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Heterogeneous semiconductor photocatalysis, of interest for water splitting and 

environmental remediation applications, uses light to drive reactions. Metal oxide and sulfide 

semiconductors have been previously studied but have limitations that include large band gap 

energies and high rates of recombination. Bismuth oxyhalides (BiOX) are an emerging class of 

photocatalysts with tunable band gaps and low rates of recombination due to their unique crystal 

structures. Studies of BiOX photocatalytic activity have largely focused on removal of azo dyes 

from aqueous solutions, with little attention paid to degradation byproducts. Furthermore, these 

catalysts have not been explored as a means to conduct organic transformations including C-C 

bond formation. In this work, BiOX solids were evaluated for the photocatalytic degradation of 

the persistent organic pollutants atrazine and ibuprofen. Work with atrazine, degraded with BiOCl 

and Cu-BiOCl under 254 nm light conditions was explored for •OH radical, O2
•- and electron hole 

contributions to the reaction pathway. The reaction rates and products generated by the 

photocatalytic degradation of ibuprofen using BiOCl were characterized and a degradation 

mechanism was proposed. The photocatalytic degradation studies suggest the high reactivity of 

electron holes in the valence band of BiOCl play an important role in the observed degradation 

efficiency. Finally, BiOI photocatalysts were evaluated for their potential to drive coupling 

reactions under visible light irradiation. It was found that coupling products of cyclohexyl halides 

and toluene are achieved in high yield, but cyclohexane dehydrodimerization reactions proceeded 

with low yields. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

1.1.1 Environmental 

Public health related environmental concerns and a growing demand for pharmaceuticals 

and other complex organic chemicals represent two issues facing our rapidly increasing 

population. Countries undergoing widespread industrialization, which encourages minimal 

regulation to maximize economic benefit, has led to potentially harmful contamination of the 

environment, including local water sources [1]. Even in countries where environmental inputs are 

regulated, contamination occurs. One area of concern is the growing global use of pharmaceuticals.  

As a result of modern industrial development, nearly 9000 compounds are currently in use 

worldwide for pharmaceutical applications [2]. Pharmaceuticals and personal care products 

(PPCPs) form a group of biologically active chemicals that have well-established routes of entry 

to water supplies and can cause long-term contamination [3–7]. Since these molecules do not 

interact appreciably with water, their rate of hydrolysis and subsequent removal proceeds very 

slowly, meaning that these compounds have long half-lives and will slowly build up in water 

supplies [8,9]. 

Current wastewater treatment processes have been shown to be insufficient in removing 

PPCPs from drinking water [3]. Additionally, traditional techniques such as chlorination, while 

efficient at removing bacteria, have shown the potential to chemically generate more toxic 

disinfection byproducts [10]. Alternative options to traditional methods must be explored to 

combat this emerging issue. 
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1.1.2 Industrial 

Transportation fuels including gasoline, diesel, and jet fuel are an integral part of modern 

life. Currently these fuels are obtained from the refinement of crude oil extracted from limited 

deposits located in the Earth’s crust. Only about half of crude oil can be refined into molecules 

that provide sufficient energy to operate the machines and vehicles that support industrial efforts 

[11]. The remaining half of crude oil consists of methane, ethane and propane [11]. While these 

low molecular weight hydrocarbons can be used for heating or in the production of plastics, they 

provide insufficient energy density to be efficiently used as transportation fuel.  

Recently, advanced drilling techniques have enabled producers of petroleum to access 

large quantities of natural gas. After drying, natural gas consists of 97% methane [12]. Methane 

becomes more valuable to producers after it has been converted to higher molecular weight 

hydrocarbons for use in high energy density transportation fuels. This is very desirable for 

producers, but few companies currently operate gas-to-liquid plants due to the high capital 

investment and operating costs associated with the current process. The state-of-the-art Fischer-

Tropsch process requires multiple steps to generate higher order hydrocarbons from natural gas 

[13]. 

C-H activation to form hydrocarbons has been a major goal of the petroleum industry in 

order to increase the value obtained from natural gas. Converting these gases into liquid fuels 

would enable their direct use in current automobile engines, as well as making them easier to store 

and transport to the consumer. This advantage has driven researchers to seek methods that activate 

C-H bonds in saturated hydrocarbons to induce formation of C-C bonds [14]. In general, C-C 

coupling reactions are a widely utilized synthesis strategy throughout the chemical industry 
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[15,16]. However, these reactions require the use of expensive reagents leading researchers to seek 

alternative approaches [16].  

 

1.2 Introduction to Photocatalysis 

Energy demands of modern industry will continue to increase as world population grows. 

Utilization of solar energy presents an alternative to traditional forms of energy generation due to 

the large and consistent amount of radiation that reaches the earth daily. The photovoltaic industry 

is already beginning to mature and carve out its place in the global economy, however other direct 

applications of solar energy usage are also being explored [17]. Photochemical reactions have been 

studied since the early 20th century and proved that solar irradiation could potentially be used 

directly in chemical processes [18]. Photocatalysis is a process that proceeds at room temperature 

using light to overcome energy barriers and drive reactions. Photocatalysis was first demonstrated 

by Fujishima and Honda in 1972 where they showed that irradiating single crystal rutile titanium 

dioxide (TiO2) with ultraviolet light enabled the production of H2 and O2 via water splitting (see 

Figure 1.1) [19]. Since these initial reports, photocatalysis has become a widely researched field 

for applications including solar energy production [20], air and water purification [21], self-

cleaning surfaces [22], and chemical synthesis [23]. 

 

Figure 1.1. Electrochemical cell used by Fujishima and Honda in the initial demonstration of 

photocatalysis [19].  
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1.3 Heterogeneous Semiconductor Photocatalysis 

Heterogeneous semiconductor photocatalysts are solid particles of semiconductors such as 

TiO2, ZnO, Fe2O3, and CdS that can be used to drive reactions using light. They work by absorbing 

light of an appropriate wavelength to promote electrons from the valence band to the conduction 

band. The energy of photons necessary to promote electrons is called the band gap. This process 

generates excited electrons in the conduction band and effective “electron holes” (h+) in the 

valence band. The electron-hole pairs are then able to move to the surface of the semiconductor, 

where reactions can occur, or thermally recombine. Recombination is detrimental to the overall 

activity of a catalytic system since recombined electron-hole pairs are not able to participate in the 

intended reaction. The surface reactions that take place in semiconductor photocatalysis consist of 

either oxidation by electron holes in the valence band, or reduction by excited electrons in the 

conduction band. An overall scheme for photocatalysis is represented in Figure 1.2. The properties 

of an ideal photocatalyst are high photoactivity, broadband light absorption in the UV-Vis range, 

chemically inert behavior with respect to catalyst decomposition, and resistance to photocorrosion. 

 

Figure 1.2. General photocatalytic reaction scheme.  
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1.3.1 Application in Environmental Remediation 

In 1976 Carey et al. showed that UV irradiation of aqueous suspensions of TiO2 in the 

presence of polychlorobiphenyls (PCBs) resulted in dechlorination of the PCBs [24]. This study 

sparked intense interest in the development of photocatalysts for environmental remediation 

applications. It is commonly accepted that UV irradiation of TiO2 in aqueous solutions produces 

hydroxyl radicals (•OH) via the reaction  of h+ with either OH- or H2O [25,26]. This is considered 

to be the source of the high activity of TiO2 for photocatalytic degradation of organic pollutants. 

This phenomenon of hydroxyl and superoxide radical production has been exploited by a large 

number of researchers who have demonstrated photocatalytic degradation of organic pollutants 

using the UV/TiO2 system [27–40]. 

Other oxide and sulfide semiconductors with advantageous band gaps have been evaluated 

as potential photocatalysts for environmental remediation. However, the iron oxide polymorphs as 

well as the sulfides tested to date are all susceptible to photocorrosion and break down during the 

degradation process [41]. CdS has been shown to be an effective visible light photocatalyst, 

however cadmium is generally known to be a carcinogen, and the CdS nanoparticles are toxic to 

aquatic life [42]. ZnO in particular is an alternative semiconductor that has been researched 

instensely, since it has a wider band gap than TiO2 (3.37 eV) and presents high photocatalytic 

activity [43,44]. ZnO has also been shown to proceed through a similar photocatalytic mechanism 

as TiO2 based on the production of hydroxyl radicals [44]. It was also found that superoxide radical 

formation is also found to be prominent in ZnO-based photocatalytic processes [44]. However, 

ZnO has been found to be an ineffective semiconductor photocatalytic system due to a slow 

dissolution process in water that converts ZnO to Zn(OH)2 on the particle surface, thus deactivating 

the catalyst and reducing reusability [45]. The need to develop new and more effective 
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photocatalysts for environmental remediation provides one motivation for the work described in 

this thesis. 

1.3.2 Application in C-C Coupling Reactions 

Photocatalysts also hold promise for industrial applications, including C-C coupling 

reactions. Catalytic processes have been reported over Rh and W/HZSM-5 for conversion of 

methane to hydrocarbons; however, these methods require high temperatures that lead to 

deactivation of the catalyst via coking [46,47]. A reaction that proceeds at room temperature using 

a photocatalyst to overcome the activation energy could achieve the goal of C-C bond formation 

from methane in an energy efficient process [48–50]. Several recent literature reports provide 

details on attempts to convert small hydrocarbons to larger coupled molecules using traditional 

heterogeneous catalysis methods [51,52]. 

Photocatalytic coupling and dehydrodimerization reactions have been studied previously 

by H. Kisch et al. [53–55]. This group has authored several reports concerning the mechanisms of 

selective photocatalytic transformations and has developed a classification system for types of 

organic photocatalytic reactions. The “Type A” reactions reported by Kisch et al. involve the 

reduction/oxidation of two or more substrates. This reaction type includes C-C coupling through 

dehydrodimerization, where two molecules of the same structure are coupled oxidatively while 

simultaneously generated hydrogen ions are reduced to molecular hydrogen. This process was 

demonstrated through UV and visible-light irradiation of solutions of 2,5-dihydrofuran in D2O 

with suspended ZnS and Pt/CdS (see Figure 1.3) [54]. The authors report yields of 60%, 

demonstrating the potential of photocatalytic systems for efficient dehydrodimerization. 
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Figure 1.3. Anaerobic dehydrodimerization of 2,5-dihydrofuran in D2O [54]. 

Non-oxidative coupling of methane (NOCM) achieved via photocatalysis is a process that 

aims to reduce the capital and operating costs of gas-to-liquids upgrading and unlock the value 

stored in natural gas. Yoshida et al. have studied the non-oxidative coupling of methane (NOCM) 

utilizing a variety of strategies to overcome the energy of activation of the C-H bond [56–59]. One 

report demonstrated the activity of Al2O3 photocatalysts highly dispersed in SiO2 [59]. The authors 

reported that this is an effective strategy of photocatalyst design for NOCM due to the insulating 

nature of the silica. This design is advantageous because the silica support material is resistant to 

photoreduction by methane or hydrogen gas. The resistance to photoreduction of the catalyst 

helped prevent the catalyst from losing active sites and becoming unreactive. Yoshida et al. have 

also reported on NOCM using a β-Ga2O3 photocatalyst showing a yield of roughly 0.5% for total 

hydrocarbons [57]. Interestingly, no significant difference was seen in hydrocarbon yield when 

CO2 was added as a reactant; however, CO was then detected as a product.  

More recent studies from the Yoshida group have focused on dehydrodimerization 

reactions of organic molecules with an emphasis on C-C bond formation. For example, metal-

doped TiO2 was investigated for the photocatalytic cross-dimerization of THF with cyclohexane 

in 2017 [14]. The authors found that Pt-doped TiO2 showed a significant increase in photocatalytic 
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dehydrodimerization activity compared with TiO2 alone or Pd-, Au-, or Rh-doped TiO2. Although 

these results have shown low hydrocarbon yields, they demonstrate the viability of this method of 

hydrocarbon upgrading and suggest that yields could be improved by altering the composition of 

the catalyst.  

 

1.4 Bismuth Oxyhalides 

TiO2 has received the most attention in photocatalysis research as it was the first 

photocatalyst discovered and is still one of the most widely-utilized materials [19]. TiO2 has been 

applied to diverse applications ranging from self-cleaning surfaces and dye-sensitized solar cells 

[60]. However, TiO2 has the drawback of possessing a large band gap of 3.2 eV, which prevents 

it from being applied in solar photocatalytic applications. Using ambient solar light in an outdoor 

treatment facility can reduce the cost of photocatalysis-based water treatment vs. using lamps over 

tanks at a typical indoor water treatment plant. Various strategies have been employed to develop 

robust photocatalysts capable of functioning under ambient solar light. Investigators have tried to 

imbue visible-light activity to TiO2 by including metal and non-metal doping and employing 

nanoparticles and heterojunction formation [61–63]. However, these systems are inherently more 

complicated to synthesize and more expensive to produce [61–63].  

Traditional photocatalytic reaction systems also exhibit high rates of electron-hole 

recombination. This occurs when excited state electrons and electron holes collide in either the 

photocatalyst bulk or on the photocatalyst surface. This results in the loss of photocatalytic activity 

since the active species are prevented from further reacting with the target molecules. Although 
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doping strategies have been previously attempted, this issue may be better addressed by using a 

material with a different crystal structure to promote charge separation. 

Compounds of the bismuth oxyhalide (BiOX) series exhibit interesting optical and 

semiconducting properties. The crystal structure of BiOX was first elucidated by Bannister in 1935 

and found to possess tetragonal geometry consisting of covalently bonded layers of [X-Bi-O-Bi-

X] [64]. This structure results in the presence of an internal electric field that facilitates the 

separation of holes and electrons, thus increasing the photocatalytic activity [65]. The general 

crystal structure for BiOX is given in Figure 1.4. 

 

Figure 1.4. Computer-generated model of BiOX structure [66]. 

 

Bismuth oxychloride (BiOCl) was the first BiOX compound to be tested for photocatalytic 

properties by Zhang et al. in 2006 [67]. After this initial study, many other reports have followed 

further establishing the capabilities and potential of BiOX compounds as photocatalysts. Many 

researchers have undertaken attempts to improve the photocatalytic activity of BiOX compounds 
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in order to enable their use in industrial applications. Two primary approaches have been 

undertaken toward this goal: (1) the development of synthetic methods directed at novel BiOX 

structures, and (2) the modulation of BiOX using various dopants. Since the properties of a 

material are derived from structure, synthetic methods such as crystal facet engineering [68–81], 

production of ultrathin nanosheets [82–84], synthesizing hollow and porous nanostructures [85–

90] and nanospheres [91,92] have been developed to access novel morphologies. Doping strategies 

include metal-doping [93–98], nonmetal-doping [99,100], introduction of structural defects 

[74,75,80,101–104], use of dye-sensitizers [105,106], and inclusion in heterojunctions with other 

semiconductors [97,98,104,107–116]. For in-depth discussion of the diverse approaches to BiOX 

synthesis see reviews by Di et al. [117] and Yang et al. [118].  

While bismuth oxyhalide compounds are not as widely used in industry as TiO2, they hold 

potential to become the preferred option for photocatalytic degradation of water-borne organic 

contaminants. Numerous groups have shown that BiOX catalysts present high photocatalytic 

activity under visible light irradiation [119,120,65,121]. This is a tremendous advantage of using 

BiOX catalysts since water can be treated in outdoor facilities vs. storing it in tanks or channels at 

a wastewater treatment facility with continuously running UV lights. Being able to treat water with 

ambient sunlight reduces logistical difficulties with treating the water and saves the cost of 

additional wastewater treatment plant space and electricity for operating UV lamps.  

BiOX photocatalysts have been previously used in applications including water splitting 

[112,115,122], solar cells [123], photoreduction of CO2 [70,80,124], N2 fixation [125,126], 

bacterial disinfection [127], removal of air contaminants [128–132], oxidation of heavy metal 

pollutants [133–138], and photodynamic therapy [94]. They hold promise for many applications 

that include remediation of environmental pollutants and industrial C-C coupling reactions. 
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1.4.1 Applications of BiOX Photocatalysts 

This dissertation is focused on the development of bismuth oxyhalide photocatalysts for 

environmental and industrial applications. Photocatalytic degradation of aqueous pollutants by 

BiOX for water purification has been previously explored. On the other hand, industrial 

applications have been investigated only minimally. Background on BiOX photocatalysis in these 

areas is summarized below.  

1.4.1.1 Environmental Applications of BiOX Photocatalysts 

Previous studies on application of BiOX to the degradation of organic pollutants have 

focused on pollutants such as dyes, pharmaceuticals, and industrial effluents [97,103,108,139–

145]. The primary active species responsible for the high photocatalytic degradation properties of 

BiOX have been identified to be electron holes and superoxide radicals [97,143,144].  

 The application of BiOX photocatalysts for environmental remediation was first reported 

by Zhang et al. who demonstrated that BiOCl outperformed Degussa P25 TiO2 under 365 nm 

irradiation for the photocatalytic degradation of aqueous methyl orange dye [67]. Electronic 

structure calculations were conducted as a part of this study and showed that the highest occupied 

molecular orbitals for BiOCl originate from Cl 3p orbitals, while the lowest unoccupied molecular 

orbitals originate from Bi 6p orbitals [67]. Lei et al. later reported on photocatalytic degradation 

of dyes, including methyl orange, rhodamine B, methylene blue, and ethylene violet, with BiOCl. 

The activity of the catalyst was dependent on catalyst morphology, with flower-like microspheres 

presenting the highest rate of degradation under 254 nm irradiation [146]. BiOCl and BiOBr 

microspheres were both tested for photocatalytic degradation of ibuprofen under visible light 

irradiation, and the authors found that adsorption was the main contributor to ibuprofen removal 
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[147,148]. A novel BiOCl0.875Br0.125 photocatalyst was synthesized and found to degrade 

pharmaceuticals, including carbamazepine, ibuprofen, bezafibrate, and propranolol, under 

simulated solar irradiation [149].  

BiOI has been explored as a visible light active photocatalyst for environmental 

remediation and water treatment. BiOI nanoplates were synthesized and evaluated for 

photocatalytic degradation of methyl orange and phenol [150]. Radical scavenging experiments 

showed that electron holes and superoxide radicals were primarily responsible for the observed 

photocatalytic activity [150]. Ionic liquid-modified BiOI was demonstrated to effectively degrade 

methyl orange under visible light photocatalytic conditions [151]. Using radical scavenging 

experiments, the authors found that the ionic liquid modification acted as an electron trap, and that 

electron holes were the primary species responsible for the photocatalytic activity (see Figure 1.5) 

[151]. A series of BiOI compounds were synthesized with varying ratios of Bi:O:I by changing 

the temperature of the hydrothermal synthesis conditions. The variation in stoichiometry was 

found to result in a range of band gap energies (1.86-3.32 eV), with higher iodine content 

producing smaller band gaps. After performing photocatalytic degradation and radical scavenging 

experiments with the synthesized catalysts and crystal violet dye, the researchers found that 

superoxide radicals were the dominant species during the degradation process [101]. Hao et al. 

showed that BiOI, synthesized using polyvinylpyrrolidone (PVP) as a directing agent toward 

microsphere structure, was effective at photocatalytic degradation of tetracycline under visible 

light irradiation, demonstrating the potential for BiOI to degrade persistent organic pollutants 

[142]. 
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Figure 1.5. Photocatalytic degradation scheme for ionic liquid modified BiOI with methyl orange 

[151]. 

 

1.4.1.2 Industrial Applications of BiOX Photocatalysts 

Up to this point, the use of BiOX compounds for industrial applications has been extremely 

limited. Henriquez et al. demonstrated the first application of BiOX and TiO2 compounds for 

selective oxofunctionalization of cyclohexane in water with O2 [152]. For both photocatalysts the 

observed products are cyclohexanol and cyclohexanone. The proposed reaction mechanism (see 

Figure 1.6) suggests that oxidation of cyclohexane by an electron hole in the valence band of the 

photocatalyst initiates the reaction. This results in the formation of a cyclohexyl radical on the 

surface of the photocatalyst that reacts with oxygen species to form the final oxidized products. 
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Figure 1.6. Proposed pathways for cyclohexane oxidation over (A) TiO2 and (B) BiOX 

photocatalysts [152]. 

 

1.5 Thesis Objectives and Organization 

Photocatalysis holds promise as an energy-efficient approach for environmental 

remediation and industrial synthesis; however, the current preferred heterogeneous semiconductor 

photocatalyst, TiO2, is limited by a large band gap, high rate of electron-hole recombination, and 

lack of direct reaction with target substrates. This work aims to determine whether BiOX 

photocatalysis is capable of addressing challenges in environmental and industrial applications by 

exploring photocatalytic degradation of model environmental pollutants and photocatalytic C-C 

coupling reactions. 
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The work addressing these goals has been organized into the following sections. Chapter 

2 presents the synthesis, characterization, and application of Cu-BiOCl to the photcatalytic 

degradation of atrazine. Cu-BiOCl was synthesized utilizing an ionic liquid method and 

characterized by X-Ray diffraction, diffuse reflectance spectroscopy, photoluminescence 

spectroscopy, and infrared spectroscopy. Both Cu-BiOCl and BiOCl were evaluated for dark 

adsorption and photocatalytic degradation of atrazine, one of the most widely used pesticides in 

the United States. Radical scavenging experiments were performed to determine the influence of 

electron holes, hydroxyl radicals, and superoxide radicals on the photocatalytic degradation 

process. For both photocatalysts, electron holes were found to exhibit the largest effect on the 

photocatalytic degradation process. This information was used to formulate a mechanism for 

photocatalytic degradation of atrazine by Cu-BiOCl.  

Chapter 3 focuses on the identification of ibuprofen degradation intermediates generated 

by BiOCl photocatalysis. Previous work on photocatalytic degradation of ibuprofen with BiOX 

compounds suggested that adsorption was the main route of ibuprofen removal from solution. 

[147,148] However, in our work we identified a total of thirteen degradation products using HPLC-

DAD and LC-MS/MS. Of these photoproducts, two were attributed to the relatively fast 

decarboxylation of ibuprofen and were considered “primary” photoproducts. Kinetic models were 

used to describe production and reactions of both primary photoproducts. Secondary degradation 

products were attributed to one of the primary photoproducts. A mechanism for ibuprofen 

degradation by BiOCl photocatalysis was proposed based on the identified intermediates. 

Chapter 4 consists of three projects directed at the application of BiOX photocatalysis to 

reactions that are either currently used or would be useful in chemical industry. The first project 

focused on the application of BiOX photocatalysts to natural gas condensation with the goal of 
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demonstrating that photocatalytic methods could be applied to convert natural gas to higher 

molecular weight liquid hydrocarbons under mild conditions. Using cyclohexane, only limited 

dehydrodimerization was observed. The second project explored the effect of visible light 

irradiation on the addition of iodine to cyclohexane with the goal of using BiOX photocatalysts to 

generate iodocyclohexane in situ for coupling reactions with aryl compounds. Coupling reactions 

were then explored using cyclohexyl halides and aryl substrates to mimic coupling reactions 

commonly used in synthesis of complex organic molecules.  

 The appendices collect some other work published during the completion of this work, but 

are not directly related to the overarching theme of the dissertation. Appendix B is comprised of a 

manuscript published in Inorganic Chemistry on the photophysical characterization of copper 

halide complexes. Appendix D consists of a publication in Gold Bulletin discussing the 

photoluminescence properties of samarium-gold coordination polymers. Appendix E is a review 

of TiO2-based photocatalytic degradation of pesticide compounds that has just been accepted in 

Catalysis Reviews. Appendix G is a manuscript recently submitted to Dalton Transactions that 

discusses the synthesis and photophysical characterization of a gold-viologen complex. 
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CHAPTER 2 

THE ROLE OF COPPER (II) IONS IN Cu-BiOCl FOR USE IN THE 

PHOTOCATALYTIC DEGRADATION OF ATRAZINE 

 

2.1 Introduction 

Organic pollutants are the most common form of environmental contaminants detected 

within the United States [1]. These types of compounds include herbicides and pharmaceuticals, 

which increases the likelihood of human exposure as commercial consumption increases annually 

[1,2]. These compounds exist in media such as aqueous and gaseous solutions, which are 

introduced into the environment through practices in the agricultural and commercial landscaping 

industries. Atrazine is an environmentally persistent compound that is known to resist natural 

degradation [3,4]. Reports on accumulation of atrazine in soil indicates increases in the bacterial 

populations in areas that have continuous applications [3]. The molecular structure of atrazine (see 

Figure 2.1) and other molecules allows increased resistance to current drinking water treatments, 

enabling possible accumulation in biological systems. This exposure propagates several negative 

health effects including cancer, birth defects, and endocrine system disruption [5].  

Traditional ultraviolet irradiation has shown promise in rapid removal but is limited in the 

overall mineralization of pollutants [6]. Photocatalysts have become a new alternative for drinking 

water treatment due to their unique reactivity with ultraviolet radiation, producing increased 

degradation and overall detoxification [6,7]. Photocatalysts provide an alternative in drinking 

water treatment due to their ability to degrade hazardous pollutants in a variety of mediums, 
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including water [8]. These compounds are semiconductors composed of inorganic compounds that 

accelerate chemical reactions using ultraviolet radiation present in the atmosphere. 

Degradation of harmful pollutants into nontoxic byproducts is a result of this process and 

can be used in the removal of herbicides, such as atrazine, from drinking water [8,9]. Traditional 

treatment methods focus on the addition of chemical species such as chlorine for contaminant 

removal, yet this technique has the potential for increased toxicity due to compound 

transformations [10]. As these photocatalysts adsorb pollutants such as atrazine, photochemical 

oxidation-reduction reactions create reactive chemical species that cleave the molecule into 

smaller compounds. A previous study conducted by the Patterson research group indicated 

superior degradation of pharmaceuticals using bismuth photocatalysts versus titanium dioxide [7]. 

The results of Ahern et al. indicated bismuth oxyhalide has a smaller surface area compared to 

titanium dioxide, yet it exhibited increased degradation rates [7,11]. 

Enhancement of photocatalytic compounds can be achieved through targeting the addition 

of metallic ions into the chemical arrangement of a known photocatalyst to act as an electron trap 

to prevent recombination of excited-state electrons and electron holes [12,13]. Previous studies 

using metal-doped compounds have reported increased photodegradation behavior from this 

addition. Reports on the enhancement by addition of copper, specifically Cu(II), have indicated 

the most successful degradation rates when comparing the addition to other ions, such as iron [14]. 

The addition of metallic impurities facilitates the transfer of excited state electrons from the 

conduction band of the photocatalyst [15]. The transfer of electrons from the conduction band of 

bismuth oxyhalide to the copper ions facilitates extended lifetimes of these excited state electrons 

[16]. Previous studies using transition elements such as nickel, copper, and gold have indicated 

these compounds are sufficient additives to facilitate increased degradation of pollutants [17].  
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In this study, we present the application of Cu-BiOCl to photocatalytic degradation of 

atrazine. We demonstrate the reproducibility of the earlier reported Cu-BiOCl ionic liquid 

synthetic method through characterization via XRD, DRS, SEM-EDS, and photoluminescence 

[18]. The properties of the copper-modified material are characterized by DRS, FTIR, and 

photoluminescence measurements. The photocatalytic activity for Cu-BiOCl is measured in the 

absence of hydrogen peroxide and uses atrazine as a target model organic pollutant. Active species 

trapping experiments are used to assist in proposing a mechanism of Cu-BiOCl photocatalytic 

activity. 

 

Figure 2.1. Molecular structure of atrazine. 

 

2.2 Experimental 

2.2.1 Materials and Sample Preparation 

Synthesis of 5:1 Cu(II):BiOCl photocatalysts was first demonstrated by Jun Di et al [18]. 

The synthesis presented in this study was achieved by mixing a 1 mmol (0.485 g) solution of 

Bi(NO3)3  ּּ 5 H2O in a 20 mL solution of ethylene glycol. The source of copper ions was an ionic 

fluid consisting of 5 mmol 1-methyl-3-octylimidazolium (Omim) chloride mixed with 5 mmol 

copper(II) chloride to yield ([Omim]CuCl3), and this solution was added to the ethylene glycol 
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solution and stirred for 30 minutes. The resulting solution was then transferred to a Teflon-lined 

autoclave system where it was left to bake overnight at 140oC. The remaining mixture separated 

into two distinct layers, with the solid product found in the aqueous teal layer. Upon separation the 

particles were washed twice with a 1:1 ethanol to water solution. The remaining sample was 

transferred to a watch glass and left to dry overnight at 50oC and collected for further 

characterization. Pure BiOCl (99.8%; Alfa Aesar) was used as a reference photocatalyst for both 

characterization and photodegradation experiments. 

2.2.2 Catalyst Characterization 

To characterize the surface morphology and elemental composition of the catalysts, 

Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS) was 

used. SEM-EDS scans were performed using a Zeiss SII Nvision 40 SEM with Ametek EDAX 

Genesis EDS mounted on it. The SEM image was done at a working distance of 4.2 mm and an 

EHT value of 2.00 kV. The EDS was run at 10.0 kV. The results of the EDS analysis were used to 

determine the elemental composition of the catalyst crystal structures. X-ray diffraction (XRD) 

scans on the catalysts were used to verify the compositional purity and crystallinity of the 

compounds. XRD patterns were obtained using a PANalytical X’Pert Pro diffractometer operated 

with Cu Kα radiation (45 keV and 40 mA). The samples were prepared for XRD analysis by 

depositing a MeOH/catalyst slurry onto a pre-cleaned glass slide and allowing the methanol to 

evaporate under reduced pressure. Diffuse Reflectance Spectroscopy (DRS) experiments were 

used to determine the optical band gap energy of both pure BiOCl and BiOCl with copper 

impurities present. The light source was a Mikropack DH-2000 deuterium and halogen light source 

coupled with an Ocean Optics USB4000 detector. A fiber optic cable was used to gather collected 
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light. Spectra was referenced with PTFE and potassium chloride. Data was processed using 

SpectraSuite software model 1.4.2_09.  

Steady-state luminescence scans were run on the BiOCl and Cu-BiOCl at 78 K. Spectra 

were collected with a Model Quantamaster-1046 photoluminescence spectrometer from Photon 

Technology International. The device utilizes a 75 W xenon arc lamp coupled with two excitation 

monochromators and one emission monochromator to adjust the bandwidth of light hitting the 

sample and detector, respectively. Light intensity was measured using a photomultiplier tube. The 

samples were mounted on a copper plate using a non-emitting copper-dust-high vacuum grease. 

Low-temperature scans were run on the same system coupled with a Janis ST-100 optical cryostat 

and used liquid nitrogen as a cooling agent. 

2.2.3 Dark Adsorption and Photocatalytic Activity 

Atrazine samples (100 ppm) were prepared by dissolving 10 mg of atrazine in 10 mL 

methanol and bringing the solution up to 100 mL with deionized water. For photocatalytic activity 

trials, a 10-ppm solution of atrazine was prepared by adding 10 mL of stock solution to 100 mL of 

deionized water. Irradiation trials took place in a 250 mL round bottom flask with 25 mg of catalyst 

added in each trial. Catalysts were loaded into the solution and stirred for 15 minutes to achieve 

adsorption-desorption equilibrium. The light source used in experiments was a Steripen Mercury 

UV lamp with emission wavelength of 254 nm. The solution was sampled at five-min intervals for 

a period of 30 min to obtain degradative information on the reaction. Each photocatalytic trial was 

repeated at least three different times with the averages of each trial compiling each figure.  

Radical scavenging experiments were performed using the same setup as detailed above 

except with an added component acting as a radical scavenger. The radical scavenging compounds 
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used in these trials included KI (for electron holes), IPA (for •OH), and BQ (for O2
•-). Throughout 

these irradiations, the atrazine concentration was determined by referencing the characteristic 260 

nm absorption peak of atrazine to an external calibration curve. Trials measuring adsorption were 

run in a similar fashion yet in the absence of ultraviolet irradiation. The samples were collected 

and filtered through a chromatography syringe filter (PTFE, 25 mm diameter, pore size = 0.25 µm) 

to remove catalysts prior to analysis. UV-Vis spectra were collected using a Vernier UV-vis 

spectrophotometer with the corresponding Logger-Lite spectroscopy software. 

2.2.4 Fourier-Transform Infrared Spectroscopy 

Fourier Transform-Infrared Spectroscopy (FT-IR) was used to characterize the structure of 

the synthesized photocatalysts before and after irradiation. Spectra were collected on solid samples 

at 298 K using a Perkin Elmer FT-IR Spectrum Two equipped with a Universal Attenuated Total 

Reflectance (UATR) accessory. The UATR consists of a diamond crystal with a 2-micron 

pathlength. The detector is a LiTaO3 MIR detector with a range of 8,300 cm-1 to 350 cm-1. Spectra 

were collected using resolution of 2 cm-1. 

 

2.3 Results and Discussion 

2.3.1 Catalyst Characterization 

2.3.1.1 X-Ray Diffraction 

X-Ray Diffraction scans were acquired for both pure BiOCl and Cu-BiOCl samples to 

characterize the structure and purity of the photocatalysts. The diffraction patterns for BiOCl and 

Cu-BiOCl are displayed in Figure 2.2. The diffraction pattern observed for BiOCl was found to 

match that of tetragonal (P4/nmm) BiOCl (JCPDS 1-073-2060). The pattern obtained for Cu-
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BiOCl matches that reported by Di et al. [18] (JCPDS 06-0249). Consistent with their report, we 

do not note any characteristic patterns of copper species. Di et al. suggest that this result could be 

due to the chemical deposition of copper ions onto the surface of BiOCl. The diffraction pattern 

obtained for Cu-BiOCl is qualitatively less resolved than that obtained by Di et al., this may 

indicate that the size of our synthesized Cu-BiOCl microspheres are smaller. Both photocatalyst 

samples were determined to be of high purity based on the absence of contaminant peaks in either 

diffraction pattern. 

 

Figure 2.2. X-ray diffraction patterns obtained for BiOCl and Cu-BiOCl. 

 

2.3.1.2 Scanning Electron Microscopy-Electron Dispersive Spectroscopy 

Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-

EDS) was utilized to investigate the structural morphology and elemental composition of Cu-

BiOCl. The commercial BiOCl samples imaged confirm the morphology of BiOCl as stacked 2D 

nanosheets (Figure 2.3). The nanosheets range from 2 to 10-μm in diameter and are ~100-nm thick. 

SEM images obtained (Figure 2.3) indicate that the Cu-BiOCl samples synthesized in this report 
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are spherical formations of aggregated nanoplates, corresponding with the catalysts synthesized 

by Jun Di et al. [18]. From the SEM images, we determine that the diameter of the synthesized 

Cu-BiOCl spheres is ~0.3 µm. This diameter is smaller than that observed in previous reports [18].  

Figure 2.4 shows the same region of Cu-BiOCl visualized as in Figure 2.3, however this 

image was generated using a backscatter detector instead of the secondary electron detector. This 

image appears uniformly bright, indicating that the surface of the synthesized Cu-BiOCl does not 

vary significantly in composition. This result suggests that the Cu(II) ions are evenly distributed 

throughout the BiOCl structure during the synthesis process and are not localized in any one area.  

Figure 2.5 shows the total area averaged EDS results obtained for the synthesized Cu-

BiOCl. Characteristic X-ray peaks associated with Cu, Bi, O, and Cl are all identified and labeled 

in Figure 2.5. The weight percent of each element was determined to be 13.1% oxygen, 14.3% 

bismuth, 11.1% chlorine, and 56.9% copper. These estimations are roughly consistent with the 

1:1:1 (bismuth:oxygen:chlorine) ratio expected, and correspond to a 5x loading of copper. The 

remaining weight percent is accounted for by the large bromine peak visible in the EDS spectrum. 

We attribute this bromine present to be an impurity potentially acquired during the synthesis 

process. 
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Figure 2.3. SEM images of BiOCl at 5kX magnification (top), and Cu-BiOCl at 25kX 

magnification (bottom). 
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Figure 2.4. SEM image of Cu-BiOCl at 25kX magnification using the backscatter detector. 
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Figure 2.5. EDAX spectrum acquired for the synthesized Cu-BiOCl sample. 

 

2.3.1.3 UV-Vis Diffuse Reflectance Spectroscopy 

The determination of optical band gap energy was achieved using UV-Vis Diffuse 

Reflectance Spectroscopy (DRS). Determination of absorbance is achieved through the 

SpectraSuite analysis software using the equation: 

𝑓(𝑅) = [1 − 𝑅]
2

2𝑅⁄           (1) 

where R is equal to reflectance. Figure 2.6 shows the absorption spectra acquired for both BiOCl 

and Cu-BiOCl from 300-800 nm. Both spectra show a distinct absorption edge at 360 nm, while 

the Cu-BiOCl spectra also shows a band at 550 nm, consistent with previous reports. The Kubelka-

Munk method was used to determine the optical band gap value for both photocatalysts based on 
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the absorption spectra. BiOCl is determined to have an optical band gap of 3.2 eV, while Cu-BiOCl 

was found to have an optical band gap of 3.0 eV.   

 

Figure 2.6. UV-Vis spectra acquired for BiOCl (top) and Cu-BiOCl (bottom). 

 

2.3.1.4 Photoluminescence Spectroscopy 

Photoluminescence spectroscopy was used to further characterize the synthesized Cu-

BiOCl. The luminescence spectra are shown in Figure 2.7. The excitation wavelength used to 

acquire the spectrum was 265 nm and measurements were recorded at 78 K. Evidence of Cu(I) 

emission at 450 nm can be seen here, indicating that excited electrons are transferred from the 

conduction band of BiOCl to the deposited Cu(II) species, reducing it to Cu(I) and resulting in the 

observed photoluminescence. Cu(I) is a d10 photoluminescent species, which our group has 

previously investigated and reported on [19]. The photoluminescence spectra exhibit vibrational 

fine structure. We attribute the presence of this stretch to interaction with the Bi-O Raman mode, 

further indicating the close interaction of Cu(II) and BiOCl. 
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Figure 2.7. Photoluminescence emission spectrum of BiOCl and Cu-BiOCl measured at 78 K 

with excitation at 265 nm.  

 

2.3.2 Adsorption and Photocatalytic Activity 

Catalyst evaluation trials were conducted under dark and ultraviolet light irradiation 

conditions to investigate atrazine removal from aqueous solutions by adsorption or photocatalysis. 

The results of dark trials (Figure 2.8) indicate that neither BiOCl nor Cu-BiOCl show significant 

adsorption of atrazine onto the surface of the catalysts. This result confirms that photocatalytic 

removal of atrazine from aqueous solutions is not due solely to adsorption and suggests reactive 

chemical species play a significant role in the degradation of atrazine.  

Removal of atrazine was observed in photocatalytic degradation trials in the presence of 

Cu-BiOCl (Figure 2.8). Photodegradation trials indicated that 35% of atrazine was removed during 

pure BiOCl photocatalysis, whereas 29% of atrazine was removed during Cu-BiOCl 

photocatalysis. The rate of BiOCl photodegradation is qualitatively similar when compared to the 
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degradation rate exhibited by Cu-BiOCl. These results suggest that the addition of Cu(II) ions to 

this system do not provide a significant benefit for the photocatalytic degradation of organics 

without the aid of a sacrificial donor. To better investigate radical and electron transition activity, 

photocatalytic trials in the presence of radical scavenging compounds were used.     

 

 

Figure 2.8. Atrazine removal rates for dark and photocatalytic degradation conditions as monitored 

by UV-Vis spectroscopy. 

 

2.3.3 Radical Scavenging Experiments 

Radical scavenging experiments were performed to determine the active species generated 

by both pure and modified BiOCl that are responsible for atrazine degradation. These 

investigations are used to assist in constructing a proposed mechanism that details the flow of 

photo-generated electrons in BiOCl in the presence of Cu(II).  The results for pure BiOCl and 

copper-modified BiOCl scavenging experiments are shown in Figure 2.9 and Figure 2.10, 
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respectively. For BiOCl, the addition of potassium iodide (KI) resulted in no observable 

degradation of atrazine. When isopropanol (IPA) is added as a radical scavenger, a moderate 

amount of degradation is observed, with a percentage of atrazine removed to be around 23%. 

Addition of benzoquinone (BQ) resulted in no reduction in removal activity, indicating superoxide 

radicals may not be a dominant reactive species in aqueous photocatalytic degradation. The results 

displayed in Figure 2.9 indicate that electron holes and hydroxyl radicals play a substantial role in 

atrazine degradation using BiOCl, while superoxide radicals do not participate in the 

photocatalytic degradation process.  

The addition of Cu(II) allows for sustained photo-induced separations that generate these 

electron vacancies as well as the excited state radical species.  A similar degradation trend is 

observed using Cu-BiOCl, with KI completely shutting down atrazine removal while normal 

degradation was still observed after the addition of either IPA or BQ, as shown in Figure 2.10. The 

percentage of atrazine removed remained more pronounced for Cu-BiOCl in the presence of IPA 

than for BiOCl, indicating a lack of hydroxyl radical activity in the copper-modified systems. 

These results suggest that hydroxyl radicals play a more integral role in atrazine degradation for 

BiOCl than for Cu-BiOCl in aqueous solutions. 
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Figure 2.9. Atrazine removal rates via BiOCl photocatalysis in the presence of KI (hole scavenger), 

isopropanol (hydroxyl radical scavenger), and benzoquinone (superoxide scavenger). 

 

 

Figure 2.10. Atrazine removal rates via Cu-BiOCl photocatalysis in the presence of KI (hole 

scavenger), isopropanol (hydroxyl radical scavenger), and benzoquinone (superoxide scavenger). 
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2.3.4 Proposed Mechanism 

The results from photocatalytic and radical scavenging trials indicated that electron holes 

play a substantial role in the degradation process of BiOCl and Cu-BiOCl. Scavenging of 

superoxide radicals did not effect either BiOCl or Cu-BiOCl photocatalytic degradation processes. 

The results displayed in Figure 2.9 suggest hydroxyl radicals are not a primary active species 

during photocatalytic degradation of atrazine with BiOCl. Dependence on the hydroxyl radical 

during degradation is less prominent in the copper-modified systems based on Figure 2.10, which 

indicates only a minor reduction in atrazine removal during radical scavenging trials. The proposed 

electron transition mechanism for Cu-BiOCl is shown below.  

Irradiation of the BiOCl catalyst by light of sufficient energy (represented by hν) excites 

an electron from the valence band to the conduction band of BiOCl (Equation 2), generating both 

an excited electron (e-) and an electron hole (h+).  As shown in part (3) and (4) of the proposed 

mechanism, irradiation of Cu-BiOCl creates photo-induced separations that reduces the surface-

deposited Cu(II) species to Cu(I) via transfer of electrons originating from the conduction band of 

BiOCl (Equation 3). As Cu(I) oxidizes to regain charge balance, remaining electrons participate 

in oxidation-reduction reactions that facilitate increased radical species formation.  

BiOCl + hν  →  e- + h+        (2) 

Cu2+ + e- → Cu+         (3) 

Cu+ + O2  → Cu2+ + O2
-         (4) 

This electronic transition is facilitated through interactions between the Cu(II) ion and the 

crystal structure of the BiOCl system, which is thought to exist in a terminal Cu(OH)2 complex as 

proposed in studies using bismuth oxide complexes by Sudrajat and coworkers [20]. This 
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configuration and catalytic stability is further suggested by the lack of degradation using hydroxyl 

radicals, which is also indicated in Figure 2.9. The interactions between the copper complex and 

the bismuth center of the catalyst allow for increased transition of electrons that allow for the 

increased formation of reactive chemical species, which equate to increased degradation of 

atrazine.   

O2
- + ATZ    →  Degradation Products      (5) 

ATZ + h+   →   ATZ+         (6) 

ATZ+    →   Degradation Products       (7) 

This radical species generation pathway may be de-emphasized in the copper-modified 

system, since the radical scavenging experiments showed that superoxide does not play a large 

role in photocatalytic degradation of atrazine. However, any superoxide radicals generated during 

the irradiation process will react with atrazine to form degradation products (Equation 5). The 

direct interaction of electron holes with the pollutant was found to be the major pathway associated 

with photocatalytic degradation of atrazine. We propose that this reaction may take place through 

an electron transfer from atrazine to the electron hole in the valence band of BiOCl to generate 

ATZ+ (Equation 6). ATZ+ is an electron deficient and unstable species and will then react to form 

degradation products (Equation 7). The proposed mechanism of atrazine degradation by Cu-BiOCl 

is summarized in Figure 2.11. 
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Figure 2.11. Graphical representation of the photocatalytic mechanism proposed for removal of 

atrazine by Cu-BiOCl. 

 

2.3.5 Fourier-Transform Infrared Spectroscopy 

The stability of the modified bismuth oxyhalide photocatalysts were investigated using 

Fourier-Transformed infrared spectra. Initial scans of Cu-BiOCl indicated bismuth-oxygen stretch 

in the fingerprint region (0-500 cm-1), which is indicated in Figure 2.12. This stretch was 

determined to be the Bi-O chemical signature based on previous literature and was observed at a 

wavelength of 521 cm-1. Di et al. indicated the presence of a Bi-O stretch at 528 cm-1 for pure and 

the copper-modified BiOCl [19]. Upon one hour of irradiation, no shifts in the 521 cm-1 peaks 

were observed, suggesting the Bi-O stretch remained upon exposure to UV irradiation. The results 

displayed in Figure 2.11 suggest the synthesized catalyst resists photo-corrosion and other 

detrimental processes that can disrupt catalytic capabilities.  
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Figure 2.12. FT-IR spectra of Cu-BiOCl collected before and after 1 hour of UV radiation 

exposure. 

 

2.4 Conclusion 

Characterization results indicated successful synthesis of copper-modified BiOCl in 

agreement with results reported by Di. et al. [19]. The results of the photocatalytic investigations 

suggest a decrease in photocatalytic activity for atrazine degradation in the copper modified 

photocatalysts compared to the pure BiOCl counterparts. This change in photocatalytic activity is 

thought to arise from electronic transitions between the BiOCl framework and copper (II) ions 

present, which facilitate increased electron transitions and radical formation. The reduction of 

surface deposited Cu(II) to Cu(I) promote increased electron flow from the conduction band of the 

BiOCl catalyst, thereby increasing photo-induced charge separations which assist in the 

degradation of atrazine. Enhancement of photocatalytic complexes using metallic ions such as 

copper have been suggested as a possible method to decrease recombination of excited state 

electrons and allow for increased degradation of pollutants. Interestingly, the results presented here 
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suggest that the presence of Cu-dopants may prevent some of the photocatalytic activity of pure 

BiOCl that originates from hydroxyl radical generation. This observation may be exploited in 

future work to access only the photocatalytic activity originating from electron holes, increasing 

the selectivity of the photocatalytic reaction system. 
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CHAPTER 3 

PHOTOCATALYTIC DEGRADATION OF IBUPROFEN OVER BiOCl NANOSHEETS 

WITH IDENTIFICATION OF INTERMEDIATES 

 

3.1 Introduction 

Almost 9000 chemical compounds are currently approved for use in pharmaceutical 

applications worldwide [1]. These compounds necessarily comprise a diverse array of chemical 

structures in order to obtain the desired range of biological activities. For many pharmaceuticals, 

the active form is excreted as an unaltered form of the drug; for others, some percentage is altered 

when metabolized [2]. Increasing use of pharmaceuticals has led to growing concerns about 

pharmaceutical-related pollution. Extended use of pharmaceuticals has resulted in their 

accumulation in ground and surface water [3–6], presenting risks to humans and environmental 

systems. Additionally, a variety of pharmaceuticals and personal care products (PPCPs) are 

detected in the influent and effluent wastewater treatment plants [7,8], demonstrating that current 

systems are not adequately removing compounds prior to discharge to the environment. 

