164,473 research outputs found

    Developmental validation of Oxford Nanopore Technology MinION sequence data and the NGSpeciesID bioinformatic pipeline for forensic genetic species identification

    Get PDF
    Species identification of non-human biological evidence through DNA nucleotide sequencing is routinely used for forensic genetic analysis to support law enforcement. The gold standard for forensic genetics is conventional Sanger sequencing; however, this is gradually being replaced by high-throughput sequencing (HTS) approaches which can generate millions of individual reads in a single experiment. HTS sequencing, which now dominates molecular biology research, has already been demonstrated for use in a number of forensic genetic analysis applications, including species identification. However, the generation of HTS data to date requires expensive equipment and is cost-effective only when large numbers of samples are analysed simultaneously. The Oxford Nanopore Technologies (ONT) MinION™ is an affordable and small footprint DNA sequencing device with the potential to quickly deliver reliable and cost effective data. However, there has been no formal validation of forensic species identification using high-throughput (deep read) sequence data from the MinION making it currently impractical for many wildlife forensic end-users. Here, we present a MinION deep read sequence data validation study for species identification. First, we tested whether the clustering-based bioinformatics pipeline NGSpeciesID can be used to generate an accurate consensus sequence for species identification. Second, we systematically evaluated the read variation distribution around the generated consensus sequences to understand what confidence we have in the accuracy of the resulting consensus sequence and to determine how to interpret individual sample results. Finally, we investigated the impact of differences between the MinION consensus and Sanger control sequences on correct species identification to understand the ability and accuracy of the MinION consensus sequence to differentiate the true species from the next most similar species. This validation study establishes that ONT MinION sequence data used in conjunction with the NGSpeciesID pipeline can produce consensus DNA sequences of sufficient accuracy for forensic genetic species identification

    Interrogation of modern and ancient genomes reveals the complex domestic history of cattle

    Get PDF
    The analysis of mitochondrial and nuclear DNA sequence polymorphisms from modern cattle populations has had a profound impact on our understanding of the events surrounding the domestication of cattle. From these studies, it has been possible to distinguish between pre- and post-domestic genetic differentiation, supporting previous assertions from archaeological studies and, in some cases, revealing novel aspects of the demographic history of cattle. Analyses of genetic material retrieved from the remains of extinct ancestral wild cattle have also added valuable layers of information pertaining to cattle domestic origins; however, information from these investigations have, in general, been limited to small, variable portions of the mitochondrial genome owing to technical challenges associated with the retrieval and amplification of ancient DNA. In recent years, however, new high-throughput, massively parallel genomics technology platforms, such as single-nucleotide polymorphism (SNP) genotyping arrays and next-generation sequencing (NGS), have provided a new impetus to the studies of genetic variation in extant and ancient cattle. Arrays of SNP have facilitated high-resolution genetic surveys of global cattle populations and detection of ancient and recent genomic selective sweeps. Next-generation sequencing analyses of modern and ancient cattle hold great promise for identifying and cataloging of pre- and post-domestication patterns of genomic variation and correlating this with natural and artificial selection processes

    Having a direct look:analysis of DNA damage and repair mechanisms by next generation sequencing

    Get PDF
    AbstractGenetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis

    High-throughput retrotransposon-based fluorescent markers: improved information content and allele discrimination

