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Abstract 

This thesis focuses on human activity detection based on mobile and wearable devices. We choose 

Hexiwear as our wearable device to collect the human daily activity data, like tri-axis acceleration, tri-

axis orientation, tri-axis angular velocity and position. This project consists in the development of a 

smartphone application for the user in data analysis， data visualization and generates results. The 

objective is to build an open and modular prototype that can serve as an example or template for the 

development of other projects. The application is developed using JAVA by Android Studio. The 

application allows the user to connect with the wearable device, and recognize their daily activity. For 

the daily activity classify algorithm, we used two different methods, the first one is by set different 

thresholds, the second is by using the machine learning.  The application was tested and the results 

were satisfactory, as the generated application worked properly. Despite the obvious limitations, the 

work done is a starting point for future developments. 
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Resum 

Aquesta tesi se centra en la detecció d'activitat humana a partir de dispositius mòbils i portàtils. 

Escollim Hexiwear com el nostre dispositiu portàtil per recollir les dades de l'activitat humana diària, 

com ara l'acceleració de tres eixos, l'orientació de tres eixos, la velocitat angular i la posició de tres 

eixos. Aquest projecte consisteix en el desenvolupament d'una aplicació per a telèfon intel·ligent per 

a l'usuari en l'anàlisi de dades, la visualització de dades i la generació de resultats. L'objectiu és 

construir un prototip obert i modular que pugui servir d'exemple o plantilla per al desenvolupament 

d'altres projectes. L'aplicació està desenvolupada amb JAVA per Android Studio. L'aplicació permet a 

l'usuari connectar-se amb el dispositiu portàtil i reconèixer la seva activitat diària. Per a l'algorisme de 

classificació de l'activitat diària, hem utilitzat dos mètodes diferents, el primer és mitjançant 

l'establiment de diferents llindars, el segon és mitjançant l'aprenentatge automàtic. L'aplicació es va 

provar i els resultats van ser satisfactoris, ja que l'aplicació generada va funcionar correctament. 

Malgrat les òbvies limitacions, la feina feta és un punt de partida per a desenvolupaments futurs. 
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Resumen 

Esta tesis se centra en la detección de actividad humana basada en dispositivos móviles y portátiles. 

Elegimos Hexiwear como nuestro dispositivo portátil para recopilar los datos de la actividad humana 

diaria, como la aceleración de tres ejes, la orientación de tres ejes, la velocidad angular de tres ejes y 

la posición. Este proyecto implica la creación de una aplicación de teléfono para usuarios de análisis 

de datos, visualización de datos y generación de resultados. El objetivo es construir un prototipo 

abierto y modular que pueda servir como ejemplo o plantilla para el desarrollo de otros proyectos. La 

aplicación está desarrollada usando JAVA por Android Studio. La aplicación permite al usuario 

conectarse con el dispositivo portátil y reconocer su actividad diaria. Para el algoritmo de clasificación 

de la actividad diaria, usamos dos métodos diferentes, el primero es establecer umbrales diferentes, 

el segundo es usar el aprendizaje automático. La aplicación fue probada y los resultados fueron 

satisfactorios, ya que la aplicación generada funcionó correctamente. A pesar de las limitaciones 

evidentes, el trabajo realizado es un punto de partida para futuros desarrollos. 
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Glossary 
HAR – Human Activity Recognition 
 
UPDRS – Unified Parkinson’s Disease Rating Scale 
 
CDC – Centers for Disease Control  
 
IOT – Internet of Things 
 
BLE – Bluetooth Low Energy 
 
PHY – Physical Layer 
 
LL – Link Layer 
 
HC – Host-Control interface layer 
 
L2CAP – Host mainly includes the logical Link Control and Adaption Protocol later 
 
SM – Security Manager 
 
ATT – Attribute Protocol  
 
GAP – Generic Access Profile  
 
AHRS – Attitude and Heading Reference Systems 
 
IMU – Inertial Measurement Units 
 
RMS – Root Mean Square 



  Memoria 

vi   

Index 

ABSTRACT ___________________________________________________________ I 

RESUM _____________________________________________________________ II 

RESUMEN __________________________________________________________ III 

ACKNOWLEDGMENT _________________________________________________ IV 

GLOSSARY __________________________________________________________ V 

LIST OF FIGURES _____________________________________________________ IX 

LIST OF TABLE _______________________________________________________ XI 

1. PREFACE ______________________________________________________ 13 

1.2. Project origin and motivation ................................................................................ 13 

1.3. Project Goals & Scope ........................................................................................... 13 

2. INTRODUCTION ________________________________________________ 14 

2.1. Background ............................................................................................................ 14 

2.2. Human daily activity .............................................................................................. 15 

3. AVAILABLE TECHNOLOGIES AND CHOSEN SOLUTION __________________ 17 

3.1. Wearable devices................................................................................................... 17 

3.1.1. Hexiwear ............................................................................................................... 18 

3.1.2. Xsens Dot ............................................................................................................... 19 

3.1.3. Blue Trident ........................................................................................................... 19 

3.2. Operating systems ................................................................................................. 20 

3.2.1. Android Operating System.................................................................................... 21 

3.2.2. iOS Operating System ........................................................................................... 21 

3.3. Reason for chosen ................................................................................................. 22 

3.3.1. Overall scheme ...................................................................................................... 22 

3.3.2. Hardware ............................................................................................................... 23 

3.3.3. Software ................................................................................................................ 24 

4. THEORETICAL BACKGROUND _____________________________________ 27 

4.1. Wireless communication ....................................................................................... 27 

4.1.1. Low Energy Bluetooth 4.0 Overview .................................................................... 27 

4.1.2. Low Energy Bluetooth 4.0 protocol stack ............................................................. 27 

4.1.3. Compare several short-range Wireless communication technologies ................ 28 



Human activity detection based on mobile devices   

  vii 

4.2. Orientation ............................................................................................................. 29 

4.2.1. Represent Orientation .......................................................................................... 29 

4.2.2. Measure of Orientation ........................................................................................ 32 

5. IMPLEMENTATION ______________________________________________ 36 

5.1. Devices connect ..................................................................................................... 36 

5.2. Data collection ....................................................................................................... 37 

5.2.1. Data collection ...................................................................................................... 37 

5.2.2. Sample frequency ................................................................................................. 37 

5.3. Data treatment ...................................................................................................... 38 

5.3.1. Data import ........................................................................................................... 38 

5.3.2. Madgwick algorithm ............................................................................................. 38 

5.3.3. Calculate Euler angles ........................................................................................... 39 

5.3.4. Gravity compensation .......................................................................................... 39 