Developing approaches to PPCP removal is critical to mitigating the risks associated with 

environmental contamination by these products.  

 Photocatalysis is a promising approach for the abatement of pharmaceutical pollution 

[9,10]. Photocatalysts are semiconductor materials that can absorb light of energy greater than or 

equal to the band gap energy to promote an electron from its valence band to the conduction band. 

This absorption produces an excited-state electron in the conduction band and a complementary 

electron hole (h+) in the valence band of the semiconductor material. The holes and electrons can 
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react and break down pollutants either through the generation of ROS (hydroxyl radicals, for 

example) or through a direct redox interaction with the pollutant [11,12].  

  Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are a popular class of drugs that 

exhibit analgesic, antipyretic, and anti-inflammatory effects [13]. Excretion of NSAIDs and their 

metabolites have been found to be a major source of aquatic pollution [14,15]. The removal of low 

concentrations of these hazardous pollutants is a challenge that must be addressed to prevent public 

health problems. Ibuprofen (IBP; (RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid)) is one of the 

most widely used NSAIDs.  Both IBP and its metabolites, which are both found in surface waters 

and sewage at µg/L levels [16], exhibit toxic effects even at ng/L concentrations [17,18]. 

 The photolytic and photocatalytic degradation of IBP has been studied extensively.  Early 

work [19] established that IBP was susceptible to photodegradation by UV light and provided 

support for the important role of photodecarboxylation in the photodegradation of this 2-arylacetic 

acid.  Additionally, this early study demonstrated that two photoproducts, 1-(4-

isobutylphenyl)ethanol (IBPE) and 4-isobutylacetophenone (IBAP), exhibited toxic effects 

towards cultured fibroblasts.  Subsequent investigations have examined the photolysis of IBP in 

natural waters [20–26], with some studies concluding that the photolysis of IBP results in the 

production of degradation products that were more stable [20,25] and exhibited enhanced toxicity 

[23,24] relative to IBP.  Studies have also been directed at the photocatalytic degradation of IBP, 

most commonly using TiO2 as the photocatalyst [5,20,27–29]. While all studies showed that UV 

photocatalytic degradation with TiO2 was effective with respect to IBP removal, less than total 

mineralization was reported [20] and degradation products were found to have toxicities that were 

similar to or exceeded that of IBP [5,21,24].  This data highlights the need to identify 

photocatalysts that more effectively degrade both IBP and its photodegradation products.  
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 Another photocatalyst that holds promise for the photodegradation of pharmaceuticals is 

bismuth oxychloride (BiOCl). BiOCl was initially discovered to possess UV photocatalytic 

activity for methyl orange degradation, with the excellent activity attributed to the open crystal 

structure and indirect optical transitions [30]. The crystal structure of BiOCl is known to be a 

tetragonal matlockite structure consisting of layers of [Bi2O2]
2+ slabs interwoven with a Cl- double 

layer. The structure of BiOCl contributes to the presence of strong internal electric fields 

perpendicular to the Cl- layer that assist in preventing recombination of photoinduced electron-

hole pairs [31]. Further research with BiOCl confirmed the photocatalytic activity with rhodamine 

B [32], and neutral Red [33].  While early work focused on BiOCl nanosheets, it was also found 

that the nanosheets could easily aggregate into 3D hierarchical structures [34]. The potential 

practical application of BiOCl has led researchers to probe synthetic strategies and their 

photocatalytic activity for degradation of pharmaceuticals including carbamazepine [35] and 

estradiol [36]. Lester et al. synthesized BiOCl0.875Br0.125 and showed that this catalyst exhibits 

visible light activity for the degradation of IBP [37]. 

 In a recent study, BiOCl formulated in nanosheets was shown to efficiently degrade 

perfluorooctanoic acid [38], with the photocatalytic efficacy attributed to direct hole oxidation. 

Decarboxylation of perfluorooctanoic acid via interactions between BiOCl and the carboxylate 

anion was proposed as a key initiating step in the photodegradation process.  In this work, the 

photocatalytic activity via h+ oxidation was related to oxygen vacancies in the photocatalyst [38].  

In contrast with the photodegradation efficiency observed for perfluorooctanoic acid, IBP, another 

analyte with a carboxylic acid group, was found to be lost from solution due to surface adsorption, 

not photodegradation, when IBP was subjected to photocatalytic degradation using BiOCl or 

BiOBr formulated as microspheres [39,40].   
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 In this study, we have addressed a deficiency in the current literature.  We evaluated the 

photocatalytic degradation of IBP using BiOCl nanosheets, assessing IBP removal by both 

photodegradation and adsorption, quantifying the yields of two primary photoproducts, and 

creating an inventory of products detected by HPLC-DAD and (+)ESI-LC-MS/MS to determine 

if the demonstrated photoactivity towards perfluorooctanoic acid extends to the 

photodecomposition of IBP. This study presents data that increases our understanding of processes 

that impact the photodegradation and mineralization of both IBP and its photoproducts by BiOCl. 

 

3.2 Experimental 

3.2.1 Materials and Sample Preparation 

 BiOCl (99.8%; Alfa Aesar) was used as a photocatalyst. Experimental solutions were 

prepared by dissolving 10-mg of ibuprofen (IBP (1); >98%; Ark Pharma), 1-(4-

isobutylphenyl)ethanol (IBPE (2); Sigma-Aldrich), or 4-isobutylacetophenone (IBAP (3); Sigma-

Aldrich) in 5-mL of HPLC grade methanol (MeOH, 99.99%; Sigma-Aldrich) and then diluting the 

solution to 100-mL in deionized water to prepare a 100 mg/L stock solution. The stock solution 

was then diluted to 10 mg/L in deionized water for each photocatalyst evaluation. All reagents 

were used without further purification. 

3.2.2 Catalyst Characterization 

 X-ray diffraction (XRD) scans on the catalysts were used to verify the compositional purity 

and crystallinity of the compounds. XRD patterns were obtained using a PANalytical X’Pert Pro 

diffractometer operated using Cu Kα radiation (45 keV and 40 mA). The samples were prepared 

for XRD analysis by depositing a MeOH/catalyst slurry onto a pre-cleaned glass slide and allowing 
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the MeOH to evaporate under reduced pressure.  Scanning electron microscopy (SEM) was used 

to characterize the morphology and size of the photocatalysts. SEM scans were conducted using 

an AMRay 1820 operating at 10 kV. The photocatalysts were mounted on stainless steel sample 

mounts and imaged at 5kX magnification.  Brunauer-Emmett-Teller analysis (BET) was used to 

determine the specific surface area of the catalysts. The nitrogen adsorption-desorption isotherms 

were measured on a Quantachrome Autosorb iQ Station 2 gas sorption analyzer at 77K. UV-Vis 

Diffuse reflectance spectra (DRS) were collected on solid samples at 298 K. The broadband light 

source operating from 178-800 nm was a Mikropack DH-2000 deuterium and halogen light source 

which was coupled with an Ocean Optics USB4000 detector. Reflected light from the sample was 

collected with a fiber optic cable. Spectra was referenced with polytetrafluoroethylene (PTFE) 

considered as a completely reflective surface. Data was processed using SpectraSuite 1.4.2_09. 

3.2.3 Photocatalytic Degradation of IBP and IBAP 

 Photocatalytic batch experiments were undertaken to compare the kinetic properties of 

each photocatalyst. A 10 mg/L stock solution (100-mL) of IBP or IBAP in deionized water was 

placed in a quartz flask along with 25-mg of catalyst. The 10 mg/L starting concentration was 

chosen to ensure enough material was available for observation and characterization of reaction 

intermediates. The pH of the IBP solutions were monitored using a pH meter (Orion Star A111; 

ThermoFisher Scientific) throughout the course of the experiments. The initial solution pH was 

4.5 and decreased slightly throughout the course of the experiment with maximum variation of 1 

pH unit. The solutions were stirred in the dark for 15-min to achieve adsorption/desorption 

equilibrium before placing them in a Rayonet-RPR 100 UV Photoreactor equipped with four 254-

nm 128 W/m two-prong bulbs. The solutions were irradiated for up to 30- or 120-min while 

stirring, with aliquots removed at specified intervals for analysis.  



69 

 

 In early work, samples were analyzed using fluorescence.  Subsequent HPLC-DAD 

analyses showed that the fluorescence measurements were subject to interference.  For dark 

experiments, quenching effects attenuated the IBP signal; however, signal reduction was not 

observed from measurements made by HPLC-DAD or UV-Vis absorption.  For photodegradation 

experiments monitored using fluorescence one photodegradation product, IBPE, interfered with 

IBP because both exhibited identical excitation and emission spectra.  In this work, a Vernier UV-

Vis Spectrophotometer was used to monitor IBP absorption at 220-nm.  For photodegradation 

studies, samples were analyzed by HPLC-DAD and LC-MS/MS. 

3.2.4 HPLC Analysis 

 An Agilent 1100 series HPLC with a diode array detector (DAD) was used for sample 

analysis. A reversed-phase, Luna C18 (3-μm, 100- x 4.6-mm; Phenomenex) column was used to 

conduct gradient separations, using 0.1% formic acid in water (mobile phase A) and acetonitrile 

(mobile phase B). The gradient began with 85% (A) with a linear change to 20% (A) at 30-min. 

The injection volume for reaction samples was 100-μL; smaller volumes (10- or 20-μL) were used 

to analyze standards. DAD chromatograms were monitored at four different absorbance 

wavelengths (210-, 223-, 254-, 310-nm). 

3.2.5 LC-MS/MS Analysis 

 A 6530 series chip-based quadrupole time-of-flight mass spectrometer (LC-MS/MS; 

Agilent Technologies, Santa Clara, CA) was used to analyze all samples. Liquid chromatography 

separations and nano-electrospray ionization (nanoESI) were conducted using a 1260 Chip Cube 

system (Agilent Technologies) with a reversed-phase ProtID II chip (Agilent technologies; C18 

stationary phase, 5-μm, 150- x 0.075-mm). Mobile phase A was 5-mM ammonium formate 
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(Agilent) in water or 0.1% formic acid in water (LCMS grade; Fisher); mobile phase B was 0.1% 

formic acid (LCMS grade; Fisher) and 2% water in acetonitrile (LCMS grade; Fisher). Samples 

(8-μL) were injected onto an enrichment column and were analyzed using a gradient that started 

with 99% (A) and changed linearly to 40% (A) at 30-min; 20% (A) at 35-min; and 0% (A) at 42-

min. 

 Mass spectra (MS and MS/MS) were collected in positive ion mode with ESI source 

potentials ranging from 1850 to 1950 V and an ion source temperature held at 350oC. Spectra were 

internally calibrated using a solvent dimer ([CH3CN+H2O+H]+: m/z = 60.0444) and the reference 

compound hexakis (1H, 1H, 4H-hexafluorobutyloxy)phosphazine (HP-1221; C24H18O6N3P3F36; 

m/z = 1221.9906). MS/MS spectra were collected using collision energies of 15-eV using nitrogen 

as the collision gas. 

 

3.3 Results and Discussion 

3.3.1 Catalyst Characterization 

 Using XRD, we determined the crystal structure and particle size for BiOCl. The 

diffraction pattern of the BiOCl sample (Appendix A, Figure A.1) matched that of tetragonal 

(P4/nmm) BiOCl (JCPDS 1-073-2060). SEM images of the photocatalyst were collected to 

provide insight into its morphology. SEM images confirm the morphology of BiOCl as stacked 

2D nanosheets (Appendix A, Figure A.2). The nanosheets range from 2 to 10-μm in diameter and 

are ~100-nm thick. Surface area analysis was conducted using the Brunauer-Emmett-Teller 

method and the adsorption-desorption isotherm is shown in Appendix A, Figure A.3. The surface 

area results show that BiOCl has a surface area of 2.53 m2/g.  
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 DRS was used to measure reflectance spectra of the powdered semiconductor 

photocatalysts (Appendix A, Figure A.4) to determine their absorption band edge and optical band 

gap using the Kubelka-Munk method. The absorption band edge can be observed as the linear 

portion of the spectrum where absorption begins. A line of best fit was determined for this region 

with the x-intercept of the best fit line used to calculate the energy of the material’s band gap. The 

band gap for BiOCl was determined to be 3.28 eV. These values are in good agreement with optical 

band gaps of these materials previously determined [27]. The absorption spectrum for BiOCl 

indicates that ultraviolet light will be necessary for electronic excitation and activation.  

Furthermore, the spectra indicate that the 254-nm light source chosen for photocatalyst evaluation 

will activate BiOCl. 

3.3.2 Dark Adsorption of IBP to BiOCl 

 In previous work with BiOBr and BiOCl microspheres [39,40], surface adsorption, not 

photocatalytic oxidation, was found to be the most significant IBP (1) removal process.  To 

determine if surface adsorption was a significant loss mechanism when IBP (1) was exposed to 

the BiOCl nanosheets used in this study, dark adsorption trials were conducted to test for IBP (1) 

removal in the absence of light. After 30-min of stirring under dark conditions with 0.25-g/L 

catalyst loading, we observed that less than 6% of IBP (1) was removed by BiOCl (Figure 3.1).  

These measurements provide evidence to support the conclusion that adsorption does not play a 

significant role in IBP (1) removal for the BiOCl nanosheets under the conditions used in this 

study. This finding differs significantly from that reported for IBP loss to BiOCl microspheres by 

Li et al. [40]. The difference may result from the lower surface area of our nanosheets (2.53 m2/g) 

compared with the microspheres (16.31 m2/g); furthermore, the different morphologies 
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(nanosheets vs microspheres) may also play a role. Cumulatively, the nanosheets may present 

fewer sites for IBP loss by surface adsorption. 

 

Figure 3.1. IBP adsorption of BiOCl under dark conditions, as monitored by UV-Vis spectroscopy 

 

3.3.3 IBPE and IBAP are the Primary IBP Photocatalytic Degradation Products for 

BiOCl 

 To provide the most comprehensive analysis of IBP and its photodegradation products, IBP 

(1) was subjected to photocatalytic degradation for 120-min and sample aliquots were analyzed by 

HPLC-DAD. Signals were monitored at 210-, 254-, and 310-nm (Figure 3.2 and Appendix A, 

Figures A.5-A.7).  The chromatograms generated using 210-nm were most useful for monitoring 

both the degradation of IBP (1) and formation of primary degradation products 2 and 3 (Figure 

3.2A-D); chromatograms monitored at 254- and 310-nm were useful for monitoring formation of 

secondary degradation products 4-14 (Figure 3.2E-L).   
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 Using analytical standards, we established that 1-(4-isobutylphenyl)ethanol (IBPE; 2; 

eluting at 18.0-min) and 4-isobutylacetophenone (IBAP; 3; eluting at 21.9-min) are the primary 

photocatalytic degradation products for IBP (1; eluting at 19.3-min) (see Figure 3.2).  Early work 

[19] identified IBPE (2) and IBAP (3) as products from the photolytic degradation of IBP (1) in 

methanol, and these products have been identified in other photolytic and photocatalytic 

degradation studies  [19,22].  A proposed mechanism for the formation of these two products is 

shown in Figure 3.3, where deprotonated IBP (1) is oxidized by either direct excitation with light 

(photolytic mechanism) or by interaction with a hole (h+) created by photoexcitation of BiOCl.  

Subsequent loss of CO2 generates a benzyl radical, which is converted to IBPE (2) and IBAP (3) 

via reactions with water and oxygen.  This mechanism aligns with the proposed initiating step in 

the photocatalytic degradation of perfluorooctanoic acid with BiOCl nanosheets [38].  
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Figure 3.2. HPLC-DAD chromatograms for ibuprofen (1) photocatalytically degraded with BiOCl 

for 0-, 10-, 30-, and 60-min. (A)-(D) absorbance (mAU) detected at 210-nm, (E)-(H) absorbance 

(mAU) detected at 254-nm; (I)-(L) absorbance (mAU) detected at 310-nm.  Compounds are 

identified in Table 2; peaks with an asterisk are off scale. 
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Figure 3.3. Production of IBAP (3) and IBPE (2) from the photodegradation of IBP (1) 

 

 Kinetic analysis of this data (Figure 3.4A) shows that IBP (1) decays quickly and is no 

longer observed after 15-min, while IBPE (2) and IBAP (3), once formed, are degraded more 

slowly, with IBPE (2) still present after 120-min of photocatalytic degradation.  In an attempt to 

assess our kinetic data to determine if formation of IBPE (2) and IBAP (3) are the principle 

degradation pathways for IBP (1), we analyzed the data by applying a kinetic model where we 

assumed pseudo-first order kinetics for IBP (1) photodegradation (equation 1), and where the rate 

constant for degradation, 𝑘𝐼𝐵𝑃,𝑑𝑒𝑔, is assumed to be equal to the sum of the rate constants for 

formation of IBPE (2) (𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚), IBAP (3) (𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚), and other products (𝑘𝑜𝑡ℎ𝑒𝑟,𝑓𝑜𝑟𝑚), as 

described in equation 2.  
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(1)    [𝐼𝐵𝑃] = [𝐼𝐵𝑃]0𝑒−𝑘𝐼𝐵𝑃,𝑑𝑒𝑔𝑡 

(2)    𝑘𝐼𝐵𝑃,𝑑𝑒𝑔 =  𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚 +  𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚 +  𝑘𝑜𝑡ℎ𝑒𝑟,𝑓𝑜𝑟𝑚 

We modeled the formation of IBPE (2) and IBAP (3) using the rate equation for a consecutive, 

pseudo-first order reaction.  For IBPE (2), we used equations 3 and 4, where we assumed that 

[𝐼𝐵𝑃]0,𝐼𝐵𝑃𝐸 represented the fraction of [𝐼𝐵𝑃]0 that was converted to IBPE (2), 𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚 was the 

rate constant for formation of IBPE (2), and 𝑘𝐼𝐵𝑃𝐸,𝑑𝑒𝑔 was the rate constant for IBPE degradation.   

(3)    [𝐼𝐵𝑃]𝐼𝐵𝑃𝐸 = [𝐼𝐵𝑃]0,𝐼𝐵𝑃𝐸(𝑒−𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚) 

(4)    [𝐼𝐵𝑃𝐸] =
𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚[𝐼𝐵𝑃]0,𝐼𝐵𝑃𝐸

𝑘𝐼𝐵𝑃𝐸,𝑑𝑒𝑔−𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚
(𝑒−𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚𝑡−𝑒−𝑘𝐼𝐵𝑃𝐸,𝑑𝑒𝑔𝑡) 

For IBAP (3), we used equations 5 and 6, where we assumed that [𝐼𝐵𝑃]0,𝐼𝐵𝐴𝑃 represented the 

fraction of [𝐼𝐵𝑃]0 that was converted to IBAP (3), 𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚 was the rate constant for formation 

of IBAP (2), and 𝑘𝐼𝐵𝐴𝑃,𝑑𝑒𝑔 was the rate constant for IBAP degradation.   

(5)    [𝐼𝐵𝑃]𝐼𝐵𝐴𝑃 = [𝐼𝐵𝑃]0,𝐼𝐵𝐴𝑃(𝑒−𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚) 

(6)    [𝐼𝐵𝐴𝑃] =
𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚[𝐼𝐵𝑃]0,𝐼𝐵𝐴𝑃

𝑘𝐼𝐵𝐴𝑃,𝑑𝑒𝑔−𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚
(𝑒−𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚𝑡−𝑒−𝑘𝐼𝐵𝐴𝑃,𝑑𝑒𝑔𝑡) 

With this treatment, we assumed that the initial concentration of IBP is accounted for by the sum 

of [𝐼𝐵𝑃] 0,𝐼𝐵𝑃𝐸 and [𝐼𝐵𝑃] 0,𝐼𝐵𝑃𝐸 (calculated by the model) and [𝐼𝐵𝑃] 0,𝑜𝑡ℎ𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠, as 

summarized in equation 7. 

(7)    [𝐼𝐵𝑃]0 = [𝐼𝐵𝑃] 0,𝐼𝐵𝑃𝐸 + [𝐼𝐵𝑃] 0,𝐼𝐵𝐴𝑃 + [𝐼𝐵𝑃] 0,𝑜𝑡ℎ𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 
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Figure 3.4. Plots of signal intensities as a function of reaction time for samples from the 

photocatalytic degradation of IBP (1) with BiOCl.  (A) C/C0 for IBP (1), IBPE (2), and IBAP (3) 

as quantified by HPLC-DAD at 210-nm, with C0 equal to the initial concentration of IBP (1); curve 

fits with 95% confidence intervals using equation 1 for IBP (1), equation 4 for IBPE (2), and 

equation 6 for IBAP (3); (B) Integrated areas for peaks detected at either 254- or 310-nm. 

Compounds are identified in Table 3.2. 
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 This approach was used to successfully model the experimental data, as shown by the 95% 

confidence intervals displayed in Figure 3.4A.  The kinetic parameters extracted from the data 

(Table 3.1) showed a pseudo-first order rate constant for IBP (1) degradation equal to 0.28+0.01 

min-1 (t1./2 = 2.4 min).  The rate constants for formation of IBPE (2) and IBAP (3) were of similar 

magnitudes (𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚 = 0.15+0.03 min-1; 𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚 = 0.18+0.03 min-1) and IBAP (3) was 

found to have a degradation rate that is approximately four times faster than IBPE (2) (𝑘𝐼𝐵𝑃𝐸,𝑑𝑒𝑔 =

 0.049+0.005 min-1; 𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚 = 0.013+0.002 min-1).  The modeling results provide additional 

support for the conclusion that other pathways for IBP (1) degradation or loss, such as adsorption 

to the catalyst or additions of hydroxyl radicals, are not playing a significant role in IBP 

photodegradation with BiOCl. This is based on the fact that the IBP degradation rate constant of  

(0.28+0.01 min-1) is slightly lower, but not significantly different than, the sum of the rate constants 

for IBPE (2) and IBAP (3) formation (𝑘𝐼𝐵𝑃𝐸,𝑓𝑜𝑟𝑚 +  𝑘𝐼𝐵𝐴𝑃,𝑓𝑜𝑟𝑚 = 0.34+0.04 min-1) and that the 

initial concentration of IBP (1), which was normalized to 1, showed good agreement between the 

value predicted from the modelling ([𝐼𝐵𝑃]0= 1.00+0.01) and the values accounted for by 

[𝐼𝐵𝑃] 0,𝐼𝐵𝑃𝐸 + [𝐼𝐵𝑃] 0,𝐼𝐵𝐴𝑃=1.07+0.06.    In summary, our data supports the formation of two 

primary products, IBPE (2) and IBAP (3), from the BiOCl photocatalytic decomposition of IBP 

(1). 
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Table 3.1. Kinetic parametersa for the photocatalytic degradation of IBP and the formation and 

degradation of IBPE and IBAP. 

aValues obtained from fitting data to equations (1), (4), and (6); bConcentrations (M) were 

normalized to the initial concentration of IBP (1).   

 

3.3.4 Photocatalytic Degradation of IBAP is an Important Pathway for the Formation of 

Secondary Products for BiOCl 

 Photocatalytic degradation of IBP (1) also yielded a large number of less abundant 

secondary degradation products.  These products were best detected by HPLC-DAD when 

monitoring at 254- and 310-nm (Figure 3.2 and Appendix A, Figures A.6 and A.7).  This collection 

of photoproducts was also detected when IBAP (3) was subjected to photocatalytic degradation 

with BiOCl (see Figure 3.5A-C).  Notably, the chromatograms at 254- and 310-nm following 30-

min of photocatalysis (Figures 3.5B and C) show peaks for all 11 secondary photocatalytic 

degradation products observed for the photocatalyzed degradation of IBP (1).  These results also 

demonstrate that IBPE (2) is not produced from IBAP (3) via photocatalysis and provides support 

for the initial production and subsequent photocatalytic degradation of IBAP (3) as the primary 

source of photocatalytic products from IBP (1).  

 Degradation 

of IBP (1) 

Formation and 

Degradation of IBPE (2) 

Formation and 

Degradation of IBAP (3) 

Rate constant 

(min-1) 

kIBP, deg = 

0.28 

(+0.01) 

kIBPE, form = 

0.15 

(+0.03) 

kIBPE, deg = 

0.013 

(+0.002) 

kIBAP, form = 

0.18 

(+0.03) 

kIBAP, deg = 

0.049 

(+0.005) 

t1/2 (min) 2.4   

R2 0.9996 0.9594 0.9940 

Initial 

Concentrationb 

[IBP]0= 

1.00  

(+0.01) 

[IBP]0,IBPE =  

0.41  

(+0.03) 

[IBP]0,IBAP =  

0.66  

(+0.05) 
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Figure 3.5. HPLC-DAD chromatograms for IBAP (3) photocatalytically degraded with BiOCl for 

30-min. (A) absorbance (mAU) detected at 210-nm, (B) absorbance (mAU) detected at 254-nm; 

(C) absorbance (mAU) detected at 310-nm.  Compounds are identified in Table 3.2; peaks with an 

asterisk are off scale. 

 

  We focused on 11 secondary photoproducts, 4-14 (Table 3.2) that were detected in the 

chromatograms.  UV-Vis spectra were obtained for each photoproduct (Appendix A, Figure A.8).  

Kinetic analysis of this data showed the rapid formation and degradation of photoproducts 6-8 and 

10; with slower formation of photoproducts 4, 5, 9, 11, and 14, and delayed production and 

degradation of 12 and 13 (see Figure 3.4B).   
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Table 3.2. Summary of compounds detected by HPLC-DAD and LC-MS/MS with retention times, molecular formulas, and 

characteristic ions detected by (+)nanoESI-MS and MS/MS 

Compound 

Numbera  

Retention Time 

(HPLC; min) 

Retention 

Time (LCMS; 

min) 

Wavelength 

Max (nm)c 

Molecular 

Formula 

Exact Mass 

(Predicted)d 

Ions 

Detected, 

MS 

Product Ions Detected, MS/MSi 

1 (IBP) 19.29 25.87 220, 264 C13H18O2 206.131 
224.165f; 

207.138e 

224.16; 161.13 (-CO2H); 119.08 (-C3H6); 

105.07 (C8H9
+); 91.05 (C7H7

+); 57.07 

(C4H9
+); 43.06 (C3H7

+); 41.04 (C3H5
+) 

2 (IBPE) 18.01 24.43 220, 264 C12H18O 178.136 161.132g 

161.13; 119.08 (-C3H6); 117.07 (-C3H8); 

105.07 (C8H9
+); 91.05 (C7H7

+); 57.07 

(C4H9
+); 43.06 (C3H7

+); 41.04 (C3H5
+) 

3 (IBAP) 20.93 26.97 255 C12H16O 176.120 177.127e 
177.12; 121.06 (-C4H8); 57.07 (C4H9

+); 

43.02 (CH3CO+) 

4 4.64 11.06 310 C12H18O3 210.126 
193.123g, 

233.116h ---j 

5 5.58 ---b 254, 300 (w) ---b ---b ---b 
---b 

6 7.25 ---b 320 ---b ---b ---b 
---b 

7 7.97 14.40 258 C12H18O3 210.126 
193.123g, 

233.116h 

193.123; 175.10 (-H2O); 137.06 (-C4H8); 

57.07 (C4H9
+); 43.02 (CH3CO+) 

8 10.68 17.31 254 C12H16O2 192.115 193.119e  

9 11.54 17.83 296 C12H16O3 208.1099 209.117c 

209.12; 191.09 (-H2O); 125.06 (-C6H8O); 

85.07 (C5H9O+); 57.07 (C4H9
+); 43.02 

(CH3CO+)  

10 14.37 ---b 260, 300 (w) ---b ---b ---b ---b 

11 16.61 23.22 220, 264, 315 C12H16O2 192.115 193.119e 193.12; 57.07 (C4H9
+); 43.02 (CH3CO+) 

12 17.00 23.42 312 C11H16O 164.120 165.127e 165.13; 147.12 (-H2O); 43.02 (CH3CO+) 

13 17.85 24.18 305 C11H16O 164.120 165.127e ---j 

14 22.63 28.49 215, 263, 327 C12H16O2 192.115 193.122e 
193.12; 175.11 (-H2O); 137.07 (-C4H8); 

57.07 (C4H9
+); 43.02 (CH3CO+) 

aIBP=ibuprofen; IBPE=1-(4-isobutylphenyl)ethanol; IBAP=4-Isopropylacetophenone (IBAP); bNo peak detected by (+)nanoESI-LCMS to correlate with HPLC data; cFull UV/Vis 

DAD spectra in Figure S7, Supplemental Materials; solvent varied based upon gradient composition for peak elution; (w) signifies a weak absorption band; dmonoisotopic mass; 
e[M+H]+; f[M+NH4]+; g[MH-H2O]+; h[M+Na]+; iprecursor ion is underlined; base peak in spectrum appears in bold; collision energy = 15 eV; jno MS/MS data collected. 

 



82 

 

 Aliquots from the photocatalytic degradation of IBP (1) with BiOCl were subjected to high 

resolution LC-MS/MS analysis using a chip-based reversed-phase chromatographic separation 

[42] and positive-ion nanoelectrospray ionization ((+)nanoESI).  Most previous work has used (-

)ESI, which is useful for the detection of deprotonated analytes. Both positive and negative forms 

of ESI will discriminate against the detection of analytes that are not easily ionized by ESI; 

however, we were able to obtain easily-detected signals for IBP (1), IBPE (2), and IBAP (3) 

without subjecting the samples to preconcentration. We do not expect to detect non-oxygenated 

degradation products and were unable to correlate all HPLC-DAD signals with data generated by 

LC-MS.   

 The results of our analysis, summarized in Table 3.2, provided molecular formulas for the 

more abundant degradation products detected by HPLC.  For some degradation products, including 

IBPE (2), 4, and 7, the base peak in the (+)-nanoESI mass spectrum was the [MH-H2O]+ ion, 

resulting from facile water loss upon ionization.  IBP (1) yielded an abundant [M+NH4]+ signal 

that was most prominent for compounds containing carboxylic acid groups.  Other ions, including 

[M+Na]+, provided evidence to support the assigned molecular mass and formula.  For more 

abundant degradation products, where signal intensities permitted, collision-induced dissociation 

(CID) experiments were conducted to generate MS/MS spectra, providing additional insights 

regarding molecular structures.  Product ions detected in those experiments are summarized in 

Table 3.2.  The mass spectral data was correlated with results from HPLC using comparisons of 

retention times and the kinetic profiles for products detected by both techniques (see Appendix A, 

Figure A.9 for LC-MS data).  MS and MS/MS spectra appear in Appendix A, Figures A.10-A.15.     
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3.3.5 Summary of Products and Mechanistic Insights for the Photodegradation of IBP 

and IBAP with BiOCl 

 The following mechanism and inventory of products (Figure 3.6) is proposed for IBP (1) 

photodegradation by BiOCl based on the observed kinetic profiles for photodegradation products 

generated from both IBP (1) and IBAP (3), as well as the molecular formulas and MS/MS spectra 

from (+)-nanoESI LC-MS/MS analysis (Table 3.2), and the absorption spectra of the detected 

products (Table 3.2 and Appendix A, Figure A.8).   

 Previous studies have reported the formation of isomeric hydroxylated IBPs (pathway a, 

Figure 3.6) when IBP was subjected to direct photolysis [22], pulse radiolysis [43], 

(sono)photocatalysis [44], and TiO2 photocatalysis [5,20].  In our work with the photodegradation 

of IBP (1) with BiOCl, only very low intensity signals for isomeric forms of hydroxylated IBPs 

(pathway a, Figure 3.6) were detected at early points in the BiOCl photodegradation process, 

although we found strong evidence to support the production of these compounds when TiO2 or 

direct photolysis was employed for photodegradation (data not shown) and are confident in our 

ability to detect these photoproducts.  Thus, pathway a (Figure 3.6) is not an important mechanism 

for the photocatalytic degradation of IBP (1) with BiOCl, which may be a consequence of the rapid 

decarboxylation reaction for IBP (1), coupled with the lower hydroxyl radical production rates that 

have been observed for BiOCl [38,45].  

 The predominant pathway for photodegradation of IBP (1) with BiOCl is most consistent 

with decarboxylation initiated by h+ oxidation to form a benzyl radical (pathway b, Figure 3.6), 

which is converted to IBPE (2) (pathway c, Figure 3.6) and IBAP (3) (pathway d, Figure 3.6). 

Only IBAP (3) is subject to significant subsequent photodegradation, yielding at least 11 

photodegradation products.  Most products detected by HPLC yielded absorption spectra showing 
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shifts to longer wavelengths, which would be most consistent with hydroxyl additions to the 

aromatic ring or ring-opening oxidation processes that increase conjugation.  Many products 

detected by mass spectrometry yielded MS/MS product ions, including m/z 43.02 (CH3CO+) and 

m/z 57.07 (C4H9
+), that provided evidence that IBAP’s acetyl and isobutyl groups have not been 

structurally altered by photocatalytic degradation.  We propose photodegradation of IBAP (3) 

initiated by hydroxyl radical attack on the aromatic ring of IBAP (3) via pathways d-f (Figure 3.6), 

resulting in formation of hydroxyl-substituted forms of IBAP (3).  We hypothesize that 

photodegradation products 11 and 14, with molecular masses consistent with the net addition of 

one oxygen atom to IBAP (3), absorption spectra consistent with that of a substituted 

acetophenone, and MS/MS spectra consistent with water loss from an aromatic ring with and 

support for acetyl and isobutyl substituents, are most consistent with isomeric forms of ring-

hydroxylated IBAP (3) depicted in Figure 3.6.  Mass spectral data for photodegradation product 9 

has a molecular formula indicating the net addition of two oxygen atoms to IBAP (3).  While this 

product could correspond to a dihydroxy-substituted IBAP (see pathway 3, Figure 3.6), this 

structure is not supported by the MS/MS spectrum, which shows abundant and complementary 

fragments at m/z 125.06 and m/z 85.06 (see Appendix A, Figure A.14).  The MS/MS data and the 

measured absorption spectrum suggest that the aromatic ring has been opened by oxidation.  A 

possible structure can be found in Figure A.14.  Other products for which mass spectral data was 

obtained included two additional hydroxylated products, which also may have ring-opened 

structures (pathway f, Figure 3.6).  At a later time point, we observed products 12 and 13, which 

may result from decarboxylation of product 9.  Overall, our results support the initial formation 

and subsequent degradation of IBAP (3), with the formation of products characterized by oxidation 

directed at the aromatic ring of IBAP (3). 
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Figure 3.6. Proposed secondary products from the photolysis of IBP (1) and IBAP (3) 
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3.4 Conclusion 

 We have shown for the first time the high photocatalytic activity for BiOCl photocatalysis 

for the removal of IBP (1) from water, and provide evidence to show that photocatalytic 

degradation, not adsorption, is the primary removal mechanism for the BiOCl nanosheets used in 

this study. The high photocatalytic activity is best explained by h+ oxidation and decarboxylation 

of the carboxylate group, and suggests that BiOCl may play a role is the activation of other 

structurally similar pharmaceuticals, such as ketoprofen, naproxen, and benoxaprofen.  This work 

highlights how structural alterations to contaminants that occur upon photocatalytic degradation 

can impact the rates associated with subsequent photodegradation processes.  While BiOCl 

exhibits rapid conversion of IBP (1) to IBPE (2) and IBAP (3), these secondary products, which 

have demonstrated toxicities, showed greater recalcitrance toward photodegradation.  This may be 

a consequence of the lower hydroxyl radical production rate or a reduced ability to react with IBPE 

(2) or IBAP (3) by h+ oxidation for BiOCl. Clearly, characterizing photodegradation products and 

their degradation rates can provide important insights into photocatalytic degradation mechanisms, 

which can then inform catalyst development.  This work suggests the need to develop catalysts 

that have parallel pathways of reactivity towards substrates with different chemical properties. 
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CHAPTER 4 

DEVELOPMENT OF BiOX PHOTOCATALYSTS FOR INDUSTRIAL APPLICATIONS 

 

4.1.Introduction  

Recently, advanced drilling techniques have enabled producers of petroleum access to 

large quantities of natural gas [1]. Natural gas can be directly used as a transportation fuel but its 

value can be increased through conversion into liquid hydrocarbons through C-C bond formation 

in a process known as gas-to-liquid (GTL). However, current GTL operations are based on the 

Fischer-Tropsch process, which has large energy requirements, proceeds through multiple steps, 

and has large capital costs constraining plant startup [2]. A GTL process based on photocatalysis, 

with the coupling of natural gas molecules initiated by activating a catalyst material with light, has 

great potential to reduce operating costs of GTL plants and enable maximum utilization of natural 

gas. Photocatalytic activation of methane has been previously studied by Li et al. who showed that 

metal doped zeolite frameworks promote dehydrogenative coupling under UV irradiation [3,4].  

In addition to photocatalytic GTL conversion, other photocatalytic methodologies hold 

potential for industrial application. One interesting possibility is the use of photocatalysis to 

produce complex organic molecules for the specialty chemicals and pharmaceuticals industries. 

The processes employed in these industries often require carbon-carbon bond formation as large 

molecules are synthesized to fulfill niche applications [5]. One of the reactions commonly used 

for this purpose is the Heck reaction, which forms a carbon-carbon bond between an alkyl halide 

and an alkene [6]. However, this reaction requires the use of a base to drive the removal of -HX, 

which is harsh, expensive and requires additional downstream processing to purify the product. If 
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a photocatalyst is able to both drive the reaction and act as a base, both reagent and energy costs 

will be reduced, increasing the value of these processes.  

Photocatalytic processes have been previously applied to coupling reactions. Tyagi et. al 

demonstrated the coupling of tetrahydrofuran (THF) with alkanes and alkenes using Pt/TiO2 as the 

photocatalyst [7,8]. The Kisch group has demonstrated the ability of ZnS photocatalysts to drive 

the dehydrodimerization of 2,5-dihydrofuran and cyclohexene [9,10]. Suzuki coupling reactions, 

where an organoboron species is coupled with an aryl halide, have been reported using visible-

light irradiation and Pd/SiC photocatalysts by Jiao et. al [11]. Coupling reactions of diazo salts 

with arene substrates have been conducted over both TiO2 [12] and Bi2O3 [13]. Visible light 

activity in photocatalysis is an important step towards industrial relevance due to the energy cost 

savings to be realized by utilizing freely available solar energy instead of operating high-powered 

lamps. Our previous research on bismuth oxyhalides suggested the presence of highly reactive 

electron holes in the valence band generated under photoirradiation [14,15]. This high activity 

coupled with the visible light absorption properties of BiOI has the potential to be highly useful in 

industrial settings.  

This chapter consists of three projects all directed at the application of BiOI photocatalysis 

to reactions that are either currently used or would be useful in the chemical industry. The first 

project focused on the application of BiOI photocatalysts to natural gas condensation, with the 

goal of demonstrating that BiOI photocatalytic methods could be used to convert natural gas, 

which after drying is composed of primarily methane gas, to higher molecular weight liquid 

hydrocarbons under mild conditions. Cyclohexane was selected as a model compound to 

demonstrate proof of principle, because it was easier to handle and because all the potential 

reaction sites are chemically identical. The second project investigated the effect of visible light 
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irradiation on the addition of iodine to cyclohexane and toluene. This was done to explore the 

possibility of generating iodocyclohexane in situ for coupling reactions with aryl compounds. 

These conditions were then later tested using cyclohexyl halides and aryl substrates to mimic 

coupling reactions commonly used in synthesis of complex organic molecules.  

 

4.2.Materials and Methods 

Cyclohexane (HPLC grade), chlorocyclohexane, bromocyclohexane, iodocyclohexane, 

toluene, furan, fluorene, iodine, iodine monochloride, bismuth nitrate pentahydrate and potassium 

iodide were all purchased from Sigma-Aldrich and used as received. Zeolite samples CBV300 

(zeolite Y) and CBV21A (mordenite) were purchased from Zeolyst International and stored in a 

desiccator to prevent absorption of moisture by the samples. 

4.2.1. Synthesis of Catalysts 

4.2.1.1. BiOI 

The bismuth oxyiodide photocatalysts used in these experiments were synthesized using 

hydrothermal autoclave synthesis methods. Hydrothermal autoclaves are stainless steel “bomb” 

autoclaves that allow a system to be safely exposed to high pressures for synthesis purposes. The 

photocatalyst was synthesized by slowly adding 20 mL of 50 mM KI to 20 mL of 50 mM Bi(NO3)3 

• 5H2O to form an orange precipitate. This solution was then stirred in air for 30 min before 

transferring the solution to a 50 mL stainless steel hydrothermal autoclave. The bomb was sealed 

and placed in an electric oven at 160oC for 16 h. The products were recovered by gravity filtration 

and washed thoroughly with deionized water and ethanol and dried at 50oC overnight. The 

synthesis scheme is shown in Figure 4.1. 
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Figure 4.1. Synthetic scheme for BiOI photocatalyst. 

 

4.2.1.2. Metal Doping 

Metal doping of the synthesized photocatalysts was used to study the effect, if any, on the 

overall photocatalytic activity for C-H activation in cyclohexane. The doping was achieved using 

a photodeposition method modified from Yoshida et al. [8]. Briefly, 4 g of the powdered 

photocatalyst was dispersed in 300 mL of deionized water and stirred for 30 min under 

photoirradiation from a mercury lamp (Steripen, λ > 254 nm). Then 100 mL methanol and an 

aqueous solution of the appropriate metal precursor (PdCl2, Ni(NO3)2, CuCl2) were added and 

stirred for 15 min in the dark and then 1 h under photoirradiation. The solids resulting from this 

process were separated from the suspension via vacuum filtration and washed thoroughly with 

deionized water. Following this the samples were dried overnight in an electric oven at 50oC. The 

resulting samples were called M-BiOX, where M refers to the identity of the doped metal ion. 

4.2.1.3. Insertion of BiOI into Zeolite Support 

Zeolite supports were used to increase the stability as well as selectivity of the BiOX 

photocatalysts. The combination of synthesized BiOI samples with zeolite Y and mordenite was 

accomplished using a facile room temperature method [16]. First, 500 mg of the designated zeolite 

sample was added to 30 mL of deionized water and sonicated for 15 min. Then, 25 mg of BiOI 
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powder sample was slowly added to the zeolite/water solution. The resulting solution was stirred 

vigorously in a fume hood for 24 h. The solid samples produced were collected, dried at 80oC, and 

then calcined at 250oC for 3 h. This synthesis scheme is shown in Figure 4.2. 

 

Figure 4.2. Synthetic scheme for BiOI/Zeolite samples 

 

4.2.2. Characterization of Catalysts 

Characterization is a critical aspect of catalyst evaluation, both to ensure that the 

synthesized catalyst is the expected compound as well as to determine relationships between 

properties and reactivity. For these studies Fourier transform infrared spectroscopy (FTIR) was 

employed to study the structure of the synthesized catalysts, while diffuse reflectance spectroscopy 

(DRS) was used to evaluate the light absorption properties. 

4.2.2.1. Infrared Spectroscopy 

FTIR was used to characterize the structure of the synthesized photocatalysts. FTIR spectra 

were collected over the range of 4000-450 cm-1 using a Perkin Elmer FTIR Spectrum Two 

equipped with a Universal Attenuated Total Reflectance (UATR) accessory. The UATR consists 

of a diamond crystal with a 2-micron pathlength. The detector is a LiTaO3 MIR detector with a 

total effective range of 8,300 cm-1 to 350 cm-1. Spectra were collected with a resolution of 2 cm-1. 
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To collect FTIR spectra, the UATR detector was gently cleaned using reagent grade ethanol and a 

KimWipe and a background spectrum was collected. Then a small sample of the synthesized 

photocatalyst powder was carefully placed on the detector using a spatula. The Perkin Elmer FTIR 

Spectrum Two UATR is equipped with an arm that presses the sample into the detector window 

to achieve optimal contact and infrared irradiation conditions. The position of the pressure arm 

was adjusted while continuously collecting spectra to maximize the signal from the sample, and 

the final spectrum was created from a total of 10 averaged spectra. The resulting spectrum was 

exported to .csv format and processed using Microsoft Excel. 

4.2.2.2. Diffuse Reflectance Spectroscopy 

 Diffuse reflectance is the property of a material to reflect incident light at many different 

angles as opposed to specular reflection that reflects light at just one angle. DRS is a 

spectrophotometric technique that measures UV-Vis light diffusely reflected by a material to 

determine its absorption properties. The absorption spectrum generated can be used to determine 

the optical band gap of a semiconductor material by applying the Kubelka-Munk theory of 

reflectance. Determination of the band gap by this technique provides information on the potential 

activity of each catalyst for the selected light wavelength. DRS experiments were used to 

determine the optical band gap energy of all synthesized photocatalysts. The light source used in 

DRS experiments was a DH-2000 deuterium and halogen light source (Mikropack) coupled with 

an USB4000 spectrometer (Ocean Optics). A fiber optic cable was used to gather collected light. 

Spectra were referenced to polytetrafluoroethylene (PTFE) and potassium chloride. Data was 

processed using SpectraSuite software model 1.4.2_09 (Ocean Optics). 
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4.2.3. General Reaction Setup 

4.2.3.1. Photocatalytic Dehydrodimerization of Cyclohexane 

The activity of each prepared catalyst was evaluated for C-C coupling in cyclohexane via 

dehydrodimerization in a batch process using a photocatalytic reaction system. Reactions were 

conducted inside a closed system to prevent side reactions with oxygen. Initially, 50 mg of the 

catalyst to be tested was deposited inside of the reaction vessel and sealed. The vessel was then 

pre-irradiated with a visible-light lamp (100W D-LED, Sylvania, λ > 420 nm, see Figure 4.3 for 

lamp emission spectrum) for 1 h. Following pre-irradiation, the reaction chamber was purged with 

argon gas for 10 min to remove air from the reactor system. Continuing to purge the system with 

argon, 2 mL of cyclohexane was injected into the system through a septum. The semiconductor 

photocatalyst was suspended in cyclohexane via magnetic stirring and irradiated using the D-LED 

lamp for the specified reaction time. Samples were removed from the reaction mixture and were 

prepared for GCMS analysis by filtering through a syringe equipped with a 0.2 µm PTFE 

chromatography filter (25 mm, Fisher Scientific). 

 

Figure 4.3. Emission spectrum for the D-LED lamp used in the visible light irradiation 

experiments. 
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4.2.3.2. Visible-light Photoinitiated Iodination of Cyclohexane 

Iodine addition experiments were conducted to evaluate the ability of visible light to 

iodinate cyclohexane. For the iodine addition experiments, 2 mmol of the iodinating agent (either 

I2 or ICl) was placed in a 14 mL vial, which was sealed and degassed for 15 min with N2. Then, 

10 mL of HPLC grade cyclohexane (Sigma-Aldrich) was added to the vial using a syringe. The 

solution was stirred and irradiated using a visible-light lamp (100W, D-LED, λ > 420 nm) for 16 

h. After irradiation, the solution was removed from the vial using a syringe and filtered through a 

0.2 µm PTFE filter into a GC vial for GCMS analysis. 

4.2.3.3. Photocatalytic Coupling Reactions with Cyclohexyl Halides 

Coupling reactions of cyclohexyl halides with aryl and heteroaryl substrates were 

examined as analogs to Heck-type carbon-carbon bond formation methodologies. To conduct these 

experiments, 10 mL of the aromatic substrate (toluene or furan) and 50 µL of the cyclohexyl halide 

(chlorocyclohexane, bromocyclohexane, or iodocyclohexane) was added to a 14 mL vial. The 

selected photocatalyst (100 mg) was then added to the reaction mixture, and the solution was 

stirred in the dark for 30 min. After taking a dark sample from the vial, the solution was irradiated 

using the D-LED lamp for 16 h. A sample was then removed from the solution, filtered through a 

0.2 µm PTFE filter into a GC vial, and analyzed by GCMS. 

