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ABSTRACT 

 

Furazolidone (FZD) is a widely used anti-microbial agent in aquaculture and 

animal husbandry, but its use poses severe adverse effects, including 

mutagenicity, genotoxicity and carcinogenicity, making it harmful to various 

life forms on the planet. As existing water and wastewater treatment methods 

struggle to cope with this pollutant, providing safe and clean water becomes 

challenging. Therefore, the removal of FZD micropollutant is crucial to reduce 

environmental toxicity. Various methods like biodegradation, adsorption, 

photolysis, oxidation and ozonation have been explored for FZD treatment, but 

their efficiency, cost, production of toxic by-products and operation stability 

limit their consideration. To address these challenges, this study introduces a 

novel approach by incorporating magnetic nanoparticles (magnetite) into 

functionalized multi-walled carbon nanotubes (f-MWCNTs) to form a 

magnetic nanocomposite. This nanocomposite is then utilized to fabricate 

buckypaper (BP) with the aid of vacuum filtration technique. Characterization 

of the magnetic BP membrane was performed using Fourier transform infrared 

spectroscopy (FT-IR), Energy dispersive X-ray (EDX), vibrating sample 

magnetometer (VSM), field emission scanning electron microscope (FE-SEM), 

and thermogravimetric analysis (TGA). The adsorption efficiency of the 

developed magnetic BP membrane was evaluated in batch-mode using  

response surface methodology (RSM) and adaptive neuro-fuzzy inference 

system (ANFIS) model to examine the uptake of FZD micropollutant from 

aqueous solution (pH 4-6, agitation speed 100-200 rpm, and contact time 20-

350 min). The results showed that the maximum removal efficiency of FZD 

micropollutant was achieved at 10 mg/L, pH 6, agitation speed 200 rpm and a 

contact time of 350 min., with a remarkable removal efficiency of 98.74%  The 

adsorption mechanism was described by the Langmuir isotherm model with a 

maximum FZD uptake of 29.67 mg/g, and the kinetic data followed a pseudo-

second order kinetic models. Thermodynamic parameters indicated the 



vii 

 

spontaneous and exothermic nature of FZD micropollutant adsorption over the 

magnetic f-MWCNTs-based BP/ polyvinyl alcohol. Moreover, the reusability 

study demonstrated that the magnetic f-MWCNTs-based BP/PVA membrane 

can retain up to 88% of its FZD micropollutant removal efficiency even after 

five successive cycles using ethanol as a desorption solvent. Comparing the 

RSM and ANFIS models, the ANFIS model proved to be more accurate in 

predicting the removal of FZD micropollutant with a correlation coefficient of 

0.985. The statistical indices confirmed ANFIS as the best predictive model for 

FZD micropollutant removal. In conclusion, the research study demonstrated 

that the fabricated magnetic f-MWCNTs-based BP/PVA membrane efficiently 

removes FZD micropollutant without any additional separation stage, making it 

suitable for practical applications. 

Keywords:  

Micropollutant, magnetic buckypaper, carbon nanotubes, furazolidone 

removal, aquatic environment, wastewater, water treatment 
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CHAPTER I 

INTRODUCTION 

 

A significant global consumption of chemical products has led to an inclining 

chemical contamination of ground and surface waters, with still unknown 

influence on the human and aquatic health (Richardson et al. 2019, Tetreault et 

al. 2012). The pollution of natural water through a numerous amount of 

chemical components, despite most of them being present in extreme minor 

concentrations (ng- µg), causes substantial ecological concerns and is a 

foremost concern globally (Schwarzenbach et al. 2006, Buxton et al. 2005, 

Diamanti-Kandarakis et al. 2009). These components are labelled as ‘trace 

pollutants’ or ‘micropollutant’. In general, micropollutants are ascribed as 

chemical components exist at low concentrations, i.e., ng/L in the environment, 

and which, regardless of their low intensity, can have severe impacts on living 

species (Clara et al. 2004). This comprises various hydrophobic and 

hydrophilic contaminants such as flame retardants, heavy metals, 

polychlorinated biphenyl, pharmaceuticals, and pesticides. Most of these 

micropollutants, for instance, pharmaceuticals, detergents or biocides products, 

are mainly discarded into municipal sewer systems, and only limited 

elimination in the traditional wastewater treatment plants, which can reach the 

aquatic environment (Benner et al. 2013). Thus, wastewater treatment plants 

discharges are considered as the most important vector of these micropollutants 

into the ecosystems. The pathways through which micropollutants infiltrate the 

environment have been delineated and elucidated in Fig. 1.1, providing a 

comprehensive visual representation of the intricate routes by which these 

pollutants enter the ecological systems.    
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Fig. 1.1: Pathways of micropollutant into environment (Metz et al. 2014) 

 

1.1 Influence of micropollutant 

1.1.1 Drinking water 

Contamination of surface waters through micropollutants discharged from 

wastewater treatment plants has raised concerns about drinking water pollution, 

since surface waters are one of the primary sources of drinking water 

universally (Benner et al. 2013). Different micropollutants in wastewater 

sources have been found in drinking waters in numerous countries. To assess 

the possible human health risk, life-long human exposure to micropollutants 

through drinking water was measured in a few studies. The dose of 

micropollutants ingested during 70 years of life through drinking 2 liters of 

water per day ranges between < 5 µg to 4 mg, corresponding, for most of 58 

pharmaceuticals examined, to <10% of single defined daily dose prescribed to 

a patient in a day (Houtman et al. 2014).  

 

Due to the low intensity of micropollutants in drinking waters, all analyzed 

studies had determined that noticeable adverse effects on human health were 

doubtful at the present level of contact, even if the possible influence of low 

level chronic exposure to chemical blends is still predominantly unidentified 

(Sanderson 2011, Kosek et al. 2020). Nonetheless, even if human health effects 

are unlikely, drinking water reserves are valuable and have to be safeguard and 

well-preserved to provide high quality water in the future. 



CHAPTER I 

3 

 

 

1.1.2 Aquatic life 

If the worldwide issue of persistent, toxic and bio-accumulative components is 

already partially controlled through international legislations, the influence on 

wildlife associated with less persistent but continuously discharged elements, 

such as pharmaceuticals, personal care products, endocrine disrupters and 

biocides, has been lately reported worldwide. For example, intercourse and 

reproduction disorder in marine species were reported in many rivers 

downstream of wastewater treatment plant channels, almost certainly linked to 

the release of estrogenic endocrine disrupters (nonyl-phenol, ethinyl-estradiol) 

(Tetreault et al. 2012, Gagné et al. 2011). Although it is extremely difficult to 

associate these adverse effects with specific micropollutants, there is evidence 

that these effects were primarily due to the toxicity of micropollutants and not 

due to other macropollutants detected in wastewaters (Gillis et al. 2014). 

Certainly, it was also reported that a few of these harmful effects clearly 

declined after the degradation of most micropollutant through ozonation 

(which did not impact the macropollutants’ concentration) (Bundschuh et al. 

2011, Peschke et al. 2014). Besides, numerous studies had revealed that 

micropollutant can possess noxious effects already at the intensities detected in 

wastewater treatment plant effluents. Fig. 1.2 illustrates the descriptive impact 

of micropollutants on the environmental and biological system.  
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Fig. 1.2: Impact of micropollutant (Schwarzenbach et al. 2006)  

 

For example, the anti-inflammatory drug diclofenac was reported to introduce 

cytological disruption in fish kidney, gills and liver at 0.5 to 1 µg/l, 

concentration detected in wastewater treatment plant effluents (Triebskorn et 

al. 2004). Indeed, diclofenac is known for its potential noxiousness to wildlife 

and was related to the decline of the vulture population in Pakistan, affected to 

renal malfunction associated with the intake of diclofenac-treated livestock 

(Oaks et al. 2004). 

        

1.2 Global statistic usage of micropollutant 

European Union has marked more than 100,000 chemicals as micropollutants, 

and around 30,000-70,000 chemicals, are intaken daily for various purposes 

(Rogowska et al. 2020). In contrast to other Asian countries, only limited data 

for the Malaysian aquatic environment is available (Prabhakaran et al. 2017). 

Significantly limited published papers reported that the concentration of 

micropollutants in Malaysian water sources. A research article was published 

by Universiti Putra Malaysia (UPM) in 2003, detecting the average 

concentration (ng/L) of micropollutants' existence in the Malaysian river and 

sewage and wastewater treatment plant using an analytical approach 
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(Vedamanikam et al. 2008, Yang et al. 2022). It was observed that a high 

concentration of pharmaceuticals and steroid hormones micropollutants were 

present in different water sources; for instance, diclofenac concentration in the 

article was reported as 105 ng/L (Dehkordi et al. 2021). It reflects that the 

traditional water and wastewater treatment processes are ineffective to remove 

several polar and semi-polar micropollutants (Sayadi et al. 2010). One of the 

steroids that have been extensively used in the Asian continent is nitrofurans. 

This steroid is an anti-microbial agent, including nitrofurazone, furaltadone, 

furazolidone, and nitrofurantoin. Nitrofurans are employed to kill a range of 

gram-positive /harmful bacteria and fungi (Bock et al. 2007). In Malaysia, they 

are extensively applied in aquaculture and animal husbandry. Nevertheless, 

there are signs that nitrofurans have significant toxicity and adverse effects on 

life, such as carcinogenicity and mutagenicity (Ferreira et al. 2020, Heravi et 

al. 2020). Several countries have restricted their use in recent years. However, 

due to high efficiency and economic price, they are still employed in farms and 

aquafarms in many countries, such as Malaysia, Thailand, and China (Cooper 

et al. 2008). Consequently, untreated sewage consisting of nitrofurans is often 

released unintentionally into the waters, which may be brought about potential 

severe effects on human life and aquatic species (Vinas et al. 2007). Thus, an 

appropriate and efficient approach or material is required to treat nitrofurans 

and other micropollutant contents in different water sources. The total water 

pollution detected in various aquatic environment worldwide reported by WHO 

is presented in Fig. 1.3. 
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Fig. 1.3: Total water pollution worldwide (Omer et al. 2022)  

 

1.3 Carbon nanotube-based nanocomposites and membranes for the 

removal of micropollutant  

The high content of emerging micropollutants, especially pharmaceuticals and 

steroid hormones, has been observed in wastewater effluents. Even if many 

volatile, biodegradable, and hydrophobic compounds can be treated through 

traditional wastewater, most micropollutants are not removed. Therefore, clean 

and safe water quality is endangered due to various micropollutants in different 

water sources. 

 

Scientific researchers have designed and fabricated different approaches and 

materials to deal with the emerging pollutants that occur in the aquatic 

medium. Advanced oxidation processes, reverse osmosis, adsorption, and 

nanofiltration are some known examples designed for removing emerging 

pollutants (Alizadeh Fard et al. 2013). Nanotechnology has played a vital role 

in many industrial applications in the present era, including water and 

wastewater treatment (Palani et al. 2021). Besides, nanotechnology helps to 

introduce nanocomposites to the real world, a material comprising an inorganic 

element in the form of fiber or particles, reinforced in an organic component, 

measured on the nano-scale (Khan et al. 2020). An extensive range of 

nanocomposites has been reported in the literature, for instance, polymer-based 

nanocomposites (Nagy et al. 2014). In terms of environmental remediation, 
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carbon-based nanocomposites are often recommended. Carbon is one of the 

most researched materials, and there are various forms available, such as 

graphene, carbon nanotubes, carbon fibers, and fullerene. Carbon nanotubes 

(CNTs), especially multi-walled CNTs (MWCNTs), possess unique properties 

that can be considered in a broad range of fields. Research has demonstrated 

that MWCNTs possess high adsorption for heavy metal ions, dyes, and 

micropollutants, indicating their wide spectrum applications in water and 

wastewater treatment (Qu et al. 2013). Based on their countless benefits, these 

materials have a few drawbacks, for example, they are very small and 

lightweight to separate from the aqueous phase (Mohmood et al. 2013). Raw 

MWCNTs are functionalized and embedded with magnetic nanoparticles for 

water purification and remediation applications (Mailler et al. 2016). Recent 

studies show that magnetic f-MWCNTs have shown high adsorption capacity 

towards different contaminants, including micropollutants (Shukla, Khan, et al. 

2021). Magnetic f-MWCNTs facilitate only small-scale removal as an external 

magnetic field is necessary to complete the separation process. 

 

Like magnetic f-MWCNTs, another carbon-based material, called 

buckypaper (BP), has gained substantial attention in many applications due to 

its environmentally friendly, lightweight, flexible, and high chemical strength 

characteristics (Chen et al. 2016). Several studies have demonstrated the 

capability and feasibility of BP to be utilized as catalyst support and filter 

membranes. The development of BP is simple and easy as it requires vacuum 

filtration of f-MWCNTs solution through microporous membrane material, i.e., 

poly-tetra- fluoro-ethylene (PTFE) and polycarbonate (PC). Studies have 

revealed that BP can be used for water purification and environmental 

remediation, as its pores support 60-70% of its overall volume (Chapartegui et 

al. 2013). 

 

As mentioned above, magnetic nanoparticles incorporated in MWCNTs have 

attained significant interest among scientific researchers, especially for water 

cleaning and remediation. Nevertheless, due to an external magnetic field 

requirement, magnetic-based nanocomposite materials are restricted in real-

world industries. In contrast, BP membrane applications are limited due to low 
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mechanical strength; however, the BP membranes have demonstrated high 

adsorption capability towards various pollutants in water and wastewater 

effluents. This research aims to develop an innovative membrane that has the 

characteristics of magnetic f-MWCNTs and BP and is acceptable to be utilized 

for micropollutant removal from the aqueous phase without the use of an 

external magnetic field for separation. In addition, a mathematical modeling 

framework will also be designed to predict the feasibility and adsorption 

capacity of the membrane for treating a high volume of furazolidone (FZD) 

micropollutants. 

 

1.4 Research Questions 

The research questions linked with this research topic are listed below: 

 

i. How do the operational parameters such as the initial pH of the FZD 

micropollutant, agitation speed and contact time affect the elimination of 

FZD by the magnetic f-MWCNTs-based BP/PVA membrane? 

ii. How does surface modification alter the chemical, thermal, 

morphological, functional and magnetic properties of the magnetic f-

MWCNTs-based BP/PVA membrane? 

iii.  Is the adsorption efficiency of the fabricated membrane comparable with 

the conventional adsorbents? 

iv. Which approach, i.e., statistical and machine learning techniques, predicts 

the removal efficiency of FZD micropollutant on the magnetic f-

MWCNTs-based BP/PVA membrane more effectively? 

 

1.5 Aim & Objectives 

This study aims to develop a magnetic f-MWCNTs-based BP/ PVA using 

functionalized MWCNTs for FZD micropollutant removal. The following steps 

are required to achieve the goal. 
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i. To optimize the operational parameters (pH 4-8, contact time 20-350 

min., and agitation speed 100-200 rpm) for the optimum removal of FZD 

micropollutant from the aqueous solution. 

 

ii. To determine the properties such as thermal stability, chemical 

composition, surface topology, and magnetic strength of the magnetic f-

MWCNTs-based BP/PVA membrane through advanced characterization 

techniques. 

 

iii. To determine and compare the adsorption capacity of the magnetic f-

MWCNTs-based BP/PVA membrane with the conventional adsorbents. 

 

iv. To compare the modeling of RSM-CCD and ANFIS for the percentage 

removal of FZD micropollutant on the magnetic f-MWCNTs-based 

BP/PVA membrane  

 

1.6 Novelty 

Carbon nanotubes, a nanotechnology product, exhibit substantial properties 

that have gained researchers' interest in using it for various applications, 

including water purification, remediation, and desalination. However, its usage 

are impractical because of their nano-size, formation of bundles, low solubility 

and dispersibility, difficulty in being difficult to separate, and low reusability 

and recovery. Therefore, researchers have discovered various approaches to 

modify the surface of CNTs to overcome the aforementioned drawbacks. They 

are modifying the surface of CNTs and incorporating them with metal/ metal 

oxide to transform CNT into magnetic CNT as nano-adsorbents have sparked 

rapid interest in environmental protection applications. Many research studies 

have shown that magnetic CNTs exhibited excellent adsorption of 

contaminants such as heavy metal ions, organic and inorganic compounds, and 

dyes. However, these nano-adsorbents also have a few disadvantages, for 

instance, requiring an additional external magnet to sweep off magnetic CNTs 

covered with pollutants from an aqueous medium. 
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Furthermore, some studies have revealed that magnetic CNTs, after absorbing 

pollutants from an aqueous medium, are not entirely swept off using an 

external magnet. Due to this, magnetic CNTs as nano-adsorbent materials are 

restricted for heavy metals and dye removal applications. Like magnetic CNTs, 

CNT-based membranes, especially BP, have also displayed great interest in the 

current era and have shown excellent potential for water purification and 

desalination. Enhancing the mechanical properties of the BP membrane is 

essential as it offers to create a break-free membrane, which restricts the risks 

that arise from CNT as individuals in the environment. Based on the literature, 

the mechanical properties of BP membranes can be improved through 

infiltration with polymers, such as polystyrene, PVA, etc. In addition, most 

polymer infiltration studies have been conducted on single-walled CNTs 

(SWCNTs), and limited studies on multi-walled CNTs (MWCNTs). 

 

Individually, both magnetic CNTs and CNT-based BP membranes have been 

extensively researched. However, no study has been conducted where 

properties of magnetic CNT-based BP membranes are combined to form a 

magnetic membrane. The novelty of this study is the development of a 

membrane that has high efficiency in adsorption, separation, and reusability. 

Moreover, the successful development of this membrane will not require any 

additional separation stage like magnetic-CNTs nano-adsorbents material. 

Besides, no study on magnetic CNT-based BP membrane infiltration with PVA 

has been conducted for micropollutant removal.  Lastly, statistical and 

mathematical modeling are compared to predict the removal efficiency of FZD 

micropollutant using magnetic BP membrane. 

 

1.7 Significance of the Study 

No research has considered magnetic f-MWCNTs-based BP/PVA membranes 

for micropollutant removal from water sources. The use of magnetic f-

MWCNTs-based BP/PVA membranes for micropollutant removal may 

improve the overall economic feasibility. It can improve the adsorption 
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capability, mechanical strength, long life-cycle, and reusability. Besides, it can 

also reduce environmental concerns, such as reducing effluent growth and 

energy consumption. Moreover, the findings of this study may provide an 

opportunity for developing wastewater treatment approaches that are feasible in 

real-life industrial applications. This proposed study is expected to have 

considerable breakthroughs and impact on the future research studies 

associated with different pharmaceuticals and steroid hormones micropollutant 

removal applications using a novel membrane, magnetic f-MWCNTs-based 

BP/PVA. 

 

1.8 Scope of the Study 

The research scope of this study is to examine the magnetic f-MWCNTs-based 

BP/ PVA membrane and its use as an aquatic micropollutant removal 

membrane comprehensively. f-MWCNTs will be prepared and reinforced with 

magnetic nanoparticles to fabricate magnetic f-MWCNTs nanocomposite, 

which will later be used to develop the BP membrane. To strengthen the 

mechanical stability of the membrane, the developed membrane will be 

infiltrated with PVA. Then, characterization analysis will be conducted using 

different analysis approaches, including FE-SEM, TGA, EDX, FT-IR, and 

VSM. Furthermore, process parameters such as concentration and pH of 

micropollutant solution, temperature, and time will be investigated to evaluate 

their relationship with the developed magnetic f-MWCNTs-based BP/PVA 

membrane. Also, adsorption studies will be performed using the adsorption 

isotherm models, thermodynamics, and kinetics for a better understanding of 

the adsorption phenomenon of the developed membrane. Additionally, an 

assessment of the prepared membrane is conducted in comparison to 

conventional absorbents, focusing on parameters such as removal efficiency, 

adsorption capacity, and reusability. To capture the inherent characteristics and 

better predict the adsorption efficiency and feasibility of the developed 

membrane for treating a large volume of micropollutant, RSM-CCD and 

ANFIS mathematical modeling will be used and evaluated. Besides, it will also 
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help to understand the relationship between process parameters and optimize 

the performance.  

 

1.9 Outline of the Thesis 

The thesis report is comprised of five chapters, as summarized below. The 

structure of the thesis report is graphically presented in Fig. 1.4 

 

i. Chapter 1:  States the occurrence of micropollutant in different water 

sources and their environmental effects and risk. Furthermore, problem 

statements, research gaps, and questions are discovered, through which 

the specific objectives of this study are designed. Moreover, the novelty 

significance of this study is also comprised.  

 

ii. Chapter 2: Describes the current water contaminants' overview, 

emphasizing micropollutant existence in different water sources. Besides, 

discuss their environmental risks and effects-furthermore, the current role 

of magnetic separation and membrane technology in water and 

wastewater treatment applications. 

 

iii. Chapter 3:  Comprises the study's chemicals, materials, and 

methodology. The comprehensive description for each step is described in 

this chapter, which includes the surface modification of MWCNTs, 

synthesis of magnetic f-MWCNTs and magnetic f-MWCNTs-based BP, 

infiltration of PVA on magnetic f-MWCNTs-based BP, and its 

characterization analysis. The optimization analyses for micropollutant 

removal using magnetic f-MWCNTs-based BP/PVA under batch 

treatment were also included.  

   

iv. Chapter 4: Interpret the results and broad discussions of this study, which 

consist of: 

• Surface modification and characterization analyses of f-

MWCNTs, and magnetic f-MWCNTs. 
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• Optimization analysis of FZD micropollutant removal under batch 

treatment. 

• Characterization analyses of magnetic f-MWCNTs-based BP/PVA 

membrane. 

• Adsorption analysis of magnetic f-MWCNTs-based BP/PVA 

membrane for MP removal. 

• Optimization of FZD MP removal using magnetic f-MWCNTs-

based BP/PVA via artificial neural network. 

 

v. Chapter 5:  Shows a conclusion summarizing all significant findings 

from this research study. Furthermore, future research prospective of 

magnetic f-MWCNTs-based BP/PVA membranes also are presented. 
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Fig. 1.4: Thesis schematic flowchart 
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CHAPTER II 

LITERATURE REVIEW 

This chapter is a literature review. An adapted version has been published in J. 

Environ. Chem. Eng., with the name “A comprehensive review on 

micropollutant removal using carbon nanotubes-based adsorbent and 

membranes”, by Fahad Saleem Ahmed Khan, Nabisab Mujawar Mubarak, 

Mohammad Khalid, Yie Hua Tan, Ezzat Chan, Muhammad Ekhlasur Rahman, 

and Rama Rao Karri. 

 

2.1 Introduction 

Water-associated issues are a persistent global problem. Different factors have 

frequently stressed hydrological resources, including urbanization, 

industrialization, and population growth (Amprako 2016). Furthermore, 

increasing use of fertilizers and chemical materials have also contributed to the 

eutrophication of rivers and the development of dead zones in various habitats. 

Moreover, mishandling of wastewater and lack of public strategies have 

compounded the situation (Guner 2011, Olvera et al. 2017). Fig. 2.1 illustrates 

the various pathways of contamination into the aquatic environment. 

 

 
Fig. 2.1: Pathways of pollutants into the aquatic environment (Kosek et al. 2020) 



CHAPTER II 

16 

 

 

For several decades, the health of global waterways and natural bodies of 

clean water has been in the state of deterioration (Sweetman et al. 2017). Clean 

water is essential for both wildlife and human life, and the accessibility of fresh 

drinking water is critical for maintaining a healthy life. Many researchers have 

stated that the impacts of climate change will worsen these water problems and 

hypothetically result in more severe droughts, flooding, and increased toxicity 

of chemical pollutants in the environment (Noyes et al. 2009). Contaminated 

water sources can injure humans due to possible exposure to pathogens, 

harmful chemicals through plant irrigation with polluted water, toxins 

consumption in aquatic creatures, or polluted surface water use for recreational 

purposes such as swimming (Akhtar et al. 2021). Thus, for people living in 

developing countries, human health is most generally affected through direct 

consumption of polluted water. 

 

Water pollution consists of natural and artificial components, and each 

species affects human health to different degrees. A considerable share of 

contamination and impurities in water comes from naturally occurring 

resources (Komatsu et al. 2020). Allochthonous pollution were derived from 

the interruption of terrestrial animal and plant matter transported into 

waterways. Allochthonous pollutants originate from within each channel, 

resulting from natural actions of micro-organisms and water vegetation 

breakdown (Lozovik et al. 2007). Moreover, individual chemical compounds 

that constitute of natural organic matter include micro-organisms such as 

viruses and bacteria are mainly categorized as biological water pollutants. 

Whereas usually organic compounds are measured to be comparatively benign 

to human health, some micro-organisms may have substantial and extensive 

health effects (King et al. 2016). 

 

An extensive increase in the concentration and variety of artificial chemical 

species has recently penetrated global waterways. Growth in agriculture, 

industry, and the disposal nature of an advanced society has led to the 

introduction of a significant range of synthetic organic and inorganic pollutants 

into the water system (Kong et al. 2015). Industrial pollutants include heavy 
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metals, dyes, pigments, and plasticizers (Alahmadi 2022). Due to the 

substantial diversity of artificially introduced organic and inorganic pollutants, 

there are perhaps the most challenging ways to efficiently remove from water. 

Contaminants derived from agriculture include pesticides and fertilizers that 

usually exist in waterways, resulting in the discharge of nitrogen and 

phosphorous, potentially causing microorganisms (Akhtar et al. 2021). In 

addition, pharmaceuticals and personal care products are two new growing 

sources of artificial water pollution. Although the discharge of particular 

therapeutics and hormonal mixtures is distressing, the release of antibiotics is 

of grave concern because of the likelihood of the growth of resistant bacteria 

(Jovanovic et al. 2021). Tab. 2.1 summarizes different pollutant types in the 

aquatic environment, and their removal approaches. 

 

Tab. 2.1: Summary of different pollutants detected in the aquatic environment 

Pollutant Class Contaminants Removal 

Approaches 

References 

Micro-organism • Viruses 

• Bacteria 

• Protozoa 

Size-exclusion 

filtration, 

chlorine 

disinfection 

(Ma et al. 2012) 

Synthetic organics • Solvents 

• Dyes 

• Perfluorinated 

compounds 

Filtration, 

adsorption 

(Forgacs et al. 

2004) 

Natural organic • Fulvic acids 

• Humic acids 

(Sharpe et al. 

2004) 

Heavy metals • Mercury 

• Chromium 

• Arsenic 

• Lead 

Reverse 

osmosis, ion-

exchange, 

sedimentation, 

adsorption 

(Rasheed et al. 

2016) 

Agricultural  • Fertilizer 

• Pesticides 

• Animal waste 

Filtration, 

flocculation, 

reverse 

osmosis, 

adsorption 

(Karimi et al. 

2016) 

Pharmaceuticals • Personal care 

products 

• Anti-biotics 

• Steroids 

Filtration, 

adsorption, 

degradation 

(Rivera-Utrilla et 

al. 2013) 
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A broad-range of the above-mentioned contaminated classes are utilized daily 

in workplaces, homes or in urban environment and deposits in the sewers. This 

is generally the issue for “down the drain” products, such as personal care 

products, detergents, pharmaceuticals and their additives and metabolites 

which are excreted in faeces and urine; moreover, various plastics and food 

additives are comprised in textiles (Warner et al. 2019). Besides, municipal 

wastewaters are also polluted with non-domestic contaminants such as 

pesticides, heavy metals and hydro-carbons, which are stripped during rain 

runoff from streets, urban gardens and buildings (Margot et al. 2015). In 

wastewater treatment, the fate of these contaminants mainly depends on their 

physicochemical features, such as volatility, biodegradability, hydrophobicity, 

and also treatment route (Lalwani et al. 2020). Regarding the reduction of these 

pollutants into the aquatic environment, improvement of the removal processes 

is necessary. This chapter aims to bridge the gap in the literature by providing 

an overview of current magnetic carbon nanotube-based nanocomposites and 

carbon nanotube-based membrane, especially buckypaper; moreover, their 

applications for the elimination of micropollutants, particularly 

pharmaceuticals. Furthermore, it focuses on removing the pharmaceutical 

micropollutant through magnetic carbon nanotube-based nanocomposites and 

carbon nanotube-based membrane rather than conventional nanocomposites 

and membranes, such as activated alumina, silica gel, or membrane bioreactors 

(Sher et al. 2021, Guardado et al. 2021, Gutiérrez et al. 2022). In addition, 

statistical and machine learning techniques are also reviewed under this chapter 

and are employed for the elimination of pharmaceutical micropollutants from 

various water sources.  

 

2.2 Micropollutant 

Most surface water forms display a high number of anthropogenically 

generated compounds; moreover, only 10% of European lakes are labeled 

‘very clean’ based on their chemical grade (Loos et al. 2009). Besides, the 

United Nations resolution in 2010 designated water as the ‘new gold of the 

21st century’. There is currently an agreement in place that provides a long-
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term source of enhanced water quality, which is inextricably linked to marine 

eco-health and the surrounding territory by providing essential eco-services. 

Furthermore, water pollution can cause a variety of problems, including the 

extinction of marine species, reduced biodiversity, and pathogenic eruptions, 

and it can harm marine species even at low quantities (Gerbersdorf et al. 2015). 

As a result, environmental concerns, including improving water quality, are 

one of the most pressing issues for present and future generations. By 

recognizing and eliminating contamination sources, water quality could be 

improved in a sustainable and effective manner. 

  

To date, the Chemical Abstract Service (CAS) has labeled around 89,000,000 

chemical compounds (Fantke et al. 2020, Yang et al. 2021). Because of the 

introduction of new items, the number of anthropogenic substances in water 

continues to rise daily, and this frightening situation becomes increasingly 

obvious with improved analytics. One of the rising fears is the ‘emerging 

pollutants’ or micropollutants (Fawell et al. 2012). The term micropollutants is 

described as anthropogenic chemicals found in the aquatic environment at 

more than the usual natural level due to human action, with trace 

concentrations i.e., ng/L. Hence, micropollutants are described by their 

anthropogenic source and their existence at low concentrations. Most often, 

micropollutants are mentioned as anthropogenic trace compounds (ATC) (Loos 

et al. 2013). Micropollutants may comprise uncontaminated synthetic 

chemicals, natural compounds, or even estrogens. Micropollutants source 

include agriculture, pharmaceuticals, steroid hormones, food products, and 

pesticides (Lim et al. 2017). They are primarily introduced into the 

environment by effluents from wastewater treatment plants and agricultural 

wastes. Micropollutants have been found in large quantities in water sources 

used to produce drinking water in the past (Luo et al. 2014).  

 

The existence of micropollutants in various water sources has been reported 

widely (Luo et al. 2014). It has been estimated that nearly 70% of the 

pharmaceuticals in the wastewater come from domestic households, 5% from 

hospital discharge, 20% from livestock farming, and the remaining derives 
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from unspecified sources; nevertheless, geographical and seasonal variations 

are average occurrences (Zdarta et al. 2022). The concentration of 

micropollutants in different water sources is very much dependent on their 

physiochemical properties, for instance, octanol-water partition coefficient 

(LogP), dissociation constant (pKa), and water-solubility (Sithamparanathan et 

al. 2021). LogP and pKa are essential properties of micropollutants influencing 

their sorption affinity and charge. According to Rogers, sorption potential is 

determined by the value of LogP, i.e., the value of LogP less than 2.5 a shows 

low sorption potentials while the LogP value greater than 4 shows a high 

sorption potential (Venegas et al. 2021). A list of well-known micropollutants 

found in different water sources and their physiochemical aspects are listed in 

Tab. 2.2: 
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Tab. 2.2: Physicochemical features of the known micropollutants 

Compound Molecular 

weight 

(g/mol) 

Density (g/cm3) at 

25oC 

Water solubility 

(mg/L) at 25oC 

pKa LogP References 

Tylosin, Antibiotics (C46H77NO17) 920 ~1.1 210 7.7 1.6 (Ashraf et al. 2018) 

Ibuprofen, Anti-inflammatory 

(C13H18O2) 
210 1 21 4.5 3.8 (Caliskan Salihi et al. 2022) 

Furazolidone, Antibacterial 

(C15H12N2O) 
230 1.5 40 2.4 0 (Amalraj et al. 2021) 

Pravastatin, Lipid (C23H36O7) 420 ~4.2 6.1 4.2 3.1 (Althanoon et al. 2020) 

Atenolol, β-blockers (C14H22N2O3) 270 260 13000 9.6 0.2 (Kumar et al. 2018) 

Triclosan, Antibacterial (C12H7Cl3O2) 290 1.5 10 7.9 4.8 (Wang et al. 2017) 

Methyl-paraben, Preservatives 

(C8H8O3) 
150 1.2 2500 - 2 (Bernal et al. 2021) 

17-β ethinylestradiol, Hormones 

(C20H24O2) 
300 - 11 10 3.7 (Khan et al. 2021) 

Diazinon, Insecticides 

(C12H21N2O3PS) 
300 1.1 40 2.6 3.8  (Rad et al. 2022) 

Butylhydroxytoluene, Food additives 

(C20H12) 
220 1.1 0.6 - 5.1 (Ribeiro et al. 2021) 

Bisphenol A, Plasticizers (C15H16O2) 230 1.2 300 10 3.3 (Choi et al. 2019) 

Tri(chloropropyl) phosphate, Flame 

retardants (C9H18C13O4P) 
330 1.4 7000 - 2.8 (Truong et al. 2020) 
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Compound Molecular 

weight 

(g/mol) 

Density (g/cm3) at 

25oC 

Water solubility 

(mg/L) at 25oC 

pKa LogP References 

Oxybenzone, Sunscreen (C14H12O3) 230 1.2 3.7 7.6 3.8 (Hopkins et al. 2017) 

Homosalate, UV filters (C16H22O3) 260 1 <1 - 6.2 (Mitchelmore et al. 2021) 

Tonalide, Cosmetics (C18H26O2) 260 1 1.30 - 5.7 (Ehiguese et al. 2021) 
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Since micropollutants can be found everywhere and are usually used to 

enhance human life, it is not easy to control the release of these compounds' 

sources in the water environment (Ebele et al. 2017). Many studies have 

testified that micropollutants' availability is significant in drinking, ground, 

surface, and wastewater (Chen et al. 2006). The available conventional 

methods employed at wastewater treatment plants are not designed to eliminate 

micropollutants; thus, these compounds remain in the processed water and 

wastewater run-off. Tab. 2.3 provides the list of known micropollutants which 

has been comprehensively studied and detected in different aquatic sources 

globally: 
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Tab. 2.3: Micropollutant detected in different water sources based on country 

Micropollutant Aquatic compartments Research country Concentration (mg/L) References 

17-α- Ethinylestradiol 

Surface-water China 

Germany 
0.2-1.9 

(Vulliet et al. 2011, 

Manickum et al. 2014) 

Wastewater South Africa 

Korea 
<1-8 

Diclofenac 

Grey-water France 

Spain 
1.2-380 

(López-Serna et al. 

