177 research outputs found

    Deep Learning for Pipeline Damage Detection: an Overview of the Concepts and a Survey of the State-of-the-Art

    Get PDF
    Pipelines have been extensively implemented to transfer oil as well as gas products at wide distances as they are safe, and suitable. However, numerous sorts of damages may happen to the pipeline, for instance erosion, cracks, and dent. Hence, if these faults are not properly refit will result in the pipeline demolitions having leak or segregation which leads to tremendously environment risks. Deep learning methods aid operators to recognize the earliest phases of threats to the pipeline, supplying them time and information in order to handle the problem efficiently. This paper illustrates fundamental implications of deep learning comprising convolutional neural networks. Furthermore the usages of deep learning approaches for hampering pipeline detriment through the earliest diagnosis of threats are introduced

    A survey on applications of neuro-fuzzy models

    Get PDF
    Artificial intelligence techniques such as neuro-fuzzy have been successfully applied in a wide variety of uses to be mentioned as economics, engineering, social science, and business. In order to show the implementations of neuro-fuzzy in engineering the most recent researches in the area of neuro-fuzzy are covered in this paper. As many researchers have effectively utilized neuro-fuzzy in engineering applications, detailed studies are provided in this work for stimulating future researches

    Developing magnetic functionalized multi-walled carbon nanotubes-based buckypaper for the removal of Furazolid

    Get PDF
    Magnetic f-MWCNTs-based BP/PVA membrane was fabricated and utilized for the elimination of furazolidone (FZD) from aqueous solution. Characterisation and adsorption studies were performed to evaluate the performance and adsorptive efficiency, respectively of the membrane. Furthermore, statistical and machine learning technique were also applied to predict the removal efficiency of FZD on the membrane. The results revealed that magnetic f-MWCNTs-based BP/PVA membrane has the potential to be used as an efficient membrane for practical applications

    Development of Bismuth Oxyhalide Photocatalysts for Environmental and Industrial Applications

    Get PDF
    Heterogeneous semiconductor photocatalysis, of interest for water splitting and environmental remediation applications, uses light to drive reactions. Metal oxide and sulfide semiconductors have been previously studied but have limitations that include large band gap energies and high rates of recombination. Bismuth oxyhalides (BiOX) are an emerging class of photocatalysts with tunable band gaps and low rates of recombination due to their unique crystal structures. Studies of BiOX photocatalytic activity have largely focused on removal of azo dyes from aqueous solutions, with little attention paid to degradation byproducts. Furthermore, these catalysts have not been explored as a means to conduct organic transformations including C-C bond formation. In this work, BiOX solids were evaluated for the photocatalytic degradation of the persistent organic pollutants atrazine and ibuprofen. Work with atrazine, degraded with BiOCl and Cu-BiOCl under 254 nm light conditions was explored for •OH radical, O2•- and electron hole contributions to the reaction pathway. The reaction rates and products generated by the photocatalytic degradation of ibuprofen using BiOCl were characterized and a degradation mechanism was proposed. The photocatalytic degradation studies suggest the high reactivity of electron holes in the valence band of BiOCl play an important role in the observed degradation efficiency. Finally, BiOI photocatalysts were evaluated for their potential to drive coupling reactions under visible light irradiation. It was found that coupling products of cyclohexyl halides and toluene are achieved in high yield, but cyclohexane dehydrodimerization reactions proceeded with low yield

    Synthesis and evaluation of pyrene grafted onto zinc oxide nanoparticles for the removal of organic contaminants from wastewater

