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Abstract 

Solutions are needed to satisfy care demands of older adults to live independently. Wearable 

technology (wearables) are one approach to offer a viable means for ubiquitous, sustainable and 

scalable monitoring in habitual free-living environments. Gait has been presented as a relevant (bio) 

marker in ageing and pathological studies, with objective assessment achievable by inertial-based 

wearables. Commercial wearables have struggled to provide accurate analytics and have been limited 

by non-clinically oriented gait outcomes. Moreover, some research grade wearables also fail to 

provide transparent functionality due to limitations in proprietary software. Innovation within this 

field is often sporadic with large heterogeneity of wearable types and algorithms for gait outcomes 

leading to a lack of pragmatic use. This review provides a summary of recent wearable gait assessment 

literature, focusing on the need for an algorithm fusion approach to measurement cumulating in the 

ability to better detect and classify falls. A brief presentation of wearables in one pathological group 

is presented, identifying appropriate work for researchers in other cohorts to utilise. Opportunities 

for how this domain needs to progress are also summarised. 

 

 

Highlights 

• Wearables can meet older adults’ needs for independent living. 

• Gait assessment is a (bio)marker within ageing and different pathologies. 

• Measuring gait with wearables has been innovative but fraught with inconsistencies. 

• Wearables utilising multiple algorithms need to be considered during free-living. 

• Opportunities exist for wearables to be informative and pragmatic clinical tools.
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1.0 Introduction 

A definition of successful ageing has evolved from merely adding ‘life to the years’ to a combination 

of avoiding disease, high cognitive and physical functioning and engagement with life [1]. As average 

age and life expectancy increases, solutions are needed to deal with the complex care demands to 

satisfy older adult needs to live independently. Wearable technologies (wearables) have particular 

utility to meet that demand [2].  

Wearables encompass a broad range of devices from research prototypes or commercial products 

worn anywhere on the body over clothing to those placed directly on or beneath the skin [3]. Utilising 

wearables as research or clinical aids has gained notable momentum since the turn of the century due 

to ease of wear, facilitated by advances in electronic component miniaturisation [4]. Yet, despite the 

relative youth of wearables to gather data their helpfulness to monitor health and wellness for later 

life independence and aid rehabilitation is clear [2, 5]. Their potential is amplified by integration into 

communication infrastructures, for relaying adverse events (e.g. fall) and accumulating longitudinal 

data in the community (free-living) to determine social contact and physical activity (PA). The 

integrated use of wearables and digital technologies to help independent living is described as 

‘enabling ageing in place’, a means to safely and comfortably maintain a high quality of life in one’s 

own home (inc. community) and seen as a viable solution to aid assisted living for an ageing population 

[6].  

 

1.1 Inertial sensor-based wearables 

Wearables facilitate remote monitoring by offering healthcare professionals the ability to gather 

important free-living physiological signs of patients, such as gait characteristics during walking [7]. 

Recent work established gait as a (bio) marker to assess relevant processes associated with ageing due 

to its robust objective assessment with a wearable  [8, 9]. Inertial sensors such as accelerometers 

(acceleration forces), gyroscopes (rotational motion) and magnetometer (magnetic fields) can be used 

collectively to create very informative wearables offering many gait outcomes. However, the 
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techniques/algorithms required to translate inertial sensor signals to pragmatic data are complex [10]. 

(A non-technical and concise description of engineering approaches to wearable signal processing 

algorithms is provided elsewhere [11].) Besides, the practicality to longitudinally deploy an 

appropriate sized wearable incorporating those sensors during free-living is severely curtailed due to 

increased power consumption and memory storage requirements [12]. Yet, use of the most power 

efficient sensor (accelerometer) only, can still provide useful data.  

Commercial wearables (e.g. FitBit®, Jawbone®) have utilised accelerometers to quantify basic gait 

related outcomes (e.g. step count) with tolerable accuracy levels at different speeds over short 

distances [13, 14]. However, limitations arise when wearables and their digital infrastructures (i.e. 

cloud-computing analytical platforms, e.g. Koneksa Health) are assessed during continuous and 

habitual free-living conditions [15]. In the referenced study the authors conclude that although 

commercial wearables have transformed physiology research by providing new data streams, 

fundamental limitations remain with black-box type functionality (unknown algorithms) with 

questions about validation and accuracy of step count and walking detection across a range of gait 

speeds during free-living.  

Similar limitations have been encountered in research grade wearables [16] which accumulate 

data at much higher sampling rates, but access to raw data facilitates bespoke algorithm design [17]. 