2013, Stasinakis et al. 

2012, Spongberg et al. 

2011) 

Surface-water Greece 

United Kingdom 

0.8-1000 

0.5-260 

2- ethylhexyl-4- 

methoxycinnamate 

Wastewater Norway 4.7-510 (Tsui et al. 2014, Amin 

et al. 2014) Surface-water Japan 12-1000 

Methylparaben 
Sewage-water Spain 

290-1000 
(González-Mariño et 

al. 2011) 

Butyl-paraben Tap-water Spain 28 (Zhao et al. 2014) 

Neonicotinoids 

Surface-water United States of America 

Spain 

Australia 

1.1-110 

(Papadakis et al. 2015, 

Campo et al. 2013) 

Macrolide 

Surface-water Spain 0-780 (Birošová et al. 2014, 

Lara-Martín et al. 

2014) 

Wastewater United States of America 
54-1900 

Butyl-methoxy-di-benzoylo-

methane 

Sewage-water Hong Kong 290 (Tsui et al. 2014) 
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Micropollutant Aquatic compartments Research country Concentration (mg/L) References 

17-β- Estradiol 

Wastewater Sweden 

China 
<1-88 

(Nie et al. 2012, Zorita 

et al. 2009) 

Grey-water United States of America 

France 
0.3-150 

Ibuprofen 

Surface-water Costa Rica 

South Korea 

Taiwan 

5 

15 

5-280 

(Spongberg et al. 2011, 

Kim et al. 2009, Lin et 

al. 2011) 

Groundwater Spain 190 

Oxybenzone Tap-water United States of America 14 (Subedi et al. 2015) 

Carbamazepine 

Surface-water Canada 

United Kingdom 

South Korea 

3 

5-680 

4-600 

 (Kleywegt et al. 2011, 

Spongberg et al. 2011, 

Stepien et al. 2013) 

Groundwater United States of America 

France 

40 

10 

Triclosan 
Sewage-water India 

United States of America 

890 

540 

(Subedi et al. 2017) 

Gemfibrozil 

Surface-water Costa Rica 

Taiwan 

41 

1.9-3.5 

 (Lin et al. 2011) 

Groundwater Spain 170 

Sulfamethoxazole 
Groundwater Spain 

United States of America 

48 

160 

(Fram et al. 2011) 
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Micropollutant Aquatic compartments Research country Concentration (mg/L) References 

Trimethoprim 

Surface-water Taiwan 

United Kingdom 

United States of America 

1 

7-120 

9.1 

(Wang et al. 2011) 

Triclocarban Tap-water 
United States of America 

Spain 

54 

13 

(Subedi et al. 2015, 

Carmona et al. 2014) 
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2.2.1 Present Legislation and normative strategies 

In early days, there was a belief that the existence of micropollutants in the 

ecosystem induces a threat primarily for the natural water sources and the 

related marine species rather than for human beings’ health. As a result, the 

primary concern with micropollutants is that the vast majority of them are not 

controlled or recognized by national or international legislation (Włodarczyk-

Makuła et al. 2018). Consequently, regulation and normative strategies through 

various organizations emphasize traditional pollutants to protect the quality of 

environmental systems, particularly associated with waters (Tosun et al. 2020). 

On the other hand, several institutions periodically create vital rules on various 

legislations and proposals features of substances with particular concerns 

“priority contaminants,” for instance joint FAO/WHO expert committee on 

food additives (JECFA), all focusing on micropollutants due to their risk based 

on the analyzed or potential effects (Aidonojie 2023).        

 

Till to date, a limited number of countries have implemented regulations on 

specific micropollutants; for instance, environmental quality standards (EQS) 

for nonylphenol and diiron (micropollutants) have been recognized by the EU 

Parliament (Bennion et al. 2007). Micropollutants, i.e., steroid hormones, 

pharmaceuticals, and personal care products (PPCs), are not stated on the 

controlled substance list. More research on micropollutant' effects on 

ecological and human health is required to create supervisory benchmarks for 

micropollutant. Many review papers have been issued concerning 

micropollutants occurrence in various water bodies; more comprehensive 

studies on micropollutants occurrence are still needed (Lapworth et al. 2012).  

 

Even though no defined standard is available to determine the limits of the 

release of micropollutants, few regulations have been issued. The first 

regulation marked in the EU water policy was Directive 2000/ 60/ EC (Čížková 

et al. 2013). This regulation mainly focuses on defining the high-risk 

substances as well as prioritized them. Directive 2008/ 105/ EC and EQS 

endorsed thirty-three priority substances (PSs) (Directive 2008). Furthermore, 
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Directive 2013/ 39/ EU in 2013 suggested having a closer look at the 

monitorization and treatment options for 45 PSs, meeting the safeguard of the 

human health and aquatic compartment (Commission 2013). In the same 

Directive, two pharmaceuticals and natural hormones were suggested in the 

initial watch-list of ten substances for EU monitoring, introduced within 2 

years. On March 20’ 2015, the watch-list of EU monitoring substances 

(Directive 2008/ 105/ EC) was revised in Decision 2015/ 495/ EU. The regular 

rate of pollutants of the emerging issue in the surrounding, helped the revision 

of the outline to cover a vast number of toxic compounds, besides 

endorsements for wastewater treatment phases or even innovative treatment 

states (Bolong et al. 2009, Gibs et al. 2013, Nie et al. 2012). Tab. 2.4 lists the 

various European regulations stated for the legal bases of micropollutant 

handling: 
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Tab. 2.4: Legal bases for the handling of micropollutant 

Regulations Description Aim References 

Water Framework 

Moreover, the risk to 

living species is 

contingent upon 

Directive 

(2000/60/ EC) 

The Directive was adopted on 23rd 

October’2000. A European directive promises 

that all European Union (EU) must attain all 

water bodies' good quantitative and qualitative 

rank. The completion date for the plan is 2027.   

   

 

• Safeguard the transitional, in-land surface, 

ground, and coastal waters. 

• Secure ‘Good Status’ for all kinds of waters 

at the targeted deadline. 

• Water management regarding River Basins. 

• ‘Combined Approach’ of discharge limit 

values as well as quality standards. 

• Measures for decreasing the relevant 

contaminants/ contaminant group (VIII of 

WFD) 

• Adequate water costing. 

(Parliament 

et al. 2000, 

Cabezas 

2012) 

Plant Protection Product 

Legislation 

(1107/2009) 

The legislation was published on 21st October 

‘2009. The legislation states guidelines for the 

plant protection products (PPPs) authorization 

in marketable form and their setting on the 

market, use, and maintain within the 

community. Moreover, set regulations for 

active substances, synergists, and safeners 

approval, which PPPs comprise, and co-

formulants and adjuvants rules. In short, it is 

legislation about PPPs that place in the EU 

• Support high-level safeguard of the 

environment and human health. 

• Improve operation of the internal market.  

• Control as well as improve the 

competitiveness of the EU chemical market. 

(House et al. 

2008, 

Matyjaszczyk 

2018) 
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Regulations Description Aim References 

market. 

Groundwater Directive 

(2000/118/EC) 

The Conciliation Committee accepted the 

Directive on 28th November 2006. 

• Description of suitable groundwater chemical 

conditions. 

• The sustained upward and significant reversal 

trend in contaminants concentration.  

• EQS for pesticides as well as parameters for 

threshold values. 

• Measure for controlling good water status 

and avoid/ decrease the pollutants input. 

(Nieto et al. 

2005) 

Marine Strategy 

Framework Directive 

(2008/ 56/ EU) 

The Directive became official on 17th July 

2008. It is established as a legal framework for 

safeguarding and managing EU seas and 

guarantees their long-standing, sustainable use. 

The legislation plan is to attain the excellent 

status of the EU’s marine water by 2020. 

• Achieve good status of the marine water. 

• Measures for controlling or decreasing 

relevant contaminants or contaminant groups. 

(Fung et al. 

2012) 

Regulation on Detergent 

(648/ 2004) 

The regulation was officially presented on 31st 

March 2004. The regulation updates and 

merges the current Directive on detergent. The 

regulation executes a two-tier testing rule on the 

active detergent ingredient's bio-degradability, 

• Launch free movement of detergent and 

surfactants for detergents on the inner market, 

guaranteeing a high degree of safeguard of 

human health and environment. 

• Bans on surfactants in terms of the bio-

(Pedrazzani 

et al. 2012, 

Wind 2007) 
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Regulations Description Aim References 

referred to as surfactants. Furthermore, the 

regulation introduces stricter labeling 

requirements on detergent producers. 

degradability two-tier testing rule. 

  

Directive on Industrial 

Emissions (2010/ 75/ 

EU) 

The Directive was officially presented on 24th 

November’2010. This EU Directive which 

pledges EU member state to maintain and 

reduce the industrial emission impact on the 

environment.   

• Establish guidelines on integrated prevention 

and pollution control are rising from 

industrial actions.  

• Design rules to stop or decrease emissions 

into water, air, and land. Moreover, limit 

waste generation to attain a high level of 

safeguard of the environment.   

(Bachmann 

et al. 2014, 

Kim et al. 

2022, 

Abdelkareem 

et al. 2021) 

 

Regulation on Biocidal 

Products (528/ 2012/ EU) 

The regulation was adopted on 22nd May’2012. 

The regulation relates to biocidal product use 

and place in the market, which is used to shield 

animals, humans, articles, or materials against 

toxic organisms such as bacteria or pests by the 

action of active constituents contained in the 

biocidal product.    

• Biocidal products authorization regarding 

environmental risk valuation of active 

biocidal products and substances. 

(Backhaus et 

al. 2013, 

Union 2012)  
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2.2.2 Environmental risks and effects of micropollutant 

Environmental risk induced through substances mainly depends on their 

chemical and physical affinity and speciation for water and solid matter, which 

substantially impacts their bio-availability (Zamora-Ledezma et al. 2021). 

Moreover, the danger to various forms of life also hinges on the movement of 

substances and their capacity to be conveyed into the food chain. In tissues of 

aquatic species, pollutants can be ingested or mixed with suspended matter or 

water (Rathi et al. 2021). Consequently, contaminants concentration in the 

tissues of marine species may be present at levels equivalent to or higher than 

to the environment’s concentration. The wide deviation in environmental 

conditions in different water sectors can also be an essential factor affecting 

bioavailability (Cheng et al. 2020). Temperature, salinity, turbidity, or pH can 

be prominent among these conditions (Xu et al. 2020, Yang et al. 2021). 

 

Moreover, the physicochemical aspects and sensitivity (trophic level, feeding 

behavior, life stage, habitat conditions, genetic adaptions, and contaminant 

interactions) are also competent to affect the ability of organisms to bio-

accumulate contaminants (Rogowska et al. 2020). Various organisms have 

different potentials to bio-accumulate elements, even when introduced to 

similar levels of particular pollutants. Even individuals of a single species 

exposed to a similar concentration of pollutants for the same duration may not 

accumulate elements at an equal rate. It is also linked with several other 

factors, for instance, size, sex, age, and physiological condition of the species 

(Ghirardini et al. 2020). 

 

Data on the chemical concentration levels in different water sources is 

insufficient to investigate the environmental risk. The results of chemical 

studies only offer specific information about the potential endangerment to 

human beings and ecology. The environmental risk assessment to study the 

effects of micropollutant on plants, human health, ground/surface water 

quality, and aquatic species reported a broad spectrum of disorders posed by 

the exposure of micropollutant (Kim et al. 2016). These chemical elements in 

drinking water may cause serious, long-lasting effects and produce irreversible 
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mutations in humans and wildlife (Fang et al. 2017). Research performed on 24 

individual post-mortem brain materials detected the accumulation of methyl-

paraben, n-propyl paraben, triclocarban, bisphenol, and methylparaben in their 

white-matter brain tissues (Van der Meer et al. 2017). A survey conducted in 

the US on 20 teenage girls, age 14-19, also found the accumulation of 16 

noxious chemical compounds related to personal care products use, for 

instance, cosmetic products (Cohen et al. 2019). Fig. 2.2 depicts the known or 

suspected effect of micropollutant on human’s health and the environment:  

 

 
Fig. 2.2: Effects of micropollutant on human’s health and the environment (Vasilachi 

et al. 2021) 

 

 

The organic compounds found in aquatic ecosystems affect the reproductive 

networks can damage in marine species (Bainbridge et al. 2018). Aromatic 

micropollutants can react with chlorine to form chlorine by-products that are 

extremely harmful and cause severe effects on living species (Younis et al. 

2017). Antibacterial triclosan disturbs the hormonal functions, affecting to 

human beings' metabolism and reproductive systems (Maksymowicz et al. 
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2021). Studies performed by Sattar and associates had discovered that the 

micropollutant, specifically endocrine-disrupting compounds, can modulate 

endocrine functioning, i.e., damage fertility, menstrual cycle malfunctions, and 

endometriosis (Ratnasari et al. 2022). Besides, Desai and co-associates’ 

explained the role of endocrine-disrupting compounds in metabolic illnesses, 

for instance, dyslipidemia, cardiovascular diseases, obesity and insulin 

resistance in human beings (Desai et al. 2015). A separate study performed by 

Giulio and his co-associates elucidated the ability of endocrine-disrupting 

compounds on the pathogenesis of breast disease even at minor concentrations 

(Giulivo et al. 2016). The effect of chronic and acute exposure on the 

reproductive system, histopathological changes, and body organs of fishes, 

mammals, snails, and birds had also been described (Overturf et al. 2015). 

 

Antibiotic FZD has been widely utilized as an antibacterial and antiprotozoal 

feed additive for poultry, cattle, and farmed fish as well as in human medicine 

for the eradication of helicobacter pylori (Liu et al. 2017, Mund et al. 2017). 

Researchers have found evidence that FZD and its metabolite 3-amino-2-

oxazolidinone (AOZ) can cause mutations and harm the genome in test animals 

(Beliatskaya et al. 2020). It has also been found to cause cancer and teratogenic 

consequences in humans at low concentrations, bacterial resistance, and organ 

failure in animals (Balasubramanian et al. 2019). DNA damage and cell growth 

inhibition are additionally possible side effects of FZD in humans (Feitosa et 

al. 2021). The long-term impact of FZD exposure includes aplastic anaemia, 

granular leukocyte deficiency, grey baby syndrome, neurotoxic responses, and 

hypersensitivity (Seyedmajidi et al. 2021, Anh et al. 2022). There were several 

instances in which the hazardous biological metabolite AOZ and its FZD-

derived residues were found in a variety of aquatic species as well as in pond 

water and silt (Sousa et al. 2020). Consequently, in polluted areas or municipal 

wastewaters, it is important to detoxify FZD and AOZ. Previous study showed 

that FZD and furaltadone tartrate were the most poisonous to Selenastrum 

capricornutum and Daphnia magna, followed by furaltadone chlorohydrate 

(Kim et al. 2012). FZD toxicity to Culex pipiens and Daphnia magna was 

subsequently discovered to be significant. Furthermore, FZD is very poisonous 

to microalgae like Ulva lactuca and Aliivibrio fischeri, and to bacteria like 
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Heterocypris incongruens and Aliivibrio fischeri (crustaceans) (Leston et al. 

2013). Tab. 2.5 shows the ecotoxicological impact of various micropollutants 

on aquatic organisms. 
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Tab. 2.5: Ecotoxicological impact of pharmaceutical contaminants residues on aquatic organisms 

Micropollutant Usages Concentration 

(µg/L) 

Species Effects References 

Estradiol 
help reduce symptoms of 

menopause 
0.80 

Pimephales, 

promelas 

Reduction in reproductive 

output 

(Santen 2015) 

Estrone 

treat abnormalities related to 

gonadotropin hormone 

dysfunction 

– Daniorerio 
Reproduction/secondary 

sexual characteristics 

(Niranjan et al. 

2019) 

Tamoxifen treat breast cancer 5.6 
Pimephales 

promelas 

Inhibition of Reproductive 

output/VTG/Gonadal 

histology 

(Owumi et al. 

2021) 

Fadrozole 

treatment of estrogen-

dependent disease, 

including breast cancer. 

24 
Pimephales 

promelas 
GSI/VTG 

(Brixius-

Anderko et al. 

2019) 

Letrozole treat early breast cancer 5 Oryziaslatipes Fecundity/fertility/VTG 
(Masri et al. 

2010) 

5α-

Dihydrotestosterone 

triggers the development of 

male characteristics 
6 

Pimephales 

promelas 

Masculinization of 

females/Vtg induction in 

females 

(Ornostay et al. 

2016) 

Cyproterone 
relieve the symptoms of a 

tumor of the prostate gland 
- 

Fundulus 

heteroclitus 

plasma and 11-KT reduction 

in males 

(Sharpe et al. 

2004) 

Flutamide 
treat men with prostate 

cancer 

500- 651 

 

Gasterosteus 

Aculeatus, 

Behavioral problems in 

male, Testis histopathology 

(Ankley et al. 

2004) 
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Micropollutant Usages Concentration 

(µg/L) 

Species Effects References 

 

 

 

 

Pimephales 

promelas 

 

/ Ovary histopathology, 

VTG induction in males and 

Females, fecundity/ 

hatching 

Norethindrone 
Birth control to prevent 

pregnancy 
25–10 

Oryziaslatipes 

Pimephales 

promelas 

Inhibition of reproduction/ 

masculinization of 

females/steroid levels 

(Vilk Ayalon et 

al. 2022) 

Levonorgestrel 

Prevention of pregnancy 

after the confirmed or 

suspected failure of 

contraception 

- 
Pimephales 

promelas 

Prolonged time for 

reproduction   

(Zhang et al. 

2009) 

Diclofenac 

used to treat pain and 

inflammatory diseases such 

as gout 

0.5–50 

  

Brown trout 

Rainbow trout 

Carp 

Hinders prostaglandin 

synthesis, histological 

alterations in kidney and 

gills, cytological alterations 

in liver and kidney, 

inhibition of  CYP2M 

(Mehinto et al. 

2010) 

Furazolidone 
relieve pain, such as muscle 

aches, or arthritis 

1–100 

1000 

>10 

206-280 

Medaka 

Rainbow trout 

Zebrafish 

Carp 

Change of reproduction 

pattern, impairment of ion 

regulation, cardio  

abnormalities, inhibition of  

(Yu et al. 2014) 
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Micropollutant Usages Concentration 

(µg/L) 

Species Effects References 

CYP2M 

Indomethacin 

relieve moderate to severe 

pain, tenderness, and 

swelling 

100000 Zebrafish 
Disruption of oocyte 

maturation/ovulation 

(Magalhães et al. 

2017) 

Naproxen 

Arthritis, degenerative type, 

spondylitis, acute gout 

skeleton disorder 

230260 Carp Inhibition of  CYP2M 

(Kean et al. 

2005) 

Fluoxetine 
treat depression, obsessive-

compulsive disorder 

6 

23–100 

51–170 

0.1–0.5 

51–53 

0.1–5 

Bluehead wrasse 

Striped bass 

Fathead minnow 

Medaka 

Decreased  territorial  

aggression and ability to 

catch prey, reduced feeding 

rate  in Fathead minnow 

(Weinberger II et 

al. 2014) 

Ketoconazole treat skin infections 

25 

30 

3.2 

8000 

Fathead minnow 

Flounder 

Decrease in egg production, 

morphological changes to 

gonads, increased levels of 

CYP17 and CYP11A, 

inhibition of testosterone 

 

(Monteiro et al. 

2000) 
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2.3 Advancement in the application of nanotechnology for 

micropollutant removal 

Improving wastewater quality and management is one of the primary focuses 

of nanotechnology. As a result, nanotechnology has been reported in the 

literature as the most advanced process for wastewater treatment. Several 

major nanotechnology techniques for water treatments are membrane filters 

with nanoparticles, nano-adsorption, and photocatalysis using nanoparticles 

(Cheriyamundath et al. 2021). Das and his co-associates studied the trends in 

nanomaterials usages in environmental remediation and monitoring and 

highlighted the effectiveness of these nano-tools and the requirement to restrict 

environmental pollution caused by their use (Das et al. 2015). Likewise, Karn 

and his co-associates described nanomaterials' advantages and possible risks 

and stated that nanotechnology must be customarily seen as more advantageous 

than harmful (Karn et al. 2009). Several nano-scale materials have been 

introduced for environmental applications, such as metal oxides, carbon 

nanotubes, zeolites, and different noble metals. In contrast to all, CNT-based 

composites/ membranes have received substantial consideration for water and 

wastewater treatment applications; therefore, numerous researches have been 

conducted by the scientific community over the past few years. The popularity 

of CNT-based composites/ membrane for water-related applications can be 

revealed by the number of articles that have been published till now which 

continues to increasing each year, according to the search engine Web of 

Science database as depicted in Fig.2.3: 
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Fig. 2.3: Scientific publication period of 2010-2020 (Vilardi et al. 2018, Barrejón et 

al. 2022) 

 

The above graph (Fig. 2.3) is constructed based on the use of CNT and CNT-

based composites/ membranes for water and wastewater treatment applications 

such as heavy metal, dyes, salt, and micropollutants removal between 2010 and 

2020. It is apparent that there have been substantial studies conducted on CNT, 

CNT-based composites and CNT-based membranes. Given the popularity of 

CNT, CNT-based composites and CNT-based membranes, the later section 

(Section 2.4 and Section 2.5) mainly focuses on them, specifically 

micropollutants removal.  

 

2.4 Carbon nanotubes 

With the rapid interest in nanotechnology, nano-structured materials have 

gained substantial applications in several sectors, especially environmental 

remediation and wastewater treatment. They have been introduced in different 

forms, such as nanotubes, nanofibers, nanoparticles, and nanowires (Farghali et 

al. 2013). These nanomaterials have demonstrated a higher adsorption capacity 

for most water pollutants than other bulk materials (Muhamad et al. 2017). 

Among different nanostructured materials, carbon-based nanomaterials have 

shown remarkable attention as future-generation materials for different 

applications because of their unique physicochemical features, excellent 

mechanical, electrical conductivity, and thermal properties (Cha et al. 2013). 
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The outstanding properties of carbon-based nanomaterials lead them to a 

revolutionary technological breakthrough towards a diverse range of 

applications, such as electrically conductive materials, biomedical fields, 

catalyst supports, and biosensors (Kwon et al. 2017, Ioniță et al. 2018). 

Furthermore, carbon-based nanomaterials are well-known as excellent 

adsorbents for pollutants removal from wastewater. 

 

Amongst carbon-based nanomaterials, CNTs have been observed to have a 

higher adsorption capacity for organic compounds because of their 

characteristic morphology, which offers durable interaction of CNTs with 

organic compound through non-covalent forces, including π-π stacking, van 

der Walls forces, hydrophobic interactions, hydrogen bonding, and electrostatic 

forces (Gupta et al. 2013). The mechanisms are based on the features of the 

compound of interest. The prognosticate of adsorption of organic contaminants 

on CNTs is not straightforward since it depends upon the nature of interaction 

among pollutants and CNTs (Aslam et al. 2021). Features such as surface area, 

functional groups, purity, and adsorption sites play a crucial part in the 

adsorption of organic contaminants onto CNTs (Fig.2.4). CNTs consist of high 

surface activity sites and controlled pore size, resulting in tremendous sorption 

efficiency (Madhura et al. 2019). 

 

Besides, CNTs tend to aggregate in an aqueous phase after the growth of 

several interstitial grooves and space, which results in high adsorption sites and 

assists in an elevation in adsorption capabilities of organic contaminants 

(Thines et al. 2017). Recently, single-walled CNTs have been observed to have 

great adsorption features of organic contaminants because of their large 

micropore volume and surface area. A factor that determines the cost-

effectiveness of CNTs is regeneration. It is recommended that CNTs can be 

recycled by decreasing the pH of the solution using an acid, for instance, nitric 

acid (HNO3) (Xue et al. 2017, Zhang et al. 2011). 
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Fig. 2.4: Adsorption of aquatic micropollutant using CNTs (Lee et al. 2018)  

 

The popularity of CNTs has rapidly increased in the scientific society due to 

numerous aspects such as controlled nano-size and shapes, mass production, 

economical feasibility, and potential to be employed for various applications  

(De Volder et al. 2013). Fabrication of these materials through suitable 

techniques will dictate their efficiency. Various studies have been performed to 

discover effective fabrication routes to attain the finest, highly stable, and 

shape-controlled carbon nanotube-based nanocomposites, for instance, filling, 

hydrothermal, arc-discharge, chemical vapor deposition, and pyrolysis methods 

(Rao et al. 2018, Deng et al. 2019). In our previous work, a comprehensive 

discussion has been presented along with their merits and demerits (Khan et al. 

2020). 

      

2.4.1 Functionalization of carbon nanotubes  

Despite the unique physical and chemical properties of CNTs, the 

implementation of CNTs in various applications is still hindered. This occurs 

because pure CNTs have a tendency to form aggregates along the CNT tubules 

owing to the relatively weak Van der Waals interactions (Dubey et al. 2021). 

Besides, CNTs have low solubility, making them difficult to disperse and 

dissolve in most solvents (Krishna et al. 2018). Moreover, the impurities 

produced during the synthesis of CNTs can significantly alter the performance 
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of CNTs as these impurities limit the available adsorption sites of contaminants 

onto the surface of CNTs. To overcome these barriers, surface modification of 

CNTs can be performed to take advantage of CNTs’ unique properties.  

 

 
Fig. 2.5: Functionalization routes of carbon nanotubes (Meng et al. 2009)  

 

Previous researchers had reported numerous surface modification techniques 

of CNTs, such as acid oxidation, air oxidation, grafting of functional 

molecules/groups, and impregnation with metal/metal oxides. Acid oxidation 

treatment can be achieved by chemical treatment of CNTs with various acidic 

and alkaline solutions, such as potassium permanganate (KMNO4), nitric acid 

(HNO3), hydrochloric acid (HCl), and sulphuric acid (H2SO4) (Gupta et al. 

2016). Besides, the functionalization of CNTs can alter the surface of CNTs by 

attaching different functional groups on the surface of CNTs, such as –OH, -

C=O, and –COOH onto the surfaces of CNTs. These functional groups make 

CNTs more hydrophilic and suitable for the adsorption of relatively low 

molecular weight and polar contaminants, such as dye and phenol. Besides, 

some studies had reported the grafting of functional groups, such as carboxyl 

and amino groups, on the surface of CNTs, to remove pollutants from effluents 

(Mohammadi et al. 2018). Furthermore, studies have demonstrated that 

functionalized CNTs have improved solubility and dispersibility, stabilization 

of CNTs against agglomeration, and enhancement in adsorption efficiency 
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(Karkeh-Abadi et al. 2016, Azevedo et al. 2015). Oxidized CNTs can be 

further functionalized via esterification of oxidized-CNTs with pentaerythritol 

(PER) stated by Yang and co-associates, to form oxidized-CNTs-PER, which 

was used for organic dyes removal (alizarin red S), and the result displayed 

good adsorption capacity, i.e., 257.73 mg/g  (Yang et al. 2018). Doping hetero-

atoms in CNT is an effective technique to improve CNTs’ exterior electronic 

polarization, which can be advantageous for adsorptive interaction of organic 

pollutants. Yi and co-associates successfully fabricated nitrogen-doped CNTs 

to adsorb tylosin, tetracycline, and bisphenol-A. In contrast to non-doped 

CNTs, nitrogen-doped CNTs possess significantly higher adsorption capacity, 

credited to their electron-exhaustion and remarkably uniform π- electron 

acceptor sites (Yi et al. 2014).  

 

Additionally, the functionalization of CNTs by metal oxide is another 

effective technique to improve the characteristics of CNTs. Several studies 

reported that the CNTs impregnated with iron oxide, aluminum oxide, and 

manganese oxide showed promising results for removing wastewater 

contaminants (Mallakpour et al. 2016, Liang et al. 2015). 

 

2.4.2 Functionalized carbon nanotubes for micropollutants removal 

Concerning micropollutants, CNT and functionalized CNTs have been used by 

several researchers to explore their adsorption efficiency. Ji and co-associates 

employed f-MWCNTs to remove tylosin from synthetic water; good adsorption 

properties were observed with a maximum adsorption capacity of 85 mg/g (Ji 

et al. 2010). Using f-MWCNTs, a high adsorption capacity of 162 mg/g was 

achieved for bisphenol AP removal from the synthetic water sample 

(Bohdziewicz et al. 2013). Another antiepileptic, Triclosan, was also analyzed 

by Raoof and co-associates using f-MWCNTs, and the result showed the 

maximum adsorption of 106 mg/g  (Raoof et al. 2012). Besides, research 

performed by Al-Shaalan and co-associates to remove diuron, a pesticide 

displayed a maximum adsorption efficiency of 110 mg/g (Al-Shaalan et al. 

2019). The research work performed by different researchers reflects that 
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modified CNTs, particularly MWCNTs, have shown substantial potential 

adsorption capacity to remove various water pollutants, including various 

micropollutants. Tab. 2.6 shows the recent research studies on CNTs and 

functionalized CNTs for the removal of micropollutants from various water 

sources. 

 



CHAPTER II 

46 

 

Tab. 2.6: Publications on pristine and surface modified CNTs for the treatment of micropollutant 

Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

Pristine SWCNTs 

Carbamazepine 80 130 

▪ Freundlich isotherm model was 

well fit. 

▪ Increasing pH may have an 

adverse effect. 

(Cai et al. 2014) 

Atrazine n/a 33 

▪ Thermodynamic parameters 

observed that the reaction was 

exothermic. 

▪ Desorption studies noticed that 

no significant desorption 

hysteresis happened.  

(Machado et al. 

2016) 

17β- estradiol 99 27 

▪ Calculated data from the model 

revealed that the Pseudo-second-

order kinetic model was the best 

fit. 

(Zaib et al. 

2012) 

Tetracycline 96.2 100 ▪ Lower adsorption reversibility 

was observed. 

▪ Specific surface area elevated 

from 410.7 to 652.8 m2.g-1; 

moreover, extensive pore volume 

was developed during activation. 

▪ It was improved in adsorption up 

to 2-3 times. 

(Kim et al. 

2014) 

Sulfamethoxazole 94 1000 

Tylosin 98 10000 

Ibuprofen 99 231 

▪ Polanyi-Manes model was the 

best-fitted isotherm model. 

▪ Stronger sorption was observed 

due to the high specific surface 

area. 

▪ Sorption was directly affected by 

the electrostatic repulsive 

interactions among the SWCNT 

(Zhou et al. 

2013) 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

surface and compound. 

17α-ethinyl estradiol 99 120 

▪ Experimental studies observed 

that both Freundlich and 

Langmuir models are suitable 

▪ Variation in pH did not affect the 

adsorption capacity 

▪ Observed higher log Kow value, 

i.e., ~10.5 

(Joseph et al. 

2013) 

Oxytetracycline 98.4 554 ▪ An increase in adsorption 

capacity was noticed at pH 

ranges from 3 to 7.  

▪ Brouers-Sotolongo was 

considered the best adsorption 

model.   

(Ncibi et al. 

2015) 
Ciprofloxacin 

97.3 724 

 

 

 

 

 

 

 

 

 

98.5 475 

Olaquindox 99.7 133 

▪ Adsorption kinetics of 

olaquindox was extremely fast, 

reached at equilibrium within 2 

min. 

▪ Langmuir isotherm model display 

maximum adsorption capacity of 

olaquindox on pristine MWCNTs 

 (Awad et al. 

2020) 

Tetracycline 90.2 190 

▪ Pseudo-second and Langmuir 

isotherm model was the best-

fitted system 

▪ Desorption efficiencies were 

reasonable  

(Álvarez-

Torrellas et al. 

2016) 

Oxytetracycline 96.5 391 

▪ The temperature effect causes a 

slight variation in adsorption 

capacity 

▪ The removal efficiency began to 

decline after pH 7 

(Ncibi et al. 