4.2.4. Analysis of Reaction Products 

The GCMS system was an Agilent Technologies 6890 Gas Chromatograph operated in the 

splitless injection mode equipped with an Agilent HP-5MS (Agilent Technologies, 30 m x 0.25 

mm, 0.25 µm) column interfaced to a 5973N Mass Selective Detector (Agilent Technologies). The 

temperature program consisted of a 5 min hold at 50oC, followed by a 5oC/min ramp to 200oC with 
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a final time of 1 min. The carrier gas was helium flowing at 1 mL/min. The electron ionization 

source temperature was set at 280oC and the source inlet temperature was 250oC.  The mass spectra 

obtained for species eluting from the GC column were identified using the NIST 2013 database 

for best-match identification. Fluorene was used as an internal standard for all measurements and 

relative response factors were determined for each target analyte.  

For quantification purposes the response factor for the internal standard (IS) was calculated 

through analysis of a sample containing both the analyte standard (bicyclohexane, 

chlorocyclohexane, bromocyclohexane, iodocyclohexane, or cyclohexyl toluene) and the IS (all 

standards obtained from Sigma-Aldrich). The response factor is the ratio of the instrument 

response to known amounts of the analyte and an IS. A sample containing known amounts of both 

the analyte standard and the internal standard is injected and analyzed. After integrating both peaks 

to determine the peak area, a ratio (the relative response factor) can be determined to relate the 

instrument response of the analyte to the instrument response to the internal standard. After 

determining the appropriate response factors, a known mass of the internal standard was added to 

each sample after filtering and preparation. This mass was determined based on the potential range 

of product masses in the sample. The mass of analyte in the original sample was then determined 

using the rearranged response factor equation. 

𝐹 =

𝐴𝐴𝑛𝑎𝑙𝑦𝑡𝑒
𝑚𝐴𝑛𝑎𝑙𝑦𝑡𝑒

⁄

𝐴𝐼𝑆
𝑚𝐼𝑆

⁄
     (1) 

Where F = relative response factor, AAnalyte = the integrated area of the analyte peak, mAnalyte = the 

mass of analyte in the sample, AIS = the integrated area of the analyte peak, and mIS = the mass of 

internal standard added to the sample solution. This process was repeated for each product 

identified in this study. 
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4.3.Results and Discussion 

4.3.1. Photocatalyst Selection 

With the goal of exploring BiOX photocatalysts for C-C bond formation and other 

synthetic transformations, we focused on the use of BiOI. BiOI was selected due to its visible light 

absorption properties. In addition to studying BiOI powders, we also synthesized BiOI 

incorporated into two zeolites, mordenite and zeolite Y. By restricting the area available for 

coupling reactions via inserting the photocatalyst into a zeolite framework, we believed that the 

formation of dimers would be encouraged over formation of more complex products. We also 

synthesized BiOI doped with metals (M = Ni, Pd, Cu) because the introduction of metals to BiOX 

photocatalysts has previously been shown to increase reactivity [17,18]. 

4.3.2. Characterization of Synthesized Photocatalysts 

4.3.2.1.Vibrational Spectroscopy 

All of the synthesized photocatalysts were characterized using Fourier Transform Infrared 

Spectroscopy (FTIR). This technique was used to verify the expected structure of the 

photocatalysts as well as the catalyst supports. The collected FTIR spectra are shown in Figure 

4.4. Based on the IR spectra collected, it is clear that the synthesized BiOI/Zeolite samples consist 

of simple combinations of the two compounds. The separate structures of BiOI and zeolite are not 

affected by the synthesis process. The spectra of the metal-doped BiOI samples (data not shown) 

appeared identical to neat BiOI samples since the IR absorption of metal species is not expected 

to be observed within the collection window for the experimental conditions. 
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Figure 4.4. FTIR spectra for the synthesized photocatalysts. 

 

4.3.2.2.Diffuse Reflectance Spectroscopy 

In order for a photocatalyst to work, it must be able to absorb the incident irradiation 

provided by the lamp used in the system. For this reason each photocatalyst synthesized as a part 

of this study was studied by UV-Vis Diffuse Reflectance Spectroscopy (DRS). Since DRS only 

measures the light reflected by the sample, it is necessary to convert reflectance into absorption 

using the Kubelka-Munk Transformation. DRS spectra for each of the synthesized photocatalysts 

are shown in Figure 4.5. 
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Figure 4.5. DRS spectra for the synthesized photocatalysts. 

 

It can be seen that neither zeolite sample absorbs light in the visible region. BiOI shows an 

absorption maximum at 450 nm. The position of the absorption maximum does not change after 

the synthesis of BiOI/Zeolite samples. This indicates that the simple combination of the two 

materials has not chemically changed the structures. For one sample, I2/BiOI/Mordenite, the 

absorption band edge redshifts significantly, suggesting an even smaller bandgap. This material 

was calcined at a higher temperature (450oC) than other BiOI/Zeolite samples. These 

considerations led us to conclude that some BiOI was converted to Bi2O3 as iodine was removed 

from the crystal structure resulting in deposition of molecular I2 on the surface of the catalyst. This 

is further supported by previous reports on the temperature dependence of BiOI synthesis [19]. 
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4.3.3. Photocatalytic Dehydrodimerization of Cyclohexane 

A wide range of synthesized photocatalysts were tested for dehydrodimerization reactions 

with cyclohexane. This reaction was used to represent a potential natural gas upgrading process, 

where C-C bond formation under mild conditions would increase the value of natural gas as well 

as enable easier storage in a liquid form. 

4.3.3.1. Proposed Mechanism 

Our previous work on bismuth oxyhalides suggests that highly reactive electron holes are 

generated within the valence band upon photoirradiation. Based on this, we hypothesized that 

cyclohexane could dehydrodimerize non-oxidatively via the following mechanism. First, the 

electron hole present in the valence band of the photocatalyst initiates hydrogen abstraction to the 

photocatalyst surface. This process results in the formation of a cyclohexyl radical also on the 

surface of the photocatalyst. This radical is then expected to attack a cyclohexane molecule at the 

solid-liquid interface resulting in the loss of an additional hydrogen atom. The proposed reaction 

could be further thermodynamically driven by the release of hydrogen gas, which is proposed to 

be formed by the combination of two hydrogens on the surface of the photocatalyst. The 

hypothesized mechanistic scheme is shown below. 

 

BiOI + hv (>450 nm) → h+ + e- 

2R-H + 2h+ → 2R• + 2H+ 

2R• → R-R 

2H+ + 2e- → H2 
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4.3.3.2. Photocatalysis and product analysis by GCMS 

Dehydrodimerization reactions of cyclohexane using BiOI and visible light (Figure 4.6) 

were attempted to determine if the expected reaction product, bicyclohexane, was formed. After 

irradiating the dry, deoxygenated solution overnight, the catalyst was removed from the reaction 

mixture via a 0.2 µm syringe filter and the cyclohexane solutions were analyzed by GCMS. As a 

control, we analyze a sample of cyclohexane with BiOI without visible light irradiation. A 

representative total ion chromatogram (TIC) for this reaction is shown in Figure 4.7. The peak at 

16.5 min was identified as bicyclohexane based upon the mass spectrum (Figure 4.8) which 

showed a molecular ion (m/z = 166) and fragment ions that agreed with the reference spectrum. 

 

 

 

Figure 4.6. Scheme for photocatalytic dehydrodimerization of cyclohexane to bicyclohexane. 
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Figure 4.7. TIC for cyclohexane direct coupling to bicyclohexane with BiOI and visible light. 

 

The peaks detected in the range of 6-7 min correspond to cyclohexanol and cyclohexanone, 

agreeing with previously published reports of cyclohexane oxidation by photocatalysis. These 

compounds were also present in the blank in lower amounts, suggesting that adventitious oxygen 

was adding to the cyclohexyl radical, and also suggesting that oxidized cyclohexanes could 

participate in the coupling process. The peak at 9 min was identified as methylcyclohexane, 

indicating that some degradation of cyclohexane is likely occurring concurrently with cyclohexane 

coupling. With the chromatographic conditions optimized and major products identified, we 

moved forward with evaluating reaction conditions to maximize production of bicyclohexane. 

bicyclohexane 
methylcyclohexane 

cyclohexanol 

cyclohexanone 
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Figure 4.8. Mass spectrum of the compound eluting at 16.5 min, identified as bicyclohexane. 

 

4.3.3.3. Optimization of Reaction Conditions 

An important consideration for photocatalytic reactions is the ability of light to fully 

irradiate the solution. This is an important difference when compared with thermal heterogeneous 

catalysis where heat can be conducted evenly throughout the solution. For photocatalytic systems, 

increasing the catalyst loading will also increase the turbidity of the solution, which decreases the 

light penetration depth and the photocatalytic efficiency. After the expected reaction product, 

bicyclohexane was confirmed by GCMS, the catalyst loading and irradiation time parameters were 

varied in order to maximize the efficiency of the reaction. The catalyst loading was varied from 

M+• 

166 

82 

67 

55 
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100 mg/L to 100 g/L by keeping the volume of cyclohexane constant and changing the mass of 

catalyst added to the container. The bicyclohexane product yields were quantified using fluorene 

as an internal standard until no further product formation was observable by GCMS. All reaction 

optimization conditions are listed along with observed yield in Table 4.1. As can be seen from the 

table, the catalyst loading of 25 mg/L produces the optimal yield of bicyclohexane. The optimized 

conditions were then used throughout the remaining experiments. 

 

Table 4.1. Results for reaction condition optimization trials for photocatalytic dehydrodimerization 

of neat cyclohexane with BiOI (hv > 450 nm, 16 h). 

Trial Catalyst Loading Yield (µmol) 

1 100 mg/L 0.006± 0.0004 

2 500 mg/L 0.014± 0.0008 

3 5 g/L 0.020± 0.0011 

4 25 g/L 0.024± 0.0012 

5 100 g/L 0.018± 0.0011 

 

 

4.3.3.4. Catalyst Variation 

After determining the optimum conditions for cyclohexane coupling via BiOI 

photocatalysis, the reaction was further investigated by comparing BiOI with Ni-BiOI, Pd-BiOI, 

Cu-BiOI, BiOI/Mordenite, BiOI/Zeolite Y and I2/BiOI/Mordenite as the employed photocatalyst. 

The results from the catalyst variation trials are shown below in Table 4.2.  
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Table 4.2. Results of catalyst variation trials for photocatalytic dehydrodimerization of neat 

cyclohexane with BiOI (hv > 450 nm, 16 hr). 

Catalyst Bicyclohexane Yield (µmol) 

BiOI 0.024 ± 0.0012 

Ni-BiOI 0.020 ± 0.0011 

Pd-BiOI 0.025 ± 0.0013 

Cu-BiOI 0.023 ± 0.0012 

BiOI/Mordenite 0.056 ± 0.0028 

BiOI/Zeolite Y 0.034 ± 0.0020 

I2/BiOI/Mordenite 0.027 ± 0.0015 

 

Overall, the yield of coupling of neat cyclohexane using BiOI as the photocatalyst with 

visible light irradiation is similar to previous reports [7]. Metal doping did not produce a large 

effect on the yield. This may be due to the choices of metals used as dopants, or this may be due 

to the metal doping procedure utilized in this study. Metal dopants can act to trap electrons through 

the generation of additional states that allow for oxidation of the conduction band. However, if the 

state does not exist at a favorable energy level the oxidation process will not be favorable. Metal 

doping should continue to be explored for BiOX compounds in various applications. Theoretical 

modelling of the states created by the metal dopant may prove useful for designing future studies. 
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4.3.3.5. Conclusions and Directions for Future Work 

The use of zeolite supports also provided interesting results for cyclohexane coupling. 

Overall, it was found that BiOI/Mordenite produced the largest yield of bicyclohexane under the 

present reaction conditions. This increase in product yield is attributed to the deposition of BiOI 

on the surface of the zeolite structures, where the number of reactive sites available may be 

increased. It is also possible that the reactants prefer to adsorb to the surface of the zeolite, 

facilitating the reactions between radical species generated at the photocatalyst. Future work 

should validate the non-oxidative nature of this reaction through detection of H2 in the reaction 

headspace using GC/TCD analysis. BiOI/Mordenite was then selected as the catalyst that would 

be used in future coupling reactions due to its reactivity with neat cyclohexane. 

 

 

4.3.4. Visible-light Photocatalytic Iodination of Cyclohexane 

Although the results from direct coupling of cyclohexane via photocatalytic 

dehydrodimerization demonstrated a potential route to natural gas upgrading, we wanted to find 

alternative options with greater coupling yields. One way to achieve greater reactivity is through 

first functionalizing the substrate intended to be coupled. Since we are using bismuth oxyhalide 

materials as photocatalysts, an interesting possibility is to functionalize cyclohexane with halide 

atoms to create regions of differing electron density on the cyclohexane ring. This section will 

detail the efforts directed at adding iodine atoms to cyclohexane in order to increase coupling 

yields. 
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4.3.4.1. Study of the Iodinating Agent 

The iodinating agents studied in this project were molecular iodine and iodine 

monochloride. These reagents were evaluated for iodine addition to cyclohexane. We found that 

this reaction does not proceed under dark or irradiation conditions when no catalyst is present. 

However, when BiOI/Mordenite is added as a photocatalyst, product formation is observed. In 

trials with cyclohexane using I2 as the iodinating agent, the only product observed by GCMS was 

iodocyclohexane. The mass spectrum for this compound is shown in Figure 4.9. The molecular 

ion can be observed (m/z = 210) as well as the [M-I]+ fragment at m/z = 127.  

 

Figure 4.9. Mass spectrum of iodocyclohexane. 

 

M+• 

210 

I+ 
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[M-I]+ 

83 
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The reaction for iodination of cyclohexane using iodine monochloride is shown in Figure 

4.10. The observed color of the reaction solutions provided additional information on the progress 

of the reaction. Iodine monochloride appeared red when dissolved in cyclohexane and during the 

course of the reaction the color of the solution changed from red to purple. This provided a 

qualitative method of following the progress of the reaction because the color reflected the amount 

of iodine monochloride that remained in the reaction solution. The GCMS analysis of the reaction 

of ICl with cyclohexane showed iodocyclohexane as the major product (Rt = 6.2 min, Figure 

4.11).The reaction of cyclohexane with ICl also produced iodochlorocyclohexane isomers as 

minor products (Rt = 9.4 min, 10.5 min, 11.9 min). Iodochlorocyclohexane was identified using 

the mass spectrum collected for this compound (m/z = 244) and is shown in Figure 4.12. 

 

 

Figure 4.10. Scheme for photocatalytic iodination of cyclohexane with iodine monochloride. 
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Figure 4.11. TIC for addition of iodine to cyclohexane using ICl as the reagent with 

BiOI/Mordenite catalyst and irradiation for 16 h with >450 nm light. 

iodochlorocyclohexane 

iodocyclohexane 
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Figure 4.12. Mass spectrum of iodochlorocyclohexane. 

 

4.3.4.2. Proposed Mechanism 

Two separate mechanisms can be proposed for the visible light driven photocatalytic 

iodination reactions described in this section. For the iodination of cyclohexane we propose a 

photocatalytically activated, radical addition mechanism. This is supported by the fact that the 

reaction proceeded only minimally with molecular iodine, and that the yield of iodocyclohexane 

was increased upon addition of BiOI and visible light irradiation. In this process, iodine extraction 

by the photocatalyst generates an iodine radical, which then attacks the cyclohexane ring resulting 

in the addition of iodine.  

[M-I-Cl]+ 

83 

M+• 
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I+ 
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[M-I]+ 

117 
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Meanwhile, a greater degree of iodination was observed when iodine monochloride was 

used as the iodinating agent. Interestingly, while some production of 1-chloro-2-iodocyclohexane 

was observed, no production of chlorocyclohexane was observed. This is attributed to the 

preferential abstraction of chlorine by BiOI. This reaction is believed to not proceed with any 

appreciable yield due to the poor overlap of the valence band position of BiOI with the oxidation 

potential of iodine. Provided that other photocatalysts can be developed with a valence band tuned 

to that potential, the yield of this reaction will increase. 

 

4.3.5. Photocatalytic Coupling Reactions with Cyclohexyl Halides 

After investigating visible-light-driven iodination of cyclohexane, the possibility of using 

these iodinated compounds for coupling reactions was considered. While the direct coupling of 

cyclohexane molecules produced low yields, using the functionalized cyclohexyl halides instead 

of neat cyclohexane was proposed as an alternative substrate to increase formation of the desired 

coupling products. Furthermore, coupling to aryl compounds was explored because of their 

widespread use in chemical industry. Development of efficient routes to C-C coupling of 

cyclohexyl halides to aryl substrates may lead to their application in pharmaceutical and specialty 

chemicals industries. 

4.3.5.1. Coupling Reactions with Toluene 

The first approach taken to add cyclohexane to aryl compounds via coupling of cyclohexyl 

halides utilized toluene as the aryl substrate. This choice was made to try to mimic Heck-type 

reactions, where alkyl halides are added across carbon-carbon double bonds resulting in the 
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coupling of the two compounds. The reaction scheme for the coupling reaction with toluene is 

shown in Figure 4.13.  

 

Figure 4.13. Visible light photocatalytic coupling of iodocylcohexane with toluene. 

 

To test this photocatalytic coupling we added BiOI/Mordenite to a dilute solution of 

iodocyclohexane in toluene. After 16 h of visible light irradiation, the products were analyzed by 

GCMS. In addition to the starting material (iodocyclohexane, Rt = 6.2 min), two new peaks (Rt = 

14.6 min, 14.8 min) can be observed in the TIC (shown in Figure 4.14). The mass spectrum for 

the peak at 14.6 min (Figure 4.15) exhibits the molecular ion for cyclohexyltoluene (m/z = 174). 

Performing a comparison search for both of these peaks to the NIST MS database gives a strong 

match for 2-cyclohexyltoluene (14.6 min) and 4-cyclohexyltoluene (14.8 min). This indicates that 

the desired coupling reaction can be driven by visible light photocatalysis.  
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Figure 4.14. TIC for photocatalytic coupling of iodocyclohexane and toluene BiOI/Mordenite. 

 

This reaction was then further examined with respect to the halide group. Chloro- and 

bromocyclohexane were tested as alternative substrates to iodocyclohexane to investigate the 

effect of the halide group on the yield of the coupling reaction. The results of the coupling reactions 

of cyclohexyl halides with toluene are summarized in Table 4.3. Iodocyclohexane produced the 

highest yield of coupling product, while chlorocyclohexane show the lowest yield of these trials. 

The origin of this observation will be discussed in further detail as part of the proposed mechanism 

for this reaction in section 4.3.5.4.  

 

iodocyclohexane 

cyclohexyltoluene 
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Figure 4.15. Mass spectrum of cyclohexyltoluene. 

 

Table 4.3. Results for trials of photocatalytic coupling reaction between toluene and cyclohexyl 

halides with BiOI/Mordenite (hv > 450 nm, 16 h). 

Reagent % Conversion 

Chlorocyclohexane 65% 

Bromocyclohexane 90% 

Iodocyclohexane 97% 

 

 

[M]+ 

174 
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4.3.5.2. Two-step Coupling Reactions with in situ Generated Iodocyclohexane 

To build on the idea of visible-light-driven iodination of cyclohexane (see section 4.3.2), 

the coupling reaction with toluene was attempted using in situ generated iodocyclohexane. To 

accomplish this, the cyclohexane iodination reaction was first conducted in a sealed contained 

using 0.2 mM iodine monochloride in 10 mL of cyclohexane. Following reaction, the yield of 

iodocyclohexane was quantified via GCMS and analysis with an internal standard. An excess 

amount (5 mL) of toluene was then added to the reaction mixture along with 100 mg of 

BiOI/mordenite, which had been shown to be the optimal reaction conditions from the previous 

section on coupling reaction with toluene. The TIC of GCMS analysis of the resulting solutions 

are shown in Figure 4.16. 
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Figure 4.16. TIC for photocatalytic coupling of in situ generated iodocyclohexane and toluene 

BiOI/Mordenite. 

The normal reaction products of ICl addition to cyclohexane are observed 

(iodocyclohexane, Rt = 6.2 min; iodochlorocyclohexane isomers Rt = 9.4 min, 10.5 min, and 11.9 

min) in the initial step of the reaction. After the addition of BiOI/Mordenite and subsequent visible 

light irradiation, the coupling products 2-cyclohexyltoluene (14.6 min) and 4-cyclohexyltoluene 

(14.8 min) are observed. Interestingly, based on the TIC peak intensities, it appears that 

iodocyclohexane and two of the iodochlorocyclohexane isomers (Rt = 9.4 min, 10.5 min) are 

consumed during the reaction, while the remaining iodochlorocyclohexane species (Rt = 11.9 min) 

remains in the solution even after photoirradiation. 

 

iodochlorocyclohexane 

iodocyclohexane 

cyclohexyltoluene 
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4.3.5.3. Coupling Reactions with Furan 

Following the series of Heck-type coupling reaction trials with cyclohexyl halides and 

toluene, the aryl substrate was replaced with furan. This replacement was justified by the presence 

of oxygen within the furan ring, which would draw electron density away from the adjacent 

carbons to potentially improve coupling reaction yields. This reaction was tested for chloro-, 

bromo-, and iodocyclohexane and however no reaction was observed for these conditions. Unlike 

the coupling reaction with toluene, the coupling reaction with cyclohexyl halides does not proceed 

when the aryl substrate is replaced with furan. Further reaction trials where the solvent was 

replaced with polar protic solvents did not result in the production of coupling products with furan.  

4.3.5.4. Proposed Mechanism 

Given these results a reaction mechanism was proposed. The mechanism is summarized in 

Figure 4.17. Initially, incident visible light irradiation of energy greater than the band gap energy 

of BiOI promotes an electron from the valence band to the conduction band. This results in the 

generation of an excited electron in the conduction band and an electron hole in the valence band. 

The electron hole is proposed to react with iodocyclohexane, abstracting the iodine and producing 

a cyclohexyl radical. Toluene is also oxidized by electron holes in the valence band of BiOI. The 

toluene radical species produced by abstraction of hydrogen from the carbon adjacent to the methyl 

group exists as three resonance structures with the radical located at either the ortho- or para- 

positions on the benzene ring (Figure 4.17). The cyclohexyl and toluene radicals combine 

producing the observed cyclohexyl toluene product. The abstracted iodide and hydrogen ions 

combine with either a second abstracted iodide or a hydrogen ion along with two electrons from 

the conduction band of the catalyst producing molecular iodine, hydroiodic acid, or hydrogen gas. 

This is supported by the observed purple color in the reaction solution after irradiation, which is 
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the same color normally observed by the dissolution of iodine in cyclohexane. This is also 

supported by the fact that iodocyclohexane produces higher yields of coupling products than either 

bromocyclohexane or chlorocyclohexane. Since bromine and chlorine are more electronegative 

than iodine, they are less likely to form Cl+ or Br+ ions during the oxidation process. This 

mechanism explains the observation of the two separate cyclohexane addition products observed 

by GCMS.  

 

 

 

Figure 4.17. Reaction scheme for photocatalytic addition of cyclohexyl halides to toluene.  

+   I+ + 

H+   
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4.4.Conclusion 

This chapter has explored a few applications of visible light and BiOI based photocatalytic 

systems to industrially relevant reactions. First, the coupling of neat cyclohexane was examined 

as an analog to natural gas. This reaction would allow the upgrading of dry natural gas to larger 

molecular weight hydrocarbons that can be used in fuels or other chemical products. The optimized 

reaction conditions were evaluated using visible light and synthesized BiOI, metal doped BiOI, 

and BiOI/Zeolite. BiOI/Mordenite was observed to produce the largest yield of bicyclohexane 

under visible light irradiation conditions. However, the overall yield of the dehydrodimerization 

reaction is still low, and further work should be conducted in order to increase the industrial 

relevance of this reaction. 

Iodine addition was also investigated with respect to photo-initiation and photocatalysis. 

Cyclohexane was considered as a substrate for visible light driven photocatalytic addition of 

iodine. With cyclohexane, it was proposed that a radical addition mechanism was responsible for 

the addition of iodine. The products of the iodine addition reactions were later used in a two step 

process with in situ generation of substrates for coupling reactions. 

Finally, the photocatalytic coupling of aryl compounds with cyclohexyl halides was 

investigated. These reactions are proposed to proceed through hole driven oxidation followed by 

radical coupling to the aromatic compound. Iodocyclohexane was found to be the most active 

cyclohexyl halide for coupling reactions. These reactions show promise for application in the 

chemical industry, since they all proceed under mild conditions and can be driven by freely 

available solar irradiation. Further investigation and optimization should be undertaken with 

industrial partners to realize the advantages presented by this technology. 
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APPENDIX A: SUPPLEMENTARY FIGURES FOR CHAPTER 3 

 

 

Figure A.1. X-Ray diffraction pattern obtained for BiOCl.   
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Figure A.2. SEM image of BiOCl at 5kX magnification. 
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Figure A.3. BET nitrogen adsorption-desorption isotherm for BiOCl conducted at 78K.   
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Figure A.4. UV-Vis DRS absorption spectrum for BiOCl.   
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Figure A.5. HPLC-DAD chromatograms monitored at 210-nm for the analysis of the 

photocatalytic degradation of IBP (1) with BiOCl after photolysis times of (A) 0-min; (B) 5-min; 

(C) 10-min; (D) 20-min; (E) 30-min; (F) 45-min; (G) 60-min; (H) 75-min; (I) 90-min; (J) 105-

min; (K) 120-min 
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Figure A.6. HPLC-DAD chromatograms monitored at 254-nm for the analysis of the 

photocatalytic degradation of IBP (1) with BiOCl after photolysis times of  (A) 0-min; (B) 5-min; 

(C) 10-min; (D) 20-min; (E) 30-min; (F) 45-min; (G) 60-min; (H) 75-min; (I) 90-min; (J) 105-

min; (K) 120-min 
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Figure A.7. HPLC-DAD chromatograms monitored at 310-nm for the analysis of the 

photocatalytic degradation of IBP (1) with BiOCl after photolysis times of (A) 0-min; (B) 5-min; 

(C) 10-min; (D) 20-min; (E) 30-min; (F) 45-min; (G) 60-min; (H) 75-min; (I) 90-min; (J) 105-

min; (K) 120-min  
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Figure A.8. (A) UV-Vis spectra extracted from HPLC-DAD chromatograms from the analysis of 

the photocatalytic degradation of IBP (1) with BiOCl.  Spectra measured at the retention times 

summarized in Table 3.2. 
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Figure A.9. Integrated peak areas from extracted ion chromatograms as a function of photolysis 

time for ibuprofen (1) photocatalytically degraded with BiOCl and analyzed by (+)nanoESI-LC-

MS/MS.  (A) Signals for IBPE (2) and IBAP (3); (B) Signals for secondary degradation products.  

Compounds are identified in Table 3.2. 
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Figure A.10. MS and MS/MS spectra for IBP (1) from the (+)nanoESI-LC-MS/MS analysis of 

photodegraded IBP (1) with BiOCl  
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Figure A.11. MS and MS/MS spectra for IBPE (2) from the (+)nanoESI-LC-MS/MS analysis of 

photodegraded IBP (1) with BiOCl  
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Figure A.12. MS and MS/MS spectra for IBAP (3) from the (+)nanoESI-LC-MS/MS analysis of 

photodegraded IBP (1) with BiOCl  
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Figure A.13. MS and MS/MS spectra for Compound 7 from the (+)nanoESI-LC-MS/MS 

analysis of photodegraded IBP (1) with BiOCl  
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Figure A.14. MS and MS/MS spectra for Compound 9 from the (+)nanoESI-LC-MS/MS 

analysis of photodegraded IBP (1) with BiOCl  
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Figure A.15. MS and MS/MS spectra for Compound 11 from the (+)nanoESI-LC-MS/MS 

analysis of photodegraded IBP (1) with BiOCl  
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APPENDIX B: SYNTHESIS, STRUCTURE, AND LUMINESCENCE OF COPPER(I) 

HALIDE COMPLEXES OF CHIRAL BIS(PHOSPHINES) 

 

B.1 Introduction Copper(I) phosphine halide complexes are common precursors in catalysis [1] 

and their luminescent properties have often been investigated [2].  For both applications, varying 

the phosphine enables rational control of the structure and properties of the copper complex.  For 

example, the structure of [Cu(diphos)(X)]n (X = halide) depends on the chelating bis(phosphine) 

diphos (Figure B.1). 

 

 

Figure B.1.  Structures of [Cu(diphos)(X)]n Complexes 
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Three-coordinate monomers A are known for bulky chelates, such as Cu(dapBz)(I) [3], or for  

ligands with large bite angles, as in Cu(Josiphos)(Br) (R = Cy, R’ = Ph, Chart 1) [4].  Four-

coordinate dimers B, with approximately tetrahedral copper, chelating bis(phosphines), and 

bridging halides, are the most common, with ligands such as dppf [5], dppBz [6], Binap [7], and 

dppp [8].  Finally, four-coordinate dimers C, with both halides and bis(phosphines) bridging, are 

often observed with flexible ligands having larger bite angles, as in [Cu(µ-diop)(µ-X)]2 (X = Cl or 

I) [9] or CuI complexes of dppb and dppPent [10]. 

The free energies of the isomers A-C are often similar (Figure B.1), so mixtures of isomers and 

interconversion between them can be observed.  For example, both monomeric and dimeric 

[Cu(Josiphos)(Br)]n could be isolated in pure form; they underwent solvent-dependent 

interconversion [4].  Similarly, both structures B and C were observed in the same crystal for 

[Cu(Ph-BPE)(Cl)]2 [11]. Small changes may determine the observed structure; replacing PPh2 

groups in dppBz with P(o-Tol)2 donors resulted in a change from dimer B to monomer A, [3,6]. 

while extending the linker between PPh2 donors by one CH2 group (dppp → dppb) switched diphos 

from a chelate in B to a bridging ligand in C [8,10].  

Luminescent properties have been reported for complexes of all three structure types, including 

Cu(dapBz)(I) (A) [3], [Cu(Binap)(I)]2 (B) [12], and [Cu(µ-diop)(µ-Cl)]2 (C) [9]. Changing the 

halide and/or the bis(phosphine) caused changes of emission color and quantum yield; the resulting 

structure-property relationships are potentially valuable in design and synthesis of new emitters 

with tailored photophysical properties [2].  

With this background, we report here the synthesis, structure and luminescent properties of new 

copper halide complexes with the chiral bis(phospholanes) i-Pr-DuPhos and Me-FerroLANE [13], 

the analogous chiral bis(phosphetane) Et-FerroTANE [14], and the P(t-Bu)2-substituted Josiphos 
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ligands CyPF-t-Bu and PPF-t-Bu (Scheme 1) [15].  In earlier work, Cu(i-Pr-DuPhos) complexes 

were formed in situ and used as precursors in asymmetric catalysis, but these starting materials 

were not isolated and their structures were not determined [16]. In contrast, the ferrocene-based 

Me-FerroLANE, Et-FerroTANE, and t-Bu-Josiphos derivatives, with larger bite angles, have not 

yet been used to prepare copper complexes or in Cu-catalyzed reactions.  Besides providing 

structural information for catalysis, we hoped to investigate structure-property relationships in 

luminescence by comparing the phospholane/phosphetane/dialkylphosphino donors to the more 

commonly used PAr2 groups shown in Figure B.1. 

 

B.2 Results and Discussion.   

Synthesis and Structure of Cu(diphos*) Halide Complexes Treatment of copper halides with 

(R,R)-i-Pr-DuPhos gave the dimers [Cu((R,R)-i-Pr-DuPhos)(X)]2 (X = I (1), Br (2), Cl (3)) as light 

yellow solids (Figure B.2). The analogous fluoride (4) [17] was prepared from iodide 1 and AgF 

[18]. Similar reactions of CuI with (R,R)-Me-FerroLANE and (S,S)-Et-FerroTANE yielded orange 

[Cu((R,R)-Me-FerroLANE)(I)]2 (5) and [Cu((S,S)-Et-FerroTANE)(I)]2 (6). The cluster 

Cu5I5((S,S)-Et-FerroTANE)3 (7), which was originally observed as a byproduct in the synthesis of 

6, was prepared rationally using a 5:3 ratio of CuI and the ligand.  Finally, CuI and t-Bu-Josiphos 

ligands gave Cu((R,S)-CyPF-t-Bu)(I) (8) and Cu((R,S)-PPF-t-Bu)(I) (9) as red-orange crystals. 
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Figure B.2. Synthesis of Complexes 1-9  

 

With Me-FerroLANE and Et-FerroTANE, these syntheses also gave small amounts of 

phosphine oxides, presumably via oxidation by Cu(II) impurities in the CuI; similar observations 

were made with Me-DuPhos earlier [19].  Using commercially available higher-purity CuI avoided 

this problem for Me-FerroLANE complex 5, but we were not able to obtain pure bulk samples of 

Et-FerroTANE complexes 6 and 7 (see the experimental section for details). 

Complexes 1-9 were characterized spectroscopically (see below), by elemental analyses, and, 

for 1-3, 5 and 7-9, by X-ray crystallography (Figures B.3-B.6, Table B.1, and the Supporting 

Information).   
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Figure B.3. ORTEP diagrams of [Cu((R,R)-i-Pr-DuPhos)(I)]2•Et2O (1•Et2O, left), [Cu((R,R)-i-Pr-

DuPhos)(Br)]2•THF (2•THF, middle), and [Cu((R,R)-i-Pr-DuPhos)(Cl)]2•THF (3•THF, right). 

The solvent molecules are not shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4.  ORTEP diagram of [Cu((R,R)-Me-FerroLANE)(I)]2 (5). 



167 

 

 

 

Figure B.5.  ORTEP diagram of Cu5I5((S,S)-Et-FerroTANE)3 (7), showing µ4-I3, µ3-I2, and µ2-

I1, as well as chelating Et-FerroTANE (P1) and bridging Et-FerroTANE (P2/P3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.6.  ORTEP diagrams of Cu((R,S)-CyPF-t-Bu)(I) (8, left), and Cu((R,S)-PPF-t-

Bu)(I)•CH2Cl2 (9•CH2Cl2, right, with the solvent molecule omitted).  
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The isomorphous structures of complexes 1-3 contained the extensively investigated Cu2(µ-X)2 

core [2], which here was puckered in a “butterfly” geometry with distorted tetrahedral coordination 

at copper. Unfortunately, we were not able to grow suitable crystals of fluoride complex 4 for 

comparison, but its structure and those of 1-3 were investigated computationally (see below).  

Table B.1 summarizes X-ray crystallographic structural data for 1-3 in comparison to the dppBz 

analogues 10-12, which contain the same o-phenylene linker, but PPh2 donors in place of the 

phospholanyl groups [6].   The Cu-X and Cu-P bond lengths were very similar, as were the P-Cu-

P bite angles, but the DuPhos complexes featured larger X-Cu-X and Cu-X-Cu angles, associated 

with longer Cu-Cu distances.   

 

Table B.1.  Average Values of Selected Bond Lengths (Å) and Angles (deg) in [Cu(i-Pr-

DuPhos)(X)]2 Dimers 1-3 and the dppBz Analogues 10-12 

 

No. X Cu–X Cu–P P-Cu-P P-Cu-X  X-Cu-X  Cu-X-Cu  Cu•••Cu  CuX2/Cu’X2 

dihedral angle  

1 I 2.6423(9) 2.255(2) 91.77(7) 116.32(6) 101.45(3) 76.28(3) 3.264 154.61 

2 Br 2.4895(7) 2.2536(12) 91.51(4) 118.08(6) 95.40(5) 82.09(5) 3.208 154.50 

3 Cl 2.3649(14) 2.2500(14) 91.55(5) 118.08(6) 95.40(5) 82.09(5) 3.106 154.65 

          

10 I 2.635(9) 2.281(2) 87.5(6) 114.24(6) 109.3(3) 66.7(2) 2.898 143.7 

11 Br 2.478(7) 2.259(1) 89.2(4) 114.66(4) 107.6(2) 69.8(2) 2.837 124.5 

12 Cl 2.359(1) 2.254(2) 89.0(5) 116.38(6) 102.3(4) 74.8(4) 2.866 150.9 

 

As in 1-3, the structures of 5 and 7 also contained distorted tetrahedral copper, supported by 

bridging bis(phosphines).  In 5, the large P-Cu-P angle of 123.78(4)° was accompanied by a 

diamond-shaped Cu2I2 core including acute Cu-I-Cu angles (63.5°) and a Cu-Cu distance of 



169 

 

2.8694(9) Å.  Similar bridging coordination in copper complexes is known for dppf [20] and its 

P(t-Bu)2 analogue dtbpf [21], but was not previously reported with any metal for Me-FerroLANE.  

The structure of cluster 7 featured both a chelate Et-FerroTANE (bite angle = 112.5(3)°) and two 

bis(phosphetanes) bridging two coppers, with an unusual Cu5I5 core (Figure 3) [22].  As with Me-

FerroLANE in 5, bridging coordination of Et-FerroTANE had not been observed earlier.  For the 

three different types of bridging iodides in 7, slightly longer Cu-I bonds were generally observed 

with larger iodide coordination numbers (for µ4-I(3), Cu(2)-I = 2.769(2) Å and Cu(3)-I = 2.740 Å; 

for µ3-I(2), Cu(1)-I = 2.675(2) Å, Cu(2)-I = 2.680(3) Å, and Cu(3)-I = 2.650(2) Å; for µ2-I(1), 

Cu(2)-I = 2.660(3) Å, and Cu(3)-I = 2.669(2) Å). 

As described in the introduction, Cu(Josiphos)(Br) complexes with PPh2 and PCy2 donors 

formed three-coordinate monomers or four-coordinate, bromide-bridged dimers [4].  As expected, 

increasing the size of the phosphine (P(t-Bu)2) and the halide (iodide) yielded monomeric crystals 

of 8 and 9.  Their structures (Figure B.6) were similar to those of a related monomeric bromide 

complex, with distorted trigonal planar coordination and Josiphos bite angles of 106.21(3)° and 

103.62(7)°. As seen in Table B.2, changing the phosphine substituents (t-Bu/Cy/Ph) and the halide 

(I/Br) had only small effects on the structures. 
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Table B.2. Selected Bond Lengths (Å) and Angles (deg) in Cu(t-Bu-Josiphos)(I) Complexes 8 and 

9 and the Analogous Bromide Complex Cu(PPF-t-Bu)(Br)  

 

 

Josiphos/X CyPF-t-Bu/I (8) PPF-t-Bu/I  

(9•CH2Cl2) 

Rac-PPF-Cy/Br a Enant-PPF-Cy/Br a 

R/R’ t-Bu/Cy t-Bu/Ph Cy/Ph Cy/Ph 

Cu–X 2.5187(4) 2.4970(9) 2.3130(3) 2.3232(5) 

Cu–P1 2.2437(8) 2.232(2) 2.2395(6) 2.2659(7) 

Cu–P2 2.2562(8) 2.2563(19) 2.2429(5) 2.2626(8) 

X–Cu–P1 123.34(2) 126.16(6) 130.20(2) 130.86(2) 

X–Cu–P2 130.41(2) 130.19(6) 125.88(2) 126.69(2) 

P1–Cu–P2 106.21(3) 103.62(7) 102.51(2) 101.97(3) 

 

a The structure of the bromide complex in reference 4b was determined separately with racemic 

and enantiomerically pure Josiphos ligands.  All complexes in this work were prepared with 

enantiomerically pure ligands. 

 

Copper complexes 1-9 are the first examples with these ligands.  For future applications, it would 

be useful to determine their coordination modes spectroscopically, without recourse to X-ray 

crystallography.  Therefore, we investigated their 31P{1H} NMR spectra, which all featured broad 

signals typical of Cu-phosphine complexes [23]. Binding i-Pr-DuPhos to the copper halides 

resulted in 31P NMR coordination chemical shifts from  –11.2 (free ligand) [24] to –2.8 (F), –7.1 

(Cl), –5.6 (Br), or –3.6 ppm (I; all data in CDCl3).  Shifts similar in magnitude were observed for 

the CuX complexes of the related o-phenylene-linked bis(phosphine) dppBz in 10-12, from  –
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13.0 (ligand) [25] to –17.2 (Cl), –19.0 (Br), and –22.1 ppm (I).  Similarly, the Me-FerroLANE 31P 

NMR chemical shift moved from –1.1 (ligand) to 3.5 (CDCl3) or –8.9 ppm (C6D6) on formation 

of 5.  This surprisingly large, reversible, solvent-dependent chemical shift difference might arise 

from a structural change, for example isomerization between bridging and chelate bis(phosphines), 

but we have no direct evidence for this possibility.  The Et-FerroTANE 31P NMR signal [26] 

moved from  13.1 to two broad signals at 2.9 and –0.5 ppm (CD2Cl2) in 7, which, on the basis 

of their relative intensity, were assigned to chelating and bridging Et-FerroTANE, respectively.  

This assignment is consistent with the 31P NMR shift of [Cu(Et-FerroTANE)(I)]2 (6, 4.7 ppm in 

CD2Cl2), which likely contains a bridging bis(phosphine), as in 6.  For chelating t-Bu-Josiphos 

ligands, large P(t-Bu)2 and small PCy2 or PPh2 coordination chemical shifts were observed, from 

46.6 and –15.4 to 26.5 and –14.7 for CyPF-t-Bu in 8 and from 45.9 and –26.1 to 

32.1 and –22.3 for PPF-t-Bu in 9 [27].  This chelation led to large increases in JPP, from 16 to 

154 Hz and from 50 to 160 Hz for 8 and 9 respectively. 

 

Photophysical Properties of Complexes 1-4 As shown in Figure B.7, varying the halide in 

DuPhos complexes 1-4 had little effect on their UV-vis spectra in CH2Cl2 [28].  For 1-3, the intense 

peaks around 360 nm had extinction coefficients of ~104 M–1, consistent with their assignment, as 

in similar complexes, to (M+X)LCT charge transfer processes.  
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Figure B.7.  UV-Vis Spectra of 1-4 in CH2Cl2 (10-4 M) 

 

Solid samples of DuPhos complexes 1-4 emitted yellow-green light upon UV irradiation at room 

temperature (Figure B.8).  Emission also occurred in PMMA films formed by spin-coating of 

CH2Cl2 solutions (Supporting Information) [29]. In contrast, no emission was observed in 

ferrocene-based 5-9. 

 

 

 

Figure B.8.  Samples of 1-4 at room temperature under ambient light (above) and on UV 

irradiation (below). 
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The luminescence of 1-4 was further probed by low-temperature spectroscopy (Figure B.9 and 

Table B.3).  The excitation profiles in the solid state at 77 K, with max ranging from 372 to 397 

nm, were similar to the room-temperature UV-vis spectra in CH2Cl2 solution, except for the low-

energy absorption observed in solution for fluoride 4 [28]. Quantum yields measured for solid 

samples at room temperature in air are included in Table B.3.  Consistent with qualitative 

observations, iodide complex 1 had the brightest emission under these conditions.  

 

 

 

 

Figure B.9. Luminescence spectra of 1-4 at 77 K.  All emission spectra were obtained using 400 

nm as the excitation wavelength. All excitation spectra were obtained using the emission peak 

maximum. 
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Table B.3.  Photophysical data for 1-4 (solid state, 77 K) 

Compound (X)  ex(nm)a em (nm) Apparent Stokes Shift (cm-1)b Quantum Yield  

(298 K) 

1 (I) 397 532 6390 0.039(3) 

2 (Br) 372 549 8670 0.017(2) 

3 (Cl) 374 542 8290 <0.01 

4 (F) 384 539 7490 <0.01 

 

a λmax from excitation spectrum b energy difference between absorption and emission peaks, 

which may not involve the same excited state 

 

Electronic Structure of Complexes 1-4: Computational Studies To investigate the 

photophysical properties of DuPhos complexes 1-4, we calculated the structures of their ground 

and excited states using DFT methods (see the experimental section and Supporting Information 

for details).  For the ground states, the computed (gas-phase) structures were in reasonable 

agreement with those observed by X-ray crystallography in the solid state. The calculations 

slightly overestimated the Cu–X and Cu–P bond lengths, with the best agreement for functionals 

including a dispersion correction [30]. However, structures optimized with the B3LYP-D3 

functional, which includes dispersion corrections, showed significantly larger deviations from the 

crystallographic metrics within the Cu2X2 core, especially in Cu•••Cu distances; these core metrics 

were better reproduced by B3LYP calculations without dispersion (Table B.4). This is an unusual 

deviation from current thinking, in which inclusion of dispersion is usually strongly advocated 

[30].  
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Table B.4.  Comparison of gas-phase Cu-Cu distances and CuCl2Cu bridge fold angles (dihedral 

angles between the CuCl2 planes) as calculated by DFT (B3LYP-D3 and B3LYP) and determined 

crystallographically in the solid state. 

 

Cu-Cu distance (Å) CuCl2Cu Fold Angle (deg) 

B3LYP-D3 B3LYP X-ray B3LYP-D3 B3LYP X-ray 

I (1) 3.061 3.426 3.264 143.2 157.6 154.6 

Br (2) 2.862 3.254 3.208 145.4 164.4 154.5 

Cl (3) 2.861 3.180 3.106 146.9 162.4 154.7 

F (4) 2.610 2.909 - 146.2 168.9 - 

 

A superimposition of structures of the chloride dimer 3 determined using both functionals is 

shown in Figure B.10. As shown in Table B.4, without dispersion corrections, the fold angle 

between each Cl-Cu-Cl plane is significantly larger and the Cu—Cu distance significantly longer 

than when dispersion corrections are included; analogous trends were observed for the I, Br and F 

analogues, although no crystallographic data are available for the fluoride. Thus the dispersion 

corrected functional underestimates the fold angle in the bridge, with a resultant large decrease in 

the Cu-Cu distance. We suggest that in the gas-phase calculation, in which no intermolecular 

interactions are included, many small intramolecular dispersion attractions between the ligand CH 

bonds are sufficient to cause additional folding in the bridge and reduction in the Cu-Cu distance, 

as shown in Figure B.10, while in the solid state these intramolecular interactions are 

counterbalanced by intermolecular interactions to give a more planar bridge and a longer Cu-Cu 

distance. This illustrates that care must be used when validating the quality of gas-phase DFT 

results by their agreement, or lack thereof, with crystallographic data. We will have more to say 

about the solution structure later. 



176 

 

 

Figure B.10. DFT calculated gas-phase structures for 3 using the B3LYP-D3 (blue) and B3LYP 

(bronze) functionals, looking down the Cl-Cl vector.  

 

 

Figure B.11. Calculated (B3LYP-D3) HOMO (left) and LUMO (right) for 3.  
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As shown in Figure B.11 for the chloro complex 3, the computed HOMOs in the halide series 

involve interactions of Cu 3d, halide p, and the out of phase P lone pair combinations, and the 

LUMO is an entirely ligand based * MO within the i-Pr-DuPhos o-phenylene group.  

TD-DFT methods were used to compute the UV-vis spectra of 1-4 [29]. There is reasonable 

agreement between the computed gas-phase spectra (Figure B.12) and the experimental ones in 

CH2Cl2 solution.  In particular, the calculations reproduced the similarity of the spectra and their 

lack of dependence on the halide.  Notably, the analogous spectral calculations on the more folded 

B3LYP-D3 structures gave poorer agreement with experiment (see the Supporting Information) 

suggesting that the solution structures of these dimers may be more similar to the less folded solid 

state ones, in which intramolecular dispersive forces are less controlling of structure. 

