445 research outputs found

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Novel Microfiber Sensor and Its Biosensing Application for Detection of hCG Based on a Singlemode-Tapered Hollow Core-Singlemode Fiber Structure

    Get PDF
    A novel microfiber sensor is proposed and demonstrated based on a singlemode-tapered hollow core -singlemode (STHS) fiber structure. Experimentally a STHS with taper waist diameter of 26.5 μm has been fabricated and RI sensitivity of 816, 1601.86, and 4775.5 nm/RIU has been achieved with RI ranges from 1.3335 to 1.3395 , from 1.369 to 1.378, and from 1.409 to 1.4175 respectively, which agrees very well with simulated RI sensitivity of 885, 1517, and 4540 nm/RIU at RI ranges from 1.3335 to 1.337, from 1.37 to 1.374, and from 1.41 to 1.414 . The taper waist diameter has impact on both temperature and strain sensitivity of the sensor structure: (1) the smaller the waist diameter, the higher the temperature sensitivity, and experimentally 26.82 pm/°C has been achieved with a taper waist diameter of 21.4 μm; (2) as waist diameter decrease, strain sensitivity increase and 7.62 pm/με has been achieved with a taper diameter of 20.3 μm. The developed sensor was then functionalized for human chorionic gonadotropin (hCG) detection as an example for biosensing application. Experimentally for hCG concentration of 5 mIU/ml, the sensor has 0.5 nm wavelength shift, equivalent to limit of detection (LOD) of 0.6 mIU/ml by defining 3 times of the wavelength variation (0.06 nm) as measurement limit. The biosensor demonstrated relatively good reproducibility and specificity, which has potential for real medical diagnostics and other applications

    Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

    Get PDF
    A label-free immunosensor platform based on excessively tilted fiber gratings (Ex- TFGs) was developed for highly specific and fast detection of human N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is considered a powerful biomarker for prognosis and risk stratification of heart failure (HF). High-purity anti-NT-proBNP monoclonal antibodies (MAbs) prepared in our laboratory were immobilized on fiber surface through the staphylococcal protein A (SPA) method for subsequent specific binding of the targeted NTproBNP. Utilizing fiber optic grating demodulation system (FOGDS), immunoassays were carried out in vitro by monitoring the resonance wavelength shift of Ex-TFG biosensor with immobilized anti-NT-proBNP MAbs. Lowest detectable concentration of ~0.5ng/mL for NTproBNP was obtained, and average sensitivity for NT-proBNP at a concentration range of 0~1.0 ng/mL was approximately 45.967 pm/(ng/mL). Several human serum samples were assessed by the proposed Ex-TFG biomarker sensor, with high specificity for NT-proBNP, indicating potential application in early diagnosing patients with acute HF symptoms

    Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis

    Get PDF
    Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing

    Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review

    Get PDF
    The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core–shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors

    Waveguide-Based Biosensors for Pathogen Detection

    Get PDF
    Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing

    Trends of biosensing: plasmonics through miniaturization and quantum sensing

    Full text link
    Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly

    Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids

    Get PDF
    The monitoring of biomarkers in body fluids provides valuable prognostic information regarding disease onset and progression. Most biosensing approaches use noninvasive screening tools and are conducted in order to improve early clinical diagnosis. However, biofouling of the sensing surface may disturb the quantification of circulating biomarkers in complex biological fluids. Thus, there is a great need for antifouling interfaces to be designed in order to reduce nonspecific adsorption and prevent inactivation of biological receptors and loss of sensitivity. To address these limitations and enable their application in clinical practice, a variety of plasmonic platforms have been recently developed for biomarker analysis in easily accessible biological fluids. This review presents an overview of the latest advances in the design of antifouling strategies for the detection of clinically relevant biomarkers on the basis of the characteristics of biological samples. The impact of nanoplasmonic biosensors as point-of-care devices has been examined for a wide range of biomarkers associated with cancer, inflammatory, infectious and neurodegenerative diseases. Clinical applications in readily obtainable biofluids such as blood, saliva, urine, tears and cerebrospinal and synovial fluids, covering almost the whole range of plasmonic applications, from surface plasmon resonance (SPR) to surface-enhanced Raman scattering (SERS), are also discussed.SIThe author would like to acknowledge technical support from the Institute of Food Science and Technology (ICTAL) of the University of LeĂłn

    Lossy mode resonance enabling ultra-low detection limit for fibre-optic biosensors (INVITED)

    Get PDF
    The combination of optical fibre-based biosensors with nanotechnologies is providing the opportunity for the development of in situ, portable, lightweight, versatile and high-sensitivity optical sensing platforms. We report on the generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick SnO2 film on optical fibres. This allows measuring precisely and accurately the changes in refractive index of the fibre-surrounding medium with very high sensitivity compared to other optical technology platforms, such as long period grating or surface plasmon resonance. This approach, mixed with the use of specialty fiber structures such as Dshaped fibres, allows improving the light-matter interaction in strong way. Different imaging systems, i.e. SEM and TEM along with X-EDS tool, have been used to study the optical features of the fiber coating. The shift of the LMR has been monitored in real-time thanks to conventional wavelength interrogation system and ad hoc developed microfluidics. A big leap in performance has been attained by detecting femtomolar concentrations in human serum. The biosensor reusability has been also tested by using a solution of sodium dodecyl sulphate.This work was supported by the National Research Council of Italy (CNR) for the Short Term Mobility program 2017, by the Government of Navarra (project no. 72/2015) and by the Spanish Agencia Estatal de Investigacion (AEI) and European Regional Development Fund (FEDER) (TEC2016-78047-R,TEC2016-79367-C2-2-R)

    Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel

    Get PDF
    In this paper, we describe guided-mode resonance biochemical sensor technology. We briefly discuss sensor fabrication and show measured binding dynamics for example biomaterials in use in our laboratories. We then turn our attention to a particularly powerful attribute of this technology not possessed by competing methods. This attribute is the facile generation of multiple resonance peaks at an identical physical location on the sensor surface. These peaks respond uniquely to the biomolecular event, thereby enriching the data set available for event quantification. The peaks result from individual, polarization-dependent resonant leaky modes that are the foundation of this technology. Thus, by modeling the binding event and fitting to a rigorous electromagnetic formalism, we can determine individual attributes of the biolayer and its surroundings and avoid a separate reference site for background monitoring. Examples provide dual-polarization quantification of biotin binding to a silane-coated sensor as well as binding of the cancer biomarker protein calreticulin to its monoclonal IgG capture antibody. Finally, we present dual-polarization resonance response for poly (allylamine hydrochloride) binding to the sensor with corresponding results of backfitting to a simple model; this differentiates the contributions from biolayer adhesion and background changes
    • …
    corecore