2015) 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

 

 

 

 

 

Pristine MWCNTs 

ASulfapyridine 

80 1000 

▪ The pollutant possesses low 

hydrophobicity but is still 

strongly adsorbed to MWCNTs. 

▪ The pH effect on adsorption was 

almost insignificant. 

▪ The pollutant possesses low 

hydrophobicity but is still 

strongly adsorbed to MWCNTs. 

▪ The pH effect on adsorption was 

almost insignificant. 

▪ The experimental studies 

concluded that MWCNTs are an 

appropriate candidate for 

removing given micropollutant 

from the aqueous phase. 

(Ji et al. 2009) 

85 600 ▪ Pseudo-second-order kinetic 

model explained the kinetic data, 

and the Langmuir isotherm 

offered the best fit for all 

experimental data. 

(Xia et al. 2013) Sulfadimethoxine 90 1300 

Tylosin 98 300   

Atrazine n/a 36   

▪ Experimental data was well-

described by the dual Langmuir 

model for low concentration; 

hence, the Polanyi-Manes model 

is suitable for the lowest 

concentration. 

▪ Atrazine sorption stayed 

unchanged from pH 3 to 9, 

(Chen et al. 

2008) 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

whereas, after pH-6, no decrease 

in sorption was observed. 

Ibuprofen n/a 81 

▪ The experimental result analyzed 

that the adsorption capability of 

SWCNTs is comparatively higher 

than MWCNTs, whereas, in 

comparison to acid-treated 

MWCNTs, MWCNTs display 

higher adsorption capacity. 

▪ Experimental data was well- 

described by the Polanyi-Manes 

model. 

(Cho et al. 

2011) 

Diclofenac 96 41 

▪ Based on the isotherm model, it 

can be reflected that a 

temperature rise will lower the 

adsorption capacity. 

▪ The Freundlich model well- 

presented experimental data 

▪ Efficient enough to be used for 

other emerging pollutants, such 

as caffeine, Isoproturon, and 

atenolol. 

(Sotelo et al. 

2012) 

Ciprofloxacin 88 1.8 

▪ Research studies concluded that 

the adsorption capacity inclined 

with the increasing time. 

▪ Studies revealed that adsorption 

of ciprofloxacin on MWCNTs. is 

a chemisorption process 

▪ Pseudo-second model and 

Freundlich isotherm were 

(Avcı et al. 

2020) 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

favorable. 

Diuron >97 50 

▪ Polanyi-Manes model well-

described the experimental data. 

▪ The adsorption of micropollutant 

was directly correlated with the 

SSA and micropore volume of 

MWCNTs. 

(Chen et al. 

2011) 

17α-ethinyl estradiol 93.4 0.5  
▪ A high amount of MWCNTs was 

used in this study, i.e., 100 mg. 

▪ A Pseudo-second model was 

suggested 

▪ Thermodynamics studies 

revealed that the removal process 

is enthalpy-driven. 

▪ The removal rate was inclined 

with the rising amount of 

MWCNTs used. 

▪ Adsorption capacity decreased at 

higher solution temperature, 

observed through kinetic studies. 

(Al-Khateeb et 

al. 2014) 

Estrone 85.6 0.4 

17β- estradiol 93.3 0.5 

Triclosan n/a 435 

▪ Polanyi-Manes model was well-

fit to represent the kinetic model. 

▪ Stronger sorption of triclosan was 

observed due to high specific 

surface area. 

▪ Sorption was directly affected by 

the electrostatic repulsive 

interactions among the MWCNT 

surface and compound 

(Cho et al. 

2011) 

Isoproturon >96 16 ▪ The adsorption capacity of the 

micropollutant decreased in the 
(Sotelo et al. 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

multi-pollutant solution. 

▪ Experimental data were the best 

fit by Freundlich isotherm; 

however, equilibrium adsorption 

data demonstrated that Langmuir 

data was well-represented. 

▪ Temperature influenced the 

adsorption process with 

MWCNTs 

2012) 

(NH4)2S2O8-H2SO4-

SWCNTs 

17β- estradiol 99 27 

▪ There is a slight elevate in 

SWCNTs diameter after acid 

treatment, noticed through 

Raman spectroscopy. 

▪ The pseudo-second-order kinetic 

model was the best fit, noticed 

from the R2 value.  

(Zaib et al. 

2012) 

COOH-SWCNTs 

Ethidium bromide 38.42 200 

▪ Pseudo-second order kinetic 

model well-defined the kinetic 

model study 

▪ Isotherm's study observed that 

Langmuir better-defined 

adsorption. 

(Moradi et al. 

2012) 

COOH-MWCNTs 

Carbamazepine 93 14 

▪ Freundlich isotherm model well-

defined experimental data. 

▪ The pseudo-second-order kinetic 

model represented the kinetic 

data successfully. 

(Cai et al. 2014) 

Alkylphenoletoxilates 94 18 

▪ Freundlich isotherm model well-

described experimental data. 

▪ COOH-MWCNTs show 

extremely -ve surface charge at 

(Patiño et al. 

2015) 
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Carbon nanotubes Target micropollutant Removal 

percentage 

(%) 

Adsorption 

capacity/efficiency 

(mg/g) 

Remarks References 

the operation parameters. 

Hydroxylated-

MWCNTs 

Norfloxacin >94 72 

▪ Freundlich isotherm well-

presented the experimental data. 

▪ The higher temperature is more 

likely favorable for the 

micropollutant sorption. 

▪ The sorption process was 

thermodynamically favorable, 

predicted by noticing the -ve 

value of ∆Go 

(Wang et al. 

2010) 

O-MWCNTs 

Triclosan n/a 106 

▪ Polanyi-Manes model was well-

fit to represent the kinetic model. 

▪ Sorption isotherm analysis with 

O-MWCNTs revealed that the 

chemical features of triclosan, 

MWCNTs’ surface chemistry, 

and aqueous solution chemistry 

play a vital role in triclosan 

adsorption onto O-MWCNTs 

(Cho et al. 

2011) 

NH2-MWCNTs 

Quinolone 93 160 

▪ Freundlich isotherm model 

described the experimental data 

well. 

▪ The highest adsorption was 

noticed, compared to other 

pollutants used in the research. 

(Patiño et al. 

2015) 
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2.5 Carbon nanotube-based magnetic nanocomposites 

Carbon has been the most studied material for countless reasons, such as 

superior mechanical strength, high chemical stability and anisotropy, and 

conductivity. The scientific society has explored various morphologies of 

carbon, for instance, carbon nanofiber, buckminsterfullerene, activated carbon, 

graphene, and CNTs (Yu et al. 2012). Unique magnetic features are revealed 

when these materials are combined with magnetic nanoparticles. Magnetic 

carbon-based materials are very proficient materials that can introduce 

beneficial advancements in various operational areas (Kaiser et al. 2008). 

Researchers have merged the magnetic features with carbonaceous materials, 

resulting in porous and stable elements possessing magnetic properties (Poudel 

et al. 2018). Furthermore, the porous structure of carbon-based magnetic 

materials facilitates their applications in disciplines such as catalysis materials, 

electrode, and environmental remediation (Yee et al. 2014). Hence, it can be 

projected that carbon-based magnetic materials may have the capability as an 

innovative magnetic element by combining the magnetic features of 

nanoparticles and the remarkable mechanical strength of CNTs (Yu et al. 

2016). 
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Fig. 2.6: Application of magnetic nanoparticles in different industrial sectors (Igwegbe 

et al. 2021) 

Regarding water and wastewater treatment, magnetic nanoparticles, 

particularly maghemite, magnetite, ferrite collides, and hematite, are gaining 

considerable attention in research. Maghemite and magnetite are exceptional 

nanoscale materials applied in the biomedical field as adsorbents (Mamani et 

al. 2013). Particularly, magnetite nanoparticles possess a high surface area and 

adsorption capacity, which allow them to remove various impurities, such as 

heavy metal ions. Pristine magnetite nanoparticles have a few drawbacks; they 

tend to oxidize and rust in an acidic atmosphere. Moreover, disposal of 

aggregation through magnetic forces, will eventually decline its magnetic 

strength and adsorption capacity (Morel et al. 2013). 

 

Consequently, surface modification of magnetic nanoparticles is required to 

restrict the aggregation. Therefore, oxides, polymeric compounds, and 

surfactants are generally used to enhance the strength of magnetic 

nanoparticles. Lately, magnetic nanoparticles’ modification using organic 

molecules is getting significant attention and is employed in different industrial 

applications such as hyperthermia, drug delivery, and cell separation 

(Mohammad et al. 2015). However, modification of magnetic nanoparticles 

with suitable coating  such as polymers, silica, chitosan, and various functional 
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groups,  has been proven to be the most effective route. In an approach where 

magnetic separation and bio-sorption are merged, the efficient adsorption 

capability of aquatic pollutants can be observed with several advantages, such 

as cost-effective operation, environmentally friendly, and flexibility  (Meng et 

al. 2018). Hence, it is more suitable for the magnetic nanoparticles to be mixed 

with contaminants efficiently and stored carefully due to their maximum 

ferromagnetism since water pollutants generally have non-magnetic 

characteristics. The utilization of magnetic nanoparticles for efficient 

contaminant removal is enhanced by their heightened ferromagnetic properties, 

allowing facile separation from the aqueous environment. To ensure optimal 

performance, proper storage is essential, involving measures such as 

maintaining a dry and controlled environment, stable temperature, protection 

from light, preventing aggregation, and regular inspection to sustain their 

efficacy and utility in environmental remediation. 

 

2.5.1 Synthesis techniques 

The popularity of magnetic CNTs has rapidly increased in the scientific society 

due to numerous aspects such as mass production, economics, and the potential 

to be employed for various applications (Samadishadlou et al. 2018). 

Fabrication of these nanocomposites through suitable techniques will dictate 

their efficiency. Multiple studies had been performed to discover effective 

fabrication routes to attain the finest, highly stable, and shape-controlled 

magnetic CNTs nanocomposites, for instance, filling, hydrothermal, arc-

discharge, chemical vapor deposition, and pyrolysis methods. The advantages 

and limitations of a few well-known approaches for magnetic CNTs synthesis 

are summarized in Tab. 2.7. 
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Tab. 2.7: Synthesis techniques for carbon nanotube-based magnetic nanocomposites 

Approach Advantages Limitations References 

Hydrothermal • Potential to maintain the nano-size structure 

• Crystalline phases can be developed 

• Required extremely high temperature 

and pressure for operation 

(Guo et al. 2021) 

Pyrolysis • Suitable for mass-production 

• Demonstrate good magnetic and mechanical features 

• Display ferromagnetic properties at ambient 

condition 

• Difficult for magnetic nanostructure to 

be controlled  

• Not suitable in terms of process safety 

(Chu et al. 2009) 

Chemical vapor 

deposition 

• Suitable for mass-production 

• Ease to control the nanostructure 

• Required high consumption of energy 

• High operation cost  

• Complex equipment 

(Amara et al. 2013) 

Sol-gel • The quality of the product can be adjusted 

• Recommended especially for carbon-based magnetic 

materials 

• Raw material cost is very high 

• High permeability 

• Weak bonding 

(Mahdiani et al. 2017) 

Template-based • Produce a good quality product 

• Nanostructure size and shape can be varied 

• Convenient and simple 

• Required more than one stage to attain 

the product 

• Product quality is based on the template 

structure used 

(Zhang et al. 2001) 

Arc-discharge • Cost-saving approach 

• The required product size can quickly be produced. 

• Not categorized as a time-saving 

approach 

• Difficult to extract the product from the 

arc chamber 

• The requirement of the inert condition is 

(Samadishadlou et al. 

2018) 
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Approach Advantages Limitations References 

must 

Self-assembly • Efficient enough to control the properties of the 

produced material 

• Challenging task to maintain the 

produced materials uniformity 

(Whitelam et al. 2015) 

Electro-spinning • Ease operation approach 

• Suitable for mass-production 

• Time-saving  

• Cost-effective 

• Required extremely high temperature (Zhu et al. 2008) 

Capillary-action • Mostly employed for 3-D nanodevices • Not suitable when substrate thickness is 

less than 100nm 

(Bulmer et al. 2021) 

Sono-chemical • Convenient and simple 

• Particle size can be adjusted 

• Also suitable for metal oxide production 

• Required extremely high temperature (Theerthagiri et al. 

2022) 
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2.5.2 Carbon nanotubes-based magnetic nanocomposites for 

micropollutants removal 

In contrast to SWCNT, MWCNTs are more often used in research studies. 

Magnetic nanoparticles embedded with MWCNTs are usually produced using 

the chemical deposition of λ-Fe2O3 or Fe2O3 onto covalently modified 

MWCNTs; however, several other approaches are also designed for their 

production (Huang et al. 2015, Nasrollahzadeh et al. 2021). Currently, 

scientific researchers are more often considering magnetic modified CNTs for 

different contaminants in water sources. Yet, limited studies have reported the 

interaction between magnetic modified CNTs and pollutants in the aqueous 

environment (Bhatia et al. 2019, Peng et al. 2021). 

 

Duman and co-associates compared the morphology and surface features of 

magnetic oxidized MWCNTs/ Fe3O4 and non-magnetic oxidized MWCNTs 

(Duman et al. 2019). The study demonstrated that magnetic oxidized 

MWCNTs displayed better adsorption capacity than non-magnetic oxidized 

MWCNTs/Fe3O4. Donghai and associates prepared magnetic ferrite (Fe2O4) 

modified MWCNTs that can be utilized to remove organic toxins from 

wastewater (Wu et al. 2017). While introducing Fe2O4 with MWCNTs was not 

very helpful for bezafibrate adsorption, it could be conveniently isolated 

magnetically and regenerated. Besides, MWCNTs loaded with iron metal-

organic framework (MIL-53 (Fe)) composite had displayed high adsorption 

capacity, particularly for tetracycline antibiotics (Xiong et al. 2018). These 

research works reflected that CNTs-based adsorption materials could 

efficiently remove organic pollutants from different water sources. Tab. 2.8 

reviews selected publications on CNT-based magnetic nanocomposites for the 

treatment of micropollutants: 
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Tab. 2.8: Removal of aquatic micropollutant using different CNTs-based magnetic nanocomposites 

CNT-based nanomaterial Target micropollutant Adsorption 

model 

Max. adsorption 

capacity/ efficiency 

(mg/g) 

Removal 

efficiency (%) 

References 

f-MWCNTs/ FeCl Bisphenol-A 

Ketoprofen 
Langmuir 

2.7 >92 (Fard et al. 2018) 

f-MWCNTs/ 

(NH4)2.FeSO4.6H2O 

Nitrofurazone 

Furaltadone 
7.5-14 92~94 

(Zhen-Yuan et al. 

2015) 

f-CNTs/ Fe2+/ SrTiO3 Progesterone 
- 2.5~7.5 

97.19 (Razmkhah et al. 

2018) 

f-MWCNTs/ FeCl3. 4H2O  Ibuprofen Langmuir 1.2~12  >93 (Oba et al. 2021) 

f-MWCNTs/ FeCl3. 6H2O Nicosulfuron 

- - 

87.3 

(Ma et al. 2016) Metsulfuron methyl 97.7 

Chlorimuron ethyl 96 

f-MWCNTs/ FeCl2 
Carbamazepine 

Redlich-

Peterson 
65 80 (Deng et al. 2019) 

f-MWCNTs/ CoFe2O4 Sulfamethoxazole 
Freundlich 

7.4 >95 
(Wang et al. 2015) 

17β- estradiol 19 70 

f-MWCNTs/ FeCl3 Tonalide Langmuir 2.6-2.9 >94 (Fard et al. 2018) 

f-SWCNTs/ Fe2+ or Fe3+ 17β- estradiol 

Progesterone 
- -  >94 

(Razmkhah et al. 

2018) 

f-MWCNTs/ 

(NH4)2.FeSO4.12H2O 
Diclofenac Langmuir 33 91 (Xiong et al. 2018) 
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CNT-based nanomaterial Target micropollutant Adsorption 

model 

Max. adsorption 

capacity/ efficiency 

(mg/g) 

Removal 

efficiency (%) 

References 

f-MWCNTs/ PAN/ 

TiO2/NH2 

Naproxen 

- - 

99 

(Uheida et al. 2019) 
Cetirizine 96 

COOH-SWCNT/ Fe3O4 Paraquat  2.8 92.89 (Ruan et al. 2014) 
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2.6 Membrane technology for water-treatment 

There was no membrane industry until the early twenties. The preliminary 

study on membrane separation phenomena was meant to explain the process 

physiochemical principles, and the diffusion mechanism (Samsami et al. 2020). 

Thomas Graham was the first to research gas separation using porous and 

dense membranes (Peydayesh et al. 2021). Moreover, he found that rubber 

showed selective permeability to various gases and discovered substances with 

lower molecular weight to be concentrated in the permeated gas when the 

membrane pore size is near to gas molecules’ mean free path. Graham’s 

research was further extended in 1856 by Schmidt, where bovine heart 

membranes were used for soluble Acacia separation (Kamali et al. 2019). 

However, the first membrane-based technique was introduced in 1970 for 

treating Cu (II), Zn (II), and Ni (II) found in electroplating water (Abdullah et 

al. 2019). The technique was successful as it was discovered that all the metals 

were removed. Since then, microporous structure membranes were made. 

Later, with advancement in polymer chemistry, many synthetic membranes 

were produced that were mainly used for polymeric membrane development. 

Such growth allowed researchers to produce a wide range of membranes with 

fundamental properties (Yang et al. 2020). In 1950, membrane technologies 

were first used for effluents treatment and considered suitable for polymer 

membranes’ application for salt separation from water (Davenport et al. 2020). 

 

In the late 1960s, the membrane processes entered industrial applications as 

feasible alternatives to conventional extraction, evaporation, or distillation 

methods (Sumida et al. 2012). Membranes can be categorized according to 

their surface chemistry, morphology, bulk structure, and production technique. 

However, asymmetric, dense, and porous membranes are well-known 

membranes widely used in separation industries (Yampolskii et al. 2020).  

 

Several membrane processes have been discovered, for instance, pressure-

driven membrane processes that include ultra-filtration, nanofiltration, 

microfiltration, and reverse osmosis. Pressure-driven membrane processes are 

vital to global water remediation and purification systems (Van der Bruggen et 
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al. 2003). Generally, the operating cost of membrane systems is linked with the 

high pressure required to remove dissolved pollutants, such as minor organic 

molecules (Le et al. 2016).  

 

To remove organic solutes and dissolved ions, reverse osmosis and 

nanofiltration are mostly recommended; hence, high pressure is needed to 

operate these membranes, i.e., 600~7000 kPa. On the other hand, micro and 

ultra-filtration can be performed at much lower pressure, i.e., 34~400 kPa 

(Warsinger et al. 2018). Such approaches are currently an established part of 

many industrial processes. Membrane processes include nanofiltration and 

reverse osmosis for water purification and desalination, hemodialysis for 

artificial kidneys, and electro-dialysis in a caustic chlorine cell. Ultra-filtration 

is used in the food sector for protein separation from milk whey, genetic 

engineering, pervaporation for de-hydration of ethanol, etc. (Yan et al. 2020, 

Bernardo et al. 2020). 

 

2.6.1 Carbon nanotube-based membranes 

Carbon nanotubes (CNTs) play an essential role in membrane technology, 

especially for water purification, supporting low-energy explanations for water 

treatment. CNT-based membranes offer near-frictionless or frictionless water 

transports to retain a range of water pollutants such as dyes, desalination, heavy 

metal ions, and micropollutants (Al-Tohamy et al. 2022). Their high aspect 

ratio and even hydrophobic walls allow ultra-effective transportation of water 

molecules. CNT-based membranes can improve or change the membrane 

performance of reverse/ forward osmosis, micro-filtration, and nano-filtration 

in water cleaning and remediation (Ahn et al. 2012). It permits the CNT-based 

membranes to replace ultra-filtration and reverse osmosis with low energy 

consumption (Barrejón et al. 2022). One of the essential benefits of CNT-based 

membranes is that they do not require any pre or post-treatment when 

employed for water-related applications (Rashed et al. 2021, Das et al. 2014). 

A brief comparison between CNT-based and conventional membranes is 

presented in Tab. 2.9: 
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Tab. 2.9: Comparison between CNT-based and other form of membranes 

Membrane Materials Thickness 

(µm) 

Operating 

Pressure 

(bar) 

Permeability 

(m/Pa.s) 

Advantages References 

CNT-based  CNTs, ceramics, 

or polymers 

Depend on 

type 

Varied with 

application 

~7x10-7 • Low consumption of energy 

• Operate in challenging environmental 

situations 

• Cost-effective 

• Resistance to fouling 

• High performance and durability  

(Thamaraiselv

an et al. 2018) 

Nanofiltration Organic 

polymers 

~0.1 20 to 40 ~ 40x10-12 • Low resistance to the problematic 

environmental situation 

• Low durability  

• Fouling susceptible 

• Not cost-saving as CNT-based 

membranes. 

• Good performance 

• High consumption of energy 

(Oatley-

Radcliffe et al. 

2017) 

Microfiltration Polysulfone, 

polypropylene, 

polyurethane 

and so forth 

50-100 <1  ~5x10-12 • Energy usage is moderate 

• Low performance and durability 

• Resistance is less to the severe 

environmental situation 

• Fouling susceptible 

(Julian et al. 

2022, Cheng et 

al. 2022) 



CHAPTER II 

64 

 

Membrane Materials Thickness 

(µm) 

Operating 

Pressure 

(bar) 

Permeability 

(m/Pa.s) 

Advantages References 

• Cost is comparatively higher than 

CNT-based membranes 

Reverse osmosis Organic 

polymer, for 

instance, 

polyether 

sulfone 

~0.1 to 0.2 30 to 60 ~3x10-12 • Energy consumption is relatively 

higher 

• Good performance and low durability 

• Operate in serve environmental 

situation is same as micro and nano-

filtration membrane 

• Fouling susceptible 

• Not economical as CNT-based 

membranes 

(Abascal et al. 

2022, Jiang et 

al. 2018) 
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Membrane Materials Thickness 

(µm) 

Operating 

Pressure 

(bar) 

Permeability 

(m/Pa.s) 

Advantages References 

Ultrafiltration Cellulose, 

acrylic, 

Polysulfone, and 

so forth. 

150 to 300 1 to 10 ~0.5x10-10 • Energy consumption is moderate 

• Operate in serve environmental 

situation is low 

• Fouling susceptible 

• Performance is moderate 

• Durability is the same as micro, nano, 

and reverse osmosis filtration 

• Not cost-effective as CNT-based 

membranes 

(Awad et al. 

2021, Ahmad 

et al. 2020) 
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2.6.2 Types of carbon nanotube-based membranes 

Carbon nanotube-based membranes are generally categorized according to the 

development approach; however, the two known classes based on literature are 

mixed matrix and free-standing CNT membranes. The two primary types of 

free-standing CNT-based membranes that are broadly employed for water-

related applications are vertically aligned CNT and CNT-based BP membranes 

(Ali et al. 2019). Vertically aligned CNT membranes (VA-CNT) are distinct 

micro-structures of well-assembled cylindrical pores made from available 

CNTs arrays on a non-permeable substance that form a well-disciplined 

anisotropic structure to be employed in a range of applications (Ali et al. 2019). 

Since 1998 when aligned CNTs were fabricated using the CVD approach, VA-

CNT membranes have been investigated (Das et al. 2014). These membranes 

have captivated an interest because of their steady mesoporous morphology, 

allowing them to be utilized in various filtration membrane applications (Hong 

et al. 2019).  

 

Conversely, BP membranes hold macroscopic morphology consisting of 

CNTs with pristine thermal, physiochemical, and electrical strengths. The 

strength of CNT-based BP membranes is provided by π-π interaction and Van 

der Waals forces among the attached nanotubes (Sweetman et al. 2017, 

Selvaraj et al. 2020). CNT-based BP membranes provide an extremely porous 

3-D framework created by interstitial gaps among the nanotubes, making them 

promising for catalysis and adsorption in addition to separation applications 

(Yang et al. 2013, Bhol et al. 2021). 

 

The mixed matrix CNT membranes possess a morphology analogous to the 

fine-film composite reverse osmosis membranes, where the upper layer is 

hybrid polymer and CNTs (Bounos et al. 2017). All of the mentioned types of 

CNT-based membranes have their own merits and demerits. For instance, 

fabrication techniques of CNT-based BP and mixed matrix CNT are simple 

compared to VA-CNT membrane (Vatanpour et al. 2017, Zhao et al. 2021). 

Tab. 2.10 lists the different research works that has been published based on 

CNT-based membranes for various applications: 
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Tab. 2.10: Few of the recent publications on CNT-based membranes for various applications 

Carbon 

nanotube 

membranes 

Synthesis route Functionalization 

technique 

Application Remarks References 

Vertically 

aligned carbon 

nanotube 

membrane 

Encapsulation+ 

plasma etching 

Carboxyl groups CO2 separation • The prepared membrane approach has the 

potential to be commercialized 

• Displayed gas permeability with purified 

SWCNT greater than pristine SWCNT 

(Surapathi et al. 

2011) 

CVD+ polymer 

infiltration 

- Water 

contamination 

• The research results concluded that water 

flux is 3 times more significant on the 

developed membrane than the ultra-

filtration membrane; moreover, water 

transport is 70000 times higher. 

• The rejection property is the same as ultra-

filtration membranes. 

• Good bio-fouling resistance, i.e., 15% less 

permeate flux drop.  

(Baek et al. 

2014) 

CVD+ vapor 

phase 

infiltration 

Air plasma Protective 

fabrics for both 

domestic and 

military 

settings 

• Allow elimination of >5nm analyze via size 

exclusion. 

• Study results confirmed that the membrane 

offers adequate safeguard from the 

biological threat. 

(Bui et al. 2016) 
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Carbon 

nanotube 

membranes 

Synthesis route Functionalization 

technique 

Application Remarks References 

Carbon 

nanotube-

based 

buckypaper 

membrane 

Shear pressing - Sensors, filters 

or bio-scaffolds 

• Tensile analysis showed good tensile and 

mechanical strengths, >400 MPa. 

• Produced millimeter-long CNT film with 

high CNT alignment. 

(Zhang et al. 

2020) 

Vacuum 

filtration 

Nitric acid-treated Structural 

material for 

developing 

high volume 

fraction 

nanocomposites 

• The study results revealed that the CNT-

based BP membrane's mechanical strength 

increased by improving the power of 

oxidation agents. 

• The porosity of the membrane is affected by 

increasing the density of polar functional 

groups. 

 (Zehua et al. 

2012) 

Vacuum 

filtration 

Carboxyl groups Organic 

pollutant 

removal 

• The prepared film was employed to remove 

organic pollutants from the aqueous phase, 

and it showed the removal of 93% of humic 

acid. 

• The attachment of functional support the 

hydrophilicity aspect of CNT 

(Thamaraiselvan 

et al. 2020) 

 Vacuum 

filtration 

Propane-2-ol Salt removal • The prepared film is exceptionally 

hydrophobic (1130) and porous (90%) 

• The film displayed a 99% salt removal and 

flux rate of approximately 12 kg.m-2.h-1.   

(Drioli et al. 

2015) 
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Carbon 

nanotube 

membranes 

Synthesis route Functionalization 

technique 

Application Remarks References 

Mixed matrix 

CNT 

membrane 

Phase inversion Carboxyl groups Water 

pollutants 

removal 

• Displayed good hydrophilic aspect 

• The pore size of the membrane increased up 

to 1.5% wt. Content of MWCNTs, and 

declined after 4% wt. content of MWCNTs 

• The membrane displayed high flux 

demonstrates low rejection, and vice versa 

(Cong et al. 

2007) 

Phase inversion 

through 

immersion 

precipitation 

Carboxyl groups Organic 

pollutants 

removal 

• The result showed improved anti-fouling 

properties 

• Adequate egg albumin (protein) removal 

from the aqueous phase, i.e., 88% 

• Hydrophilicity properties enhanced due to 

the use of modified MWCNTs. 

(Khalid et al. 

2015) 

Interfacial 

polymerization 

Carboxyl groups Salt removal • The analysis result showed a 51.5% higher 

flux rate in comparison to raw MWCNTs/ 

PP film 

• An incline in the mass transfer coefficient, 

i.e., 1.5 times higher 

• Obtained high salt removal rate, i.e., 99.9% 

(Roy et al. 

2014) 

Blending Carboxyl groups Salt removal • The result showed an increase of 54% in 

permeate flux and salt removal of 99.9% 

(Bhadra et al. 

2016b) 
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Carbon 

nanotube 

membranes 

Synthesis route Functionalization 

technique 

Application Remarks References 

• Mass transfer coefficient is comparatively 

higher pristine MWCNTs/ PTFE film 

• Also displayed good stability without 

wetting and anti-fouling problems 
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2.6.3 Carbon nanotube-based membranes for micropollutant removal 

The primary aim of water treatment is to get rid of undesired components. 

Membranes offer a physical obstacle for such components based on their size, 

allowing them to employ unconventional water sources (Shen et al. 2011). As 

the vital part of water cleaning and purification, they provide superior-level 

automation, reduce the use of chemicals and land, and their modular structure 

gives flexible design (Rodrigues et al. 2019). 

 

 
Fig. 2.7: Adsorption mechanism of CNT-based membrane (Khan et al. 2021) 

 

A significant barrier of membrane technology is the fundamental trade-off 

between membrane permeability and selectivity. The consumption of excess 

energy is an imperative barrier to the wide-spectrum applications of pressure-

driven membrane processes (Jafari et al. 2015). Membrane fouling combines 

the energy utilization and difficulty of the process design and operation. 

Moreover, it reduces the modules and lifespan of membranes (Westerhoff et al. 

2016). The efficiency of the membrane system is mainly determined by the 

material used for the membrane. Reinforcement in functional nanomaterials 

into membranes offers great potential to enhance their fouling resistance, 

permeability, thermal and mechanical strength, moreover, providing modern 
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functions for pollutant degradation and self-cleaning (Fan et al. 2016, Yan et 

al. 2018). 

 

Recently, there is an immediate concern in developing novel materials for 

water cleaning and remediation, desalination, and many other membrane 

technology applications. They have received considerable attention from the 

scientific community regarding pollutant-free safe, clean water, specifically 

CNTs, and CNT-based membranes (Pendergast et al. 2011). Notably, the 

application of CNT-based membranes was acknowledged a long time ago, but 

their use as filtration has been introduced lately. Several research studies have 

been performed on the feasibility and potential of CNT-based membranes for 

wastewater treatment due to their exclusive features, such as a high range of 

water flux and fouling resistance (Lu et al. 2020). CNT-based membranes have 

been employed in membrane distillation, capacitive deionization, and pressure-

driven filtration for water purification. Moreover, CNT-based membranes, 

particularly BP membranes, have been recommended as self-heating and 

supercapacitor materials for de-icing applications (Mpatani et al. 2021). The 

schematic representation of the adsorption mechanism of CNT-based 

membranes is illustrated in Fig.2.7.   

 

Micropollutants, organic pollutants, are generally referred to as endocrine-

disrupting chemicals that have been typically found in water and wastewater. 

Most CNT-based membranes with water and wastewater treatments are 

focused on salt rejection, heavy metal ions, and dye removal (Santhosh et al. 

2016). Tab. 2.11 lists information on the removal of selected micropollutants 

by CNT-based membranes technology based on literature studies.  
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Tab. 2.11: CNT-based membranes employed for micropollutants removal 

CNT-based membrane 
Target 

micropollutant 

Removal 

efficiencies 
Remarks References 

Polyvinylidene fluoride/ 

f-MWCNTs/ laccase 

Diclofenac 95 • The highest removal efficiency was received within 4 

hrs. 

• The results displayed adequate operational and thermal 

strength due to the immobilized laccase. 

• The findings suggested that the fabricated PVDF/ f-

MWCNT/ laccase membrane is appropriate for water and 

wastewater treatment applications. 

• Self-cleaning and re-coating presenting new 

opportunities towards sustainability and long-term 

applications 

(Masjoudi et 

al. 2021, Ji et 

al. 2016) 

Bisphenol-A 85 

Ibuprofen 63 

Clofibric acid 52 

f-SWCNTs/ Fenton  

Amoxicillin 97 • Studies displayed a high removal rate and water 

permeability (19.6 L/m2.h.bar). 

• It can be predicted to be used for various aquatic 

micropollutant. 

• Reliability was further observed by comparing 

experimental and predicted results analyzed by ORIGIN 

software. 

(Jiang et al. 

2021) 

Ampicillin 94 

Florfenicol 91 

Carbamazepine 85 

Polyethersulfone/ f-

SWCNTs 

17β-estradiol 72 • Demonstrated high permeability and removal efficiency 

within the range of 50- 75% from 100 ng/L feed 

solution. 

• Adsorption kinetics were rapid, and adsorption was 

independent of retention time, ranging from 0.08-7.1. 

• Displayed poor adsorption, ranging from pH 11 to 12. 

• The prepared membrane could not meet the European 

guidelines, i.e., 99% removal. 

(Mpatani et al. 