    Get PDF
    Drinking water scarcity is a global crisis even though water covers about three quarters of the earth. One of the major causes of this scarcity is water pollution, which is a result of human activities. This has been noticed and reported for a number of years but is still unsolved and intensifying. Hence, scientists are busy trying to find solutions to this global menace. In this study, zinc oxide nanoparticles were synthesised via co-precipitation, a cost reasonable method and functionalized by grafting a pyrene ligand on its surface in order to provide a scaffold to which many other functionalities can be adsorbed. By so doing, the efficiency and capacity of bare nanoparticles is improved. The synthesised pyrene ligand was successfully characterised with nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscope (FTIR). The adsorbent was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), FTIR, energy dispersive x-ray (EDX) and thermogravimetric analyzer (TGA). The choice of zinc oxide nanoparticles as preferred adsorbent was due to their exceptional properties including large surface area, thermal and chemical stabilities. These properties are the reason zinc oxide nanoparticles possess high adsorption efficiency and capacity. The results of characterization indicated a decreased particle size and improved thermal stabilities of the pyrene grafted zinc oxide nanoparticles compared to the zinc oxide nanoparticles, showing that this material can be employed even at higher temperatures. The average particle size of the bare nanoparticles decreased from 290 to 181 nm after functionalization. Thermal stability increased from 550oC in the bare nanoparticles to 650oC in the functionalized nanoparticles. Characteristic reflections of zinc oxide nanoparticles in the XRD analysis were maintained even after functionalization However, diffractogram roughness was noticed for the functionalized nanoparticles due to the introduction of the amorphous layer from the ligand. This novel material was employed for the removal of an herbicide, simazine as well as two dyes, methyl violet and brilliant green from aqueous solutions by batch adsorption experiments. The kinetics and isotherm studies of the different adsorption processes were carried out by using three of the commonly used kinetic and isotherm models (pseudo-first order, intraparticle diffusion and pseudo-second order) and (Langmuir, Temkin isotherms and Freundlich) respectively. From all batch adsorption experiments conducted for simazine removal, the adsorbent showed effectiveness and high adsorption capacity for the removal of simazine. The highest observed efficiency and capacity were 71.3 percent and 137 mg/g respectively at pH equals 2, time equals 60 minutes, adsorbent dose equals 20 mg and adsorbate conc equals 0. 281 mg/L. Kinetics study for the adsorption of simazine favoured pseudo-first order. However, Langmuir isotherm could also be applicable to understand the adsorption process. The material also showed reusability potential of up to three cycles for this contaminant indicating that this material can be re-used. In the case of the removal of methyl violet from aqueous solution, the adsorbent showed a reasonable adsorption maximum capacity (qmax) (31.5 mg/g) at contact time equals 360 min, adsorbent dose approximately equals 40 mg, temperature equals 20 plus 2oC and pH equals 6.5, when compared to other adsorbents previously reported for the removal of methyl violet (MV) in literature. Kinetics and isotherm studies indicated that the process for the removal of this pollutant with this pyrene grafted onto zinc oxide nanoparticles proceeded via pseudo-first order (R2 equals 0.931) and Langmuir isotherm models (R2 equals 0.980) respectively. These results indicated that this material could serve as alternate material to already established materials for the removal of recalcitrant organic pollutants from aqueous solutions. Moreover, the adsorbent also showed reusability potential for this contaminant. Similarly, the adsorbent showed high removal efficiency and capacity in all batch adsorption experiments for brilliant green (BG) adsorption. The highest adsorption efficiency of 88.8 percent was accomplished with 79.8 mg at pH 6.50 and temperature of 20 equals 2oC within 360 minutes. BG adsorption rate mechanism was best explained by the pseudo-first order kinetic model (R2 equals 0.903). Dye adsorption behaviour was best explained using Langmuir isotherm (R2 equals 0.980). Reusability of the adsorbent showed that the adsorbent is efficient after three runs. The overall results of adsorption by a way of comparison of the adsorption capacity of this novel material with respect to the contaminants is in this trend: brilliant green greater methyl violet greater simazine. This study indicates that this novel material can serve as new material for the removal of herbicides and dyes as well as vast variety of pollutants from wastewater considering its high adsorption efficiency and its recyclability. Thus, industries can explore the use of this material for the removal of varying pollutants from wastewater.Thesis (MSc) -- Faculty of Science and Agriculture, 202

