to quantify finger tapping. 

Pang et al. [23] used discrete wavelet transform (DWT) to 

extract the (3D) motion features of each finger joint. The 

severity of each finger joint tremor was quantified by analyzing 

the frequency of motion changes. However, the user must 

maintain a line of sight with the camera. It must be mentioned 

that using camera detection will involve personal privacy. 

Wireless sensing technology using channel observation has 

attracted the attention of researchers in recent years. The 

researchers found that wireless signals can sense and recognize 

changes in the environment. A lot of research work is done 

based on the amplitude of wireless channel information such as 

presence detection [24], indoor positioning [25 26], and crowd 

counting [27 28]. In addition, WCI is also widely used in human 

activity recognition applications [29,30,31,32]. It has been 

proven that it can be used for small-scale motion detection such 

as respiratory rhythm monitoring [33], lip recognition [34] and 

keystroke [35]. WCI phase shift is related to signal transmission 

delay and direction in space and frequency domain, which can 

be used for human localization and tracking [36]. The phase 

difference between adjacent antennas in time domain has 

different dominant frequency components, which can be used 

to estimate respiratory frequency [37]. 

Compared with previous work, the main purpose of this 

paper is to design a non-contact perception method to evaluate 

patients with movement disorders. The patient collects and 

evaluates the patient's motion signals without wearing any 

wearable devices. In addition, the wireless sensing method can 

effectively prevent leakage of user privacy.  Our system uses a 

pair of simple wireless transceivers. The wireless signal 

transmitter continuously transmits wireless signals. During 

wireless signal propagation, the finger of the patient performing 

the finger taps task is considered an obstacle to the movement, 

so this factor causes disturbances in wireless signals, multipath 

propagation effects, reflections and delays. The receiver 

receives the wireless signal and extracts the constantly 

changing WCI. This provides a guarantee for continuous 

monitoring of the patient's hand movements. The WCI carrying 

amplitude and phase is obtained from the wireless signal. The 

original phase is calibrated by the phase difference between 

adjacent antennas. We use outlier detection and smooth 

methods to obtain a pure finger taps signal. Finally, the 

extracted features are input to the classifier to complete the 

evaluation of finger tapping. 

In summary, the main contributions in this paper are as 

follows: 

1. We propose a non-contact method to quantify the severity 

of finger taps. We use the WCI from the physical layer to detect 

the wireless signal interfered by finger. As far as we know, this 

is the first work to quantify the severity of finger taps using 

wireless signals. 

2. Differences with other wireless sensing operations, we use 

the phase difference of adjacent antennas to process the wireless 

signals affected by finger taps. After data processing and 

feature extraction are performed, and then machine learning 

algorithm is used to classify the finger taps signals of different 

severity. 

3. We performed experiments and verified the performance 

of our proposed system, with a classification accuracy of more 

than 98% for finger signals with different severity. Non-contact 

intelligent health monitoring is of great significance for the 

early treatment and detection of diseases. 

The remainder of the article is organized as follow. Section 

II gives the basic theory of the wireless sensing technology 

leveraging WCI; Section III describe the system architecture; 

Section IV describes the experiment setup and discuss the 

experimental results. Finally, Section V concludes the article. 

In the following Table I, we summarize all the used 

abbreviations in this work to assist the reader. 

 
TABLE I  

LIST OF USED ABBREVIATIONS WITH THE DEFINITION 

Abbreviations Definition 

WCI Wireless Channel Information 

UPDRS 

MEMS 

OFDM 

SVM 

CFR 

DC 
DWT 

Unified Parkinson Disease Rating Scale 

Micro-Electro-Mechanical System 
Orthogonal Frequency Division Multiplexing 

Support Vector Machine 

Channel Frequency Response 

Direct Current 

Discrete Wavelet Transform 

 

II. FUNDAMENTAL 

The proposed method is to analyze the wireless signal from 

the transmitting end and the receiving end in C band. The WCI 

is extracted by applying orthogonal frequency division 

multiplexing (OFDM) technique. WCI characterize by 
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multipath effects, reflections, scattering, shadowing and 

refraction. In OFDM data is divided into multiple orthogonal 

sub-carriers so that all sub-carriers can finely describe the WCI 

in each propagation path. We obtain the channel frequency 

response from the WCI of each sub-carrier. 