2021) 
Progesterone 75 

f-MWCNTs Caffeine 93 • Filtration of pharmaceuticals and PPCs by the prepared 

membrane is an essential pre-treatment approach.   
Carbendazim 97 
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CNT-based membrane 
Target 

micropollutant 

Removal 

efficiencies 
Remarks References 

Sodium dodecyl 

sulfate/f-MWCNTs/ 

polypropylene 

Cortisone 97 • The fabricated membrane was reliable and effective in 

removing various glucocorticoids 

• Linearity range from 0.2 to 100, and the limit of 

quantification (LOQ) from 0.065 to 0.326 ng/mL. 

• Results showed high time efficiency, good 

reproducibility, low consumption of solvent, and high 

precision with RSDs of <10%. 

(Fallah et al. 

2021) 

Hydrocortisone  71 

Prednisolone 78 

Hydrocortisone 

butyrate 
64 

Budesonide 88 

Nickle-Cobalt/ f-

MWCNTs 
Ibuprofen 80 

• Removal efficiency decreased with increasing pH to 11. 

• Displayed high performance and stability. 

(Goh et al. 

2021) 

Polyethersulfone/ f-

SWCNTs 

Bisphenol A 

4-Nonylphenol 

80 

84 

• Removal efficiency increased with an increase in the 

%wt. content of f-SWCNT, however, too high %wt. 

content of f-SWCNT leads to saturation and probably 

declines the removal rate. 

• Fouling of membrane also showed favorable outcomes 

with the increase in the %wt. content of f-SWCNT 

• Due to the hydrophobic nature of the organic 

micropollutant, it can be understood that high adsorption 

leads to an increase of removal for increasing the %wt. 

content of f-SWCNT 

(Kang et al. 

2019) 
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CNT-based membrane 
Target 

micropollutant 

Removal 

efficiencies 
Remarks References 

Polyethersulfone/ 

nitrogen-doped 

SWCNTs 

Carbamazepine 

4-Nonylephenol 

Bisphenol A 

Galaxolide 

Tonalide 

Caffeine 

89 

99 

99 

99 

99 

87 

• Results show the potential to employ the prepared 

membrane for various organic micropollutant 

• Water flux improved with the addition of nitrogen-doped 

SWCNTs to raw PES 

• The prepared membrane displayed good porosity and a 

large specific area, i.e., 0.37+0.03 cm3/g1 and 94.3+0.06 

m2/g, respectively. 

• Findings displayed good chemical, mechanical, and 

fouling resistance properties 

(Kaminska et 

al. 2015) 

Polyethersulfone/f-

SWCNTs 17β estradiol >75 

• In most studies, the complete breakthrough was not 

attained due to the high adsorption capacity of SWCNTs 

• Results demonstrated the ambitious drink water target; 

however, European regulations were not met. 

(İlyasoglu et 

al. 2022) 

Polyvinyl chloride/ f-

MWCNTs/ Fe3O4 

Norfloxacin 

Bisphenol A 

23 

65 

• Retentions for both pollutants decrease with the increase 

in pressure 

• Findings showed minor effects of ionic strength and 

initial concentration on retentions 

(Wu et al. 

2016) 

f-MWCNTs 

Ciprofloxacin >99 

• Results concluded that the prepared membrane is a 

promising candidate for antibiotics removal from the 

aqueous phase. 

• Finding also revealed that f-MWCNTs showed higher 

filtration efficiency compared to pristine or modified 

SWCNTs 

(Dong et al. 

2018) 

Polyethersulfone/ f-

SWCNTs Β-endosulfan >99 

• Results confirmed that the prepared membrane has the 

potential to be employed for micro-contaminants 

• Pristine SWCNTs show lower adsorption efficiency than 

modified SWCNTs 

(Adamczak et 

al. 2021) 
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CNT-based membrane 
Target 

micropollutant 

Removal 

efficiencies 
Remarks References 

MWCNTs 

Ibuprofen 

Bisphenol 
>90 

• Satisfactory sorption performance 

• Findings revealed that cross-flow configuration display 

great potential in removing the organic micropollutant 

• Excellent antifouling resistance, efficient solute transport 

under hydrodynamic flow, and higher retention time in 

eliminating organic pollutants compared to previously 

researched work 

(Bakr et al. 

2019) 

SWCNTs 
17β estradiol 70 

• Findings discovered that the prepared membrane is a 

promising material. 

• High adsorption determined 

(Lu et al. 

2022) 

TiO2/MWCNTs Carbamazepine 

Acetaminophen 

80 

24 

• Higher reusability of the membrane 

• Findings displayed that the effect of pH on adsorption of 

pharmaceutical micropollutant achieved the maximum 

loading on the sorbent at equilibrium saturation  

(Zaib et al. 

2013) 
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2.7 Carbon nanotube-based buckypaper membrane 

The filtration process is restricted due to issues associated with the currently 

available membrane, including low solute selectivity, limited lifetime, and 

fouling (Wang, Zhang, et al. 2020). Currently, extensive attention has been 

given to developing innovative materials for gas separation, water purification, 

desalination, and several other membrane filtration applications. Concerning 

water purification from various pollutants, CNTs have gained substantial 

attention as a membrane. Therefore, molecular dynamic simulations have 

demonstrated that CNT-based BP membranes are remarkably permeable to 

gases and liquids. Even though the scientific community has acknowledged BP 

membrane for an extended period, its filtration-associated uses were only 

explored lately (Werber et al. 2016). Consequently, BP membranes can be an 

appropriate candidate for water purification at the commercial level (Goh et al. 

2019). Furthermore, several research studies have observed their potential to 

filter solute and nanoparticles selectivity depending on different sizes. For 

instance, Wang and co-associates had demonstrated that graphene oxide 

membranes exhibited preferential permeation of smaller ions while effectively 

blocking larger molecules (Wang et al. 2019).  

 

2.7.1 Fabrication routes 

The enhancement of preparation methods that improve the yield and properties 

of CNT-based BP membranes has gained attention in the scientific society. 

Based on the preparation conditions, the development method of CNT-based 

BP membranes can be categorized as dry and wet approaches. Compared to the 

dry process, the wet approach is convenient and straightforward (Luo et al. 

2017). Moreover, the CNT-based BP membrane developed using a wet method 

displays good properties due to the fact the product quality can be controlled. 

Currently, the wet approach is typically limited to laboratory scale. The dry 

process is utilized for commercial fabrication and can produce mass production 

at an economical cost (Wang et al. 2021, Zhu et al. 2022). Nevertheless, the 
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dry approach requires complicated reaction conditions and the properties of the 

developed membrane, which cannot be maintained or controlled. 

 

Dry Approach: The primary principle of the dry approach is to consider micro-

molecular hydro-carbons as raw materials and constant reaction with catalysis 

and high pressure to produce CNTs (Xia et al. 2020, Lee et al. 2016). The 

pristine CNTs are constantly gathered on the deposited panel to develop 

compact BP directly (El-Aswar et al. 2022). Different hydro-carbon materials 

can be used in the fabrication method as carbon precursors such as tri-chloro-

benzene with nickel, iron, or any other transition metal used as a catalyst 

(Ramezani et al. 2022). The membrane produced using this approach is 

quantify. The process has several limitations, such as its complex approach and 

composition, which involves intricate steps and precise controls over various 

parameters. Besides, this process may generate high amounts of residual 

catalyst that need to be carefully managed and disposed of. However, 

economic and mass production are the essential advantages of using this 

approach for commercial purposes. It has been noted in the literature that 20 

g/m2 of CNT-based BP membrane using tri-chloro-benzene costs about 3 to 50 

$/m2 (Hou et al. 2022, Liu et al. 2022). To enhance the homogeneity of the 

CNT-based BP membrane, CNT arrays were compressed or filtered to develop 

an aligned CNT-based BP membrane. However, the BP produced was small in 

size because of the CNT array size. Furthermore, CNT-based BP membrane 

developed using CNT arrays is not cost-effective; it costs around 5000 to 

12000 $/m2 depending on the CNT array cost (Sakurai et al. 2013, Gross et al. 

2018). 

 

Wet Approach: This approach is the most recommended for developing CNT-

based BP membranes. The underlying principle of this approach aligns with 

paper technology, involving two distinct stages: synthesis and filtration of CNT 

suspension (Amjadi et al. 2016). The specific content of CNTs and surfactants 

are combined using mechanical stirring and sonication to attain uniform 

suspension. Later, the suspension is washed and filtered until the mat form 

materializes without any residual traces of the mixed solvent (Zhang et al. 

2019, Sharma et al. 2020). The most known surfactants are Triton X-100 and 
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poly-vinyl-pyrrolidone. The membrane developed using this approach needs to 

be even smaller than 1 µm (Jun et al. 2019, Gao et al. 2022). 

 

In this approach, suspension and filter mat are the primary factors directly 

affecting the CNT-based BP membrane quality in the preparation method. To 

enhance the preparation method and characteristics of CNT-based BP 

membranes, the scientific community has directed its attention towards 

enhancing the wet process. For instance, efforts have been made to reinforce 

the van der Waals interaction between hydrogen bonds and CNTs (Azam et al. 

2018). One of the disadvantages of this approach is that the BP membrane 

developed is small (µm) and expensive, limiting its application for commercial 

purposes (Schneider et al. 2015). Accordingly, a CNT-based BP membrane of 

20 g/m2 costs around $3 to $500 and $1000 to $6000 for MWCNTs and 

SWCNT, respectively (Schneider et al. 2021). Tab. 2.12 lists the various 

methods falls under the category of dry and wet approach that have been 

employed for the fabrication of CNT-based BP membranes along with their 

advantages and disadvantages: 
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Tab. 2.12: Advantages and disadvantages of preparation approaches for CNT-based BP membranes  

Preparation 

Approaches 

Advantages Disadvantages References 

Domino Pushing Adequate and convenient approach, high 

electrical and thermal properties 

Time-consuming, high pressure required (Oh et al. 2015) 

Shear Pressing Time-saving, satisfactory volume fraction, 

stiffness, strength, and degree of alignment 

Unpredicted thickness, high pressure required (Li et al. 2015) 

CNT Drawing Lengthy sheet, display density, and thickness 

of 0.5 g/cm3 and 50 nm, respectively  

Inappropriate for CNT forest, can form 

bundles 

(Chitranshi et al. 

2020) 

Drop Casting Fast and straightforward approach, cost-

effective, large-scale production   

Low solubility and CNTs’ properties, 

difficulty to control the thickness, and no 

uniform coating  

(Nardecchia et al. 

2013) 

Electrophoretic Display satisfactory macroscopic homogeneity, 

economical and straightforward approach    

Low yield, a specific range of particles are 

required for good deposition, display more 

cracks<0.06 nm   

(Besra et al. 2007) 

Rod-coating Economical, thickness adjustable, simple 

approach   

Coating viscosity is an issue; optimal speed 

needs to attain membrane   

(Wang and Guo 

2020) 

Tape-casting Range of membrane geometry, foldable and 

mass-scale production, adequate thickness, and 

density   

Required mechanical pressing, limited 

application due to the width    

(Susantyoko et al. 

2017) 

Ink-jet Printing Fast production, dimensions can be adjusted   Employ for specific CNTs’ diameter, restricted 

to commercial applications, low mechanical 

strength    

(Chatzikomis et al. 

2012) 
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Preparation 

Approaches 

Advantages Disadvantages References 

Vacuum Filtration Wettability can be controlled, the potential to 

produce the thinnest membrane    

Lengthy fabrication procedure, limited to lab-

scale, low thickness, high pressure required   

(Zhou et al. 2018) 

Air Spraying Can produce long and thickness membrane, 

potential to be used for large range devices    

Surfactant and high temperature is must, 

surfactant challenging to extract    

(Abdelhalim et al. 

2013) 

Vapor Deposition Fabricate at room temperature, adequate gap-

filling, leakage free  

Not suitable for mass-scale production, high 

cost 

(Zhang et al. 2015) 

Non-filling Filter nano-scale poliovirus and bacteria, high 

porosity, simple approach   

Low mechanical stability, suitable for specific 

applications only 

(Saraswathi et al. 

2019) 

Polymer Injection Simple approach, mechanical durability, 

produces a thin membrane  

Interstitial filler required may cause air 

bubbles between CNTs  

(Park et al. 2017) 

Densification High pore density, classified as capillary and 

mechanical compression densification 

Not suitable with smaller CNT diameters, 

difficult to separate the substrate, difficult to 

manipulate  

(Lee et al. 2017) 
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Fig. 2.8: Simplified illustration of few known fabrication approaches of CNT-based BP (Rathanasamy et al. 2021)  
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2.7.2  Carbon nanotube-based buckypaper for micropollutant removal 

Recently, there has been an immediate concern in developing novel materials 

for water cleaning and remediation, desalination, and many other membrane 

technology applications. These materials have received considerable attention 

from the scientific community regarding pollutant-free safe, clean water, 

CNTs, and CNT-based membranes (Saraswathi et al. 2019). Notably, the 

application of CNT-based membranes was acknowledged long ago, but their 

use as filtration has only been introduced lately. Several researches have been 

performed on the feasibility and potential of CNT-based BP membranes for 

wastewater treatment due to their exclusive features, such as a high range of 

water flux and fouling resistance (Adeleye et al. 2016). CNT-based BP 

membranes have been employed in membrane distillation, capacitive 

deionization, and pressure-driven filtration for water purification (Gasim et al. 

2022, Shukla, Giri, et al. 2021). 

 

Based on a literature review, it has been observed that energy consumption 

via CNT-based BP membrane, particularly for desalination, can be exceedingly 

lower than that of a reverse osmosis system because the molecules of water 

passing through nanotubes are around double to five times greater than the 

hypothetical prediction via the equation introduced by Haggen Poiseuille (Park 

et al. 2017). A study performed by Dumee and co-associates analyzed the 

performance of CNT-based BP membrane in direct contact membrane 

distillation. The result revealed that the CNT-based BP membrane is highly 

porous, thermally conductive and hydrophobic (Dumée et al. 2011, Bhadra et 

al. 2016a). The prepared membrane was used for salt rejection from synthetic 

water, and it showed 99% rejection, making it a suitable candidate for 

desalination. 

 

Regarding micropollutant removal, limited studies have been found in 

literature, as most research works have been performed for salt, heavy metals, 

and dye removal using CNT- based BP membranes. Fontananova and co-

associates employed a CNT-PVDF membrane to remove ibuprofen and 

acetaminophen, and the result showed a removal of 95% for both 
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pharmaceutical micropollutants (Fontananova et al. 2015). The removal 

mechanism of CNT-based membranes for micropollutants generally occurs 

because of hydrogen bonding, Van der Waals interactions, π-π interactions, and 

chemical adsorption between the micropollutants and CNT-based materials. 

 

Likewise, for the elimination of inorganic pollutants, the competition among 

various organic chemicals in water may appear on the CNT surface, which 

effectively declines the adsorption of organic pollutants. Thus, tailoring the 

surface features of CNT for selective adsorption of various organic pollutants 

is an essential study task for improved water treatment (Shanmuganathan et al. 

2017, Parida et al. 2021). 

  

2.8 Mathematical modelling  

2.8.1 Adaptive neuro-fuzzy inference system (ANFIS) 

Interpretation of the dynamics of non-linear systems based on conventional 

mathematical tools is problematic due to the unavailability of systematic tools 

to deal with uncertain and ill-defined systems. Using a fuzzy if-then strategy, a 

fuzzy interference system can model the qualitative aspects of human 

knowledge and reasoning procedures but lacks a standard design approach to 

utilize detailed quantitative analyses. Neural networks (NN) detect data 

patterns, understand relationships, and adapt to them. This knowledge can then 

be used to forecast the aftermath for new combinations of data (Baghbani et al. 

2022, Mohan et al. 2021). The control approach in fuzzy identification was 

initially introduced by Takagi-Sugeno-Kang and has been extensively 

employed in several fuzzy-control applications for decision making, medical 

diagnosis, and problem-solving based on data mining (Badnjevic et al. 2018, 

Precup et al. 2020). Hence, a few elementary features of this approach are 

required for comprehensive understanding. More precisely, the lack of a 

standard design approach and the optimization process to convert human 

knowledge into a fuzzy interference system's rule base and database (Karaboga 

et al. 2019, Haznedar et al. 2018). It is difficult to understand the tuning of the 
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membership function, lessen output error-index, and select a suitable network 

structure. 

 

Owing to the salient features of NN and its embedding with the rule-based 

fuzzy logic, the adaptive neuro-fuzzy interference system (ANFIS) has been 

developed and significantly considered to represent a non-linear system. This 

system, which is the combination of NN with fuzzy systems, has the benefit of 

offering a straightforward interpretation of the final system into if-then set 

rules, and the fuzzy system can be observed as a neural network structure with 

the information distributed throughout the connection strengths (Dastjerd et al. 

2019, Khashei et al. 2012). The research on ANFIS by scientific community 

has stated that the neural and fuzzy systems are supportive in the sectors such 

as the applicability of the current algorithm for ANNs, and the adaption of 

information articulated as a set of fuzzy linguistic rules (Arab et al. 2021). The 

system can be learned in a forward and backward phase. In the forward phase, 

learn the algorithm, subsequently identify the minimum squares estimate, 

whereas, in the back step, the error signals, which are the derivate of squared 

error with respect to every node output, propagate backward from the output to 

the input layer (Jiang et al. 2022, Ahmadi et al. 2018). The premise parameters 

are updated via the gradient descent algorithm in the backward pass. The 

primary advantage of this system is that it converges too fast, as it reduces the 

search space dimensions of the back-propagation technique employed in neural 

networks  (Arrieta et al. 2020). In general, ANFIS is the fuzzy Sugeno model 

in the adaptive system framework, which helps model building and justifies the 

developed model to facilitate training and adaptation. One of the primary 

benefits of ANFIS is that it has the smoothness features from the fuzzy 

principle and adaptability from neural networks training structure. It has been 

extensively employed in the engineering sector (Choi et al. 2015, 

Kampouropoulos et al. 2014).  
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2.8.1.1 Designing the ANFIS model 

An adaptive framework is a multi-layer feed-forward network consisting of 

nodes joined via a direct link. Every node plays a specific function on the node 

input, besides a set of parameters that refer to this node. Every link in the 

adaptive network indicates the direction of signal flow from one another node; 

no weights are connected with the connection (Marani et al. 2020, Sarıkaya et 

al. 2021). The primary objective of ANFIS is to determine the optimum values 

of the equivalent fuzzy interference system parameter by using a learning 

algorithm. The optimization of parameters must be done to minimize the error 

between the target and the actual output. ANFIS employs a hybrid algorithm 

for optimization, combining gradient descent and the most minor square 

estimate techniques (Selimefendigil et al. 2018). The parameters that are 

optimized in ANFIS are the premise parameters. These parameters reflect the 

member functions’ shape. Several optimization strategies can be used later to 

reduce the error, constituting the member functions (Sehgal et al. 2014). The 

parameter set of an adaptive framework offers fuzzy systems to learn from the 

data they are modeling. 

 

While designing the ANFIS model, the number of member functions, fuzzy 

rules, and training epochs must be tuned accurately (Tung et al. 2020). 

Mapping those parameters is crucial for the system as it may follow the system 

to over-fit or enable it to fit the data. This adjustment can be made via a hybrid 

algorithm (Nishant et al. 2020, Collins et al. 2021). A lower difference between 

the ANFIS output and desired objective, describes a more accurate ANFIS 

system. Fig. 2.9 illustrates the basic design of the ANFIS system 
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Fig. 2.9: ANFIS structure (Pae et al. 2018) 

 

A brief description of each layer along with its mathematical expression is 

described in Tab. 2.13: 
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Tab. 2.13: Layers of the ANFIS (Merabet et al. 2017, Djamila et al. 2018) 

Layer Description Equation 

1 • It is known as the fuzzy layer 

• Each node in this layer is a square node with a node function 

• In this layer, parameters are labeled as premise parameters 

𝑂𝑖
1 = µ𝐴𝑖(𝑥)𝑖 

𝑂𝑖
1= member function of Ai 

Ai= linguistic label linked with node function 

µ𝐴𝑖= member function 

𝑥 =input to node i 

2 • The primary purpose of this layer is to identify the weight of 

member functions and label as M 

• It gets the input value from the first layer and acts as a member 

function. 

• Each node is a fixed node, and output is determined through the 

product of all incoming signals 

𝑂𝑖
2 = 𝑤𝑖 =  µ𝐴𝑖(𝑥). µ𝐵𝑖(𝑦)  

i= 1,2,…. 

3 • Each node is marked as N, expressing normalization to the firing 

strength from the prior layer 

• This layer performs pre-condition matching of fuzzy rules 

• The ith determines the ith rule’s firing strength to the addition of all 

the firing strength rules. 

• The output of the third layer is known as normalized firing 

strength 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖

𝑤1 + 𝑤2
 

i= 1,2,…... 

4 • Each node in this layer is a square node with a node function 

• The parameter in the fourth layer is called consequent parameters 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅ 𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) 

pi,qi, ri = consequent parameters 

i= 1,2,…. 
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Layer Description Equation 

5 • This layer comprises of single fixed node and is marked as Ʃ 

• This layer offers the summation of all the input generated from the 

fourth layer and transforms fuzzy classification results into crisp 

values 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = Ʃ𝑤𝑖̅̅ ̅ 𝑓𝑖 = Ʃ

𝑤𝑖𝑓𝑖

𝑤𝑖
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Hence, it is noticed that when the premise parameters’ values are fixed, the 

overall output of the adaptive network is known as a linear combination of 

consequent parameters (Ho et al. 2002, Svalina et al. 2013). Besides, it can also 

be observed that the ANFIS architecture comprises two adaptive layers, 

namely the first and fourth layers.  

 

2.8.1.2 Applications of the ANFIS model 

It is crystal clear that conducting an experimental study on various aspects is 

expensive and time-consuming. Therefore, it would be essential to have a tool 

to predict, such as artificial intelligence. In this regard, Kumar and co-

associates used the ANFIS system to predict the surface roughness in turning 

operations (Kumar et al. 2015). Different parameters were used as input to 

encode the problem, such as feed rate and cutting speed. The experimental data 

and ANFIS values showed that the ANFIS system displays satisfactory 

prediction accuracy. 

 

 Tamer and co-associates initially introduced the use of ANFIS in medical 

diagnosis. They used the Takagi Sugeno Kang (TSK) model to predict the 

presence of mycobacterium tuberculosis. The ANFIS model was developed 

based on 250 records (Uçar et al. 2013). The proposed model indicated the 

instance with the exactness of 97%; however, the rough algorithm showed 92% 

accuracy. This learning has played an essential role in predicting the patients 

even before the medical examination. Marzi and co-associates utilized this 

model as a temperature water controller system (Marzi et al. 2017). The study 

concluded that ANFIS is a more suitable controller than the PID controller. 

Bahrami and co-associates used the ANFIS to predict the thermo-physical 

properties of nano-fluids (Bahrami et al. 2019). Alrashed and co-associates 

used the thermo-physical properties experimental data of Cu-water nanofluids 

and used the ANFIS approach to prognosticate (Alrashed et al. 2018). The 

research revealed that the ANFIS has a good capacity for predicting the 

thermos-physical features of nano-fluids. 
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The ANFIS model has also been employed in water and wastewater treatment 

research studies to predict the quality of effluent and adsorption efficiency of 

the material. Muhammad and co-associates proposed this model for the 

removal of nitrogen and carbon removal in the sewage treatment plant  (Gaya 

et al. 2014). The simulation results showed better prognosticate in all the 

considered variables, i.e., COD and ammonium nitrogen. Thus, the study 

concluded that the proposed ANFIS model was suitable for the wastewater 

treatment plant. In another study, the ANFIS model was proposed to forecast 

anaerobic digestion discharge quality. The model was compared with mean 

absolute percent error (MAPE) and root mean square error (RMSE); hence, 

results obtained from the ANFIS model displayed higher model feasibility on 

the anaerobic system (Erdirencelebi et al. 2011). The ANFIS model has been 

proposed to predict the membranes’ adsorption capacity towards dye removal, 

methylene blue (Lau et al. 2020, Rashed et al. 2021). Experimental studies 

showed that methylene blue removal efficiency mainly depended on process 

parameters such as pH, rotation speed, and reaction time. Therefore, the same 

process parameters were used in the ANFIS model as input to predict. The 

simulation results displayed higher dye removal efficiency, i.e., 99.7%. The 

RSM model was also used; however, the ANFIS model showed higher removal 

prediction efficiency. This study thus demonstrated that the prepared 

membrane could be employed for practical application, particularly for 

industrial dye effluent. 

 

Based on the above published scientific literature, it is well understood that 

the ANFIS has the potential to be employed for modeling, predicting and 

controlling studies in chemical engineering processes, likewise other machine 

learning methods (Emembolu et al. 2022, Hanumanthu et al. 2021). In this 

proposed work, ANFIS is used as a primary source for the prediction of FZD 

micropollutant elimination using the prepared membrane for large-scale 

applications (Karaboga et al. 2019, Zhou et al. 2022). Once the model is 

successfully built on ANFIS, the model can be utilized for predicting the 

removal efficiency of FZD micropollutant using an appropriate prediction 

approach. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

This chapter includes the list of materials and chemicals utilized in this 

experimental study. The experimental methodology for the fabrication and 

characterization of functionalized MWCNTs, magnetic functionalized 

MWCNTs nanocomposite, and magnetic functionalized MWCNTs-based 

BP/PVA membrane was described. Besides, the experimental approach for 

examining the performance of magnetic functionalized MWCNTs-based 

BP/PVA membrane for FZD micropollutant removal was also prepared in this 

chapter. Furthermore, the characterization and analytical methods were also 

discussed in this research study. 

 

3.2 Materials 

MWCNTs (99.99%) were obtained from the previous study (Siddiqui et al. 

2019). The specification of MWCNTs is listed in Tab. 3.1. For 

functionalization of MWCNTs, sulphuric acid (H2SO4); MW= 98 g/mol; 98 wt. 

%) and nitric acid (HNO3; MW= 63 g/mol; 68 wt. %) were purchased from 

Merck (Germany). 

Tab. 3.1: Specification of MWCNTs 

MWCNTs specification 

Purity >95 wt.% 

Outer Diameter 10-20 nm 

Length 10-30 µm 

Specific surface area >121 m2/g 
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Iron chloride hexahydrate (FeCl3.6H2O; MW= 270 g/mol; purity 97%), 

ethylene glycol (C2H8O2; MW= 62 g/mol; purity >99%), sodium acetate 

(C2H3NaO2; MW= 82 g/mol; purity 99%), polyvinyl alcohol (PVA; MW= 

31000-50000 g/mol) and absolute ethanol (C2H5OH; MW= 46 g/mol; purity 

99.9%) in the reagent grade were supplied by Sigma-Aldrich, were used in the 

synthesis of magnetic MWCNTs. Polytetrafluoroethylene (PTFE) membrane 

(47 mm, 0.45 µm), procured by Merck Millipore (Germany), was used as a 

filter in the preparation of magnetic BP membrane.  

 

Furazolidone (C8H7N3O5; MW= 230 g/mol; purity 98%) was supplied by 

Merck (Germany); the chemical structure is illustrated in Fig. 3.1. Besides, the 

molecular structure and physicochemical properties of FZD micropollutant is 

displayed in Tab. 3.2. Distilled and ultra-pure water were employed throughout 

the research study. 

 

 

 
Fig. 3.1: Chemical structure of furazolidone (FZD) (Amalraj et al. 2021)  
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Tab. 3.2: Physicochemical properties of FZD micropollutant  

Property Furazolidone 

Molecular formula C8H7N3O5 

Synonyms Nitrofuroxon, furazolidine, nitrofurazolidone 

Molar mass (g/mol) 230 

Color Yellow odorless solid 

Solubility in water 40 mg/L at 25 oC 

 

3.3 Methodology 

The flowchart of the research methodology of the present study is illustrated in 

Fig. 3.2. The fabrication of magnetic f-MWCNTs-based BP/PVA membrane 

involves several stages. In the first stage, raw MWCNTs were treated with 

strong acids to modify their hydrophobic surface into hydrophilic. In the 

second stage, magnetic f-MWNCTs nanocomposite was prepared using reflux 

approach with a Liebeg condenser and hot-plate support. In the last stage, the 

prepared magnetic f-MWCNTs nanocomposite was used to prepare a film, 

known as buckypaper (BP), using a vacuum filtration technique, followed by 

poly vinyl alcohol (PVA) infiltration. Several characterization analyses were 

conducted on each synthesis stage material to determine various aspects, such 

as dispersion capability, element and chemical compositions, functional groups 

existence, and magnetic strength. Moreover, an optimization study of FZD 

micropollutant removal efficiency under batch-mode using magnetic f-

MWCNTs-based BP/PVA membrane was also conducted. Besides, a 

reusability study was also performed using a desorption solvent i.e., ethanol. 

Lastly, critical comparison of the predictive abilities of the two models 

employed was also described. 
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Fig. 3.2: Summary of experiment flowchart  



CHAPTER III 

96 

 

3.4 Synthesis of Magnetic f-MWCNTs-based BP/ PVA Membrane 

3.4.1  Acid treatment of MWCNTs 

Rigid acid treatment is needed to change the hydrophobic characteristic of 

MWCNTs to hydrophilic. The acid treatment on the MWCNTs helps to 

improve the solubility and reactivity, as well as offers an avenue for further 

chemical modification of MWCNTs such as metal deposition, ion adsorption, 

and many others (Liew et al. 2016). In the present study, acid treatment on 0.3 

g of MWCNTs was performed using sulphuric acid (H2SO4) and nitric acid 

(HNO3) with a ratio of 1:3 (v/v). Once the raw MWCNTs and acids were finely 

mixed, the mixture was sonicated using an ultra-sonication bath (Tech- Lab 

Scientific, S-60) for 2.5 hrs. at room temperature. Later, the mixture was 

washed with ultra-pure water until the solution was neutralized (pH 7). 

Subsequently, a vacuum filter filtered the solution through a PTFE membrane 

(Tech- Lab Scientific, DTC-41). The filtered sample was frozen for 48 hrs. 

before keeping it in a freeze dryer (Fisher-Labconco. 1.5L) for 24 hrs., 40 oC, 

and 0.1 bar to attain a powder form material, i.e., hydrophilic MWCNTs. The 

current methodology used is based on previous studies (Jun et al. 2020)  with 

minor improvisation. 

 

3.4.2 Preparation of magnetic f-MWCNTs nanocomposites 

The incorporation of iron oxide with f-MWNCTs can be conducted by several 

routes such as solvo-thermal, blending, sol-gel, flow injection, gas-phase 

deposition, and many others (Sadegh et al. 2014, Kobyliukh et al. 2020, 

Moazzen et al. 2019, Neto et al. 2019). Most of these methods require highly 

complex equipment, are time-consuming or involve extreme operating 

conditions. In the present study, reinforced f-MWCNTs with iron oxide using 

reflux approach and an aqueous bath. In the preparation process, 0.5 g of f-

MWCNTs was added to a 100 mL round bottom flask along with FeCl3.6H2O 

(3 g), C2H3Na2 (3.5 g), and C2H5OH (100 mL). With the help of the orbital 

shaker (Tech- Lab Scientific, KS-501), the prepared mixture was shaken at 180 

rpm for 30 min. The homogenous mixture was left to settle, subsequently 

refluxed using a Liebeg condenser distillation tube. As the reaction completed, 



CHAPTER III 

97 

 

the colour of the solution commuted from dark yellow to greyish. Later, the 

reflux solution was washed with ultra-pure water (100 mL) and ethanol (50 

mL) and left to dry in the oven (Binder, ED-24) overnight at 80 oC. Five 

samples were prepared using the aforementioned methods and labeled as 

samples A, B, C, D and E. The operating conditions were varied for each 

sample and are described in detail in Tab. 3.3. 

 

Tab. 3.3: Operation conditions for the preparation of magnetic f-MWCNTS 

Sample  f-MWCNTs (gm) Amount of 

chemicals used 

Time 

(hrs.) 

Temperature 

(oC) 

A 0.5 

FeCl3.6H2O=3 gm 

C2H3Na2 =3.5 gm 

C2H5OH=100 mL 

16 300 

B 0.5 16 330 

C 0.5 16 350 

D 0.5 18.5 300 

E 0.5 18.5 350 

 

3.4.3 Preparation of Magnetic f-MWCNTs-based BP/PVA  

Due to the simple and ease approach, vacuum filtration was employed to 

prepare the magnetic f-MWCNT-based BP. 100 mg of magnetic f-MWCNTs 

was mixed with 50 mL of C2H5OH in a polypropylene beaker, and sonicated 

using an ultra-sonication bath (Sonorex, S-60H) for 30 min. at 40oC. Next, the 

sonicated solution was transferred to probe sonication for 10 min. with 10 

second interval, to attain finely disperse magnetic f-MWCNTs solution (Sono 

Mechanics, LSP-500). The finely dispersed magnetic f-MWCNTs solution was 

filtered to obtain a thin film, so-called BP, using vacuum filter with the help of 

PTFE membrane. The prepared magnetic f-MWCNTs-based BP was dried and 

infiltrated with PVA (2 wt.%) overnight at room temperature. The formed 

magnetic f-MWCNTs-based BP membrane was carefully peeled off from the 

underlying PTFE membrane and dried. The schematic synthesis of magnetic f-

MWCNTs-based BP/ PVA is depicted in Fig. 3.3: 



CHAPTER III 

98 

 

 
Fig. 3.3: Schematic representation of magnetic f-MWCNTs-based BP/PVA membrane 
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3.5 Batch treatment of FZD micropollutant using magnetic f-

MWCNTs-based BP/PVA membrane 

This part examined the treatment of FZD micropollutant solution from the 

aqueous phase using magnetic f-MWCNTs-based BP/PVA membrane. A 100 

mL of FZD micropollutant solution with magnetic f-MWCNTs-based BP/PVA 

membrane of varying pH (4-8) was prepared at a 10 mg/L of FZD 

micropollutant concentration at room temperature. The Erlenmeyer flask was 

shaken by an orbital shaker at a given agitation speed (100-200 rpm), and 

aliquots were collected from the reaction mixtures at exact time intervals, i.e., 

20-350 min. The concentration of the FZD micropollutant solution was 

analyzed via an ultraviolet spectrophotometer (Perkin Elmer Lambda 25 

UV/Vis) at 365 nm (Cai et al. 2021). 