    Synthesis and evaluation of pyrene grafted onto zinc oxide nanoparticles for the removal of organic contaminants from wastewater

    Get PDF
    Drinking water scarcity is a global crisis even though water covers about three quarters of the earth. One of the major causes of this scarcity is water pollution, which is a result of human activities. This has been noticed and reported for a number of years but is still unsolved and intensifying. Hence, scientists are busy trying to find solutions to this global menace. In this study, zinc oxide nanoparticles were synthesised via co-precipitation, a cost reasonable method and functionalized by grafting a pyrene ligand on its surface in order to provide a scaffold to which many other functionalities can be adsorbed. By so doing, the efficiency and capacity of bare nanoparticles is improved. The synthesised pyrene ligand was successfully characterised with nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscope (FTIR). The adsorbent was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), FTIR, energy dispersive x-ray (EDX) and thermogravimetric analyzer (TGA). The choice of zinc oxide nanoparticles as preferred adsorbent was due to their exceptional properties including large surface area, thermal and chemical stabilities. These properties are the reason zinc oxide nanoparticles possess high adsorption efficiency and capacity. The results of characterization indicated a decreased particle size and improved thermal stabilities of the pyrene grafted zinc oxide nanoparticles compared to the zinc oxide nanoparticles, showing that this material can be employed even at higher temperatures. The average particle size of the bare nanoparticles decreased from 290 to 181 nm after functionalization. Thermal stability increased from 550oC in the bare nanoparticles to 650oC in the functionalized nanoparticles. Characteristic reflections of zinc oxide nanoparticles in the XRD analysis were maintained even after functionalization However, diffractogram roughness was noticed for the functionalized nanoparticles due to the introduction of the amorphous layer from the ligand. This novel material was employed for the removal of an herbicide, simazine as well as two dyes, methyl violet and brilliant green from aqueous solutions by batch adsorption experiments. The kinetics and isotherm studies of the different adsorption processes were carried out by using three of the commonly used kinetic and isotherm models (pseudo-first order, intraparticle diffusion and pseudo-second order) and (Langmuir, Temkin isotherms and Freundlich) respectively. From all batch adsorption experiments conducted for simazine removal, the adsorbent showed effectiveness and high adsorption capacity for the removal of simazine. The highest observed efficiency and capacity were 71.3 percent and 137 mg/g respectively at pH equals 2, time equals 60 minutes, adsorbent dose equals 20 mg and adsorbate conc equals 0. 281 mg/L. Kinetics study for the adsorption of simazine favoured pseudo-first order. However, Langmuir isotherm could also be applicable to understand the adsorption process. The material also showed reusability potential of up to three cycles for this contaminant indicating that this material can be re-used. In the case of the removal of methyl violet from aqueous solution, the adsorbent showed a reasonable adsorption maximum capacity (qmax) (31.5 mg/g) at contact time equals 360 min, adsorbent dose approximately equals 40 mg, temperature equals 20 plus 2oC and pH equals 6.5, when compared to other adsorbents previously reported for the removal of methyl violet (MV) in literature. Kinetics and isotherm studies indicated that the process for the removal of this pollutant with this pyrene grafted onto zinc oxide nanoparticles proceeded via pseudo-first order (R2 equals 0.931) and Langmuir isotherm models (R2 equals 0.980) respectively. These results indicated that this material could serve as alternate material to already established materials for the removal of recalcitrant organic pollutants from aqueous solutions. Moreover, the adsorbent also showed reusability potential for this contaminant. Similarly, the adsorbent showed high removal efficiency and capacity in all batch adsorption experiments for brilliant green (BG) adsorption. The highest adsorption efficiency of 88.8 percent was accomplished with 79.8 mg at pH 6.50 and temperature of 20 equals 2oC within 360 minutes. BG adsorption rate mechanism was best explained by the pseudo-first order kinetic model (R2 equals 0.903). Dye adsorption behaviour was best explained using Langmuir isotherm (R2 equals 0.980). Reusability of the adsorbent showed that the adsorbent is efficient after three runs. The overall results of adsorption by a way of comparison of the adsorption capacity of this novel material with respect to the contaminants is in this trend: brilliant green greater methyl violet greater simazine. This study indicates that this novel material can serve as new material for the removal of herbicides and dyes as well as vast variety of pollutants from wastewater considering its high adsorption efficiency and its recyclability. Thus, industries can explore the use of this material for the removal of varying pollutants from wastewater.Thesis (MSc) -- Faculty of Science and Agriculture, 202