5.4. Data analysis .......................................................................................................... 39 

5.4.1. Feature Extraction ................................................................................................ 39 

5.4.2. Feature selection .................................................................................................. 40 

5.5. Experimental procedure ........................................................................................ 41 

6. RESULTS ______________________________________________________ 44 

6.1. Horizontal Activity .................................................................................................. 45 

6.2. Vertical Activity ...................................................................................................... 46 

6.3. Final Results............................................................................................................ 48 

7. CONCLUSIONS _________________________________________________ 50 

7.1. Summary ................................................................................................................ 50 

7.2. Proposal and future work ...................................................................................... 50 

8. ECONOMIC STUDY ______________________________________________ 51 

   

 

 

 

 



  Memoria 

viii   

 

 

 

 

 



Human activity detection based on mobile devices   

  ix 

List of Figures 

Figure 2.1. Human daily activity ___________________________________________________ 15 

Figure 3.1. Wearable unit shipments worldwide from 2014 to 2021 (source: Statista) ________ 17 

Figure 3.2. Hexiwaer device (source: MikroElectronika) ________________________________ 18 

Figure 3.3. Xsens Dot device (source: Xsens.com [33]) _________________________________ 19 

Figure 3.4. Operating System (source: statcounter) ___________________________________ 21 

Figure 3.5. (a), (b) Hexiwear's PCB; (c) Hardware's block diagram. (source: MikroElectronika) __ 24 

Figure 3.6. Android Studio Log (source: android.com) _________________________________ 25 

Figure 4.1. Low Energy Bluetooth Protocol Stack (source: Bluetooth Low Energy Software Developer’s 

Guide) __________________________________________________________________ 27 

Figure 4.2. Hexiwear orientation and axis orientation (source: MikroElectronika) ____________ 29 

Figure 4.3. Tait-Bryan angles in Z-Y-X sequence (source: Yusheng [44]) ____________________ 30 

Figure 4.4. Madgwick’s algorithm block diagram structure (source: madgwick internal report [39])34 

Figure 5.1. The block diagram of Algorithm __________________________________________ 36 

Figure 5.2. Sensors used for measurement: FXOS8700CQ, FXAS21002 (source: MikroElectronika)37 

Figure 5.3. Data treatment block diagram. __________________________________________ 38 

Figure 5.4. Raw data from Hexiwear._______________________________________________ 38 

Figure 5.5. The framework of experimental procedure. ________________________________ 41 

Figure 5.6. Screen to search for Bluetooth. __________________________________________ 42 



  Memoria 

x   

Figure 5.7. Screen to connect device. ______________________________________________ 43 

Figure 5.8. Screen of results. _____________________________________________________ 43 

Figure 6.1. Classification of human daily activities. ____________________________________ 44 

Figure 6.2. Plot the standing and sitting data from 3 different sensor of Hexiwear. __________ 45 

Figure 6.3. Plot the lying data from 3 different sensor of Hexiwear. ______________________ 45 

Figure 6.4. Plot the running data from 3 different sensor of Hexiwear. ____________________ 46 

Figure 6.5. Plot the walking data from 3 different sensor of Hexiwear. ____________________ 46 

Figure 6.6. Plot the falling data from 3 different sensor of Hexiwear. _____________________ 47 

 

 

 

 

 

 

 

 

 

 

 

 

 



Human activity detection based on mobile devices   

  xi 

List of Table 

 

Table 3.1 Hexiwear Sensor Characteristics __________________________________________ 18 

Table 3.2 Performance comparison of smartphone and Hexiwear ________________________ 22 

Table 4.1 Compare several wireless communication technologies ________________________ 28 

Table 5.1 Feature description ____________________________________________________ 40 

Table 6.1 Experiment results _____________________________________________________ 48 

Table 8.1 Cost of materials and licenses ____________________________________________ 51 

Table 8.2 Total cost of project ____________________________________________________ 51 





Human activity detection based on mobile devices   

  13 

1. PREFACE 

1.2. Project origin and motivation 

The origin of this project comes from the wearable devices final course project.  However, in the 

course final project, we only collect human activity data through the built-in sensor of the mobile 

phone and upload the data to MATLAB for pre-processing and analysis. A complete activity 

recognition system is not implemented.   

At the same time, the recording of human activity is becoming increasingly important in detecting 

activity in public health care. In our daily life, a reliable human activity recording system can not only 

encourage people to exercise more outdoors, but also can evaluate activities of daily living. for 

chronic treatment. It helps medical staff to come up with more reliable treatment options. Second, 

with the popularity of smart devices, people are more interested in wearing simple and comfortable 

devices to record their daily activity data all the time. 

Thus, in this final project, we are going to build a complete human activity recognition system.  

According to Dr. Cosp-Vilella, the proposed project could be the focus of a final master's thesis (TFM), 

as the student could contribute the knowledge they have learned throughout their master's degree 

and in their chosen medical field to help develop an algorithm that could define various human 

activities. 

1.3. Project Goals & Scope 

The goal is to provide a functional prototype application. The application is aimed at simplicity 

prioritizing ease of use.  It is designed to be multiplatform, easy to install and portable, so the users 

can easily set it up and access it directly.  The object and scope of this project includes several points: 

• Enables wireless communication between wearable device and smartphone. 

• Find a suitable algorithm and embedded in our application. 

• Result visualization 
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2. INTRODUCTION 

2.1. Background  

Wearable electronic technology integrates electronic devices with the human body in the form of 

clothing, accessories, skin patches, and in-vivo implantation, and realizes functions such as in-body 

sensing measurement, data storage, and mobile computing. An important a part of wearable systems 

is wearable sensors with varied functions, that became highly regarded in industrial, medical, military, 

recreation and alternative fields in recent years. They can be used to evaluate many physiological 

parameters of the human body, such as observance the patient's body temperature, brain activity, 

heart rate, muscle motion and alternative key information [10], [11], and can also be used to 

measure various movements of the human body Status, such as acceleration, muscle extension, and 

foot pressure. They can also measure environment-related parameters, such as location coordinates, 

temperature, humidity, and atmospheric pressure. 

The integration of wearable sensors and medical treatment can give patients with a more tailored 

treatment plan, as well as allow doctors to grasp the patient's recovery situation in real time, change 

and optimize the treatment plan in real time for various treatment problems, and accomplish 

accurate and quantitative therapy. Wearable sensors can also give large data support for the study of 

many complex diseases as well as data support for the attribution of different diseases brought on by 

environmental factors, dietary preferences, and individual differences. Wearable sensors have been 

applied to a variety of disease monitoring, which can be used not only as a preventive measure for 

sudden diseases [12],[13], but also as an adjuvant treatment and monitoring method in disease 

rehabilitation [14],[15],[16]. 