High resolution data and utilisation of novel algorithms allows more clinically sensitive outcomes such 

as spatio-temporal characteristics of gait e.g. step time, step length, to be estimated. This has notable 

clinical impact with the provision of a range of gait outcomes central to informing independence in 

later life [18]. Additionally, correct quantification of safe and effective gait is crucial for those with 

movement disorders whose independence is further threatened by falls [19], a leading cause of injury 

and death [18].  

For the purposes of this review, gait and recent developments on its direct measurement with 

inertial sensor-based wearables will be explored. This narrative review highlights the most recent 
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literature including fall detection. Some opportunities for wearable developments are presented, in 

particular the need for a system and algorithm integration/fusion approach. 

 

2.0 Discussion 

Gait has been defined on two levels: (i) macro gait; time spent walking or periods of ambulatory 

behaviour and (ii) micro gait; spatio-temporal characteristics [19]. The role of technology in free-living 

assessment has led to miniaturised networks that can be integrated into the living environment or 

worn without impacting on a person’s gait [20]. However, retrofitting technologies (e.g. cameras) 

within a living environment [21] has obvious barriers to installation (e.g. cost, disruption), leaving 

wearables as the preferred solution for now. Yet, distribution of wearables for robust macro and micro 

gait assessment is still fraught with pragmatic complications: routine charging, periodic calibration and 

difficulties arising from remembering to don wearables in certain cohorts suffering from cognitive 

impairment [22]. Alternatively, those who have capacity to correctly utilise wearables must overcome 

comfort and general acceptance of the technology.  

 

2.1 User needs 

Wearables are usually attached directly to the person with straps or adhesives [23] as current gait and 

falls algorithms require rigid attachment to the body (e.g. leg, waist) for correct functionality. While 

most are location dependant, a recent algorithm aims to recognise macro gait from wearables worn 

on either the ankle, thigh, hip, arm or waist with 97.4% accuracy [24]. Other work has quantified macro 

gait via generic placement/orientation in a pocket or bag to facilitate comfort and ease of use [25]. 

Problems arise when: (i) those who are meant to don the wearable do not; (ii) similar wearables 

become accidently switched leading to incorrect user/wearer data collection; and (iii) inconsistent 

reattachment location/orientation could impact data extraction. However, recent work aims to 

overcome such problems by accurately identifying (85%) the true wearer [26] and classifying an 

individual’s gait during different conditions (e.g. stairs, up/down slope) [27]. Approaches such as these 
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can lead to more robust data collection during free-living as well as reduce burden on the wearer to 

don or carry the wearable where most comfortable. 

Lack of adherence to using wearables is a complex topic of human behaviour which goes beyond 

the scope of this paper. However, it is worth briefly discussing within the remit of wearables as 

facilitators, not drivers of health [28]. To date, research grade wearables (created or adopted during 

studies) have regularly been research driven, providing necessary (gait) outcomes sensitive to the 

study hypothesis with little consideration given for user requirements. This expedited research but as 

the field matures, strategies must engage the wearer rather than rely on features of technology [28]. 

The selection of a wearable based on user needs should examine a range of variables (e.g. wearable 

weight, training on use of device) to facilitate user needs rather than ad-hoc selection of technology 

[29]. Creation of fall and activity recognition systems have shown that older adult involvement is an 

important process to ensure wearable longevity, where there is a requirement for a ‘needs-driven’ 

rather than a ‘technology-driven’ approach [30-32]. Shortcomings within a needs-driven approach is 

one reason attributed to the disappointing findings from the European Union’s Ambient and Assisted 

Living Joint Programme: €600m across 152 projects led to 2 marketable products and no evidence 

indicating greater health in older adults [33]. 

 

2.2 Research grade wearables 

Recent reviews have examined wearable type, placement/location, algorithms and gait outcomes 

across a range of cohorts [23, 34-36]. In general author’s remark on the heterogeneity of wearables, 

algorithms and gait outcomes due to a general lack of standardisation which make it difficult to 

compare and contrast across studies. (The complexity of wearables and algorithms also extends to PA 

measurement [37].) From a positive perspective this highlights innovation and technical achievement. 

Alternatively it suggests greater efforts should be made toward a consensus on wearable gait 

assessment, facilitating uniform deployment and better acceptance within clinical practice.  
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2.2.1 Activity recognition: Macro and micro gait 

A challenge for wearable algorithms typically involve the segmentation/extraction of macro and micro 

gait from a continuous stream of inertial sensor data. Wearables utilising additional features of a 

camera, video recorder or global positioning system allow for absolute detection and/or contextual 

recognition when gait is performed, e.g. indoor within a cluttered environment or outdoors on uneven 

terrain. Integration of those sensing technologies would provide additional insight (gold standard 

reference) when trying to tease out pathological issues relating to free-living gait assessment [38, 39]. 

