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Multiobjective optimizationmethods for routing in static wireless mesh networks (WMNs), withmore than oneQoSmeasure to be
optimized, are highly challenging. To optimize the performance for a given end-to-end route in a static network, the most common
metrics that need to be optimized or bounded are the path capacity and the end-to-end delay. In this work, we focus on combining
desirable properties of these two metrics by minimizing a weighted metrics sum via a Dijkstra-based algorithm. The approach is
directed towards fast convergence rather than optimality. It is shown that the resulting algorithm provides more satisfactory results
than simple Dijkstra-based pruning algorithms in terms of simultaneously achieving high capacity and small delay. The effect of
changing the weighting factor on the proposed algorithm performance is investigated.

1. Introduction

Wireless mesh networks (WMNs) consist of mesh routers
that are mainly stationary and provide wireless access to
clients in a multihop environment. They find wide applica-
tions as community networks, enterprise networks, and last-
mile access networks to the Internet. Being static, they have
neither mobility nor power consumption issues [1]. Quality-
of-service (QoS) routing in WMNs has been attracting
considerable research for several years. A variety of routing
metrics have been proposed for WMNs providing routing
algorithms with high flexibility in best path selection. In gen-
eral, the routing problem can be viewed as a multiobjective
optimization problem with the most common metrics that
need to be optimized or bounded being the path capacity or
rate and the end-to-end delay. The path rate is the number
of bits per second (bps) that can be sent along the source-
destination path. The QoS metrics are generally optimized
bymakingmeaningful trade-offs due to their interconflicting
nature.

It is worthwhile to note that minimizing delay and
maximizing path capacity or throughput are concerned with
individual application performance, that is, to optimize the
performance for a given end-to-end path in a static network.

In contrast, there are other metrics to be optimized for
nonstatic WMNs such as mobile ad hoc networks, leading
to network throughput maximization, energy consumption
minimization, and equal distribution of traffic loads. These
metrics are system-oriented objectives that focus on the
performance of the network as a whole [2]. In this work, we
focus on static WMNs.

We deal with the routing problem using the dynamic
programming (DP) approach [3–5]. DP is a very powerful
algorithmic paradigm, in which a problem is solved by
identifying a collection of subproblems and tackling them
one by one, smallest first, using the answer to small problems
to solve larger ones [5]. In this context, the routing concept
is closely related to finding the shortest path in a directed
graph (DG) via DP techniques. Let 𝐺(𝑉, 𝐸) be the DG under
consideration, where 𝑉 is the set of vertices (network nodes)
and 𝐸 is the set of edges (network links) between the vertices.
InWMNs, the edges are bidirectional and have costs assigned
to them. The shortest path between any two vertices is that
consisting of consecutive edges for which the overall cost
is minimized. There are various applicable DP algorithms
for routing when a single metric is to be minimized or
optimized, such as the Dijkstra, Bellman-Ford, and Floyd-
Warshall techniques [6, 7].These differ in the processing time
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and the amount of information that needs to be collected
from other nodes, making each of them convenient for a
specific routing scenario.

Multiconstrained optimization methods for path selec-
tion, with more than one metric to be optimized, are highly
challenging and have been proved to be NP-complete [5, 8].
A problem is NP-complete if all decisions can be verified in
polynomial time [5].

To achieve single-objective optimization for routing,
Dijkstra’s algorithm can be applied to a network. This
algorithm finds the shortest path between two nodes by
developing the path in order of increasing path length. It
has the advantage of fast shortest path determination and a
computational complexity of 𝑂(𝑁

2
), where 𝑁 is the number

of nodes, rendering it efficient for use with relatively large
networks.