Take Parkinson's disease, for example. Parkinson's disease is a common neurodegenerative disease 

affecting about 3% of the global population over the age of 65 [17]. The Unified Parkinson's Disease 

Rating Scale is the primary evaluation tool used to assess the effectiveness of pharmacological and 

surgical combinations in the treatment of Parkinson's disease (UPDRS). comprehensive assessment of 

motor characteristics including finger and hand motions, posture, gait, hands and feet, and limbs. The 

use of wearable sensors makes it potential for patients when the onset of unwellness comparable to 

Parkinson's disease to hold out necessary treatment reception [18],[19],[20]. In recent years, the 

rapid development of gait analysis systems based on wearable accelerometers and gyroscopes has 

contributed greatly to more convenient and continuous monitoring of the gait of Parkinson's patients. 

These new systems not only make it easier and more direct to measure standard gait parameters and 

analyze related data, but also provide the ability to grade Parkinson's disease stage and degree of 
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dyskinesia. Klucken et al. [21] used shoes with integrated acceleration sensors and gyroscopes to 

record motion signals in standard gait sequences, and applied a large number of sensors feature 

signals (more than 650) and pattern recognition algorithms to classify Parkinson's disease stages. By 

comparing the results of sensor acquisition and analysis with Parkinson's clinical evaluation indicators 

(such as UPDRS part III exercise indicators), it is found that the classification accuracy of the wearable 

monitoring system reaches 81% to 91%. 

Similarly, fall detection is also the current research direction of wearable sensors. The world is dealing 

with an getting old population. With this growth, the percentage of frail and established older adults 

might also additionally moreover growth considerably [22]. This demographic shift can cause an 

exponential increase within the variety of older adults gashed by falls, as falls and fall-related 

fractures are quite common among older adults. According to the Centers for Disease Control and 

Prevention (CDC), accidental falls are common among older adults, affecting approximately 30% of 

those > 65 years of age each year [23]. Older adults are at the highest risk of death or serious injury 

from falls, and also the risk will increase with age [24]. 

In this paper, we design a system capable of detecting human activity in real time and capable of 

detecting falls. A prototype system is implemented using Hexiwear and Android software, and the 

real-time data is verified by MATLAB. 

2.2. Human daily activity  

The human daily activity can be roughly divided into dynamic activities and static activities. Dynamic 

activities can be divided into cyclic or non-cyclic activities, and static activities are mainly divided into 

sitting, lying, and standing. 

 

 

 

 

 

 

 

Figure 2.1. Human daily activity 
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Human activity recognition based on sensors has been studied for a long time. For example, 

KASTERENT V et al identify various human activities indoors by arranging sensor networks indoors 

[25]. RAVI N et al used a single three-axis accelerometer to identify 9 motion states such as standing, 

running, brushing teeth with good results [26]. CASALE P et al proposes that based on a single 

acceleration sensor system, five motion states can be recognized, and the recognition accuracy rate 

reaches 94%. KHAN proposes a hierarchical prediction model to classify the static, dynamic and 

excessive activities of the human body, which can identify 15 kinds of activities of the human body 

[28].  

This paper uses Hexiwear's built-in sensors, including accelerometers, magnetometers and 

gyroscopes, to identify 5 common motion states in daily life. 
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3. AVAILABLE TECHNOLOGIES AND CHOSEN SOLUTION 

3.1. Wearable devices   

Devices that can be worn outside of clothing or on the body are known as wearables. capable of 

carrying out a number of the duties and features carried out by smartphones, laptops, and tablets. 

They can also carry out tasks more easily and effectively than portable and hand-held gadgets. When 

it comes to sensory feedback and causal abilities, they frequently exhibit a great deal of subtlety. The 

more vital is that offer feedback communications of permit the user to look at or access info in real 

time.  

At present, wearable devices in the market are mainly concentrated in three major areas, namely, 

recreation, fitness, and medical health. From the table below we can find that wearable device 

shipments have increased significantly since 2018. 2021 global wearable device shipments are 533.6 

million units. This is a 20% year-on-year increase, indicating that people are increasingly dependent 

on wearable devices.  

 
Figure 3.1. Wearable unit shipments worldwide from 2014 to 2021 (source: Statista) 

In this project, a wearable device prototype with many sensors to test and develop applications or 

other devices is presented. Several alternatives are discussed in the section that follows.  
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3.1.1. Hexiwear 

Hexiwear could be a wearable development kit for the net of Things (IOT). It is a small and energy-

green device, filled with sensors to quantify ourselves or the sector around.  It is wirelessly enabled 

and connect to both nearby devices or cloud servers far away. Its best feature is going to be the new 

and original software that we are going to develop. Hexiwear is powered by a kinetic 32-bit arm 

cortex-m for microcontroller. It has Bluetooth Low Energy and accelerometer, sensors for measuring 

altitude, light, heart rates and on the outside of full colored LED display.  

 
Figure 3.2. Hexiwaer device (source: MikroElectronika) 

Hexiwear provides BLE (Bluetooth Low Energy) for wireless communications, and consist of several 

sensors: 

 

Table 3.1 Hexiwear Sensor Characteristics 

Sensor: Accelerometer Magnetometer Gyroscope 

Sample 

frequency 

Up to 800 Hz Up to 800 Hz Up to 800 Hz 

Range ±2 g, ±4 g, ±8 g ±1200 µT ±250°/s, ±500°/s, ±1000°/s, ±2000°/s 

 

Sensitivity 16-bit 16-bit 16-bit 
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3.1.2. Xsens Dot 

Xsens Dot is a wearable sensor. It consists of 3D accelerometer, magnetometer and gyroscope. The 

embedded processor within the device handles sampling, calibration, strap-integration of mechanical 

phenomenon data and also the Xsens Kalman Filter core formula for sensor fusion. Xsens Dot can 

offer real-time 3D orientation likewise as mark 3D linear acceleration, angular velocity and magnetic 

field data to receiving device by Bluetooth 5.0[33].  