A recent study utilised a smartphone-based camera as a wearable placed on the front waist to quantify 

gait characteristics, a holistic approach to gait and contextual data recognition [40]. However, that 

requires additional markers on the feet. Nevertheless, where camera-based technologies aren’t 

available, inertial sensor-based segmentation/extraction algorithms must be used. Table 1 provides 

an example of some recent algorithms to segment macro gait. (A more comprehensive presentation 

of gait recognition algorithms can be found elsewhere [41].) Once macro recognition is achieved, the 

segmented signals can be examined for micro gait characteristics. 

<Table 1 – see end of document> 

Measurement of gait during free-living is difficult when using inertial sensor-based wearables only 

due to the lack of contextual information. Thus, initial work to quantify free-living gait started at low 

macro resolutions of 60-seconds [42], progressing to 10-seconds [43] ensuring, with a degree of 

certainty, that steady state gait was measured due to the cyclical nature of inertial gait signals. 

However, the majority of gait is accumulated in periods of time (bouts) <10s [44]. Thus, large portions 

of data may be excluded for micro analysis at low resolutions. Therefore, a methodology to quantify 

macro gait at a higher resolution (2.5-seconds) has been proposed, validated with a video recorder 

during extended periods of free-living [45] (Table 1) and subsequently used to compare micro gait in 

the clinic to free-living [38]. 
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Realistically any number of possible micro gait outcomes can be quantified due to the range of 

mathematical permutations which could be applied to wearable data, which has hindered clinical use 

[46]. In general, micro outcomes can be classed as spatio-temporal and frequency-based (e.g. energy) 

with the former having more pragmatic utility due to the ease of interpretation for most healthcare 

professionals. 

 

2.2.2 Micro gait 

Recent reviews highlight the importance of measuring gait across the life course, from its development 

in children [47], link to fall risk [48, 49] and its relationship to dementia in adults [50]. While clinically 

assessed gait speed has been shown to have use in assessing longevity and cognitive function in older 

adults [51, 52], micro gait characteristics offer a more focused examination to differentiate pathology 

and identifying specific features of disease progression [53]. The latter reference identifies a number 

of studies which utilised data reduction techniques to define micro gait models. In brief, 16 spatio-

temporal gait characteristics can be mapped to 5 domains: pace, rhythm, postural control, asymmetry 

and variability [54]. The latter (fluctuations in time or space e.g. step time or step length variability) 

has even shown alterations in brain structure and function in older adults when compared to 

neuroimaging techniques [55]. Thus, micro gait can be described as a complex task with important 

underlying mechanisms.  

The detection of all features including initiation and termination across a range of physical 

capabilities (e.g. young fit to old frail) may only be attainable by multiple wearables [56] or by fusing 

different data streams [57] detecting slight changes in movement. While the use of complex/multiple 

wearables is not feasible during free-living, it highlights ongoing developments. Wearables for gait 

have generally been aligned to a single device worn on the trunk (typically the lower back: 5th lumbar 

vertebrae, L5) due to algorithm functionality and ease of use. Recent work highlighted the most 

effective algorithm for temporal characteristic estimation from L5 [58]. When utilised with a spatial 

algorithm [59] they have been validated as a suitable micro gait model for older adults and those with 
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a movement disorder in clinic and during free-living [60]. However, that required tailoring algorithms 

to define step timing variables [61]. Of greater utility is the ability to freely transfer wearables with 

algorithms from one pathology to another. Recent attempts to be cohort agnostic were shown in 

Parkinson’s disease (PD) and stroke with a wearable on the foot [62] as well as elderly, hemiparetic, 

PD and choreic gait with wearables on the ankles [63]. 

Frequency-based characteristics of gait have been investigated as novel micro gait outcomes. For 

example, harmonic ratio (HR) calculated for each stride has been examined for gait symmetry and 

smoothness of walking, with a perfect gait symmetry returning even harmonics in two planes of 

movement and odd in the third [64]. Recent work proposed standardised HR guidelines aimed to 

improve its mathematical definition and evaluation to enhance its use as a discriminative power 

between different cohorts [65]. However, frequency-based outcomes like HR remain difficult to 

interpret in everyday practice [66]. 