As a first attempt at multiobjective optimization, one
may consider a simple pruning procedure. This consists of
optimizing one metric (path capacity for instance) using
Dijksta’s algorithm and then pruning the graph tree by
discarding the branches (paths) that violate a bound set
to another metric (delay for instance). There are many
other instances of multiobjective optimization for routing in
the literature. For example, in [9], a QoS multiconstrained
routing algorithm based on simulated annealing (SA-RA) is
proposed. This algorithm first uses an energy function to
translate multiple QoS metrics into a single metric and then
seeks to find a feasible path by simulated annealing. The
latter is a general stochastic approximation method capable
of handling multiple and conflicting requirements (multiob-
jective optimization) [10]. A genetic-algorithm-based routing
method called GAMAN was proposed in [11] to cope with
the multiconstrained QoS routing problem. The algorithm,
however, suffers from untimely convergence as with most
computationally complex GA algorithms, and the SA-RA
method of [9] is shown to outperform it. However, even sim-
ulated annealing (SA) has the weakness of slow convergence
time; typical values are 1ms for 100 nodes and 20 seconds
for 1000-node networks [10]. For this reason, we focus in
this work on other facets of multiobjective optimization
for QoS routing, namely, combining desirable properties of
two metrics by minimizing a weighted metrics sum via a
Dijkstra-based algorithm. It must be noted, however, that this
approach is directed towards fast convergence rather than
optimality; it is unable to sufficiently explore the solution
space in order to obtain an optimal solution the way powerful
GAs can.

Theweighted summethod is themost common approach
to multiobjective optimization. We will show that Dijkstra’s
algorithm with a weighted sum metric provides more satis-
factory results than the simple pruning algorithm in terms
of simultaneously achieving high path capacity and small
end-to-end delay. We will also analyze the performance of
the algorithm under consideration and study the effect of
changing the weighting factor and source-destination pairs
on routing optimality.

The rest of the paper is organized as follows: Section 2 dis-
cussesDijkstra’s algorithmwith onemetric (delay or capacity)

and explains the concept of pruning as a step towards multi-
objective optimization for QoS routing. Section 3 describes
the weighted sum method and how to combine it with
Dijkstra’s algorithm and gives an insightful justification to
its feasibility and viability. Various results demonstrating
the algorithm performance are presented and discussed in
Section 4 and conclusions are drawn in Section 5.

2. Dijkstra’s Algorithm

AlthoughDijkstra’s algorithm for the determination of short-
est paths is well established in the literature [6], we find it
convenient to give a brief explanation of it as follows.

(1) The set of nodes so far incorporated (𝑇) consists of
only the source node (𝑠), and the initial path costs (𝑤)

to neighboring nodes are simply the link costs (𝐿):

𝑇 = {𝑠}

𝐿 (node) = 𝑤 (𝑠, node) for node ̸= 𝑠.

(1)

(2) The neighboring node not in 𝑇 that has the least-
cost path from node 𝑠 is found and then that node
is incorporated into 𝑇. Also incorporated is the edge
that is incident on that node and a node in 𝑇 that
contributes to the path

Find𝑥 ∉ 𝑇 such that𝐿 (𝑥) = min
𝑗∉𝑇

𝐿 (𝑗) . (2)

Add 𝑥 to 𝑇 along with the edge that is incident on 𝑥

and that contributes the least-cost component to𝐿(𝑥).
(3) A comparison is made between the path cost from

node 𝑠 to any node in the network and the summation
of path costs fromnode 𝑠 to node𝑥 (𝑥 is another node
in the network) and the link cost between node 𝑥 and
the node considered, and the minimum is chosen:

𝐿 (node) = min [𝐿 (node) , 𝐿 (𝑥) + 𝑤 (𝑥, node)]

∀ node ∉ 𝑇.

(3)

(4) Steps (2) and (3) are repeated until final paths have
been assigned to all nodes in the network. The
algorithm ends when all nodes have been taken. The
running time of this algorithm is 𝑂(𝑁

2
) where 𝑁 is

the number of nodes in the network.

The individual path costs in a path may be additive (as
in end-to-end delay) to compute the overall path cost, or
they can be compared to find their maximum or minimum
value (as in capacity) and assign this value to the overall path.
In some cases, where the link costs represent probability of
error, for instance, the link costs are multiplied [12] to find
the probability of error of the corresponding path.