 

The FZD micropollutant removal efficiency (𝑅%) and adsorption capacity 

(𝑞𝑒) were calculated using Equation 3.1  

 

                        𝑅% = (
𝐶𝑖−𝐶𝑜

𝐶𝑖
) × 100                                                      Equation 3.1                                                             

Where, 

𝐶𝑖 = Initial concentration of FZD MP solution (mg/L) 

𝐶𝑜 = Final concentration of FZD MP solution (mg/L) 

 

3.5.1 Preparation of FZD micropollutant stock solution 

Furazolidone shows carcinogenic and genotoxic effects, therefore it is indeed 

important to consider the safety measures and protocols employed during 

handling this pharmaceutical micropollutants, such as use of solvent restive 

gloves, and charcoal loaded respiratory mask. Moreover, it is also important to 

poured the waste solvent in the air-tight silica glass, wrapped in plastic to avoid 

its seepage, and hand over to the chemical disposal management authority. 

 

Analytical grade FZD standard solution was utilized to make 100 mg/L stock 

solutions. The required concentration of FZD solution was achieved by diluting 

the stock solution with distilled water. Synthetic micropollutant solution offer 
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several advantages over real-world micropollutants, including reproducibility 

and consistency in laboratory testing conditions. Based on this being a 

preliminary investigation of FZD removal using magnetic buckypaper 

membrane, synthetic FZD micropollutant solution was utilized. The standard 

curve of FZD micropollutant and its properties were demonstrated in Appendix 

A. 

 

3.5.2 Optimization of FZD micropollutant removal efficiency in batch 

mode 

Optimization technique entails understanding the effect of process parameters 

to achieve the best combination of settings from specific sets of relevant factors 

to offer a determined goal without exceeding the described limits. The main 

aim of optimization is to save time, costs, and resources and reduce errors 

while attaining the objective of the process. 

 

This study employs a statistical design technique to optimize the process 

parameters for the FZD micropollutant removal using magnetic f-MWCNTs-

based BP/PVA membrane. The central composite design was used for the 

optimization of process parameters. The primary aim of this section was to 

achieve the optimal conditions for eliminating FZD micropollutant using 

magnetic f-MWCNTs-based BP/PVA membrane. 

 

3.5.3 Experimental design 

To optimize the process parameters for FZD removal efficiency using magnetic 

f-MWCNTs-based BP/PVA membrane, the response surface methodology 

(RSM) was employed to determine the regression model with a few 

experiments. Also, RSM was used to study and examine the factor’s 

mechanism and interaction, which can affect the process. The experimental 

design for FZD removal efficiency was conducted on Design-Expert software 

(CCD, Version 12.0). The design output comprised 24 experimental runs, with 

2 center points. The pH of the FZD solution (A), agitation speed (B), and 

contact time (C) were selected as the process variables, while the FZD removal 
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efficiency was stated as the response of this study. Factors were examined at 

the high, center, and low levels, as mentioned in Tab. 3.4.  Based on the 

literature study on magnetic f-MWCNTs, the upper and lower values of the 

parameters were designated (Su et al. 2022, Gurav et al. 2020, Zhen-Yuan et al. 

2015). The experimental matrix design for the optimization is presented in 

Tab. B.1, Appendix B. 

 

Tab. 3.4: Experimental range, codes, and levels of independent variables in center 

composite design  

Variable Factor 

code 

Unit Level 

Low (-1) Centre (O) High (+1) 

pH A - 4 6 8 

Agitation speed B rpm 100 150 200 

Contact time C min. 20 185 350 

 

The quadratic polynomial equation was designated for predicting the optimal 

points and is expressed in Equation 3.2 

 

𝒀 =  𝜷𝒐 + 𝜷𝟏𝑨𝟏 + 𝜷𝟐𝑩𝟐 + 𝜷𝟑𝑪𝟑 +  𝜷𝟏𝟏𝑨𝟐 + 𝜷𝟐𝟐𝑩𝟐 +  𝜷𝟑𝟑𝑪𝟐 +  𝜷𝟏𝟐𝑨𝑩 +

          𝜷𝟏𝟑𝑨𝑪 +  𝜷𝟐𝟑𝑩𝑪                                                                             Equation 3.2  

 

Where, 

Y = Predicted response 

𝛽𝑜 = Off-set term 

𝛽1, 𝛽2 = Linear co-efficient 

𝛽11, 𝛽22, 𝛽33 = Quadratic co-efficient 

A,B,C = Coded value of independent variables 

 

The quadratic polynomial equation was obtained via Design-Expert software. 

Moreover, the significance of these quadratic models was described using 

analysis of variance (ANOVA) based on the F (Fischer) and p (probability) 

values. The determination coefficients (R2, Adj. R2) were considered to 

compare the predicted vs. actual values. The 3-D plot of the process response 

regarding the removal efficiency of FZD micropollutant vs. independent 

variables was attained as a function of two variables at a time, while the others 

were kept constant at the middle level. Besides, the optimum conditions were 
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defined by fitting parameters for independent variables. At last, the RSM 

model was supported through model verification by performing the experiment 

on the optimum solution produced by RSM model to verify the removal 

efficiency of FZD micropollutant. 

 

3.5.4 Reusability of magnetic f-MWCNTs-based BP/PVA membrane 

for FZD micropollutant removal under batch mode 

The reusability tests for FZD micropollutant removal using magnetic f-

MWCNTs-based BP/PVA membrane were performed at the optimum 

conditions. After every cycle, the supernatant was stored to determine the 

micropollutants concentration using UV-spectrophotometry. Experimental 

studies showed that absolute ethanol (purity 99.9%) is a suitable desorption 

solvent (Hossaini et al. 2022, Mohammed et al. 2022). Therefore, the magnetic 

f-MWCNTs-based BP/PVA membrane loaded with FZD micropollutant was 

sequentially washed with absolute ethanol and distilled water and then used in 

the next reaction cycle. 

 

3.6 Characterization and Analytical Techniques 

Several characterization and analytical techniques were applied to examine the 

specimen's surface morphology and chemical composition, i.e., f-MWCNTs, 

magnetic f-MWCNTs, and magnetic f-MWCNTs-based BP/PVA membrane. 

Field emission scanning electron microscope (FE-SEM) was utilized to 

characterize the surface structures of the samples at a 120,000x magnification 

(FEI Quanta 400 SEM). Furthermore, FE-SEM was coupled with energy-

dispersive X-ray spectroscopy (EDX), which determined the elemental 

compositions of the samples. Also, Fourier transforms infrared spectrometer 

(FT-IR) (Perkin Elmer FTIR) was used to identify the functional groups 

present in the specimen by studying the vibrations of its chemical bond. 

Besides, FT-IR spectra of magnetic f-MWCNTs-based BP/PVA membrane 

before and after FZD micropollutant adsorption were also performed. 

Thermogravimetric analysis (TGA) (Perkin Elmer TG/DTA) was also 
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examined to determine the thermal stability of the membrane. The TGA study 

was conducted in the temperature range from 25oC to 900oC with a heating rate 

of 10oC/min under high purity oxygen gas flow of 100 mL/min. In addition, 

zeta potential and hydrodynamic size tests were also conducted by adding 20 

mg of the pristine and f-MWCNTs in absolute ethanol (99.9%), followed by 

ultrasonication for 30 minutes with 15 seconds intervals. The vibrating sample 

magnetometer (VSM) (Squid VSM) was used to examine the magnetic 

property of the magnetic f-MWCNTs nanocomposites. The VSM study was 

performed in the -8000 to 8000 G magnetic field range to obtain a hysteresis 

loop. The XRD studies were conducted on magnetic f-MWCNTs 

nanocomposite with Cu source for x-rays generation. The nanocomposite 

sample was scanned at a speed of 2o/min. from 6o to 70o (2 Theta diffraction 

angle) at 45 kV tension with an incident beam path of 240 mm. 

 

3.7 Adsorption studies of FZD micropollutant using magnetic f-

MWCNTs-based BP/PVA membrane 

The adsorption studies performed using magnetic f-MWCNTs-based BP/PVA 

membrane were examined in this section. To interpret the adsorption capacities 

of FZD micropollutant using magnetic f-MWCNTs-based BP/PVA membrane, 

adsorption isotherms model, kinetic model, and thermodynamic studies were 

analyzed. 

 

3.7.1 Influence of initial micropollutant concentration and contact time 

on the adsorption capability 

The adsorption experiments were conducted at the optimum conditions 

obtained from Section 3.5.2, using magnetic f-MWCNTs-based BP/PVA 

membrane under batch mode. The micropollutant samples were collected at 

different time interval up to 5 hrs. The micropollutant concentration samples 

that were collected at specific time were analyzed using ultraviolet 

spectrophotometer (Perkin Elmer Lambda 25 UV/Vis). The experiment was 

repeated by varying the FZD micropollutant concentration, ranges from 5 to 25 
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mg/L. The adsorption capacities (𝑞𝑒) were calculated using Equations 3.3  as 

mentioned below: 

 

                      𝑞𝑒 = (𝐶𝑖 − 𝐶𝑜) ×
𝑉

𝑚
                                                          Equation 3.3 

 

Where, 

𝐶𝑖 = Initial concentration of FZD MP solution (mg/L) 

𝐶𝑜 = Final concentration of FZD MP solution (mg/L) 

V = Volume of FZD MP solution (L) 

M = Dry weight of the magnetic f-MWCNTs-based BP/PVA membrane (g) 

 

3.7.2 Adsorption isotherm models 

Equilibrium adsorption isotherms were determined for the FZD micropollutant 

compound, and experimental results were studied through isotherm models 

such as Langmuir, Temkin, Freundlich, and Dubinin-Radushkevich. The 

equation and parameters of the selected isotherm models employed in this 

study are listed below in Tab. 3.5: 

 

Tab. 3.5: Adsorption isotherm equation and parameters 

             Isotherm model References 

           Langmuir isotherm  

Assumption Mono-layer adsorption on the homogeneous 

surface with similar sites 

 

(Domagała et 

al. 2019) Equation Ce

qe
=

1

qmKL
+

Ce

qm
 

Plot Ce

qe
 vs Ce 

Parameters qm =maximum adsorption capacity (mg/g ) 

KL =adsorption capacity (L/mg) 

Freundlich isotherm 

Assumption Surface heterogeneity between the adsorbate and 

adsorbent 

(Momenzade

h et al. 2011) 

Equation 
Lnqe =  LnKF +

1

n
LnCe 
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Plot Lnqe vs Ce 

Parameters KF = Adsorption coefficient 

n = Freundlich intensity  

                                               Temkin isotherm 

Assumption Adsorption is described via even distribution of 

binding energies, which extend coverage 

because of the adsorbent-adsorbate interaction 

results in the reduction in heat of adsorption.  

(Hua et al. 

2017) 

Equation 𝑞𝑒 = 𝐵𝐿𝑛𝑘𝑇 + 𝐵𝐿𝑛𝐶𝑒 

Plot 𝑞𝑒𝑣𝑠𝐿𝑛𝐶𝑒 

Parameters kT =  Temkin equilibrium constant (L/mg) 

B= Temkin constant  

Dubinin-Radushkevich isotherm 

Assumption Calculate the porosity features and free-energy 

of adsorption. In addition, define the nature of 

adsorption processes 

(Said et al. 

2018) 

Equation Lnqe = Lnqs − βε2,  ε =
1

√2β
  

Plot Lnqe vs ε2 

Parameters 𝑞𝑠 =maximum adsorption capacity (mg/g) 

𝛽= adsorption coefficient (mol.2/J2) 

𝜀= adsorption free-energy (kJ/mol.) 

 

3.7.3 Adsorption kinetic model 

To examine further, adsorption kinetics were also conducted to explain the 

dynamics of the adsorption process in terms of the equilibrium adsorption 

capacity (qe) and rate constant (k). The adsorption kinetics models employed in 

this study include Pseudo-first-order and Pseudo-second-order kinetic models. 

Both mentioned kinetic models help determine valuable information regarding 

the reaction rate, such as chemical reaction and diffusion mechanisms 

(Toudeshki et al. 2019). The equations and parameters of Pseudo-first-order 

and Pseudo-second-order kinetic models used in this research study are listed 

below in Tab. 3.6 
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Tab. 3.6: Adsorption kinetic model equations and parameters 

Kinetic models References 

Pseudo-first order kinetic model 

Assumption Rate-limiting step is physisorption that engage in π-

π interaction, Van der Waals force, and hydrogen 

bonded hydroxyl between adsorbent and adsorbate  

(Moussout et 

al. 2018) 

Equation log(qe − qt) = logqt − k1t  

Plot log (𝑞𝑒 − 𝑞𝑡) vs. t  

Parameters k1 = Pseudo-first order rate constant (1/min.)  

Pseudo-second order kinetic model 

Assumption Rate-limiting step is a chemical adsorption that 

engage in exchanging / sharing of electrons 

between adsorbent and adsorbate 

(Guo et al. 

2019) 

Equation t

qt
=

1

k2qe
2 −

1

qe
t 

 

Plot 𝑡

𝑞𝑡
 vs. t 

 

Parameters k2 = Pseudo-second order rate constant (g/mg.min.)  

 

3.7.4 Thermodynamic Analysis 

To examine the influence of temperature on the adsorption process, a 

thermodynamic analysis was conducted. In the thermodynamic analysis, the 

pertinent thermodynamic variables, i.e., Gibbs free energy, entropy and 

enthalpy (Bai et al. 2020, Alasadi et al. 2019) were determined from the below-

stated equations: 

 

                                   ∆Go = −RTlnK                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4 

                                         ∆Go = ∆Ho − T∆So                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.5 

                                          lnK =
∆So

R
−

∆Ho

RT
                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6 

 

Where, 

∆𝐺𝑜 = Gibbs free energy change (KJ/mol.) 
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R = Ideal gas constant (KJ/mol.K) 

T = Absolute temperature (K) 

K = Equilibrium constant  

∆𝐻𝑜 = Enthalpy change (KJ/mol.) 

∆𝑆𝑜 = Entropy change (KJ/mol.K) 

 

∆𝑆𝑜and ∆𝐻𝑜were calculated from the intercept and slope of Van’t Hoff plot 

between lnK and 1/T, respectively.  
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3.8 Optimization of FZD micropollutant removal efficiency using 

adaptive neuro-fuzzy interface system 

Adaptive neuro-fuzzy inference system, abbreviated as ANFIS, is a powerful 

modeling tool mainly involving artificial neural networks supported with fuzzy 

logic, applied in high-speed modeling of complicated non-linear processes. 

Different models have been examined for adsorption data reliance on the 

variables. Among all, the fuzzy route is considered the most common route 

with respect to artificial intelligence (Mohan et al. 2021, Armaghani et al. 

2021). Certainly, ANFIS is simple and flexible regarding the experimental 

numbers and forms, which allows it to be more appropriate for utilizing 

informal experimental patterns in contrast to statistical practices. According to 

the first-order Sugeno-fuzzy model, ANFIS is a multi-layer feed-forward 

network where every single layer incorporates neuro-fuzzy system elements, as 

reported in the literature (Walia et al. 2015). 

 

The ANFIS model is depicted in Fig. 3.4. The ANFIS architecture is 

stimulated as a five-layered neural network: fuzzy (inputmf), product (rule), 

normalized (outputmf), de-fuzzy and output layer, that utilizes the fuzzy 

inference system principle. Fixed nodes are included in second, third and fifth 

layers, whereas nodes in the first and fourth layers are adaptive (Naderpour et 

al. 2019, Sharifi et al. 2021). The literature review section (Chapter II) under 

Tab. 2.8, describes each layer’s detailed description and their respective 

equations. 
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Fig. 3.4: ANFIS structure of the FZD micropollutant removal efficiency (Karaboga et 

al. 2019) 
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Based on the current research study, the first and last layers indicate the input 

variables (pH, agitation speed, and contact time) and output variable (removal 

efficiency (%)), respectively. Besides, the present model corresponds to first-

order Sugeno inference system, which transforms input parameters into 

membership values via membership functions. The experimental data are used 

to train and validate the framework. Based on the literature, it has been stated 

that pH, agitation speed and contact time are the primary parameters in the 

adsorption process of FZD micropollutant from an aqueous solution (Tabelin et 

al. 2018, Ezzatahmadi et al. 2017, Malik et al. 2017).  

 

3.8.1 Model development 

The experimental data attained from RSM can be utilized to examine the 

ANFIS model, as reported in the previous studies (Onu et al. 2021, Islam et al. 

2021). The ANFIS model performs better with higher experimental data sets, 

therefore, the RSM data sets were decoupled, giving 240 (two hundred forty) 

data sets that were used in the ANFIS study. MATLAB software (R2021a) was 

utilized in ANFIS modeling. 
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Fig. 3.5: Flowchart for ANFIS model (Samantaray et al. 2022) 
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Based on the literature, pH, agitation speed, and contact time are the primary 

parameters in the adsorption process of FZD micropollutant from an aqueous 

solution (Palansooriya et al. 2022, Gurav et al. 2020). Consequently, similar 

parameters were used in both RSM and ANFIS studies. The current ANFIS 

architecture’s first and last layers indicate the input (pH, agitation speed, and 

contact time) and output (removal efficiency (%)) variables, respectively. 

Besides, the first-order Sugeno inference system, which transforms input 

parameters into membership values via membership functions was selected in 

the present ANFIS model (Chaudhari et al. 2014). The maximum amount of 

neurons in the hidden layer was concluded through a trial and error approach to 

have the highest correlation coefficient (R2) (Bouhedda et al. 2019). This was 

to confirm the least deviation of predictions from experimental outcomes and 

lessen the overfitting possibility of the model.  

 

It can be concluded that there is no accurate guidance on which ratio is 

recommended for the given data set. The most common practice ratios reported 

in literature are 80:20, 70: 30 and 60:40 (Gholamy et al. 2018). Thus, a 60:40 

ratio was used in the present study, i.e. 60% for training and 40 for validating, 

as described in the prior studies (Mirbolouki et al. 2022). Holding more data 

set for training and less for validating helps enhance the model, and reduce the 

processing time. Besides, testing offered an independent rating of the 

network’s performance; however, validation assisted in ensuring the network’s 

generalization, which was stopped when no further improvement was observed 

to prevent over-fitting. Tab. 3.7 displays the input parameters considered for 

the present ANFIS study along with their operating range. 

 

Tab. 3.7: Input data and their corresponding operating ranges 

Input parameter Minimum Maximum 

pH 4 8 

Agitation speed (rpm) 100 200 

Contact time (min.) 20 350 
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3.9 Model statistical indicators 

The model forecasts of the RSM and ANFIS were exposed to performance 

indices with the aim of laying out a ranking that underline the framework that 

had the finest prognostic ability with respect to the experimental data. Five 

high-ranking performance statistical-error functions were employed in the 

current study based on the previous study, and they are stated below: 

 

• Mean relative error: 

RE = (
100

N
) ∑ Ni=1  

|PR,i,exp−PR,i,cal|

PR,i,exp
     (Maryam et al. 2020)       

 

• Absolute average relative error: 

 AARE =  (
1

N
) ∑ Ni=1 ( 

|PR,i,exp (i)−PR,i,cal(i)|

PR,i,exp (i)
) (González-Mariño et al. 2011) 

 

• Root mean square: 

RMSE =  √(
1

𝑁
) ∑ 𝑁 (

|PR,i,exp (i)−PR,i,cal(i)|

PR,i,exp (i)
)

2

𝑖=1    (Tarpø et al. 2019) 

 

• Marquardt’s standard error deviation: 

MSED = √∑(PR,exp−PR,cal)
2

N−P
x 100  (Chowdhury et al. 2011) 

 

• Hybrid fractional:  

HYBRID =
1

N−P
∑ [

PR,i,exp−PR,i,cal)2

PR,i,exp
] x 100 (Srenscek-Nazzal et al. 2015) 
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In the above-mentioned equation, N and P represents the experimental runs 

and factor number, respectively; PR,cal(i), PR,cal, PR,I,cal(i) are model predictions, 

whereas, PR,exp(i), PR,exp, PR,I,exp(i) are the experimental data of the ith 

experiment.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

This section investigated the elimination of FZD at different pH levels from 

water via magnetic f-MWCNT-based BP/PVA membrane through adsorption. 

First, several characterization analyses were conducted on pristine MWCNTs, 

f-MWCNTs, magnetic f-MWCNTs, and magnetic f-MWCNT-based BP/PVA 

membrane, such as FE-SEM, TGA, EDX, VSM, X-ray diffraction, zeta 

potential, and FT-IR to examine the surface structure, thermal stability, and 

chemical composition of raw MWCNTs and functionalized MWCNTs (f-

MWCNTs). Next, statistical optimization of magnetic f-MWCNT-based 

BP/PVA membrane for FZD micropollutant removal under batch study was 

performed using response surface methodology (RSM). For the statistical 

optimization, the process variables include the initial pH of the FZD solution, 

agitation speed, and contact times. Besides, the application of adaptive neuro-

fuzzy inference system was also employed in modeling to evaluate the removal 

efficiency of FZD micropollutant from the synthetic solution using magnetic f-

MWCNTs-based BP/PVA membrane. In addition, the adsorption isotherms, 

kinetics, and thermodynamics on FZD micropollutant removal using magnetic 

f-MWCNT-based BP/PVA membrane under batch treatment were also 

analyzed in this section. Lastly, a reusability analysis was performed to 

determine the stability of the membrane.  
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4.2 Characterization Studies of Pristine and Surface Modified 

MWCNTs  

Due to their remarkable aspects, such as chemical, physical, mechanical, and 

thermal properties, MWCNTs can be employed in several applications. 

Nevertheless, their hydrophobic nature, low dispersibility, and poor solubility 

have hindered further development of the material. Therefore, to fabricate an 

effective and efficient membrane for water applications, the functionalization 

of MWCNT is extremely important.  

 

The research methodology has been comprehensively described in Chapter III 

and the characterization results of f-MWCNTs from dispersion test, XRD 

analysis, FE-SEM, TGA, EDX, Zeta potential, and FTIR were interpreted in 

this section. The section was discussed in the following sub-sections, with 

relevant tables, figures, and justifications.  

 

4.2.1 Dispersion test 

The dispersion test of raw MWCNT and f-MWCNTs was examined based on 

Glomstad et al.’s experimental study (Glomstad et al. 2018). Time-saving, 

rapid, and reliable outcomes are a few of the main advantages of this approach 

(Lau et al. 2020). Fig. 4.1 shows the dispersion test of raw and purified 

MWCNTs after an 8 hrs. settling period. Raw MWCNTs were slowly 

untangled during the sonication stage, exfoliated from MWCNTs bundles, and 

aggregated (Yee et al. 2018). In contrast to raw MWCNTs, f-MWCNTs 

displayed better dispersibility based on the results, which might be due to the 

attachment of oxygenated functional groups on the surface of MWCNTs after 

acidic treatment. Moreover, surface modification of MWCNTs also decreases 

the Van der Waals interactions between themselves, and therefore, it depicted 

limited flocculation even after a long duration in the aqueous solution 

(Domagała et al. 2019). On the contrary, accumulation of raw MWCNTs was 

sometimes noted because of the hydrophobicity of raw MWCNTs sidewalls 

and π-π strong interaction among the individual tubes (Yu et al. 2015). The 
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poor dispersibility of raw MWCNTs in the aqueous phase could lead to the 

limited availability of surface sites (Ranjan et al. 2019). 

 

 
Fig. 4.1: Dispersion result after 8 hrs. (a) raw-MWCNTs, and (b) f-MWCNTs 

 

4.2.2 Energy-dispersive x-ray spectroscopy (EDX) analysis 

EDX analysis was employed to determine the quantitative contents of various 

elements present in raw and functionalized MWCNTs (f-MWCNTs), such as 

carbon (C), oxygen (O), aluminum (Al), and sulphur (S). The EDX result of 

raw and f-MWCNTs is presented in Tab. 4.1. Before acid treatment, the EDX 

result of raw MWCNTs showed a low intensity of aluminum (Al), which 

uncovers the minor content of metal catalyst deposits stored in the carbon 

layers of raw MWCNTs. Whereas, after acid treatment, the f-MWCNTs 

displayed significant oxygen contents because of the attachment of oxygenated 

groups (Thou et al. 2021). The detection of the sulphur element in the EDX 

result of f-MWCNTs could be due to strong acid, i.e., H2SO4 (Rafiee et al. 

(a) (b) 
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2015). Moreover, Al mass fraction content increased mainly due to the 

aluminum stub installed in the EDX equipment (Roongraung et al. 2020). 

Besides, oxygen and carbon element detection by EDX spectrum in the f-

MWCNTs was due to the hydrophilic treatment of MWCNTs by HNO3/ H2SO4 

(1:3 v/v), and carbon nanotubes, respectively. The EDX results of the present 

study are identical to the study performed earlier by Turgunov and co-

associates (Turgunov et al. 2017). The EDX results for both raw and f-

MWCNTs are depicted in Fig. 4.2 (a-b), respectively, with their corresponding 

quantitative weight values.  

 

Tab. 4.1: Elemental composition of MWCNTs and f-MWCNTs sample 

Sample 
Elements composition (wt. %) 

Carbon (C) Oxygen (O) Aluminum (Al) Sulphur (S) 

MWCNTs 91.49 5.78 2.73 - 

f-MWCNTs  79.47 14.83 4.91 0.80 

 

(a)  

(b)  

 

 

 

 

 

 

Fig. 4.2: EDX spectrum of (a) raw MWCNTs and (b) f-MWCNTs 
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4.2.3 Fourier Transform Infrared Spectrophotometry (FT-IR) 

FT-IR study was conducted to identify the attachment of functional groups on 

MWCNTs’ surface before and after acid treatment. In this research, the FT-IR 

study was performed based on the study conducted by Alghunaim and co-

associates (Alghunaim 2016). The FT-IR spectrum for raw and purified 

MWCNTs, ranging from 500 to 4000 cm-1, is illustrated in Fig. 4.3. 

  

 
Fig. 4.3: FT-IR spectra of (a) raw MWCNTs and (b) f-MWCNTs 

 

The FT-IR spectrum revealed some soft peaks for pristine MWCNTs, O-H 

groups at 2400- 3450 and 3800 cm-1, C-H group at 2849- 2950 cm-1, and C-O 
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stretch at 1190-1400 cm-1. The presence of OH groups is due to the partial 

oxidation of the MWCNTs surface during the purification procedure (Mubarak 

et al. 2014). The OH stretch in the present study is similar to the analysis 

performed by Morsy and co-associates (Morsy et al. 2014). Besides, raw and f-

MWCNTs specimens display the existence of C=C stretches at 1320 -1540cm-

1. This shows that the morphology of the MWCNTs backbone was preserved 

even after undergoing acid treatment (Carneiro et al. 2020). 

 

Conversely, the FT-IR spectrum of f-MWCNTs in Fig. 4.3 (b), has displayed 

several intensive peaks after being treated with H2SO4/ HNO3 acids at 702-730, 

1019-1308, 1545, 1760, and 2500-3490 cm-1 that correspond respectively to C-

C stretch, C-O stretch, C=C stretch, C=O stretch, and OH stretch. These peaks 

demonstrate that the MWCNT produces more polar groups after acid 

treatment, such as hydroxylic and carboxylic (Guadagno et al. 2018). The 

absorption peak at 702-730cm1 was associated with C-C. Besides, peak at 

1019-1308 and 1760 cm-1 corresponds to carbonyl C-O and C=O groups, 

ascribed to the stretching vibrations of carboxyl moieties (-COOH) (Hof et al. 

2013). The absorption peak at 1545 cm-1 was associated with C=C groups, 

which was ascribed to the oxygen-containing groups due to the inclination in 

the dipole moment corresponding with graphene vibrations (Estili et al. 2008). 

Distinct peaks observed at 1654, 2500, and 3490 cm-1 have confirmed that OH 

stretching of carboxyl moieties occupies a wide-ranging wavelength and 

reported similar outcomes in prior studies (Yee et al. 2018). The FT-IR result 

of f-MWCNTs proved the additions of carbonyl and hydroxyl bonded groups 

to MWCNTs, which related to the attributes of carboxyl functional moieties. 

 

4.2.4 Field emission scanning electron microscope (FE-SEM) 

Both specimens’ surface and structural morphology, raw and f-MWCNTs, 

were examined using FE-SEM. The FE-SEM images of the samples are 

illustrated in Fig. 4.4 (a-d) with magnification of 10x and 30x. It can be stated 

that there are substantial variations in the structure of MWCNTs specimen after 

surface modification treatment. The MWCNTs, before acid treatment, have a 
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flatter surface with bungles of tangles tubes on its surface, whereas f-

MWCNTs discovered a rougher surface structure. In addition, impurities were 

also observed evidently on the surface of pristine MWCNTs; however, f-

MWCNTs showed no traces of impurities on their surface (Shanmugam et al. 

2016). The surface roughness and impurity-free texture are due to the 

formation of defect sites and oxidation during acid treatment, respectively 

(Awasthi et al. 2019). These interpretations were based on the study’s 

experimental outcomes obtained by Turgunov and co-associates (Turgunov et 

al. 2017). 

 

 
Fig. 4.4: FE-SEM micrographs of (a-b) MWCNTs, and (c-d) f-MWCNTs 
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4.2.5 Zeta potential and hydro-dynamic size  

The dispersive effect of the MWCNTs specimen in the water phase can be 

better understood through zeta potential and hydro-dynamic size. Pristine 

MWCNTs display a greater tendency toward self-accumulation due to their 

hydrophobic aspects and Van der Waals force in most solvents (Punetha et al. 

2017, Kharissova et al. 2013). Consequently, functionalization of MWCNTs is 

needed to resolve the drawback of raw MWCNT via modifying surface 

properties. The outstanding colloidal and dispersibility aspects of MWCNTs in 

solvents are essential for their practical handling in different industrial 

applications (Sadri et al. 2017). 

 

 
Fig. 4.5: Zeta potential and hydrodynamic size of MWCNTs and f-MWCNTs 

 

The hydrodynamic size and zeta potential of raw and purified MWCNTs are 

demonstrated in Fig. 4.5. The average hydrodynamic size of raw and f-

MWCNTs was determined as 374 and 155 nm, respectively. The decline of the 

hydro-dynamic size indicates that the functionalization of MWCNTs would 

support size homogeneity and improve the MWCNTs’ dispersibility in solvent 

(White et al. 2016, Cui et al. 2017). Besides, zeta potential measurements were 
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conducted by determining the surface capability of MWCNT for assessing their 

colloidal strength. The analysis outcomes depicted that the purified MWCNTs 

show greater zeta potential absolute values than pristine MWCNTs, i.e., -26.8 

and -4.8 mV, respectively. It signifies that the surface of f-MWCNT exhibited 

more -ve charges than pristine MWCNT because of the attachment of carboxyl, 

hydroxyl and carbonyl groups as exposed in FT-IR results (Hamilton Jr et al. 

2013). Hence, these purified MWCNTs display excellent stability and 

dispersibility in the water phase and a better functionality degree of f-

MWCNT. The zeta potential results are within the standard limit as the 

suspensions with zeta values >15 or < -15 mV are counted to be stable because 

of the electrostatic repulsion mechanism.  A zeta value of 40 mV is considered 

a sign of fine-quality MWCNTs dispersion stability in solvents (Parveen et al. 

2017). In conclusion, electrostatic repulsion among the relatively charged 

surface of MWCNTs is essential for stabilizing the MWCNTs bundles in the 

aqueous phase.  

 

4.2.6 Thermogravimetric (TGA) 

TGA analysis was conducted to assess the purity of pristine and surface-

modified MWCNTs. TGA for pristine and surface-modified MWCNTs 

concerning the temperature, ranging between 25 to 900oC at 10oC/min, is 

shown in Fig. 4.6. The mass of the pristine MWCNTs slightly declined with 

rising temperature from 50 to 450oC. The initial mass loss was negligible due 

to the structural stability of pristine MWCNTs (Yañez-Macias et al. 2019). 

From 480 to 610oC, the mass of pristine MWCNTs declined sharply due to 

oxidation. Compared to the TGA curve of pristine MWCNTs, f-MWCNTs 

decomposed earlier because of the attachment of oxygenated groups on the 

surface of f-MWCNTs. The earlier combustion of f-MWCNTs specimen at a 

lower temperature is due to the fact that oxygenated groups were highly 

reactive to oxygen (Buang et al. 2012).  
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Fig. 4.6: Thermogravimetric analysis of MWCNTs, and f-MWCNTs 

 

The thermal degradation of f-MWCNTs takes place in multi-stage processes. 