 

Figure B.12.  Computed (B3LYP) UV-Vis Spectra of 1-4 

 

Optimization of the first singlet excited state was also carried out for each compound using TD-

DFT methods. An overlay of the computed structures of ground and first excited states for chloride 

complex 3 (Figure B.13) is consistent with the expected results of a HOMO-LUMO transition and 

an (M+X)LCT emissive excited state. In particular, the excited state included longer Cu–X and 

Cu•••Cu distances, with a significantly longer C–C bond in one DuPhos aryl group, consistent 

with weaker bonding both in the Cu2X2 core and the DuPhos arene ring. The superimposition also 
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illustrates the significant twisting of the DuPhos ligand containing the long C-C bond relative to 

the ground state.  Calculations without dispersion gave similar results, but with less folded Cu2X2 

cores, as also observed for the ground states. 

 

 

Figure B.13.  Overlay of the computed (B3LYP-D3) ground state (red) and excited state (blue) 

structures for 3. 

 

Structure-Property Relationships in Photophysical Properties of 1-4 As in structurally 

similar Cu(I) phosphine halide complexes, we propose that excitation from a Cu2X2-based HOMO 

to a π* acceptor phosphine LUMO (DuPhos o-phenylene group) [6] in 1-4 leads to (M+X)LCT 

excited states, for which the structures of the lowest-energy singlet states were optimized.  By 

analogy to previous work [6], we assume that the emissive excited states have (M+X)LCT 

character, but cannot tell if they are singlets or triplets.   

In related complexes, (M+X)LCT emission energy can often be tuned by changing the halide 

and/or the phosphine, to control the energy of the HOMO and/or LUMO [31].  Table B.5 compares 

low-temperature emission spectral data for 1-3 and analogous complexes, which all also contain 

P-aryl acceptor groups.  Because related fluoride complexes are rare, data for 4 is not included.  

 

 



179 

 

Table B.5. Emission spectroscopic data (nm) for 1-3 and related [Cu(diphos)(X)]2 Complexesa 

number Diphos Cl Br I 

1 

 

542 549 532 

2 

 

537 524 505 

3 

 

532 517 500 

4 

 

513 498 471 

5 

 

508 503 506 

6 

 

518 520 523 

 

a Data from solid-state emission spectra at 77 K, except for entry 6 (room temperature in CH2Cl2 

solution) 

 

In some cases (numbers 2-4), emission wavelengths showed a smooth dependence on halide, in 

the order Cl > Br > I.  This behavior has been rationalized on the basis of the relative ligand field 

strengths (Cl > Br > I), which make the Cu2X2 HOMO highest in energy for X = Cl, leading to 

reduced emission energy and higher wavelength [6,31,33]. However, in some closely related 

structures, the halide had little effect (entries 5-6) [34,35]. Our data for 1-3, likewise, did not show 
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a smooth trend (number 1; note that the emission maximum for fluoride 4 was at 539 nm). It has 

been proposed that such behavior reflects an important contribution from the phosphine donor 

orbitals to the HOMO [2].  

A more direct test of the effects of switching from the PPh2 donor to the phospholane group 

comes from comparing data for 1-3 with the dppBz analogues 10-12 (Table B.5, entries 1-2). The 

ligand field of the alkylphosphine donor phospholane should be greater than that of the 

arylphosphine PPh2 group [36].  This should increase the HOMO energy, reducing emission 

energy and increasing wavelength, as described above for the halides. This argument is consistent 

with literature emission data for the phosphino-pyridine complexes in Figure B.14 containing PPh2 

and phospholane donors, a rare example of this comparison [37], and it also works in rationalizing 

the increased emission wavelength for 1 and 2 in comparison to their dppBz analogues 10 and 11.  

The similar emission wavelengths for 3 and 12 may reflect overlaid halide effects. 

 

 

Figure B.14.  Emission Wavelength Data (Solid State, Room Temperature) for Phosphine-

Pyridine CuI Complexes Containing Diphenylphosphino or Phospholane Donors 
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B.3 Conclusions.  

Structure-Property Relationships As described in the Introduction (Figure B.1), changing the 

bis(phosphine) controls the structure and properties of [Cu(diphos)(X)]n complexes, and we have 

observed similar relationships here with several chiral bis(phosphines) new to copper coordination 

chemistry.  The synthesis and structural characterization of i-Pr-DuPhos complexes 1-3 established 

the expected chelation, which is consistent with previous hypotheses on the mechanisms of Cu(i-

Pr-DuPhos)-catalyzed reactions [16]. The larger bite angles of the ferrocene-linked 

bis(phospholane) Me-FerroLANE and bis(phosphetane) Et-FerroTANE resulted in different 

structures, with chelating and/or bridging coordination in 5 and 7. The combination of large bite 

angle, bulky phosphine substituents, and iodide ligands led to monomeric t-Bu-Josiphos 

complexes 8 and 9, as expected in comparison to related complexes [4].   

Related structure-property relationships were observed in the photophysical properties of 

emissive complexes 1-4, which contain the better donor phospholanes in comparison to analogs 

with the more commonly used diarylphosphino groups. As shown by the comparison in Table B.5, 

however, varying the halide in the dimers [Cu(diphos)(X)]2 may result either in smooth trends in 

emission energy or in discontinuities, as in our data for 1-4; further structure-property studies, 

including additional study of rare fluoride complexes, may enable better control of these 

parameters.  We also observed that a better match of the Cu2X2 core crystal structure and the 

solution UV-vis spectra to computed results was obtained in DFT calculations when dispersion 

was not included, which may be more general in such conformationally flexible systems. 

B.4 Experimental Section. General Experimental Details Unless otherwise noted, all 

reactions and manipulations were performed in dry glassware under a nitrogen atmosphere at 

ambient temperature in a glove box or using standard Schlenk techniques.  Pentane, CH2Cl2, ether, 
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THF, and toluene were dried over alumina columns similar to those described by Grubbs [38].  

NMR spectra were recorded with 500 or 600 MHz Bruker spectrometers.  1H or 13C NMR chemical 

shifts are reported vs Me4Si and were determined by reference to the residual 1H or 13C solvent 

peaks.  31P NMR chemical shifts are reported vs H3PO4 (85%) used as an external reference.  

Coupling constants are reported in Hz, as absolute values.  Unless indicated, peaks in NMR spectra 

are singlets. Quantitative Technologies Incorporated/Intertek Pharmaceutical Services 

(Whitehouse, NJ) or Atlantic Microlab (Norcross, GA) provided elemental analyses. Mass 

spectrometry was performed at the University of Illinois.  Reagents were from commercial 

suppliers. 

[Cu((R,R)-i-Pr-DuPhos)(I)]2 (1) To a slurry of Cu(I) iodide (44 mg, 0.23 mmol) in 5 mL of 

THF was added a solution of (R,R)-i-Pr-DuPhos (96 mg, 0.23 mmol) in 2 mL of THF and the 

resulting yellow solution was stirred for 20 min. The solution was concentrated under vacuum to 

give a mixture of pale yellow powder and yellow crystalline material. The mixture was partially 

re-dissolved in ether (~3 mL) at room temperature, then cooled to -20 °C. Overnight, a pale yellow 

crystalline solid formed. The solution was decanted and the crystals were dried under vacuum 

(0.140 g, 99%). The solid was washed with pentane to remove a small amount of free i-Pr-DuPhos.  

A sample recrystallized from CH2Cl2 contained 0.75 equiv of that solvent, according to 1H NMR 

integration and elemental analysis. Anal. Calcd for C52H88Cu2I2P4•0.75CH2Cl2: C, 49.43; H, 7.04. 

Found: C, 49.74; H, 7.08. HRMS m/z calcd. for C52H88Cu2I2P4: 1216.2518. Found: 1216.2498. 

31P{1H} NMR (CDCl3, 25 °C): δ -3.6. 1H NMR (CDCl3, 25 °C): δ 7.70-7.69 (m, 4H, Ar), 7.47-

7.46 (m, 4H, Ar), 2.53-2.50 (br m, 4H, CH), 2.31-2.23 (br m, 8H, CH2), 2.20-2.15 (br m, 4H, CH), 

2.09-2.06 (br m, 4H, CH), 1.79-1.74 (overlapping m, 4H, CH2), 1.71-1.64 (br m, 4H, CH2), 1.26-

1.22 (br m, 4H, CH), 1.11 (d, J = 7, 12H, i-Pr Me), 0.94 (d, J = 7, 12H, i-Pr Me), 0.75 (d, J = 7, 
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12H, i-Pr Me), 0.68 (d, J = 7, 12H, i-Pr Me). 13C{1H} NMR (CDCl3, 25 °C): δ 143.6 (t, J = 21, 

quat Ar), 134.7 (t, J = 2, CH), 129.8 (CH), 52.4 (t, J = 9, CH), 51.3 (t, J = 9, CH), 32.8 (CH2), 30.7 

(t, J = 8, CH), 28.7 (CH), 28.3 (CH2), 24.9 (t, J = 3, i-Pr Me), 23.8 (t, J = 5, i-Pr Me), 21.5 (t, J = 

3, i-Pr Me), 20.3 (t, J = 4, i-Pr Me). 

[Cu((R,R)-i-Pr-DuPhos)(Br)]2 (2) To a slurry of Cu(I) bromide (33 mg, 0.23 mmol) in 5 mL 

of THF was added a solution of (R,R)-i-Pr-DuPhos (96 mg, 0.23 mmol) in 2 mL of THF and the 

resulting yellow solution was stirred for 20 min. The solution was concentrated under vacuum to 

give a mixture of yellow powder and yellow crystalline material. The mixture was partially re-

dissolved in ether (~3 mL) at room temperature, then cooled to -20 °C. Overnight, a yellow 

crystalline solid was formed. The solution was decanted and the crystals were dried under vacuum 

(0.126 g, 97%). X-ray crystallography showed that the crystals were [Cu((R,R)-i-Pr-

DuPhos)(Br)]2•THF. 

Anal. Calcd for C52H88Cu2Br2P4: C, 55.56; H, 7.89. Found: C, 55.56; H, 8.05. HRMS m/z calcd. 

for C52H88Cu2Br2P4: 1120.2795. Found: 1120.2767.  31P{1H} NMR (CDCl3, 25 °C): δ -5.6. 1H 

NMR (CDCl3, 25 °C): δ 7.69 (br m, 4H, Ar), 7.46 (br m, 4H, Ar), 2.51 (br m, 4H, CH), 2.25 (br 

m, 8H, CH2), 2.13 (br m, 4H, CH), 2.03-2.02 (br m, 4H, CH), 1.79-1.74 (br m, 4H, CH2), 1.70-

1.63 (br m, 4H, CH2), 1.2 (overlapping br m, 4H, CH), 1.1 (d, J = 7, 12H, i-Pr Me), 0.95 (d, J = 7, 

12H, i-Pr Me), 0.77 (d, J = 6, 12H, i-Pr Me), 0.68 (d, J = 6, 12H, i-Pr Me). 13C{1H} NMR (CDCl3, 

25 °C): δ 143.4 (t, J = 22, quat Ar), 134.6 (Ar), 129.7 (Ar), 52.4 (t, J = 9, CH), 51.5 (t, J = 8, CH), 

33.0 (CH2), 30.8 (t, J = 9, CH), 28.7 (CH), 28.2 (CH2), 24.9 (br t, i-Pr Me), 23.7 (t, J = 5, i-Pr Me), 

21.7 (br t, i-Pr Me), 19.7 (t, J = 4, i-Pr Me). 

 [Cu((R,R)-i-Pr-DuPhos)(Cl)]2 (3) To a slurry of Cu(I) chloride (23 mg, 0.23 mmol) in 5 mL 

of THF was added a solution of (R,R)-i-Pr-DuPhos (96 mg, 0.23 mmol) in 2 mL of THF and the 
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resulting green solution was stirred for 20 min. The solution was concentrated under vacuum to 

give a mixture of yellow-green powder and yellow-green crystalline material. The mixture was 

partially redissolved in ether (~3 mL) at room temperature, then cooled to –20 °C. Overnight, a 

yellow-green crystalline solid formed. The solution was decanted and the crystals were dried under 

vacuum (0.107 g, 89%). The solid was washed with pentane to remove a small amount of free i-

Pr-DuPhos. X-ray crystallography showed that the crystals were [Cu((R,R)-i-Pr-

DuPhos)(Cl)]2•THF.  

The co-crystallized solvent molecules in dimers 1-3 appeared to be lost easily, according to 

elemental analyses.  For a sample which was recrystallized from THF/ether, the 1H NMR spectrum 

showed it contained about 1.5 equiv of THF, which was apparently lost before analysis.  Anal. 

Calcd for C52H88Cu2Cl2P4: C, 60.34; H, 8.57. Found: C, 59.91; H, 8.53.  Another sample, 

recrystallized from CH2Cl2, analyzed for a monosolvate.  Anal. Calcd for C52H88Cu2Cl2P4•CH2Cl2: 

C, 56.83; H, 8.10. Found: C, 56.52; H, 8.08.  After this solid had been stored at room temperature 

for several days, its 1H NMR spectrum showed the presence of 0.6 equiv of CH2Cl2.  HRMS m/z 

calcd. for C52H88Cu2Cl2P4: 1032.3806. Found: 1032.3789. 31P{1H} NMR (CDCl3, 25 °C): δ -7.1. 

1H NMR (CDCl3, 25 °C): δ 7.72-7.69 (br m, 4H, Ar), 7.48-7.47 (br m, 4H, Ar), 2.55-2.50 (br m, 

4H, CH), 2.29-2.23 (br m, 8H, CH2), 2.19-2.12 (br m, 4H, CH), 2.06-2.02 (br m, 4H, CH), 1.81-

1.75 (apparent dq, 1JH-H = 13, 2JH-H = 13 4H, CH2), 1.71-1.64 (apparent dq, 1JH-H = 12, 2JH-H = 12, 

4H, CH2), 1.24-1.21 (br m, 4H, CH), 1.12 (d, J = 7, 12H, i-Pr Me), 0.97 (d, J = 7, 12H, i-Pr Me), 

0.80 (d, J = 7, 12H, i-Pr Me), 0.71 (d, J = 7, 12H, i-Pr Me). 13C{1H} NMR (CDCl3, 25 °C): δ 143.4 

(t, J = 22, quat Ar), 134.6 (Ar), 129.7 (Ar), 52.6 (t, J = 10, CH), 51.6 (t, J = 11, CH), 33.2 (CH2), 

30.9 (t, J = 9, CH), 28.9 (CH), 28.3 (CH2), 25.0 (t, J = 3, i-Pr Me), 23.7 (t, J = 6, i-Pr Me), 21.8 (t, 

J = 7, i-Pr Me), 19.6 (t, J = 4, i-Pr Me).  
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[Cu((R,R)-i-Pr-DuPhos)(F)]2 (4) A solution of [Cu((R,R)-i-Pr-DuPhos)(I)]2 (1, 140 mg, 0.115 

mmol) in 2 mL of THF was added to AgF (58 mg, 0.45 mmol, 2.0 equiv).  The resulting slurry 

was protected from light and sonicated for 1.5 h in an ultrasonic cleaning bath, then filtered through 

Celite to remove precipitate formed during the reaction. The solvent was removed under vacuum 

to give a yellow-gold solid (74 mg, 64%).   

The parent ion was not observed in the mass spectrum, in which the main peak was a [Cu2(i-Pr-

DuPhos)2] fragment. MS m/z calcd. for C52H88Cu2 (MH–2F)+: 963.4. Found: 963.5.  31P{1H} NMR 

(CDCl3, 25 °C): δ -2.8. 31P{1H} NMR (THF-d8, 25 °C): δ -6.2.  19F NMR (THF-d8, 25 °C): δ -

140.3. 1H NMR (THF-d8, 25 °C): δ 7.82-7.80 (m, 4H, Ar), 7.48-7.46 (m, 4H, Ar), 2.62-2.56 (br 

m, 4H, CH), 2.32-2.19 (br m, 16H, overlapping CH2 and CH), 1.84 (apparent dq, J = 6, 6, 4H, 

CH2), 1.79-1.70 (br m, 4H, CH2), 1.42 (very br, 4H, CH 1.16 (d, J = 7, 12H, i-Pr Me), 0.96 (d, J = 

8, 12H, i-Pr Me), 0.72 (d, J = 7, 12H, i-Pr Me), 0.68 (d, J = 6, 12H, i-Pr Me). 13C{1H} NMR (THF-

d8, 25 °C): δ 144.8 (t, J = 21, quat Ar), 135.4 (t, J = 3, CH), 130.1 (CH), 52.8 (t, J = 8, CH), 51.4 

(t, J = 8, CH), 32.6 (CH2), 31.3 (t, J = 9, CH),  29.4 (CH), 29.1 (CH2), 25.0, (br, i-Pr Me), 24.2 (br, 

i-Pr Me), 21.1 (i-Pr Me), 20.9 (br, i-Pr Me).  

[Cu((R,R)-Me-FerroLANE)(I)]2 (5) Treatment of CuI with Me-FerroLANE gave 5; the 

formation of impurities in this reaction depended on the solvent and the source/purity of copper 

iodide, as summarized below.  To a slurry of CuI (Strem, 98%; 22 mg, 0.12 mmol) in 2 mL of 

THF was added a solution of (R,R)-Me-FerroLANE (37.5 mg, 0.12 mmol) in 2 mL of THF and 

the resulting dark orange solution was stirred for 20 min. The solution was concentrated under 

vacuum to give an orange solid.  The solid was redissolved in THF; slow evaporation gave a 

mixture of orange crystals and amorphous material (0.058 g, 86%), which contained an 

unidentified impurity (31P{1H} NMR:  62.9).  In a similar experiment, the orange solid was 
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washed with ether and pentane; X-ray quality crystals were obtained from the pale orange pentane 

solution.  No impurities were formed in a similar preparation in toluene, which gave orange 

crystals after recrystallization from toluene/pentane at –20 °C.  Similarly, no impurities were 

observed with higher-purity CuI in THF.  To a slurry of “Puratronic” CuI (Alfa Aesar, 99.999%; 

22 mg, 0.12 mmol) in 1 mL of THF was added a solution of (R,R)-Me-FerroLANE (47.5 mg, 0.12 

mmol) in 2 mL of THF. The resulting bright orange solution was stirred for 20 min, then filtered 

through Celite. Concentration under vacuum gave analytically pure orange powder (53 mg, 42% 

yield).  

Anal. Calcd. for C44H64Cu2I2P4Fe2: C, 43.70; H, 5.33. Found: C, 43.51; H, 5.24. HRMS m/z 

calcd. for C44H64Cu2IP4Fe2(M–I)+: 1081.0294. Found: 1081.0278.  Because the 31P NMR spectra 

were solvent-dependent, we report NMR data in different solvents.  31P{1H} NMR (CDCl3, 25 

°C): δ 3.5. 31P{1H} NMR (C6D6, 25 °C): δ –8.9. 1H NMR (CDCl3, 25 °C): δ 4.55 (4H, Cp CH), 

4.34 (overlapping, 8H, Cp CH), 4.20 (4H, Cp CH), 2.75-2.72 (br m, 4H, CH), 2.43-2.41 (br m, 

4H, CH), 2.27-2.23 (br m, 4H, CH2), 2.02-1.98 (br m, 4H, CH2), 1.62 (apparent q, J = 10, 12H, 

Me), 1.51-1.45 (br m, 4H, CH2), 1.34-1.30 (br m, 4H, CH2), 0.90 (apparent q, J = 7, Me). 1H NMR 

(C6D6, 25 °C): δ 4.66 (4H, Cp CH), 4.17 (4H, Cp CH), 3.97 (4H, Cp CH), 3.87 (4H, Cp CH), 2.83 

(4H, CH), 2.51-2.49 (br m, 4H, CH), 2.03 (4H, CH2), 1.93 (4H, CH2), 1.89 (apparent q, J = 8, 12H, 

Me), 1.51 (4H, CH2), 1.25-1.21 (br m, 4H, CH2), 1.19 (apparent q, J = 6, 12H, Me). All of the 

signals were broad.  13C{1H} NMR (CDCl3, 25 °C): δ 76.4 (t, J = 12, Cp CH), 73.6 (br t, quat Cp), 

73.3 (Cp CH), 71.1 (Cp CH), 70.5 (Cp CH), 36.0 (CH2), 35.6 (CH2), 34.9 (t, J = 9, CH), 34.0 (t, J 

= 9, CH), 20.9 (t, J = 9, Me), 14.9 (Me).  13C{1H} NMR (C6D6, 25 °C): δ 77.2 (t, J = 10, Cp CH), 

75.4 (br t, quat C), 72.8 (Cp CH), 70.7 (Cp CH), 69.7 (Cp CH), 36.2 (CH2), 36.0 (t, J = 8, CH), 

35.3 (CH2), 35.0 (t, J = 8, CH), 21.3 (t, J = 7, Me), 16.3 (Me).  
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Cu2I2((S,S)-Et-FerroTANE)2 (6) As with Me-FerroLANE analogue 5, impurities were formed 

in the reaction of Et-FerroTANE and CuI.  Varying the solvent (THF or toluene) and/or the CuI 

purity (98% to 99.9999%) did not avoid this problem, and adding copper wire, to reduce putative 

Cu(II) impurities [39],i was also unsuccessful, so we were not able to get pure bulk samples of 6.  

In a typical synthesis, to a slurry of CuI (Strem, 98%; 44 mg, 0.23 mmol) in 2 mL of THF was 

added a solution of (S,S)-Et-FerroTANE (102 mg, 0.23 mmol) in 1 mL of THF. The resulting 

orange solution was stirred for 20 min, then concentrated under vacuum to give an orange solid 

(134 mg, 92%). 31P NMR spectra of the bulk solid (CD2Cl2) showed an impurity signal at 64.3 

ppm (7%), which was present in all non-crystalline material.  The 31P NMR spectrum of a portion 

of the original reaction mixture (THF) showed peaks due to the impurity (  61.2), plus additional 

signals at 56.7 (trace), 12.2 (Et-FerroTANE), and 3.3 ppm (6).  Slow evaporation of this solution 

gave orange crystals, which X-ray crystallography showed were Cu5I5((S,S)-Et-FerroTANE)3 (7).  

HRMS m/z calcd. for C48H72Cu2IP4Fe2(M–I)+: 1137.0920. Found: 1137.0925.  31P{1H} NMR 

(CD2Cl2, 25 °C): δ 4.7 (6), 12.1 (free Et-FerroTANE, 5%), and unidentified signals at δ 64.3 (7%), 

59.2 (trace), and 45.4 (trace). 1H NMR (CD2Cl2, 25 °C): δ 4.53 (4H, Cp CH), 4.41 (8H, Cp CH), 

4.36 (4H, Cp CH), 2.64 (4H, FerroTANE CH), 2.43-2.37 (br m, 12H, CH2 and FerroTANE CH), 

2.27-2.24 (br m, 4H, CH2), 2.00-1.95 (br m, 4H, CH2), 1.38-1.37 (br m, 4H, CH2), 1.10 (t, J = 7, 

12H, Me), 0.76 (t, J = 8, 12 H, Me). 13C{1H} NMR (CD2Cl2, 25 °C): δ 77.1 (t, J = 11, Cp), 74.5-

74.4 (br m, quat C), 73.7 (Cp), 71.6 (Cp), 70.5 (Cp), 35.4 (t, J = 15, FerroTANE CH), 35.1 (t, J = 

14, FerroTANE CH), 34.4 (t, J = 5, CH2), 27.0 (t, J = 6, CH2), 25.2 (CH2), 14.0 (t, J = 6, Me), 12.3 

(t, J = 4, Me).  

Cu5I5((S,S)-Me-FerroTANE)3 (7) To a slurry of CuI (Strem, 98%; 44 mg, 0.23 mmol, 5 equiv) 

in 2 mL of THF was added a solution of (S,S)-Et-FerroTANE (60 mg, 0.14 mmol, 3 equiv) in 1 
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mL of THF and the resulting solution was stirred for 20 min. The resulting orange solution was 

concentrated under vacuum to yield a bright orange solid (98 mg, 92%). 31P NMR spectra of the 

bulk solid showed an impurity at 64.6 ppm (4.8%), which was present in all non-crystalline 

material. A portion of the solid was redissolved in THF; slow evaporation gave orange crystals of 

7, identified by X-ray crystallography.  As with 6, varying the CuI purity and the solvent (THF or 

toluene) did not prevent impurity formation, and we could not isolate pure bulk samples of 7. 

31P{1H} NMR (CDCl3, 25 °C): δ 1.8 to -1.1 (br m, FerroTANE). 31P{1H} NMR (CD2Cl2, 25 

°C): δ 2.9 (br, chelating FerroTANE), -0.5 (br, bridging FerroTANE). 1H NMR (CD2Cl2, 25 °C): 

δ 5.11-5.03 (br m, 4H, Cp), 4.91-4.86 (br m, 4H, Cp), 4.64-4.52 (br m, 16 H, Cp), 2.78 (4H, 

FerroTANE CH), 2.48 (overlapping, 4H, FerroTANE CH), 2.41 (overlapping, 8H, CH2 and 

FerroTANE CH), 2.12-1.92 (br m, 8H, CH2), 1.93-1.92 (br m, 8H, CH2), 1.25-1.22 (br m, 12H, 

CH2), 1.06-1.02 (br m, 18H, Me), 0.70-0.67 (t, J = 7, 18H, Me). 13C{1H} NMR (CD2Cl2, 25 °C): 

δ 78.6-78.2 (br m, Cp), 72.7-72.2 (br m, Cp), 71.7 (br, Cp), 35.8 (d, J = 32, FerroTANE CH), 34.9 

(d, J = 13, FerroTANE CH), 30.1 (d, J = 12, FerroTANE CH), 27.1-27.0 (br m, CH2), 25.2-25.1 

(br m, CH2), 22.5 (Me), 13.8 (br, Me), 13.6 (br, Me), 12.5 (Me), 12.4 (d, J = 6, Me). 

Cu((R,S)-CyPF-t-Bu)(I) (8) To “Puratronic” Cu(I) iodide (Alfa Aesar, 99.999%, 22 mg, 0.12 

mmol) was added a solution of (R,S)-CyPF-t-Bu (67 mg, 0.12 mmol) in 2 mL of CH2Cl2. The 

resulting solution was stirred for 10 min, then concentrated under vacuum to give an orange solid 

which contained residual solvent (105 mg, 117%). Recrystallization from CH2Cl2/pentane at -20 

°C gave orange crystals, which X-ray crystallography showed were Cu((R,S)-CyPF-t-Bu)(I).  

Anal. Calcd. for C32H52FeP2CuI: C, 51.59; H, 7.04. Found: C, 51.69; H, 7.01. HRMS m/z calcd. 

for C32H52FeP2CuI: 744.1234. Found: 744.1235. 31P{1H} NMR (CH2Cl2, 25 °C): δ 26.5 (d, J = 

154, P(t-Bu)2), -14.7 (d, J = 154, PCy2). 
1H NMR (CDCl3, 25 °C): δ 4.50 (1H, Cp), 4.37 (2H, Cp), 
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4.20 (5H, Cp), 3.18 (br, 1H, CHMe), 2.19-2.11 (m, 4H, Cy CH and CH2), 1.95 (t, J = 7, 3H, 

CHMe), 1.89-1.63 (m, 10H, Cy CH2), 1.45 (d, J = 13, 9H, t-Bu), 1.39-1.30 (m, 6H, Cy CH2), 1.23-

1.15 (m, 2H, Cy CH2), 1.03 (d, J = 13, 9H, t-Bu). 13C{1H} NMR (CDCl3, 25 °C): δ 94.7 (dd, J = 

14, 6, quat Cp), 74.7 (d, J = 14, quat Cp), 73.7 (Cp CH), 70.2 (d, J = 7, Cp CH), 69.7 (Cp CH), 

68.0 (d, J = 4, Cp CH), 38.5 (d, J = 14, Cy CH), 37.1 (d, J = 3, CMe3), 35.1 (d, J = 6, CMe3), 33.8-

33.7 (dd, J = 14, 7, Cy CH), 33.3 (CHMe), 31.2 (CMe3), 31.1 (CMe3), 30.9 (d, J = 10, Cy CH2), 

29.2 (d, J = 5, Cy CH2), 28.6 (d, J = 5, Cy CH2), 27.6 (2 Cy CH2), 27.5 (d, J = 14, Cy CH2), 27.2 

(d, J = 12, Cy CH2), 27.0 (d, J = 12, Cy CH2), 26.8 (d, J = 9, Cy CH2), 26.0 (d, J = 12, Cy CH2), 

17.5 (d, J = 4, CHMe).  

Cu((R,S)-PPF-t-Bu)(I) (9) To “Puratronic” Cu(I) iodide (Alfa Aesar, 99.999%, 22 mg, 0.12 

mmol) was added a solution of (R,S)-PPF-t-Bu (65 mg, 0.12 mmol) in 2 mL of CH2Cl2. The 

resulting solution was stirred for 10 min, then concentrated under vacuum to give an orange solid 

which contained residual solvent (101 mg, 103%). Recrystallization from CH2Cl2/pentane at -20 

°C gave orange crystals, which X-ray crystallography showed were Cu((R,S)-PPF-t-

Bu)(I)•CH2Cl2.  Elemental analysis showed that another batch of crystals contained 0.5 equiv of 

CH2Cl2. 

Anal. Calcd. for C32H40CuFeIP2(CH2Cl2)0.5: C, 50.34; H, 5.33.  Found: C, 50.42; H, 5.43. HRMS 

m/z calcd. for C32H40CuFeP2(M-I)+: 605.1251. Found: 605.1258. 31P{1H} NMR (CH2Cl2, 25 °C): 

δ 32.1 (d, J = 160, P(t-Bu)2), -22.3 (d, J = 160, PPh2). 
1H NMR (CDCl3, 25 °C): δ 8.07-8.04 (t, J = 

8, 2H, Ar), 7.73 (t, J = 10, 2H, Ar), 7.49-7.46 (br m, 3H, Ar), 7.40-7.39 (br m, 3H, Ar), 4.58 (1H, 

Cp), 4.39 (1H, Cp), 4.08 (1H, Cp), 4.04 (5H, Cp), 3.47-3.46 (br m, 1H, CHMe), 1.99 (t, J = 7, 3H, 

CHMe), 1.37 (d, J = 13, 9H, t-Bu), 1.17 (d, J = 13, 9H, t-Bu). 13C{1H} NMR (CDCl3, 25 °C): δ 

135.4 (d, J = 26, quat Ar), 134.4 (d, J = 15, Ar CH), 134.1 (d, J = 16, Ar CH), 133.2 (dd, J = 26, 9, 
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quat Ar), 130.2 (Ar CH), 130.1 (Ar CH), 128.8 (d, J = 3, Ar CH), 128.7 (d, J = 2, Ar CH), 94.5 

(dd, J = 20, 7, quat Cp), 75.9 (d, J = 24, quat Cp), 74.8 (d, J = 4, Cp CH), 71.0 (d, J = 8, Cp CH), 

70.4 (Cp CH), 68.9 (d, J = 6, Cp CH), 37.2 (d, J = 4, CMe3), 35.3 (d, J = 5, CMe3), 33.0 (CHMe), 

31.8 (d, J = 7, CMe3), 31.2 (d, J = 7, CMe3), 17.4 (d, J = 5, CHMe).  

UV-vis spectroscopy UV-vis spectra were recorded on 10-4 M CH2Cl2 solutions of complexes 

1-4 in a quartz cuvette at 298 K, using a Jasco V-630 spectrophotometer.  

Emission spectroscopy Luminescent spectra were collected for microcrystalline samples 1-4. 

Steady-state luminescence scans were run at 77 K. Liquid nitrogen was used as coolant. Spectra 

were taken with a Model Quantamaster-1046 photoluminescence spectrophotometer from Photon 

Technology International. This spectrometer uses a 75 W xenon arc lamp combined with two 

excitation monochromators and one emission monochromator. A photomultiplier tube at 800 V 

was used as the emission detector. The solid samples were mounted on a copper plate using non-

emitting copper-dust high vacuum grease. All scans were run under vacuum using a Janis ST-100 

optical cryostat.  

Solid State Quantum Yield Measurements Solid state spectra were collected for 

microcrystalline samples 1-4 in air at 298 K using a Horiba PTI QM-400 spectrometer equipped 

with an integration sphere. Excitation wavelength for all samples was 400 nm. 

Luminescence of 1-3 in PMMA thin films A 5% w/w solution of [Cu((R,R)-i-Pr-DuPhos)(I)]2 

(0.03 g) in 0.4 mL of dichloromethane was added to PMMA  (0.03 g, atactic beads, average 

molecular weight = 350,000, Polysciences) and the mixture was stirred overnight. 400 μL of the 

pale yellow solution were pipetted onto a glass slide and spin coated at 800 RPM for 30 seconds. 

The resulting thin film was luminescent under UV light (see the SI for photos).   The procedure 
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was similar for the chloride and bromide analogues 2-3, which formed pale green and yellow-

green solutions, respectively. 

DFT Calculations For comparison, DFT calculations were carried out both at Maine and at 

Dartmouth, with different basis sets.  At Maine, calculations were performed on complexes 1-3 

with the Gaussian09 program hosted by the University of Maine Advanced Computing Group. All 

calculations were performed with the B3LYP exchange-correlation and the LANL2DZ basis set 

throughout. Experimental XRD geometries of 1-3 were used as initial input structures for ground 

state optimization calculations. Optimized ground state structures were used for vertical energy 

calculations using the time dependent DFT (TD-DFT) method. Molecular orbitals were 

reproduced using Avogadro 1.1.1.   

At Dartmouth, calculations were carried out using the hybrid B3LYP functional (both with and 

without the zero-damping, two-body only D3 correction of Grimme et al., see text) [40] and the 

LACV3P** basis set, which uses Los Alamos Core potentials for Cu [41], and the 6-311G** basis 

for all lighter atoms [42], as implemented in the Jaguar suite of programs [43]. Computed ground 

state structures were confirmed as energy minima by calculating the vibrational frequencies using 

second derivative analytic methods, and confirming the absence of imaginary frequencies. 

Geometries of first singlet excited states were optimized using TD-DFT calculations as 

implemented in the Jaguar program. UV-VIS spectra were also calculated at the B3LYP ground 

state geometries using TD-DFT, with unrestricted occupations and including 48 excited states. 
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APPENDIX C: SUPPLEMENTARY FIGURES FOR APPENDIX B 

 

 

 

 

Figure C.1.  UV-Vis Spectra of 1-4 in CH2Cl2 (10-4 M).  As discussed in connection with Figure 

B.7 in the manuscript (see footnote 28), the extinction coefficients for 1-3 shown here are believed 

to be more reliable than that for 4, where we cannot rule out the possibility that impurities and/or 

scatter from aggregates contributes to the observed absorption. 
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Figure C.2.  PMMA films of complexes 1-3 under ambient light (above) and under UV light 

(below), showing the emission at room temperature in air. 
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Figure C.3. 31P{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(I)]2 (1) 

 

 

 

Figure C.4. 1H NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(I)]2 (1) 

 



206 

 

 

Figure C.5. 13C{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(I)]2 (1) 

 

 

 

 

Figure C.6. 31P{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(Br)]2 (2) 
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Figure C.7. 1H NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(Br)]2 (2) 

 

 

 

Figure C.8. 13C{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(Br)]2 (2) 
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Figure C.9. 31P{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(Cl)]2 (3) 

 

 

Figure C.10. 1H NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(Cl)]2 (3) 
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Figure C.11. 13C{1H} NMR (CDCl3, 25 °C)Spectra of [Cu((R,R)-i-Pr-DuPhos)(Cl)]2 (3) 

 

 

 

Figure C.12. 31P{1H} NMR (THF-d8, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(F)]2 (4) 
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F-d8) 

Figure C.13. 19F NMR (THF-d8, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(F)]2 (4) 

 

 

 

Figure C.14. 1H NMR (THF-d8, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(F)]2 (4) 
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Figure C.15. 13C{1H} NMR (THF-d8, 25 °C) Spectra of [Cu((R,R)-i-Pr-DuPhos)(F)]2 (4) 

 

 

 

 

Figure C.16. 31P{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-Me-FerroLANE)(I)]2 (5) 
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Figure C.17. 1H NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-Me-FerroLANE)(I)]2 (5) 

 

 

 

 

Figure C.18. 13C{1H} NMR (CDCl3, 25 °C) Spectra of [Cu((R,R)-Me-FerroLANE)(I)]2 (5) 
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Figure C.19. 31P{1H} NMR (CD2Cl2, 25 °C) Spectra of Cu2I2((S,S)-Et-FerroTANE)2 (6) 

 

 

 

Figure C.20. 1H NMR (CD2Cl2, 25 °C) Spectra of Cu2I2((S,S)-Et-FerroTANE)2 (6) 
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Figure C.21. 13C{1H} NMR (CD2Cl2, 25 °C) Spectra of Cu2I2((S,S)-Et-FerroTANE)2 (6) 
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Figure C.22. 31P{1H} NMR (CD2Cl2, 25 °C) Spectra of Cu5I5((S,S)-Et-FerroTANE)3 (7) 
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Figure C.23. 1H NMR (CD2Cl2, 25 °C) Spectra of Cu5I5((S,S)-Et-FerroTANE)3 (7) 
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Figure C.24. 13C{1H} NMR (CD2Cl2, 25 °C) Spectra of Cu5I5((S,S)-Et-FerroTANE)3 (7) 

 

 

 

 

 

 

 

 

 



218 

 

 

 

Figure C.25. 31P{1H} NMR (CH2Cl2, 25 °C) Spectra of Cu((R,S)-CyPF-t-Bu)(I) (8) 

 

 

 

 

Figure C.26. 1H NMR (CDCl3, 25 °C) Spectra of Cu((R,S)-CyPF-t-Bu)(I) (8) 
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Figure C.27. 13C{1H} NMR (CDCl3, 25 °C) Spectra of Cu((R,S)-CyPF-t-Bu)(I) (8) 

 

 

 

 

Figure C.28. 31P{1H} NMR (CH2Cl2, 25 °C) Spectra of Cu((R,S)-PPF-t-Bu)(I) (9) 
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Figure C.29. 1H NMR (CDCl3, 25 °C) Spectra of Cu((R,S)-PPF-t-Bu)(I) (9) 

 

 

 

 

Figure C.30. 13C{1H} NMR (CDCl3, 25 °C) Spectra of Cu((R,S)-PPF-t-Bu)(I) (9) 
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Figure C.31.  ORTEP diagram of [Cu((R,R)-Me-FerroLANE)(I)]2 (5).   Selected bond lengths (Å) 

and angles (deg): Cu(1)-I(1) 2.7276(5), Cu(1)-I(1A) 2.7290(5), Cu(1A)-I(1) 2.7290(5), Cu(1)-

Cu(1A) 2.8694(9), Cu(1)-P(1) 2.2964(11), Cu(1)-P(2) 2.2950(11), Cu(1)-I(1)-Cu(1A) 63.452(17), 

I(1)-Cu(1)-I(1A) 116.547(17), I(1A)-Cu(1)-Cu(1A) 58.251(16), I(1)-Cu(1)-Cu(1A) 58.297(16), 

P(1)-Cu(1)-I(1A) 107.32(3), P(1)-Cu(1)-I(1) 102.00(3), P(1)-Cu(1)-Cu(1A) 118.55(3), P(2)-

Cu(1)-I(1) 106.58(3), P(2)-Cu(1)-I(1A) 101.55(4), P(2)-Cu(1)-Cu(1A) 117.68(3), P(2)-Cu(1)-P(1) 

123.78(4).  The Cu-Cu distance was 2.8694(9) Å. 
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Figure C.32.  ORTEP diagram of Cu5I5((S,S)-Et-FerroTANE)3 (7).  Selected bond lengths (Å) and 

angles (deg): I(1)-Cu(2)#1 2.660(3), I(1)-Cu(3) 2.669(2), I(2)-Cu(1) 2.675(2), I(2)-Cu(2) 2.680(2), 

I(2)-Cu(3) 2.650(2), I(3)-Cu(2) 2.769(2), I(3)-Cu(3) 2.740(2), Cu(1)-P(1) 2.278(5), Cu(2)-P(2) 

2.243(5), Cu(3)-P(3) 2.236(5), Cu(2)#1-I(1)-Cu(3) 74.63(7), Cu(1)-I(2)-Cu(2) 108.64(7), Cu(3)-

I(2)-Cu(1) 111.23(7), Cu(3)-I(2)-Cu(2) 72.52(7), Cu(2)#1-I(3)-Cu(2) 109.11(10), Cu(3)-

I(3)-Cu(2)#1 71.80(7), Cu(3)-I(3)-Cu(2) 69.80(7), Cu(3)-I(3)-Cu(3)#1 110.90(10), I(2)-Cu(1)-

I(2)#1 103.67(11), P(1)-Cu(1)-I(2)#1 102.85(13), P(1)-Cu(1)-I(2) 117.68(13), P(1)-Cu(1)-P(1)#1 

112.5(3), I(1)#1-Cu(2)-I(2) 111.89(8), I(1)#1-Cu(2)-I(3) 102.75(8), I(2)-Cu(2)-I(3) 101.90(8), 

P(2)-Cu(2)-I(1)#1 107.46(15), P(2)-Cu(2)-I(2) 107.31(17), P(2)-Cu(2)-I(3) 125.35(17), I(1)-

Cu(3)-I(3) 103.27(8), I(2)-Cu(3)-I(1) 108.72(8), I(2)-Cu(3)-I(3) 103.44(8), P(3)-Cu(3)-I(1) 

105.65(15), P(3)-Cu(3)-I(2) 124.03(15), P(3)-Cu(3)-I(3) 109.95(15).  The shortest Cu-Cu distance 

was 3.152 Å. 
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Figure C.33. The Cu5I5P6 core of cluster 7, showing µ4-I3, µ3-I2, and µ2-I1, as well as chelating 

Et-FerroTANE (P1) and bridging Et-FerroTANE (P2/P3) 
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Table C.1.  Crystal data and structure refinement for [Cu(R,R)-i-Pr-DuPhos)(Cl)]2•THF, glu467_a. 

Identification code  SG1-5 

Empirical formula  C56 H96 Cl2 Cu2 O P4 

Formula weight  1107.18 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21  

Unit cell dimensions a = 12.2417(8) Å = 90°. 

 b = 15.1977(9) Å = 100.688(2)°. 

 c = 15.9561(11) Å  = 90°. 

Volume 2917.1(3) Å3 

Z 2 

Density (calculated) 1.261 Mg/m3 

Absorption coefficient 0.966 mm-1 

F(000) 1184 

Crystal size 0.32 x 0.27 x 0.1 mm3 

Theta range for data collection 2.317 to 27.985°. 

Index ranges -15<=h<=16, -19<=k<=19, -21<=l<=19 

Reflections collected 33367 

Independent reflections 13394 [R(int) = 0.0524] 

Completeness to theta = 25.242° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.2622 and 0.2192 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 13394 / 1 / 602 

Goodness-of-fit on F2 0.972 

Final R indices [I>2sigma(I)] R1 = 0.0480, wR2 = 0.1096 

R indices (all data) R1 = 0.0610, wR2 = 0.1169 

Absolute structure parameter 0.015(6) 

Extinction coefficient n/a 

Largest diff. peak and hole 1.511 and -0.342 e.Å-3 
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Table C.2.  Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for [Cu(R,R)-i-

Pr-DuPhos)(Cl)]2•THF, glu467_a.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Cu(1) 6174(1) 4373(1) 6971(1) 15(1) 

Cu(2) 6185(1) 5708(1) 8447(1) 19(1) 

Cl(1) 5857(1) 5899(1) 6940(1) 20(1) 

P(2) 7749(1) 3754(1) 6715(1) 13(1) 

Cl(2) 5921(1) 4180(1) 8406(1) 20(1) 

P(1) 5151(1) 3656(1) 5860(1) 13(1) 

P(3) 7761(1) 6371(1) 9091(1) 18(1) 

P(4) 5172(1) 6459(1) 9246(1) 17(1) 

C(36) 7299(4) 3048(3) 5771(3) 14(1) 

C(33) 9043(4) 4324(4) 6532(3) 20(1) 

C(52) 8882(4) 5318(4) 6462(4) 24(1) 

O(1) 10285(5) 4280(4) 4594(4) 65(2) 

C(51) 5965(5) 4441(4) 3987(4) 25(1) 

C(30) 8503(4) 2978(3) 7533(3) 19(1) 

C(41) 6156(4) 2942(3) 5446(3) 13(1) 

C(39) 6582(4) 1848(3) 4447(3) 21(1) 

C(14) 7712(5) 8324(4) 10900(4) 24(1) 

C(37) 8063(4) 2579(3) 5391(3) 21(1) 

C(32) 9948(4) 4006(4) 7271(4) 28(1) 

C(21) 9942(5) 6047(4) 9126(4) 34(2) 

C(43) 3410(4) 3019(4) 6641(4) 23(1) 

C(15) 8070(4) 7699(3) 10372(3) 21(1) 

C(27) 6828(4) 2060(4) 7667(3) 20(1) 

C(45) 3933(4) 2917(4) 5835(4) 20(1) 

C(46) 3105(5) 3087(4) 4994(4) 27(1) 

C(16) 7316(4) 7139(3) 9867(3) 17(1) 

C(28) 8042(5) 2042(4) 7551(4) 23(1) 

C(2) 3457(5) 7070(4) 7933(4) 25(1) 
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Table C.2. Continued. 

C(20) 9069(4) 5862(4) 9677(4) 23(1) 

C(35) 10007(5) 5789(4) 6484(5) 38(2) 

C(23) 8502(4) 7078(4) 8408(4) 24(1) 

C(13) 6597(5) 8416(4) 10909(3) 22(1) 

C(12) 5842(4) 7866(3) 10417(3) 20(1) 

C(25) 8075(5) 8018(4) 8236(4) 27(1) 

C(38) 7715(4) 2000(4) 4728(4) 22(1) 

C(24) 6863(5) 8030(4) 7825(4) 25(1) 

C(40) 5822(4) 2319(4) 4807(3) 19(1) 

C(29) 8736(5) 1492(4) 8255(4) 35(2) 

C(4) 3969(4) 7207(4) 8888(4) 22(1) 

C(11) 6178(4) 7210(3) 9894(3) 18(1) 

C(48) 4435(4) 4308(4) 4928(3) 17(1) 

C(22) 9755(5) 6974(4) 8787(4) 34(2) 

C(31) 9731(4) 3041(4) 7454(4) 26(1) 

C(1) 3012(5) 6142(4) 7736(4) 31(1) 

C(34) 8074(5) 5566(4) 5659(4) 31(1) 

C(49) 5116(5) 4915(4) 4441(4) 26(1) 

C(42) 2986(5) 3954(4) 6752(4) 31(1) 

C(47) 3639(4) 3665(4) 4383(3) 22(1) 

C(10) 5916(5) 5786(4) 11377(4) 32(1) 

C(44) 2498(5) 2340(5) 6658(4) 38(2) 

C(5) 3130(5) 7076(4) 9499(4) 32(1) 

C(7) 4440(5) 5845(4) 9988(4) 24(1) 

C(3) 2577(5) 7776(5) 7636(4) 37(2) 

C(26) 8773(6) 8509(5) 7667(5) 43(2) 

C(50) 4320(5) 5480(4) 3807(4) 33(1) 

C(8) 5130(5) 5279(4) 10705(4) 31(1) 

C(18) 8929(6) 4875(5) 9871(6) 53(2) 

C(6) 3635(5) 6509(4) 10273(4) 28(1) 

C(56) 9360(6) 4092(4) 3940(5) 42(2) 

C(54) 10010(7) 5546(5) 3805(6) 57(2) 
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Table C.2. Continued. 