In our sensing system, the channel frequency response (CFR) 

of 30 sub-carriers can be obtained in each received data packet. 

The CFR of these 30 subcarriers is expressed as follows: 

 

                        Η(𝑓) = [Η(𝑓1), Η(𝑓2), … Η(𝑓𝑛)]         (1) 

 

The CFR of each sub-carrier containing amplitude and phase 

information is expressed as follows: 

 

  Η(𝑓𝑠) =  ‖Η(𝑓𝑠)‖𝑒𝑥𝑝(𝑗∠Η(𝑓𝑠))                    (2) 

 

where 𝑓𝑠 is the center frequency of the 𝑠𝑡ℎ sub-carrier. ‖Η(𝑓𝑘)‖ 

is the amplitude of the 𝑘th subcarrier, ∠Η(𝑓𝑠) is the phase of the 

𝑠𝑡ℎ sub-carrier. The original amplitude and phase information 

is shown in Fig. 1. In order to continuously monitor the finger 

taps, the WCI is continuously recorded in the time window of 

length 𝐷 and it is expressed as: 

 

                                  H𝑡𝑜𝑡𝑎𝑙 = [H1, H2 … H𝐷 ]                (3) 

 

where total is the number of packets received. These 𝐷 wireless 

data contain the original information of the finger taps. 

 

 
(a) 

 

 
(b) 

Fig. 1.  (a)The row amplitude information of wireless channel information. (b) 

The row phase information of wireless channel information. 

III. SYSTEM DESIGN 

In this section, we first introduce the structure of wireless 

signal-based sensing system. The system robustly quantifies the 

severity of finger taps. We then introduce methods of data 

processing and extraction of features. 

A. System architecture 

Our wireless sensing system architecture is presented in Fig. 

2. It consists of three main modules: (i) data extraction, (ii) data 

processing and (iii) classification. In the data extraction module, 

the transmitter sends a 5.32GHz wireless signal, and the 

receiver captures the wireless signal interfered by the finger. In 

the data processing module, we first calibrate the original phase 

using the phase difference of the adjacent antennas to obtain the 

WCI of the finger taps then removes outliers. Finally, we use 

local weighted regression algorithm to filter and smooth the 

finger tapping signal. 

    

Phase calibration

Noise Filtering

Feature Extraction

Smooth

Classifier

Score 0 Score 1 Score 2 Score 3 Score 4

Outliers detection

Data collect Data processing

Classification

 
Fig. 2.  System architecture. 

 

B. Phase calibration 

The phase of the raw data exhibits a random distribution that 

cannot be used to identify motion and perceive environmental 

changes. Therefore, the phase information is not getting enough 

attention.  In previous research work amplitude information of 

the WCI was considered for such applications while neglecting 

the phase information. In this paper, we use the phase difference 

between two adjacent antennas to calibrate the phase 

information. The purpose of this paper is to prove from the 

perspective of experimental results that phase difference data is 

better than amplitude information in quantifying finger taps. 

The uncalibrated phase of the 𝑗𝑡ℎ subcarrier can be represented 

as: 

 

𝜓̂ 𝑗 =  𝜓𝑗 − 2𝜋
𝑘𝑗

𝑁
δ + 𝛽.          (4) 

 

where 𝜓̂ 𝑗 denotes the true phase of CSI data, δ is offset timing, 

𝛽  is the initial phase offset due to the phase-locked loop 

(PLL). 𝑘𝑗 indicates the sub-carrier number of the 𝑗𝑡ℎ subcarrier 

and the 𝑁 is the FFT size which is equal to 64 in the IEEE 

802.11a/g/n in wireless standard. In summary, it is difficult to 

obtain the available phase information from the wireless device. 