 
Figure 3.3. Xsens Dot device (source: Xsens.com [33]) 

• Gyroscope  

- Sample frequency: 800 Hz 

- Range: ±2000°/s 

- Sensitivity: 16-bit 

• Accelerometer 

- Sample frequency: 800 Hz 

- Range: ±16 g 

- Sensitivity: 16-bit 

• Magnetometer 

- Sample frequency: 60 Hz 

- Range: ±8 gauss 

- Sensitivity: 16-bit 

3.1.3. Blue Trident  

Blue Trident is a human motion capture device. It is ideal to be used with running based mostly sport, 

together with basketball, rugby, and football, aboard cricket, swimming and more. Embody a dual-g 

IMU, which may capture up to two hundred g. The low g sensor tracks lower intensity movements at 
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sixteen g and each sensors live movement simultaneously, guaranteeing accurate information 

capture, eliminating sensor saturation. The data download is very fast, one-hour capture takes three 

minutes. It has small volume and efficient battery, battery life up to 12 hours [34].  

 

Figure 3.4. Blue Trident device (source: Vicon.com [34]) 

• Accelerometer 

- Sample frequency: 1125-1600 Hz  

- Range: ±16g, ±200g 

- Sensitivity:16-bit, 13-bit 

• Gyroscope 

- Sample frequency: 1125Hz  

- Range: ±2000°/s 

- Sensitivity: 16-bit 

• Magnetometer 

- Sample frequency: 1125Hz  

- Range: ±4900 µT 

- Sensitivity: 16-bit 

3.2. Operating systems 

In our project, another important part is operating system. For different environments, the 

development tools and programming language we use are different. The mainstream operating 

system on the market today are Android and iOS.  
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3.2.1. Android Operating System  

Based on the Linux open-source system architecture, Google introduced the Android operating 

system for smart devices. Android is very powerful. From its launch in 2008 to the present, Android is 

known to occupy the number one position in the global smartphone operating system market. In the 

following figure, shows the mobile operating system market share worldwide from Apr 2021 to Apr 

2022. 

 

Figure 3.4. Operating System (source: statcounter) 

Android can occupy such a large market share mainly because it has the following advantages: 

- It is free and open-source development, which means that Android is completely free to use 

for developers and mobile phone manufacturers, reducing costs and increasing profits. 

Because the source code is open, it has attracted countless programmers from all over the 

world. 

- - The Android kernel is based on the Linux kernel and offers a wide range of APIs. The 

automation brought by API can easily save a lot of work, cost, and time. 

- Allows program in Java, C or C++. And it allows applications multitask. 

3.2.2. iOS Operating System  

iOS is a mobile operating system for mobile devices of Apple, such like iPhone, iPad, and iPods. It is 

the second largest operating system after Android. Its advantages are smooth, stable, safe, and 

simple. In order to make the user experience better, iOS can be highly integrated with the hardware 
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system, so that electronic devices can respond in the shortest time. The background generated by 

iOS during use is pseudo background or no background program, and the degree of optimization is 

also very high. It rarely generates cache garbage files. When a software exits into the background, it 

will basically stop running, leaving space for other software in use, which makes the operation of iOS 

very process, rarely freeze phenomenon, in addition, the quality of iOS App is very high, the security 

is also very high, and it will not generate a lot of junk ads. Compare with android, the system's ability 

to adapt and the code's freedom account for the majority of the differences. 

3.3. Reason for chosen 

3.3.1. Overall scheme 

In this project, we choose the wearable device to acquire human activity data, using the cell phone as 

the platform for information processing. Below, is a comparison of the parameter information of the 

cell phone and the wearable device. 

 

Table 3.2 Performance comparison of smartphone and Hexiwear 

 Smartphone (Redmi 9C) Hexiwear 

CPU 12nm process technology, up 

to 2.3GHz, 8x A53, octa-core 

CPU 

Kinetis K64 32-bit Arm Cortex-

M4 MCU, 120 MHz, 1M Flash, 

256K SRAM 

Battery 5000mAh 190mAh 

Memory 64GB 8MB 

Sensor Accelerometer 

Proximity 

A-GPS 

3D Accelerometer  

3D Magnetometer 

3-Axis Digital Gyroscope 

Dimensions 164.9 x 77 x 9 mm 25.90 x 30.10 x 10 mm 

With the above information, we can find out. Compared to Hexiwear, the smartphone has a higher 

power level and is able to work for a longer period of time. Likewise, smartphones have more 

computing power, can handle complex computing programs, and have enough storage space. But 
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the Hexiwaer is smaller and more portable than the smartphone, and has more sensors to capture 

human activity data. 

3.3.2. Hardware  

For the hardware part, we choose Hexiwear as our wearable device. Although Xsens Dot can collect 

very accurate human motion data, it needs to wear multiple sensors at the same time during use, 

which is also very troublesome in the later data processing. Although Blue trident is convenient to 

use, there is no way to design programs according to the needs of users, the scalability is low, and the 

price is high.  

For Hexiwear, except 9-axis sensor, it has pulse oximeter and hear rate sensor, which giving us more 

choices. And Hexiwear is compatible with various external gadgets, and can use hundreds of sensors 

and transceivers with the Click board to enhance the core functions, allowing us to implement 

projects faster. 

Secondly, compared with the other two wearable devices, Hexiwear's CPU processing power is more 

imposed, and its storage capacity and memory are much higher than the other two. This is very 

helpful for us to obtain data from the sensor later. 

Finally, Kinetis Design Studio source files and complete hardware layouts and schematics are 

provided free of charge. We can refer to the existing projects of others to design the functions we 

want. Overall, Hexiwear is a very suitable choice compared to the other two wearable devices. 

 

 

 

 

 

 

 

(a) 
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(b) 

 

 

 

 

 

 

(c) 

Figure 3.5. (a), (b) Hexiwear's PCB; (c) Hardware's block diagram. (source: MikroElectronika) 

3.3.3. Software  

As we mentioned before, the two most popular operating systems right now are Android and iOS. In 

this project, we choose to use Android Studio to develop the Android operating system. Android 

studio is an Android application development environment launched by Google. Different from 

Eclipse-based ADT, Android studio is a brand-new development environment with more powerful 

functions and more efficient performance. Using Android studio has the following advantages over 

using Eclipse development: 
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• Android studio only needs to add a line of configuration to use the v7 library and design 

library, and Eclipse needs to refer to the entire project to use these libraries. 

• Higher versions of SDK and NDK only support Android studio, not Eclipse. 

• More new functions are intelligently used in Android studio, such as automatic saving, multi-

channel packaging, integrated version management, support for previewing drawable 

graphics files, etc. 

Also, the available devices for testing were Android-powered phones, thus giving up on creating 

apps specifically for iOS. 