C(53) 10880(6) 4960(5) 4287(6) 59(2) 

C(9) 4359(6) 4694(4) 11121(5) 42(2) 

C(55) 9114(6) 4893(6) 3387(5) 56(2) 

C(19) 9999(8) 4428(6) 10127(7) 81(3) 

C(17) 8142(7) 4768(5) 10498(6) 63(3) 

________________________________________________________________________________ 
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Table C.3.   Bond lengths [Å] and angles [deg] for [Cu(R,R)-i-Pr-DuPhos)(Cl)]2•THF, glu467_a. 

Cu(1)-Cl(1)  2.3502(14) 

Cu(1)-P(2)  2.2500(13) 

Cu(1)-Cl(2)  2.3847(14) 

Cu(1)-P(1)  2.2525(14) 

Cu(2)-Cl(1)  2.3814(14) 

Cu(2)-Cl(2)  2.3434(14) 

Cu(2)-P(3)  2.2495(14) 

Cu(2)-P(4)  2.2481(14) 

P(2)-C(36)  1.848(5) 

P(2)-C(33)  1.875(5) 

P(2)-C(30)  1.871(5) 

P(1)-C(41)  1.852(5) 

P(1)-C(45)  1.861(5) 

P(1)-C(48)  1.865(5) 

P(3)-C(16)  1.856(5) 

P(3)-C(20)  1.866(5) 

P(3)-C(23)  1.880(6) 

P(4)-C(4)  1.864(5) 

P(4)-C(11)  1.849(6) 

P(4)-C(7)  1.862(6) 

C(36)-C(41)  1.409(7) 

C(36)-C(37)  1.401(7) 

C(33)-H(33)  1.0000 

C(33)-C(52)  1.524(8) 

C(33)-C(32)  1.539(7) 

C(52)-H(52)  1.0000 

C(52)-C(35)  1.546(8) 

C(52)-C(34)  1.515(8) 

O(1)-C(56)  1.419(9) 

O(1)-C(53)  1.404(10) 

C(51)-H(51A)  0.9800 

C(51)-H(51B)  0.9800 
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Table C.3. Continued. 

C(51)-H(51C)  0.9800 

C(51)-C(49)  1.550(8) 

C(30)-H(30)  1.0000 

C(30)-C(28)  1.533(8) 

C(30)-C(31)  1.535(7) 

C(41)-C(40)  1.396(7) 

C(39)-H(39)  0.9500 

C(39)-C(38)  1.396(8) 

C(39)-C(40)  1.381(7) 

C(14)-H(14)  0.9500 

C(14)-C(15)  1.393(8) 

C(14)-C(13)  1.375(8) 

C(37)-H(37)  0.9500 

C(37)-C(38)  1.380(8) 

C(32)-H(32A)  0.9900 

C(32)-H(32B)  0.9900 

C(32)-C(31)  1.527(8) 

C(21)-H(21A)  0.9900 

C(21)-H(21B)  0.9900 

C(21)-C(20)  1.530(8) 

C(21)-C(22)  1.511(9) 

C(43)-H(43)  1.0000 

C(43)-C(45)  1.547(8) 

C(43)-C(42)  1.535(9) 

C(43)-C(44)  1.524(8) 

C(15)-H(15)  0.9500 

C(15)-C(16)  1.396(7) 

C(27)-H(27A)  0.9800 

C(27)-H(27B)  0.9800 

C(27)-H(27C)  0.9800 

C(27)-C(28)  1.531(7) 

C(45)-H(45)  1.0000 
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Table C.3. Continued. 

C(45)-C(46)  1.546(7) 

C(46)-H(46A)  0.9900 

C(46)-H(46B)  0.9900 

C(46)-C(47)  1.545(8) 

C(16)-C(11)  1.405(7) 

C(28)-H(28)  1.0000 

C(28)-C(29)  1.526(8) 

C(2)-H(2)  1.0000 

C(2)-C(4)  1.551(8) 

C(2)-C(1)  1.524(8) 

C(2)-C(3)  1.532(8) 

C(20)-H(20)  1.0000 

C(20)-C(18)  1.547(9) 

C(35)-H(35A)  0.9800 

C(35)-H(35B)  0.9800 

C(35)-H(35C)  0.9800 

C(23)-H(23)  1.0000 

C(23)-C(25)  1.529(8) 

C(23)-C(22)  1.549(8) 

C(13)-H(13)  0.9500 

C(13)-C(12)  1.379(7) 

C(12)-H(12)  0.9500 

C(12)-C(11)  1.409(7) 

C(25)-H(25)  1.0000 

C(25)-C(24)  1.507(8) 

C(25)-C(26)  1.550(8) 

C(38)-H(38)  0.9500 

C(24)-H(24A)  0.9800 

C(24)-H(24B)  0.9800 

C(24)-H(24C)  0.9800 

C(40)-H(40)  0.9500 

C(29)-H(29A)  0.9800 
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Table C.3. Continued. 

C(29)-H(29B)  0.9800 

C(29)-H(29C)  0.9800 

C(4)-H(4)  1.0000 

C(4)-C(5)  1.555(8) 

C(48)-H(48)  1.0000 

C(48)-C(49)  1.547(7) 

C(48)-C(47)  1.532(7) 

C(22)-H(22A)  0.9900 

C(22)-H(22B)  0.9900 

C(31)-H(31A)  0.9900 

C(31)-H(31B)  0.9900 

C(1)-H(1A)  0.9800 

C(1)-H(1B)  0.9800 

C(1)-H(1C)  0.9800 

C(34)-H(34A)  0.9800 

C(34)-H(34B)  0.9800 

C(34)-H(34C)  0.9800 

C(49)-H(49)  1.0000 

C(49)-C(50)  1.532(8) 

C(42)-H(42A)  0.9800 

C(42)-H(42B)  0.9800 

C(42)-H(42C)  0.9800 

C(47)-H(47A)  0.9900 

C(47)-H(47B)  0.9900 

C(10)-H(10A)  0.9800 

C(10)-H(10B)  0.9800 

C(10)-H(10C)  0.9800 

C(10)-C(8)  1.512(8) 

C(44)-H(44A)  0.9800 

C(44)-H(44B)  0.9800 

C(44)-H(44C)  0.9800 

C(5)-H(5A)  0.9900 
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C(5)-H(5B)  0.9900 

C(5)-C(6)  1.537(9) 

C(7)-H(7)  1.0000 

C(7)-C(8)  1.550(9) 

C(7)-C(6)  1.538(8) 

C(3)-H(3A)  0.9800 

C(3)-H(3B)  0.9800 

C(3)-H(3C)  0.9800 

C(26)-H(26A)  0.9800 

C(26)-H(26B)  0.9800 

C(26)-H(26C)  0.9800 

C(50)-H(50A)  0.9800 

C(50)-H(50B)  0.9800 

C(50)-H(50C)  0.9800 

C(8)-H(8)  1.0000 

C(8)-C(9)  1.534(8) 

C(18)-H(18)  1.0000 

C(18)-C(19)  1.464(10) 

C(18)-C(17)  1.521(11) 

C(6)-H(6A)  0.9900 

C(6)-H(6B)  0.9900 

C(56)-H(56A)  0.9900 

C(56)-H(56B)  0.9900 

C(56)-C(55)  1.502(10) 

C(54)-H(54A)  0.9900 

C(54)-H(54B)  0.9900 

C(54)-C(53)  1.489(11) 

C(54)-C(55)  1.536(11) 

C(53)-H(53A)  0.9900 

C(53)-H(53B)  0.9900 

C(9)-H(9A)  0.9800 

C(9)-H(9B)  0.9800 
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Table C.3. Continued. 

C(9)-H(9C)  0.9800 

C(55)-H(55A)  0.9900 

C(55)-H(55B)  0.9900 

C(19)-H(19A)  0.9800 

C(19)-H(19B)  0.9800 

C(19)-H(19C)  0.9800 

C(17)-H(17A)  0.9800 

C(17)-H(17B)  0.9800 

C(17)-H(17C)  0.9800 

Cl(1)-Cu(1)-Cl(2) 95.27(5) 

P(2)-Cu(1)-Cl(1) 123.52(5) 

P(2)-Cu(1)-Cl(2) 113.03(5) 

P(2)-Cu(1)-P(1) 91.42(5) 

P(1)-Cu(1)-Cl(1) 113.28(5) 

P(1)-Cu(1)-Cl(2) 122.92(5) 

Cl(2)-Cu(2)-Cl(1) 95.53(5) 

P(3)-Cu(2)-Cl(1) 112.10(5) 

P(3)-Cu(2)-Cl(2) 123.98(6) 

P(4)-Cu(2)-Cl(1) 120.24(5) 

P(4)-Cu(2)-Cl(2) 115.57(5) 

P(4)-Cu(2)-P(3) 91.68(5) 

Cu(1)-Cl(1)-Cu(2) 82.05(5) 

C(36)-P(2)-Cu(1) 104.79(16) 

C(36)-P(2)-C(33) 105.9(2) 

C(36)-P(2)-C(30) 103.7(2) 

C(33)-P(2)-Cu(1) 127.76(18) 

C(30)-P(2)-Cu(1) 117.71(18) 

C(30)-P(2)-C(33) 94.5(2) 

Cu(2)-Cl(2)-Cu(1) 82.12(5) 

C(41)-P(1)-Cu(1) 104.80(16) 

C(41)-P(1)-C(45) 102.7(2) 

C(41)-P(1)-C(48) 105.8(2) 
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Table C.3. Continued. 

C(45)-P(1)-Cu(1) 129.47(18) 

C(45)-P(1)-C(48) 92.7(2) 

C(48)-P(1)-Cu(1) 118.76(17) 

C(16)-P(3)-Cu(2) 104.72(17) 

C(16)-P(3)-C(20) 104.9(2) 

C(16)-P(3)-C(23) 105.1(2) 

C(20)-P(3)-Cu(2) 128.84(18) 

C(20)-P(3)-C(23) 93.8(3) 

C(23)-P(3)-Cu(2) 117.14(18) 

C(4)-P(4)-Cu(2) 128.53(18) 

C(11)-P(4)-Cu(2) 104.54(17) 

C(11)-P(4)-C(4) 101.6(2) 

C(11)-P(4)-C(7) 107.7(2) 

C(7)-P(4)-Cu(2) 119.12(18) 

C(7)-P(4)-C(4) 93.1(3) 

C(41)-C(36)-P(2) 119.4(4) 

C(37)-C(36)-P(2) 121.8(4) 

C(37)-C(36)-C(41) 118.7(5) 

P(2)-C(33)-H(33) 108.4 

C(52)-C(33)-P(2) 111.6(3) 

C(52)-C(33)-H(33) 108.4 

C(52)-C(33)-C(32) 115.6(5) 

C(32)-C(33)-P(2) 104.2(4) 

C(32)-C(33)-H(33) 108.4 

C(33)-C(52)-H(52) 108.2 

C(33)-C(52)-C(35) 110.8(5) 

C(35)-C(52)-H(52) 108.2 

C(34)-C(52)-C(33) 111.3(5) 

C(34)-C(52)-H(52) 108.2 

C(34)-C(52)-C(35) 110.1(5) 

C(53)-O(1)-C(56) 106.7(6) 

H(51A)-C(51)-H(51B) 109.5 
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Table C.3. Continued. 

H(51A)-C(51)-H(51C) 109.5 

H(51B)-C(51)-H(51C) 109.5 

C(49)-C(51)-H(51A) 109.5 

C(49)-C(51)-H(51B) 109.5 

C(49)-C(51)-H(51C) 109.5 

P(2)-C(30)-H(30) 105.8 

C(28)-C(30)-P(2) 117.5(4) 

C(28)-C(30)-H(30) 105.8 

C(28)-C(30)-C(31) 115.4(5) 

C(31)-C(30)-P(2) 105.5(4) 

C(31)-C(30)-H(30) 105.8 

C(36)-C(41)-P(1) 118.8(4) 

C(40)-C(41)-P(1) 122.3(4) 

C(40)-C(41)-C(36) 118.8(4) 

C(38)-C(39)-H(39) 120.4 

C(40)-C(39)-H(39) 120.4 

C(40)-C(39)-C(38) 119.1(5) 

C(15)-C(14)-H(14) 120.0 

C(13)-C(14)-H(14) 120.0 

C(13)-C(14)-C(15) 120.1(5) 

C(36)-C(37)-H(37) 119.3 

C(38)-C(37)-C(36) 121.3(5) 

C(38)-C(37)-H(37) 119.3 

C(33)-C(32)-H(32A) 109.9 

C(33)-C(32)-H(32B) 109.9 

H(32A)-C(32)-H(32B) 108.3 

C(31)-C(32)-C(33) 108.8(5) 

C(31)-C(32)-H(32A) 109.9 

C(31)-C(32)-H(32B) 109.9 

H(21A)-C(21)-H(21B) 108.5 

C(20)-C(21)-H(21A) 110.2 

C(20)-C(21)-H(21B) 110.2 
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C(22)-C(21)-H(21A) 110.2 

C(22)-C(21)-H(21B) 110.2 

C(22)-C(21)-C(20) 107.6(5) 

C(45)-C(43)-H(43) 107.0 

C(42)-C(43)-H(43) 107.0 

C(42)-C(43)-C(45) 113.0(5) 

C(44)-C(43)-H(43) 107.0 

C(44)-C(43)-C(45) 111.4(5) 

C(44)-C(43)-C(42) 111.1(5) 

C(14)-C(15)-H(15) 119.5 

C(14)-C(15)-C(16) 121.0(5) 

C(16)-C(15)-H(15) 119.5 

H(27A)-C(27)-H(27B) 109.5 

H(27A)-C(27)-H(27C) 109.5 

H(27B)-C(27)-H(27C) 109.5 

C(28)-C(27)-H(27A) 109.5 

C(28)-C(27)-H(27B) 109.5 

C(28)-C(27)-H(27C) 109.5 

P(1)-C(45)-H(45) 107.7 

C(43)-C(45)-P(1) 112.0(4) 

C(43)-C(45)-H(45) 107.7 

C(46)-C(45)-P(1) 108.2(4) 

C(46)-C(45)-C(43) 113.5(4) 

C(46)-C(45)-H(45) 107.7 

C(45)-C(46)-H(46A) 109.5 

C(45)-C(46)-H(46B) 109.5 

H(46A)-C(46)-H(46B) 108.0 

C(47)-C(46)-C(45) 110.9(4) 

C(47)-C(46)-H(46A) 109.5 

C(47)-C(46)-H(46B) 109.5 

C(15)-C(16)-P(3) 121.6(4) 

C(15)-C(16)-C(11) 119.2(5) 
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C(11)-C(16)-P(3) 119.0(4) 

C(30)-C(28)-H(28) 108.2 

C(27)-C(28)-C(30) 110.8(4) 

C(27)-C(28)-H(28) 108.2 

C(29)-C(28)-C(30) 111.4(5) 

C(29)-C(28)-C(27) 109.9(5) 

C(29)-C(28)-H(28) 108.2 

C(4)-C(2)-H(2) 107.0 

C(1)-C(2)-H(2) 107.0 

C(1)-C(2)-C(4) 113.0(5) 

C(1)-C(2)-C(3) 112.4(5) 

C(3)-C(2)-H(2) 107.0 

C(3)-C(2)-C(4) 110.0(5) 

P(3)-C(20)-H(20) 108.2 

C(21)-C(20)-P(3) 105.2(4) 

C(21)-C(20)-H(20) 108.2 

C(21)-C(20)-C(18) 114.1(5) 

C(18)-C(20)-P(3) 112.6(4) 

C(18)-C(20)-H(20) 108.2 

C(52)-C(35)-H(35A) 109.5 

C(52)-C(35)-H(35B) 109.5 

C(52)-C(35)-H(35C) 109.5 

H(35A)-C(35)-H(35B) 109.5 

H(35A)-C(35)-H(35C) 109.5 

H(35B)-C(35)-H(35C) 109.5 

P(3)-C(23)-H(23) 105.7 

C(25)-C(23)-P(3) 116.9(4) 

C(25)-C(23)-H(23) 105.7 

C(25)-C(23)-C(22) 116.5(5) 

C(22)-C(23)-P(3) 105.4(4) 

C(22)-C(23)-H(23) 105.7 

C(14)-C(13)-H(13) 120.2 
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C(14)-C(13)-C(12) 119.6(5) 

C(12)-C(13)-H(13) 120.2 

C(13)-C(12)-H(12) 119.1 

C(13)-C(12)-C(11) 121.9(5) 

C(11)-C(12)-H(12) 119.1 

C(23)-C(25)-H(25) 108.2 

C(23)-C(25)-C(26) 110.4(5) 

C(24)-C(25)-C(23) 111.5(5) 

C(24)-C(25)-H(25) 108.2 

C(24)-C(25)-C(26) 110.2(5) 

C(26)-C(25)-H(25) 108.2 

C(39)-C(38)-H(38) 120.0 

C(37)-C(38)-C(39) 120.0(5) 

C(37)-C(38)-H(38) 120.0 

C(25)-C(24)-H(24A) 109.5 

C(25)-C(24)-H(24B) 109.5 

C(25)-C(24)-H(24C) 109.5 

H(24A)-C(24)-H(24B) 109.5 

H(24A)-C(24)-H(24C) 109.5 

H(24B)-C(24)-H(24C) 109.5 

C(41)-C(40)-H(40) 119.1 

C(39)-C(40)-C(41) 121.8(5) 

C(39)-C(40)-H(40) 119.1 

C(28)-C(29)-H(29A) 109.5 

C(28)-C(29)-H(29B) 109.5 

C(28)-C(29)-H(29C) 109.5 

H(29A)-C(29)-H(29B) 109.5 

H(29A)-C(29)-H(29C) 109.5 

H(29B)-C(29)-H(29C) 109.5 

P(4)-C(4)-H(4) 107.7 

C(2)-C(4)-P(4) 111.9(4) 

C(2)-C(4)-H(4) 107.7 
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C(2)-C(4)-C(5) 113.9(5) 

C(5)-C(4)-P(4) 107.8(4) 

C(5)-C(4)-H(4) 107.7 

C(16)-C(11)-P(4) 119.8(4) 

C(16)-C(11)-C(12) 118.2(5) 

C(12)-C(11)-P(4) 122.0(4) 

P(1)-C(48)-H(48) 104.4 

C(49)-C(48)-P(1) 120.0(3) 

C(49)-C(48)-H(48) 104.4 

C(47)-C(48)-P(1) 105.6(4) 

C(47)-C(48)-H(48) 104.4 

C(47)-C(48)-C(49) 116.2(4) 

C(21)-C(22)-C(23) 107.9(5) 

C(21)-C(22)-H(22A) 110.1 

C(21)-C(22)-H(22B) 110.1 

C(23)-C(22)-H(22A) 110.1 

C(23)-C(22)-H(22B) 110.1 

H(22A)-C(22)-H(22B) 108.4 

C(30)-C(31)-H(31A) 110.4 

C(30)-C(31)-H(31B) 110.4 

C(32)-C(31)-C(30) 106.5(4) 

C(32)-C(31)-H(31A) 110.4 

C(32)-C(31)-H(31B) 110.4 

H(31A)-C(31)-H(31B) 108.6 

C(2)-C(1)-H(1A) 109.5 

C(2)-C(1)-H(1B) 109.5 

C(2)-C(1)-H(1C) 109.5 

H(1A)-C(1)-H(1B) 109.5 

H(1A)-C(1)-H(1C) 109.5 

H(1B)-C(1)-H(1C) 109.5 

C(52)-C(34)-H(34A) 109.5 

C(52)-C(34)-H(34B) 109.5 
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C(52)-C(34)-H(34C) 109.5 

H(34A)-C(34)-H(34B) 109.5 

H(34A)-C(34)-H(34C) 109.5 

H(34B)-C(34)-H(34C) 109.5 

C(51)-C(49)-H(49) 107.1 

C(48)-C(49)-C(51) 115.3(5) 

C(48)-C(49)-H(49) 107.1 

C(50)-C(49)-C(51) 110.6(5) 

C(50)-C(49)-C(48) 109.2(5) 

C(50)-C(49)-H(49) 107.1 

C(43)-C(42)-H(42A) 109.5 

C(43)-C(42)-H(42B) 109.5 

C(43)-C(42)-H(42C) 109.5 

H(42A)-C(42)-H(42B) 109.5 

H(42A)-C(42)-H(42C) 109.5 

H(42B)-C(42)-H(42C) 109.5 

C(46)-C(47)-H(47A) 110.2 

C(46)-C(47)-H(47B) 110.2 

C(48)-C(47)-C(46) 107.6(4) 

C(48)-C(47)-H(47A) 110.2 

C(48)-C(47)-H(47B) 110.2 

H(47A)-C(47)-H(47B) 108.5 

H(10A)-C(10)-H(10B) 109.5 

H(10A)-C(10)-H(10C) 109.5 

H(10B)-C(10)-H(10C) 109.5 

C(8)-C(10)-H(10A) 109.5 

C(8)-C(10)-H(10B) 109.5 

C(8)-C(10)-H(10C) 109.5 

C(43)-C(44)-H(44A) 109.5 

C(43)-C(44)-H(44B) 109.5 

C(43)-C(44)-H(44C) 109.5 

H(44A)-C(44)-H(44B) 109.5 
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H(44A)-C(44)-H(44C) 109.5 

H(44B)-C(44)-H(44C) 109.5 

C(4)-C(5)-H(5A) 109.4 

C(4)-C(5)-H(5B) 109.4 

H(5A)-C(5)-H(5B) 108.0 

C(6)-C(5)-C(4) 111.2(4) 

C(6)-C(5)-H(5A) 109.4 

C(6)-C(5)-H(5B) 109.4 

P(4)-C(7)-H(7) 104.9 

C(8)-C(7)-P(4) 119.1(4) 

C(8)-C(7)-H(7) 104.9 

C(6)-C(7)-P(4) 105.6(4) 

C(6)-C(7)-H(7) 104.9 

C(6)-C(7)-C(8) 115.9(5) 

C(2)-C(3)-H(3A) 109.5 

C(2)-C(3)-H(3B) 109.5 

C(2)-C(3)-H(3C) 109.5 

H(3A)-C(3)-H(3B) 109.5 

H(3A)-C(3)-H(3C) 109.5 

H(3B)-C(3)-H(3C) 109.5 

C(25)-C(26)-H(26A) 109.5 

C(25)-C(26)-H(26B) 109.5 

C(25)-C(26)-H(26C) 109.5 

H(26A)-C(26)-H(26B) 109.5 

H(26A)-C(26)-H(26C) 109.5 

H(26B)-C(26)-H(26C) 109.5 

C(49)-C(50)-H(50A) 109.5 

C(49)-C(50)-H(50B) 109.5 

C(49)-C(50)-H(50C) 109.5 

H(50A)-C(50)-H(50B) 109.5 

H(50A)-C(50)-H(50C) 109.5 

H(50B)-C(50)-H(50C) 109.5 
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C(10)-C(8)-C(7) 115.4(5) 

C(10)-C(8)-H(8) 106.7 

C(10)-C(8)-C(9) 110.5(5) 

C(7)-C(8)-H(8) 106.7 

C(9)-C(8)-C(7) 110.2(5) 

C(9)-C(8)-H(8) 106.7 

C(20)-C(18)-H(18) 106.6 

C(19)-C(18)-C(20) 112.3(6) 

C(19)-C(18)-H(18) 106.6 

C(19)-C(18)-C(17) 114.2(8) 

C(17)-C(18)-C(20) 110.0(6) 

C(17)-C(18)-H(18) 106.6 

C(5)-C(6)-H(6A) 110.0 

C(5)-C(6)-H(6B) 110.0 

C(7)-C(6)-C(5) 108.3(5) 

C(7)-C(6)-H(6A) 110.0 

C(7)-C(6)-H(6B) 110.0 

H(6A)-C(6)-H(6B) 108.4 

O(1)-C(56)-H(56A) 110.0 

O(1)-C(56)-H(56B) 110.0 

O(1)-C(56)-C(55) 108.3(6) 

H(56A)-C(56)-H(56B) 108.4 

C(55)-C(56)-H(56A) 110.0 

C(55)-C(56)-H(56B) 110.0 

H(54A)-C(54)-H(54B) 109.1 

C(53)-C(54)-H(54A) 111.2 

C(53)-C(54)-H(54B) 111.2 

C(53)-C(54)-C(55) 102.9(6) 

C(55)-C(54)-H(54A) 111.2 

C(55)-C(54)-H(54B) 111.2 

O(1)-C(53)-C(54) 104.6(6) 

O(1)-C(53)-H(53A) 110.8 
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Table C.3. Continued. 

O(1)-C(53)-H(53B) 110.8 

C(54)-C(53)-H(53A) 110.8 

C(54)-C(53)-H(53B) 110.8 

H(53A)-C(53)-H(53B) 108.9 

C(8)-C(9)-H(9A) 109.5 

C(8)-C(9)-H(9B) 109.5 

C(8)-C(9)-H(9C) 109.5 

H(9A)-C(9)-H(9B) 109.5 

H(9A)-C(9)-H(9C) 109.5 

H(9B)-C(9)-H(9C) 109.5 

C(56)-C(55)-C(54) 102.6(6) 

C(56)-C(55)-H(55A) 111.2 

C(56)-C(55)-H(55B) 111.2 

C(54)-C(55)-H(55A) 111.2 

C(54)-C(55)-H(55B) 111.2 

H(55A)-C(55)-H(55B) 109.2 

C(18)-C(19)-H(19A) 109.5 

C(18)-C(19)-H(19B) 109.5 

C(18)-C(19)-H(19C) 109.5 

H(19A)-C(19)-H(19B) 109.5 

H(19A)-C(19)-H(19C) 109.5 

H(19B)-C(19)-H(19C) 109.5 

C(18)-C(17)-H(17A) 109.5 

C(18)-C(17)-H(17B) 109.5 

C(18)-C(17)-H(17C) 109.5 

H(17A)-C(17)-H(17B) 109.5 

H(17A)-C(17)-H(17C) 109.5 

H(17B)-C(17)-H(17C) 109.5 

___________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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APPENDIX D: LUMINESCENCE INVESTIGATION OF SAMARIUM(III)/ 

DICYANOAURATE(I) BASED COORDINATION NETWORKS  

WITH AND WITHOUT AUROPHILIC INTERACTIONS 

 

D.1. Introduction 

The unique optical, magnetic and electronic properties of lanthanide ions have sparked intense 

investigation of their inherent structure.[1–5] Coordination polymers that contain lanthanide components 

are of great interest due to their potential application in photocatalysis, sensors, optical fiber coatings, and 

LEDs.[6–9] The quantum yield of the material is critical to their performance and so strategies to maximize 

this property have been developed. Traditionally, sensitization of lanthanide ion luminescence is achieved 

by π-conjugated organic chromophores that are directly coordinated to the metal centers.  Donor ligands 

used for such applications usually have strong absorbance in the UV region and transfer their excited energy 

to the acceptor species.[10–14] A new class of chromophores involving transition metal complexes is 

emerging as suitable sensitizers of lanthanide ion acceptors.[15–17] A major advantage afforded by these 

chromophores is their ability to sustain a better energy match-up with most Ln3+ acceptor states.[18–22] 

Unique advantages of metal complexes over organic chromophores are that they provide a relatively high 

triplet quantum yield due to the rapid intersystem crossing inherent within the system (due to the heavy-

atom effect), and the possibility of a facile detection of both quenching of the d-block chromophores and 

the sensitized emission from the lanthanide centers.[23–26] This pairing of lanthanides, which have sharp 

emission lines and long lifetimes, with emissive transition metals, that sensitize lanthanide emission via 

energy transfer, has recently generated significant interest.[27–29] The observed energy transfer between 

these species results from the overlap of the lower emission band of the transition metal and the excitation 

band of the lanthanide because of the favorable energy match-up between the two systems.[21, 30, 31] 
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Certain transition metals have been shown to have a greater degree of overlap with lanthanides than organic 

ligands do, which increases the effective quantum yield of the system.[32–37] 

 Au(I) in particular is known to be highly emissive as demonstrated in our previous work on 

gold,[38–41] and has recently been identified as a photoredox catalyst for organic reactions.[42-54] It can 

also be used as a building block for coordination polymers in the form of [Au(CN)2]-.[55–59] Kagomé type 

Ln[Au(CN)2]3
.3H2O systems (LnAu3) have been synthesized previously and their interactions between 

distinct emissive units have been well studied for evidence of energy transfer via sensitization or quenching 

with several different lanthanides. While few other Ln/Au compounds have been studied,[60–62] these 

systems have also been surmised to present sensitized lanthanide emission through energy transfer from 

gold to the lanthanide.  

 We have recently reported on a new type of Ln/Au coordination polymer, 

[nBu4N]2[Ln(NO3)4Au(CN)2] (LnAu; Ln = Nd, Eu, Gd, or Tb) where neither intra- nor interchain aurophilic 

interactions exist.[60] Therein we illustrated the presence of distinct chromophores observable by 

luminescence spectroscopy due to the lack of energy transfer in these systems. These studies compared the 

Kagomé type Ln[Au(CN)2]3
.3H2O system with our recent work on [nBu4N]2[Ln(NO3)4Au(CN)2].[60–62] 

This research builds on our previous work with the goal of understanding the fundamental differences 

between emission properties for aurophilic and non-aurophilic coordination polymers, using the recently 

reported samarium(III) analogues as a focused case study.  

The structures of [nBu4N]2[Sm(NO3)4Au(CN)2] (SmAu) and Sm[Au(CN)2]3
.3H2O (SmAu3) are 

isomorphous to other members of the LnAu and LnAu3 series and have been described previously.[61] 

Briefly summarizing, the SmAu framework contains a 1-D chain composed of repeating units of 

[Sm(NO3)4Au(CN)2]2-. The Sm(III) centre is 10-coordinate, composed of 8 oxygen atoms originating from 

4 nitrate groups, and 2 N-cyano units originating from [Au(CN)2]-. The essentially linear dicyanoaurate unit 

bridges Sm(III) centers to form an overall zig-zag motif (Figure D.1). Tetrabutylammonium cations are 

located between the voids of the zigzag motif as well as above and below the 1-D chains. 
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Figure D.1.  One-dimensional structure of [nBu4N]2[Sm(NO3)4Au(CN)2] (SmAu) (50% ellipsoids; 

tetrabutylammonium cations omitted for clarity) 

 

In the SmAu3 framework, Sm(III) conforms to a tricapped trigonal prismatic geometry, wherein 

the prismatic positions are occupied by dicyanoaurate-based nitrogen atoms and the capping positions are 

occupied by aqua ligands. The Sm(III) centers are also bridged by linear units of [Au(CN)2]-, forming an 

overall 3-D network with Kagome (or alternatively trihexagonal tiling) type symmetry (Figure D.2). 

Additionally, a second independent network of Sm[Au(CN)2]3
.3H2O interpenetrates the first, supported by 

Au(I)-Au(I) (aurophilic) interactions. 

Thus, in this contribution, we have targeted the characterization of these two systems via more 

detailed luminescence spectroscopy, quantum yields and lifetimes measurements. Use of the crystal 

structure data also enabled further investigation of the impact of the presence or absence of aurophilicity 

on the photophysical properties through ground state geometry optimization and calculation of the excited 

states using DFT simulations. 
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Figure D.2.  One of the interpenetrated three-dimensional networks of Sm[Au(CN)2]3
.3H2O (SmAu3) (50% 

ellipsoids; aqua ligands omitted for clarity) 

 

D.2. Experimental 

 D.2.1. Materials 

 [nBu4N]2[Sm(NO3)4Au(CN)2] (SmAu) and Sm[Au(CN)2]3
.3H2O (SmAu3) were prepared 

according to the literature procedure.[63] All other materials were obtained from commercial sources and 

used as received. 

 D.2.2. Luminescence spectra 

 Steady-state luminescence scans were run between 298 K and 43 K. Spectra were taken with a 

Model Quantamaster-1046 photoluminescence spectrophotometer from Photon Technology International 

using a 75 W xenon arc lamp combined with two excitation monochromators and one emission 

monochromator. A photomultiplier tube at 800 V was used as the emission detector. The solid samples 

were mounted on a copper plate using non-emitting copper-dust high vacuum grease. All scans were run 
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under vacuum using a Janis ST-100 optical cryostat. Low temperature scans used liquid nitrogen for scans 

down to 78 K. 

 D.2.3. Lifetime Measurements 

 Luminescence lifetime measurements were collected by exciting crystals using a pulsed 360 nm 

LED source connected to a FG2C function generator. The emission was collected at various wavelengths 

using a Jobin Yvon Ramanor system, and the lifetime was read with a LeCroy 9310c Dual 400 MHz 

oscilloscope, collecting data every 50 ns to 2 μs per sweep, averaging 10000 sweeps per sample. Scans 

were run at both 298 K and 78 K using a Janis ST-100 optical cryostat. Liquid nitrogen was used as coolant.  

 D.2.4. Diffuse Reflectance Spectroscopy 

 Diffuse reflectance spectra were collected on solid samples at 298 K. The light source was a 

Mikropack DH-2000 deuterium and halogen light source coupled with an Ocean Optics USB4000 detector. 

Collected light was collected with a fiber optic cable. Spectra were referenced with PTFE. Data was 

processed using SpectraSuite 1.4.2_09.  

 D.2.5. Quantum Yield Measurements 

 The absolute PL quantum yield (QY) measurements on the solids were conducted using a PTI QM-

40, PLQY ultrasensitive fluorimeter system containing a 6-in. integrating sphere (K-Sphere B) designed 

for enhanced measurement of quantum yields of solids, films, and powders. The system includes dedicated 

quantum yield calculation functions. Wavelength selection was conducted by software controlled excitation 

and emission monochromators. The QY measurements were conducted on finely ground solids uniformly 

spread onto the sample holder and covered with a quartz disk. 

 D.2.6. Computer Modeling 

 Calculations were performed using the Gaussian 09 Software Package (Gaussian Inc.) supported 

by the University of Maine Advanced Computing Group. Ground state optimizations were performed using 
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molecular mechanics with a Universal Force Field (UFF) parameter developed by W. A. Goddard.[64] For 

the SmAu system MM calculations were performed on a single monomer unit. However due to the 

metallophilic interaction in SmAu3, MM ground state calculations were performed for a dimer unit. 

Molecular orbital calculations were performed on ground state MM structures using the hybrid density 

functional theory due to Becke’s 3-parameter nonlocal exchange functional with the nonlocal correlation 

functional of Lee, Yang and Parr, B3LYP. The modified Stuttgart/Dresden effective core potential (ECP) 

basis set (SDD) of Fuentealba and Szentpaly was employed for all atoms. MOs were generated and 

visualized using the Avogadro software package 1.2.0. 

 

D.3. Results 

 D.3.1. Luminescence   

 The luminescence spectra of non-aurophilic SmAu are shown in Figures D.3 and D.4 at 298 K and 

78 K, respectively. The spectra of the aurophilic SmAu3 system are also shown in Figures D.5 and D.6 for 

298 and 78 K, respectively. Distinct differences in the luminescent behavior of these two sets are observed 

both for the Au(I) and Sm(III) assigned emission features. The materials display dominant Au(I) peaks in 

the ~380 - 460 nm range for both temperatures of 298 and 78 K. In the nonaurophilic system the gold 

centered emission maximum is calculated by gaussian fit at 400 nm at 298 K, and a gaussian fit at 78 K 

indicates a slightly red-shifted maximum to 413 nm. In contrast, the aurophilic system shows an emission 

peak at 411 nm at 298 K and at a significantly red-shifted position of 431 nm at 78 K.  At 298 K both 

compounds display prominent samarium assigned transitions at 559 nm, 591/600 nm, and 640/648 nm 

corresponding to the 4G5/2 →6H5/2,4G5/2 →6H7/2, and 4G5/2 →6H9/2,  transitions, respectively.[65] At 78 K we 

observe a broad Au(I)→(CN)- excitation band for both systems. Sharp reductions in excitation intensity are 

observed at wavelengths characteristic of trivalent rare earth ions. The sharp drop in intensity we believe is 

likely due to energy transfer from the Au(CN)2
- ion to the Sm(III) center. However, in the aurophilic case, 
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the Sm(III) excitation peaks overlap less than in the nonaurophilic case.  Upon cooling to 78 K the relative 

emission of the Sm(III) ion (as compared with the Au(I) centered emission) increases in the nonaurophilic 

SmAu system. This is in contrast to the aurophilic case where the relative emission of Sm(III) ion decreases 

in intensity.  

 The increase in the Sm(III) emission intensity in the nonaurophilic SmAu system appears to result 

from an increased donor-acceptor spectral overlap between the Sm(III) excitation and Au(I) emission band 

indicating enhanced Au(I)→Sm(III) energy transfer efficiency. We are certain that the emission spectra of 

the gold band is not the result of a reabsorption due to the fast Au(I)→(CN)- charge transfer in comparison 

to the slow Au(I)→Sm(III). As shown in Figures D.3 and D.4, a sharp drop in intensity of the Au(I) peak 

is observed at 402 nm at 298 K and 413 nm at 78 K. Excitation scans show a distinct sharp and narrow band 

at this energy, characteristic of a forbidden f-f absorption[66]; again, this implies that there is an overlap of 

a Sm(III)-excitation band and the Au(I)-emission peak, facilitating energy transfer in this case. On the other 

hand, because of the Au(I) emission red shift described above for the aurophilic SmAu3 system this overlap 

of the Sm(III)-excitation band and the Au(I)-emission peak does not occur in this case. The observed sharp 

excitation band at 405 nm in Figure D.6 for SmAu3 at 78 K shows that this peak no longer overlaps with 

samarium emission, implying a loss of Au(I)→Sm(III) to charge transfer. We have previously reported on 

the red shift of Au(CN)2
- ions with increasing oligomer size where monomers emit at higher energies than 

dimers or larger oligomers.[67, 68] In this case we consider aurophilic interactions as a type of 

oligomerization in the crystal structure. This weak dimerization causes the red shift observed in the 

Au(I)→CN emission band of SmAu3. Because this red shift reduces emission/excitation overlap of the 

Au(I) emission band with the Sm(III) excitation band, the Sm(III) emission intensity is decreased. 

 



251 

 

 

Figure D.3. Luminescence spectra of SmAu at 298 K. Emission obtained with an excitation at 350 nm. 

Excitation obtained at an emission of 415 nm 

 

 

Figure D.4 Luminescence spectra of SmAu at 78 K. (Top) Emission obtained with an excitation at 377 nm 

and excitation obtained at an emission of 377 nm while (bottom) Emission obtained with an excitation at 

367 nm and excitation obtained at an emission of 590 nm. Note the corresponding Sm(III) excitation and 

Au(I) excitation intensities, as indicated 
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Figure D.5. Luminescence spectra of SmAu3 at 298 K. Emission obtained with an excitation at 350 nm 

and 400 nm. Excitation obtained at an emission of 410 nm 

 

 

Figure D.6. Luminescence spectra of SmAu3 at 78 K. Emission obtained with an excitation at 388 nm. 

Excitation obtained at an emission of 428 nm 
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D.3.2. Diffuse Reflectance Spectroscopy 

 We have performed diffuse reflectance spectroscopy of both the aurophilic SmAu3 and the 

nonaurophilic SmAu complex at room temperature. Results are shown in Figure D.7 below. A number of 

sharp f–f absorptions bands are present for SmAu between 343 nm and 428 nm but are almost absent in the 

case of SmAu3. In both cases we observe a broad peak at wavelengths below 428 nm which can be assigned 

to the dicyanoaurate-centered MLCT transition. However, in SmAu this band is much more narrow and 

less intense compared to SmAu3. Unlike SmAu3, in SmAu the Au(CN)2
- anions do not exhibit any 

metallophilic interactions, thus the reduction of the HOMO–LUMO gap comes from the coordination of 

the cyanide with the lanthanide ligands. The interaction of cyanide with a rare earth metal lowers the energy 

of the empty π* orbitals of the cyanide ligand, leading to a decrease in the HOMO– LUMO gap (Au(I) d to 

(CN)- π*) and thus the absorption spectrum red-shifts. In both cases we observe weak f-f emission bands at 

644 nm. These bands are stronger in the case of SmAu compared to SmAu3. The luminescence has a 

decrease of the Sm(III) f-f emission in the SmAu3 case, presumably from back charge transfer to the 

aurophilic Au(CN)2
- anions. The absorption band in SmAu3 at 561 nm strongly supports this case where 

the absorption energy also corresponds to the 4G5/2 →6H5/2 Sm transition. 
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Figure D.7. Diffuse reflectance spectra of both aurophilic SmAu3 and nonaurophilic SmAu complexes 

 

D.3.3. Quantum Yield and Lifetime Measurements 

 The quantum yield (QY) was measured for the bands assigned to Au(I) emission for both 

complexes. For nonaurophilic SmAu the measured QY of the Au(I) emission band was 0.13 while for 

SmAu3 the QY was 0.08. The relatively low QY of the aurophilic case is attributed to nonradiative 

Au(I)→Au(I) metal-metal charge transfer (MMCT) interactions between the Au(CN)2
- ions in the 

aurophilic SmAu3 which compete with luminescent Au(I)→(CN)- metal-ligand charge transfer (MLCT) 

transitions as shown in Figure D.8. Nonaurophilic SmAu does not exhibit MMCT between Au(I) ions and 

hence shows relatively higher QY for the Au(I) emission band.  
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Figure D.8: Charge transfer mechanisms in the aurophilic SmAu3 and nonaurophilic SmAu cases showing 

a preference for MLCT→S0 emission in the SmAu3 system but not in the SmAu system. The decreased 

energy between S0 and the MLCT excited state in SmAu3 is not sufficient to permit and intersystem crossing 

to the rare earth ion. Instead an Au(I)-Au(I) charge transfer occurs. ISC = Intersystem Crossing, IC = 

Internal Conversion 

 

Luminescence lifetime measurements were collected on crystal samples for both the aurophilic 

SmAu3 and the nonaurophilic SmAu frameworks at 298 K. Samples were excited at 365 nm with a high 

power LED source and emissions were observed at 600 nm for both systems. The excitation wavelength of 

365 nm was chosen since both samples have excitation bands at this wavelength. Table D.1 shows that the 

emission lifetime is longer for the nonaurophilic framework than for the aurophilic framework. This 

observation can be explained by a decrease in energy transfer between the dicyanoaurate units and the 

lanthanide ions in the nonaurophilic frameworks.  

 

Table D.1: Luminescence lifetimes for the Non-aurophilic [nBu4N]2[Sm(NO3)4Au(CN)2] crystals and 

Aurophilic Sm[Au(CN)2]3•3H2O Crystals observed at 600 nm at 298 K 

 

Framework Emission Wavelength Lifetime 

SmAu3 600 nm 4.34 s ± 0.12 s 

SmAu 600 nm 4.69 s ± 0.08 s 
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 The lifetime measurements are consistent with our previous findings on Tb(III) and Eu(III) metal 

ions coordinated to [Au(CN)2]- anions.[60] The shorter lifetime of the aurophilic case indicate energy 

transfer is possible in aurophilic frameworks between Au(I)→Sm(III) metal ions as a second MMCT. In 

SmAu, Au(I)→Sm(III) are less favorable as indicated by the larger lifetime and Au(I)→Au(I) interactions 

are prevented by nBu4N+ cations within the 3-D network framework while in aurophilic materials the Au-

Au distances are shorter permitting MMCT. The decreased lifetime of SmAu3 would normally indicate a 

higher intensity of samarium emission, however, this is not observed. Since energy transfer is not occurring 

from Au(I)→Sm(III), we expect an increase in Au(I) emission at 411 nm. Again, the quantum yield 

measurements show a decrease in the Au(I) emission intensity. This leads us to suggest the presence of a 

non-radiative Au(I)→Au(I) MMCT relaxation mechanism. Since there is no oligomerization in the 

nonaurophilic case, this process is not present leading to an increase in the gold emission intensity. Despite 

the larger forbidden nature of the Au(I)→Sm(III) transfer, the increase in Au(I) emission results in an 

observed higher Sm(III) emission intensity. 

D.3.4. Molecular Mechanics Calculations 

 We have performed ground state geometry molecular mechanics (MM) calculations using the UFF 

force field parameter for both the aurophilic SmAu3 and nonaurophilic SmAu materials. Results are 

summarized in Table D.2 and shown in Figure D.9. Ground state optimizations for SmAu are in agreement 

with experimental XRD results, which indicated a ten coordinate samarium center. The Sm-N(cyano) bond 

is predicted to be 2.43 Å (vs. 2.596 Å found experimentally). The Au(CN)2
- anionic ligands coordinate at a 

calculated N-Sm-N angle of 78.2o from the samarium(III) center compared to the experimental value of 

74.4o. These calculations predict a large Au-Au distance of 6.60 Å, comparable to the experimental XRD 

value of 6.32 Å. This large atomic distance, which is larger than the sum of the van der Waal radii (3.32 

Å), supports the nonaurophilc nature of this complex.[69] Ground state molecular mechanics optimization 

calculations of a SmAu3 dimer, summarized in Table D.2 and shown in Figure D.10, are in good agreement 

with experimental results. Metal centered Sm-O bonds of 2.349 Å are predicted compared to an 
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experimental value of 2.48 Å while Sm-N bond lengths of 2.62 Å are within 0.015 Å of experimental 

results. MM calculations accurately predict the Au-Au distance at 3.32 Å compared to the experimental 

value of 3.32 Å. Because of the geometric agreement between our models and the experimental results we 

believe our models accurately describe the SmAu and SmAu3 systems. 

Table D.2: Summary of experimental and calculated ground state geometry of SmAu and SmAu3 

 

 SmAu SmAu3 

 Experimental Calculated Experimental Calculated 

Sm-N 2.47 Å 2.43 Å 2.60 Å 2.615 Å 

Sm-O 2.44 Å 2.40 Å 2.48 Å 2.349 Å 

Au-Au 6.32 Å 6.60 Å 3.32 Å 3.32 Å 

N-Sm-N 74.4o 78.2o 76.0o 73.8 

C-Au-C 173o 175o 180o 178o 

 

 

 

 

Figure D.9: Ground state geometry optimizations of SmAu. Cations omitted for clarity but included in 

geometric calculations. Yellow = gold, light blue = samarium, dark blue = nitrogen, gray = carbon, red = 

oxygen 

 



258 

 

 

Figure D.10: Ground state geometry optimization of a two unit model of SmAu3. Hydrogens omitted for 

clarity but included in ground state calculations. Yellow = gold, light blue = samarium, dark blue = nitrogen, 

gray = carbon, red = oxygen 

 

D.3.5. Molecular Orbital Calculations 

 Molecular orbital calculations of SmAu and SmAu3 provide evidence for the origins of the reduced 

Sm emission intensity observed in the aurophilic case. We expect aurophilic interactions to result in 

stabilization of the Au(I) molecular orbitals.[70] Indeed, this is the case when comparing the aurophilic and 

nonaurophilic molecular orbitals. In the nonaurophilic case we observe Au(I) 6s atomic orbitals in the 

LUMO and a combination of the Au(I) 5d and CN π orbitals in the HOMO as shown in Figure D.11. 