Algorithm 1 is a pseudocode illustrating how Dijkstra’s
algorithm finds the optimal route capacity as a QoS measure.
𝑃(V𝑠, 𝑢) is the path from node V𝑠 to 𝑢, and 𝑅(𝑃(V𝑠, 𝑢)) is its
rate. Likewise, 𝑙𝑢V is the link between node 𝑢 and V and 𝑟(𝑙𝑢V)
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(1) INPUT: no. of nodes 𝑛, source node V𝑠, destination node V𝑑, 𝑟(𝑙) for all 𝑙.
(2) OUTPUT: 𝑃∗(V𝑠, V𝑑), 𝑅(𝑃

∗
(V𝑠, V𝑑))

(3) /∗ Initialization ∗/
(4) FOR ALL nodes
(5) Incorporated nodes = NIL
(6) 𝑅(𝑃(V𝑠, 𝑛𝑜𝑑𝑒)) = 0

(7) Parent(node) = NIL
(8) END
(9) 𝑅(𝑃(V𝑠, V𝑠)) = ∞

(10) FOR 𝑖 = 1 : (𝑛 − 1)

(11) FOR ALL incorporated nodes
(12) 𝑅𝑎𝑡𝑒(𝑛𝑜𝑑𝑒) = 𝑅(𝑃(V𝑠, 𝑛𝑜𝑑𝑒))
(13) END
(14) 𝑟max = max[𝑟𝑎𝑡𝑒(𝑛𝑜𝑑𝑒)]
(15) 𝑢 = node corresponding to 𝑟max.
(16) /∗ 𝑢 is the incorporated node ∗/
(17) FOR ALL nodes V
(18) IF 𝑟(𝑙

𝑢V) < 𝑅(𝑃(V𝑠, 𝑢)) THEN
(19) 𝑐𝑎𝑝 = 𝑟(𝑙

𝑢V)

(20) ELSE 𝑐𝑎𝑝 = 𝑅(𝑃(V𝑠, 𝑢))
(21) END IF
(22) IF 𝑐𝑎𝑝 > 𝑅(𝑃(V𝑠, V)) THEN
(23) 𝑅(𝑃(V𝑠, V)) = 𝑐𝑎𝑝

(24) 𝑝𝑎𝑟𝑒𝑛𝑡(V) = 𝑢

(25) /∗ 𝑃(V𝑠, V) = 𝑃(V𝑠, 𝑢)⨁ 𝑙
𝑢V ∗/

(26) END IF
(27) END FOR
(28) IF 𝑝𝑎𝑟𝑒𝑛𝑡(V𝑑) ̸= NIL THEN
(29) 𝑃(V𝑠, V𝑑) = [V𝑑]
(30) 𝑡 = V𝑑
(31) WHILE 𝑡 ̸= V𝑠
(32) 𝑝 = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑡)

(33) 𝑃(V𝑠, V𝑑) = [𝑝 𝑃(V𝑠, V𝑑)]
(34) 𝑡 = 𝑝

(35) END
(36) END IF
(37) END FOR
(38) 𝑃∗(V𝑠, V𝑑) = 𝑃(V𝑠, V𝑑)
(39) RETURN 𝑃

∗
(V𝑠, V𝑑), 𝑅(𝑃

∗
(V𝑠, V𝑑))

Algorithm 1: The Dijkstra-based routing algorithm (optimizing path capacity).

is its rate. The asterisk denotes optimality, and ⊕ denotes
concatenation.

Delay optimization by Dijkstra’s algorithm would be
almost identical to the one that optimizes capacity except
that the link costs are added rather than compared to find
the overall path cost. For delay optimization, the total cost
is actually “minimized” conforming with the general shortest
path terminology.