 

2.2.3 Micro gait: Commercial technology 

A number of studies have utilised commercial smart devices (e.g. smartphone, mobile entertainment 

platforms) to record and quantify micro gait, Table 2. This facilitates a sustainable use of technology, 

rather than the ad-hoc creation of bespoke devices facilitating a cost effective, viable and scalable 

solution to penetrate healthcare structures [67]. Smartphone-based devices contain a range of 

sensors to assist mobile/ubiquitous health (mHealth/uHealth) and have been discussed as suitable 

platforms for delivering healthcare services, but remain in their infancy with a range of methodological 

and privacy issues [68]. To date, failings of smart devices as wearables can be attributed to deficiencies 

in applications (apps) [68, 69]. While data collection technologies have advanced (i.e. electronic 

hardware), potential exists for current/future clinically relevant algorithms. The latter must be 

translated from research software (e.g. MATLAB®, R) and used by smart devices to reach scalability for 

widespread use. 

<Table 2 – see end of document > 
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2.2.4 Falls 

Impaired gait is a major risk factor for falls in older adults [18]. The use of wearables and other 

technologies for fall prevention interventions [70], risk awareness [71], impact detection [72-74] in 

older adults [75] has been well documented. Although many challenges exist for fall detection systems 

[76], a recent taxonomy1 aims to standardise future technologies and interventions in the field of fall 

prevention [77]. Importantly the taxonomy stipulates the need for individual requirements by drawing 

on older adult perceptions to ensure simplicity, reliability and effectiveness [78].  

Wearable-based fall detection algorithms rely on inertial sensor data to detect fall events (Table 

3, recent examples). Within clinically led research few studies have categorised falls based on fall 

related activity, e.g. walking, going up/down stairs or transition [79, 80]. This is an opportunity for 

inertial-based wearables as recent work has highlighted clinically defined falls classifications from 

(e.g.) macro gait and transitional tasks [81, 82] which can be quantified from existing algorithms [45, 

83]. Pragmatic innovation lies in the exploitation and fusion of existing algorithms to better inform fall 

events and to reduce false positives that might be generated during gait related activities, Figure 1. 

For example, pilot work used multiple algorithms to reduce false fall detection events (e.g. gait during 

stair ascent/descent) when tested on younger adults during scripted tests and an older adult with PD 

during free-living [84]. The addition of automated stair ascent/descent identification [85], a common 

location for falls [86], would enhance efforts and provide free-living segmentation of stair descent 

which may offer better insight into fall risk compared to straight level gait [87]. Thus, the fusion of 

existing algorithms can identify discrete gait activities linked to fall risk assessment which may better 

inform/improve ‘life-space’ [88], i.e. environment modification for those at risk of falls [86].  

<Table 3 – see end of document > 

<Figure 1 – see end of document > 

 

                                                           
1FASEEING http://taxonomy.farseeingresearch.eu/  

http://taxonomy.farseeingresearch.eu/
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2.2.5 Pathology 

Acceptance of wearables among older adults with chronic disease (e.g. diabetes, arthritis) is perceived 

as useful and acceptable [89] with the power to transform clinical trials [90]. Yet they have been 

described as underutilised solutions [91, 92] to treat healthcare needs. While the discussion of all 

wearables in pathological cohorts is beyond any one paper, their use in PD is an example worth 

presenting. The current state of the art for wearables [66], machine learning from big data [93] and 

other technologies within PD have been documented [94-96], with suggestions that application in PD 

are a suitable model for researchers of other cohorts to study/adopt [97].  

The application of inertial-based wearables to monitor motoric decline within PD might seem 

obvious due to the impact of bradykinesia on gait. However, improvements of micro characteristics 

due to pharmacological intervention (e.g. levodopa) can also be observed [98] suggesting utility of 

wearables as clinical aides to help monitor medication adherence and response. Moreover, the use of 

wearables to facilitate free-living monitoring developments within the pharmaceutical industry was 

recently discussed [99, 100] with other technologies (e.g. smart packaging, visual tracking) to facilitate 

the concept of ‘beyond the pill’ [101], a means to manage patient adherence and disease management 

[99].  

Challenges remain with wearables within all pathological cohorts such as the handling of large data 

sets, data visualisation [22] and selection of discrete moments of clinical interest rather than 

continuous streams of data. This centres on how data is presented in meaningful ways to different 

groups: wearers (generic feedback for continued use) versus healthcare (analytical platform for 

patient care) [22]. Regarding the latter, clinical observation remains gold standard for characterising 

freezing of gait (FOG) in PD despite attempts to provide objective detection with wearables [102, 103]. 

However, advances of FOG detection within habitual environments mean wearable algorithms should 

not go unutilised [104, 105] and be integrated to the type of analytical frameworks that could aid care 

[106, 107]. 