The phase difference from adjacent antennas is stable and can 

be used to assess finger tap, because different antennas use the 

same system clock in the same wireless device. Therefore, the 
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phase difference information of adjacent antennas can be 

obtained by using the following equation: 

 

Δ𝜓̂ 𝑗 =  Δ𝜓𝑗 −  2𝜋
𝑘𝑗

𝑁
Δδ + Δ 𝛽.                         (5) 

 

where  Δ𝜓𝑗 =   𝜓𝑗1 −  𝜓𝑗2 , is the difference of true 

phase, Δδ = δ1 − δ2 is the delay of each adjacent antenna,  Δ𝛽 

is the unknown difference in phase offsets, which is actually a 

constant [38]. For Δδ, it can be expressed as follows: 

 

Δδ =
dsinθ

cT
≤

1

2fT
 .                               (6) 

 
where d is the distance between the antennas, θ is the direction 

of arrival, c is the speed of light, T is the 50 ns Wi-Fi sampling 

interval and f is the frequency. Therefore, δ approaches 0 and 

2𝜋
𝑘𝑗

𝑁
Δδ  is ignored in Δ𝜓̂ 𝑗 . Therefore, the phase Δ𝜓𝑗 

calibrated by the phase difference can be expressed as: 

 

                                   Δ𝜓̂ 𝑗 =  Δ𝜓𝑗 + Δ 𝛽.                             (7) 

 

We find that the phase information after the phase difference 

processing became perfect, and the finger taps task could be 

finely depicted. However, the calibrated phase information has 

a DC component. We need to remove the DC component 

because the DC component affects the extraction of features 

such as peak detection and Fast Fourier frequency (FFT) 

detection. Specifically, the mean value of the phase difference 

signal is first calculated. 

 

     𝑥̅ =  
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1                                      (8) 

 

where 𝑥̅  is the DC component of the phase difference and 𝑥𝑖 is 

the phase difference information of the 𝑖𝑡ℎ  packet. Then, the 

calibration signal 𝑥̂𝑖 is obtained by subtracting DC component 

from original phase information: 

 

                                𝑥̂𝑖 =  𝑥𝑖 − 𝑥̅                                    (10) 

 

In order to show the difference between the phase being 

calibrated and the original phase in the finger taps experiment 

result is taken. In Fig. 3, the phase marked by red dots is the 

phase difference of adjacent antennas and the phase of the 

single antenna is marked by blue. We find that the phase of the 

single antenna without any processing is randomly distributed 

in [-π, π], which causes the original phase to be unusable. The 

phase of finger-tapping after phase difference processing is 

distributed in [−
π

6
,

π

12
]. 

 

 
Fig. 3.  Comparison between the phase (marked by blue) of a single antenna 

and the phase difference (marked by red) of two adjacent antennas. 

 

Fig. 4(a) shows the finger tapping waveform of 30 carriers. 

Fig.4(b) shows the standard deviation of the finger tap 

waveforms of all subcarriers in this experiment, of which the 

13th subcarrier has the largest variance. When there is a moving 

object in the transceiver device, the wireless signal will 

fluctuate.  In other words, compared with other sub-carriers, the 

sub-carrier with the largest standard deviation is easier to obtain 

the finger tap signal. Therefore, we choose the sub-carrier with 

the largest variance to characterize finger tapping in this study. 

 

 
(a) 

 
(b) 

Fig. 4.  (a) All subcarrier finger tapping waveforms. (b) Standard deviation of 
the subcarriers 

 

C. Filter processing 

Due to the influence of environmental noise, protocol 

specifications and hardware, there are some abnormal 

phenomena, which are obviously not caused by human motion 

and affect the continuity of the signal. Therefore, it should be 

screened before human detection. We use the Hampel filter to 

detect the outliers which falling out of the closed interval [𝑚𝑖 −
𝛾 ∗ 𝑀𝐴𝐷𝑖 , 𝑚𝑖 + 𝛾 ∗ 𝑀𝐴𝐷𝑖], where 

 

𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖 , 𝑥𝑖+1 … 𝑥𝑖+𝑑)                       (10) 

𝑀𝐴𝐷𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑖|, |𝑥𝑖+1 − 𝑚𝑖|, … |𝑥𝑖+𝑘 − 𝑚𝑖|)        (11) 
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𝑑 is the length of the sliding data window,  𝑚𝑖 is the median and 

𝑀𝐴𝐷𝑖 is known as the median absolute deviation of the data 

sequence, 𝛾 is the factor of violation and mostly used value is 3 

[39]. Fig. 4 shows the phase difference of the sub-carrier before 

and after using removing outliers. The yellow waveform is the 

phase difference signal from which the abnormal point has been 

removed, and the blue waveform is the original phase 

difference signal. The marked points are outlier. We can see that 

the outliers are effectively filtered out and replaced by median 

value.  