    Heterogeneous Catalysis and Advanced Oxidation Processes (AOP) for Environmental Protection (VOCs Oxidation, Air and Water Purification)

    Get PDF
    The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes

    Evaluation of the availability and applicability of computational approaches in the safety assessment of nanomaterials: Final report of the Nanocomput project

    Get PDF
    This is the final report of the Nanocomput project, the main aims of which were to review the current status of computational methods that are potentially useful for predicting the properties of engineered nanomaterials, and to assess their applicability in order to provide advice on the use of these approaches for the purposes of the REACH regulation. Since computational methods cover a broad range of models and tools, emphasis was placed on Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) models, and their potential role in predicting NM properties. In addition, the status of a diverse array of compartment-based mathematical models was assessed. These models comprised toxicokinetic (TK), toxicodynamic (TD), in vitro and in vivo dosimetry, and environmental fate models. Finally, based on systematic reviews of the scientific literature, as well as the outputs of the EU-funded research projects, recommendations for further research and development were also made. The Nanocomput project was carried out by the European Commission’s Joint Research Centre (JRC) for the Directorate-General (DG) for Internal Market, Industry, Entrepreneurship and SMEs (DG GROW) under the terms of an Administrative Arrangement between JRC and DG GROW. The project lasted 39 months, from January 2014 to March 2017, and was supported by a steering group with representatives from DG GROW, DG Environment and the European Chemicals Agency (ECHA).JRC.F.3-Chemicals Safety and Alternative Method

    Removal of Endocrine Disrupting Chemicals by the Ligninolytic Enzyme Versatile Peroxidase

    Get PDF
    This thesis proposal is about the application of ligninolytic enzymes and reactive species of Mn3+ in the degradation of recalcitrant compounds, including dyes, pharmaceuticals and personal care products, and endocrine disrupting compounds. These compounds have a polymeric structure which is hard to degrade; therefore, it is necessary to use degradation agents with high oxidizing potential. These studies were conducted in laboratory assays in order to maximize the degradation of these compounds. Subsequently, application arises in enzyme reactors, evaluating the parameters that ensure high operational efficiency and processing capacity