Introduction of stabilizing aurophilic interactions results in lowering of the Au(I) 6s atomic orbitals which 

are now observed in MOs below the HOMO leaving the Sm(III) 4f atomic orbitals to compose the HOMO 

and LUMO. If we consider excitation and emission to occur between only the HOMO and LUMO for both 

cases then we can see in the aurophilic case a forbidden, low intensity, f-f transition occurs while for the 

nonaurophilic case we expect an allowed Au(CN)2 centered MLCT. The lowering of energy for the Au(I) 

atomic orbitals is supported by the red shift observed in the aurophilic Au(I) emission bands previously 

described.  
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Figure D.11: Molecular orbital calculations for the aurophilic (left) SmAu3 and nonaurophilic (right) 

SmAu case. The HOMO-1 of SmAu3 contain the Au(I) 6s AO while in the SmAu these are present in the 

LUMO. Note that the SmAu HOMO and HOMO-1 are degenerate in nature 

 

 The nonaurophilic SmAu system is the simplest in terms of energy transfer and gives rise to the 

highest intensity Sm(III) emission relative to the Au(I) emission band. MO calculations reveal that 

excitation of SmAu most likely occurs as an Au(I)→CN transition followed by an intersystem crossing to 

the Sm(III) center 4G5/2. In terms of ‘allowedness’ we consider the Au(I)→CN transition to have a larger a 

larger transition probability than the Au(I)→Sm(III) 4G5/2 transition. Since we do not expect Au(I)-Au(I) 

MMCT quenching from Au(I) interactions in the nonaurophilic case, a higher intensity Au(I) emission band 

at 431 nm is observed. As previously described in Figure D.8, the lowering of energy in SmAu3 and addition 

of Au(I)→Au(I) MMCT quenching results in the independent excitation of both the Au(I)→CN and Sm(III) 

f-f transitions. The lower energy of the Au(I) 5d MOs decreases the probability of the intersystem crossing 
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pathway due to decreased emission-excitation overlap. Introduction of Au(I)-Au(I) MMCT interactions 

also quenches the emission of the Au(I)→CN emission band. This leaves only direct excitation of the 

Sm(III) ions as a possible pathway for rare earth ion emission. Direct excitation of the Sm 4f atomic orbitals 

is a forbidden process and results in weakened Sm(III) emission. The net result for the aurophilic case is 

loss of intersystem crossing for Sm(III) emission enhancement and introduction of Au(CN)2
- quenching 

MMCT interactions. 

D.4. Conclusion 

SmAu and SmAu3 have been synthesized and characterized to compare the photophysical 

properties of nonaurophilic and aurophilic samarium-gold coordination polymers. Previous single crystal 

XRD analysis revealed indirect interaction of Sm(III) and Au(I) for both aurophilic and nonaurophilic cases. 

In the nonaurophilic case a one-dimensional zigzag chain structure is observed while the aurophilic case 

exhibits a three-dimensional network structure. Ground state DFT calculations for these compounds are in 

good agreement with experimental XRD data. Spectroscopic analysis of these compounds included 

luminescence spectroscopy, diffuse reflectance spectroscopy, and quantum yield measurements. 

Comparison of the aurophilic and nonaurophilic cases demonstrate that the nonaurophilic case has higher 

emission intensity of both the Au(I)→CN and Sm(III) emission bands. Spectroscopically and 

computationally we have determined that this increased emission is due to the lack of nonradiative Au(I)-

Au(I) aurophilic interactions. These interactions limit Au(I)→Sm(III) energy transfer by decreasing the 

emission/excitation overlap over the donor-acceptor. This is also observed in the decreased lifetime of the 

aurophilic case indicating a loss of Au(I)→Sm(III) energy transfer. DFT calculations show a mixed LUMO 

of Sm(III) and Au(CN)2
- for the nonaurophilic case, while only Sm(III) orbitals compose the LUMO for 

the aurophilic case. These findings are in agreement with our previous work on LnAu coordination 

polymers in which the separation of Au(I)-Au(I) chains by nBu4N+ ligands metal ions limits the possibility 

of MMCT. Further study of these LnAu coordination frameworks will direct their use in optical 

applications. 
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APPENDIX E. RECENT ADVANCES ON TiO2-BASED PHOTOCATALYSTS 

TOWARD THE DEGRADATION OF PESTICIDES AND MAJOR 

ORGANIC POLLUTANTS FROM WATER BODIES 

 

E.1. Background 

Rapid industrial growth worldwide has increased the urgency of issues such as climate change, looming 

water shortages, and environmental pollution [1,2].  In addition to the increase in pollutant volume, the 

growth of specialized and high-tech industries have contributed to the diversity of pollutants entering the 

environment [3-6].  Of particular concern is the widespread use of pesticides and their potential to enter water 

supplies and cause negative effects on public health.  As of 2009, more than 50 countries applied in excess 

of 1,000 tons of pesticides in support of agricultural efforts [4].  

Despite our best efforts to regulate and engineer the use of pesticides, they continue to be detected and 

present problems at municipal water treatment plants [5].  This demonstrates a need for alternative water 

treatment methods capable of fully degrading pesticides and preserving access to clean drinking water.  

Photocatalysis has emerged as one potential alternative to traditional water treatment methods such as UV 

irradiation. 

The phenomenon of photocatalysis remains one of the most extensively studied subjects in inorganic 

photochemistry. Since the discovery of the photoelectrochemical water splitting abilities of TiO2 in 1972, 

[6] it has become the most studied photocatalyst in both academic and industrial settings [7].  While TiO2 is 

considered a commodity chemical and has numerous applications throughout industry, it has attracted new 

attention in environmental remediation efforts for areas affected by pollution.  The photocatalytic properties 

of TiO2 have been commercialized though formulation into materials such as self-cleaning window films 

and air- purifying roofing tiles [8].  Other semiconductors with similar bandgaps to TiO2 such as ZnO and 

CdS have shown promising photocatalytic properties, but also show limitations involving catalyst stability 

and environmental toxicity [9].   
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Enhancement of electrochemical degradation using photocatalysis has been demonstrated in recent 

literature and indicates increased pollutant removal [10].  The demand for photocatalytic complexes is also 

observed in a myriad of industries, from solar applications including solar heat [11], solar photocatalysis [12], 

and batteries [12-14] to anti-corrosion [8].  Ani et al. have discussed extensively the potential for TiO2 systems 

to be utilized to remove harmful compounds from petroleum wastewater [15].  Application of pristine TiO2 

photocatalysts for environmental purposes has become a popular topic of research for removal of 

environmental pollutants and conversion of solar energy into useful alternatives such as electricity and H2 

[15-17].   

Photodegradation of organic pollutants has become a prominent research topic in recent years and 

viewed as a potential solution for widespread pollution.  Organic pollutants such as pesticides tend to remain 

prevalent in soil and groundwater in areas with frequent chemical treatment.  These recalcitrant molecules 

are known carcinogens categorized by WHO standards and can remain hazardous for years [18].  The 

application of TiO2 photocatalysis to the degradation of organic pollutants was initially demonstrated by 

Carey et al. in 1976 [19].  Since then, the utilization of TiO2 for photocatalytic environmental remediation 

purposes have been thoroughly investigated.  Current methods of groundwater remediation utilize high 

energy UV light to degrade pollutants and sterilize aqueous solutions yet fail to achieve full mineralization 

of certain compounds [19-22].  Although the environmental applications of TiO2 are promising, there are 

various limitations within pure TiO2 complexes that hinder its use for environment and industrial purposes 

[21].  

Photophysical limitations of TiO2 complexes have made practical environmental applications of these 

complexes difficult, since pure TiO2 complexes all have relatively high band gaps.  This limitation permits 

pure TiO2 complexes to utilize only 6% of the solar energy irradiating the planet each day.  To overcome 

these solar harvesting limitations, research efforts have investigated potential modifications and impurities 

that synergistically aid TiO2 in photocatalytic degradation.  
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E.2. Characteristics of TiO2 Photocatalysts 

Photocatalytic activity originates from the absorption of photons of suitable energy to overcome the 

band gap.  Absorption of light by the complex produces an excited state electron that is promoted to the 

conduction band, facilitating reduction of electron acceptors such as H2 and O2 [21-23].  The unoccupied 

electron states, known as electron holes, remain in the valence band of these complexes and are capable of 

oxidizing substrates adsorbed to the surface as illustrated in Figure E.1 [24].  Oxidation of the surrounding 

environment facilitates single electron interactions that promote sequential degradation reactions.  Pristine 

TiO2 is known to have a band gap energy of 3.20 eV, which is capable of absorbing photons of wavelengths 

less than 350 nm, primarily in the UVA, UVB, and UVC range.  Due to the fundamental principles of TiO2 

photochemistry and photocatalysis, TiO2 and other Ti4+ complexes have been ideal candidates for 

scaffolding for potential catalytic enhancements.  Aluminosilicate complexes, also known as zeolites, have 

been reported to be a beneficial scaffold for TiO2 complexes due to their porous configuration that directs 

interaction between the catalyst and pollutants [23].  

 

 

Figure E.1. Schematic illustration of the formation of photoinduced charge carriers (e-/h+) upon  

absorption of UV light[24].  
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The most common crystal structures of TiO2 complexes include anatase, rutile, brookite, and 

monoclinic polymorphs.  These polymorphs are all composed of a Ti4+ center with bordering oxygen atoms 

that act as bridging ligands, as shown in Figure E.2 [25].  

 

 

Figure E.2: Structure model of (A) rutile (110)-(1x1) (r-TiO2(110)-(1x1)), (B) rutile (011)-(2x1) (r- 

TiO2(011)-(2x1)) and (C) anatase (101)-(1x1) (a-TiO2(101)- (1x1)). Red and grey balls stand for  

oxygen and titanium ions, respectively[25].  

 

The unique structure of these TiO2 complexes permit surface vacancies on the Ti4+ centers that can 

act as active sites for catalytic degradation [19-24].  Each of these distinct allotropes are synthesized based on 

the annealing temperature used during synthesis, a phenomenon reported extensively by Chen et al [26].  

Anatase crystal structure is found to be a common candidate for catalyst modification for its stable 

configuration suitable for photodegradation studies.  The anatase structure begins to revert to the rutile 

configurations at temperatures higher than 600 °C, indicating anatase TiO2 is a likely candidate for 

environmental photocatalytic applications [27].  Catalyst size modification has been viewed as a cost-
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efficient enhancement that increases surface area and photodegradation.. Both bulk and nanoscale TiO2 

systems have been investigated extensively and found to have significant differences in photochemical 

responses and degradation activity [27,28].  Recent studies have indicated increased pollutant adsorption due 

to surface area increases in TiO2 nanosystems as opposed to bulk systems.  Modification of the crystal 

structure facets has also become a prevalent topic of study for investigations into photoactivity enhancement 

of TiO2 structures.  

The valance and conduction bands that comprise the accompanying gap between them denote the 

changes in potential required to initiate a photoinduced charge transfer [29].   Band alignment between TiO2 

and an additional semiconductor is a significant area of study and development for catalytic enhancement. 

Alignment between the band structures of anatase and rutile TiO2 have been investigated and found that 

alignment differences as small as 0.2 eV facilitate electron transfer between two photoactive complexes [16-

21].  This difference in band alignment facilitates localized trap states of photoinduced electrons and 

accompanying vacancies.  A schematic illustration of the role of the TiO2 surface in removal of pollutants 

through the formation of photoinduced charge carriers is shown in Figure E.3 [24].  Nanostructures of TiO2 

anatase have been reported containing both (101) and (001) facets although complexes containing 

predominantly (101) facets are thermodynamically favored.  Ong et al. have discussed the effect of mixed 

facet ratios within anatase TiO2 structures and the benefits provided to photocatalytic activity [30].  

 

Figure E.3. Schematic illustration on removal of pollutants by the formation of photoinduced charge 

carriers (e-/h+) on a semiconductor TiO2 particle surface[24].  
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To extend the photophysical capabilities of both anatase and rutile TiO2 into the visible light range 

(λ = 380 nm), photoactive scaffolding such as graphitic carbon nitride (g-C3N4) has been viewed as an 

environmentally benign alternative to metallic impurities [28].  Both surface and interfacial defects have 

been reported to have significant roles in catalyst modification, although surface defects have been found 

to hinder adsorption capabilities [31].  Modification of rutile TiO2 is an investigated aspect of enhancing 

photocatalytic abilities by utilizing the terminal oxygen and Ti4+ atoms present.  These terminal atoms are 

the primary driving force for photo-induced electrons and accompanying vacancies to migrate from the 

irradiated bulk system to surface atoms for redox reactions occur.  Interactions at the catalyst surface are a 

significant part of the photochemical processes and are required to facilitate interfacial charge transfer along 

the catalyst facets and the adsorbed complex.   

The transfer of photoinduced electrons between adsorbed molecules such as H2O or an organic 

pollutant are the driving force that permits the redox reactions necessary for photodegradation.  These 

chemical interactions are only permitted if the photoinduced electrons are able to overcome the tendency 

to recombine with vacancies present in both bulk and surface atoms.  Recombination of excited state 

electrons and vacancies is a problematic limitation of TiO2 and overcoming this limitation is the primary 

goal of catalyst modification.  Luminescence is one of the pathways that can directly result from electron-

hole recombination and is detrimental to photochemical reactions due to conservation of excited state 

electrons.  For this reason, the photoluminescence spectra of a series of similar photocatalysts may be 

compared to understand the effect of a structural change or dopant on overall photocatalytic potential [23].  

Sacrificial agents such as hole trapping species have been viewed as a potential photocatalytic enhancement 

that reduces the recombination of photo- induced electrons and vacancies [32].  The electron trapping nature 

of these agents have been reported to enhance both anatase and rutile TiO2 degradation by carrying these 

excited state electrons away from the catalyst surface, reducing the probability of surface recombination.  

The adsorption of organic complexes such as malic acid and alkyl alcohols onto the surface of TiO2 

complexes has shown significant capabilities for transferring excited state electrons and vacancies to an 
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organic pollutant, facilitating degradation.  Oxidation-reduction reactions within the bulk system and 

catalyst surface are the primary electronic pathway for degradation under ultraviolet light. This generation 

of accompanying electrons and vacancies can facilitate the degradation of pollutants in the surrounding 

environment.  These active chemical species originate from the catalytic splitting of water, which hydrolyze 

harmful pollutants through single electron transfer reactions.  For an in-depth overview of previous 

applications of TiO2 for water remediation, see reviews by Friedmann et al [33], Lee et al [24], Carbajo et al 

[34], and Horikoshi et al. [35].  The remainder of this review will focus on the application of the TiO2 

photocatalytic degradation system to the remediation of organic pollutants from water.  

 

E.3. Photocatalytic Reactor systems 

While photocatalysis has proven to be a highly successful laboratory science, its integration into 

widespread water treatment applications has progressed only marginally.  For this reason, a significant 

interest in academic and industrial research in the development of catalyst reactor systems is to implement 

widespread application of photocatalytic reactors in industry.  The principle aspect of designing catalytic 

reactor systems is to maximize the interactions between the aqueous media and the catalyst to facilitate 

continual photodegradation.  Several types of photocatalytic reactors have been developed including thin-

film, packed bed, fluidized bed, swirl flow, falling film, vortex, and annular photoreactors.  These reactors 

fall into two general philosophies of catalyst utilization where the photocatalyst is either suspended in the 

reaction solution or immobilized in certain fashion [36].  Here we will briefly introduce the advantages of 

each type and their industrial applications for environmental purposes. 
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E.3.1. Suspended Catalyst Reactors 

The most common type of reactor employed in laboratory experiments are batch systems where the 

catalyst is suspended in solution.  This type of reactor has been favored up to this point due to the advantage 

of high surface area of suspended particles which results in fast reaction rates compared to flow reactors.  

In such batch reactor setups, the catalyst that is introduced into a slurry must then be removed from the 

solution post-exposure.  In these reactors, presented in Figure E.4, the required separation and recovery of 

the catalyst are highly unfavorable in water treatment industries, where high volume throughput is necessary 

[37, 38].  The use of bulk catalyst systems in heterogenous solutions has significant limitations such as catalyst 

recovery, durability, and loss of photophysical integrity.  These limitations severely hinder environmental 

applications on an industrial scale by increasing operating costs as well as the potential for bioaccumulation 

in areas exposed to waste material.  However, suspension photocatalyst reactors were found to improve the 

mass transfer of pollutants to the catalyst surface compared to immobilized reactors due to surface area 

considerations.  

 

 

Figure E.4. Schematic of a typical photocatalytic experimental set-up, suitable for suspended or 

immobilized reactor conditions[37].  
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Slurry reactor systems using TiO2 as a photocatalyst were used for the degradation of chloroform 

in water by Pruden et al. [39] .  Building on this work, Kormann et al. observed an increase in chloride ion 

concentration during UV-TiO2 batch reactor operations [40].  Pathirana et al. reported that the catalyst 

concentration is an important factor for batch photocatalyst reactor systems [41].  They found that the reaction 

rate continued to increase with photocatalyst concentration and reached equilibrium before beginning to 

decrease.  This loss of reactivity was attributed to a reduction in the penetration depth of incident light 

caused by “shielding” via photocatalyst particles closer to the light source within the reactor.  Light 

penetration depth is an important consideration for a suspended photocatalytic reactor and limits the 

maximum overall effectiveness of this type of reactor.  

Another type of suspended photocatalyst reactor recently investigated is the drum reactor [42–44].  

This system operates under a continuous flow with wastewater moving through three subsequent drums 

equipped with paddles to stir the solution as depicted in Figure E.5 [42].  This reactor design allows for the 

reactor residence time to be tailored to the pollutant being degraded and enables system designers to employ 

a large effective photocatalyst concentration without losing reactivity due to shielding.  McCullagh et al. 

reported that the drum reactor system using 30 g/L TiO2 was capable of removing 98% of methylene blue 

dye from solution after 60 minutes, demonstrating the high potential for this reactor be employed in 

wastewater treatment plants [42].  In later work, the same group reported that the same system is also effective 

at degrading hydrocarbons present in waste water, which includes pollutants such as decane, dodecane, and 

tetradecane [44].  
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Figure E.5. Schematic of the novel drum photocatalytic reactor[42]. 

 

Fluidized bed reactors are another prominent type of suspended photocatalyst reaction system. In this 

type, the catalyst particles are suspended by an upward flow of fluid, thus maintaining the advantage of 

high surface area of a suspended photocatalytic reactor, while avoiding the need for downstream separation 

of catalyst.  This reactor type has been confined almost exclusively to air purification for applications such 

as nitric oxide, methanol, and toluene vapors.  

 

E.3.2. Immobilized Catalyst Reactors 

Due to the large costs associated with separation and handling of catalyst downstream, much research 

has been directed at techniques for immobilizing the catalyst within the reactor system.  This reduces costs 

since the catalyst does not need to be removed from the solution after the reaction is complete.  However, 

this also inherently results in a loss of surface area since the catalyst must be attached to a support for 
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immobilization purposes.  Lowering the available surface area for heterogeneous photocatalytic reactions 

to occur decreases the rate of the desired reaction.   

Coating a surface with a thin film of TiO2 is a common approach to preparing immobilized 

photocatalytic systems.  Recent studies have found that immobilized anatase and rutile TiO2 exhibit similar 

photocatalytic activity compared to suspension systems [45].  These thin films are synthesized in variety of 

ways including sol-gel processing and chemical etching into a homogenous solution that produces single 

or multiple layers of TiO2 on a surface.  The hydrophilic properties of TiO2 are exploited throughout 

catalytic investigations and permit the adsorption of aqueous atmospheric solutions containing harmful 

pollutants.  These intrinsic properties combined with thin film technology has led to the commercialization 

of catalysis chambers with interior coatings containing TiO2 and other scaffolding compounds.  Zhuang et 

al. synthesized a series of TiO2 bilayers containing surface and interfacial defects and demonstrated the 

photocatalysis using Rhodamine B, a common pollutant used in preliminary studies. [31] 

Two types of immobilized catalyst reactors were reported by Feitz et al. at the pilot scale using solar 

light [46].  The first was a coated mesh reactor, and the other was a packed bed system.  Both systems were 

evaluated for their ability to remove 2 mg/L phenol from water.  It was found that the packed bed reactor 

was able to degrade phenol seven times more efficiently than the coated mesh system.  This difference was 

explained to be due to insufficient contact between the photocatalyst on the mesh and the phenol solution.  

The fixed bed system was also demonstrated to efficiently degrade dichloroacetic acid in this configuration 

[46].  

A rotating disk reactor has been demonstrated by Dionysiou et al. for the degradation of organic 

pollutants in water using TiO2 as a photocatalyst [47].  The schematic for this reactor is shown in Figure E.6, 

with TiO2 photocatalyst deposited as a thin film on a disk in the center of the reactor that rotates as the 

reaction proceeds.  This design has two major advantages where the rotation of the disk generates mixing 

of similar intensity to suspension reactors and the use of a thin film photocatalyst enables high rates of 

transport of oxygen to the photocatalyst surface.  This idea was further investigated by Hamill et al. who 
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showed that the pollutant degradation rate of a rotating disk photocatalytic reactor is dependent on the 

rotation speed of the disk [48].  

 

 

 

Figure E.6. Schematic of the rotating disk photocatalytic reactor[47]. 

 

Although the use of TiO2 complexes has gained significant interest from environmental remediation 

industries, modifications that permit visible light activity are required for widespread use in environmental 

applications.  A key factor many researchers indicate during catalytic reactor setup is the need reduce the 

temperature of the lamp during extended degradation periods.  Efforts to reduce lamp temperature using 

liquid or air cooling have shown moderate success and would equate to increased operational costs in an 

industrial setting.  Modified TiO2 complexes capable of harvesting visible light are a well-studied area in 

recent years, yet few pilot-scale operations have been reported in the literature.  The process of scaling up 

a photocatalytic process is complex, and many critical factors must be considered in order for the final 

process to be economically and technically efficient.  
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E.4. Photocatalytic degradation of pesticides and toxic organic pollutants using TiO2 based Catalysts. 

The use of pesticides leads to a tremendous increase in agricultural productivity, as they provide and 

secure a safe and nourishing environment for plants and other living things.  Pesticides are typically used to 

get rid of insects, mice, and other animals.  They also kill weeds, fungi, bacteria, and viruses. However, 

despite all the benefits they bring to our environment and everyday life, they are still deemed hazardous to 

the mankind.  It was proven that the wastes and rinsates that come from spraying those chemicals over a large 

area, coupled with their frequent disposal into the environment, are causing rivers, creeks, and oceans to 

become contaminated.  Not only they are affecting water life, but also the quality of drinking water is going 

down because of pesticides.  Thus, seeking novel strategies and methods to treat such chemicals in a way that 

they do not have a negative impact on the environment into which they are disposed, has become crucial over 

the past years.  In summary, a multitude of distinct techniques were demonstrated and employed for the 

efficient degradation and eradication of organic pollutants in wastewater.  Several variables and parameters 

were controlled or varied to explore the differences in the kinetics of the reaction.  Indeed, most of the 

methods, which employed potent catalysts, showed and exhibited successful degradation of the pesticides 

under various conditions as presented hereafter. 

 

E.4.1. Photocatalytic degradation of carbamate and diuron pesticides using TiO2 based Catalysts 

Carbamate pesticides are commonly used for pest control from various crops [49-52].  The degradation of 

carbaryl was tested in the presence of TiO2 aqueous suspension [49], ozone and TiO2 photocatalyst [51].  UV 

irradiated carbaryl in the presence of suspended TiO2 particles provides 99% degradation of carbaryl under 

optimal conditions [49].  Similarly, the addition of ozone, along with the photocatalyst, was found to speed up 

the mineralization of carbaryl owing to its relatively high reduction potential, which increases the degree of 

oxidation of carbaryl.  The combination proved to have a strong impact on the decomposition rate of carbaryl 

in pesticide wastewaters with the strongest impact of the photocatalytic ozonation reached at pH 6 [51].  On 

the other hand, the effect of photocatalyst (TiO2/UV), with the aid of photosensitizers such as methyl orange, 
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methylene blue or rose Bengal, was tested on the mineralization and toxicity degree of insecticides in 

wastewater [52, 61, 62].  Photosensitizer-promoted solar photocatalysis is an innovative technique for the 

degradation of carbaryl rinsate to CO2 [52].  It was deduced that using TiO2 and solar light showed 70% of the 

toxicity reduction efficiency of the TiO2/UV process.  However, when photosensitizers were added, in the 

scale of 1-2% of the initial carbaryl concentration, there was a 20% increase in the toxicity reduction 

efficiency of UV-TiO2 photocatalysis.  The principal mechanisms for the decomposition of carbaryl were 

found to be hydrolysis, hydroxylation, and quinonation [52].  This general transformation helps better 

understand the efficiency of photosensitizers as illustrated in the proposed photodegradation pathway 

presented in Figure E.7.  Moreover, applying a parabolic concentrator with TiO2/UV and TiO2/UV/H2O2 

catalysts enhanced the decomposition levels by 41% and 79%, respectively.  Moreover, when the sun 

geometric concentration ratio increases to two, the degradation levels were enhanced to 54% and 92%, 

respectively [63] 
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Figure E.7. Proposed photodegradation process of carbaryl. 

 

A major development in the efficacy level of TiO2 was observed when it was supported with a coat of 

granular activated carbon [64].  The degradation of carbofuran (CBF) in the presence of TiO2-Carbon modified 

material followed pseudo first order with the degradation of CBF slowed down when its initial concentration 

is increased [64].  The modified materials showed 100% removal of CBF at optimized conditions [64].  Further, 

CBF degradation was studied in the presence of TiO2 and ZnO under 254 nm and 365 nm UV light [65].  TiO2 
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was found to be more efficient than ZnO catalyst where it gave a complete mineralization of CBF over a 5 h 

time interval with best catalytic activity was reached using 365 nm irradiation source [65].  Moreover, Re+3 

doped nano-TiO2 was implemented in field on tomato leaves and soil carbofuran [66].  It was determined that 

the degradation rate of carbofuran reached a maximum value of 54.89% when the concentration of nano TiO2 

was 0.4g/L.  Overall, the decomposition rates of the pesticide in the tomato leaves and soil samples were 

increased by 20-30% and by 15-20%, respectively, as compared to natural degradation procedure [66].  

Triadimefon and pirmicarb were photodegraded in the presence of aqueous TiO2 suspension where the 

degradation process was four times faster than the photolysis of the target molecule without a catalyst [67]. 

As a different approach, diurons were treated by two different methods of solar photocatalysis, one 

with titanium oxide, and the other by photo-Fenton [68-70].  The transformation products and toxicity levels 

were evaluated and compared between the two methods [69].  It was found that diuron was totally disappeared 

in 45 min for both systems.  The toxicity was reduced to a value below the threshold in a time interval that 

was shorter than 200 minutes, which was the time spent for 90% of mineralization to be achieved.  The 

transformation products were identical with variation in their relative abundance [69].  Solis et al. have reported 

the degradation of diuron by three different approaches: single ozonation, photocatalysis, and photocatalytic 

ozonation [70].  Compared to the single ozonation process, the total organic carbon (TOC) removal via 

photocatalytic ozonation was more efficient and complete where carbon dioxide and water found as final 

products [70].  Overall, photocatalytic ozonation was deemed more effective in terms of mineralization levels 

and TOC percent removal, due to its great oxidizing capacity of organic pollutants [70].  Moreover, boron 

doped TiO2 was used for the degradation of four pesticides, including diuron and compared to bare TiO2 

catalyst [71].  Boron doped TiO2 catalyst was more effective in terms of degradation and mineralization rates 

in contrast to the undoped TiO2.  The synergistic effect of photocatalytic ozonation led to faster mineralization 

rates as compared to the individual methods of treatment.  Additionally, the B-doped catalyst was stable and 

gave reproducible results of mineralization rates up to 75% upon three successive runs [71].  The study 
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indicates that the doped catalyst was more active towards the removal of the organic pollutants due to the 

observed increase of the pore volume and surface area of the crystal compared to the bare TiO2 sample [71].  

The degradation of chlorotoluron in the presence of aqueous suspensions of titanium oxide under 

diverse conditions has been reported [72].  The change in conditions involved the type of TiO2 used, pH, 

catalyst concentration, substrate concentration, temperature, and the various types of electron acceptors, other 

than molecular oxygen.  It was revealed that titanium oxide exhibited the highest efficiency rate for the 

decomposition of chlorotoluron.   The temperature range used was 20-50oC, with no considerable change in 

the degradation rate of chlorotoluron occurred within that range.   Expectedly, the decomposition rate was 

seen to increase with the concentration of the catalyst with three identified major products shown in Figure 

E.8.  
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Figure E.8.  A plausible mechanism for the photodegradation of chlorotoluron irradiated in the presence 

of TiO2 photocatalyst. 
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Fenoll et al. have reported the decomposition of methabenzthiazuran residues in leaching water in 

the presence of photocatalysts and amended soils [73].  The effect of TiO2 and ZnO was examined on the 

degradation rate of the organic contaminant.  The use of ZnO was found to be more effective in the 

degradation process of the herbicide than TiO2, although both led to significant reduction in the amount of 

the herbicide [73].  However, ZnO had some downsides as it was dependent on the pH of the reaction 

medium.  The study is unique in a sense that it introduced and presented innovative approaches for the 

eradication of a special type of herbicides [73].   

 

E.4.2. Photocatalytic degradation of organic dyes and pharmaceutical products. 

The activity of TiO2, ZnO, and their mixed oxide (ZnO-TiO2), was tested and compared towards the 

degradation of methylene blue and naproxene, a pharmaceutical compound [74].  While the various 

photocatalysts gave approximately similar degradation rates in the case of the pharmaceutical compound, the 

efficacy of ZnO under UV irradiation exceeded that of the others in the degradation of methylene blue.  Since 

zinc titanate is relatively more stable than ZnO in acidic environments and can integrate into its lattice 

elements that might alter the bandgap, it can be utilized in place of the more effective analogue ZnO as a 

candidate for advanced oxidation.  Interestingly, the activity of both component oxides depends on the 

crystallographic alignment of the exposed surfaces [74].   

      Azo dye solutions treated with a novel hybrid technique of hydrodynamic cavitation (HC) and 

photocatalysis in a pilot reactor exhibited better mineralization at 5 bar as compared to individual conditions 

[75].  ZnO catalyst was found to be more efficient than TiO2 with an optimum degradation rate reached at 1.0 

g/L ZnO concentration.  In addition, it was found that as the initial concentration of the dye increases, the 

decolorization and degradation rates decrease [75].  Also, azo dye (RR 180), as well as 2,4-

dichlorophenoxyaceticacid (2,4-D) and antibiotic (enrofloxacin), were degraded using single ZnO catalyst 

and a 1:1 ratio of ZnO/TiO2 mixture [76].  Irradiations using the UVC wavelength range of the UV light were 
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found to be more effective than the UVA for all the tested chemicals, however, UVA was beneficial in a sense 

that it utilizes solar energy, so the energy efficiency was high.  The catalysts proved to be effective and 

successful in terms of reusability by the consecutive degradation tests, which qualifies them as reliable 

methods for future applications [76].  Furthermore, ultra-thin photocatalytically active TiO2 layers with high 

porosity and hydrophilic properties were utilized for the degradation of methyl orange dyes.  Double-side 

active TiO2-modified membranes photodegraded twice the amount of photodegraded pollutant like methyl 

orange, when operated in the common cross-flow membrane mode under UV irradiation of both membrane 

surfaces [77].  

E.4.3. Photocatalytic degradation of triazine pesticides using TiO2 based Catalysts 

      1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine, better known as atrazine, is a commonly  

used herbicide in the agricultural industry to limit the growth of certain weeds and grasses that prove to be an 

interference in the cultivation of crops such as corn, sugarcane, and sorghum.  Atrazine is suspected to be an 

endocrine disruptor that is a potent carcinogenic for humans, cause reproductive defects in fish.  Furthermore, 

it is a very persistent chemical so it may remain in the environment even after several years have passed since 

its use.  TiO2 is a very effective photocatalyst for the removal of atrazine derivatives from the environment 

[78-84].  In specific, TiO2 ozonation provides a significant enhancement in the degradation rate of atrazine with 

a gradual increase upon the increase of the amount of catalyst and the ozonation dose.  When the catalyzed 

ozonation process was carried out for 30 min at the ozone dose of 10 mg min−1 and catalyst dose of 0.1 g L−1, 

about 93% atrazine was removed from water.  GC/MS analysis indicates the formation of five different 

products besides residual amount of atrazine as depicted in Figure E.9 [78].  The transformation products 

showed that the degradation of atrazine involved de-alkylation process followed by de-chlorination and de-

amination steps. Toxicity tests based on the marine bacteria V.  Fisheri indicated the detoxification of atrazine 

by catalyzed ozonation [78].   
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Figure E.9. Atrazine degradation and formation of transformation products by catalyzed ozonation[78]. 

 

TiO2 synthesized using Boron Enrichment Waste (BEW), without the presence of any reducing agent, 

was found to be fast, efficient, and eco-friendly photocatalyst.  The photocatalytic degradation of atrazine 

performed under UV-Vis irradiation depends heavily on the initial concentration of atrazine, the time of 

contact, and the amount of the catalyst [79].  The TiO2 – BEW catalysts have good reusability when it comes 

to the elimination of atrazine from water [79].  In comparison, a different technique involved modifying TiO2 

semiconductors by adding various dyes to the surface [80].  While the surface modified catalyst was reacted 

with atrazine in the dark, it was noticed that the thionin and eosin Y dyes did not interact with the atrazine 

molecules [80].  However, it was found that in the presence of visible light, the modified TiO2 semiconductor 

particulate system could not only degrade harmful compounds like phenols and hydrocarbons, but it could 

also help in the decomposition of pesticides like atrazine when similar experimental conditions are regulated 

[80].  

N-doped TiO2 particles deposited on ZnS-based phosphors microparticle (ZSP) by a sol-gel technique 

showed that combination of both N doped TiO2 as well as the ZSP gave improved results in photocatalytic 
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activity for the removal of atrazine [81].  While, 45% of the atrazine were eliminated under UVA illumination, 

94% of the atrazine present in the sample was successfully removed upon illumination in the presence of the 

catalyst [81].  Further, TiO2 in aqueous solution as well as TiO2 surface modified with ceramic, tetra(4-

carboxyphenyl) porphyrin encapsulated various metal centers such as Fe(III), Cu(II) were used as 

photocatalyst towards the triazine decomposition under visible light [82, 85, 86].  While, porous TiO2 modified 

ceramic shows an excellent photodegradation performance toward atrazine and thiobencarb with up to 96% 

of the total organic carbon removal efficiency [86], it was found that these conditions were not oxidizing 

enough to break down the atrazine present, and as a result, hydrogen peroxide was added as an oxidizing 

agent [82].  Under these conditions, the atrazine undergo degradation where Cu(II) porphyrin system caused 

the atrazine present to degrade by 82% after one hour of irradiation [82].  Similarly, TiO2 deposited with 

metallic nanoparticles including Au, Ni, and Cu were employed for the degradation and mineralization of 

atrazine [83].  

Au/TiO2 was the most successful catalyst for the degradation of atrazine, followed by Cu/TiO2 and 

then Ni/TiO2.  This is possible because Au is the most unreactive element as a result it is not being oxidized 

during the reaction.  Studies have also been conducted on a graphene-TiO2 catalyst [87].  Possible theories 

suggest that graphene oxide (GO) combined with titanium oxide, improve the surface area for adsorption and 

enhance the interfacial electron transfer between the two compounds.  The composite catalyst provide a better 

performance than the titanium oxide alone [87].  The composite GO- TiO2 catalyst proved to be much more 

efficient at photo degradation of a multitude of pesticides- atrazine, alachlor, isoproturon and diuron when 

compared to TiO2-P25 system alone [87].  

Another research involved the use of electrochemistry in the degradation of atrazine [88, 89].  The 

study uses Ti/RuTiO2-DSA (dimensionally stable anode) electrode seeks to explore the differences in the 

results when a purely electrochemical method is compared to a photo-assisted electrochemical method [88].  

Results showed that when the current density was increased, the amount of atrazine removed using the 

combined method was much greater than the purely electrochemical method, which could possibly be due 
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the formation of hydroxyl radicals because of interaction with the UV light.  The photo-assisted method 

breaks down the heterocyclic ring of atrazine where the removal of atrazine from water and the chemical 

oxygen demand depend on the rate of deposition of organic material on the surface of the electrode [88].  The 

use of an innovative, inexpensive titanium oxide that contains both the anatase and rutile phases of titanium 

oxide as a photoanode in conjunction with a graphite cathode removed 99.2% of the atrazine present with 

faster atrazine removal observed using higher current density.  The best removal took place at a pH 6 where 

hydroxyl radicals formed during the electrochemical process induced the dichlorination and dealkylation as 

depicted in Figure E.10 [89]. 

 

 

Figure E.10. Possible pathways of Atrazine degradation with electrophotocatalytic process[89]. 
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Immobilized chitosan with TiO2 thin film were used as photocatalyst for the removal of terbuthylazine 

(TBA) from water bodies [90, 91].  While the thermal degradation showed no change in TBA concentrations, 

both the photolytic and photocatalytic degradations have favorable results, with high removal of TBA.  

However, the photolytic process led to the formation of more by-products (apart from cyanuric acid), some 

of which were identified as toxic as TBA.  In presence of the photocatalyst, the amount of cyanuric acid 

obtained was 37.21%, while in its absence only 16.08% was obtained, indicating that the presence of the 

catalyst does increase efficiency, because cyanuric acid, although cannot be degraded using photocatalysis, 

it can easily be removed using microbial degradation [90].   

To assess the effect of different reaction conditions on the reaction chitosan immobilize TiO2 on a 

glass fiber was used for photocatalytic degradation of TBA [91].  The photolytic degradation was effective 

with cyanuric acid was obtained as a final product.  When the rate of the reaction mixture circulation was 

increased, the degradation was more successful as more cyanuric acid obtained [91].  Similar study include the 

degradation of melamine (s-triazine derivative) in presence of TiO2 
[92].  Among several oxidation techniques 

with a multitude of varying experimental conditions, hydroxyl radicals generated from hydrogen peroxide in 

presence of sulfate radicals were effective towards melamine decomposition with cyanuric acid obtained as 

a final product [92]. 

The degradation of hexazinone using mixed phase crystal nano-TiO2 has been reported 
[93].  The 

adsorption equilibrium of hexazinone on TiO2 was reached in 20 minutes in the dark.  While hexazinone was 

found to be stable in the absence of the catalyst, photodegradation occurs in the presence of TiO2.  The rate 

of degradation differs when the amount of nano-TiO2 is varied, but the rate was optimum at 0.1% w/w of 

TiO2.  The proposed degradation route fits the Langmuir – Hinshelwood model, and the final products 

obtained were nontoxic [93].  The adsorption of prometryn on TiO2 also follows the Langmuir- Hinshelwood 

model and first order kinetics.  When the reaction proceeds in the presence of the photocatalyst, only 10% 

reduced after 2 hours of irradiation [94].  Adding oxidants like peroxydisulfate to the reaction mixture, 

improved the photodegradation due to a synergistic effect with cyanuric acid was identified as a final product 
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[94].  Dicylanil, an insect growth regulator derived from pyrimidine, has been also investigated [95].  The rate 

of degradation of dicylanil was 43 times faster in the presence of the TiO2 catalyst compared to the 

uncatalyzed reaction with complete eradication occurs in less than one hour [95]. 

The degradation of the herbicide metamitron (4-amino-6-phenyl-3-methyl-1,2,4-triazine-5(4H)-one) 

was also investigated over the TiO2 catalyst [96].  When the photocatalyst was present, metamitron was fully 

degraded after 6 hours, whereas, one fifth of the initial herbicide persisted when the TiO2 is absent [96].  

Kaniou et al have studied the degradation of sulfamethazine (SMT), a sulfonamide drug using three n-type 

oxides the photocatalysts including: ZnO, TiO2-P25, and TiO2 (Anatase) [97].  After one hour of the exposure 

the percent decomposition was 100%, 65%, and 39% for the reactions occur with ZnO, TiO2-P25, and TiO2-

Anatase catalysts, respectively [97]. 

TiO2 has proved to be one of the most powerful catalysts for complete degradation of environmental 

pollutants [98].  Using TiO2 in powder form shows the most efficient catalytic activity [98, 99].  However, when 

used for water decontamination, post-treatment methods are required to collect the catalyst from the reactor.  

One way examined is to coat the catalyst on aluminum foam using sol-gel method which, leads to a three-

dimensional structure with high surface area as it ensures sufficient flow of liquid and large interface of 

exchange between targeted molecules and the photocatalyst [100].  While 5% of pyrimethanil went through a 

complete photodegradation after 19 h of exposure, 100% of the pesticide removed after 5 h upon irradiation 

in the presence of TiO2 catalyst [100].  The catalytic activities of TiO2 powder immobilized with silver modified 

thin films in metolachlor degradation were also investigated [98].  SEM image for the prepared immobilized 

catalyst films and silver-nanoparticle-doped films showed rough sponge-like surface in the immobilized 

films.  The effective surface area were hundred times greater than the non-fractal surface due to ability of 

capturing pollutant molecule and photons and allowing higher light reflection [98].  

The effect of zinc and titanium oxide photocatalysts on the degradation of the herbicide bentazon, under 

UV and visible light, along with effect of pH and electron acceptor groups on initial rate of catalysis were 

studied [101].  Among ZnO and TiO2 from different manufacturers, TiO2-P25 and ZnO exhibited the highest 
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catalytic activity attributed to their different morphology as it is one of the most critical properties for high 

catalytic activity.  ZnO and TiO2 P25 have the highest catalytic activities under UVA illumination where 97 

and 81% of bentazon degraded after 90 minutes, respectively [101].   

The primary kinetics of degradation of pyridaben under photocatalysis of TiO2 was identified [99, 102].  

The plot of the quantity of pyridaben left in the solution versus the UV irradiation time showed that the 

degradation follows Langmuir-Hinshelwood kinetic model [102].  The presence of TiO2 particles enhances the 

reaction rate by 10 times compared to the uncatalyzed system, upon the exposure to wavelengths above 360 

nm where a complete degradation of the pesticide has occurred [99].  Further, the illumination of pyridaben 

was tested in a surfactant CTAB (cetytrimethyl ammonium bromide) aqueous dispersion [103].  The results 

indicated enhancement in the initial rate as the concentration of the catalyst increased with strong adsorption 

of cationic CTAB on titania particles helped co-adsorption of pyridaben which facilitated the photocatalytic 

degradation.  The effect of pH was minimal from pH of 3-6 but overall it increased in the range of 3-10 [103].   

To enhance the photocatalytic activity, TiO2 was coupled with electrochemistry and doped with non-

metals like nitrogen to shift the TiO2 absorption to lowest level of energy [104, 105].  Beside the nonmetal, 

immobilization of transition metals is effective in enhancement of TiO2 photocatalysis in visible light.  

Iron(III) ion has the most similar radius as Ti(IV) and can be introduced to the crystal lattice to change the 

electronic structure and reduce the band gap.  To test the modified TiO2 catalyst, photocurrent of TiO2/Ti and 

Fe-N-TiO2/Ti electrodes were used to decompose thiamethoxam pesticide [104].  The effect of substrate 

concentration, pH, type of catalyst, catalyst dosage, and the presence of an electron acceptor such as hydrogen 

peroxide on the degradation of thiamethoxam were also investigated [106].   

TiO2 particles were used as photocatalyst for the photodegradation of the fungicide boscalid under 

different experimental conditions [107].  A complete degradation in presence of TiO2 occurred after 90 minutes 

with the degradation rate increases as the pH, photonic flux, and oxygen concentration increases [107].  The 

presence of inorganic cations like Ca2+, Na+, K+, Mg2+ and anions like CO3
2- tend to decrease the rate of 
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reaction as they adsorb on the surface of TiO2.  In a similar study, complete photodegradation of 

pyraclostrobin was established at pH 6.2 and 0.5 g/L of TiO2 after 60 min of UV irradiation [108]. 

Hermann and Guillard have studied a laboratory photo-reactor and a pilot solar photoreactor for 

photodegradation of several pesticides [109].  The mass of catalyst required for an optimum light absorption 

was 2.5 g/L for the batch micro photo-reactor and only 0.2 g/L for the pilot photoreactor.  Also, activated 

carbon coupled with titania enhanced the degradation rate by a factor of 2.5.  This enhancement is due to 

spontaneous mass transfer of pollutant from activated carbon to titania because of concentration gradient 

between the two [109].  The photolysis and photocatalysis degradation of 6-chloronicotinic acid (6CNA) was 

also observed under UV radiation.  While 6-CNA does not degrade easily in double deionized water, the 

photocatalytic degradation with immobilized TiO2 is a fast process with pseudo first order kinetics.  Although 

the mineralization rates estimated through TOC measurements revealed absolutely no carbon removal under 

photolytic degradation, 46% mineralization was reached using TiO2 as photocatalyst after 120 minutes [110].   

E.4.4. Photocatalytic degradation of Phosphorous-based pesticides using TiO2 based Catalysts. 

Photocatalytic degradation of P-based pesticides generally followed pseudo first order reactions that are 

expressed by Langmuir -Hinshelwood model [85, 111, 112].  The rate of degradation depends on several 

parameters including: pH, catalyst type and concentration, substrate concentration, and the presence of 

electron acceptor such as H2O2 [112-118].  Most studies include testing the use of TiO2  catalysts in removing 

different pesticides such as malathion, dichlorvos, COD dipterex, diazinon, phorate, dimethoate, and several 

other organophosphorous pesticides since pesticides have been described to be harmful to the health of 

humans and animals [112-114, 119, 120].   

The use of TiO2 based catalysts for photolysis and degradation of malathion, isomalathion, and malaoxan 

has been reported [121-127].  Malathion, malaoxon, isomalathion, and radotion were studied in terms of their 

degradation kinetics, identification of their transformation products, their toxicity, and their degree of 

mineralization, during UV photolysis and TiO2 photocatalysis.  Over 75% of theoretically expected sulfur in 
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PQS and P–S groups was oxidized after 240 minutes of photolysis and photocatalysis.  Several oxidation and 

isomerization products were identified by GC-MS [121].  The formation of malaoxon, isomalathion or trimethyl 

phosphate esters correlated well with the induced toxicity (inhibition of acetylcholinesterase), which was 

observed in photocatalysis of malathion and radotion, and in the photolysis of malaoxon and radotion [121].  N 

doped TiO2 nanomaterials degraded malathion within 150 minutes when 1 g/dm3 N-doped TiO2 was added 

to 15 ppm malathion at pH = 6 under UV-light.  The photocatalytic degraded products are less toxic as 

compared to malathion [122].  Moreover, hierarchical porous TiO2 ceramics were obtained and proved to be 

good for photodegradation of various pesticides including dimethoate, lindane, dipterex, malathion, and 

bentazone with good reproducibility [123, 128].  Suspended and immobilized TiO2 based catalysts were used to 

remove various P-based pesticides including lindane, methyl parathion, quinalphos, diazinone, and 

dichlorovos from water bodies [129-134]. 

Vela et al. have studied the photocatalyzed degradation of a mixture of six pesticides (fenitrothion, 

malathion, quinalphos, vinclozolin, fenarimol and dimethoate) with endocrine disrupting activity sewage 

wastewater effluent under natural sunlight at pilot plant scale [124].  The use of TiO2 alongside an electron 

acceptor like Na2S2O8 strongly enhances the degradation rate of the studied pesticides compared with 

photolytic tests.  The total initial concentration of pesticides (P = 1.81 mg/L) decreased to 0.39 mg/L (22%) 

after 240 min of sunlight irradiation [124].  After the photoperiod, malathion was totally photodegraded in the 

presence of TiO2-P25, while fenarimol was the most persistent pesticide.  Although carbon-doped TiO2 has 

lower band-gap energy than TiO2-P25, the latter was more efficient in all cases than TiO2, charge separation 

is consolidated which reduce the possibility of recombination [124].  