 

 
Fig. 5.  Outlier removal on phase difference. 

 

Although some obvious outliers have been removed, the 

waveform of finger tapping still has high-frequency noise. Due 

to the presence of noise, it is difficult to extract a series of 

features such as peaks and peak-to-peak values for continuous 

and periodic signal waveforms. Therefore, this study uses the 

local weighted regression algorithm to smooth the finger 

tapping waveform to achieve the filtering effect. The smoothing 

process is considered local because like the moving average 

method. Each smoothed value is determined by neighboring 

data points defined within the span [40]. The process is 

weighted because a regression weight function is defined for 

the data points contained within the span. 

Step 1: the range of the points to be included is determined. 

The number 𝑛 of these points is specified. The larger this value 

is, the smoother the adapted curve will be in the end. The range 

is determined in such a way that exactly 𝑛 values, including the 

selected point itself, are in the range, and the selected point is 

in the center of the selected range.  

Step 2: Establish weights for local weighted regression 

smoothing. The weights are given by the tricube function:  

 

                                 𝑤𝑖 = (1 − |
𝑥0−𝑥𝑖

∆(𝑥0)
|

3

)3                           (12) 

  ∆(𝑥0) = |𝑥0 − 𝑥𝑖|𝑥𝑖∈𝑁
max                            (13) 

 

Step 3: Perform regression smoothing. The LOESS 

procedure uses a quadratic function. 

 

𝑦̂𝑘 = 𝑎 + 𝑏𝑥𝑘 + 𝑐𝑥𝑘
2                          (14) 

 

Step 4: For the finger tap signal, the data collected in each 

experiment is relatively small. In this case, the estimated 

regression function may be more or less strongly affected by 

potential outliers. We need to determine the robust weights. 

Therefore, robust weightings are determined in a fourth step of 

the procedure. To determine the weightings, the residuals of the 

values estimated up to this point and the resulting median are 

calculated. The calculation formula is as follows: 

 

 𝐺(𝑥𝑘) = {
(1 − (

|𝑦𝑖−𝑦̂𝑖|

6𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖−𝑦̂𝑖|)
)2)2, |

|𝑦𝑖−𝑦̂𝑖|

6𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖−𝑦̂𝑖|)
| < 1

0    ,                                        |
|𝑦𝑖−𝑦̂𝑖|

6𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖−𝑦̂𝑖|)
| ≥ 1

       (15) 

 

If the residual is greater than or equal to 6 times the median, 

the robust weighting is 0. This achieves the purpose of 

smoothing. The robust weightings, multiplied with the 

proximity weightings, are used for re-estimating a linear 

regression function within the individual ranges: 

 
∑ 𝑤(𝑥𝑘)𝑘 𝐺(𝑥𝑘)(𝑦𝑘 − 𝑎 − 𝑏𝑥𝑘 − 𝑐𝑥𝑘

2)2            (16) 

 

A series of new smoothed values is the result.  

The smoothed value is given by the weighted regression at 

the predictor value of interest. Fig. 6 illustrates the phase 

difference of a sub-carrier after using the smoothing filter. We 

can see that the smoothed signal become smoother after wavelet 

decomposition and provides accessibility for the extraction of 

some features.  

 
Fig. 6.  Phase difference after smoothing filtering. 

 

D. Feature extraction 

In order to accurately recognize the severity of finger taps, 

we define and extract features related to severity of finger taps 

according to the UPDRS. We detect the peaks and troughs of 

the phase difference waveform. Although the waveform 

become smoothed after smoothing but fake peaks still appear at 

the peak detection. We apply a threshold to the minimum 

distance between two adjacent peaks to eliminate the fake peak. 

i.e. the detected peak is regarded as the center of the data 

window. If the data in the data window is smaller than the peak 

value, the peak value is judged as a true peak, otherwise it is 

determined as a fake peak and removed. Then, we define the 

difference between adjacent peaks and troughs as the amplitude. 