In the first stage, the initial mass reduction was observed from 40 to 150oC due 

to water evaporation. Next, the second stage was noted from 150 to 330oC, 
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which was caused due to the de-carboxylation of functional groups attached 

during the acid treatments (Qadir et al. 2016). The mass reduction from 330 to 

450oC is marked as the third stage, ascribed to removal of impurities and 

oxidation of amorphous carbon (Shokry et al. 2014). Consequently, the weight 

loss of f-MWCNTs decreased steadily due to the combustion of the sample, 

ranging from 450 to 700oC. Lastly, pristine and f-MWCNT specimens show 

flat profiles after 690 and 660oC temperatures, respectively (Hoa 2018). It 

demonstrates that pristine and f-MWCNTs remain as residue after their 

respective on-set temperatures as they are not volatile (Rasana et al. 2019). 

Mujawar and co-associates have also obtained identical thermal behavior for 

pristine and f-MWCNTs as achieved in the current study (Mubarak et al. 

2014).  

 

In summary, the combined TGA analysis and DTG interpretation have not 

only provided insights into the thermal degradation behaviors of both pristine 

and f-MWCNTs, but have also highlighted the influence of surface 

modification on their thermal stability and reactivity. These results contribute 

to an enhanced comprehension of the thermal properties of both MWCNTs and 

f-MWCNTs, thereby holding significance for their broad-ranging applications 

in diverse fields. 

 

4.2.7 Summary of functionalized MWCNTs sample 

In this section, MWCNTs were functionalized with strong acids (HNO3 and 

H2SO4) and compared to raw MWCNTs. The treatment of MWCNTs to 

transform its hydrophobic characteristic into hydrophilic primarily depends on 

various factors such as quantity of MWCNTs, concentration of acids, treatment 

approach and experimental temperature. In the present study, ultrasonication 

approach was considered to produce f-MWCNTs, and the characteristic 

analysis showed good outcomes compared to previous research reports (Avilés 

et al. 2009, Ngo et al. 2013). The dispersion test demonstrated that the 

MWCNTs, after acid treatment, changed its hydrophobic characteristic to 

hydrophilic, as it finely disperses in an aqueous medium. The EDX and FE-
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SEM analysis showed higher content of oxygen groups attached to MWCNTs 

with no structural destruction. Thus, the study confirmed that the 

ultrasonication approach is relatively simple with high yield compared to reflux 

approach; therefore, the approach is highly recommended and has the potential 

to be employed for surface modification of MWCNTs with strong acids. 

 

4.3 Characterization of magnetic functionalized MWCNTs 

nanocomposites 

Based on the literature, suspended catalysts are more efficient and effective 

than immobilized to remove contaminants (Nguyen et al. 2020). Therefore, 

magnetic catalysts have been considered an effective alternative for removing 

micropollutants. In the present study, magnetite (Fe3O4) has been chosen to be 

incorporated onto f-MWCNTs surface to assist in the elimination of FZD 

micropollutant. The research aims to fabricate a magnetic buckypaper 

membrane that possesses magnetization features, incorporating magnetic 

nanoparticles in hydrophilic MWCNTs materials. 

 

In this section, the characterization analysis such as VSM, EDX, XRD, FE-

SEM, FT-IR and TGA, performed on prepared magnetic f-MWCNTs 

nanocomposites, were described. VSM was used to evaluate the magnetic 

property of all the prepared magnetic f-MWCNTs nanocomposites. Besides, 

EDX and FE-SEM analysis assisted to investigate the elemental compositions 

and surface morphologies of the magnetic f-MWCNTs nanocomposites with 

the highest magnetic strength, respectively. Moreover, FT-IR spectroscopy and 

XRD were also employed to examine the functional group and crystallite size 

of the magnetic f-MWCNTs nanocomposites, correspondingly. Finally, the 

TGA analysis was performed to evaluate the thermal stability and degradation 

of individual components of the magnetic f-MWCNTs nanocomposites. 
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4.3.1 Magnetic properties analysis 

In the present study, the magnetic property of the nanocomposites was revealed 

using a vibrating sample magnetometer (VSM). Five samples under different 

operating conditions were synthesized using a reflux approach. The operating 

conditions of each sample are stated in Section 3.4.3, and Tab. 3.3. The 

magnetization (M) vs. magnetic field (G) plots of samples A, B, C, D, and E 

are depicted in Fig. 4.7. It can be seen from Fig. 4.7 that all the samples 

exhibited immeasurable values of remanence and coercivity, concluding that 

each sample synthesized by the reflux approach induces super-paramagnetic 

features, and Fe3O4 was well reinforced in f-MWCNTs (Wurendaodi et al. 

2017). Besides, Fig. 4.7 also reveals that no hysteresis was observed in any of 

the composite samples. The hysteresis loop shape is mainly dependent on the 

size of the particle. When the particle size decreases, the magnetic domain/ 

particle is also reduced to the range where it is energetically critical for the 

domain wall to be present. Below a certain diameter, magnetic materials have a 

single domain; the material then exhibits super-paramagnetic characteristics 

(Aliahmad et al. 2013, Dutz et al. 2013). The nominal coercivity value is 

mainly due to the super-paramagnetic fluctuation, i.e., thermal energy; this 

fluctuation likely randomize the nanoparticles if no magnetic field is applied 

(Yi et al. 2014). It has been reported that the saturation magnetization (Ms) 

value of raw Fe3O4 nanoparticles is around 47emu/g for an average size of 7 

nm  (Guo et al. 2020).  

 

In comparison, raw Fe3O4 exhibited ferromagnetic features with significant 

coercivity, Ms, and remanence due to their bulky size (ranging 20- 50 nm) and 

improved crystallinity (Wei et al. 2011). The Ms values of samples A, B, C, D, 

and E were 23.24, 30.33, 31.80, 32.03, and 44.76 emu/g, respectively. Based 

on Fig. 4.7, it can also be observed that the Ms increased with the increase in 

the synthesizes temperature, which might be due to the size and amount of the 

core-nanoparticles, i.e., Fe, and the crystallized domains’ size in the core-

nanoparticles (Katsube et al. 2013). In a ferromagnetic system, spontaneous 

magnetization increases with the temperature within the critical temperature 

range; in particular, iron is a ferromagnetic type; therefore, a decline in 
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magnetic saturation can be expected once the critical temperature range is 

reached (Zhou et al. 2014). Furthermore, weakening the mean exchange 

interaction, primarily due to structural disorder, might also be the reason for 

reduction of Ms (Sousa et al. 2022). Among all samples, the Ms value of 

sample E demonstrated the highest value; however, it is lower than the raw 

Fe3O4, which might be ascribed to the influence of macromolecules and multi-

walled carbon nanotube in the nanocomposite (Hasanzadeh et al. 2017). The 

results suggest that iron-oxide filled f-MWCNTs have the potential to be 

employed for extraction and magnetic separation processes. Besides, Tab. 4.2 

lists different studied magnetic CNT-based nanocomposites for various 

applications along with their Ms values: 

 

 
Fig. 4.7: Magnetic loop of magnetic f-MWCNTs nanocomposites



CHAPTER IV 

129 

 

Tab. 4.2: Saturation magnetization of various magnetic- CNT based nanocomposites 

Magnetic-based 

materials 

Magnetization 

(emu/g) 

Remarks References 

Fe3O4-biochar 41 • Magnetic biochar is prepared using sonication approach from banana pseudo-

stem biomass.  

• At initial preparation stage, pyrolysis route is required, where the feedstock was 

dried up to 600 oC. 

(Gurav et al. 

2020) 

Fe3O4-CNT 37 and 20 • Iron oxide (Fe3O4) was coated with CNTs to prepare magnetic nanocomposite 

• VSM, FT-IR, XRD, and SEM characterization were performed on the prepared 

results. 

• The prepared nanocomposites could be employed as fast regeneration, highly 

efficient, and cost-effective 

(Nezhadheydari 

et al. 2019, Tang 

et al. 2021) 

Fe3O4-MWCNTs 34.86 • Iron oxide was synthesized by decorating it with MWCNTs for nanofluids.  

• High yield nanocomposite was prepared using co-precipitation method 

 (Hussain et al. 

2020) 

Fe3O4 -f-MWCNTs 29.50 • The study claimed that they prepared the magnetic nanocomposite without 

using highly toxic chemicals; moreover, reported as economical and effective 

nanocomposite, in particular for iron removal from wastewater. 

(Alimohammadi 

et al. 2017) 

NiFe2O4-MWCNTs 30.78 • Hydrothermal method was used to synthesized the magnetic nanocomposite. 

• Potential to be employed in treatment of different dyestuff for medium scale 

application 

(Zhu et al. 2015) 

γ- Fe3O4 -MWCNTs 12.93 • The fabrication of γ- Fe3O4 -MWCNTs was performed with the support of 

dispersion method 

• γ- Fe3O4 dispersion was homogeneous; moreover, maintained selectivity on the 

(Liu et al. 2019) 
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Magnetic-based 

materials 

Magnetization 

(emu/g) 

Remarks References 

surface of the MWCNTs  

Fe3O4-f-MWCNTs 44.76 • Novel route to synthesize magnetic f-MWCNTs nanocomposite Present study 
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4.3.2 Energy-dispersive X-ray spectroscopy (EDX) 

The EDX results of magnetic f-MWCNTs nanocomposite are presented in Tab. 

4.3. In contrast to all the prepared magnetic f-MWCNTs nanocomposite 

samples, sample E i.e., 44.76 emu/g demonstrated the highest magnetic 

saturation value. Therefore, the present EDX study focused on the elemental 

composition identified from sample E.  The EDX spectrum of the magnetic f-

MWCNTs nanocomposite (sample E) is displayed in Fig. 4.8. 

 

Tab 4.3: Elemental composition (wt.%) 

Sample 
Elements composition (wt. %) 

C O Al S Cl Fe 

f-MWCNTs 79.47 14.83 4.91 0.80 - - 

A 49.36 19.83 0.76 - 0.28 29.77 

B 45.51 21.81 0.51 - 0.45 31.72 

C 46.20 18.89 - - - 34.90 

D 43.13 20.43 0.32 - 0.72 35.40 

E 32.90 22.06 0.29 - 0.30 41.46 

 

 
Fig 4.8: EDX spectrum of magnetic f- MWCNTs nanocomposite (Sample E) 

 

The EDX spectrum of sample E displayed a higher weight percentage (%) for 

Fe than the remaining samples. When comparing hydrophilic MWCNTs to 

sample E, it can be observed that the EDX result for sample E showed a visible 

decline of carbon content (wt. %) and an increase in oxygen and iron weight 

content (%). The reduction in carbon and increase in oxygen content (wt. %) 

might be due to the presence of hydroxyl and carboxylic groups after strong 
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acid treatment and the integration of the new element of Fe appearing after 

Fe3O4 is loaded, respectively (Guo et al. 2021). The present study confirmed 

that using the reflux approach, the developed magnetic hydrophilic MWCNTs 

nanocomposite (sample E) generates a higher Fe content (wt.%).  

 

4.3.3 X-ray diffraction  

The X-ray powder diffraction (XRD) technique is one of the fundamental 

analyses through which the phase of crystalline material, as well as unit cell 

dimensions, can be identified. The XRD patterns of the synthesized magnetic f-

MWCNTs nanocomposite (sample E) are depicted in Fig. 4.9. 

 

 
Fig. 4.9: X-ray diffraction pattern of magnetic f-MWCNTs (sample E) 

 

Seven diffraction peaks are observed on the magnetic f-MWCNTs 

nanocomposite (sample E) XDR pattern, as illustrated in Fig. 4.9. The 

crystalline diffraction peaks at 30.31o, 35.71o, 43.25o, 53.62 o, 57.21o, and 
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62.75o corresponded respectively to (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1) and 

(4 4 0) planes of Fe3O4 spinal phase (Sadeghfar et al. 2018). Based on the 

literature, the CNTs diffraction peak was generally found at 25.80o 

(Alimohammadi et al. 2017), however, the magnetic f-MWCNTs 

nanocomposite (sample E) displayed a lower intensity peak, i.e., 26.21o for 

CNTs. This may be attributed to the finely decorated Fe3O4 on the f-

MWCNTs’ surface, as has been reported by a previous study (Hou et al. 2021). 

 

In the present study, the crystalline size of Fe3O4 nanoparticles was calculated 

using Debye Scherer’s equation (Safari et al. 2014), Equation. 4.1.  

 

                                   𝐷ℎ𝑘𝑙 =  
0.94𝜆

𝛽𝑐𝑜𝑠Ɵℎ𝑘𝑙
                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1 

 

Where, 

𝐷ℎ𝑘𝑙 = Crystallite size (nm) 

𝜆 = wavelength (Ao) 

𝛽 = Average thickness of a crystal (radian) 

Ɵℎ𝑘𝑙 = Diffraction angle (radian) 

 

The crystallite size of the Fe3O4 nanoparticles was determined from the 

diffraction peaks observed in the XRD pattern of magnetic f-MWCNTs 

nanocomposite (sample E). The average crystallite size of synthesized Fe3O4 

nanoparticles was reported to be approximately 8.31 nm in the literature, 

whereas it decreased to 6.65 nm in the current study as calculated using Debye 

Scherer’s equation. This reduction in crystallite size can be ascribed to the 

higher content of Fe3O4 nanoparticles in the nanocomposite, which 

subsequently leads to broadening of diffraction peaks and results in a smaller 

crystallite size according to  Debye-Scherer’s formula, respectively (Nadeem et 

al. 2022, Do et al. 2020). The diffraction peak of the magnetic f-MWCNTs 

nanocomposite (sample E), confirms the co-axial and cubic arrangement of f-

MWCNTs and Fe3O4 nanoparticles, respectively. The relative intensity and 

position of all diffraction peaks observed in the XRD pattern correspond to the 

Fe3O4 standard diffraction data (JCPDS No. 41-1487) (Mumtaz et al. 2021). A 

similar trend has been reported for a novel Fe3O4-MWCNTs/Ag 
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nanocomposite employed for phthalic acid esters (PAEs) (Moazzen et al. 

2019). The XRD analysis concludes that the Fe3O4 nanoparticles were 

successfully deposited on the surface of f-MWCNTs using the reflux 

technique. 

 

4.3.4 Field emission scanning electron microscope 

The surface and structural morphology of the magnetic f-MWCNTs 

nanocomposite (sample E) was further examined using a field emission 

scanning electron microscope (FE-SEM). Fig. 4.10 shows the FE-SEM images 

captured at 10x, 30x and 60x for the magnetic hydrophilic MWCNTs 

nanocomposite. However, the FE-SEM images captioned in Fig. 4.10 represent 

magnetic hydrophilic MWCNTs nanocomposite (sample E). According to Fig. 

4.10, the Fe3O4 nanoparticles are well dispersed on the surface of the f-

MWCNTs nanocomposites. To ensure that the magnetic Fe3O4 nanoparticles 

are successfully captured on the hydrophilic MWCNTs, they are typically 

measured in the nanoscale, ranging from 18 to 100 nm (Huaccallo-Aguilar et 

al. 2021). Besides, it can also be observed that MWCNTs with varying lengths 

are surrounded by abundant Fe3O4 nanoparticles (Zhao et al. 2016). The Fe3O4 

nanoparticles in spherical shape are uniformly distributed and form clusters 

with the rest of the Fe3O4 nanoparticles, owing to the interactions attributed to 

their magnetic features (Huaccallo-Aguilar et al. 2019). Furthermore, it can be 

stated that the hydrophilic MWCNTs were successfully synthesized and 

generated considerable defect sites after being treated with strong acids, 

allowing the Fe3O4 nanoparticles to be embedded on the outer-wall surface of 

hydrophilic MWCNTs. Consequently, the relationship between the functional 

groups of hydrophilic MWCNTs and Fe3O4 nanoparticles leads to orderly and 

stable nanocomposite materials (Safari et al. 2014). 
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Fig 4.10: FE-SEM morphology of magnetic f-MWCNTs nanocomposite 

 

4.3.5 Fourier Transform Infrared Spectrophotometry   

To describe the functional groups present on the surface of magnetic f-

MWCNTs nanocomposite (sample E), Fourier-Transform Infrared 

Spectrophotometry (FT-IR) study was employed in the present student. The 

FT-IR spectrum in the range of 500 to 4000 cm-1 for the magnetic f-MWCNTs 

nanocomposite is depicted in Fig. 4.11. 
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Fig. 4.11: FT-IR-spectra of magnetic f-MWCNTs nanocomposite 

 

The FT-IR spectrum of magnetic f-MWCNTs nanocomposite (sample E) 

depicted new peaks after incorporating Fe3O4 nanoparticles. The FT-IR 

spectrum of magnetic f-MWCNTs nanocomposite formed distinct peaks at 

514, 816, 1048, 1402, 1554, 2906, 3316 cm-1 associated respectively with Fe-

O-Fe stretch, C-C stretch, C-O stretch, -COO stretch, C=O stretch, -CH stretch, 

and O-H stretch. The absorption peaks observed at 2348 and 3316 cm-1 are 

attributed to the O-H stretching vibration relating to the hydrogen moieties 

(Sadeghfar et al. 2018). The band at 2906 cm-1 corresponds to the -CH 

stretching peak, ascribed to the COOH moieties onto the outer-wall surface of 

the MWCNTs (Alimohammadi et al. 2017). Peak intensity at 1554 and 1402 

cm-1 are related to C=O and -COO stretching, confirming that the synthesized 

magnetic f-MWCNTs nanocomposite possesses hydrophilic features (Zhao et 

al. 2016). The peak at 1048 cm-1 is assigned to the symmetric stretching of C-O 

in the carbonyl moieties. The low peak at 816 cm-1 is associated with C-C 

stretching. The maximum peak observed at 514 cm-1 corresponds to Fe-O-Fe, 

which proved that Fe3O4 nanoparticles were successfully incorporated in the 

prepared nanocomposite (sample E) (Baby et al. 2010) . A similar trend of FT-
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IR spectrum for Fe3O4/f-MWCNTs nanocomposite has been observed in 

previous studies (Asfaram et al. 2016). Besides, the results confirmed a higher 

density of the Fe-O-Fe functional group on the f-MWCNTs’ surface, which 

validates the FT-IR results attained from the present study. 

 

4.3.6 Thermogravimetric analysis (TGA) 

It is well-recognized that changes in the structural arrangement of carbon 

materials can impact their oxidation behavior, which is dependent on the 

availability of reactive sites. Amorphous carbons, for instance, tend to oxidize 

at nearly 500oC due to their lower activation energies for oxidation and/ or 

presence of many active sites (Terrones 2010). 

 

 
Fig 4.12: Thermogravimetric analysis of magnetic f-MWCNTs nanocomposite 

 

The thermogravimetric study was performed on the magnetic f-MWCNTs 

nanocomposite (sample E). The thermogravimetric curves (TGA, DTG) of 

magnetic f-MWCNTs nanocomposite are illustrated in Fig. 4.12, and as 

anticipated, thermal deprivation has taken place in several stages. Initially, 



CHAPTER IV 

138 

 

there is an up to 200oC temperature, weight variation of 2.69%, which can be 

attributed to the elimination of adsorbed moisture in the hydrophilic magnetic 

f-MWCNTs nanocomposite. Next, there is a weight variation of 10.65% 

observed from 200 to 480oC, which is related to the removal of volatile 

chemical moieties; for instance, de-carboxylation of the carboxyl moieties 

attached on the MWCNTs side-walls may occur (Schlachet et al. 2019). 

Following that there is an instant and significant weight variation of 27.47% 

observed at 480 to 690oC for the magnetic f-MWCNTs nanocomposite, 

corresponding to the oxidation of pre-oxidized MWCNTs present in the 

nanocomposite (Abdolkarimi-Mahabadi et al. 2015). The weight variation of 

3.55% from 690 to 730oC attributed to the thermal oxidation of the residual 

amorphous carbon (Szabó et al. 2010). After 800oC, the magnetic f-MWCNTs 

nanocomposite residue can be ascribed to the oxidized magnetite in the Fe2O3 

form. The temperature of maximum weight variation (Tmax) for the magnetic f-

MWCNTs nanocomposite was around 700 oC. The intensity peak displayed in 

the DTG curve for the magnetic f-MWCNTs nanocomposite (sample E) is 

consistent with the previous work (Huaccallo et al. 2019). The broad-band with 

the utmost peak of  -0.0243%/oC,  is ascribed to the small amount of residue 

left after the thermal analysis. The outcome aligns with other described TGA 

studies of some nanocomposites synthesized (Huaccallo-Aguilar et al. 2021). 

In summary, the TGA and DTG analyses reveal the thermal degradation 

behavior of the magnetic f-MWCNTs nanocomposite (sample E), providing 

insights into the various stages of weight variation associated with different 

degradation processes and oxidation of the constituent materials. 

 

4.3.7 Summary of magnetic f-MWCNTs nanocomposite 

Based on the characterization analysis presented in Section 4.3, it can be 

concluded that the synthesis route employed for magnetic f-MWCNTs 

nanocomposite is simple, convenient, and one-step.. This makes the process 

feasible and suggests that it could be potentially used with other magnetic 

materials that are compatible with the properties of MWCNTs. The 

characterization results have confirmed the successful incorporation of Fe3O4 
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nanoparticles on the surface of f-MWCNTs, and all prepared samples exhibited 

superparamagnetic properties. Furthermore, thermogravimetric analysis (TGA) 

has validated the considerable improvement in the thermal stability of the 

magnetic f-MWCNTs nanocomposite, which can be attributed to its finely 

organized structure. Sample E has demonstrated the highest saturation 

magnetization compared to all prepared magnetic nanocomposites in this study. 

This highlights its potential as a promising material for various applications, 

including magnetic separation and extraction processes. 

 

In summary, the prepared magnetic f-MWCNTs nanocomposite using reflux 

route shows favorable properties and can be utilized in different applications 

due to its super-paramagnetic behavior and improved thermal stability. 

 

4.4 Characterization of magnetic functionalized MWCNTs-based 

buckypaper/ poly vinyl alcohol membrane 

In contrast to various conventional membranes, carbon nanotubes (CNTs)-

based membranes have emerged as significant players in water-related 

applications, such as dye and heavy metal ions removal. Mixed matrix CNTs-

based membranes have also attained considerable attention recently, as they 

exhibit high flux rates and improve anti-fouling, wetting, and hydrophilic 

properties when used in water applications. In the present research, a magnetic 

f-MWCNTs nanocomposite is utilized to fabricate a thin-film membrane 

known as buckypaper (BP), which is then examined for its application in 

pharmaceutical micropollutant removal, specifically for FZD micropollutant 

(pharmaceutical micropollutant). However, before being employed for FZD 

removal, several investigations on the prepared magnetic f-MWCNT-based 

BP/PVA membrane are deemed essential. 

 

This section provides a detailed interpretation and discussion of different 

characterization studies (EDX, FE-SEM, FT-IR and TGA) performed on the 

prepared magnetic f-MWCNT-based BP/PVA membrane. The results of these 

studies are presented and discussed in the following sub-sections, accompanied 

by linked figures and tables.  
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4.4.1 Energy-dispersive x-ray spectroscopy 

The surface elemental composition of the magnetic f-MWCNT-based BP/PVA 

membrane was examined using energy dispersive X-ray spectroscopy (EDX), 

as illustrated in Fig. 4.13. The EDX spectrum of the magnetic f-MWCNT-

based BP/PVA membrane reveals the quantitative amount of elemental carbon 

(C), oxygen (O), chlorine (Cl), aluminum (Al), and iron (Fe). The mass 

fraction of C, O, Al, Cl and Fe are 33.82, 25.04, 0.20, 0.34 and 43.03% wt. %, 

respectively. The results confirm the presence of Fe3O4 nanoparticles on the f-

MWCNTs’ surface in the magnetic f-MWCNTs-based BP/PVA membrane, 

with the iron (Fe) being the most abundant element. The low intensity of 

aluminum (Al ) observed in Fig. 4.13 suggests that there is a minor content of 

metal catalyst deposits caught within the layers of buckypaper membrane. The 

decline in the carbon (C) content in the magnetic f-MWCNT-based BP/PVA 

membrane compared to f-MWCNTs can be attributed to the integration of new 

elements of Fe resulting from the loading of Fe3O4 nanoparticles. Additionally, 

the higher mass fraction of oxygen (O) observed in the fabricated membrane 

(25.04 wt. %) compared to f-MWCNTs (14.83 wt. %) and magnetic f-

MWCNTs (22.06 wt. %) is due to the infiltration of PVA, which introduces 

OH and COOH groups on the magnetic f-MWCNT-based BP/PVA membrane. 

A similar trend has been reported for novel functionalized MWCNTs 

composite (MWCNTs/MnO2/ Fe3O4) (Guo et al. 2020). 

 

 
Fig 4.13: EDX patterns of magnetic f-MWCNT-based BP/PVA membrane 
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4.4.2 Field Emission Scanning Electron Microscope (FE-SEM) 

The structural characteristics and surface morphology of the magnetic f-

MWCNT-based BP/PVA membrane are presented in Fig. 4.14, captured at 1, 

3, and 6µm. The images in Fig. 4.14 confirm the attachment of Fe3O4 

nanoparticles to the surface of f-MWCNTs, validating the successful formation 

of the magnetic nanocomposite. Similar observations have been reported by 

Chauhan and the co-associates group during the fabrication of amperometric 

biosensors (Chauhan et al. 2011), further supporting the results. The fibrous 

morphology of the prepared membrane is evident in the images. The addition 

of polyvinyl alcohol (PVA) to the membrane surface has caused an increase in 

its diameter, resulting in a thicker membrane compared to the BP membrane 

without polymer infiltration. This is consistent with the findings from a prior 

study (Jun et al. 2020). The framework of Fe3O4/f-MWCNTs appears 

uniformly dispersed throughout the PVA matrix, indicating a homogeneous 

distribution of Fe3O4/f-MWCNTs within the membrane. This distribution is 

achieved through the control of homogeneity during chronological sequence of 

vacuum filtration and infiltration method (Xu et al. 2008). The images in Fig. 

4.14 also revealed that the prepared membrane has a smooth and porous 

surface without any visible delaminations, indicating its structural integrity. 

The coupled effect of the strong Fe3O4/f-MWCNTs-PVA interfacial interface 

and extended infiltration duration (i.e., 24 hrs.) contributes to the low porosity 

of magnetic f-MWCNT-based BP infiltrated with PVA (Yee et al. 2018). 
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Fig. 4.14: FE-SEM morphology of magnetic f-MWCNTs-based BP/PVA 

 

4.4.3 Fourier Transform Infrared Spectrophotometry (FT-IR)  

The FT-IR spectral study is a valuable tool that allows us to comprehend the 

interaction behavior of various functional groups present on the membrane. In 

the current study, FT-IR analysis was employed to further investigate the 

magnetic f-MWCNTs-based BP/PVA membrane, and the results are displayed 

in Fig. 4.15. To ensure reliable and accurate results, the prepared membrane 

was complexed with KBr powder before the spectral study, and the FT-IR 

spectral was conducted within the range of 4000-500 cm-1. The FT-IR 

spectrum obtained in Fig. 4.15 will provide valuable insights into the chemical 

composition and the interactions between different functional groups present in 

the magnetic f-MWCNTs-based BP/PVA membrane. This information is 

essential for understanding the membrane’s properties and its potential 

applications in water treatment and micropollutant removal processes. 
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Fig. 4.15: FT-IR spectra of magnetic f-MWCNTs-based BP/PVA membrane 

 

The FTIR spectra of the magnetic f-MWCNTs-based BP/PVA membrane 

exhibit a complex aspect of the prepared membrane. Several peaks in the 

spectrum can be associated with specific functional groups present in the 

membrane. The peak located at 3302 and 2328 cm-1 is associated with the 

hydroxyl group of PVA in the magnetic f-MWCNTs-based BP/PVA 

membrane (Malikov et al. 2014). Distinct peaks of hydrogen-bonded hydroxyl 

moieties verify that OH stretching depicts a broad wavelength range, consistent 

with the previous research findings (Liu et al. 2009, Baghayeri et al. 2018, 

Aliahmad et al. 2013). The peak observed at 2894 cm-1 is attributed to the C-O 

stretching bond, representing the CH2 groups of PVA (Patil et al. 2021). This 

indicates that the morphology of the magnetic f-MWCNTs-based BP/PVA 

membrane was preserved. The peaks at 1398 and 1046 cm-1 correspond to the 

stretching vibration of -COO and CO groups, respectively. The peaks at 1540 

and 818 cm-1 is denoted by the C=O bonds in the adsorbed carbon dioxide 

(Abo-Hamad et al. 2017). The presence of OH, C=O, and -COO functional 
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groups ensures that the prepared membrane retains hydrophilic characteristics. 

The broad stretch with a maximum peak at 526 cm-1 is associated with Fe-O-Fe 

stretching vibration in Fe3O4, confirming the presence of Fe3O4 nanoparticles 

in the membrane (Baby et al. 2010). The FT-IR findings from the present study 

are in good agreement with prior reported FT-IR studies (Sadeghfar et al. 2018, 

Huaccallo-Aguilar et al. 2019). A summary of the functional groups assigned 

in the magnetic f-MWCNTs-based BP/PVA membrane based on IR spectra is 

provided in Tab. 4.4. 

 

Tab 4.4: Functional groups assignment of magnetic f-MWCNTs-based BP/PVA 

based on IR spectra 

Wavelength (cm-1) Functional group 

3316-2328 O-H stretching 

2906 C-O stretching 

1402 -COO stretching 

1048 CO stretching 

514 Fe-O-Fe stretching 

 

4.4.4 Thermogravimetric (TGA) Analysis 

The TGA and DTG curves of the magnetic f-MWCNTs-based BP/PVA 

membrane are presented in Fig. 4.16. The TGA weight variation curve for the 

membrane exhibits several weight loss stages, each corresponding to different 

thermal degradation processes. In the initial stage, a slight weight loss is 

observed at 30 to 200oC, attributed to the elimination of water vapor and 

various volatile chemical moieties present in the membrane (Das et al. 2016, 

Américo-Pinheiro et al. 2022). The following decrease in weight loss is 

observed at 200 to 480oC, which can be attributed to the decomposition of 

grafted PVA side chains and carboxylic groups on the surface of the magnetic 

f-MWCNTs-based BP/PVA membrane (Wei et al. 2015, Song et al. 2017). 

Subsequently, a fast and essential weight decrease is observed in a temperature 

range from 480 to 620oC; which can be ascribed to the oxidation of the 

functionalized MWCNTs in the magnetic membrane material (Hua et al. 2017). 

The residue that remained after reaching 800oC is due to the magnetite 
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oxidized in the Fe2O3 form. The maximum weight loss of the magnetic f-

MWCNTs-based BP/PVA membrane occurs close to 700oC. Similar TGA 

observation have been reported for the synthesis of magnetic f-MWCNTs 

nanocomposites in the previous studies (Álvarez-Torrellas et al. 2018). 

Likewise, the DTG curve of the Fe3O4/ MWCNTs,  and that of the present 

study both  show an identical peak at -0.0259 %/oC, indicating that a small 

quantity of residue remains after the thermal analysis (Huaccallo et al. 2019, 

Huaccallo-Aguilar et al. 2019).  

 

The TGA studies showed an improvement in the thermal stability of the 

magnetic f-MWCNTs-based BP/PVA membrane compared to magnetic f-

MWCNTs. This enhancement is evidenced by the observed shift in the onset 

temperature of thermal degradation to higher temperature, indicating that the 

magnetic f-MWCNTs-based BP/PVA membrane is more resistant to thermal 

decomposition (Terrones 2010). Besides, the weight loss observed from TGA 

indicate a reduced rate of mass loss at elevated temperatures, further affirming 

the enhanced thermal stability of the magnetic f-MWCNTs-based BP/PVA 

membrane. 

  

 
Fig 4.16: TGA analysis of magnetic f-MWCNTs-based BP/PVA membrane 
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4.4.5 Summary of magnetic f-MWCNTs-based BP/PVA membrane 

In summary, the novel magnetic f-MWCNTs-based BP/PVA membrane was 

successfully fabricated using a vacuum filtration technique. The 

characterization results of the membrane revealed the following key findings: 

(i) magnetite (Fe3O4) nanoparticles were successfully deposited and formed a 

uniformly dispersed network of Fe3O4/f-MWCNTs on the membrane with 

PVA (ii) the surface of the membrane was found to be smooth and porous, with 

no deliminations observed (iii) the thermal stability of the membrane was 

substantially enhanced, making it suitable for applications involving elevated 

temperatures, and (iv) the infiltration of PVA into the membrane resulted in 

higher oxygen content (25.04 wt. %). Based on the characterisation analysis, 

the transformation observed between the magnetic f-MWCNTs nanocomposite 

and magnetic f-MWCNTs-based BP/PVA membrane was insignificant. This 

suggests that no significant chemical, thermal or morphological changes 

occurred during the membrane fabrication process, and the magnetic 

nanocomposite retained its distinctive identity. Overall, the fabricated 

membrane has the potential to be employed for various applications, 

particularly in water treatment due to its enhanced properties, magnetic 

features, and hydrophilic characteristics. The combination of magnetic 

properties and the capability to remove micropollutants makes the magnetic f-

MWCNTs-based BP/PVA membrane a promising candidate for diverse water-

related applications. 