As a step towards multiobjective optimization in rout-
ing, we may employ Dijkstra’s technique to compute high-
capacity paths while simultaneously bounding the end-to-
end delay to an upper limit.This is achieved as follows. Before
the decision to include a node in the set of incorporated nodes
𝑇, the delay of the path up to that node is considered, and if
it is found to exceed the bound, this node is disregarded and
the other node, that the first was favored to, is incorporated
instead. This is called pruning. The paths that violate the

delay bound are pruned off by comparing rates to decide
between paths as in Algorithm 1 and then comparing delays.
The latter comparison may change the decisions resulting
from the former. Dijkstra with pruning retains all the corre-
sponding advantages such as fast shortest path computation
and relatively small computational complexity. However, its
effectiveness in optimizing two metrics is limited as is shown
in the section on results.

3. Dijkstra-Based Weighted Sum Minimization
(DWSM) Algorithm

Before presenting the Dijkstra-based weighted sum mini-
mization (DWSM) algorithm,which is the focus of this paper,
we first discuss general concepts related to multiobjective
optimization.
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3.1. The Multiobjective Optimization Problem. This problem
is stated as follows:

Minimize F (x) = [𝐹
1
(x) , 𝐹

2
(x) , . . . , 𝐹

𝑘
(x)]𝑇

Subject to 𝑔
𝑗
(x) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚,

ℎ
𝑙
(x) = 0, 𝑙 = 1, 2, . . . , 𝑒,

(4)

where 𝑘 is the number of objective functions,𝑚 is the number
of inequality constraints, and 𝑒 is the number of equality
constraints. x ∈ 𝐸

𝑛 is a vector of design variables (also called
decision variables), where 𝑛 is the number of independent
variables [13]. In a network, the x represent the paths each
with 𝑛 links or 𝑛 nodes depending on the context. F(x) ∈ 𝐸

𝑘

is a vector of objective functions 𝐹
𝑖
(x) : 𝐸

𝑛
→ 𝐸

1. 𝐹
𝑖
(x)

are also called objectives or cost functions. In a network, they
represent path capacity, end-to-end delay, and so forth.These
metrics differ with the paths so they are actually functions of
the network paths denoted by the x. The constraints can be
thought of as bounds imposed on other metrics such as the
number of hops for instance.

In contrast to single-objective optimization, there is no
single global solution to multiobjective optimization prob-
lems. It is often necessary to determine a set of points that
all fit a predetermined definition of an optimum. This is
called Pareto optimality [13]. A point x (or path) is Pareto
optimal if there is no other point that improves at least one
objective function without detriment to another function. A
point is weakly Pareto optimal if there is no anther point
that improves all of the objective functions simultaneously.
A Pareto optimal point is also weakly Pareto optimal, but the
converse is not true.

3.2. The Weighted Sum Method. This is the most common
approach to multiobjective optimization:

𝑈 =

𝑘

∑

𝑖=1

𝑤
𝑖
𝐹
𝑖
(x) . (5)

If all the weights are positive, the minimum of the above
equation is Pareto optimal [14]. The weights are set such that

𝑘

∑

𝑖=1

𝑤
𝑖
= 1. (6)

The relative values of the weights reflect the relative impor-
tance or prioritization of the objectives. An a priori selection
of the weights does not necessarily ensure that the final
solution will be acceptable. The problem may have to be
resolved with new weights.

3.3. The Proposed DWSM Algorithm. A routing metric is a
function that assigns a cost to any given path and naturally to
its individual links. Various combined routing metrics have
been introduced in the literature but are tailored to specific
application areas such as routing in a multiradio multihop
WMNs [15] and routing for cognitive radio ad hoc networks
[16]. These minimize delay and maximize probability of data

delivery in nonstatic WMNs. They are not concerned with
maximizing capacity or throughput for a given end-to-end
path in a static WMN. Our proposed routing metric that
characterizes a link in the network is simply of the form of
a weighted sum of the link delay and the inverse of the link
capacity. The performance of a metric designed such that the
minimization of which minimizes delay and maximizes path
throughput at the same time is not often evaluated or studied
in the literature owing to the fact that throughput inverse and
delay usually have different orders of magnitude [17]. In this
work, however, we show that this optimization is possible
in many cases and at least prove that it is superior to the
simple pruning method of multiobjective optimization. The
proposed metric is given by