To indicate the speed or frequency of the finger taps, we record 

the number of waveform peaks in the finger taps task. In 

addition, the phase difference signal is subjected to FFT. The 

frequency value corresponding to the maximum value in the 

FFT spectrum is recorded, and this value is considered as the 

frequency of finger taps. In addition to this, statistical time 

domain parameters are taken into account as features of finger 

tapping. All of the seven time domain parameters extracted are 

capable of emphasizing useful information in the signal. Root 

mean square helps track the total power of the signal. The 

waveform factor is the ratio of the DC signal information and 

the AC signal information of the signal. Skewness is used to 
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measure the degree of asymmetry of the signal. The standard 

deviation is the degree of dispersion of the signal. The kurtosis 

value is a measure of the tail of the probability distribution of a 

real-valued random variable. The crest factor characterizes the 

apparent extent of this signal peak. These features are the most 

intuitive and computationally simple statistical features of the 

signals that can be observed in the time domain. We list all the 

extracted feature columns and their corresponding expressions 

in the table II. 
TABLE II 

STATISTICAL TIME DOMAIN FEATURES OF FINGER TAPPING 

Feature Feature definition 

Total number of taps N 

Finger taps frequency 
Amplitude 

F 
Peaks- troughs 

Root mean square (RMS) 

√
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Wave form factor 𝑅𝑀𝑆

1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1

 

Impact factor max (|𝑥𝑖|)

1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1

 

Skewness value 1

𝑁
∑(

𝑥𝑖 − 𝑢𝑥

𝜎
)3

𝑁

𝑖=1

 

Standard deviation 

√
1

𝑁
∑(𝑥𝑖 − 𝑢𝑥)2

𝑁

𝑖=1

 

Kurtosis value 

 
1

𝑁
∑(

𝑥𝑖 − 𝑢𝑥

𝜎
)4

𝑁

𝑖=1

 

Crest factor max (|𝑥𝑖|)

𝑅𝑀𝑆
 

 

F. Classification Algorithms 

We use the SVM to quantify finger grips of different severity 

according to the UPDRS. As the mainstream technology of 

machine learning, SVM has shown excellent performance in 

classifying two classification and multi-classification tasks. 

SVM can be used in data analysis, pattern recognition, text 

classification and other fields. In a linearly separable data set, 

the goal of the SVM is to find a separate hyperplane that can 

accurately classify two types of data. In the multi-classification 

problem of finger taps with different severity, the following 

optimization problems are solved： 

 

𝑚𝑖𝑛𝑤,𝑏,
𝑚𝑖𝑛 1

2
‖𝑤‖2                            (15) 

 

s. t.  y𝑖(𝑤𝑇𝜙(𝑥𝑖 + 𝑏) ≧ 1，𝑖 = 1,2, … , 𝑚         (16) 

 
where w is the weighting factor and b is the classification 

threshold, usually used for converting the (15) to the dual 

problem: 

 

 ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑖=1𝛼

𝑚𝑎𝑥 y𝑖y𝑗𝜅(𝑥𝑖 , 𝑥𝑗)      (17) 

 

𝑠. 𝑡. ∑ 𝛼𝑖
𝑚
𝑖=1 y𝑖 = 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑚.        (18) 

 

where 𝜅(𝑥𝑖 , 𝑥𝑗) is the kernel function. SVM avoids the problem 

of dimensionality disaster by introducing a kernel function. 

This maps linearly inseparable samples to a higher-dimensional 

feature space, so that samples can be linearly separable in this 

high-dimensional space. In the case of a small number of 

samples, there is a significant advantage over other machine 

learning algorithms (MLA). 

IV. EXPERIMENTAL DESIGN 

In this section, the experimental setup and implementation 

are described.  