 



 

12 
 

3.0 Considerations 

The use of wearables as tools for gait and fall quantification to facilitate independence for older adults  

is finely poised: the pragmatic aid for continuous monitoring during free-living or the white elephant 

of research due to the (non-focused) abundance of innovation, lack of standardisation and robust 

validation [66]. The former pushes the boundaries of technical achievements but could ultimately be 

the Achilles heel that forces healthcare professionals to remain with the tried and trusted, direct 

clinical observation.  

 

3.1 Wearables: The gap between commercials and research 

Wearables have been fuelled by the commercial development of fitness trackers where algorithms 

have remained limited to step count and periods/bouts of macro gait (walking). Typically there are no 

barriers (medical-based regulations) to entrepreneurs who develop fitness trackers and yet their 

inaccuracies may negatively impact a health conscious, self-medicating wearer or bring unreliable data 

to a technology accepting physician [108]. Similar concerns exist with research grade wearables and 

associated proprietary software in cohort studies, with non-disclosed/transparent analytics to 

quantify macro gait [109]. Regulation and transparency remains key for future developments to gain 

trust within healthcare settings as front line staff begin to learn benefits of using wearables for patient 

care [110, 111]. Nevertheless, developing wearables with more sensitive clinical outcomes (e.g. micro 

gait), although not easily done, facilitates more relevant data for healthcare professionals. 

 

3.2 Existing challenges coupled with on-going innovation 

Challenges to adopt/extend current wearables for free-living gait and fall assessment are faced with 

ethical and legal issues of data privacy/protection [112]. Yet the ability to gather data is only useful if 

the wearable can continuously sample at frequencies of sufficient magnitudes to ensure adequate 

accuracy (e.g. 100 data points/second). This negatively impacts battery life and free-living efficiency 

of wearables for gait and fall assessment [113]. Consequently, the demand for energy optimisation 
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techniques [114] and new ways to configure wearable software functionality [115] are ongoing 

engineering challenges. Additionally, the concept of smarter sensing through context anticipation 

(rather than context recognition) is an emerging topic to enhance efficiency [116]. Alternatively, 

energy harvesting has been proposed as a means to utilise the dynamic energy of the wearer to 

continuously (months and years) power wearables through smart materials [117] (Figure 1) or 

microfluidics, miniaturized elements capable of performing numerous functions at a cellular or 

particle scale [118].  

 The emergence of the Internet of Things (IoT) and its impact on wearables has been enabled 

by using or integrating to smart devices [119], facilitating frameworks for uHealth and independent 

living [120]. This generates large volumes of data where efficient management has been proposed by 

health-based infrastructures in the cloud. For example, Wiki-Health aims to provide analytics with 

real-time capabilities for tracking existing conditions, facilitating a more pro-active approach to 

healthcare conditions through early detection [121]. However, challenges exist for storage and 

interconnectivity on current computing frameworks, where concepts have been labelled as 

insufficient [115]. Moreover, the pragmatic adoption and integration of wearables and/or future 

technologies within existing healthcare services remains the fundamental challenge given the existing 

constraints of standardisation and models of care [122].  

 

4.0 Summary and conclusions 

Wearables can play active roles for independent living in older adults by providing macro and micro 

gait estimations during free-living which are clinically relevant (bio) markers in ageing and pathology. 

Additionally, more accurate automated fall detection could improve life-space and lessen fall risk. 

However, diverse and sporadic innovation have generated many wearable (and algorithm) 

combinations to leave routine pragmatic use lacking. There is a need for consolidation on the use of 

wearables, establishment of a framework/taxonomy to inform deployment and ratification of 

sensitive gait characteristics (spatio-temporal or other) in older adult cohorts.  
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Tables 

<Table 1> 

Authors Data collection 
environments 

Length of 
test1  

Algorithm functionality Extracted wearable signal features 
(from inertial sensor signals) 

Cohort  Wearable 
locations 

Macro gait accuracy 
and/or other 

  (hours)   Size Age  information 

Awais et 
al. [123] 

Semi-structured 
within a 
laboratory and 
during free-
living 

5.52 
(laboratory

) 
 

24.43 
(free-living) 

Tested 3 previous algorithms 
and varied the length of the 
sliding window to calculate 
different characteristics from 
the signals of the inertial 
sensors (opposite) 

Mean, standard deviation, 
skewness, kurtosis, energy, frequency 
domain entropy, correlation between 
signals, minimum, maximum, mean and 
variance, spectral centroid, bandwidth, 
energy, gravitational component 