    Biofiltration of volatile compound mixtures from pulp and paper industries

    Get PDF
    [Resumen] Un biorreactor en dos etapas, consistente en un biofiltro percolador (BTF) como primera etapa y un biofiltro (BF) como segunda etapa, se operó bajo estados estacionario y transitorio, para purificar una mezcla gaseosa compuesta por sulfuro de hidrógeno, metanol y α-pineno. El sulfuro de hidrógeno y el metanol se eliminaron en la primera etapa, mientras que el α- pineno se eliminó fundamentalmente en la segunda etapa. Los biorreactores fueron sometidos a dos tipos de sobrecargas: a largo plazo (66h) con cargas bajas-medias y de corto plazo (12 horas) con altas cargas. Utilizando redes de neuronas artificiales (ANNs), se realizó un modelado para predecir las respectivas eficiencias de eliminación (EEs). Se observó que un perceptrón multicapa con topología 3-4-2 fue capaz de predecir la eliminación del H2S y del metanol en el BTF, mientras que una topología de 3-3-1 fue capaz de aproximar la eliminación del α-pineno en el BF. La misma mezcla gaseosa fue posteriormente examinada en un BTF inoculado con un consorcio microbiano altamente adaptado. Se observó que la presencia del metanol afectó negativamente a la eliminación del α-pineno, sin embargo lo opuesto no sucedió. La eliminación del α-pineno se vió afectada por su propia presencia. El H2S no mostró ningún efecto sobre la eliminación de los otros compuestos. Este BTF también fue modelado usando ANNs y fue también sometido a diferentes tipos de sobrecargas a corto plazo, de cada contaminante por separado. Para el metanol y el sulfuro de hidrógeno, se observó que estas sobrecargas no afectaron significativamente a su propia eliminación, pero la eliminación del α-pineno se vio afectada en un 50%.[Resumo] Un biorreator en dúas etapas consistente nun biofiltro percolador (BTF) como primeira etapa e nun biofiltro (BF) como segunda etapa, foi operado baixo estados estacionario e transitorio, para a purificación dunha mestura gasosa formada por sulfuro de hidróxeno, metanol e α- pineno. O sulfuro de hidróxeno e o metanol foron eliminados na primeira etapa, mentres co α- pineno foi principalmente eliminado na segunda etapa. Os biorreactores foron sometidos a dous tipos de sobrecargas: a longo prazo (66h) con cargas medias-baixas, e de curta duración (12 horas) a cargas elevadas. Utilizando redes de neuronas artificiais (ANNs), realizouse unha modelaxe para prever as correspondentes eficiencias de eliminación (EEs). Observouse que un perceptrón multicapa con topología 3-4-2 foi capaz de prever a eliminación do H2S e do metanol no BTF, mentres que unha topoloxía 3-3-1 foi quen de aproximarse á eliminación do α-pineno no BF. A mesma mestura gasosa foi examinada posteriormente nun BTF inoculado cun consorcio microbiano altamente adaptado. A presenza do metanol afectou negativamente a eliminación do α-pineno, con todo, o contrario non aconteceu. A eliminación de α-pineno, foi afectada pola súa propia presenza. O H2S non mostrou ningún efecto sobre a eliminación dos outros compostos. Este BTF tamén foi modelado utilizando ANNs e tamén foi suxeito a varios tipos de sobrecargas a curto prazo, de cada contaminante por separado. Para o metanol e o sulfuro de hidrógeno observouse que estas sobrecargas non afectaron significativamente as súas eliminacións, pero a eliminación do α-pineno foi afectada nun 50%.[Abstract] A two-stage bioreactor, comprising a biotrickling filter (BTF) as the first-stage and a biofilter (BF) as the second-stage, operated under steady-and transient-state conditions, was tested to remove gas-phase hydrogen sulphide, methanol and α-pinene. Hydrogen sulphide and methanol were removed in the first-stage, while α-pinene, was removed predominantly in the second-stage. The bioreactors were tested with two types of shock loads, long-term (66h) low to medium concentration loads, and short-term (12h) low to high concentration loads. Their performances were modelled using artifitial neural network (ANN), in order to predict the removal efficiencies (REs). It was observed that, a multi-layer perceptron with the topology 3- 4-2 was able to predict RE of methanol H2S in the BTF, while a topology of 3-3-1 was able to approximate RE of α-pinene in the BF. The same gaseous mixture was later examined in a biotrickling filter (BTF), inoculated with a highly adapted microbial consortium. The presence of methanol showed an antagonistic removal pattern for α-pinene, but the opposite did not occur. α-Pinene, removals were affected by itself. H2S did not show any declining effect on the other compounds. This BTF was also modeled using ANNs and subjected to different types of short-term shock-loads. It was observed that, short-term shock-loads of individual pollutants (methanol or hydrogen sulfide) did not significantly affect their own removal, but the removal of α-pinene was affected by 50%
    corecore