We did plenty of finger taps experiments in the lab 

environment. During the experiment, two Lenovo computers 

with ubuntu operating system were used as transmitter and 

receiver. We configure the wireless network card of the 

transmitter to the injection mode, and the wireless network card 

of the receiver to the monitoring mode. The transmitter is 

equipped with 1 omnidirectional antenna, the receiver is 

equipped with 2 omnidirectional antennas and the distance 

between the antennas is 5cm. The center frequency of the 

transmitted wireless signal is 5.32GHz, the transmission power 

is 15dBm, and the bandwidth is 20Mhz. The sampling 

frequency of the receiver is 50Hz, i.e. receiving 50 packets per 

second. The entire system forms a 1x2 single input multiple 

output (SIMO) system. The distance between the transmitting 

antenna and receiving antennas is 1m. In order to effectively 

detect the participant's finger tapping motion and reduce 

external interference, we use absorbing materials to surround 

the experimental scene. During the experiment, the participants 

placed their arms between the transceiver antenna and 

performed a finger tapping test. The experimental scene is 

shown in Fig7. 

 

 
Fig. 7 Experimental scene 

 

In this study, five volunteers were recruited. Before the 

experiment, each person read the finger tapping task item in the 

UPDRS form and watch the Parkinson patient finger taps task 

video. Learn and master the characteristics of the different 

severity of finger taps. In addition, during the volunteer training 

phase, each volunteer wore a three-axis acceleration sensor on 

his finger. We trained the volunteers according to the triaxial 

acceleration waveform of Parkinson's finger tapping in [19] and 

the characteristics described in UPDRS. The main 

characteristics of imitation include breaking the regular rhythm, 

interruption, and amplitude reduction. Figure 8 shows the 

normalized waveform that imitate the patient's finger tapping. 

Each person simulated different severity of finger taps tasks as 

required, and each level was simulated 10 times. During the 
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experiment, the subject placed the hand performing the finger 

taps task between the receiver and the transmitter, each 

experiment lasted for 10s and the interval between two adjacent 

tests was greater than 10s for the subject to rest. 

 

 
Fig. 8 The waveform of imitate the patient's finger tapping 

V. RESULTS AND DISCUSSION 

The power of WCI measures the combination of all paths. 

The frequency, amplitude, speed and other characteristics of 

finger taps of different severity are different. Therefore, the 

speed of change of WCI reflected by finger movement is also 

different. We can use time-frequency analysis tools (such as 

short-time Fourier transform and discrete wavelet transform 

[26]) to separate the frequency components of the patient's hand 

motion to help us analyze the characteristics of finger tapping. 

For example, the DWT spectrograms corresponding to the 

participants of five different severity levels shown in Fig.7. The 

spectrogram shows how the energy of each frequency 

component evolves over time. The high energy component is 

displayed in red, and the low energy component is displayed in 

blue. As shown in Fig. 7(a)(f)(k)(p)(u), there is a high-energy 

band around 4~5hz in the spectrum chart of normal human 

finger tapping, which coincides with the normal finger tapping 

speed. Participants with severity level 1 have lower finger 

tapping speeds than normal people. The frequency of finger 

tapping is concentrated at 2~3 Hz as shown in Figure 

7(b)(g)(l)(q)(v). The frequency of finger tapping of participants 

with severity level 2 concentrated at 1-2 Hz, as shown in Figure 

7 (c) (h) (m) (r) (w).The frequency of finger tapping of 

participants with severity level 3 is distributed around 1 Hz as 

shown in Figure 7(d)(i)(n)(s)(x). Because participants with a 

severity level of 4 cannot complete this clinical task, the 

frequency spectrum is messy and the energy is concentrated 

around 0 Hz as shown in Figure 7(e)(j)(o)(t)(y). 

 
(a) S0 (b) S1 (c) S3 (d) S3 (e) S4 

 
(f) S0 (g) S1 (h) S3 (i) S3 (j) S4 

   
(k) S0 (l) S1 (m) S3 (n) S3 (o) S4 

 
(p) S0 (q) S1 (r) S3 (s) S3 (t) S4 

 
(u) S0 (v) S1 (w) S3 (x) S3 (y) S4 

Fig. 7.  Spectrum of finger tapping for all participants 
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The parameters of the kernel function and the penalty 