 

 

Figure 3.6. Android Studio Log (source: android.com) 
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4. THEORETICAL BACKGROUND 

4.1. Wireless communication  

4.1.1. Low Energy Bluetooth 4.0 Overview 

One of the most widely used short-range communication methods in the world is Bluetooth wireless 

communication technology. For Bluetooth 2.1+ERD, Bluetooth 3,0+HS and low energy Bluetooth 4.0, 

they all have the characteristics of close-range communication, low cost, robustness and can work 

license free in 2.4G RF. With the development of technology, the application of Bluetooth technology 

to games, cell phones, headsets, computers and other traditional areas can no longer meet the daily 

needs of people. The development of low energy Bluetooth has minimized the power consumption 

of devices, and is a new short-range wireless communication standard that combines traditional 

Bluetooth, high-speed Bluetooth, and low-power Bluetooth. Compared with the classic Bluetooth 

technology, low energy Bluetooth 4.0 mainly reduces power consumption from three aspects: (1) 

reduce standby power consumption; (2) fast connection; (3) reduce peak power 

4.1.2. Low Energy Bluetooth 4.0 protocol stack 

Low Energy Bluetooth 4.0 protocol stack is shown in the figure: the controller includes the Physical 

Layer (PHY), Link Layer (LL) and Host-Control interface layer (HC); the Host mainly includes the Logical 

Link Control and Adaption Protocol layer (L2CAP), Security Manager (SM), Attribute Protocol (ATT), 

Generic Access Profile (GAP), and Generic Attribute Profile (GATT); the Application layer is located in 

the upper layer of the controller and host. It belongs to the highest layer of Low Energy Bluetooth 

protocol, which defines three types: Characteristic, Service, and Profile. 

 

 

 

 

 

 

Figure 4.1. Low Energy Bluetooth Protocol Stack (source: Bluetooth Low Energy Software Developer’s Guide) 
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4.1.3. Compare several short-range Wireless communication technologies 

At present, in addition to Bluetooth communication technology, there are also ZigBee, Wi-Fi and 

other common wireless communication technologies. The following table shows a comparison of the 

technical parameters of wireless communication between the three. 

 

Table 4.1 Compare several wireless communication technologies 

Name Wi-Fi ZigBee Bluetooth BLE 

Operating 

Frequency Band  

2.4 GHz 2.4 GHz  

868 MHz  

915MHz 

2.4 GHz 2.4 G 

Limited speed 54 Mbps 250 kbps 3 Mbps 1 Mbps 

Communication 

distance 

100 m  10 – 60 m  10 m  50 m 

Power 

consumption 

10 – 50 mA 5 mA 30 mA 15 mA 

Network 

topologies 

Star network 

Mesh network 

Star network 

Mesh network 

Star network 

 

Star network 
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4.2. Orientation  

4.2.1. Represent Orientation 

In the figure bellow, shows the orientation of Hexiwear. But in practice, the way we wear it is not 

necessarily the same as the picture below. In order to obtain the exact position of the human body in 

space, we need to re-represent the orientation. Currently, there are systems for representing 

orientations such as rotation matrices, Euler angles, quaternions, etc.  

 
Figure 4.2. Hexiwear orientation and axis orientation (source: MikroElectronika) 

4.2.1.1. Euler Angles  

Euler Angle, which can represent 3 values in any direction in 3D space, was proposed by Leonhard 

Euler in the 18th century. The Euler angles we usually talk about can be subdivided into Euler-angles 

and Tait-Bryan-angles, both of which use the Cartesian coordinate system. The three axes are used as 

rotation axes, and the main difference lies in the selection order.  
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Figure 4.3. Tait-Bryan angles in Z-Y-X sequence (source: Yusheng [44]) 

4.2.1.2. Gimbal lock  

A gimbal lock is a problem that arises when using dynamic Euler angles to represent the rotation of a 

3D object. The usage of Euler angles is divided into static and dynamic. Static Euler angles are based 

on the world coordinate system (0,0,0); one of the definitions of dynamic Euler angles is the same as 

the static Euler angles, and the other is defined as follows: When using an object's coordinate system, 

When rotating in the XYZ mode, rotate in the following order: first around the X-axis, then around the 

Y-axis of the modified rigid body's right-hand coordinate system, and finally around the Z-axis of the 

twice-transformed rigid body's right-hand coordinate system. 

• Static Euler angles: The rotation around the three axes of the world coordinate system is 

called static because the coordinate axis remains stationary during the rotation of the object. 

• Dynamic Euler angles: The rotation around the three axes of the object coordinate system, 

because the coordinate axis rotates with the object in the same rotation process, so it is 

called dynamic. 
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Figure 4.4. Gimbal lock (source: Julian Zeitlhöfler [29]) 

When ±90° is selected as the pitch angle, the first and third rotations become equivalent, and the 

rotation representation system as a whole is limited to merely rotating around the vertical axis, losing 

one representational dimension. A gimbal lock occurs when the second rotation, at an angle of ±90°, 

causes the rotation axes of the first and third rotations to coincide. 

 

4.2.1.3. Quaternions  

In the previous section we explained the problem of gimbal locking in the Eulerian representation of 

the attitude, which leads to a problem when the Eulerian representation of the same spatial state is 

not unique, and when the gimbal locking phenomenon occurs, there are numerous Eulerian 

representations of the same rotation, which leads to a problem when the Eulerian angles differ. 

Because when the pitch angle is close to 90°, two completely different sets of Euler angular 

representations can be the same rotation. So, to solve these problems, the mathematics came up 

with a way to characterize the attitude in the form of quaternions. 

The quaternion was invented by the Irish mathematician Hamilton. It is a combination of 1 scalar part 

and 3 vector part, which can usually be expressed as �̂� = (𝑞1, 𝑞2, 𝑞3, 𝑞4), where 𝑞1 is the real 

number and 𝑞2, 𝑞3, 𝑞4 are complex numbers.  

Quaternions have the property of not allowing multiplication to be commutative. They are quite 

helpful for navigation as well as computer graphics and robotics applications. Starting from the work 



  Annexos 

32   

of Mahony et al [36] and Madgwick at al introduced an orientation filter, which employs a quaternion 

representation of orientation [38][27].  

𝒀𝒂𝒘 = 𝒂𝒕𝒂𝒏𝟐(𝟐𝒒𝟐𝒒𝟑 − 𝟐𝒒𝟏𝒒𝟒, 𝟐𝒒𝟏
𝟐 + 𝟐𝒒𝟐

𝟐 − 𝟏) (Eq. 4.1) 

𝑷𝒊𝒕𝒄𝒉 = −𝒔𝒊𝒏−𝟏(𝟐𝒒𝟐𝒒𝟒 + 𝟐𝒒𝟏𝒒𝟑) (Eq. 4.2) 

𝑹𝒐𝒍𝒍 = 𝒂𝒕𝒂𝒏𝟐(𝟐𝒒𝟑𝒒𝟒 − 𝟐𝒒𝟏𝒒𝟐, 𝟐𝒒𝟏
𝟐 + 𝟐𝒒𝟒

𝟐 − 𝟏)  (Eq. 4.3 ) 

4.2.2. Measure of Orientation  

To determine the direction of the human body during motion, we sometimes need to combine 

multiple sensors. The two prevailing mechanisms for obtaining direction are: Attitude and Heading 

Reference Systems (AHRS) and Inertial Measurement Units (IMU).  