2%WO3/TiO2 catalysts prepared by sol-gel process allowed the incorporation of very reactive WO3 

clusters over anatase TiO2 surface [125, 126].  The synthesized TiO2 materials exhibited a crystalline anatase 

phase with an average particle size of 20 nm.  Results of malathion degradation using solar light indicated 

that 2% WO3/TiO2 showed better catalytic performance than sol-gel TiO2, achieving a complete degradation 

after 2 hours with 63% TOC reduction after 5 hours.  The previously mentioned results suggest that 2% 
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WO3/TiO2 is an active material for solar photocatalytic treatment of polluted water having pesticides [125].  

The mineralization rate and the percentage of TOC removal were improved when the content of WO3 was 

2% due to the formation of smaller clusters and a higher surface area, which reduces the recombination 

process and results in better contact area between the catalyst particles and the pollutant, improving the 

photocatalytic reactivity and the destruction efficiency against the pesticide molecule [126]. 

Au–Pd co-modified TiO2 nanotube film (Au–Pd–TiO2) fabricated by simultaneous photo-depositing Au 

and Pd precursors on a self-organized TiO2 nanotube film.  The photocatalytic activity of the modified film 

revealed that the malathion elimination rate increased by 172% when the photocatalyst of the naked TiO2 

nanotube film was replaced by Au–Pd–TiO2 
[127].  This activity is attributed to the effective separation of 

photo-generated charge carriers and the higher synthesis rate of H2O2 as illustrated in Figure E.11 [127].  

 

 

Figure E.11. Schematic diagram representing the charge-carrier transfer on Au–Pd–TiO2 and its  

interaction with the adsorbed O2
[127].  

 

Juang and Chen have reported the photocatalytic degradation rates and paths of methomyl and parathion 

in the presence of TiO2 suspension using UV irradiation.  Langmuir–Hinshelwood kinetic model was used to 

evaluate the apparent first-order rate constants of both pesticides at their initial stages of degradation 

processes.  Under similar conditions, the degradation level of methomyl was faster than parathion as expected 

due to more complicated structures of parathion molecules [135].  In similar study, titanium dioxide proved to 
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be more efficient photocatalyst than ZnO since the oxidation and decomposition of the insecticide proceeded 

at higher reaction rates.  Moreover, complete mineralization was achieved only in the presence of titanium 

dioxide [136].  Toxicity level was observed to be decreased during photocatalytic activity in the presence of a 

catalyst where eight by-products were identified during the photocatalytic activity [136].  It has been recently 

reported that anatase nanofibers act as good photocatalyst towards the degradation of methylparation pesticide 

[137].  The modified catalyst is with high surface area that enhance the adsorption of the target pesticide and 

thus accelerate its degradation process [137].  

Several triazine derivatives and organophosphorous pesticides were investigated in aqueous TiO2 

suspensions under simulated solar light [138].  Degradation kinetics monitored through gas chromatography 

followed the first-order kinetics.  The degradation was fast with half-lives varying from 10.2 to 38.3 minutes 

depending on the nature and the structure of the compounds [138].  The generated transformation products 

(TPs) were formed via oxidation, dealkylation, and dechlorination for s-triazines and via oxidation and 

photohydrolysis for organophosphates [138].  

TiO2 nanofibers containing Ag nanoparticles prepared by electrospinning were established as potential 

photocatalyst for the degradation of parathion.  The prepared Ag/TiO2 nanoparticles provide a higher 

photocatalytic performance in reaction under UV photo irradiation [139].  The enhancement was due to the 

narrow size distribution, high purity, uniform distribution of doped metal and ~50 nm diameter of the prepared 

Ag/TiO2 nanofibers.  Furthermore, the presence of metallic nanoparticles inhibits the electron-hole 

recombination in TiO2 by electron capture resulting in increased hole formation to produce hydroxyl radicals, 

which lead to an increase in the rate parathion photodegradation reaction [139].  It was also found that the 

content of Ag nanoparticles on TiO2 nanofibers performed a significant role in photocatalytic performance 

during the parathion degradation reaction [139].  

A series of bismuth-doped titania samples were prepared and applied for the photodegradation of 

methyl parathion under UV-A radiation [140].  The photocatalytic degradation of methyl parathion in aqueous 

solutions was further promoted by the Bi-TiO2 photocatalysts, compared with TiO2 alone [140].   It has been 
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demonstrated that methyl parathion was degraded efficiently in aqueous Bi-TiO2 suspension to the extent of 

97% within 120 minutes [140].  

TiO2 photocatalyst was also used to degrade the most widely used organophosphorus pesticides, 

monocrotophos (MCP) and chlorpyrifos (CPS) using 16 W UV light source [141].  The kinetic analysis of 

photodegradation of monocrotophos and chlorpyrifos under different initial concentration followed the 

Langmuir–Hinshelwood model where, TiO2 is proved to be excellent photocatalyst for degradation of 

monocrotophos and chlorpyrifos [141].  In addition, the degradation of pesticides chlorpyrifos, cypermethrin 

and chlorothalonil was examined in aqueous solution by TiO2 photocatalysis under UVA (365 nm) [142].  In 

UV/TiO2 photocatalysis, COD and TOC removal were 25.95 and 8.45% respectively whereas, UV/TiO2/H2O2 

photocatalysis revealed 53.62 and 21.54% COD and TOC removal, respectively [142].  The study is significant 

regarding the application of UV/TiO2/H2O2 photocatalysis as pretreatment of chlorpyrifos, cypermethrin and 

chlorothalonil pesticide wastewater at pH 6, for biological treatment [142].  Batch degradation studies on 

Endosulphan and Chlorpyrifos were conducted in the concentration range from 5 to 25 mg/L at a pH ranging 

from 3.5 to 10.5 and at a catalyst loading of 0.5–2 g/L [143].  Endosulphan removal efficiency was about 80–

99% and chlorpyrifos removal efficiency was about 84–94% in the presence of TiO2 catalyst.  The obtained 

high removal efficiencies (80–99%) indicate the effectiveness of this process and its potential for practical 

application [143]. 

Photocatalytic degradation of organophosphorus compounds including organophosphonic, and 

organophosphinic acids by TiO2 immobilized silica gel in a water phase was carried out [144].  Photocatalytic 

degradation of organophosphorus compounds through forming various intermediates obtained via rapid 

absorption of acids on TiO2 surface resulted in significant reduction in the concentration of these compounds 

even under dark condition [144].  Upon UV irradiation, total organic carbon (TOC) level increased indicating 

the elution of some organic intermediates into the aqueous phase [144]. 

While TiO2 is commonly used for its high photodegradation activity, it is not easy to separate and reuse 

TiO2 [145].  To overcome its separation, TiO2 was synthesized with supports like HZSM-11 zeolite.  It was 
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found that TiO2/ZSM-11 catalysts are suitable for the degradation of the insecticide DDVP in water, resulting 

in degradation percentages similar to the commercial TiO2 P25 [145].  Similarly, TiO2 supported on Hᵦ was 

tested on monocrotophos pesticides (MCP) where it was concluded that supporting TiO2 on a zeolite makes 

it better for both degradation and mineralization since MCP and its intermediates were adsorbed to the 

supported TiO2 
[146].  Moreover, TiO2 photocatalyst removed the toxic dichlorvos pesticides present in the air 

indoors; but it produced a small amount of potentially harmful by-products in the gas phase [147].   

The photocatalytic degradation of organophosphorous pesticide dirchlorvos in suspended TiO2 was also 

studied under solar irradiation [148]
.   After exposure to solar irradiation, Cl- ions were found in large quantities 

whereas PO4
3- was only present in small amounts due to its presence in phosphate organic compounds.  

Formaldehyde was also present as an unstable intermediate throughout the reaction.  The presence of H2O2 

played a role in the reaction where it increases the rate of degradation via generating OH● radicals [148]
.  TiO2 

was found to be more effective than ZnO for the oxidation of dichlorovos that occurred at fast rate as well as 

the process almost reached complete mineralization [149].  The comparison of both TiO2 and ZnO has also been 

seen in another study done on dimethoate pesticide, where a similar conclusion was reached in which the rate 

of the oxidation and decomposition of the insecticide was faster with the use of TiO2 catalyst, hence it is the 

more efficient catalyst [150].  TiO2 was able to achieve mineralization with the addition of an oxidant as well 

as achieve complete detoxification with the addition of peroxide [150]. 

Chen et al. have discussed the treatment of Dimethoate using nanosized TiO2 powder, where the 

concentration of the TiO2 catalyst increases the degradation efficiency with an optimal concentration of 0.6 

g/ml [151].  With the right adjustment of the parameters, the efficiency of degradation could reach 99% in 160 

minutes.  Addition of oxidants and the use of ultrasonic irradiation (US) positively affects the degradation 

efficiency [151].  Moreover, the degradation of triazophos by sunlight in the presence of TiO2 has a degradation 

rate faster than the rate caused by direct photolysis where seventeen products were produced and projected in 

several transformation routs [152].  A nanometer-sized titania coupled with a screen-printed carbon electrode 
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(SPCE) also works as a photoelectrochemical sensor that detects the organophosphorous pesticide, 

dichlofenthion [153]. 

Sonocatalytic, photocatalytic, and sonophotocatalytic degradation of diazinon were evaluated using Fe-

doped TiO2 nanoparticles which resulted in a faster degradation rate than TiO2 alone [154].  The rate of 

degradation depend on the pH, catalyst dosage, and initial concentration of diazinon and concentration of Fe 

doping [154].  As the concentration of the catalysts and the Fe doping increased, the rate of degradation 

increased as well.  TiO2/Fe2O3 nano powder, which was present in the form of anatase and maghemite 

crystalline phases, respectively were used to decompose diazinon [155].  The TiO2/Fe2O3 catalysts was 

compared with a pure TiO2 as a catalyst in which it was concluded that TiO2/Fe2O3 had high absorption in 

both the UV region and the visible region [155].  FeNS-TiO2 has been found to be more effective than pure 

TiO2 with diazinon pesticides in which it improved the degradation of diazinon by 53% at pH 7 [155].  Similar 

to other studies, the rate of degradation increases with the increase of catalyst concentration [156]. 

Studies were also done on different types of toxic pesticides that should be eliminated from the 

environment including phorate, diisopropyl fluorophosphate (DFP) and dimethylmethylphosphonate 

(DMMP), Chemical Oxygen Demand (COD) dipterex, as well as 2-cholor-ethylsulfide (CEES) [157-166].  

Phorate degradation over TiO2 catalyst using UV irradiation follows first order pseudo reaction with the 

degradation efficiency could reach 99% in 60 minutes [158].  Inorganic ions present in natural water systems 

like Cl- and NO3
- decreases the degradation rate of phorate.  Using wet TiO2 for DFP and DMMP 

photodegradation reduces the amount of intermediates that accumulate on the surface while still maintaining 

a fast degradation rate [160].  DMMP was also treated using Zr-doped TiO2 
[159].  TiO2 doped with 6.8 wt% Zr 

produces the most efficient sample for the photodegradation of these pesticides [159].  Photoelectrocatalytic 

degradation is also used to remove pesticides such as COD dipterex using TiO2/Ni photoelectrode [157].  Under 

certain experimental conditions, the rate of COD dipterex degradation reached up to 82.6% whereas the 

organophosphorous conversion could reach 83.5%.  This study offered a new porous nickel net photocatalyst 

carrier, which could inhibit the recombination of electrons and holes and enhance the efficiency of 
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photoelectrocatalytic degradation of dipterex pesticide from wastewater, compared with the commonly used 

Ti metal carrier [157].   

 

E.4.5. Photocatalytic degradation of Monochloro aromatic derivatives using TiO2 based 

Catalysts 

Several comparative studies on the photocatalytic degradation of various benzene derivatives over TiO2 

(Phenol, Chlorobenzene and Toluene) were established in aqueous medium [167-172].  The results demonstrate 

the existence of a relationship between organic compound photo degradation and the type of substituent on 

the aromatic ring.  The degradation was faster for electron-donating substituents [167].   Photo catalysis 

efficiency can be increased using Pickering emulsion in degrading non-soluble organic pollutants [169].  The 

study showed that Pickering emulsion with TiO2–Salicylic acid nanoparticles lead to improving the 

photocatalytic degradation of the chlorobenzene derivatives.  The key point is having small drop size to 

increase the contact area between the contaminant photo catalysts [169].  The Photo-oxidation of 4-

chloroanaline was also investigated under UV/TiO2/H2O2 [168].  Gas chromatography and mass spectrometry 

screening showed that the degradation initiated by OH radicals and the intermediates formed were able to be 

oxidized into benzoquinone then become carboxylic acids by ring cleavage [168].  Platinum modified TiO2 

nanoparticles showed higher photocatalytic degradation efficiency for both phenol and 2-chhlorophenol by 

87.7 and 100%, respectively [171]. 

Advanced oxidation processes (AOPs) are eco-friendly for destroying non-biodegradable pollutants 

where solar light being used for generating hydroxyl radicals [173].  TiO2 photocatalytic degradation of 

chloropyridines in presence of UV light is being used in pharmaceutical industry and agro chemistry [173].  In 

the presence of TiO2 as a heterogeneous photocatalyst, 3-chloropyridine and 2-chloropyridine disappearance 

follow a zero-order and a first-order kinetics, respectively [173].  A comparative study between homogeneous 

(photo-Fenton) and heterogeneous (TiO2) photocatalytic degradation of 3-chloropyridine in presence of UV 
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and sunlight by scaling-up solar photo-Fenton process.  For Fenton, photo-Fenton and direct photolysis, the 

results showed that Fe(II) ions facilitate mineralization of 3-chloropyridine in the presence of H2O2, but still 

it is a lot slower than in the presence of light.  The time required for 100% mineralization in presence of UV 

light was 60 and 300 min for photo-Fenton and TiO2 photocatalysis, respectively [173].  TiO2 hollow 

microsphere calcined at 500 °C exhibited twice higher than uncalcinated sample [174].  The microstructure of 

the hollow microspheres lead to improvement in the efficiency of 4-chloronitrobenzene mineralization with 

high stability and reproducibility up to six cycles [174]. 

The use of nano-TiO2 coated films as photocatalyst towards the decomposition of organochlorine 

pesticides having hexachlorobenzene (BHC), dicofol and cypermethrin has been reported [175].  The results 

showed that photocatalytic degradation efficiency is much higher than direct photolysis with all pesticides 

were completely degraded over the film in 45 min [175].  The potential of immobilized TiO2-based zeolite 

composite photocatalyst (TiO2-FeZ) done from commercial AEROXIDE TiO2 P25 and iron-exchanged 

zeolite of ZSM5 type (FeZ), for solar assisted treatment of diclofenac (DCF) was studied [176].  TiO2-FeZ 

composite was used in the photocatalytic treatment of DCF water solution.  The DCF degradation adsorption 

happens on the catalyst surface by hydroxylation and ring cleavage [176].  Figure E.12 shows the 

photodegradation pathways that illustrates all products formed [176].  The biodegradability increases when 

there is a decrease in the aromatic DCF by-products and enhanced dechlorination of organic structures [176]. 
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Figure E.12.  Degradation pathway of diclofenac[176]. 

 

Direct photolysis and photocatalytic degradations of chlorfenapyr in TiO2 suspensions in presence and 

absence of hydrogen peroxide was investigated under monochromatic UV irradiations where photo catalysis 

rates increased 2.5 and 3 times when TiO2 was used at 300 and 350 nm UV, respectively [177].  Light-induced 

degradation of chlorfenapyr in UV was done using solution having TiO2 as photocatalyst [178].  The 

degradation goes through pseudo-first-order kinetics following two pathways:  First, cleaving of aliphatic 

ether group and forming pyrrole- -carboxylic acid, then breaking the pyrrole group and forming 4-

chloroglycine.  Second, debromination of chlorfenapyr and cleaving ether group and forming pyrrole group 

that broke into 4-chlorophenylglycine.  Glycine was degraded to form 4-chlorobenzoic acids, then break and 

form inorganic ions and CO2 [178] 
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Photocatalytic degradation of 4-chloro-2-methylphenol (PCOC) in aqueous solutions using various 

TiO2 catalysts have been investigated [179-185].  It has been reported that 51.4% of PCOC degraded in the 

presence of TiO2 which can be improved by different oxidants as electron scavenger [179].  Having metal ions 

to UV/TiO2/H2O2 leads to increase in photo degradation by inducing Fenton/photo-Fenton type reactions and 

quenching photo-ejected electrons from the TiO2 surface [179].  Similarly, 4-chlorophenol (4-CP) was degraded 

through Fenton-like heterogeneous on TiO2 and CuFe2O4 [184].  The results showed that the system goes 

through homogeneous route, using dissolved metal ions found in the solid phase catalysts.  Ferric ions and 

hydrogen peroxide enhanced the degradation efficiency of combined chlorophenols in solar/TiO2 [185].  In 

addition, Ag-coated Fe3O4@TiO2 particles with a good core shell structure shows strong photocatalytic 

activity for the degradation of 2,4,6-trichlorophenol.  The particles showed high dispersibility and stability in 

water so they can be reused for many cycles with convenient magnetic separability [183]. 

Sol–gel using titanium(IV) isopropoxide and zirconium nitrate precursors, was used for making Zr4+ 

doped nano titania [180].  TEM results showed Zr4+ doped TiO2 is nanocrystalline, so having dopants lead to 

the growth of TiO2 grains, increasing the surface area and decreasing the transformation of anatase to rutile.  

This leads to having larger photocatalytic activity for Zr4+ doped nano TiO2 than the undoped samples.  

Adding metal nitrate can control the selective crystallization of anatase phase of TiO2, and that provide high 

efficiency in the photocatalytic mineralization of 4-chlorophenol [180].  Similarly, P loaded to TiO2 via sol-gel 

protocol leads to slowing the growth of the anatase particle and increasing its transformation to rutile.  As a 

result, the photocatalytic activity for 4-chloro-phenol using UV irradiation on P-modified TiO2 was 4.5 times 

higher than TiO2 alone [182].  Further, sol impregnation process to fabricate Ce-TiO2/CA electrode was 

reported [181].  Spectroscopic analyses showed that the optical absorption edge of Ce-TiO2/CA is red-shifted 

compared with TiO2/CA, and the density was 75 times higher than Ce-TiO2.  The conductivity of Ce-TiO2/CA 

was shown by the spectra to be larger than Ce-TiO2/FTO.  As a result, Ce-TiO2/CA improved the 

electrosorptive photodegradation of 4-chlorophenol [181].  
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E.4.6. Photocatalytic degradation of Di- and tri- chloro and bromo derivatives using TiO2-based 

Catalysts 

Chlorinated aromatic compounds such as dichloro [186-191], dibromo [192], and multichloro [193-201] 

derivatives are some of the main contaminants present in water as they are widely used as pesticides and in 

many chemical syntheses.  They are of great health and environmental concern due to their ability to bio-

accumulate, suspected carcinogenicity and potential toxicity, hence their removal is essential.  Moreover, 

chlorophenols are currently listed in the US-EPA Clean Water Act as the primary pollutant to be removed 

from water.  In addition to chlorinated aromatic compounds, other compounds that are potential to cause risk 

to humans and environment are different DDT compounds (p,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE) 

which can also be degraded using TiO2 in the form of nano tubes.  Several biorecalcitrant pesticides (alachlor, 

atrazine, chlorfenvinfos, diuron, isoproturon, pentachlorophenol) can be degraded through oxidation 

processes using different form of TiO2 catalysts [197, 202-207]. 

Advanced oxidation processes for degradation of 1,4-dichlorobenzene (1,4-DCB) and mineralization are 

employed under photolysis, photocatalysis on TiO2, and sonolysis [186].  Photocatalysis on TiO2 particles is 

kinetically faster for removal of 1,4-DCB than direct photolysis and sonolysis.  Degradation and 

mineralization of 1,4-DCB using sono photo catalysis (combination of sonolysis and photocatalysis) was the 

fastest but required more energy than photocatalysis [186].  Fe/TiO2 catalysts prove to be more effective than 

the pure Fe or TiO2 [187].  This is due to the potential of iron to reduce toxicity of the product and enhance 

mineralization by trapping photo-generated electrons and holes.  Hence, increasing concentration of Fe 

further improves the effectiveness of catalyst [187].  Moreover, mineralization of 2,4 –dichlorophenol (2,4 

DCP) in water under UV irradiation was improved using immobilized Fe0, activated carbon fiber (ACF) and 

TiO2 as a composite membrane.  2,4 DCP degradation improved by presence of Fe0 and TiO2 at an optimum 

pH of 6 and optimal loading of 1 wt % Fe0 to TiO2.  ACF adsorption effect was very useful for TOC removal 

as it adsorbs 2,4 DCP as well as intermediates [188].  The immobilized Fe0 / TiO2 /ACF catalyst proved to be 

reusable, stable and durable and uses adsorption, chlorination, hydroxylation and cleavage of aromatic ring  
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to degrade 2,4 DCP [188].  Further, 2,4 DCP degradation was tested using TiO2/UV and laccase by 

simultaneous photocatalytic-enzymatic process.  TiO2/UV inactivated laccase but covalent immobilizing 

laccase to controlled porous glass (CPG), enhanced its stability.  CPG-laccase and TiO2/UV coupling 

produced better results than either individual condition, especially at high concentrations of 2,4 DCP where 

up to 90% removal of 2,4 DCP was attained within 2 hours [191].   

Varying few parameters, such as initial DCP concentration, initial pH, photocatalyst dose of TiO2 

suspensions were tested for 2,4 DCP adsorption and degradation along with effect of three co-oxidants 

(hydrogen peroxide, ozone and sodium peroxodisulfate) on the photo catalytic process [190].  The DCP 

degradation was optimum at pH 5 and the patterns were fitted to Langmuir-Hinshelwood model.  The 

heterogeneous photocatalysis of DCP enhanced by hydrogen peroxide, while the use of ozone did not show 

a significant result with sodium peroxodisulfate inhibited DCP degradation [190]. 

Kamble et al. have reported the solar photocatalytic oxidation of 2,4 - dichlorophenoxyacetic acid (2,4-

D) using TiO2, air and concentrated solar radiation in batch and continuous bubble column reactors.  The 2,4-

D adsorption on the surface of catalyst depend on the pH, the concentration, and the type of anions present.  

The treatment of wastewater is possible from a plant manufacturing 2,4-D using novel slurry bubble column 

reactor under acidic conditions [189].  In addition, doped Cs on TiO2 was used for photocatalytic ozonated 

degradation of bromoxynil [192].  Results of 1% Cs/TiO2 catalyst showed 100% degradation and mineralization 

of bromoxynil at basic pH in two hours as confirmed by GC-MS and a possible decomposition process is 

given in Figure E.13.  The catalyst is fully recyclable and reusable with no loss of activity [192]. 
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Figure E.13. Proposed reaction protocol for Bromoxynil photodegradation using TiO2 as a   

photocatalyst.  

 

Cu2O/TiO2/Carbon Aerogel (CA) electrode is tested for the photodegradation of 2,4,6-trichlorophenol 

(TCP) and removal of TOC from wastewater using visible light for its excellent electro-sorptive and highly 

efficient photocatalytic properties.  About 96.3% removal of 2,4,6-TCP and 91.3% of TOC removal were 

achieved in 5.5 hours [193].  Anatase TiO2 nano tubes loaded with Ag nano particles (Ag/TNTs) showed 

significant visible light absorption and about 99% pentachlorophenol (PCP) was removed after 180 minutes 

of visible light irradiation while pure TNTs removed only 59.4% PCP [194].  This increase of PCP removal is 

due to better trapping of photo generated electrons between Ag nano particles and increase in absorption of 

visible light by the localized surface plasmon resonance of Ag nano particles.  Ag/TNTs had high catalytic 

activity and high stability even after being used for five cycles [194].  In addition, visible light degradation of 

PCP was tested using TiO2 with B doping and Bi2O3 coupling (resulting a Bi2O3/TiO2-xBx).  The Bi2O3/TiO2-

xBx combination gave much higher results than using each alone.  This is due to each one having their own 

strength (B doping produce more photo generated electron-hole pairs and Bi2O3 inhibit the recombination of 
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photo induced charge carriers) and combination of their strengths lead to better results.  This technique has 

proven to be effective for removal of highly toxic halogenated aromatic compounds [195]. 

 

E.4.7. Photocatalytic degradation of Chlorinated pesticides using TiO2 based Catalysts 

Lindane, an organochlorine pesticide, was removed using visible and solar light assisted sulfur doped 

TiO2/peroxymonosulfate (HSO5
-).  Photocatalysis using visible and solar light assisted S-TiO2 resulted in 

31.0 and 63.4% lindane removal, respectively.   Whereas, addition of 0.2 mM HSO5
- resulted in 68.2 and 

99.9% lindane removal, respectively [196].  The S-TiO2 film remained stable even after 4 cycles and this proved 

its efficiency for detoxification of water contaminated with OCPs such as lindane [196].  Moreover, novel TiO2 

nano tubes were used as a solid phase extraction adsorbent for p,p'-DDT [1,1,1-trichloro-2,2-bis(4-

chlorophenyl)ethane], o,p'-DDT [1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane] and its 

metabolites p,p'-DDD [1,1-dichloro-2,2-bis(4-chlorophenyl)ethane], and p,p'-DDE [1,1-(2,2-

dichloroethanylidene)-bis(4-chlorobenzene)] as the target analytes and then applied for analysis of real water 

samples [197].  The detection limits for p,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE were obtained as 0.0037, 

0.0053, 0.0031 and 0.0025 ng mL-1 under optimal conditions [197].  In analysis of environmental water samples, 

recoveries were obtained in the range of 81.2-115% which proved novel TiO2 nano tubes having potential in 

decontaminating water bodies from DDT derivatives [197].  

The degree of degradation of Lindane, p,p'-DDT and methoxychlor was also measured using a 

UV/TiO2/O2 system where different degradation products were identified by gas chromatography either with 

a mass spectrometry detector (GC-MS) or electron capture detector (GC-ECD).  The two different types of 

photo catalysts used were powdered anatase and rutile and anatase supported on glass hollow microspheres 

[202].  Elimination of pesticides with anatase supported on glass hollow microspheres was obtained in the range 

of 68 to 90% in just 30 minutes of irradiation while only 50% removal of lindane, 85% removal of DDT and 

99% removal of methoxychlor was obtained with rutile in 150 minutes of irradiation [202].  Also, due to low 

density of hollow microspheres, anatase supported on glass hollow microspheres was easily separated from 
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reaction mixture.  Hence, the results showed that anatase is better catalyst than rutile and activity of 5 mg/dm3 

anatase on hollow microspheres is equivalent to that of 500 mg/dm3 powdered anatase [202]. 

Photo-Fenton/ozone (PhFO) and TiO2-photo catalysis/ozone (PhCO) advanced oxidation coupled 

systems are used for degradation of some biorecalcitrant pesticides (alachlor, atrazine, chlorfenvinfos, diuron, 

isoproturon, PCP) and leads to a rapid decrease in their concentrations [203].  This reaction goes through 

oxidation of organic molecules and using PhFO follows a first or using PhCO follows zero order kinetics. 

PhFO or PhCO with TiO2 using UV irradiation enhances the removal of TOC in all pesticides except atrazine 

which experiences no TOC removal.  PhFO was found to be better catalyst than PhCO for all studied 

pesticides except for alachlor and atrazine in which detoxification requires more than 2-3 hours.  However, a 

reverse reaction could cause toxicity in alachlor to increase after 3 hours of treatment with PhFO [203].  

 

E.4.8. Photocatalytic Degradation of Phenol derivatives by TiO2 based Catalysts 

Industrial wastewater is a major contributor to water pollution. Industrial processes such as petroleum 

refining, synthetic resins, coal tar, steel, coal gasification and liquefaction, pharmaceutical production, and 

surface runoff from coal mines release a massive amount of wastewater containing high levels of phenols 

and phenolic compounds [208].  These organic compounds are bio-recalcitrant and toxic and have harmful 

effects on organism at low concentrations [209].  Phenols and phenolic compounds pose a threat to biotic 

life and must be capped at a threshold concentration of 1 mg/L in inland water according to Central 

Pollution Control Board [208].  Degradation of these compounds occurs at slow natural rates due to their 

significant water solubility [209]. 

Conventional waste  water treatment like precipitation, coagulation, chlorination, sedimentation, and 

combustion are inept of removing bio-recalcitrant compounds and are expensive, and therefore, new 

methods must be found [208, 210].  New technology has looked at the use of advanced oxidation processes 

(AOPs) that generate strongly oxidizing hydroxyl radicals that degrade bio-recalcitrant compounds into 
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biodegradable ones [211].  Heterogeneous photocatalysis using titanium oxide is one such process that has 

been widely researched.  TiO2 is a semiconductor with extensive environmental applications due to its 

ability to use solar UV light or catalytic function, low toxicity, biological and chemical inertness, 

availability, and low cost [208, 212].  Improvements for increased photocatalytic efficiency and recovery of 

titanium oxide have been extensively researched to find the optimum way to use the metal oxide catalyst 

in nature. 

The widely used TiO2 catalyst for phenols and phenolic-based compounds is Degussa (P- 25). 

Saravanan et. al studied TiO2 Anjatox as an alternative photocatalyst of phenols to the conventional 

photocatalyst, Degussa P-25 [208].  Degussa had a small range of catalysts loading from 1 to 4 g/L with a 

maximum phenol degradation of 90% at 3 g/L.  This indicates the potential use of Degussa as photocatalyst 

for phenol degradation providing its uniform particle distribution, larger catalytic surface area, and high 

efficiency of phenol degradation [208].  It is observed that photocatalytic degradation of the pollutants 

improved by introducing solid supports that provide better adsorbent sites.  Munoz et al looked at enhancing 

TiO2 photo- efficiency by modifying the surface with a high surface area material such as activated carbon 

(AC) for its porous structure that can encapsulate organic pollutants and provide high adsorption capacity 

[213].  Different ratios of a home-made titania catalyst (TiEt) and AC were physically mixed to find the best 

performance catalysts for phenol degradation. The optimum TiEt to AC concentration ratio for phenol 

photodegradation was found to be 500/100 TiEt/AC [213].  Naeem et al. reported that the optimum 

photocatalytic degradation of phenol and 4- chlorophenol was observed when 50 mg of the solid supports, 

AC, SiO2, or zeolite, were used in which activated carbon had the highest enhancement and SiO2 had the 

lowest [209].   

The 500 /100 TiEt/AC catalytically converted 80 % of the phenol with 70% total organic carbon 

removal at 300 min of irradiation [213].  Intermediates formed such as hydroquinone, p­ benzoquinone, 

resorcinol, and catechol were also adsorbed by the TiEt/AC catalysts.  An ideal photo-oxidation 

process occurs due to activated carbon concentrating the organic pollutants on its large surface 
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allowing for easier access to the active sites on the titania surface [213].  TiEt/AC catalysts showed 

good stability and durability of photocatalytic activity in four consecutive trials, where 60% of the 

total organic carbon with total phenol degradation was accomplished over 36 hours of irradiation [213].  

Dried rice husk solid support for TiO2-P25 catalyst was found to have similar catalytic features to the 

three supports for the degradation of phenol and 4-chlorophenol.  All solid supports mixed with TiO2 

enhanced the degradation of pollutants in comparison to the bare TiO2 catalyst [209, 213]. 

Carbajo et. al compared the photodegradation of TiEt-450 with the conventional TiO2- P25 on three 

organic pollutants: phenol, dichloroacetic acid (DCA), and pyrimethanil along with five pharmaceutical 

microcontaminants: ofloxacin, sulfamethoxazole, carbamazepine, flumequine, and ibuprofen [214].  Most 

importantly, the study followed the TiO2 recovery using sedimentation, as this is a critical challenge that 

is limiting the application of the catalyst in wastewater.  TiEt-450 presented a surface area of 43 m2/g, 

while TiO2 -P25 showed a slightly larger surface area of 54 m2/g.  The composition of the water 

matrix, deionized water or        natural groundwater, influenced the phenol photodegradation for both 

catalysts.  In  de ionized water, P-25 had better phenol and TOC photodegradation performance than 

TiEt-450 [214].  However, in natural water, conversion drastically increases for both catalysts in 

comparison to irradiation time in deionized water.   

The presence of ions such as CO3
2-/HCO3

-, NH4
+, SO4

2-, NO3
-, or Cl- in natural water that are 

capable of scavenging photocatalyst produced hydroxyl decreases the disappearance rates of phenol 

and TOC with both catalysts and irradiation time.  Moreover, total photo-oxidation of pharmaceuticals 

by both catalysts showed that ofioxacin, fiumequine, and ibuprofen required irradiation time of 5-7 

minutes respectively, while sulfamethoxazole and carbamazepine need 20-30 min irradiation time.  To 

remove all pharmaceutical microcontaminants, TiO2-P25 required 221 minutes irradiation time while 

TiEt- 450 required only 28 minutes.  TiEt-450 presented the best global photo-efficiency, both photo-

oxidation and recovery steps, for photocatalytic removal of the previously mentioned contaminants 

[214]. 
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Turki et. al compared the use of anisotropic TiO2 nanomaterials such as nanotubes, nanowires, 

nanorods, and nanoparticles to the conventional TiO2-P-25 on the photodegradation of phenol [211].  

Nanotubes, nanowires, and nanorods demonstrate different adsorption ability based on their different 

adsorption sites.  Phenol adsorption obeys a quasi-second-order reaction model that assumes that the 

adsorption rate is determined by the square number of vacant adsorption sites on the surface of the catalyst 

[211].  Among the titania nanomaterials, nanotubes calcinated at 400 °C showed the lowest phenol adsorption 

in both the dark and under UV by adsorbing 0.79 µmol/g and 1.25 µmol/g, respectively.  The highest 

phenol adsorption occurred with titanate nanotube -600 adsorbing 89.34 µmol/g phenol in the dark 

indicating that nanomaterials poses a possible alternative to the conventional TiO2-P25 for phenol 

photodegradation [211].  Since, nanosized TiO2 can cause liver and heart damage on mice and possible 

affect humans if it remains in treated water, Mejia et al. studied the use of immobilized TiO2 thick film 

on a compound parabolic collectors (CPC) as an alternative to TiO2 powder.  TiO2 thick films showed 

a mix of anatase and rutile crystalline with nanoscopic particles.  Resorcinol had a 75% removal 

efficiency by the film and was converted to tri-hydroxy benzenes at neutral pH [215]. 

 

E.4.9. Photocatalytic Degradation of Chlorophenols by TiO2 based Catalysts  

Dissolving transition metal ions in heterogeneous catalysts has been extensively studied for 

their catalyst efficiency enhancements.  Transition metal doped TiO2 catalysts provide higher 

concentrations of hydroxyl ions and prevent the recombination of electron-hole pairs thus enhancing 

the photocatalytic activity [216, 217].  Lin et al studied the degradation of chlorophenol by CuSO4-doped 

TiO2.  Four parameters were examined, pH, temperature, initial concentration of pollutant, 

catalyst dosage and oxygen concentration, to see their effect on 2- chlorophenol degradation [216].  

It was found that 100% of 20 ppm levels of 2-chlorophenol was degraded in the presence of the 

catalyst after six hours.  Moreover, the dosage of catalyst was also examined where 3.0 g of the 

Cu-doped TiO2 yielded an optimum result of degrading 100% of 2-chlorophenol under visible 
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light in six hours.  While lower mass of the catalyst did not provide sufficient active sites for 

photocatalytic degradation, the higher masses showed agglomeration and sedimentation, which 

reduces the available surface area for photon absorption [216].  Furthermore, degradation of 2-

chlorophenol was more favorable in acidic conditions over basic conditions, specifically at a pH 

of 5.5 [216].   

Zhao et al studied the effect of pH, catalyst and H2O2 concentration on the degradation of 

nitrophenol [217].  The degradation of 4-nitrophenol by Fe-doped TiO2 increased in acidic 

conditions similar to what is observed in 2-chlorphenol with optimum concentrations of catalyst 

and H2O2 required for degradation efficiency were 0.1g L-1 and 4.9 mM respectively [217].  

Moreover, the effect of the pollutant structure and the electronic character of the substituents, play 

significant roles on the degradation efficiency by TiO2 catalyst.  

Tolosana-Moranchel et.al studied five TiO2 catalysts: Evonik P25, Evonik P25.20, Evonik 

P90, Hombikat UVl00 (HBK), and Cristal ACTIV PC105 (PC105) for their degradations on phenol, 

4-chlorophenol, 4-nitrophenol, and methyl p-hydroxybenzoate [212].  The efficiency of the 

photocatalysts followed the order: P25> P90> P25/20> PC105> HBK.  This is due to the presence of 

mixture of anatase and rutile phases that result in improvement of electrostatic interactions between 

the two crystalline phases.  Finally, the substituents on the phenolic compounds were studied for 

their influence on photodegradation, by comparing their initial degradation rates to phenol that is used 

as a reference.  The reaction rates were observed to follow the order: phenol> 4-chlorphenol> methyl 

p-hydroxybenzoate> 4-nitrophenol.  The reaction rate of 4-nitrophenol was reduced nearly four times 

in comparison to phenol [212].  It is concluded that the stronger the electron withdrawing group the 

lower the probability of a reaction in the unsubstituted position [212].  Ksibi et.al supports this former 

finding upon studying the degradation of hydroquinone, resorcinol, 4-nitrophenol, 2,4-dinitrophenol, 

and 2,4,6- trinitrophenol using TiO2 catalyst [218].  2,4-dinitrophenol presented the highest adsorption 

constant due to the ortho-position of the nitro group.  On the other hand, 2,4,6-trinnitrophenol 
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presented the lowest adsorption constant due to the numerous nitro groups that cause excessive 

hindrance of the molecule [218]. 

The modification of TiO2 nanoparticles (P25) via a coating of a molecular imprinted polymer 

(MIP) shows increased activity and selectivity towards 2-nitrophenol (2NP) and 4-nitrophenol (4NP) 

[219].  The molecular imprinted polymer consists of the target molecule, 2NP or 4NP, mixed with o-

phenylenediamine.  The modified catalysts, 2NP-P25 and 4NP-P25 were studied for their degradation 

activity and selectivity in comparison to P-25 as a reference.  The degradation of 2NP and 4NP 

occurred faster using their respective catalysts 2NP-P25 and 4NP­ P25 in comparison to P25 but 

produced the same intermediates when using P25.  However, the accumulation of the intermediates is 

lower in the MIP coated photocatalysts, promoting the degradation of the intermediates [219].  Herrera-

Melian et al showed that P25 efficiently removes 200 ppm of 4NP, however the treated effluent must 

be further treated for toxicity, by constructed wetlands to achieve complete elimination and 

detoxification of 4NP [220].  The selectivity of MIP-coated TiO2 is primarily affected by the difference 

between functional groups, molecular weights, and shape of the target molecules, 2NP and 4NP, and 

nontarget pollutants.  Nontarget molecules that exhibit similar functional groups to the target molecule 

show enhanced degradation by the catalyst [219]. 

Perchet et.al studied the degradation of nitrophenols and nitroamines by TiO2-P25 [210].  The TiO2 

catalysts degraded 98.1% and 94.6% of Dinoterb (2-tert-butyl-4,6-dinitrophenol) and Dinoseb (2-sec-

butyl-4,6-dinitrophenol) herbicides after 8 hours irradiation period.  On the other hand, the explosives, 

ROX and HMX, were resistant to TiO2 photocatalytic treatment.  The weak reactivity of the explosives 

with the catalyst could be due to their high chemical stability or to their incapacity to approach the 

catalyst surface under pH of 7.2 [210]. 
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E.5. Concluding Remarks 

As discussed in this review, in our opinion, there are several important and potentially existing 

catalytic systems for decontaminating of various pesticides and organic pollutants.  Therefore, such systems 

can have a major impact on human health and safety for domestic and industrial use.  Below is a summary 

of distinguished TiO2 based catalyst for specific pollutant removal/degradation:  

• Current literature has indicated the anatase crystal structure as the most stable configuration suitable 

for photodegradation studies [16-21,26,27,28].   

•  The most common type of reactor employed in laboratory experiments are batch systems where the 

catalyst of high surface area is suspended in solution [37-40].   

• TiO2/UV combination proved to have a strong impact on the decomposition rate of carbaryl in 

wastewaters [51]. The aid of various photosensitizers promoted solar photocatalysis for the degradation of 

carbaryl rinsate to CO2 [52, 61-63].   

• TiO2-Carbon modified materials provide an active surface for the degradation of carbofuran [64]. 

• Boron doped TiO2 catalyst was more effective towards diuron pesticide in terms of degradation and 

mineralization rates in contrast to the undoped TiO2 where, the B-doped catalyst is stable and gave 

reproducible results of mineralization rates up to 75% upon several runs [71]. 

• Porous TiO2 modified ceramic shows an excellent photodegradation performance toward atrazine, 

thiobencarb, dimethoate, lindane, methyl parathion, dipterex, malathion, quinalphos, diazinone, 

dichlorovos and bentazone with good reproducibility [86, 123, 128-134]. 

• Au–Pd co-modified TiO2 nanotube film (Au–Pd–TiO2) showed photocatalytic activity towards 

malathion, where its elimination rate increased by 172% when the photocatalyst of the naked TiO2 nanotube 

film was replaced by Au–Pd–TiO2 
[127].   

• Ag nanoparticles doped TiO2 nanofibers performed a significant role in photocatalytic performance 

during the parathion and PCP degradation reactions [139, 194]].  
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• The photocatalytic activity for 4-chloro-phenol using UV irradiation on P-modified TiO2 was 4.5 times 

higher than TiO2 alone [182]. 

• 1% Cs/TiO2 catalyst showed 100% degradation and mineralization of bromoxynil in two hours at basic 

conditions with fully recyclable and reusable catalyst with no loss of activity [192]. 
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APPENDIX F. SYNTHESIS, STRUCTURE, AND PHOTOPHYSICAL PROPERTIES OF 

A 3D NETWORK WITH GOLD DICYANIDE DONORS COORDINATED TO 

AZA[5]HELICENE VIOLOGEN ACCEPTORS 

 

F.1 Introduction 

 Viologens are redox active, strong electron accepting diquaternary salts of 4,4’-bipyridine with the ability to form 

ion-pair charge transfer complexes (IPCT) with donors such as dicyanoaurate. Charge transfer properties of IPCT can be 

applied in photochromic and electrochromic devices.1–4 The photoreduction properties of viologens have been known for 

several years with applications as herbicides, photocleaving agents, and electronic devices. However, the photophysical 

and photochemical properties of viologens are mostly unexplored.5 Phenyl-viologens such as 1,1’-bis-(2,4-

dinitrophenyl)-4,4’-bipyridinium (DNP2+) have shown desirable optical and electronic properties due to extended π 

conjugation.6,7 The π-π stacking interactions of phenyl viologens are being explored in chemistry and biology due to its 

effect on the photophysical properties of 3D networks.8 In conjunction, dicyanoaurate (I) complexes are also of interest 

as they form one of the most stable two-coordinate complexes, with reports of  high stability constants as well as potential 

applications in semiconductor materials and photonic devices.9,10 Dicyanoaurate(I) has also unique geometric and charge-

transfer properties as the d10 Au(I) metal center favors aurophilic interactions and aggregation of [Au(CN)2
-]n-, which 

allow tuning of the optical properties.7,11 

 Due to their strong electron accepting potential, viologens are luminescence quenchers of triplet metal-to-ligand 

charge transfer (MLCT) luminescence in complexes containing Au(I). In our previous studies, we observed low energy 

phosphorescence from a 3D network consisting of DNP2+ coupled with dicyanoaurate(I) dimers (Figure F.1).7 These 

results were surprising given that DNP2+ is non-luminescent in its free state. The observed luminescence in this complex 

revealed unique photophysical properties that were attributed to an IPCT transition arising from the heavy atom effect 

due to gold-viologen orbital overlap.7,12 It would be interesting to study the photochemical interaction of other methylated 

phenyl viologens which possess extended π conjugation and are luminescent in the free state with dicyanoaurate(I). 5,10-

dimethyl-5,10-diaza[5]helicene bistetrafluoroborate viologen was synthesized a few years ago and the synthetic route has 

recently been optimized.5,12 In addition, it is one of the few viologens known which has chirality due to the helical aromatic 

heterocycle.5,13 It was shown that this compound has energy holding abilities and is a good electron transfer contender 

due to its Ve being greater than Vh (electronic coupling for electron and hole respectively).14 The conductivity spectra and 

refractive index of this viologen highlighted its ability of high intra/inter molecular charge transfer within the crystal and 

ability to yield significant outputs with low input. 
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 In our current study, we extend our previous work on methyl viologen (MV+2) systems by synthesizing 5,10-dimethyl-

5,10-diaza[5]helicene (heli[5]viologen (72+) and coupling it with two molecules of [Au(CN)2]- to form complex 8 as 

shown in Figure F.1. We report the synthesis and characterization of the N,N-dimethylaza[5]helicene dicyanoaurate (Au 

heli-viologen) complex using nuclear magnetic resonance (NMR). The crystal structure of Au heli-viologen was 

determined by single crystal X-ray diffraction. We studied the optical properties of this complex using temperature 

variable photoluminescence, diffuse reflectance spectroscopy (DRS), and Stern-Volmer analysis. Density Functional 

Theory (DFT) calculations were performed to assist with interpretation of the experimental data.  

 
Figure F.1. Previously studied DNP2+ viologen complex with dicyanoaurate and complex 8, Au heli-viologen (5,10-

diazadimethyl[5]helicene viologen complexed with dicyanoaurate) 

F.2 Experimental 

Synthetic procedures. 

General procedure. All reagents were purchased from Sigma-Aldrich and Fisher Scientific and used directly without 

further purification. All products were purified with silica-gel flash chromatography or preparative HPLC. HPLC was 

performed on a Gilson analytical to semi-preparative system using Kinetex 5 µm EVO C18 100Å 4.6 x 150 mm for 

analytical and Kinetex 5 µm EVO C18 100Å 21.1 x 150 mm for preparative purpose. Products were characterized by 1H 

and 13C NMR and mass spectrometry. NMR characterization results and J values were compared with published results. 

1H and 13C NMR spectra were recorded on Agilent/Varian 400 MHz and 101 MHz NMR spectrometer respectively. Mass 

spectra were recorded using a Synapt G2 Q-TOF ESI mass spectrometer. Mass spectra for all reported compounds can 

be found in Appendix G. 

 Synthesis of bis-1,2-tributylstannyl ethylene (2). Tributylstannyl acetylene (328 mg, 1 mmol) & 

tributylstannyl hydride (291 mg, 1 mmol) were added to a vial with AIBN (3.3 mg, 0.02 mmol). The mixture was heated 

and stirred at 100 oC for 6 hrs. Water was added to the reaction mixture and the product was extracted with four aliquots 
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of methylene chloride and dried over Na2SO4. The solvent was evaporated under reduced pressure yielding 2. This product 

was used in the following step without further purification. Yield: 549 mg (90%). 1H NMR (400 MHz, CDCl3) δ 6.89 

(s, 2H), 1.46-1.64 (m, 12H), 1.25-1.44 (m, 12H), 0.80-0.98 (m, 30H) ppm. 