𝑈 = 𝛽 (link delay)

+ (1 − 𝛽) (inverse of the link capacity) .
(7)

The weight factor 𝛽 is a tunable parameter subject to 0 ≤ 𝛽 ≤

1 in accordance with (6).
The above weighted average can be viewed as an attempt

to balance delay and capacity providing a tradeoff between
the two.When combined with Dijkstra’s algorithm, a shortest
path is found that minimizes the metric along that path. The
metric is additive along a path. If 𝛽 = 0.5, equal weight is
given to capacity and delay. Setting 𝛽 = 0 selects links based
solely upon capacity, whereas setting 𝛽 = 1 selects links
based on delay only; that is, only delay is optimized. Thus,
the metric selects paths with less optimized delay (greater
delay) and higher capacity (smaller second term) when 𝛽 is
low and vice versa. The total network capacity is maximized
by using lower values of 𝛽 at the expense of increased end-
to-end delay. However, delay is still optimized though in
a less pronounced manner than capacity and the selection
is better than the single-metric Dijkstra’s routing algorithm
with regard to delay when the single-metric algorithm is
optimized for capacity.

In the section on results, our simple routing metric
of (7) will be experimented with illustrating the impact
of varying 𝛽 on the routing algorithm performance. It
is the simplest improvement over the pruning method of
multiobjective optimization and provides large diversity in
yielding better throughputs and less end-to-end delays in
contrast to the restricted nature of the pruning method
of optimization. The resulting algorithm also retains the
advantages of Dijkstra’s technique of fast convergence and
relatively small computational complexity, though it still does
not provide the conceptual global optimumand only achieves
Pareto optimality.

If we assume 𝛽 = 0, the path metric is the addition of the
capacity inverses of the path links. These are each designated
by 1/𝐴𝑖 below. When the Dijkstra shortest path is found, this
sumwill have beenminimized, and its inverse (designated by
𝐴 below) is maximized:

𝐴 =
1

(1/𝐴
1
) + (1/𝐴

2
) + ⋅ ⋅ ⋅ + (1/𝐴

𝑛
)
. (8)

Since 𝐴 < any 𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑛, the maximum 𝐴 will
be less than the minimum link capacity. So the maximum
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Figure 1: Network topology showing shortest route under single-
objective Dijkstra’s algorithm (capacity optimization). Path capacity
= 5.7Mbps, delay = 86.8771ms.

𝐴 is indicative of the optimum path capacity. The latter is
maximized in Algorithm 1 by maximizing the minimum link
capacity in the path. Rather, in our proposed algorithm, a
quantity (𝐴) is maximized that is less than the minimum link
capacity. So it can readily be inferred that our chosen metric
will almost also lead to maximization of the minimum link
capacity which is the permissible path capacity. Thus, our
metric is practically and conceptually feasible regarding path
capacity as well as path delay. Minimization of path delay
naturally occurs in a straightforward manner when using (7)
as a routing metric.

4. Results

We model our WMN characterizing each link by link rate
or capacity and link delay. In all experiments, the simulation
program is coded in MATLAB 8.1. The experimental setup
of this simulation analysis is based on the generation of 50
nodes randomly distributed on an area of 1000∗1000m2.
The random distribution is fixed, first, for the purpose of
comparison among the algorithms and simulation scenarios.
The network topology ensures that the node coverage area is
200m. Thus some nodes are in the coverage area of others.
The assigned link delay (in ms) and link capacity (in Mbps)
follow uniform distributions. This characterization ensures
link diversity in the network and does not affect the generality
of the conclusions drawn.