4.2.2.1. Attitude and heading reference system (AHRS) 

Heading reference system, often known as AHRS (Attitude and Heading Reference System). AHRS 

consists of accelerometer, magnetometer and gyroscope, which can provide yaw, roll and pitch 

information for the aircraft. The Earth's gravity field, and consequently the Earth's field of force, serve 

as a key point of reference for AHRS, and the precision of these measurements determines the static 

ultimate accuracy of the system, whereas the gyroscope determines its dynamic performance. It 

implies that AHRS can't work properly once it leaves the gravity and magnetic field setting of the 

earth. We have to tendency to special attention that the additional orthogonal the field of force and 

gravity field, the higher the aerial perspective measuring effect, that is to say, if the magnetic field 

and gravity field are parallel, such as at the north and south poles of the geomagnetic field, wherever 

the magnetic field is downward, that is, a similar direction because the weight field, this point the 

course intersection can not be measured, this is often the defect of the aerial attitude system, in high 

latitude places the course angle error can become larger and larger. 

4.2.2.2. Inertial Measurement Units (IMU) 

IMU (Inertial Measurement Unit) is the formal name for the mechanical phenomenon measurement 

unit. According to theoretical physics, all motion may be divided into two forms: linear motion and 

rotating motion. This inertial measurement unit is used to measure these two types of motion; linear 

motion can be measured using accelerometers, while rotational motion can be measured using 

gyroscopes. Three-axis accelerometers and three-axis gyroscopes are typically found in an IMU. 

While the gyroscopes capture the carrier's angular velocity signal relative to the navigation 

coordinate system, measure the object's angular velocity and acceleration in three-dimensional 
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space, and use it to determine the attitude of the solve object, the accelerometers capture the 

object's acceleration signal in the carrier coordinate system independently of the three axes. It is 

used in navigation for very important applications. To increase reliability, it is possible to equip each 

axis with additional sensors. The IMU is usually mounted in the center of gravity of the object to be 

measured. 

 

IMUs are primarily used in devices that require motion control, such as cars and robots. They are also 

used in applications where an accurate derivation of displacement from position is required, such as 

inertial navigational systems for spaceships, missiles, submarines, and aircraft. 

Assuming that the IMU gyroscope and accelerometer measurements are accurate, the gyroscope can 

accurately measure attitude of the object. The accelerometer can be quadratically integrated to 

derive the displacement to achieve full 6DOF, meaning that with a theoretical IMU at any position in 

the universe, we can know its current attitude and relative displacement, not restricted to a specific 

filed. 

4.2.2.3. Algorithm  

4.2.2.3.1 Gradient descent algorithm  

The gradient descent algorithm was proposed by madgwick in 2010, and the figure below is from the 

madgwick paper. The core of the algorithm is to linearly fuse the pose obtained from accelerometer 

and magnetometer by gradient descent with the pose obtained from gyroscope integration to obtain 

the optimal pose. The advantage of the gradient descent algorithm is that the pose accuracy is higher 

than that of the complementary filtering algorithm. 
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Figure 4.4. Madgwick’s algorithm block diagram structure (source: madgwick internal report [39]) 

4.2.2.3.2 Explicit complement filter  

The algorithm features a fusion solution using the complementary characteristics of the gyroscope, 

accelerometer and magnetometer outputs, which usually have high frequency characteristics, more 

sensitive when the carrier is moving at high speed, while the accelerometer and magnetometer are 

the opposite, with higher accuracy when the carrier movement is less variable. 

Complementary filtering algorithm, through the PID feedback controller to the amount of error 

feedback compensation correction gyroscope error. Algorithm principle: According to the 

accelerometer and magnetometer data, after converting to the geographic coordinate system, and 

the corresponding reference gravity vector [37] and geomagnetic vector to find the fork product 

error, this error is used to correct the output of the gyroscope, and then use the gyroscope data for 

quaternion update, and then convert to Euler angles. In layman's terms, this means that the 

accelerometer output is used to correct the gyroscope's cross-roll and pitch angle errors [30], and the 

magnetometer output is used to correct the gyroscope's heading angle error, thus giving a smoother, 

slower dispersion attitude fusion result. 
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5. IMPLEMENTATION 

In this chapter, we will explain the development of the prototype implementation.  First, we will 

introduce how to implement the connection of the device, data collection and adjustments, then the 

processing and analysis of the data, and finally the overall experimental procedure.  

5.1. Devices connect  

 

 
Figure 5.1. The block diagram of Algorithm  
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5.2. Data collection 

5.2.1. Data collection   

In the section 3.1 wearable devices, we introduced the main sensors that will be used. And we can 

find the motion service of those sensor. Figure 5.2 indicates the data format and the units of those 

sensor.  

 
Figure 5.2. Sensors used for measurement: FXOS8700CQ, FXAS21002 (source: MikroElectronika) 

To get data from the sensor before, the application asks the wearable device for the eigenvalues 

service 0X2000.  

5.2.2. Sample frequency  

Sample frequency is an important parameter. From the point of view of the perspective of the 

transmitter, increasing the sampling rate can reduce the noise, reduce the difficulty of implementing 

RF output and improve signal transmission speed and bandwidth.  From the point of view of the 

receiving end, although a high sampling rate can reduce quantization noise, it imposes a heavy load 

on subsequent digital signal processing, so it is necessary to reduce the sampling rate.  In general, we 

should choose an appropriate sampling rate for the communication system.  100 HZ is a good choice.  
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5.3. Data treatment  

When we get the raw data, we need to do the following processing on the data. As shown in the 

figure below. We first import the data from the CSV file and then use the MADGWICH algorithm to 

obtain the direction by means of quaternions. Finally, gravity compensation is given to the 

acceleration. 

 
Figure 5.3. Data treatment block diagram. 

5.3.1. Data import  

 
Figure 5.4. Raw data from Hexiwear. 