    Get PDF
    BACKGROUND: Dense genetic maps, together with the efficiency and accuracy of their construction, are integral to genetic studies and marker assisted selection for plant breeding. High-throughput multiplex markers that are robust and reproducible can contribute to both efficiency and accuracy. Multiplex markers are often dominant and so have low information content, this coupled with the pressure to find alternatives to radio-labelling, has led us to adapt the SSAP (sequence specific amplified polymorphism) marker method from a (33)P labelling procedure to fluorescently tagged markers analysed from an automated ABI 3730 xl platform. This method is illustrated for multiplexed SSAP markers based on retrotransposon insertions of pea and is applicable for the rapid and efficient generation of markers from genomes where repetitive element sequence information is available for primer design. We cross-reference SSAP markers previously generated using the (33)P manual PAGE system to fluorescent peaks, and use these high-throughput fluorescent SSAP markers for further genetic studies in Pisum. RESULTS: The optimal conditions for the fluorescent-labelling method used a triplex set of primers in the PCR. These included a fluorescently labelled specific primer together with its unlabelled counterpart, plus an adapter-based primer with two bases of selection on the 3' end. The introduction of the unlabelled specific primer helped to optimise the fluorescent signal across the range of fragment sizes expected, and eliminated the need for extensive dilutions of PCR amplicons. The software (GeneMarker Version 1.6) used for the high-throughput data analysis provided an assessment of amplicon size in nucleotides, peak areas and fluorescence intensity in a table format, so providing additional information content for each marker. The method has been tested in a small-scale study with 12 pea accessions resulting in 467 polymorphic fluorescent SSAP markers of which 260 were identified as having been mapped previously using the radio-labelling technique. Heterozygous individuals from pea cultivar crosses were identifiable after peak area data analysis using the fluorescent SSAP method. CONCLUSION: As well as developing a rapid, and high-throughput marker method for genetic studies, the fluorescent SSAP system improved the accuracy of amplicon scoring, increased the available marker number, improved allele discrimination, and was sensitive enough to identify heterozygous loci in F(1 )and F(2 )progeny, indicating the potential to develop high-throughput codominant SSAPs

    Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders?

    Get PDF
    Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes. Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases. The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field. © 2020 - IOS Press and the authors. All rights reserved.Peer reviewe

    Transcriptome of the deep-sea black scabbardfish, Aphanopus carbo (Perciformes: Trichiuridae) : tissue-specific expression patterns and candidate genes associated to depth adaptation

    Get PDF
    Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.Publisher PDFPeer reviewe

    Perspectives on the Application of Next-generation Sequencing to the Improvement of Africa’s Staple Food Crops

    Get PDF
    The persistent challenge of insufficient food, unbalanced nutrition, and deteriorating natural resources in the most vulnerable nations, characterized by fast population growth, calls for utilization of innovative technologies to curb constraints of crop production. Enhancing genetic gain by using a multipronged approach that combines conventional and genomic technologies for the development of stress-tolerant varieties with high yield and nutritional quality is necessary. The advent of next-generation sequencing (NGS) technologies holds the potential to dramatically impact the crop improvement process. NGS enables whole-genome sequencing (WGS) and re-sequencing, transcriptome sequencing, metagenomics, as well as high-throughput genotyping, which can be applied for genome selection (GS). It can also be applied to diversity analysis, genetic and epigenetic characterization of germplasm and pathogen detection, identification, and elimination. High-throughput phenotyping, integrated data management, and decision support tools form the necessary supporting environment for effective utilization of genome sequence information. It is important that these opportunities for mainstreaming innovative breeding strategies, enabled by cutting-edge “Omics” technologies, are seized in Africa; however, several constraints must be addressed before the benefit of NGS can be fully realized. African breeding programs must have access to high-throughput genotyping facilities, capacity in the application of genome selection and marker-assisted breeding must be built and supported by capacity in genomic analysis and bioinformatics. This chapter demonstrates how interventions with NGS-enabled innovative strategies can be applied to increase genetic gain with insights from the Consortium of International Agricultural Research (CGIAR) in general and the International Institute of Tropical Agriculture (IITA) in particular

    ESMP: A high-throughput computational pipeline for mining SSR markers from ESTs

    Get PDF
    With the advent of high-throughput sequencing technology, sequences from many genomes are being deposited to public databases at a brisk rate. Open access to large amount of expressed sequence tag (EST) data in the public databases has provided a powerful platform for simple sequence repeat (SSR) development in species where sequence information is not available. SSRs are markers of choice for their high reproducibility, abundant polymorphism and high inter-specific transferability. The mining of SSRs from ESTs requires different high-throughput computational tools that need to be executed individually which are computationally intensive and time consuming. To reduce the time lag and to streamline the cumbersome process of SSR mining from ESTs, we have developed a user-friendly, web-based EST-SSR pipeline “EST-SSR-MARKER PIPELINE (ESMP)”. This pipeline integrates EST pre-processing, clustering, assembly and subsequently mining of SSRs from assembled EST sequences. The mining of SSRs from ESTs provides valuable information on the abundance of SSRs in ESTs and will facilitate the development of markers for genetic analysis and related applications such as marker-assisted breeding
    corecore