41 research outputs found

    Cross layer metrics for improving transport protocols in multihop wireless networks

    No full text
    Session Posters & DemosInternational audienceNotre travail s'inscrit dans l'amélioration des protocoles de transport dans les réseaux sans fil ad hoc multisauts. Nous présentons différentes métriques provenant des couches physiques ou liaison pour améliorer les performances de la phase de contrôle de congestion de TCP. Ce papier introduit une classification des métriques inter-couches pour améliorer le niveau transport

    Clustered Multi-layer Multi-protocol Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have emerged as an alternative option to the wired networks in areas where wired deployment is unfeasible and/or costly. They have been widely adopted in community networks as these networks are mostly built within “not for profit” projects and do not require enterprise class investment which can lead to inefficient network architectures and routing protocol designs. B.A.T.M.A.N-ADV has been designed as a simple routing protocol that adheres to lightweight equipment requirements of wireless mesh deployment in the rural areas of the developing countries. However, it is built around a flat WMN topology which is challenged with scalability, security and implementation issues; which can limit WMN growth and services expansion. This paper proposes and evaluates the performance of a new multi-layer, multi-protocol WMN architecture that addresses B.A.T.M.A.N-ADV scalability issues by borrowing from wired networks their clustering model and building around the B.A.T.M.A.N Experimental (BMX6) protocol to introduce layer2 tunnelling through a cloud of layer3 routers.Telkom, Cisco, Aria Technologies, THRIPDepartment of HE and Training approved lis

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms

    Full text link
    [EN] Wireless sensor networks are widely used for monitoring different processes, including agriculture, in order to reach sustainability. One of the keys to sustainable crops is water saving. In particular, saving water is extremely important in arid and semiarid regions. In those regions, citrus trees are cultivated, and drip irrigation is used to save water. In this paper, we propose a smart irrigation system for citrus trees using a WSN. We describe the employed sensors and nodes for this proposal. Next, we present the proposed architecture and the operational algorithms for the nodes. Moreover, we designed different algorithms for fault tolerance and energy saving functionalities. The energy saving algorithm is based on the relevance of the gathered data, which is analyzed in order to consider whether the information should be forwarded or not. A TPC-based protocol is proposed to perform the communication among the nodes of our system. In addition, we present different simulations of the proposed system. Particularly, we show the consumed bandwidth and the remaining energy in the different nodes. Finally, we test different energy configurations to evaluate the network lifetime and the remaining energy when the first node depletes its energy.This work has been partially supported by the “Conselleria d' Educació, Investigació, Cultura i Esport” through the “Subvenciones para la contratación de personal investigator de carácter predoctoral (Convocatoria 2017)” Grant number ACIF/2017/069, by the “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para contratacion predoctoral de Formación del Profesorado Universitario FPU (Convocatoria 2014)”. Grant number FPU14/02953 and finally, the research leading to these results has received funding from “la Caixa” Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Parra-Boronat, L.; Rocher-Morant, J.; García-García, L.; Lloret, J.; Tomás Gironés, J.; Romero Martínez, JO.; Rodilla, M.... (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms. 10(2):95-115. https://doi.org/10.5296/npa.v10i2.13205S9511510

    Reinforcement learning based routing for energy sensitive wireless mesh IoT networks

    Get PDF
    With the huge growth of the Internet of Things (IoT) in manufacturing, agricultural and numerous other applications, connectivity solutions have become increasingly important especially for those covering wide remote area in the scale of kilometre squares. Although many low-power wide-area network (LPWAN) technologies such as Long Range are supposed to support long-range low-power wireless communication, the underneath star topology limits the scalability of the networks due to the need of a central hub. To provide connectivity to a wider area, the authors propose to build the mesh topology upon these LPWAN technologies. One of the challenges of meshing these networks is the routing mechanism originally designed for star networks is not energy sensitive. In this Letter, the authors address this issue by proposing a distributed as well as energy-efficient reinforcement learning based routing algorithm for the wide area wireless mesh IoT networks. They evaluate the failure rate, spectrum and power efficiencies of the proposed algorithm by simulations, which resemble the long-range IoT networks, by comparing it to that of a random routing with loop-detection algorithm and a centralised pre-programmed routing algorithm which represents the ideal scenario. They also present a progressive study to demonstrate how the learning in the algorithm reduces the power consumption of the entire network

    CrossTrace: Cross-Layer Measurement for IEEE 802.11 Wireless Testbeds

    Get PDF
    Abstract. In this paper, we introduce and evaluate CrossTrace, a framework for performing cross-layer measurements in IEEE 802.11 based wireless networks. CrossTrace allows tracing of parameters at MAC-, routing and transport layer in a controlled environment and in a repeatable manner. Using CrossTrace, we conduct a comprehensive measurement study in a miniaturized testbed, in which we analyze the behavior of the IEEE 802.11 MAC-layer with respect to signal strength and bit error rate. We derive the delivery probability and bit error rate dependent on signal strength and MAC-layer datarate with and without interfering background traffic. We show that even moderate background traffic can significantly degrade network performance. Such measurements may help to optimize the orchestration between the different protocol layers and may alleviate the development of new cross-layer designs

    Performance Analysis of Dijkstra-Based Weighted Sum Minimization Routing Algorithm for Wireless Mesh Networks

    Get PDF
    Multiobjective optimization methods for routing in static wireless mesh networks (WMNs), with more than one QoS measure to be optimized, are highly challenging. To optimize the performance for a given end-to-end route in a static network, the most common metrics that need to be optimized or bounded are the path capacity and the end-to-end delay. In this work, we focus on combining desirable properties of these two metrics by minimizing a weighted metrics sum via a Dijkstra-based algorithm. The approach is directed towards fast convergence rather than optimality. It is shown that the resulting algorithm provides more satisfactory results than simple Dijkstra-based pruning algorithms in terms of simultaneously achieving high capacity and small delay. The effect of changing the weighting factor on the proposed algorithm performance is investigated
    corecore