5.3.2. Madgwick algorithm  

We will utilize the Madgwick algorithm to define the gain and sampling period, two crucial filter 

parameters, after we get the data. Among them, we’ll use a sampling frequency that matches the 

sensor’s 60 Hz. In terms of gain, it is mostly the gyroscope measurement error in quaternion 
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derivative units. All errors, including noise, calibration mistakes, quantization errors, etc., are included 

in this parameter. The convergence ratio for removing these faults may be calculated from this value, 

therefore the higher, the faster the convergence and the bigger the error. In his study [40], the 

creator of this algorithm suggests that the ideal value of βto obtain good performance is 0.033 for 

IMU and 0.041 for MAGR. As a result, the recommended value is used since the MARG version was 

used in the project.  

5.3.3. Calculate Euler angles  

For further analysis, quaternions are so complex in their 4-D representation, it was decided to 

compute Euler angles. Therefore, Euler angles will be obtained by convention ZYX of quaternions. 

5.3.4. Gravity compensation  

Gravity compensation is the last data adjustment. According to Verasano [41] in his article, this 

modification is required to determine the coordinates of the real acceleration since without it, gravity 

would be at work. The author’s suggested solution has been put into practice for this in the MATLAB 

programming language.  

5.4. Data analysis  

When we have finished processing the raw data, we will analyze the data。 

By the Hexiwear device, we can obtain the acceleration Ax, Ay, Az by accelerometer. In general, 

acceleration includes gravitational acceleration and linear acceleration. We will separate the 

acceleration force into gravitational acceleration and linear acceleration using a low-pass filter with a 

cutoff frequency of 0.25 Hz. So Ax will be split into GAx and LAx, and Ay and Az will be treated the 

same way. 

5.4.1. Feature Extraction 

1) Signal Magnitude Vector 

In the signal magnitude vector, we calculate for acceleration same for gyroscope, 

              𝐴3𝑎 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2                                                         (1) 

𝐿𝐴3𝑎 = √𝐿𝐴𝑥
2 + 𝐿𝐴𝑦

2 + 𝐿𝐴𝑧
2                                              (2) 
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𝐺3𝑎 = √𝐺𝑥
2 + 𝐺𝑦

2 + 𝐺𝑧
2                                                         (3) 

𝐺𝐴3𝑎 = √𝐺𝐴𝑥
2 + 𝐺𝐴𝑦

2 + 𝐺𝐴𝑧
2                                              (4) 

 

2) Tilt angle (TA) of body trunk 

TA is defined as the angle between the positive Ys and gravitational vector, as follows: 

𝑇𝐴 =
𝐿𝐴𝑌

√𝐿𝐴𝑥
2+𝐿𝐴𝑦

2 +𝐿𝐴𝑧
2      

                                                (5) 

Therefore, we have twenty signals derived from the acceleration, angular velocity and orientation are 

listed as follows: 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧, 𝐴3𝑎 , 𝐺𝐴𝑥, 𝐺𝐴𝑦, 𝐺𝐴𝑧, 𝐺𝐴3𝑎 , 𝐿𝐴𝑥 , 𝐿𝐴𝑦, 𝐿𝐴𝑍, 𝐿𝐴3𝑎 , 𝐺𝑥, 𝐺𝑦, 𝐺𝑧, 𝐺3𝑎 , 𝑂𝑎，

 𝑂𝑝, 𝑂𝜏, 𝑎𝑛𝑑 𝑇𝐴. 

5.4.2. Feature selection  

We will extract 140 features from acceleration, angular velocity and orientation according to the 

method of YI HE [41]. For example,  𝐴𝑥𝐴𝑣𝑔  represents the average value of 𝐿𝐴𝑥. The remaining 

features are shown in the following table: 

 

Table 5.1 Feature description 

Features Description 

𝐴𝑥𝐴𝑣𝑔 The average value over the window of 𝐴𝑥 

𝐺𝐴𝑥𝑀𝑒𝑑 The median value over the window of 𝐺𝐴𝑥 

𝐿𝐴𝑥𝑆𝑡𝑑 The standard deviation value over the window of 𝐿𝐴𝑥 

𝐺3𝑎𝑆𝐾 The skewness value over the window of 𝐺3𝑎 

𝑂𝑎𝐾 The kurtosis value over the window of 𝑂𝑎 

𝑂𝑝𝐼𝑅 The interquartile range over the window of 𝑂𝑝 

𝑂𝜏𝑃𝐷 The percentage of decline in the entire window of 𝑂𝜏 
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Where the Average means the average value over the window, Median means the median value over 

the window. Standard deviation means the standard deviation value over the window. Percentage of 

decline is the percentage of point decline in the entire window.  

Skewness: 𝑆𝐾 =
𝑛

(𝑛−1)(𝑛−2)
∑(

𝑥𝑖−𝐴𝑣𝑔

𝑆𝑡𝑑
)3                                  (5) 

Kurtosis: 𝐾 =  
𝑛(𝑛+1) ∑(𝑥𝑖−𝐴𝑣𝑔)4−3(∑(𝑥𝑖−𝐴𝑣𝑔)2)

2
(𝑛−1)

(𝑛−1)(𝑛−2)(𝑛−3)𝑆𝑡𝑑4             (6) 

Interquartile range: 𝐼𝑅 =  𝑄3 − 𝑄1                                             (7) 

Where 𝑄3, 𝑄1 is the 75th and 25th percentiles over the window, respectively.  

 

5.5. Experimental procedure  

 

 

 

 

 

 

 

 

 

Figure 5.5. The framework of experimental procedure. 

 

From the figure above, we see the stages in our overall experience. We first get the data through the 

wearable and then transmit the data to the mobile phone via Bluetooth. At this point, we will divide 

it into two steps, one of which is to display the current activity directly on the phone by setting a 
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threshold. The second is to send the device obtained by the mobile device to the computer via the 

mobile phone, and then use machine learning to determine the current activity. About setting 

thresholds. First, we partition the acceleration signal generated using 𝑇𝑤𝑖𝑛 with 50% overlap. For 

each segment, 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 are used to specify the maximum and minimum acceleration values, 

respectively. Their times are 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛, respectively. 

Our software mainly consists of three main screens, as shown in the image below. 

 

 

 

 

 

 

 

 

Figure 5.6. Screen to search for Bluetooth. 

The first screen of our application, shown in Figure 5.6, is to search for Bluetooth devices near our 

smartphone.  
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Figure 5.7. Screen to connect device. 

The second screen is shown in Figure 5.7. It is to connect our smartphone and wearable device. Here 

we set a random connection password to connect the device correctly.  

 

 

 

 

 

 

 

 

Figure 5.8. Screen of results. 