20 76.4 ± 
5.6 

years 

Chest, 
lower 
back, 
wrist, 
waist, 
thigh, 
foot 

91.9-97.3% 

Noor et 
al. [124] 

Structured 
within 
controlled 
setting (house). 
Also utilised a 
range of public 
data sets2 

1.5 
(controlled 

setting) 
 
 

Novel method based on 
dynamic variation of the length 
of a sliding window due to 
probability density function to 
help determine sequence of 
activity scenarios with classifiers 

Slope, standard deviation, skewness, 
signal magnitude area, absolute slope, 
spectral energy, mean trend, windowed 
mean difference, maximum, minimum 

6 33 ± 2.2 
years 

(plus 1 
child) 

Waist 87.5-97.6% 

Hickey et 
al. [45] 

Free-living 
(including rural 
and urban 
environments) 

20  
(free-living) 

Fusion of existing algorithms, 
including logical heuristics to 
determine upright and moving 
and then investigation of 
segmented signal to determine 
identification of micro and 
therefore macro gait 

Upright and moving: Mean, standard 
deviation 
Micro: continuous wavelet transform to 
determine initial and final contact (IC 
and FC) events within the gait cycle. 
Macro gait: sequence of IC and FC 
define bouts of macro gait  

10 27.5 ± 
4.7 

years 

Lower 
back 

ICC2,1 ≥ 0.941 

Segundo 
et al. 
[125] 

Publically 
available 
scripted activity 
dataset 
gathered with a 
smartphone 

3.7 
(controlled 

setting) 

Hidden Markov Models (HMM) 
derived classification of 
activities with cross-validation 
from a subset of the total 
cohort 

Mean, correlation, signal magnitude 
area (SMA) and auto regression 
coefficients, energy of different 
frequency bands, frequency skewness, 
and the angle between vectors (e.g. 
mean body acceleration and vector) 

30 19 – 48 
years 

Waist Approx. 98% 

Hammerl
a et al. 
[126] 

Three publically 
available 
scripted activity 

8-25 
(controlled 

setting) 

To test the performance of 
state-of-the-art deep learning 
approaches on three different 

Adopted a non-manual approach (e.g. 
time series analysis using mean 
acceleration) to feature selection and 

31 Younger 
and 

Multiple 
locations 

Convolutional 
networks 

recommended for 
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Authors Data collection 
environments 

Length of 
test1  

Algorithm functionality Extracted wearable signal features 
(from inertial sensor signals) 

Cohort  Wearable 
locations 

Macro gait accuracy 
and/or other 

  (hours)   Size Age  information 

datasets with 
different 
wearables3 

recognition problems: deep 
feed-forward networks, 
convolutional networks and 
recurrent networks 

utilised machine learning approaches 
such as Restricted Boltzmann Machines 
and long short-term memory cells  

older 
adults3 

the detection of 
macro gait 

Gonzalez 
et al. 
[127] 

One scripted 
activity (TUG 

test) in a group 
of adults with 

stroke 

-- Soft computing method 
involving: Information 
Correlation Coefficient (ICC) 
analysis, a wrapper feature 
selection (FS) and genetic fuzzy 
finite state machine 

150 features generated with a filtered 
FS and ICC deployed to reduce to 20 
which were used in a Genetic Fuzzy 
Finite State Machine to classify activities 

3 -- Both 
wrists 

-- 

Field et al. 
[128] 

Scripted 
activities in a 

laboratory 

1-2 Us of Gaussian Mixture Model 
to cluster motion data  

Sets of joint angles. Segmentation 
involved partitioning temporal data into 
subsequence’s by identifying modal 
changes, i.e. static poses, periodic 
motion or complex sequences such as 
walking 

10 -- Multiple 
locations 

Approx. 94% 

Fida et al. 
[129] 

Scripted 
activities within 

a controlled 
environment 

1-2 Use of varying window sizes to 
determine effect on recognition 
of short and long gait activities 
with the additional use of 
classification models: decision 
tress, neural networks, support 
vector machines, k-nearest 
neighbour classifier, Naïve 
Bayes classifier 

Mean value along each axis, average of 
mean values each axes, standard 
deviation each axis, average of the 
standard deviation values along each 
axes, skewness each axis, average 
skewness values each axes, kurtosis 
each axis, average kurtoses each axes, 
correlation at zero lag between each 
axis pairing and between each axis, 
magnitude acceleration 

9 22-34 
years 

Waist  ≥90%  
(with 1.5s window 
size with support 
vector machine 

classification model) 