For the chosen topology, the result of single-objective
Dijkstra optimization described by Algorithm 1 of path
capacity is shown in Figure 1, which illustrates the resulting
shortest path between source node 1 and destination node
15. The optimized path capacity is 5.7Mbps and the corre-
sponding end-to-end delay is 86.8771ms. Figure 2 shows the
result of single-objective end-to-enddelay optimization using
the same algorithm but taking into account the difference in
determining the overallmetric along a path.The shortest path
between nodes 1 and 15 is shown for which the optimized
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Figure 2: Network topology showing shortest route under single-
objective Dijkstra’s algorithm (delay optimization). Path capacity =
1.4Mbps, delay = 51.7216ms.
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Figure 3: Network topology showing shortest route under Dijkstra’s
algorithm with pruning subject to delay bound = 80ms. Optimized
capacity = 5.8Mbps, path delay = 78.2991ms.

delay is 51.7216ms and the corresponding path capacity is
1.4Mbps.

The results for the pruning algorithm which involves
optimization of capacity and bounding delay have been
obtained for different values of delay bounds and for the same
source and destination nodes used above.These are shown in
Figures 3 and 4 with the values of path delay and optimized
capacity and the delay bound indicated in the figures. As the
delay bound decreases, the optimized capacity decreases.

The DWSM algorithm implemented with 𝛽 = 0 and
𝛽 = 1 obviously yields the same results as single-objective
Dijkstra optimization for capacity and delay, respectively.
Intermediate values of 𝛽 are tried using the same source
and destination nodes and the results are tabulated in
Table 1 togetherwith all the previous results for the purpose of
comparison. We notice that the results obtained with DWSM
are far better than those of pruning in terms of both delay
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Table 1: End-to-end QoS measures for different optimization algorithms (topology as in Figures 1–5).

Optimization method End-to-end delay (ms) Path capacity (Mbps) Number of hops
Single-objective optimization (capacity) 86.8771 5.8 14
Single-objective optimization (delay) 51.7216 1.4 7
Multiobjective optimization/pruning
Delay bound = 80ms 78.2991 5.8 13

Multiobjective optimization/pruning
Delay bound = 75ms 73.2357 2.6 12

DWSM
𝛽 = 0

86.8771 5.8 14

DWSM
𝛽 = 1

51.7216 1.4 7

DWSM
𝛽 = 0.1, 0.2
path ⟨1 to 15⟩ (as in all previous entries)

53.1664 2.6 7

DWSM
𝛽 = 0.3 and above
path ⟨1 to 15⟩

51.7216 1.4 7

DWSM
𝛽 = 0
path ⟨32 to 49⟩

75.6293 4.1 11

DWSM
𝛽 = 0.1
path ⟨32 to 49⟩

53.8242 2.5 8

DWSM
𝛽 = 0.2 and above
path ⟨32 to 49⟩

53.3745 2.5 7
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Figure 4: Network topology showing shortest route under Dijkstra’s
algorithm with pruning subject to delay bound = 75ms. Optimized
capacity = 2.6Mbps, path delay = 73.2357ms, and number of hops
= 12.

and capacity. For example, we obtain the same optimized path
capacity as that with pruning under a 75ms delay bound but
with much shorter end-to-end delay. This case is portrayed
in Figure 5 in comparison with Figure 4. In addition, we
can even obtain better optimized shortest paths with fewer
links (number of hops) with DWSM. This is also clear from
Figure 5, as well as from Table 1. The minimization of the
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Figure 5: Network topology showing shortest route under DWSM
algorithmwith𝛽 = 0.2. Optimized capacity = 2.6Mbps, path delay =
53.1664ms, and number of hops = 7 (to be compared with Figure 4).

number of hops ensures reduced waste of network resources
such as computational power. The last two rows in Table 1
show results for DWSM with the same previous values of 𝛽
but with a different source-destination pair.

The values of delay and capacity indicated in the figures
are typical of WMNs as may be found in [1, 18] to name but a
few instances. Delay and capacity inverse values are not of the
same order ofmagnitude, which is whywe cannot vary𝛽 over
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Table 2: End-to-end QoS measures for different optimization algorithms (same topology but delay modified).