 Synthesis of (E)-1,2-di(quinoline-3-yl)ethene (4).  

Stille Coupling. 3-Bromoquinoline (1) (131 mg,0.63 mmol) and compound 2 (194 mg, 0.32 mmol) were added to a 

vial purged with N2. Tris(dibenzylideneacetone)dipalladium (Pd(0) catalyst, 5 mol%) & 2-dicyclohexylphosphino-

2’,4’,6’-triisopropylbiphenyl (Xphos, 0.2 eq.) were added to the reaction vial, followed by addition of dry toluene (4 mL) 

under N2. The reaction mixture was heated at 110 oC for 2 days. The solvent was evaporated under reduced pressure and 

the crude product was purified with flash chromatography using 70%:30% ethyl acetate:hexane mixture with 1% 

triethylamine to get (E)-1,2-Di(quinoline-3-yl)ethene. Yield: 51 mg (57%). 

 Hiyama-Heck Coupling. A mixture of triethoxyvinylsilane (3) (0.43 g, 2.25 mmol) and sodium hydroxide (0.5 

M, 18 mL) was added to a 40 mL pressure vial, followed by addition of 3-bromoquinoline (1) (0.75 g, 3.60 mmol) & 

palladium acetate (0.5 mol%). The reaction vial was sealed with a heat resistant teflon resistant screw cap and the mixture 

was stirred at 140 oC for 6 hrs. After cooling, the green precipitate was filtered and washed with 10:1 ethyl 

acetate:chloroform. The solvent was evaporated under vacuum. Yield: 0.46 g (91%). 1H NMR (400 MHz, CDCl3) δ 9.19 

(d, 2H, J=2.1 Hz), 8.25 (d, 2H, J=2.1 Hz), 8.11 (d, 2H, J=8.4 Hz), 7.86 (d, 2H, J=8.0 Hz), 7.72 (ddd, 2H, J=8.3,7.0,0.9 

Hz), 7.58 (ddd, 2H, J=8.1, 6.7, 0.9 Hz), 7.47 (s, 2H) ppm. 13C NMR (101 MHz, DMSO-d6) δ 175.40, 

151.16,149.62,145.85, 137.60, 130.34, 130.07, 128.96, 127.61, 116.79 ppm. HRMS (TOF MS ES+) m/z calculated for 

C20H15N2 ([M-H]+) 283.1235, found 283.1231 

Synthesis of 5,10-diaza[5]helicene (5). Compound 4 (0.6 g, 2.1 mmol) was dissolved in ethyl acetate (500 mL) in a 

round bottom flask. A condenser was attached to the top and the setup was mounted inside an RPR-100 photoreactor on 

a stir-plate. The mixture was stirred and irradiated at 350 nm for 7 hrs.  The crude product was purified with silica-gel 

chromatography using 70%:30% ethyl acetate:hexane. Yield: 0.43 g (73%). 1H NMR (400 MHz, CDCl3) δ 9.46 (s, 2H), 

8.65 (dd, 2H, J=8.4, 1.2 Hz), 8.29 (dd, 2H, J=8.3, 1.3 Hz), 8.14 (s, 2H), 7.76 (ddd, 2H, J=8.3, 7.0, 1.3 Hz), 7.44 (ddd, 2H, 

J=8.4, 7.0, 1.3 Hz) ppm. 13C NMR (101 MHz, CDCl3) δ 152.53, 145.88, 129.71, 129.48, 129.43, 128.17, 127.32, 127.26, 

125.61, 124.38 ppm. HRMS (TOF MS ES+) m/z calculated for C20H13N2 ([M-H]+) 281.1079, found 281.1070. Benzo-

[b]-1,8-diaza[4]-helicene (6) was recovered as a side-product. Yield: 0.11 g (19%) (ESI) 

Synthesis of dimethylaza[5]helicene (7) (bis-tetrafluoroborate-7a or dichloride salt-7b). To trimethyl oxonium 

tetrafluoroborate (Meerwein’s salt, 0.356 g, 2.39 mmol) in a 40 mL scintillation vial was added anhydrous methylene 

chloride (100 mL) under N2. 5,10-diaza[5]helicene (5) (0.223 g, 0.80 mmol) in anhydrous methylene chloride (20 mL) 

was then added to the vial under N2. The vial was stirred under N2 for 24 hrs. Methylene chloride was removed under 
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vacuum. The dried yellow solid was triturated with warm 90% ethanol. The crude (7a) was further purified with 

preparative HPLC using 5% to 15% acetonitrile in 10 minutes. Yield: 233 mg (60%). DOWEX 1×8 200-400 mesh ion-

exchange resin (Acros) (11.25 g) was loaded onto a column and washed with methanol followed by equilibration with 

50% aqueous ethanol. Compound 7a (225 mg, 0.46 mmol) dissolved in acetonitrile (0.5 mL) was loaded into the column. 

The column was washed with 50% aqueous ethanol. The fractions were concentrated and reloaded on the column and 

collected two more times. Combined fractions were concentrated under reduced pressure to yield the product (7b). Yield: 

167 mg (95%). 

 7a- 1H NMR (400 MHz, CD3CN) δ 10.04 (d, 2H, J=2.2 Hz), 8.72 (d, 2H, J=8.5 Hz), 8.67 (d, 2H, J=1.5 Hz), 8.57 (d, 

2H, J=8.5 Hz), 8.24 (ddd, 2H, J=8.7, 7.4, 1.3 Hz), 7.88 (ddd, 2H, J=8.3, 7.3, 1.0 Hz), 4.82 (s, 6H) ppm. 13C NMR (101 

MHz, CD3CN) δ 154.82, 136.93, 135.12, 133.74, 131.78, 131.06, 129.86, 129.32, 127.33, 120.34, 47.60 ppm. HRMS 

(TOF MS ES+) m/z calculated for C20H15N2 ([M]+2) 155.0735, found 155.0731 

7b-1H NMR (400 MHz, CD3OD) δ 10.54 (d, 2H, J=2.2 Hz), 8.86 (d, 2H, J=8.4 Hz), 8.82 (d, 2H, J=1.2 Hz), 8.75 (d, 2H, 

J=8.7 Hz), 8.28 (ddd, 2H, J=8.6, 7.3, 1.3 Hz), 7.92 (ddd, 2H, J=8.2, 7.3, 1.0 Hz), 4.99 (s, 6H) ppm. 13C NMR (101 MHz, 

CD3OD) δ 155.89, 137.21, 135.33, 133.99, 132.12, 130.97, 130.46, 129.73, 127.63, 120.59, 47.12 ppm. HRMS (TOF 

MS ES+) m/z calculated for C20H15N2 ([M]+2) 155.0735, found 155.0735 

Synthesis of Au heli-viologen (8). To a solution of N,N-Dimethylaza[5]helicene dichloride (7b) (40 mg, 0.104 mmol) 

in water (30 mL), potassium dicyanoaurate (60 mg,0.21 mmol) in water was added while stirring. The precipitate was 

filtered after 10-12 hours and solvent was slowly evaporated to complete the precipitation of N,N-Dimethylaza[5]helicene 

dicyanoaurate (8). Yellow solid was dried under reduced pressure and used for crystallization. Yield- 49 mg (58%). 

Crystallization. Au heli-viologen (Complex 8) (10 mg) was dissolved in ethanol (0.2 mL) in a 2 mL scintillation vial. 

This vial was covered with porous aluminum foil and placed in a 20 mL scintillation vial containing cyclohexane (2 mL). 

This closed system was kept inside the fume hood for 8 to 9 days. Small crystals formed through slow vapor diffusion. 

Results were reproduced with methanol as a solvent and n-hexane as anti-solvent.15 

1H NMR (400 MHz, CD3OD) δ 10.49 (d, 2H, J=2.2 Hz), 8.89 (d, 2H, J=8.8 Hz), 8.80 (d, 2H, J=2.1 Hz), 8.75 (d, 2H, 

J=9.0 Hz), 8.29 (ddd, 2H, J=8.6, 7.5, 1.1 Hz), 7.95 (ddd, 2H, J=8.6, 7.5, 1.1 Hz), 4.97 (s, 6H) ppm. 13C NMR (101 MHz, 

D2O) δ 153.67, 135.70, 134.10, 133.08, 130.69, 129.96, 129.93, 128.96, 128.51, 126.43, 119.03 ppm. 

Crystallography.  A small yellow block-like crystal of Au heli-viologen (8) having dimensions 0.057 x 0.063 x 0.092 mm3 was 

secured to a Mitegen cryomount using Paratone oil. Single crystal reflection data were collected on a Rigaku Oxford Diffraction 

(ROD) Synergy-S X-ray diffractometer equipped with a HyPix-6000HE hybrid photon counting (HPC) detector. The data were 

collected at 100 K using Mo Kα1 radiation from a data collection strategy calculated using CrysAlisPro which was also responsible 

for unit cell determination, initial indexing, data collection, frame integration, Lorentz-polarization corrections and final cell 
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parameter calculations.16 A numerical absorption correction via face indexing was performed using the SCALE3 ABSPACK 

algorithm integrated into CrysAlisPro.17 The crystal structure was solved via intrinsic phasing using ShelXT and refined using 

olex2.refine within the Olex2 graphical user interface.18–20 The structural model’s space group was unambiguously verified by 

PLATON.21 Structural refinement of the reflection data for 8 resulted in the identification of electron density peaks associated with 

a highly disordered interstitial CH2Cl2 molecule that could not be satisfactorily modeled. This minor impurity may have been 

trapped during screening of solvents for crystallozation. The data were treated using the SQUEEZE routine in PLATON, then 

refined on F2 to acceptable levels.22 The final structural refinement included anisotropic temperature factors on all non-hydrogen 

atoms and hydrogen atoms were attached via the riding model at calculated positions using appropriate HFIX commands. The 

crystallographic and refinement data for Au heli-viologen is listed in Table F.1. Crystallographic data for this paper has been 

deposited with the Cambridge Crystallographic Data Centre with the CCDC number 1558366. This data can be obtained free of 

charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Spectroscopy studies.  Steady-state photoluminescence scans were collected between 298 K and 10 K. Spectra were taken 

with a Model Quantamaster-1046 photoluminescence spectrophotometer from Photon Technology International using a 75 W 

xenon arc lamp combined with two excitation monochromators and one emission monochromator. A photomultiplier tube at 800 

V was used as the emission detector. The solid samples were mounted on a copper plate using non-emitting copper-dust high 

vacuum grease. All scans were collected under vacuum with a Janis ST-100 optical cryostat. Infrared spectra were collected on 

solid samples at 298 K using a Perkin Elmer FT-IR Spectrum Two equipped with a Universal Attenuated Total Reflectance (UATR) 

accessory and a LiTaO3 MIR detector. Diffuse reflectance spectra were collected on solid samples at 298 K. The light source was 

a Mikropack DH-2000 deuterium and halogen light source coupled with an Ocean Optics USB4000 detector. Scattered light was 

collected with a fiber optic cable. Spectra was referenced with polytetrafluoroethylene. Data was processed using SpectraSuite 

1.4.2_09.  

Stern-Volmer quenching experiments. For quenching experiments, 72+ was used as the quencher. After determining 

proper quencher concentration ranges, the quenching experiment performed using the [Au(CN)2]- sample solutions. A stock 

solution of 5 x 10-4 M K[Au(CN)2] was first prepared, and then 1 mL of stock solution was distributed among all quenching vials. 

The quencher solution was then added to the quenching vials in increments of 50 uL. The contents of each vial were then transferred 

to cuvettes and the emission spectrum of each sample was measured separately. Emission scans were conducted on a Jobin Yvon 

Systems Fluorolog 3 Spectrofluorometer. The excitation monochromator was referenced to a secondary detector, and the emission 

monochromator was calibrated to a water Raman peak to ensure the accuracy of scans. 

Molecular modelling. All geometry parameters were determined using Gaussian ‘16 software (Gaussian Inc.) with the University 

of Maine Advanced Computing Group.23 All ground state and excited state calculations were performed using density functional 

theory (DFT) and time-dependent density functional theory (TD-DFT) calculations using the M06 meta-hybrid functional24,25 with 
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the CEP-31G(d) basis set employed for all atoms.26,27 XRD structures were used as initial structural input. From the structural data 

we have developed a neutral model that is composed of two 72+ units bridged by a dimer [Au(CN)2]2
-2 and capped with terminal 

[Au(CN)2]- monomer units. This model contains all subunits present within the crystal structure. Isodensity representations of 

molecular orbitals were generated using GaussView 5.0 software (Gaussian Inc.). MOs were generated and visualized using the 

Avogadro 1.2.0 software program.28 

 

F.3 Results and discussion 

Synthesis. In order to access the Au heli-viologen (8), two different salts of 72+ were made as shown in Figure F.2. Initially, a 

stepwise synthetic route was used to access compound 4 via a Wittig reaction in four steps from quinoline-3-carbaldehyde.13 A 

palladium catalyzed route was eventually preferred over the stepwise route to increase efficiency and yield. Stille coupling with 3-

bromoquinoline and 2 using Pd(0) catalyst and Xphos ligand produced relatively low yield (57%) of the desired compound 4. Pd(II) 

catalyzed Hiyama-Heck cross-coupling was explored with triethoxyvinylsilane to get better scalability and higher yield (91%).5  

 5,10-diaza[5]helicene (5) was made by photocyclization of 4 in a photoreactor (350 nm), which was equipped with a 

magnetic stir plate, and cooling fan to minimize the heating. Methylation of 5 with trimethyloxonium tetrafluoroborate under 

nitrogen produced the BF4 salt of heli[5]viologen (7a) which was purified with preparative HPLC. Due to the limited solubility of 

7a in aqueous solvents, the tetrafluoroborate counterion was exchanged for chloride counterions using DOWEX ion-exchange 

resin. The chloride heli-viologen (7b) showed high solubility in aqueous solvents and was further reacted with potassium 

dicyanoaurate to produce gold-coupled viologen, 8 in powder form. The powder was dried and used for luminescence experiments 

and crystallization via vapor diffusion method. The crystallization conditions via a vapor diffusion method for Au heli-viologen 

(8) were optimized and methanol:n-hexane and ethanol:cyclohexane were used as solvent:anti-solvent to get single crystals for X-

ray diffraction analysis.15 
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Figure F.2. Overall synthetic scheme. 

 

 

Single Crystal X-Ray Diffraction. The solid state structure of Au heli-viologen crystallized in the centrosymmetric monoclinic 

space group C2/c and contained one viologen dication and two [Au(CN)2]- anions on general positions as the elements of the 

asymmetric unit (Figure F.3). When looking into the bc-plane of the unit cell, one of the [Au(CN)2]- anions lies perpendicular to 

this plane (and parallel to the a-axis) at a distance of 3.3773(6) Å between the Au(I) atom of the dicyanoaurate anion and the 

centroid of the aromatic ring sitting at the turn of the right-handed helical viologen. Typically, dicyanoaurate anions are linear with 

N-Au-N angles approaching 180°; however within the structure of Au heli-viologen, the [Au(CN)2]- anion lying above the turn of 

the helicate deviates from linearity, showing an N-Au-N angle of 174.0(3)°.29 Such a deviation from linearity can be rationalized 

upon the application of symmetry to the asymmetric unit. After applying crystallographic symmetry, this dicyanoaurate anion 

dimerizes with itself and supports the formation of a bond between the monovalent gold atoms at a distance of 3.3098(11) Å, a 

value on par with those published in a previous report.30 As a direct consequence of the binding of the neighboring, symmetry-

equivalent [Au(CN)2]- anions to one another, their dimerization imparts some structural rigidity as evidenced by the smaller size of 

the thermal parameters of the dimer’s constituent gold, carbon and nitrogen atoms.  
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Figure F.3. Asymmetric unit elements of Au heli-viologen containing a viologen dication and two [Au(CN)2]- anions. Ellipsoids 

shown at 50% probability. 

 

 Projections of the asymmetric unit along the b-axis demonstrated strong one-dimensional overlap between the dimerized 

[Au(CN)2]- anions and the nearly-planar region of the viologen dications parallel to that axis. Such an orientation of these moieties 

relative to one another within the solid state structure may provide evidence for the onset of interesting spectroscopic properties. 

Despite the potential for the dicyanoaurate anion located above the turn of the helical viologen in concert with its propensity to 

dimerize upon the application of crystallographic symmetry to generate interesting spectroscopic features, the second [Au(CN)2]- 

anion in the asymmetric unit does not dimerize upon the application of crystallographic symmetry. Unlike the anion in the 

asymmetric unit which does dimerize, the second anion has much more linear geometry as evidenced by its N-Au-N angle of 

176.5(5)°. Thermal parameters for the second dicyanoaurate anion also demonstrate more thermal motion as evidenced by the 

larger anisotropic displacement ellipsoids for its constituent gold, carbon and nitrogen atoms. Between the anion and the helical 

viologen, the closest contact occurred between the centroid of the phenyl at the turn in the helix and N4 from the terminal nitrile at 

a distance of 3.351(19) Å. This distance suggests the onset of a potential dipole-dipole interaction given the positioning of the 

electron-rich nitrile relative to the electron-deficient phenyl ring of the dication.31 Also, given the less intimate molecular orbital 

overlap between this latter dicyanoaurate and the planar surface of the viologen, suggests that unlike the former [Au(CN)2]-, the 

latter is more spectroscopically innocent. 
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Figure F.4. View along the a-axis of Au heli-viologen crystal. The dotted lines show dimer interactions among adjacent 

[Au(CN)2]- anions. 

 

Compound Au heli-viologen 

CCDC Code 1558366 

Formula C26H18Au2N6 

Formula weight 808.41 

Temp. 100(2) 

Space group C2/c 

a, Å 13.7875(4) 

b, Å 12.4750(3) 

c, Å 28.7102(8) 

α, deg 90.00 

β, deg 91.977(3) 

γ, deg 90.00 

volume, Å3 4935.2(2) 

Z 8 

Density (calculated), mg/m3 2.176 

μ, mm-1 11.903 

Scan ω scan 

θ range for data collection, deg 6.68-50.06 

Reflections measured 4339 

Independent observed reflns.  4338 

Independent reflns. [I>2σ] 4082 

Data/restraints/parameters 4338/38/273 

Rint 0.0244 

Final R Indices [I>2σ] 

  

R1 = 0.0593, 

wR2 = 0.1471 

R Indices (all data) 

  

R1 = 0.0620, 

wR2 = 0.1481 

Goodness-of-fit on F2 1.009 

[a] R = R1 = ∑|Fo|−|Fc||/∑|Fo| for observed data only.  Rw = wR2 = {∑ [w(Fo
2 – Fc

2)2]/ ∑ [w(Fo
2)2]}1/2 for all data. 

Table F.1. Crystal refinement data of Au heli-viologen. Select bond lengths and angles available in Table G.1 and G.2.a 
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 Analysis of the bond distances within the different [Au(CN)2]- anions as a function of their being free or dimerized in the 

solid state also revealed subtle differences (Figure F.4). Within the dicyanoaurate anion that dimerizes, the bond distances between 

the nitriles and the Au(I) were measured at distances of 2.007(16) and 2.011(15) Å while those in the free anion were measured at 

1.98(2) and 1.94(2) Å respectively. The nitrile distances from the different anions also revealed differences as those from the 

dimerized anion were measured at 1.09(2) and 1.132(19) Å while their analogues from the free [Au(CN)2]- revealed distances of 

1.12(3) and 1.17(3) Å between the constituent carbon and nitrogen atoms. Such a difference can be hypothesized on the basis of 

dimerization between the neighboring dicaynoaurate anions upon the application of symmetry. Electron density is donated from 

the nitrile into the corresponding Au-C bond, resulting in a shortening of the former and a lengthening of the latter. This build-up 

of electron density on the monovalent Au atom, in concert with the nearby positioning of a symmetry-related anion, supports bond 

formation between the gold atoms. Relevant bond distances within the free dicyanoaurate anion are similar to those reported in the 

literature as no intramolecular donation of electron density to support Au-Au bond formation occurs.29 

 

Infrared Spectroscopy. Au heli-viologen (8) is a coordination polymer, where a dominant vibrational feature is the cyanide 

stretch. We show the IR vibrational spectra of this region in Figure G.13. The ⱱs(C≡N) of the gold(I) dicyanide anions are observed 

at 2,140 cm-1, 2,152 cm-1, 2,160 cm-1, and 2,165 cm-1, indicating that the CN ligands are slightly inequivalent throughout the crystal 

motif. This split is in agreement with the structural data which shows the presence of monomer [Au(CN)2]- and dimer [Au(CN)2]2
-

2 units. For oligomer units of metal cyanides, the ⱱs(C≡N) vibrational mode moves to lower energies as the oligomer size increases 

due to the increased electron density of the CN 𝜋* LUMO.32 In keeping with this, we have assigned the bands at 2,140 cm-1 and 

2,152 cm-1 to the ⱱs(C≡N) vibration modes of the dimers and the 2,160 cm-1 and 2,165 cm-1 bands to the vibrational modes of the 

monomer subunits. 

 

Photophysical Studies. To investigate the absorption of Au heli-viologen, we have performed diffuse reflectance 

measurements of solid microcrystalline samples of both Au heli-viologen (8) and 72+ at 298 K (Figure F.5). Solid samples of gold 

coordinated 72+ are yellow in color and absorb strongly in the UV. As seen in the spectra, the absorption falls off sharply around 

475 nm with an optical absorption edge of 2.39 eV. This edge is slightly more variable for the gold free 72+ which slowly tappers 

off through the visible range and is identical to previous reports of MV2+ which are assigned to a π→π* state.5 Introduction of 

[Au(CN)2]- results in few changes in the DRS spectra in comparison to 72+. The appearance of higher energy bands at 268 nm not 

observed in the gold free 72+ are assigned to a metal to ligand charge transfer (MLCT) localized to the [Au(CN)2]-/[Au(CN)2]2
-2 

subunits consistent with reports elsewhere.33 The majority of the band remains a π→π* state of the 72+. 
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Figure F.5. Solid state DRS absorption spectrum of solid samples of Au heli-viologen and MV2+ at 298 K converted via Kubelka-

Monk. 

 

 As an aromatic cation, 72+ is well equipped to accept electrons from the electron rich gold(I) dicyanide anions as reported 

for other viologen like molecules.7 To probe this we have performed temperature variable photoluminescence measurements of 

microcrystalline samples of Au heli-viologen between 298 K and 10 K. The spectra are shown in Figure F.6 and are overlaid to 

demonstrate the change in peak shape and relative intensity with respect to temperature. We observe that the excitation spectrum 

of Au heli-viologen (8) consists of two bands: one high energy band at 375 nm, and one low energy band at 470 nm. A shift in the 

relative intensity towards the high energy band is observed upon temperature change. No significant shift in the position of either 

excitation band is observed at lower temperatures. At room temperature, compound 8 in microcrystalline form shows one broad 

triplet emission band at 580 nm (𝜏298 K = 1.01 𝜇s, 𝜏78 K = 1.12 𝜇s). At lower temperatures the relative emission intensity increases 

and a second, lower-energy band appears at 608 nm. This band first appears at 129 K, and does not shift during cooling. Time-

dependent measurements show much shorter lifetime of this band (𝜏78 K = 130 ns) in comparison to that of the band at 580 nm. 

Based on previous reports of 72+ the data reported here, the 580 nm band is assigned to a triplet 𝜋➝𝜋* localized to 72+. The emission 

band observed at 608 nm is a new feature was not observed in previous reports of 72+. The both the lifetime and wavelength of this 

band are too long for cation S1→S0 emission. Instead these values better fit expected values for [Au(CN)2]-2 emission. We have 

observed similar behavior in Au(CN)2
-/DNP+2 structures where low temperature emission is dominated by [Au(CN)2]-2 bands but 

quenched at 298 K.7 The absence of [Au(CN)2]-2 emission above 129 K indicates quenching by 72+ at high temperatures. In this 

case we belive an [Au(CN)2]-2 excited state electron from initial S1→S0 absorption  is transferred to the lowest  S1 of the 72+ (Figure 

F.7). 
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Figure F.6. Luminescence spectra of Au heli-viologen between 10 K and 298 K. Excitation (dashed) and emission (solid). 

 
Figure F.7. Energy diagram of emission pathways for Au heli-viologen. At higher temperatures the 72+ emission by T1→S0 is 

favored along with quenching of [Au(CN)2]-2 via the excited S1 to 72+ S1. At low temperatures (<129 K) electron transfer is absent 

resulting in [Au(CN)2]-2 S1→S0 emission. S0, ground state; S1, first excited state; T1, first triplet state; NR, nonradiative decay; ET, 

electron transfer. 

 

Electron Transfer Analysis. An analysis of this system was performed via Stern-Volmer and a Rehm-Weller to support the 

proposed electron transfer. First, a Stern-Volmer analysis was performed in order to examine the nature of 72+ quenching of 

[Au(CN)2]-, specifically to determine if the observed quenching is due to electron transfer or resonance.34 First, the ground state 

absorption spectra of the components were compared to the combined mixture. Figure F.8 shows that the absorption spectrum of 
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a mixture of 72+ and potassium dicyanoaurate is the simple sum of the two component absorption spectra. The lack of an additional 

absorption band in the mixed spectrum indicates that no ground state electronic interaction occurs between the two species. From 

this observation, we conclude that no static quenching occurs in this system. 

 
Figure F.8. Absorption spectra of potassium dicyanoaurate, heli[5]viologen, and Au heli-viologen in methanol (5 x 10-4 M). 

 

 
Figure F.9. Stern-Volmer plot for aqueous Au heli-viologen. 

 

 While our previous experiment indicates no ground-state quenching, we further investigated the possibility of quenching 

in the excited-state. The effect of 72+ as a dynamic quencher of [Au(CN)2]- photoluminescence was investigated by measuring the 

photoluminescence of a series of 72+ /dicyanoaurate solutions. Luminescence intensity associated with [Au(CN)2]- was observed 

to decrease as the concentration of 72+ was increased. Since we observe photoluminescence quenching upon addition of 72+, this 

data can be fit to the Stern-Volmer equation to further analyze the photophysical kinetics of the system. Figure F.9 shows the 

Stern-Volmer plot constructed for this experiment. From this plot a KSV value can be determined (KSV = 5170 M-1). The data show 

that quenching is observed for this system. This indicates that there is a significant interaction between gold dicyanoaurate species 
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and 72+ during the photophysical excitation and relaxation process. This observation provides further support for our assignment 

of the emission band observed at 608 nm as a [Au(CN)2]-→72+ electron transfer. 

 The Rehm-Weller Equation35 can be used to support the proposed electron transfer by determining whether the process 

is thermodynamically favorable.  

 
In the Rehm-Weller Equation shown above, ∆GET is the free energy change associated with the electron transfer process, Ered and 

Eox are the reduction potential of the viologen 72+ acceptor and oxidation potential of the [Au(CN)2]2
2- donor respectively, Es 

represents the energy of the singlet state energy at 78  K (average of the lowest energy excitation band and highest energy emission 

band), and eo
2/εa is taken as the attraction that the ion pair experiences.12,36 We have calculated the Eox (1.74 eV) via DFT by taking 

the difference in energy between an optimized structure of [Au(CN)2]2
2- and [Au(CN)2]2

-. For the Au heli-viologen, ∆GET is 

therefore calculated as: ((1.74 + 0.22) - 2.32 - 0.15) = -0.51 eV, indicating the electron transfer is spontaneous. This calculated free 

energy change supports an electron transfer process as a feasible explanation for the observed quenching system.  

 

Computational Modelling. DFT calculations were performed to interpret the photophysical changes and emission spectra of Au 

heli-viologen upon excitation. A neutral model of gold(I) dicyanide coordinated to 72+, shown in Figure F.10, was developed 

containing both [Au(CN)2]- and [Au(CN)2]2
-2 subunits. Calculated ground state geometry parameters, Table S3 (ESI), are in good 

agreement with experimental values with short Au...Au distances supportive of aurophilic interactions. Calculations at the 

[Au(CN)2]2
-2 center accurately predict a short Au...Au distance of 3.435 Å compared to an experimental value of 3.310 Å. The close 

contact distance between the CN- anion and the N+ cation of the phenyl (3.155 Å) is slightly shorter than the experimental value of 

3.216 Å. We attribute this shortened distance to the lack of surrounding [Au(CN)2]- ions normally present. The loss of surrounding 

anions causes our model to overly rely on the central electron rich [Au(CN)2]2
-2 dimer to balance the cationic viologen ion.  

 

 
Figure F.10. DFT M06/CEP-31G(d) calculated ground state of [Au(CN)2]-/[Au(CN)2]2

-2 coordinated 72+. Close Au⋯Au distance 

(3.435 Å) shown. 

 



353 

 

 TD-DFT calculated UV-vis spectra, Figure G.14, show agreement of our model with the experimental UV-Vis results 

with both having strong absorption bands at energies higher than 500 nm. An excited state at 399 nm is predicted with a strong 

oscillator strength of 0.0132. This excited state energy aligns with our experimental luminescence excitation value of 400 nm. The 

highest contributing molecular orbital transition calculations performed for this excited state are shown in Figure F.11 (complete 

list of contributions summarized and illustrated in Table G.5 and Figure G.15). TD-DFT calculations predict that two general 

types of electron transitions occur upon excitation at 399 nm. The first centers on the electron donating MOs (HOMO-9, and 

HOMO-11) which are primarily composed of the 7+2 𝜋* with minor contribution from the neighboring [Au(CN)2]- anion. The 

electron accepting MO (LUMO) is composed of the 72+ 𝜋* and clearly represents a 𝜋→𝜋* transition. In the second case, the 

electron donating MO (HOMO) is exclusively composed of the dimerized [Au(CN)2]2
-2 subunit with no contribution from the 

neighboring 7+2 cations. This molecular orbital calculated transition is clearly an electronic transfer and demonstrates the emissive 

quenching of [Au(CN)2]- by the viologen in the solid state observed in the experimental photophysical data. 

 
Figure F.11. TD-DFT M06/CEP-31G(d) energy diagram calculated for Au heli-viologen at 399 nm excitation for top 3 transitions. 

Transition percent contributions are noted. 
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F.4 Conclusions 

 Here we report for the first time the synthesis of a 3D network Au heli-viologen. The structure, characterized by single 

crystal X-ray diffraction, was found to consist of [Au(CN)2]- dimers and monomers trapped within 72+ units. Photophysical studies 

show that at 298 K this complex emits at 580 nm via a triplet 𝜋→𝜋* transition localized to the 72+. Cooling to low temperatures 

results in a new emission band at 608 nm. Lifetime measurements and DFT calculations indicate that this new singlet band is the 

appearance of [Au(CN)2]2
-2 emission. The lack of this emission at temperatures higher than 129 K indicates that quenching occur 

from 72+. Stern-Volmer and Rehm-Weller analysis of this transition supports our assignment by revealing that quenching of 

[Au(CN)2]2
-2 by 72+ involves the transfer of an electron between ion pairs. Study of further 3D networks involving better electron 

donors (such as dicyanoargentate coupled to MV2+) will provide insight into the electron-transfer phenomenon investigated here. 
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APPENDIX G. SUPPLEMENTARY FIGURES FOR APPENDIX F 

 

Synthetic and Crystallization Details. 

 

 

Figure G.1. Scheme for the Stille Coupling reaction. 

 

 Stille Coupling. 

Bis-1,2-tributylstannyl ethane (2): Tributylstannyl acetylene (328 mg, 1 mmol) & tributylstannyl hydride 

(291 mg, 1 mmol) were added to a vial with AIBN (3.3 mg, 0.02 mmol). The mixture was heated and 

stirred at 100 oC for 6 hrs. Water was added to the reaction mixture and the product was extracted with 

four aliquots of methylene chloride and dried over Na2SO4. The solvent was evaporated under reduced 

pressure. Yield: 549 mg (90%). 1H NMR (400 MHz, CDCl3) δ 6.89 (s, 2H), 1.46-1.64 (m, 12H), 1.25-

1.44 (m, 12H), 0.80-0.98 (m, 30H) ppm. Characterization data closely matches with the reference (Hou, 

J.; Tan, Z.; He, Y.; Yang, C.; Li, Y. Macromolecules 2006, 39 (14), 4657–4662) 

3-Bromoquinoline (131 mg,0.63 mmol) and Bis-1,2 tributylstannyl ethene (194 mg, 0.32 mmol) were 

added to a vial purged with N2. Tris(dibenzylideneacetone)dipalladium (0) catalyst (0.1 eq.) & 2-

dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl (Xphos) (0.2 eq.) were added to the reaction vial, 

followed by addition of dry toluene (4 mL) under N2. The reaction mixture was heated to 110 oC for 2 
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days. The solvent was evaporated under reduced pressure and crude was purified with flash 

chromatography using 70%:30% ethyle acetate:hexane mixture with 1% triethylamine to get (E)-1,2-

Di(quinoline-3-yl)ethane (4). Yield: 51mg (57%). 

 Hiyama-Heck Coupling. 

A mixture of triethoxyvinylsilane (0.43 g, 2.25 mmol) and sodium hydroxide (0.5 M, 18 mL) was added 

to a 40 mL pressure vial, followed by addition of 3-bromoquinoline (0.75 g, 3.60 mmol) & palladium 

acetate (0.5 mol%). The reaction vial was sealed with teflon, heat resistant screw cap, and the mixture 

was stirred at 140 oC for 6 hrs. After cooling, the green precipitate was filtered and washed with 10:1 

ethyl acetate:chloroform. The product (4) was dried under vacuum. Yield: 0.46 g (91%). 1H NMR (400 

MHz, CDCl3) δ 9.19 (d, 2H, J=2.1 Hz), 8.25 (d, 2H, J=2.1 Hz), 8.11 (d, 2H, J=8.4 Hz), 7.86 (d, 2H, 

J=8.0 Hz), 7.72 (ddd, 2H, J=8.3,7.0,0.9 Hz), 7.58 (ddd, 2H, J=8.1,6.7,0.9 Hz), 7.47 (s, 2H) ppm. 13C 

NMR (101 MHz, DMSO-d6) δ 175.40, 151.16,149.62,145.85, 137.60, 130.34, 130.07, 128.96, 127.61, 

116.79 ppm. HRMS (TOF MS ES+) m/z calculated for C20H15N2 [M-H]+ 283.1235, found 283.1231 

 

Figure G.2. Scheme for the Hiyama-Heck coupling reaction. 

(E)-1,2-Di(quinoline-3-yl) ethane (4) (0.6 g, 2.1 mmol) was dissolved in ethyl acetate (500 mL) in a 

round bottom flask. A cold(water-trapped) condenser was attached to the top and the setup was mounted 

inside a photoreactor on a stir-plate. The mixture was stirred and irradiated at 350 nm for 7 hrs. The 

solvent was evaporated and the product (5) was purified with silica-gel chromatography using 70%:30% 

ethyl acetate:hexane. Yield: 0.43 g (73%) 1H NMR (400 MHz, CDCl3) δ 9.46 (s, 2H), 8.65 (dd, 2H, 
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J=8.4,1.2 Hz), 8.29 (dd, 2H, J=8.3,1.3 Hz), 8.14 (s, 2H), 7.76 (ddd, 2H, J=8.3,7.0,1.3 Hz), 7.44 (ddd, 2H, 

J=8.4,7.0,1.3 Hz) ppm. 13C NMR (101 MHz, CDCl3) δ 152.53, 145.88, 129.71, 129.48, 129.43, 128.17, 

127.32, 127.26, 125.61, 124.38 ppm. HRMS (TOF MS ES+) m/z calculated for C20H13N2 [M-H]+ 

281.1079, found 281.1070. Side-product- Benzo-[b]-1,8-diaza[4]-helicene (6) Yield: 0.11 g (19%) 1H 

NMR (400 MHz, CDCl3) δ 11.37 (d, 1H, J=Hz), 9.37 (s, 1H), 8.75 (s,1H), 8.49 (d, 2H, J=8.7 Hz), 8.30 

(d,2H, J=8.1 Hz), 8.09-7.98 (m, 2H), 7.93-7.83 (m, 4H), 7.67 (dd, 1H, J= 7.96, 6.92 Hz) ppm. 

 

Figure G.3. Scheme for the methylation of compound (5). 

To trimethyloxonium tetrafluoroborate/ Meerwein’s salt (0.356 g, 2.39 mmol) in a 40 mL scintillation 

vial was added anhydrous methylene chloride (100 mL) under N2. Solution of 5,10-diaza[5]helicene (5) 

(0.223 g, 0.80 mmol) in anhydrous methylene chloride (20 mL) was added to the vial under N2. The 

reaction mixture was stirred under nitrogen for 24 hrs. Methylene chloride was removed under vacuum. 

The crude product was triturated with warm 90% ethanol. The product (7a) was further purified with 

preparative HPLC using 5% to 15% acetonitrile in 10 minutes. Yield: 233 mg (60%) 1H NMR (400 

MHz, CD3CN) δ 10.04 (d,2H,J=2.2 Hz), 8.72 (d,2H,J=8.5 Hz), 8.67 (d, 2H, J=1.5 Hz), 8.57 (d, 2H, 

J=8.5 Hz), 8.24 (ddd, 2H, J=8.7,7.4,1.3 Hz), 7.88 (ddd, 2H, J=8.3,7.3,1.0 Hz), 4.82 (s, 6H) ppm. 13C 

NMR (101 MHz, CD3CN) δ 154.82, 136.93, 135.12, 133.74, 131.78, 131.06, 129.86, 129.32, 127.33, 

120.34, 47.60 ppm. HRMS (TOF MS ES+) m/z calculated for C20H15N2 [M]+2 155.0735, found 155.0731 
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Figure G.4. Scheme for the tetrafluoroborate/chloride exchange reaction. 

DOWEX® 1×8 200-400 mesh ion-exchange resin (Acros©) (11.25 g) was loaded into a column and 

washed with methanol followed by equilibration with 50% aqueous ethanol. N,N-Dimethylaza[5]helicene 

(Tetrafluoroborate) (225 mg, 0.46 mmol) dissolved in acetonitrile (0.5 mL) was loaded on the column. 

The column was washed with 50% aqueous ethanol. The collected product was concentrated and reloaded 

on the column and collected two more times. The filtrate was concentrated under reduced pressure to 

yield the product (7b). Yield: 167 mg (95%). 1H NMR (400 MHz, CD3OD) δ 10.54 (d, 2H, J=2.2 Hz), 

8.86 (d, 2H, J=8.4 Hz), 8.82 (d, 2H, J=1.2 Hz), 8.75 (d, 2H, J=8.7 Hz), 8.28 (ddd, 2H, J=8.6,7.3,1.3 Hz), 

7.92 (ddd, 2H, J=8.2,7.3,1.0 Hz), 4.99 (s, 6H) ppm. 13C NMR (101 MHz, CD3OD) δ 155.89, 137.21, 

135.33, 133.99, 132.12, 130.97, 130.46, 129.73, 127.63, 120.59, 47.12 ppm. HRMS (TOF MS ES+) m/z 

calculated for C20H15N2 [M]+2 155.0735, found 155.0735 

 

Figure G.5. Scheme for the synthesis of Au heli-viologen from compound (7b). 
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To a solution of N,N-Dimethylaza[5]helicene dichloride (7b) (40 mg, 0.104 mmol) in dI water (30 mL), 

potassium dicyanoaurate (60 mg,0.21 mmol) in dI water was added while stirring. Within a hour 

precipitate started forming. The precipitate was filtered and solvent was slowly evaporated to complete 

the precipitation of N,N-Dimethylaza[5]helicene dicyanoaurate. The powdery product (8) was dried under 

reduced pressure and used for crystallization. Yield: 49 mg (58%). 1H NMR (400 MHz, CD3OD) δ 10.49 

(d,2H,J=2.2 Hz), 8.89 (d,2H,J=8.8 Hz), 8.80 (d,2H,J=2.1 Hz), 8.75 (d,2H,J=9.0 Hz), 8.29 

(ddd,2H,J=8.6,7.5,1.1 Hz), 7.95 (ddd,2H,J=8.6,7.5,1.1 Hz), 4.97 (s,6H) ppm. 13C NMR (101 MHz, D2O) 

δ 153.67, 135.70, 134.10, 133.08, 130.69, 129.96, 129.93, 128.96, 128.51, 126.43, 119.03 ppm. 

 

 Crystallization. 

N,N-Dimethylaza[5]helicene dicyanoaurate (10 mg) was dissolved in ethanol (0.2 mL) in a 2 mL 

scintillation vial. This vial was covered with porous aluminum foil and placed in a 20 mL scintillation vial 

containing cyclohexane (2 mL). The vial was capped, and the system was kept inside the fume hood for 8 

to 9 days. Small crystals yielded through slow vapor diffusion. The results were reproduced with methanol 

as a solvent and n-hexane as antisolvent.  
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Figure G.6. 1H MNR spectrum of 2. 
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Figure G.7. 1H MNR spectrum of 4. 
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Figure G.8. 13C MNR spectrum of 4. 
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Figure G.9. 1H MNR spectrum of 5. 
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Figure G.10. 13C MNR spectrum of 5.  
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Figure G.11. 1H MNR spectrum of 6. 
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Figure G.12. 1H MNR spectrum of 7a. 
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Figure G.13. 13C MNR spectrum of 7a.  
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Figure G.14. 1H MNR spectrum of 7b.  
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Figure G.15. 13C MNR spectrum of 7b. 
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Figure G.16. 1H MNR spectrum of 8. 
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Figure G.17. 13C MNR spectrum of 8. 
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Figure G.18. IR spectrum of microcrystalline Au heli-viologen (8) at 298 K. 
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Table G.1. Select bond lengths of Au heli-viologen. 

 

Au(1)-C(1) 2.0107(1) C(9)-C(10) 1.4369(1) 

Au(1)-C(2) 2.0068(1) C(10)-C(11) 1.4131(1) 

Au(2)-C(4) 1.9837(1) C(10)-C(19) 1.3644(1) 

Au(2)-C(3) 1.9433(1) C(13)-C(18) 1.4101(1) 

N(1)-C(1) 1.1318(1) C(13)-C(14) 1.4156(1) 

N(2)-C(2) 1.0913(1) C(14)-C(15) 1.3473(1) 

N(3)-C(3) 1.1708(1) C(15)-C(16) 1.3870(1) 

N(4)-C(4) 1.1198(1) C(16)-C(17) 1.3998(1) 

N(5)-C(5) 1.4637(1) C(17)-C(18) 1.3923(1) 

N(5)-C(6) 1.2860(1) C(18)-C(19) 1.4561(1) 

N(5)-C(26) 1.4028(1) C(19)-C(20) 1.4407(1) 

N(6)-C(11) 1.3096(1) C(20)-C(21) 1.4663(1) 

N(6)-C(12) 1.4724(1) C(21)-C(26) 1.4320(1) 

N(6)-C(13) 1.4031(1) C(21)-C(22) 1.4159(1) 

C(6)-C(7) 1.4320(1) C(22)-C(23) 1.3267(1) 

C(7)-C(8) 1.4136(1) C(23)-C(24) 1.4234(1) 

C(7)-C(20) 1.4379(1) C(24)- (C25) 1.3774(1) 

C(8)-C(9) 1.3398(1) C(25)-C(26) 1.3754(1) 
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Table G.2. Select bond angles of Au heli-viologen. 

 

C(1)-Au(1)-C(2) 176.62(1) N(6)-C(13)-C(14) 120.77(1) 

C(3)-Au(2)-C(4) 177.67(1) C(13)-C(14)-C(15) 120.78(1) 

Au(1)-C(1)-N(1) 177.15(1) C(14)-C(15)-C(16) 121.68(1) 

Au(1)-C(2)-N(2) 175.42(1) C(15)-C(16)-C(17) 117.87(1) 

Au(2)-C(3)-N(3) 175.29(1) C(16)-C(17)-C(18) 122.24(1) 

Au(2)-C(4)-N(4) 176.96(1) C(13)-C(18)-C(17) 117.82(1) 

C(11)-N(6)-C(13) 119.08(1) C(13)-C(18)-C(19) 118.40(1) 

C(12)-N(6)-C(13) 119.16(1) C(17)-C(18)-C(19) 118.40(1) 

C(11)-N(6)-C(12) 121.62(1) C(10)-C(19)-C(20) 116.99(1) 

C(5)-N(5)-C(26) 118.65(1) C(10)-C(19)-C(18) 116.94(1) 

C(6)-N(5)-C(26) 122.98(1) C(18)-C(19)-C(20) 125.97(1) 

C(5)-N(5)-C(6) 117.87(1) C(7)-C(20)-C(21) 116.80(1) 

N(5)-C(6)-C(7) 123.13(1) C(19)-C(20)-C(21) 126.22(1) 

C(6)-C(7)-C(8) 120.84(1) C(7)-C(20)-C(19) 116.64(1) 

C(8)-C(7)-C(20) 121.99(1) C(20)-C(21)-C(26) 119.32(1) 

C(6)-C(7)-C(20) 117.14(1) C(22)-C(21)-C(26) 116.97(1) 

C(7)-C(8)-C(9) 119.55(1) C(20)-C(21)-C(22) 122.64(1) 

C(8)-C(9)-C(10) 118.18(1) C(21)-C(22)-C(23) 121.43(1) 

C(9)-C(10)-C(19) 124.38(1) C(22)-C(23)-C(24) 120.64(1) 

C(11)-C(10)-C(19) 120.09(1) C(23)-C(24)-C(25) 119.77(1) 

C(9)-C(10)-C(11) 115.47(1) C(24)-C(25)-C(26) 119.63(1) 

N(6)-C(11)-C(10) 122.91(1) N(5)-C(26)-C(21) 117.72(1) 

N(6)-C(13)-C(18) 120.16(1) C(21)-C(26)-C(25) 120.78(1) 

C(14)-C(13)-C(18) 118.99(1) N(5)-C(26)-C(25) 121.41(1) 
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Table G.3. DFT B3LYP/LANL2DZ select ground state parameters of Au heli-viologen with comparison 

to experimental values. 

 

 Distance (Å) / Angle (o) 

 Experimental* Calculated* 

Au...Au 3.310 3.327 

NAu(CN)2
...Naza[5]helicene 3.216 3.088 

Au-C 2.010 2.029 

C-Au-C 176.6 166.8 

N-C-Au 177.1 169.6 
*Average distances 

 

 

 

 

 

Figure G.19. TD-DFT M06/CEP-31G calculated UV-vis of Au heli-viologen compared to experimental 

UV-Vis. 
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Table G.4. TD-DFT calculated excited states of of Au heli-viologen with corresponding energy and f-

oscillation. 

 

Excited State 

Number 

Excited State 

Energy 

Excited State 

f-oscillation 

7 428 nm 0.0078 

8 425 nm 0.0067 

9 423 nm 0.0014 

10 421 nm 0.0000 

11 421 nm 0.0069 

12 420 nm 0.0027 

13 406 nm 0.0004 

14 404 nm 0.0009 

15 401 nm 0.0028 

16 399 nm 0.0132 

17 392 nm 0.0011 

18 390 nm 0.0083 
 

 

 

 

Table G.5. Calculated MO transitions of Au heli-viologen for excited state at 399 nm with percent 

contribution. 

 

Orbital Transition % Contribution 

HOMO-9→LUMO+1 25% 

HOMO-11→LUMO 21% 

HOMO→LUMO+2 18% 

HOMO→LUMO+3 16% 

HOMO-9→LUMO 12% 

HOMO-11→LUMO+1 8% 

 

 

  



378 

 

 

Figure G.20. Isodensity representations of MO transitions of excited state at 399 nm for Au heli-viologen 

with percent contribution. 
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