1 Total time recorded in hours (inclusive of segmented gait activities) 
2 Data from a smartphone worn at the waist, gathered in controlled over 5hours in 30 subjects [130] 
3 Opportunity dataset: 12 adults [131, 132], PAMAP2 dataset: 9 adults (27.22 ± 3.31 years) [133], Daphnet Gait dataset: 10 (66.4 ± 4.8 years) older adults with PD [134] 
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<Table 2> 

Authors Technology Location Testing Cohort Macro or micro gait characteristics  

Gadaleta et 
al. [135] 

Asus Zenfone 2, Samsung S3 Neo, 
Samsung S4, LG G2, LG G4 and a 
Google Nexus 5 

Pocket 5minute walking test  50 adults Identification of walking cycles and the 
extraction of novel features to return a score 

Hegde et 
al. [136] 

Shoe based wearable (inertial and 
pressure sensors) with integration to 
Android application (app) on Google 
Nexus 5 

Foot (phone 
location not 
described) 

Scripted activities on a treadmill 
and cycling 

4 adults Real time activity classification of macro gait 
performed locally on the smartphone with 
95.4% accuracy 

Casamassi
ma et al. 
[137] and 
Mazilu et 
al. [138] 

Shoe based wearables with 
Bluetooth integration to a Samsung 
Galaxy S3 (Android) 

Both feet and 
pocket 

Lab training sessions and then in 
the homes to support gait 
exercises, but in free-living, e.g., 
walking in the park, as an 
assistive device 

5 older adults 
with PD 

Real time detection of (left and right) initial 
contact and foot-off events within the gait 
cycle. Specifically the system detects freezing 
of gait (FOG) and provides a rhythmic auditory 
cue to help resume normal gait 

Kosse et al. 
[139] 

iPod touch G4 with custom-made 
application installed on the iPod to 
collect and store accelerometer data 
which was post-processed  

Trunk (3rd 
lumbar 

vertebrae, L3) 

Twice walked back and forth 
along a 10-m long course with a 
one-meter wide curve at the two 
turns for three minutes at a self-
selected habitual speed 

29 young adults 
(19-41 years) 
and 30 older 
adults (47-75 

years) 

Left and right foot (initial) contact events with 
the gait cycle and the subsequent offline 
calculation of other outcomes, e.g. coefficient 
of variation and phase variability index 

Watanabe 
[140] and 
Watanabe 
et al. [141] 

iOS-based platform to record data 
and to correct for misalignment due 
to variable orientation in the pocket 

Pocket, holding 
phone to ear, 
holding while 

typing 

Flat level walking, walking up and 
down stairs with the phone hand 
held or placed in pocket 

4-15 adults Use of a range of inertial sensor features with  
different classifiers to achieve walking 
accuracy 60.7-90.0% (depending on walking 
condition) 

Sejdic et al. 
[142] 

Shoe based wearable (inertial and 
pressure sensors) with USB 
connection to a Samsung Galaxy 
Nexus (Android)  

Foot and lower 
back 

Two, 15-min walking sessions 
around a closed corridor with a 
10-min break in-between 

15 younger 
adults (18-35 

years) 

Pressure sensors gathered characteristics and 
inertial sensor (lower back) stability analysis 
during gait 

Steins et al. 
[143] 

4th generation iPod touch Trunk (3rd 
lumbar 

vertebrae, L3) 

Four 10 m straight walks at self-
selected speeds in a gait 
laboratory. 

10 younger 
adults (26 ± 4 

years) 

Identification of gait patterns and steps but no 
micro characteristics estimated 

Del Rosario 
et al. [113] 

Samsung Galaxy Nexus with Android 
software to sample and store data 
which were post processed but also 
tried in real-time 

Pocket Free-living data collection up to 
30mins per participant within 
laboratory, general university and 
habitual environments 

20 younger (22 
± 2 years), 37 
older (84 ± 3 

years) 

Walking activities (level, up and down stairs) 
sensitivity/specificity ranged 58-90%/96-99%. 
Real-time possible but smartphone 
functionality and battery life a concern 
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Authors Technology Location Testing Cohort Macro or micro gait characteristics  

Mellone et 
al. [144] 

HTC Desire with Android-based data 
acquisition to store accelerometer 
data, post-processed 

Lower back Performed the TUG test and the 
gait segment extracted 

49 older adults 
(59 ± 16 years) 

Identification of micro gait characteristics 
from a TUG task: including mean step time, 
step time variability (standard deviation) 
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<Table 3> 

Authors Technology / data / methods Cohort  Falls accuracy Comments 

Gjoreski et 
al. [145] 

Compared 5 machine learning algorithms with a range on features on 4 datasets 
containing scripted (laboratory) and simulated free-living activities. Wearables located at 
chest, waist, (left & right) wrists, thighs, ankles and upper arms. Up to 1367hours of data. 