coefficient have a great influence on the performance of the 

SVM. In this paper, the more commonly used grid search 

method is used to find the SVM parameter method. It divides 

the parameters to be searched into a grid in a certain spatial 

range, and finds the optimal parameters by traversing all the 

points in the grid. We use scikit learn Python package to divide 

training set and test set, and then train SVM classifier. The 

accuracy of finger tapping with and without absorbent material 

was compared. The results are shown in Table III. Compared 

with the case without absorbing materials, the average 

quantization accuracy of phase difference and amplitude on 

finger tapping is improved by 2% and 1.2% respectively in 

the case of surrounded by absorbing materials. In addition, 

the quantification accuracy of the phase difference for finger 

tapping is better than the amplitude in these two scenarios. 
 

TABLE III 

 COMPARISON OF QUANTIZATION ACCURACY OF PHASE DIFFERENCE AND 

AMPLITUDE FOR FINGER TAPPING 

 
Data S0 S1 S2 S3 S4 

With 
absorbing 

material 

Phase difference 1 1 0.98 0.98 0.99 
Amplitude 0.97 0.97 0.94 0.97 0.95 

Without 

absorbing 

material 

Phase difference 0.98 0.97 0.95 0.98 0.97 
Amplitude 0.96 0.95 0.93 0.95 0.95 

 

In this study, five healthy volunteers participated in the 

experiment. After strict training, the volunteers imitated the 

patients with different severity of dyskinesia to perform finger 

tapping test. Table IV shows the quantification accuracy of 

finger tapping by five participants in simulating patients with 

different severity. We find that the quantization accuracy of the 

proposed system was more than 97% among different subjects. 

Even if the subjects are different, the proposed system shows 

good robustness. 
 

TABLE IV 

THE QUANTITATIVE ACCURACY OF THE PROPOSED SYSTEM FOR FINGER 

TAPPING OF DIFFERENT PARTICIPANTS 

 S0 S1 S2 S3 S4 

Participant 1 1 1 0.98 0.98 1 

Participant 2 1 1 0.99 0.97 0.99 

Participant 3 
Participant 4 
Participant 5 

1 
1 
1 

1 
1 
1 

0.98 
0.97 
0.98 

0.97 
0.99 
0.99 

0.98 
1 

0.99 

 

In addition, we compare the phase difference signal of the 

WCI with the gyroscope. The comparison results are shown in 

Fig. 9. The average recognition accuracy of the phase difference 

is 99.4%, and the average accuracy of the gyroscope to the five 

types is 97.3%. The phase difference signal and the gyroscope 

achieve 100% recognition accuracy when quantifying the three 

degrees of finger taps of 0, 1, and 4. However, the phase 

difference signal is superior to the gyroscope when the finger 

taps of the 2, 3 level is quantized. Therefore, our proposed 

wireless signal-based finger tap quantization system can 

achieve the same high-precision quantization level as wearable 

devices. 

 

 
Fig. 9.  Comparison of phase difference with gyro sensor. 

 

Besides using SVM, we also try the other machine learning 

algorithms such as K- NN, RF. Figure 10 shows the overall 

accuracy of quantizing finger tapping based on multiple 

classifiers. We find that the accuracy of all classifiers is more 

than 90%, which verifies the robustness of the above processing 

methods and feature extraction. In addition, the accuracy of the 

quantized finger tapping model trained by SVM (Gaussian 

kernel function) is better than other classifiers. 

 

 
Fig. 10.  Quantitative accuracy of finger tapping by different machine learning 

algorithms   

VI. CONCLUSION 

This paper proposes novel, non-contact, a robust finger taps 

severity quantization system based on wireless signals to 

support autonomous hospital network. The cheap and efficient 

non-contact movement disorder quantification system can be 

used together with clinical test scores to provide diagnostic 

support and follow-up treatment. As with all motion detection 

systems based on wireless sensing technology, phase drift is a 

serious problem. To solve this problem, we calibrate the 

original phase by the phase difference between adjacent 

antennas. According to UPDRS, we extracted relevant time-

domain features and used machine learning algorithms to 

achieve objective quantification of the finger tapping. 

In the future, we hope to be able to verify and improve the 

proposed system in patients with dyskinesia, and assist 

clinicians in evaluating patients' motor function. 
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