Optimization method End-to-end delay (ms) Path capacity (Mbps) Number of hops
Single-objective optimization (capacity) 17.3754 5.8 14
Single-objective optimization (delay) 10.3443 1.4 7
Multiobjective optimization/pruning
Delay bound = 16ms 15.6598 5.8 13

Multiobjective optimization/pruning
Delay bound = 15ms 14.6471 2.6 12

DWSM
path ⟨1 to 15⟩ (as in all previous entries)

𝛽 = 0
𝛽 = 0.2
𝛽 = 0.5
𝛽 = 0.6
𝛽 = 0.7
𝛽 = 1

17.3754
10.7347
10.6333
10.6333
10.3443
10.3443

5.8
2.6
2.6
2.6
1.4
1.4

14
7
7
7
7
7

DWSM
path ⟨32 to 49⟩

𝛽 = 0
𝛽 = 0.2
𝛽 = 0.4
𝛽 = 0.5
𝛽 = 1

12.3983
11.0082
10.7648
10.6749
10.6749

4.1
2.9
2.5
2.5
2.5

8
7
8
7
7
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Figure 6: New network topology showing shortest route under
Dijkstra’s algorithm with pruning subject to delay bound = 70ms.
Optimized capacity = 2.3Mbps, path delay = 68.2796ms, and
number of hops = 10.

a wide range and yet get different results, even for different
paths. The values of 𝛽 that make a difference are between 0
and 0.3 only. Dividing all link delays of our topology by 5 still
provides typical delay values but allows better DWSMperfor-
mance. It allows us to vary 𝛽 more freely to investigate more
fully its impact onmultiobjective optimization. All results are
repeated for the delay-modified topology and are shown in
Table 2.We find that the values of 𝛽 thatmake a difference are
between 0 and 0.7 for some paths; that is, the range of pos-
sible 𝛽 variation for better multiobjective optimization has
increased.
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Figure 7: New network topology showing shortest route under
DWSM algorithm with 𝛽 = 0.2. Optimized capacity = 3.7Mbps,
path delay = 52.5050ms, and number of hops = 8 (to be compared
with Figure 6).

In analogy to the comparison between Figures 4 and 5,
the multiobjective pruning and the DWSM algorithms may
be compared by inspecting Figures 6 and 7 in which the
two algorithms have been applied to a different topology
for verification. This new topology has 46 nodes randomly
distributed with a different sample realization and different
uniformly distributed link capacities and delays. The nodes
are also distributed on an area of 1000∗1000m2. The merits
of the DWSM algorithm are even more accentuated in this
comparison. In Figure 7, with DWSM and 𝛽 = 0.2, we obtain
larger optimized path capacity, shorter delay, and fewer
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links or number of hops than with the pruning algorithm
manifested in Figure 6 under a delay bound of 70ms.

Optimal weights are found experimentally with the aid of
the tables. It is clear, by appropriately weighting the routing
objectives in accordance with the network environment and
to their importance with regard to performance, that the
WMN routing performance improves significantly compared
to single-objective and multiobjective pruning algorithms.
The reason is that the mechanisms of the latter algorithms
are almost unaware of the multiple performance objectives
of interest.

5. Conclusions

This work dealt with combining desirable properties of path
delay and capacity QoS measures by minimizing a weighted
metrics sum via a Dijkstra-based algorithm (DWSM) to
achieve multiobjective routing in static WMNs. It has been
shown that the performance of the DWSM algorithm is far
better than that of simple Dijkstra-based pruning in terms
of both delay and capacity, in addition to minimizing the
number of hops.

For the most typically common values of delay and
capacity, the variation of the weighting factor𝛽 and its impact
on DWSM performance are investigated, and it is found that
varying 𝛽 over a considerably wide range can provide diverse
optimization results of both delay and capacity simultane-
ously. These results counterbalance remarks in the literature
on the limited applicability of weighted summinimization for
multiobjective optimization routing due to capacity inverse
and delay having different orders of magnitude.

Finally, it is noteworthy that although the DWSM algo-
rithm is readily realizable inWMNenvironments and has the
advantage of computational simplicity and consequently fast
convergence, it cannot provide the flexibility and quality of
solutions obtained with more powerful but computationally
expensive techniques such as GAs.
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