 

4.5 Response Surface methodology (RSM) modeling 

The research objective of this section is to treat the Furazolidone (FZD) 

micropollutant using the magnetic f-MWCNTs-based BP/PVA membrane and 

evaluate its removal efficiency. FZD is an anti-bacterial and anti-protozoal 

agent commonly used in farms and aquaculture, but its improper disposal can 

lead to environmental instability when released into aquatic bodies (Zdarta et 

al. 2021).  
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To optimized the FZD removal process, the researchers used response surface 

methodology (RSM) modeling, a statistical tool that helps in optimizing 

processes by studying the influence of various input variables on the output 

response. RSM enables the researchers to systematically explore the effects of 

multiple independent factors (e.g., initial pH of FZD, agitation speed, contact 

time) on the dependent variable (FZD removal efficiency) with fewer 

experimental runs. It provided valuable insights into the optimum experimental 

conditions for achieving the highest removal efficiency of FZD.  

 

Throughout this section, the performance of the magnetic f-MWCNTs-based 

BP/PVA membrane for FZD micropollutant removal is thoroughly evaluated 

using relevant graphs, figures, tables and explanations. The influence of the 

input reaction factors on the output response (FZD removal efficiency) is 

comprehensively discussed, allowing us to understand the key factors affecting 

the removal process.  

 

4.5.1 Statistical optimization for FZD removal in batch treatment 

In this study, central composite design (CCD) is employed in the RSM studies. 

When describing the correlation between input and output variables, the model 

statistics summary was compared, i.e., cubic, 2-factor interactions, cubic and 

quadratic models. The most appropriate model for the FZD micropollutant 

removal process was determined based on the correlation coefficient (R2) and 

standard deviation (S.D). The determination coefficient (R2) is the statistical 

parameter used to identify how closely the data and model are fitted. As the 

value gets closer to 1, the fitted model can offer outcomes closer to the actual 

values as a function of independent variables. A value of R2 higher than 0.8 is 

recognized as a well-fitted (Najib et al. 2017). Among all, a quadratic model 

was recommended with the S.D of 6.53 and R2 of 0.9344 in determining the 

removal efficiency of the FZD micropollutant. 
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Tab. 4.5: Statistical outline of the models 

Source Sequential 

p-value 

Standard 

deviation 

R2 Adjusted 

R2 

Predicted 

R2 

Linear <0.0001 11.18 0.7247 0.6834 0.6071 

2-FI 0.0167 9.05 0.8468 0.7928 0.7501 

Quadratic 0.0066 6.53 0.9344 0.8922 0.8046 

Cubic 0.1299 5.39 0.9713 0.9266 0.8098 

 

Additionally, the adjusted R-squared value is close to R2 for the quadratic 

model, demonstrating a good adequate correlation between the input and 

output factors’ values (Dhar et al. 2023). Adjusted R2 quantifies the amount of 

variation explained by the model over the mean and  takes into account the 

number of terms in the model. The predicted R-squared value was 0.8046, 

which was within 0.20 of the adjusted R-squared, implying no problem with 

the data or model (Jha et al. 2021). 

 

4.5.2 Development of regression model equation 

To investigate the significance of the quadratic model and the input factors, the 

summary of the analysis of variance (ANOVA) is shown in Tab. 4.6. The 

primary factor that describes the significance of the quadratic model is the p-

value with a confidence level of 95%. This means that terms with a p-value > 

0.05 are considered insignificant, while those with a p-value < 0.05 are 

considered significant. Besides, the magnitude of the model’s significance can 

be defined by Fisher’s F-value. It was achieved by analyzing the model’s mean 

square and residual error ratio. For every single significant term, a greater F-

value implies a higher significance of the term on the response (Ghoreishi et al. 

2016). The p-value and F-value in the present study were < 0.0001 and 22.14, 

respectively, further validating the adequacy of the quadratic model 

recommended in this research. 
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Tab. 4.6: ANOVA and model coefficient 

Source Sum of 

squares 

Mean 

squares 

F-value p-value Remarks 

Model 8500 940 22 <0.0001 Significant 

A-pH 940 940 22 0.0003  

B-Agitation speed 69 69 1.6 0.2  

C-Contact time 5130 5130 120 <0.0001  

AB 56 56 1.3 0.3  

AC 1000 1000 24 0.0003  

BC 17 17 0.4 0.5  

A2 760 760 18 0.0009  

B2 100 100 2.5 0.1  

C2 2.5 2.5 0.1 0.8  

Residual 600 43    

Lack of fit 430 71 3.4 0.0577 Insignificant 

Pure error 170 21    

Cor total 9100     

 

The ANOVA analysis for the removal of FZD micropollutant described the 

linear terms of pH (A), agitation speed (B) and contact time (C); inter-active 

terms of AB, AC, BC; and the quadratic terms of A2, B2 and C2. Based on p-

values, C (contact time) was observed to have the highest singular significant 

impact on the response, while A (pH) and B (agitation speed) demonstrated the 

slightest effect on the FZD micropollutant removal. In contrast, pH and the 

interaction of pH and contact time offered the most significant influence for the 

quadratic and inter-active terms, respectively. 

 

Moreover, the lack of fit and pure error are also determined from the 

ANOVA analysis (Tab. 4.6). The critical term is the F-value of lack of fit, and 

its lower value represents that the lack of fit is insignificant compared to the 

pure error. Since the primary aim is to fit the model on the data, a negligible 

lack of fit is required (Dolatabadi et al. 2019). The present study’s F-value of 

lack of fit was 3.4, confirming its insignificance. Furthermore, the p-value of 

lack of fit was estimated as 0.0577, which indicates that the lack of fit is 

negligible in contrast to pure error, and hence the model is satisfactory. 
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The signal-to-noise ratio and comparing the predicted design point values to 

the average prediction error is determined through adequate precision ratio 

(APR). The APR of RSM was 15, which confirms sufficient signal. As 

reported in a previous study, the APR value > 4 validates that the model 

efficiency is satisfactory (Emmanuel Chinonye et al. 2018). A coefficient of 

variation (C.V.%) of 8.8 was attained, which indicates that the model was 

reasonably reproducible. The C.V.% was determined as the ratio of S.D: 

average of output factor. It has been reported that the C.V.% < 10% ensures 

that the model is reasonably reproducible (Qi et al. 2019). The quadratic 

regression model equation developed for the FZD micropollutant removal 

percentage in terms of input variables is stated in Equation 4.2. 

 

Furazolidone micropollutant removal (%)  

= 79.19 + 7.24 A – 1.92 B + 16.58 C-1.87 AB – 7.92 AC + 1.01 BC – 15.03 A2 

+ 6.15 B2 +0.9571 C2                  Equation 4.2 

 

The above equation can be applied to predict the response for the particular 

variables. Besides, it is also essential to describe the variables’ relative impact 

by evaluating the model coefficients. A +ve and -ve coefficients define the 

synergistic and antagonistic effects, respectively. 

 

4.5.3 Diagnostic plots 

Apart from the correlation coefficient, graphical illustrations were also used to 

define the characteristics of the residual, i.e., variations between experimental 

and predicted values. This section discusses the evaluation of the normality of 

the experimental data, displaying the residual for the predicted findings and the 

level of closeness between actual and predicted outcomes. Fig. 4.17 (a) 

illustrates the normal probability graph in which the marked points near the 

straight line confirm the normal distribution of errors with zero as an average 

value. Besides, the model adequacy can also be determined by investigating the 

residual vs. predicted graph as demonstrated in Fig. 4.17 (b); randomly 
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scattered points distributed evenly validate the model’s adequacy. Fig. 4.17 (c) 

displays the values attained from the presented model compared to the actual 

obtained values. The points clustering close to the diagonal line signify a good 

relationship between the predicted and experimental values, ensuring the 

model’s robustness (Karri et al. 2018). Besides, the plots of residuals displayed 

that the majority of the points were within the range of -1 to +1, which implies 

that most residuals were insignificant. Therefore, it can be concluded that the 

quadratic model accepted was adequate in modeling the elimination of FZD 

micropollutant onto the magnetic f-MWCNTs-based BP/PVA membrane. 
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Fig 4.17: (a)Normal probability of residuals values by the model, (b) residual against 

predicted values by the model, (c) predicted against actual values by the model 
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4.5.4 Evaluation of the parameters’ effect on FZD micropollutant 

removal 

The interaction between the independent variables and their influence on FZD 

micropollutant elimination is depicted in Fig. 4.18 (a-c). The response for the 

FZD micropollutant was attained by varying two parameters while holding 

other variables constant. The 3-D response surface plots for various 

independent process parameters regarding FZD micropollutant removal using 

magnetic f-MWCNT-based BP/PVA membrane are demonstrated in Fig. 4.18. 

The plots help to better understand the effect of two independent parameters 

and their interaction influences on the FZD micropollutant elimination. 

 

As reported in the previous findings, the pH of the FZD micropollutant 

solution significantly impacts the FZD micropollutant removal efficiency using 

magnetic nanomaterials (Kashefi et al. 2019). The interaction influence of pH 

with agitation speed on FZD micropollutant removal efficiency is depicted in 

Fig. 4.18 (a). The maximum FZD micropollutant removal efficiency of 88% is 

observed at pH 6 and the agitation speed range of 150 to 200 rpm, based on a 

3-D surface response plot. Moreover, Fig. 4.18 (b) displays the incorporated 

effect of pH and contact time for the FZD micropollutant removal percentage. 

Hence, the highest FZD micropollutant removal percentage could be achieved 

when both variables were set to a contact time of 185 min. and pH 6-6.5. Based 

on the results, it is observed clearly that the pH significantly impacts the FZD 

micropollutant removal efficiency. On the other hand, the low removal of FZD 

micropollutant is observed at low pH values due to the presence of a large 

amount of protons competing with the FZD micropollutant for adsorption sites 

(Mittal et al. 2010).  

 

Besides, the elimination of organic or inorganic compounds mainly relies on 

the surface charge of the membrane, i.e. magnetic f-MWCNTs-based BP/PVA 

membrane, for electrostatic repulsion/ attraction, which depends on the point of 

zero charges (pHPZC) (Inyang et al. 2014). The pHPZC is the pH at which the 

overall internal and external surface charges on the membrane are zero (Kumar 

et al. 2021, Li et al. 2022). The iso-electric point of magnetic f-MWCNTs-

based BP/PVA membrane (pHPZC) was around 7 (Tran et al. 2016). If pH is 
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less than pHPZC, the surface of the magnetic f-MWCNTs-based BP/PVA 

membrane contains +ve charge properties; and the FZD micropollutant has 

saturated nitrogen atom (Pashirova et al. 2019). Whereas pH is greater than 

pHPZC, the +ve-charged groups on the membrane’s surface merge with the 

unpaired electron of saturated nitrogen via electrostatic attraction (Zhen-Yuan 

et al. 2015). Besides, H+ ion concentration decreases, resulting in a lower +ve 

charged density on the surface of magnetic f-MWCNTs-based BP/PVA 

membrane, leading to a reduction in electrostatic attraction when pH is greater 

than pHPZC (Zhen-Yuan et al. 2015, Vyavahare et al. 2018) However, the FZD 

micropollutant is a non-ionic synthetic nitrofuran antibiotic with insignificant 

electrostatic interaction between the magnetic f-MWCNTs-based BP/PVA 

membrane and the FZD antibiotic. As a result, FZD removal mainly occurred 

due to hydrogen bonding because of non-charged antibiotics (Yang et al. 

2015). Based on the current research study, the removal percentage of the FZD 

micropollutant started decreasing above pH 7, as it may affect the bond 

formation among the magnetic f-MWCNTs-based BP/PVA membrane and the 

FZD micropollutant. The aforementioned statement has also confirmed by the 

3-D surface graph that above pH 7, the removal efficiency of the FZD 

micropollutant decreased to 75-76%. Due to this fact, the maximal FZD 

micropollutant removal efficiency of 98.54 was attained at pH 6 in the current 

study. Previous studies also reported a similar trend (Samal et al. 2021, 

Sadeghfar et al. 2018). 

 

Fig. 4.18 (c) shows the 3-D surface graph for the integrated effect of contact 

time and agitation speed.  The ANOVA results showed that the contact time is 

an essential variable influencing the removal percentage of the FZD 

micropollutant in this study. It is described that the FZD uptake capacity 

improves with extending contact time and agitation speed. It can be attributed 

to the increase in dispersion and surface area of the membrane in the FZD 

micropollutant solution (Khafri et al. 2017). The effect of contact time on the 

magnetic f-MWCNTs-based BP/PVA membrane’s adsorption of FZD 

micropollutant is a crucial aspect to consider in the removal process. Based on 

the Fig. 4.18 (c) it shows the significance of understanding the relationship 

between contact time and FZD micropollutant adsorption efficiency. It could 
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be described that prolonged contact time allows more opportunities for the 

FZD micropollutant to interact with the magnetic f-MWCNTs-based BP/PVA 

membrane, potentially leading to increased adsorption capacity (Najib et al. 

2017). However, there might be a point of saturation beyond which additional 

contact time may not significantly enhance adsorption. Optimal contact time is 

a critical parameter to determine for achieving efficient and effective FZD 

micropollutant removal using magnetic f-MWCNTs-based BP/PVA 

membrane-based adsorption approach. Likewise, agitation speed is also an 

essential and efficient tool that can improve the adsorption rate and minimize 

the contact time; therefore, it is more recommended than other conventional 

adsorption routes. The findings are identical to those described by the prior 

researchers (Ruthiraan et al. 2017).       
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Fig 4.18: 3-D Plot for furazolidone micropollutant removal 

 

4.5.5 Verification of the model  

In terms of ANOVA outcomes, the optimum conditions to attain the maximum 

FZD micropollutant removal of 99.69% were at pH 6.404, 197 rpm, and 346 

min. of the reaction time. To validate the optimized results achieved, three 

optimized conditions were taken for the model validation. In this research 

study, a conventional protocol was followed, entailing the repetition of each 

experimental procedure three times to verify the predicted efficiency %, and 

the outcomes were presented in Tab. 4.7. It was noted that the experiment and 

predicted values agreed with each other, with a less than 2% standard error. 
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Tab 4.7: Model validation at optimum conditions 

Solution 

A B C Furazolidone removal (%) 

pH Agitation 

Speed 

(rpm) 

Contact 

time (min.) 

Predicted Experimental 

1 6.4 197 346 99.69 98.74 

2 5.9 106 328 99.79 98.45 

3 6 122 345 98. 71 98.92 

 

Based on the current study, the FZD micropollutant removal efficiency (%) 

obtained using magnetic f-MWCNT-based BP/PVA was higher and more 

efficient than many other researched magnetic adsorbents, particularly for FZD 

micropollutant (Su et al. 2022, Liu et al. 2015). 

 

4.5.6 Summary of RSM modeling 

RSM modeling was applied in the present study to predict FZD micropollutant 

elimination using a magnetic f-MWCNTs-based BP/PVA membrane. The 

model’s predictive efficacy was evaluated using statistical correlation 

coefficient (R2) measure. Based on the findings, the RSM model concludes the 

following: (i) 99.69% of FZD micropollutant removal was predicted at pH 6.4, 

agitation speed 197rpm, and contact time 346 with an R2 value of 0.93, which 

defines the model’s accuracy, and (ii) each independent process parameter is  

significant in FZD removal efficiency; however, the contact time is the most 

essential among all selected process parameters. The RSM results showed that 

the RSM model is an effective tool for the removal efficiency optimization of 

FZD micropollutant using magnetic f-MWCNTs-based BP/PVA membrane.  
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4.6 Adsorption Capacity for FZD micropollutant elimination using 

magnetic f-MWCNT-based BP/PVA membrane   

This section evaluated the adsorption performance of the magnetic f-MWCNT-

based BP/PVA membrane via adsorption isotherms, kinetics and 

thermodynamic studies. 

 

4.6.1 Influence of initial micropollutant concentration and contact time 

on the adsorption capacity 

The present study explored the adsorption performance of the magnetic f-

MWCNTs-based BP/PVA membrane for the elimination of FZD 

micropollutant. Fig. 4.19 depicts the effect of contact time on the adsorption of 

FZD micropollutant onto the magnetic f-MWCNTs-based BP/PVA membrane. 

The study of the initial concentration is a vital phase of the adsorption analysis 

process as it facilitates demonstrating the equilibrium position (Obayomi et al. 

2019). This is the stage where the FZD micropollutant ion uptake on the 

membrane is in a dynamic equilibrium state (Khawar et al. 2019).  

 

The initial concentration of the FZD micropollutant varied from 5 to 25 mg/L 

at optimum pH, temperature, and agitation speed. It was observed from the 

results that at the lower concentration of FZD micropollutant, the adsorption 

equilibrium was achieved more rapidly in comparison to the higher 

concentration of the FZD micropollutant. Initially, the uptake of FZD 

micropollutant at each concentration was fast, which slowed down as the time 

extended and reached a noticeable equilibrium at a lapse of 210 min. No 

appreciable adsorption uptake was reflected beyond this time. At early 

concentration, the maximal adsorption uptake can be attributed to the 

significantly greater number of active sites present on the magnetic f-

MWCNTs-based BP/PVA membrane, and the gradual possession of those 

active sites with FZD micropollutant ions decreases the rate of adsorption at 

later concentrations (Madala et al. 2017). Besides, it can also be observed from 

Fig. 4.19 that at 5 mg/L of the FZD micropollutant, the adsorption equilibrium 

was reached after 60 min. In contrast, it took 120, 150, 180, and 210 min. to 

attain adsorption equilibrium for 10, 15, 20, and 25 mg/L, respectively. This is 
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ascribed to the gradient concentration increase of the driving force to overcome 

the overall resistance of the FZD micropollutant ion mass transfer, 

consequently a greater adsorption rate (Banerjee et al. 2017). To ensure that the 

adsorption equilibrium was reached entirely, a further 60 min. contact time was 

kept. It was observed that there were slight changes in adsorption uptake after 

300 min. Therefore, it can be concluded that the adsorption equilibrium 

positions were attained at 300 min, as the amount of the FZD micropollutant 

adsorbed and desorbed on the magnetic f-MWCNTs-based BP/PVA membrane 

was nearly even. Compared to the previous studies reported for FZD 

micropollutant removal, the magnetic f-MWCNTs-based BP/PVA membrane 

displayed higher adsorption uptake at different concentrations (Gurav et al. 

2020, Zhen-Yuan et al. 2015). 

 

 
Fig 4.19: Effect of contact time on the adsorption capacity at different initial 

concentrations (pH 6, contact time 350 min, and agitation speed 200 rpm)
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Tab. 4.8: Adsorption uptake of FZD micropollutant on different adsorbents 

Material Experimental 

conditions 

Adsorption 

capacity (mg/g ) 

Remarks References 

Fe3O4- banana pseudo-

stem biochar 

Volume= 100 mL  

pH=3-12 

Dosage=0.0025g 

Temperature=15-45 oC 

Conc.=20 to 80 mg/L 

 

31.45 

• The fabrication of the material required 

extensive temperature, i.e., 600oC. 

• The optimum concentration of the FZD 

micropollutant was kept at 20 mg/L. 

• HPLC chromatography was used to detect the 

pollutant at 365 nm. 

• The adsorption equilibrium time was reported at 

540 min. (pH 7.5, temperature 45 oC), whereas 

the removal efficiency of 96.81% was achieved 

in 9 hrs. 

(Gurav et al. 2020) 

Granular activated 

carbon (GAC) 

Volume= 50 mL  

pH=2-13 

Dosage=0.4 g 

Temperature=25 oC 

Conc.=5 to 30 mg/L 

3.23 

• The adsorption equilibrium time of the FZD 

micropollutant on the GAC was 120 min. 

•  The pollutant was detected using UV-

spectrophotometer at 278 nm. 

(Cheng et al. 2019) 

Fe3O4- MWCNTs 

Volume= 50 mL  

pH=3-9 

Dosage=0.8 g 

11.98 

• In this study, the adsorption equilibrium state 

was accomplished at pH 6 and contact time 600 

min., 

(Liu et al. 2015) 
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Material Experimental 

conditions 

Adsorption 

capacity (mg/g ) 

Remarks References 

Temperature=25 oC 

Conc.=1 to 15 mg/L 

• At 365 nm, the pollutant was detected using 

UV- spectrophotometer 

• The removal percentage of the FZD 

micropollutant was noticed at 10 mg/L. 

magnetic f-MWCNTs-

based BP/PVA 

membrane 

Volume= 100 mL  

pH=4-8 

Temperature=25 oC 

Conc.=5 to 25 mg/L 

29.67 

• The membrane was fabricated under relatively 

normal conditions. 

• Adsorption equilibrium was observed at 180 

min., pH 6, agitation speed 200 rpm. 

• The maximum degradation efficiency was 

found in 300 min. (98.54%, 10 mg/L).  

Present study 
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4.6.2 Adsorption isotherms 

Equating equilibrium data through empirical and theoretical models is essential 

for practical operation. In this study, the interaction mechanism between the 

adsorbate and adsorbent was examined by employing the adsorption isotherms 

described by Langmuir, Freundlich, Temkin, and Dubinin Radushkevich 

isotherms. Moreover, the adsorption isotherm models also reflect information 

on the adsorbate distribution on the surface of the membrane when the 

adsorption process has reached equilibrium.  

 

The amount of FZD micropollutant adsorbed per unit mass of magnetic f-

MWCNT-based BP/PVA membrane was determined using adsorption isotherm 

models as a function of solutes’ equilibrium concentration at room 

temperature. Fig. 4.20 (a-d) illustrates the linearized plots for Langmuir, 

Freundlich, Temkin, and Dubinin Radushkevich adsorption isotherm models. 

All the important parameters and correlation coefficients (R2) of each isotherm 

model studied are listed in Tab. 4.9.  
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Fig. 4.20: Graphs of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin- 

Radushkevich adsorption isotherm for FZD micropollutant onto magnetic f-

MWCNTs-based BP/PVA 

 

In comparison to the R2 value of Freundlich, Temkin, and Dubinin 

Radushkevich models, it was observed that the Langmuir isotherm model best-

fit the FZD micropollutant adsorption onto the magnetic f-MWCNT-based 

BP/PVA membrane as it showed the highest R2 value, i.e. 0.994. Based on the 

assumption defined by the Langmuir model, the adsorption process carried out 

a mono-layer and homogeneous mechanism, where the adsorbent and 

adsorbate are energetically similar at sorption sites (Jiang et al. 2020). The 

mono-layer adsorption capacity determined by the Langmuir isotherm model 
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was 29.67 mg/g. Freundlich isotherm model concluded that the adsorption 

surface of the fabricated membrane was heterogeneous and preferred FZD 

micropollutant adsorption as the 1/n value was within the range of 0 to 1 (Feng 

et al. 2021). Furthermore, the Dubinin Radushkevich isotherm model described 

that the adsorption approach is physical, as the mean adsorption energy (E) 

value was lower than 8 kJ/ mol (Ahmed et al. 2013). This confirms that there 

was a likelihood of physical interaction of FZD micropollutant on the 

membrane surface.  
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Tab. 4.9: Isotherm parameters for FZD micropollutant onto the magnetic f-MWCNTs-

based BP/PVA membrane 

Adsorption Isotherm Parameters 

 qm (mg/g ) KL (L/mg) R2 

Langmuir 29.67 1.73 0.994 

 KF (mg/g )(L/mg1)n) 1/n R2 

Freundlich 16.20 0.33 0.971 

 kT (L/mg) B R2 

Temkin 34.90 5.09 0.960 

 qs (mg/g ) β (mol.2/J2)×10-8 E (kJ.mol1) R2 

Dubinin–

Radushkevich 
23.03 4 3.54 0.882 

 

4.6.3 Adsorption Kinetics 

The kinetics of FZD micropollutant adsorption onto the magnetic f-MWCNT-

based BP/PVA membrane at various initial concentrations of FZD 

micropollutant were examined by plotting the adsorption data to two different 

kinetic models: pseudo-first and second-order kinetic models. Based on the 

pseudo-first and second order kinetic model, it is assumed that physisorption 

and chemisorption control the rate of adsorption, respectively, through 

transferring electrons among the adsorbate and adsorbent (Qin et al. 2020, 

Obayomi et al. 2020). 
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Fig. 4.21: (a) Pseudo first-order kinetic model, (b) Pseudo second-order Kinetic model 

for the adsorption of FZD micropollutant using magnetic f-MWCNTs-based BP/PVA 

membrane 

 

Fig. 4.21 (a-b) illustrate the pseudo-first and second-order kinetic curves 

plotted from the data attained from experimental studies. The summary of the 

results assessed from the slopes and intercepts of the resultant regression 

curves, with the parameters k1, k2, and R2, is described in Tab. 4.10. In contrast 

to pseudo-first-order kinetic models, the pseudo-second-order kinetic model 

displayed a higher R2 value. It can be observed that the R2 value of the pseudo-

second-order model for FZD micropollutant was close to 1, which was higher 
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than the pseudo-first-order model. Moreover, the qe,EXP (experimental value) 

was also close to qe,CAL (calculated value). This indicates that the adsorption 

kinetics of FZD micropollutant followed a pseudo-second-order kinetic model. 

This phenomenon is expected as the calculated values of the parameters on the 

pseudo-first-order kinetic model were associated with the experimental values 

of adsorption quantity (qe) at equilibrium. However, it was not easy to achieve 

in the actual process. In addition, the pseudo-second-order kinetic model 

involves different parameters such as particle diffusion and surface adsorption, 

which observes the entire adsorption mechanism of organic compounds on the 

solid surface (Kumar et al. 2012). Moreover, the pseudo-second-order kinetic 

model also confirmed that the calculated adsorption capacity (qe,CAL) from the 

slopes and intercepts are close enough to the adsorption capacity (qe,EXP) 

achieved from the experiment. It can be observed from Tab. 4.10 that as the 

initial concentration of the FZD micropollutant increased, there was a decline 

in the pseudo-second-order rate constant (k2). It is mainly because FZD 

micropollutant adsorption onto the magnetic f-MWCNT-based BP/PVA 

membrane attained equilibrium faster at lower concentrations than at higher 

concentrations (Amran et al. 2021). Moreover, the findings also determine that 

the chemisorption dominates and controls FZD micropollutant adsorption onto 

the magnetic f-MWCNT-based BP/PVA membrane. The interaction between 

the magnetic f-MWCNT-based BP/PVA membrane and FZD micropollutant 

implicates electron sharing/ exchanging (Wei et al. 2021). The present results 

are identical to the previous study, where they fabricated novel silver 

nanoparticles (AgNPs) for the Congo red dye removal (Obayomi et al. 2022). 

Based on the literature, it has been noticed that the pseudo-second-order kinetic 

model is widely employed for the sorption of aqueous contaminants, such as 

heavy metals, dyes, and micropollutants (Huang et al. 2015, Tang et al. 2021). 
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Tab. 4.10: Pseudo first-order kinetic model, and (b) Pseudo second-order Kinetic 

model for the adsorption of FZD micropollutant using magnetic f-MWCNTs-based 

BP/PVA membrane 

Concentration 

(mg/L) 

qe (exp.) 

(mg/g ) 

Magnetic f-MWCNTs-based BP/PVA membrane 

 Pseudo First-order Pseudo Second-order 

qe 

(cal.) 

(mg/g) 

k1 (min-1) R2 qe 

(cal.) 

(mg/g) 

k2 

(g/mg.min) 

R2 

5 7.4 2.46 0.02 0.37 7.96 0.0068 0.997 

10 14.2 7.58 0.02 0.66 16 0.0017 0.994 

15 20.6 13.4 0.03 0.70 24 0.0009 0.983 

20 23.5 15.1 0.03 0.70 27.7 0.0007 0.979 

25 29.1 17.3 0.03 0.68 33.4 0.0006 0.984 

 

4.6.4 Adsorption Thermodynamic 

The change of free energy, including entropy (∆S0), enthalpy (∆H0), and Gibbs 

free energy (∆G0), for FZD micropollutant adsorption, was investigated at 

varying temperatures to describe the spontaneity and feasibility of the 

adsorption approach. The graph of LnKo vs. 1/T yielded a straight-line, which 

was plotted from the experimental results, and ∆H0 and ∆S0 were calculated 

from the slope and intercepts at different concentrations of the FZD 

micropollutant solution. The thermodynamic adsorption results at different 

FZD micropollutant concentrations are shown in Tab. 4.11. The negative ∆G0 

value revealed that the adsorption of FZD micropollutant on the magnetic f-

MWCNT-based BP/PVA membrane is spontaneous, feasible, and 

thermodynamically satisfactory (Zhen-Yuan et al. 2015). Moreover, the 

negative ∆S0 and ∆H0 values, as shown in Tab. 4.11 imply exothermic and 

random decline at the adsorbate-membrane interface during the adsorption of 

FZD micropollutant onto the magnetic f-MWCNT-based BP/PVA membrane 

(Khawar et al. 2019). Based on the thermodynamic results, it can be concluded 

that the adsorption efficiency of the magnetic f-MWCNT-based BP/PVA 

membrane towards FZD micropollutant molecules was favorable at lower 
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temperatures. Similar findings have been reported by several researchers (Liu 

et al. 2009, Obayomi et al. 2020, Chen et al. 2009). 

 

Tab. 4.11: Thermodynamic parameters for FZD micropollutant onto the magnetic f-

MWCNTs-based BP/PVA membrane 

Micropollutant 

conc. (mg/L) 

∆HO 

(kJ/mol.) 

∆SO 

(J/mol.) 

∆GO (kJ/mol.) 

298 K 308 K 318 K 

5 -49 -129 -11 -9.4 -8.1 

10 -40 -110 -7.9 -6.8 -5.8 

15 -24 -58 -6.6 -6.1 -5.5 

20 -12 -31 -3.2 -2.9 -2.5 

25 -11 -31 -2.2 -1.9 -1.6 

 

4.7 Reusability of magnetic f-MWCNT-based BP/PVA membrane  

Reusability is one of the vital aspects of sustainable industrial application. In 

the current study, the reusability of the magnetic f-MWCNT-based BP/PVA 

membrane was evaluated under batch treatment using ethanol as a solvent for 

five cycles. The outcome of the reusability performance is demonstrated in 

Fig. 4.22. In contrast to magnetic MWCNTs as adsorbents, the magnetic f-

MWCNTs-based BP/PVA membrane have a similar FZD micropollutant 

removal efficiency for the first cycle (Zhen-Yuan et al. 2015). However, after 

the first cycle, the results exhibited that magnetic f-MWCNTs-based BP/PVA 

membrane displayed higher FZD micropollutant elimination efficiency than 

magnetic MWCNTs. The decline of removal capacity for magnetic MWCNTs 

adsorbents can be linked to its internal conditions, for instance, decomposition 

of the adsorbent or quantity loss of the adsorbent (Hussain et al. 2021).  

 

On the other hand, the magnetic f-MWCNTs-based BP/PVA membrane still 

displays higher removal efficiency after the first cycle than in previous studies 

due to higher adsorption site availability on the prepared membrane (Stango et 

al. 2019). The higher adsorption sites availability on the membrane surface is 

mainly due to the acid treatment of MWCNTs. Over the time removal 
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efficiency declined, resulting in the loss of adsorption sites on the fabricated 

membrane. 

 

In the study, as mentioned earlier, Zhen and co-associates maintained the 

reusability efficiency of magnetic MWCNTs after the five cycle as 70% (Zhen-

Yuan et al. 2015). Whereas the magnetic f-MWCNTs-based BP/PVA 

membrane still sustained a high removal rate of FZD micropollutant, which 

was 88% compared to the first round. Based on the current result, it can be 

expected that even after the fifth round, the removal rate of FZD 

micropollutant would be higher than many other magnetic materials studied. 

Therefore, it can be stated that the magnetic f-MWCNT-based BP/PVA 

membrane can be efficiently reused by using ethanol as solvent. 

 

 
Fig 4.22: Reusability of magnetic f-MWCNTs-based BP/PVA membrane for FZD 

micropollutant removal efficiency (%) 

 

4.8 Characterisation of FZD micropollutant molecules- magnetic f-

MWCNTs-based BP/PVA membrane interaction 

The characterisation analyses were conducted in this section to investigate the 

interaction of FZD micropollutant molecules with the magnetic f-MWCNTs-
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based BP/PVA membrane. Fourier transform infrared spectrophotometry (FT-

IR) and Field emission scanning electron microscope (FE-SEM) were 

employed to describe the available surface functional moieties and surface 

morphology of the magnetic f-MWCNTs-based BP/PVA membrane. 

 

4.8.1 Fourier transform infrared spectrophotometry (FT-IR) analysis 

Fig. 4.23 illustrates the comparison of the FT-IR spectrum of the magnetic f-

MWCNTs-based BP/PVA membrane before and after the elimination of the 

FZD micropollutant. The study aimed to describe the availability of functional 

moieties before and after the elimination of FZD micropollutant. Fig. 4.23 

verified the formation of magnetite (Fe3O4) nanoparticles. The spectrum 

demonstrated a sharp and distinct peak at 514 cm-1, which came from the 

stretching vibration of the metal-oxygen bond and verified the development of 

the Fe3O4 spinel oxide. Besides, the 526 cm-1 band is also related to Fe3+ 

vibration in the octahedral hole in the spinel network (Mahdavi et al. 2013). 