Figure 5.8 shows our results. In the upper part, it is the acceleration value, magnetometer value, and 

gyroscope value collected by our Hexiwaer device. This is followed by a graph based on 𝐿𝐴3𝑎. At the 

bottom is the current human activity detected by our algorithm based on the threshold. 
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6. RESULTS 

In this section the results achieved in the project development are presented. It starts with an 

analysis of the different activities as well as a presentation of the demonstration and the final 

statistics of the results. 

In the mobile application, we will take a simpler approach of threshold judgment since machine 

learning cannot be implanted. We divide the results into four major categories: vertical motion, 

horizontal motion, respectively. The horizontal motion is divided into sitting, standing, and lying. 

Vertical motion mainly contains falling, running, slow walking, etc. 

 
Figure 6.1. Classification of human daily activities. 
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6.1. Horizontal Activity 

 

 

 

 

 

 

 

 

 

Figure 6.2. Plot the standing and sitting data from 3 different sensor of Hexiwear. 

 

 

 

 

 

 

 

 

Figure 6.3. Plot the lying data from 3 different sensor of Hexiwear. 

As we stated earlier, sitting, standing, and lying comprise the majority of horizontal activity. The 

activity data for sitting and standing are shown in Figure 6.2, and we can see that it is hard to 

distinguish between the two from the graphs. The activity data for lying are presented in Figure 6.3; 

in reality, there is really little variation between these three movements. The acceleration and 
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magnetometer information represent the biggest distinction between lying and the other two. The y-

axis acceleration remains about 1 g whereas the z-axis and x-axis acceleration are both close to 0 g 

when they are sitting or standing. The z-axis acceleration is around 1 g while the x and y-axis 

acceleration are roughly equal to 0g when in the laying motion. Similar to it, there is a big difference 

in their magnetometer data. 

6.2. Vertical Activity  

 

 

 

 

 

 

 

 

Figure 6.4. Plot the running data from 3 different sensor of Hexiwear. 

 

 

 

 

 

 

 

 

Figure 6.5. Plot the walking data from 3 different sensor of Hexiwear. 
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The two graphs up top show the activity data for walking and running, respectively. It is obvious that 

these two motion graphs share a similar overall pattern. While the peak y-axis acceleration for the 

walking motion is between 13 and 17 g, it exceeds 20 g for each peak for the running motion. The 

best method to differentiate between these two activities is with this one. Additionally, there are 

many more peaks for running than for walking at the same time, though the precise number varies 

on speed, the higher the speed, the larger the number. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Plot the falling data from 3 different sensor of Hexiwear. 

The graph of the curve during the fall is then displayed. We know that the change in acceleration 

throughout the fall process may be split into four phases, as Start, Impact, Aftermath, and Posture, 

according to Paola's study [43]. The RMS (Root Mean Square) of acceleration will usually be 0 g at the 

start of the fall process. After that, the RMS will quickly rise until it exceeds 2 g when the body hits 

with the ground or other objects. Following the impact, the body typically stays still for a brief 

amount of time, and during this time, the RMS normally levels off. The body will be moving in a 

different direction after the impact than it was before. Each axis' acceleration measurements will be 

different from what was observed before the fall. 
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6.3. Final Results 

In this project, we did 50 repetitions of the experiment for each of the different human activities. The 

results obtained are shown in the following table. 

 

Table 6.1 Experiment results 

Activity Test Times Accuracy (%) 

Sitting-Standing 70 95.71 

Lying 70 97.14 

Running 70 92.85 

Walking 70 91.42 

Falling 70 61.42 

The above table shows that our system can accurately detect most of the human activities, but is less 

accurate in terms of falls. The main reason is that there are many different ways of falling in the 

process of falling, which can be mainly divided into forward fall, backward fall, and lateral fall. And in 

our experiments, the accuracy of forward falls is the highest, while the accuracy of lateral falls is the 

lowest.  

In our testing process, we divide the test sites into two main categories: indoor sites with smooth 

roads and outdoor sites with uneven roads. 

Activity indoor sites with smooth roads outdoor sites with uneven roads 

Sitting-Standing 40 30 

Lying 40 30 

Running 40 30 

Walking 40 30 

Falling 40 30 



Human activity detection based on mobile devices   

  49 

 



  Annexos 

50   

7. CONCLUSIONS  

7.1. Summary  

In this project, we first studied the wearable devices available on the market that can record human 

activity, including their internal structure, the sensors they contain, inertial measurement units, etc.  

Second, the Android Studio development environment was used to create a mobile application for 

the Android OS device. Through a low-power Bluetooth connection, this program can record data 

from the chosen hardware device and store it as a CSV file. 

Finally, the information collected by the wearable device is fused to obtain multiple features, the 

effective features are filtered, the correlation between the features and human activity is found 

through machine learning, and the human activity can be predicted by the features. 

Thus, the goals set in this project have been largely accomplished. This research makes use of 

expertise from a variety of domains, including signal processing, biomechanics, software engineering, 

etc. 

7.2. Proposal and future work  

Neither of the two methods used in this project yielded particularly perfect results. Methods of 

setting thresholds are limited by the fact that thresholds vary from tester to tester, and it is 

impossible to find a threshold that works for everyone. The thresholds we currently set may be very 

accurate for some people, but particularly inaccurate for another group of people. Our results are 

highly dependent on the wearer's position, requiring the wearer to be worn in the correct position in 

order to function, but this also sacrifices comfort and usability. 

As for machine learning approaches, machine learning accuracy is much higher than thresholding 

methods. But it can only be implemented on computers, not smartphones yet. In the future, we plan 

to equip mobile phone applications with machine learning techniques to improve the accuracy of 

human activity detection. 
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8.   ECONOMIC STUDY 

The main cost of the project is the cost of material, licenses, and human resource. And also, we have 

added the personnel cost, it means we have paid for engineering hours costs. The engineer average 

hourly wage in Spain is 16 euros per hour [45].  And the planned completion time for our project is 

750 hours. 

Table 8.1 Cost of materials and licenses 

Ref Unit Description Price  

1 1 Hexiwear 61,95 € 

2 1  Hexiwear Docking Station 53,39 € 

3 1 Hexiwear color pack 25,57 € 

4 1 Alienware x15 R1 1.819,07 € 

5 1 Redmi 9C 129,00 € 

6 1 Android Studio 0 € 

7 1 MATLAB 0 € 

8 1 Microsoft Office  0 € 

9 750 Engineer’s salary  12000 € 

  Total 14088,98 € 

Table 8.2 Total cost of project 

Concept Amount   

Total resources 14088,98 € 

Non-direct costs (20%) 2817.79 € 

Total 16906.77 € 
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