21 adults 
(average age, 

late 20’s) 

85% on one 
dataset where 
falls present 

Non-dominant wrist optimal for fall 
detection at that location 

Pannurat et 
al. [146] 

Real-time method for fall detection and reports the classification performance when the 
sensor is placed on different body parts: waist, chest, head, wrist, ankle, thigh, upper arm. 
Tested 14 fall types, e.g. fall on knees, collapse into bed. 

16 (younger 
adults) 

87-91% (pre-
impacts, impacts, 

post-impacts 

Side waist best for post-impact 
detection. Most false alarms during 
transitions of lying postures  

Hsieh et al. 
[147] 

One wearable attached to the waist with 7 types of falls performed and scripted tasks. 
Hierarchical fall detection algorithm involving threshold-based and knowledge-based 
approach (free-fall, impact, and rest phases).  

8 (all males, 
22 ± 1.3 

years 

98.7-99.8%  Method improved overall 
performance by up to 0.55%, 
compared to machine learning 

Khan et al. 
[148] 

Used a new form of Hidden Markov Models (HMM) to identify falls in the absence of 
training data (i.e. data for machine-learning approach to model activity or falls 
classification). Utilised two scripted activity and falls datasets from the waist or pocket. 

30 adults Improved fall 
algorithm with 

HMM 

HMM thresholds to identify falls 
not suitable. New method can be 
used without training data 

Gibson et 
al. [149, 

150] 

Wearable on the chest during scripted falls (hard and soft surfaces/pacts) and activities. 
Compared new multiresolution, principal component analysis and classifier to a threshold-
based approach. 

14 adults (27 
± 8 years) 

Up to 99% for 
new method 

compared to 93% 

New method facilitated data 
reduction of over 70% yielding 
good energy efficiency 

Concepcion 
et al. [151]  

Iterative work by the authors using an optimised version of a previous algorithm (Ameva). 
Data gathered on large cohort with smartphone but only 1 case study presented. 
Algorithm classified falls and activities from combined version of inertial signals 

31 year old  98% Optimised for efficient smartphone 
use, longitudinal monitoring with 
95% accuracy all activities 

Dias et al. 
[152] 

Wearable placed at the waist and used in conjunction with a network of sensors for issuing 
the fall alarm. The network are used for obtaining (triangulating) the fall location (room of 
a house). Utilised low-cost technology (Arduino) to implement system. 

Younger 
adults 

90% & nearly all 
alerts reported 

the correct room 

Absolute accuracy not achieved 
due to difficulties found to detect 
falls with rotation movement 

Sabatini et 
al. [153] 

Wearable (inertial sensors and barometric altimeter) worn on the waist which linked with 
a smartphone (Samsung Galaxy SII, GT-I9100) via Bluetooth. Scripted falls and activities. 
Estimated vertical velocities (with thresholds), height, posture and impact detected falls. 

25 (28 ± 3 
years) 

80-100% No single feature (e.g. impact or 
vertical velocities) allowed for 
100% accuracy 

Harris et al. 
[154] 

Wearables (linked to iOS software platform) worn on the sternum, waist, and right leg. 54 
statistical features calculated, filtered and applied to a classifier (e.g. Random Forest, 
Linear Support Vector Machine). Scripted falls and activities. 

14 adults 
(22-50 years) 

Up to 98.3% Using more than one wearable 
better than using one. But waist 
placement optimal 
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Figure  
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Table captions 

Table 1: Examples of recent approaches to macro gait detection with wearables. 
 
Table 2: Some recent studies utilising smartphones as wearables to gather and store macro and 
micro gait related data or process for real time characteristics estimation 
 
Table 3: Recent falls algorithms from inertial sensor-based wearables.  
 

Figure caption 

Figure 1: An algorithm fusion approach on one wearable for (left, top-bottom) indoor and outdoor 
gait (blue), stair ascent (red) & decent (green), pathological gait (e.g. FOG in PD) and fall detection 
during free-living on a dedicated wearable (A, fixed or variable location) or smart device (B) placed 
generically on the person (e.g. back pocket). The smartphone facilitates synchronisation to A and 
relay of information to healthcare professional (analytics framework) via communication networks. 
Alternatively the smart device could be the sole wearable. Smart materials embedded in clothing 
could be the viable solution to continuously power wearables (C).
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