11,789 research outputs found

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Advancing the Microbiome Research Community

    Get PDF
    The human microbiome has become a recognized factor in promoting and maintaining health. We outline opportunities in interdisciplinary research, analytical rigor, standardization, and policy development for this relatively new and rapidly developing field. Advances in these aspects of the research community may in turn advance our understanding of human microbiome biology. It is now widely recognized that disturbances in our normal microbial populations may be linked to acute infections such as Clostridium difficile and to chronic diseases such as heart disease, cancer, obesity, and autoimmune disorders (Clemente et al., 2012). This has prompted substantial interest in the microbiome from both basic and clinical perspectives. Although our genome is relatively static throughout life, each of our microbial communities changes profoundly from infancy through adulthood, continuing to adapt through ongoing exposures to diet, drugs and environment. Understanding the microbiome and its dynamic nature may be critical for diagnostics and, eventually, interventions based on the microbiome itself. However, several important challenges limit the ability of researchers to enter the microbiome field and/or conduct research most effectively

    Coordination of DWH Long-Term Data Management: The Path Forward Workshop Report

    Get PDF
    Following the 2010 DWH Oil Spill a vast amount of environmental data was collected (e.g., 100,000+ environmental samples, 15 million+ publicly available records). The volume of data collected introduced a number of challenges including: data quality assurance, data storage, data integration, and long-term preservation and availability of the data. An effort to tackle these challenges began in June 2014, at a workshop focused on environmental disaster data management (EDDM) with respect to response and subsequent restoration. The previous EDDM collaboration improved communication and collaboration among a range of government, industry and NGO entities involved in disaster management. In June 2017, the first DWH Long-Term Data Management (LTDM) workshop focused on reviewing existing data management systems, opportunities to advance integration of these systems, the availability of data for restoration planning, project implementation and restoration monitoring efforts, and providing a platform for increased communication among the various data GOM entities. The June 2017 workshop resulted in the formation of three working groups: Data Management Standards, Interoperability and Discovery/Searchability. These working groups spent 2018 coordinating and addressing various complex topics related to DWH LTDM. On December 4th and 5th, 2018 the Coastal Response Research Center (CRRC), NOAA Office of Response and Restoration (ORR) and NOAA National Marine Fisheries Service (NFMS) Restoration Center (RC), co-sponsored a workshop entitled Deepwater Horizon Oil Spill (DWH) Long-Term Data Management (LTDM): The Path Forward at the NOAA Gulf of Mexico (GOM) Disaster Response Center (DRC) in Mobile, AL

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Building an Integrated Enhanced Virtual Research Environment Metadata Catalogue

    Get PDF
    Purpose The purpose of this paper is to boost multidisciplinary research by the building of an integrated catalogue or research assets metadata. Such an integrated catalogue should enable researchers to solve problems or analyse phenomena that require a view across several scientific domains. Design/methodology/approach There are two main approaches for integrating metadata catalogues provided by different e-science research infrastructures (e-RIs): centralised and distributed. The authors decided to implement a central metadata catalogue that describes, provides access to and records actions on the assets of a number of e-RIs participating in the system. The authors chose the CERIF data model for description of assets available via the integrated catalogue. Analysis of popular metadata formats used in e-RIs has been conducted, and mappings between popular formats and the CERIF data model have been defined using an XML-based tool for description and automatic execution of mappings. Findings An integrated catalogue of research assets metadata has been created. Metadata from e-RIs supporting Dublin Core, ISO 19139, DCAT-AP, EPOS-DCAT-AP, OIL-E and CKAN formats can be integrated into the catalogue. Metadata are stored in CERIF RDF in the integrated catalogue. A web portal for searching this catalogue has been implemented. Research limitations/implications Only five formats are supported at this moment. However, description of mappings between other source formats and the target CERIF format can be defined in the future using the 3M tool, an XML-based tool for describing X3ML mappings that can then be automatically executed on XML metadata records. The approach and best practices described in this paper can thus be applied in future mappings between other metadata formats. Practical implications The integrated catalogue is a part of the eVRE prototype, which is a result of the VRE4EIC H2020 project. Social implications The integrated catalogue should boost the performance of multi-disciplinary research; thus it has the potential to enhance the practice of data science and so contribute to an increasingly knowledge-based society. Originality/value A novel approach for creation of the integrated catalogue has been defined and implemented. The approach includes definition of mappings between various formats. Defined mappings are effective and shareable.Published929-9514IT. Banche datiJCR Journa
    corecore