The peaks at 3302 and 2328 cm-1 corresponded to hydroxyl stretching vibration 

due to the hydrogen bonds (Aliahmad et al. 2013). The absorbance band at 

2894 cm-1 is associated with C-O, and two adsorption bands at 1398 and 1046 

cm-1 are ascribed to -COO and CO moieties, respectively. In addition, two 

absorbance peaks at 1540 and 818 cm-1 are related to C=O bonds in the carbon 

dioxide adsorbed (Mittan et al. 2008). The findings from the FT-IR analysis of 

the magnetic f-MWCNTs-based BP/PVA membrane were similar to the 

previous study reported for ultra-sound assisted removal of methylene blue on 

the surface of PVA/ Fe3O4-CNTs nanocomposite (Sadeghfar et al. 2018).  
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Fig. 4.23: FT-IR spectra of magnetic f-MWCNTs-based BP/PVA membrane before 

and after FZD adsorption 

       

It was visible from Fig. 4.23 that there were some variations in intensities and 

positions of infrared bands noted before and after the elimination of FZD 

micropollutant on the magnetic f-MWCNTs-based BP/PVA membrane. Fig. 

4.23 displayed the FT-IR spectrum after loading the FZD micropollutant on the 

magnetic f-MWCNTs-based BP/PVA membrane, and it showed that some 

peaks had formed, shifted, and disappeared due to the FZD micropollutant 

adsorption on the magnetic f-MWCNTs-based BP/PVA membrane. These 

variations in intensities and position might be due to the decrease and loss of 

surface hydrogen-bonded hydroxyl (OH) moieties and the interaction of the 

cyanide group from the FZD micropollutant during the FZD micropollutant 

extraction (Moazzen et al. 2019). For example, as shown in Fig. 4.23, it can be 

observed that the adsorption peaks at 3302, 2894, 2328, 1540, 1398, 1046, 818 

and 526 cm-1 are shifted respectively to 3316, 2906, 2348, 1554, 1402, 1048, 

816, and 514 cm-1, suggesting the contribution of these functional bonds in the 

binding of the FZD micropollutant ion on the magnetic f-MWCNTs-based 

BP/PVA membrane (Kumar et al. 2020). These outcomes revealed that 
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hydrogen bonding plays a vital role in the adsorption of the FZD 

micropollutant using magnetic f-MWCNTs-based BP/PVA membrane.  

 

4.8.2 Field emission scanning electron microscope (FE-SEM) analysis 

FE-SEM was employed to compare the surface morphology of the magnetic f-

MWCNTs-based BP/PVA membrane before and after the elimination of the 

FZD micropollutant. Fig. 4.24 depicts the FE-SEM images of the magnetic f-

MWCNTs-based BP/PVA membrane before and after the adsorption of the 

FZD micropollutant. Fig. 4.24 (a-b) displayed that the surface of the magnetic 

f-MWCNTs-based BP/PVA membrane is uniformly dispersed with the 

network of Fe3O4/ f-MWCNTs, indicating the homogeneous distribution of 

Fe3O4/ f-MWCNTs in the polyvinyl alcohol matrix. Besides, it is noted that the 

prepared membrane has a smooth and porous surface, which is important in the 

adsorption of FZD micropollutant molecules. High porosity is an important 

aspect of an excellent adsorbent. After loading the FZD micropollutant, the 

membrane’s surface transformed into a rougher and thicker surface with 

saturated pores, as illustrated in Fig. 4.24 (c-d). Due to the precipitate 

formation from the adsorbed micropollutant molecules, the thicker membrane 

surface was observed, subsequently resulted decline in the FZD micropollutant 

uptake after several cycles. 
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Fig. 4.24: FE-SEM morphology of magnetic f-MWCNTs-based BP/PVA membrane 

before (a-b) and after (c-d) FZD adsorption 

 

4.9 Adaptive neuro-fuzzy inference system (ANFIS) modeling 

Adaptive neuro-fuzzy inference system (ANFIS) is based on mathematical 

computation, which is apt to explain complex and non-linear problems as its 

process is coupled to the Takagi- Sugeno fuzzy inference framework  (Adday 

et al. 2022). Therefore, there has recently been tremendous attention given to 

the application of ANFIS to various processes. Besides, ANFIS has also gained 

extensive attention in modeling chemical engineering applications, such as 

predicting specific energy consumption, reduction in moisture content, 

adsorption uptake, etc. (Afriyie Mensah et al. 2020). Researchers who have 

utilized ANFIS modeling conclude that they have found ANFIS to be an 

adequate computing technique; moreover, the model’s ability to predict 
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experimental results and mathematical clarifications is also suitable for their 

particular research studies. 

 

This section aims to use the ANFIS soft computational technique to predict 

the removal percentage model for FZD micropollutant. Subsequently, the 

experimental and predicted results were compared, and the ANFIS modeling 

outcomes were depicted to deliver strong theoretical evidence for FZD 

micropollutant batch removal treatment. In addition, a critical comparison of 

the predictive capabilities of the RSM and ANFIS models was also described. 

Statistical error functions were also employed to evaluate the performance of 

the two models under study. 

 

4.9.1 Optimization of fuzzy inference system   

As mentioned earlier, the ANFIS modeling framework combines neural and 

fuzzy logic networks, which derive the optimum rules and provide the 

concluding model through training data (Olatunji et al. 2022). In the present 

study, Takagi-Sugeno fuzzy inference systems were applied to model the 

percentage of FZD removal by the magnetic f-MWCNTs-based BP/PVA 

membrane because it can accurately follow the non-linear data. Furthermore, 

data were normalized in the fuzzy model study to enhance the system’s 

efficiency.  

 

 
Fig. 4.25: ANFIS Sugeno type structure 
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The ANFIS data used in the MATLAB (R2021a) m-file consisted of a 240 x 

5 matrix, representing 240 runs of 3 input factors (pH, agitation speed (rpm), 

contact time (min)), and 240 runs of a single output factor (removal efficiency 

(%)). The data was divided into a ratio of 60:40 for training and testing modes. 

The data comprising pH, agitation speed and contact time was given through 

the fuzzy model (trimf membership function) during the training mode. The 

main strength of ANFIS is in attaining limited error through improving fuzzy 

controllers with self-learning ability (Shariati et al. 2020). The data was trained 

at 0 to 100 epoch iterations error tolerance. An error magnitude of 2.651 after 

100 epoch iteration was produced during training mode, which ensured the 

satisfaction of the fuzzy system in modeling the elimination of FZD 

micropollutant in the removal process. During the training and testing phase in 

the ANFIS modeling, the coefficient of determination (R2) was found to be 

0.985, confirming that the model is highly precise. The ANFIS framework and 

training data are shown in Tab. 4.12, which lends credence to the suitability of 

the fuzzy inference (FIS) system framework in predicting the removal of FZD 

micropollutant using magnetic f-MWCNTs-based BP/PVA membrane. It has 

been reported that if the R2 value is close to 1, the predicted data of the model 

will best fit the experimental point better, which means that the predicted and 

experimental data are more comparable and the model error is nearly 

insignificant (Igwilo et al. 2022, Onyejiuwa et al. 2022).  

 

Fig. 4.26 illustrates the graphical correlation between the experimental and 

predicted ANFIS model results. Prior studies have reported that the ANFIS 

model displays better predictive capability than other neural models, such as 

artificial neural network (Olabi et al. 2023, Kaveh et al. 2018). Based on Fig. 

4.26, the experimental and model-predicted plots displayed a good closeness 

among them, consequently, exact predictability with the ANFIS tool. Besides, 

a high ANFIS R2 value of 0.985 was achieved for the response of FZD 

micropollutant removal efficiency (%), which revealed that the model offered 

positive prediction, thus confirming an adequate adjustment of the ANFIS 

model by using simulated data and displayed higher model performance. The 

results of the ANFIS model proved the accuracy and robustness of the ANFIS 

model. 
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Tab. 4.12: ANFIS framework and training parameters 

ANFIS parameters FZD micropollutant 

Number of nodes 78 

Number of linear parameters 27 

Number of non-linear parameters 27 

Total number of parameters 54 

Number of training data pairs 144 

Average training error  2.7 

Average testing error 2.7 

Membership function trimf 

Output membership function Constant 

Number of epochs 100 

Number of checking data pairs 0 

Method of optimization Hybrid 

Number of fuzzy rules 27 

 

 

 
Fig. 4.26: Correlation plot of ANFIS predicted and experimental removal efficiency 
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4.9.2 Sensitivity using ANFIS 

The outcomes from the 3-D surface for the elimination of the FZD 

micropollutant as a function of two varied input parameters are illustrated in 

Fig. 4.27 (a-c). These graphs support a better comprehension of the influence 

of two independent parameters and their interaction impacts on the FZD 

micropollutant removal. 

 

It is clear, based on Fig. 4.27, that the elimination rate of the FZD 

micropollutant increased with the increasing contact time and pH, as predicted 

by the ANFIS model. Fig. 4.27 (a) displayed that the removal efficiency of the 

FZD micropollutant reached up to 88% when the pH and contact time were 

within the range of 5.5 to 6.5 and 140 to 170 rpm, respectively. It revealed that 

an increase in agitation speed initially increases the elimination rate of the FZD 

micropollutant, which is mainly due to the extend contact of FZD ions with the 

active sites and inner pores of the magnetic f-MWCNTs-based BP/PVA 

membrane. Conversely, after exceeding the agitation speed of 170 rpm, the 

removal of the FZD micropollutant declined. This could be due to the fact that 

a higher speed of stirring has led to more movement of particles and, in turn, 

has weakened the contact between the particles and the surface of the 

membrane (Sadeghizadeh et al. 2019). Thus, the removal efficiency is 

decreased, and this high speed could even result in the segregation of previous 

adsorbed particles.   

 

Fig. 4.27 (b) displays the 3-D surface graph for the integrated effect of 

contact time and pH. The highest FZD micropollutant removal percentage 

could be achieved when both variables were at a contact time of 200 min. and 

pH 6-6.5. Based on the results, it was observed clearly that the pH significantly 

impacts the FZD micropollutant removal efficiency. On the other hand, the low 

removal of the FZD micropollutant was noticed at a low pH value due to the 

large amount of protons that compete with the FZD micropollutant for 

adsorption sites. 
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Fig. 4.27 (c) shows the 3-D surface graph for the integrated effect of contact 

time and agitation speed. The results showed that the agitation speed is an 

essential variable influencing the removal percentage of FZD micropollutant in 

this study (Elboughdiri 2020). It was described that the FZD uptake capacity 

improves with extending contact time and agitation speed. It can be attributed 

to the increase in dispersion and surface area of the membrane in the FZD 

micropollutant solution. The agitation speed is an essential and efficient tool 

that can improve the adsorption rate and minimize the contact time (Shahid et 

al. 2021); therefore, it is more recommended than other conventional 

adsorption routes. 
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Fig. 4.27: ANFIS prediction 3D surfaces of the FZD removal 

 

4.9.3 Model efficiency  

Statistical analysis was employed to demonstrate the data fitting and evaluate 

the accuracy of the model predictions (Mossavi et al. 2019). To further assess 
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the precision capability of the models, five statistical error functions were used, 

as shown in Tab. 4.13. The results indicated minor error values for both the 

RSM and ANFIS models, signifying good model predictions. Additionally, R2 

and adjusted R2 were calculated for both models. It is well-known that higher 

the R2 and adjusted R2 values indicate better the model predictions, and these 

values should ideally be at least 0.8 (Hamzah et al. 2021).  

 

Tab. 4.13: Comparison of statistical parameters from RSM and ANFIS models 

Statistical parameters 
Model 

RSM ANFIS 

RMSE 0.019 0.008 

AARE 0.015 0.003 

HYBRID (%) 3.547 0.561 

R2 0.934 0.985 

Adj-R2 0.892 0.997 

 

In general, the ANFIS process showed clear superiority, and the values 

calculated from statistical parameters indicate that the RSM model was 

inadequate (Azqhandi et al. 2017). However, data values from residuals vs. 

predicted can provide further insights into the model’s fitting for the dataset. 

For example, if the residuals behave randomly, it shows that the model 

accurately captures the data (Foroughi et al. 2020, Mousazadeh et al. 2021). 

But, if the residuals do not exhibit randomness, it indicates that the model does 

not fit well.  

 

The diagnostic plots between the experimental and predicted values by the 

RSM and ANFIS processes are shown in Fig. 4.28. The residuals plotted for 

both models indicate that the allocation of residuals has random behavior. 

Besides, the fluctuations of residuals are relatively insignificant for ANFIS 

compared to RSM. The RSM model depicts higher deviations than the ANFIS 

model. The present study’s outcomes were in good agreement with the 

previous work reported, and all concluded that ANFIS is comparatively more 

accurate in predicting the FZD micropollutant elimination efficiency from the 
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aqueous solution using magnetic f-MWCNTs-based BP/PVA membrane than 

the RSM model (Kaveh et al. 2018, Azari et al. 2019).  

 

 
Fig. 4.28: Diagnostic plots of RSM and ANFIS models against experimental removal 

efficiency 

 

4.9.4 Summary of ANFIS modeling 

The primary objective of the current study was to construct and develop a new 

model that could provide a reliable prediction of FZD micropollutant removal 
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using magnetic f-MWCNTs-based BP/PVA membrane. Apart from RSM, 

ANFIS was also employed for predicting the elimination of FZD 

micropollutant. The summary and predictive performance of both RSM and 

ANFIS were evaluated through statistical measures of the HYBRID%, ARE%, 

AARE%, RMSE, adj. R2, and R2, as well as the analysis of residuals. All five 

models adequately predicted the FZD micropollutant elimination by the 

magnetic f-MWCNTs-based BP/PVA membrane. Based on the results, it can 

be seen that the ANFIS model is more accurate in modeling the elimination of 

FZD micropollutant than RSM.  

 

Moreover, while RSM is most widely employed for elimination optimization, 

the ANFIS model can present a better substitute even with a limited dataset. 

The outcome from this section confirmed that the ANFIS modeling capability 

is potentially substantial. 

 

4.10 Performance comparison 

This section compares the results achieved in the current study with different 

published scientific articles on the FZD micropollutant uptake using various 

adsorbents. The comparison is mainly based on various aspects, such as 

removal efficiency, adsorption analysis (isotherms, kinetics and 

thermodynamics), reusability and predictive models. Besides, this section is 

described with the relevant tables, figures and explanation.  

 

4.10.1 Removal efficiency 

In the current study, the magnetic f-MWCNTs-based BP/PVA membrane 

demonstrated an impressive maximum removal efficiency of 98.74% for FZD 

micropollutant. This efficiency was achieved under the optimized conditions of 

pH 6, agitation speed 200 rpm, and contact time of 350 min. When compared 

to other published studies on FZD micropollutant removal, the magnetic f-

MWCNTs-based BP/PVA membrane outperformed various other adsorbents. 
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(Gurav et al. 2020) achieved a removal efficiency of 96.81% using Fe3O4-

biochar at initial pH of 7.5 , operating temperature of 30oC, and initial FZD 

concentration of 80 mg/L (Cheng et al. 2019) reported approximately 97.25% 

FZD micropollutant removal using granular activated carbon at an initial pH of 

7, an adsorbent dosage of 6 g/L, and operating temperature of 28 oC. (Zhen-

Yuan et al. 2015) achieved up to 97.76% removal of FZD micropollutant using 

magnetic MWCNTs at an initial pH of 7, an initial concentration of 10 mg/L, 

contact time of 360 min., agitation speed of 150 rpm, adsorbent dosage of 2.4 

g/L and operating temperature of 25oC. 

 

It is evident that the magnetic f-MWCNTs-based BP/PVA membrane 

demonstrated a higher removal efficiency compared to other reported 

adsorbent for FZD micropollutant. This indicates the potential and 

effectiveness of the magnetic f-MWCNTs-based Bp/PVA membrane as a 

promising material for the removal of noxious pharmaceutical micropollutants 

from different water sources. 

 

However, it is important to note that the efficiency of the magnetic f-

MWCNTs-based BP/PVA membrane may vary based on specific water 

sources, micropollutant concentrations, and other operating conditions. Further 

research and investigation are warranted to explore the applicability and 

performance of this adsorbent in various real-world scenarios. The study’s 

findings open new avenues for the development of advanced materials and 

technologies to address the growing concern of pharmaceutical micropollutants 

in water bodies. 

 

4.10.2 Adsorption analysis 

The comparison in Tab. 4.14. demonstrates the adsorption capacities of 

different adsorbents for FZD micropollutant uptake. The magnetic f-

MWCNTs-based BP/PVA membrane exhibited an adsorption capacity of 29.67 

mg/g within 300 min. of contact time. This adsorption capacity is comparable 

to the other reported adsorbents, and it indicates the efficient performance of 
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the magnetic f-MWCNTs-based BP/PVA membrane for FZD micropollutant 

removal from aqueous solutions. 

 

Notably, the magnetic f-MWCNTs-based BP/PVA membrane showed a 

relatively shorter contact time for achieving the maximum adsorption capacity 

compared to some of the other reported adsorbents. This indicates the potential 

of the current study’s adsorbent for rapid and efficient removal of FZD 

micropollutant from water sources. 

 

It is evident from the comparison that various adsorbents have been 

investigated for FZD micropollutant uptake, and each shows promising results. 

However, the magnetic f-MWCNTs-based BP/PVA membrane stands out as an 

efficient adsorbent, offering comparable adsorption capacity to other materials. 

The findings from the present study support the use of this magnetic composite 

membrane as a viable option for the removal of FZD micropollutant and 

highlight its potential in environmental remediation applications. Further 

research and application-oriented studies can explore its practical 

implementation for water treatment purposes. 
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Tab. 4.14: Comparison of FZD micropollutant uptake on different adsorbents 

Material Adsorption 

capacity 

(mg/g ) 

Equilibrium 

time (min.) 

Isotherm model Kinetic model Adsorption 

thermodynamic 

References 

Fe3O4- biochar 31.45 600 - - - (Gurav et al. 2020) 

Fe3O4- MWCNTs 7.45 360 
Langmuir 

(R2 ~0.998) 

Pseudo-second 

order kinetic 

(R2 ~1) 

Exothermic and 

physical process 

(Zhen-Yuan et al. 

2015) 

Granular activated 

carbon (GAC) 
3.23 120 

Langmuir 

(R2 ~0.992) 

Pseudo-second 

order kinetic 

(R2 ~1) 

- (Cheng et al. 2019) 

Fe3O4- MWCNTs 11.98 300 
Langmuir 

(R2 ~0.995) 

Pseudo-second 

order kinetic 

(R2 ~0.99) 

Exothermic and 

physical process 
(Liu et al. 2015) 

Magnetic f-

MWCNTs-based 

BP/PVA membrane 

29.67 300 
Langmuir 

(R2 ~0.994) 

Pseudo-second 

order kinetic 

(R2 ~0.997) 

Exothermic and 

physical process 
Present study 
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4.10.3 Reusability analysis 

The reusability analysis of the magnetic f-MWCNTs-based BP/PVA 

membrane presented in the current study demonstrates its outstanding 

performance and mechanical durability over multiple cycles. The membrane 

maintained a high removal efficiency of FZD micropollutant even five 

sequential cycles, with no signs of mechanical  failure. The removal efficiency 

achieved by the membrane after five cycles was reported to be 98.74%, which 

is remarkably high compared to the reported results of other materials. 

 

The reusability of the magnetic f-MWCNTs-based BP/PVA membrane not 

only contributes to economic benefits but also reflects its mechanical durability 

and stability during extended operation in the adsorption process. (Khawar et 

al. 2019). In the current study, the membrane was fabricated by incorporating 

magnetic nanoparticles into f-MWCNTs, which were later formed into a 

buckypaper membrane. This approach of filling material into CNTs has been 

shown to improve the storage modulus, maximum strength, and fracture 

toughness (Zhou et al. 2008, Mishra 2022, Raza et al. 2020). A decline in the 

storage modulus might indicate poor dispersion of CNTs in the nanocomposite. 

 

 However, in the present study, the FE-SEM images of the magnetic f-

MWCNTs-based BP/PVA membrane (Section 4.4.2) confirmed a uniformly 

dispersed network of Fe3O4/ f-MWCNTs, indicating good structural integrity. 

Additionally, the use of the polymer PVA also a crucial role in enhancing the 

mechanical strength of the prepared buckypaper membrane (Nakano et al. 

2001, Yashima et al. 2016). Polymer intercalation of the buckypaper 

membrane promotes effective load transfer from the polymer matrix to the 

incorporated f-MWCNTs, leading to improved mechanical properties (Han et 

al. 2014, Qamar et al. 2022). The mechanical strength and stability of the 

magnetic f-MWCNTs-based BP/PVA membrane are evident from its 

successful reusability over five sequential cycles, as depicted in Fig. 4.29. 

Even after repeated use, the membrane did not undergo any mechanical failure, 

demonstrating its robustness and potential for long-term practical applications.  
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The combination of magnetic nanoparticles, f-MWCNTs and PVA in the 

membrane’s composition contributes to its enhanced mechanical properties, 

making it a promising and reliable sorbent for repeated use in the adsorption 

process. This reusability aspect not only contributes to cost-effectiveness but 

also indicates the membrane’s stability to withstand various environmental 

conditions, including mechanical stress, chemical exposure and temperature 

fluctuations, over an extended period of operation. As such, the magnetic f-

MWCNTs-based BP/PVA membrane holds great potential for practical 

applications in the removal of FZD micropollutant and other similar 

contaminants from water sources.  

 

 
Fig. 4.29: Image of magnetic f-MWCNTs-based BP/PVA membrane after each cycle 

 

 (Queirós et al. 2022) fabricated composite membranes (UiO-66-NH2/PVDF-

HEP) for the elimination of chromium (Cr (VI)), and their reusability study 

showed a significant decline in removal efficiency after three cycles, with the 

membrane removing only 58% of Cr (VI) at that point. The decrease in the 

membrane elimination efficiency for both anionic and cationic pollutants in 

their study could be attributed to the weakening of the interaction strength 

between the adsorbate and adsorbent, particularly due to ion exchange 

mechanism (Nguyen et al. 2021). Similarly, (Sadeghfar et al. 2018) synthesized 
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PVA/ 3%Fe3O4-CNT for methylene blue removal, and their reusability study 

revealed that the nanocomposite was efficient for up to three cycles, after 

which there was a slight decline in removal efficiency. In contrast, the  

magnetic f-MWCNTs-based BP/PVA membrane showed higher removal 

efficiency even after five cycles, indicating its potential as an efficient and 

reusable adsorbent. The mechanical strength and stable structure of the 

membrane, coupled with the effective adsorption capability, contribute to its 

superior performance in repeated use. 

 

 Therefore, the results from the present study suggest that the magnetic f-

MWCNTs-based BP/PVA membrane can be efficiently employed as a 

regeneration membrane for FZD micropollutant removal. Its reusability and 

sustained high removal efficiency make it a promising and practical solution 

for water treatment applications, contributing to the sustainable removal of 

micropollutants from water sources. 

 

4.10.4 Predictive model’s  

The current study utilized two different models, response surface methodology 

(RSM) and adaptive neuro-fuzzy inference system (ANFIS), to predict the 

removal efficiency of FZD micropollutant using magnetic f-MWCNTs-based 

BP/PVA membrane. RSM is a statistical approach commonly used for process 

optimizing, while ANFIS is a mathematical computation model that 

incorporates both neural and fuzzy logic networks for precise predictions 

(Sharma et al. 2022). The comparison of the predictive accuracy of RSM and 

ANFIS was done through graphical and statistical analyses. Both models were 

found to be effective in forecasting the removal efficiency of FZD 

micropollutant, and the residual analysis showed a close approximation 

between the experimental and predicted values. However, the ANFIS model 

demonstrated superiority over RSM in capturing the non-linear nature of FZD 

micropollutant removal, as evidenced by the smaller and more insignificant 

residual values. The comparative plots shown in Fig. 4.28 (Section 4.9.3), 
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described a satisfactory relationship between the experimental and forecasting 

values.  

 

Due to their popularity in terms of simplicity and time-saving, scientific 

researchers have been extensively employing these models for their respective 

output. (Onu et al. 2021) compared the application of ANFIS, artificial neural 

network (ANN), and RSM in the adsorption of eriochrome black-T dye using 

Nteje clay. The results showed that the ANFIS model provided the highest 

accuracy and precision compared to ANN and RSM. Another study by (Taheri 

et al. 2013) utilized the ANFIS and RSM model to predict the removal 

efficiency of Reactive Blue 19 dye using the electro-coagulation/ coagulation 

method. They also found that the ANFIS model outperformed RSM in terms of 

accuracy and prediction.  

 

In Tab. 4.15, the optimized conditions for the micropollutant elimination 

reported in the scientific articles by RSM and ANFIS are compared with the 

current study. This comparison further supports the efficacy of the ANFIS 

model in providing more accurate and reliable predictions for the removal 

efficiency of FZD micropollutant using magnetic f-MWCNTs-based BP/PVA 

membrane. 
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Tab. 4.15: Published scientific literature for the prediction/ optimization of removal efficiency of micropollutant 

Adsorbent 
Micropollutant 

name 

Operating 

parameters 

Model 

prediction 
Remarks References 

f-MWNCTs/Fe3O4 Ciprofloxacin pH= 5.4 

dosage= 0.78 g/L 

time= 24 min. 

conc.= 59 mg/L 

 

RSM 

• R2 value of 0.9103 with optimization 

of operating parameters. 

• Model predicted 88% removal of 

ciprofloxacin 

(Yousefi et al. 

2021) 

g-CN/Ag3VO4/PAN Tetracycline conc.= 15 mg/L 

dosage= 0.02 g 

time= 120 min  

ANFIS • R2 value of 0.999 

• Model predicted the removal of 

tetracycline percentage of 97.32 

(Deylami et 

al. 2023) 

Chitosan-mussel  Tetracycline dosage= 0.4 g 

conc.= 90.5 mg/L 

time= 35.9 min. 

temperature= 30oC  

RSM • Coefficient of determination R2, value 

of 0.9320 

• Model predicted adsorption capacity 

of 34.40 mg/g   

(Topal et al. 

2020) 

LDH-GO-CNTs Para nitrophenol pH= 5.35 

dosage= 10 mg 

temperature= 50 oC 

conc.= 16.22 mg/L 

time= 13.36 min. 

RSM 

ANFIS 

• R2 value of 0.958 and 0.9998 for 

RSM and ANFIS, respectively 

• 94% removal efficiency  

(Khomeyrani 

et al. 2021) 

Magnetic 

nanoparticles-rGO-

chitosan 

Cefixime pH= 8 

conc.= 42.81 mg/L 

dosage= 5 mg 

RSM • R2 gave the highest value of 0.994 

• Adsorption capacity of 30.80 mg/g 

predicted  

(Ciğeroğlu et 

al. 2021) 
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Adsorbent 
Micropollutant 

name 

Operating 

parameters 

Model 

prediction 
Remarks References 

Magnetic f-

MWCNTs-based 

BP/PVA 

Furazolidone pH= 6 

time= 300 min 

speed= 200 rpm 

RSM 

ANFIS 

• R2 value of 0.934 and 0.985 for RSM 

and ANFIS, respectively 

• Removal efficiency predicted for FZD 

micropollutant was 98.74% 

Present study 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

A significant number of emerging micropollutants have been detected in 

different water sources. While several volatile, hydrophobic and biodegradable 

substance can be removed in the wastewater treatment plants, they are not 

equipped to effectively treat these emerging pollutants. As a result, the 

presence of various micropollutants poses a threat to clean and safe water 

availability. To address this issue, the current study focused on using 

membrane technology for treating these micropollutants, with a particular 

emphasis on furazolidone, a pharmaceutical micropollutant. 

 

In this context, a nanocomposite was synthesized by incorporating magnetite 

nanoparticles into functionalized multi-walled carbon nanotubes. This 

nanocomposite was then used to fabricate a magnetic buckypaper membrane, 

which was further enhanced by infiltrating it with polyvinyl alcohol. The 

objective was to investigate the effectiveness of this membrane in removing 

furazolidone micropollutant from aqueous solutions. 

 

By exploring this approach, the study aimed to contribute to the development 

of an efficient method for eliminating micropollutants from water sources, 

thereby safeguarding the availability of clean and safe water. Membrane 

technology, combined with nanocomposite materials, holds promise for 

addressing the challenges posed by emerging micropollutants in wastewater 

and improving water treatment processes 
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Based on Objective 1, the magnetic f-MWCNTs-based BP/ PVA membrane 

was fabricated as follows (a) surface modification of MWCNTs using H2SO4 

and HNO3, (b) synthesis of magnetic f-MWCNTs nanocomposite with the 

support of reflux approach, and (c) vacuum and infiltration approach. The 

magnetic f-MWCNTs-based BP/ PVA membrane was characterized, and the 

analysis revealed a highly porous surface, remarkable adsorption ability, and 

mechanical and thermal stability. The maximum removal efficiency of FZD 

micropollutant on the magnetic f-MWCNTs-based BP/ PVA membrane 

(98.74%) was attained at a pH of 6, agitation speed of 200 rpm, and contact 

time of 350 min.  

   

For Objective 2, the characterization analysis confirmed the attachment of 

magnetite nanoparticles on the buckypaper membrane. Based on the FESEM 

findings, uniformly dispersed frameworks of Fe3O4/ f-MWCNTs were 

observed, indicating the homogenous distribution of Fe3O4/ f-MWCNTs in the 

PVA matrix. Moreover, the VSM result showed a high saturation 

magnetization (44.76 emu/g) of the magnetic f-MWCNTs nanocomposite, 

allowing the FZD micropollutant to be instantly attracted to the prepared 

magnetic f-MWCNTs-based BP/ PVA membrane instantly. Furthermore, the 

EDX results also confirmed a higher mass fraction of iron (Fe) and oxygen (O) 

due to the Fe3O4 and PVA infiltration. Finally, TGA analysis revealed the 

significant improvement in the thermal stability of the magnetic f-MWCNTs-

based BP/ PVA membrane due to its well-organized structure.  

 

As for Objective 3, the maximum FZD micropollutant uptake was 29.67 mg/g. 

Furthermore, the kinetic model best-fit the pseudo-second-order kinetic model. 

Additionally, the adsorption thermodynamics suggested the spontaneous, 

feasible and exothermic nature of FZD micropollutant adsorption over the 

magnetic f-MWCNTs-based BP/ PVA membrane. Moreover, the reusability 

study revealed that the magnetic f-MWCNTs-based BP/ PVA membrane could 

remove up to 88% of FZD micropollutant after five successive cycles without 

any mechanical failure.   
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To address the final objective, i.e., Objective 4, the efficacy of the predictive 

capability of RSM and ANFIS in modeling the FZD micropollutant elimination 

using magnetic f-MWCNTs-based BP/ PVA membrane was compared. The 

ANFIS model was found to be more satisfactory and comparable in forecasting 

the FZD micropollutant elimination compared to the RSM model. 

Additionally, five statistical parameters also confirmed that ANFIS provides 

the highest precision and accuracy compared to the RSM model.     
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5.2 Recommendations 

Based on the work conducted in this study, the following recommendations for 

future research can be made: 

 

i. Conduct fouling studies: To gain better understanding of the long-term 

performance and durability of the magnetic f-MWCNTs-based BP/PVA 

membrane after pollutant treatment, fouling studies should be conducted. 

This will help assess how the membrane’s performance is affected over 

time due to the accumulation of pollutants and other substance on its 

surface. 

 

ii. Explore anti-bacterial efficiency: Since bacterial colonization can lead to 

membrane fouling and decrease adsorption efficiency, it is essential to 

investigate the anti-bacterial properties of the developed membrane. 

Understanding its resistance to bacterial growth will contribute to 

improving its long-term performance. 

 

iii. Assess individual wastewater treatment application: To determine the 

viability of the magnetic f-MWCNTs-based BP/PVA membrane for 

industrial wastewater treatment, a detailed economic analysis should be 

carried out. This will help evaluate the cost-effectiveness and practicality 

of using membrane in the real-world industrial settings. 

 

iv. Investigate selective adsorption: Further research can be done to 

understand the selective adsorption capabilities of the magnetic f-

MWCNTs-based BP/PVA membrane for different types of 

micropollutants commonly found in the industrial wastewater. This 

knowledge can aid in tailoring the membrane’s application to specific 

wastewater treatment needs.  

 

v. Perform acute toxicity tests: After pollutant removal treatment, 

conducting acute toxicity test on the treated water can help assess the 

safety and environmental impact of using the magnetic f-MWCNTs-
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based BP/PVA membrane. This information is crucial for ensuring that 

the treated water meets regulatory standards. 

 

vi. Evaluate large-scale water treatment applications: A thorough economic 

analysis should be performed to assess the feasibility of using magnetic f-

MWCNTs-based BP/PVA membrane for large-scale water treatment 

applications. This will provide insights into the scalability and cost-

effectiveness of implementing the technology on a larger scale. 

 

vii. Explore continuous FZD micropollutant elimination: Conducting 

experiments using a column process with the magnetic f-MWCNTs-

based BP/ PVA membrane will provide valuable insights into its 

performance under continuous flow conditions. This will help understand 

the membrane’s removal capacity and efficiency over an extended 

period, which is crucial for practical applications in continuous water 

treatment systems. 

 

viii. Perform mass transfer simulation: Utilizing mass transfer simulation 

techniques can provide a deeper understanding of the mechanism and 

kinetics involved in the micropollutant elimination process using 

magnetic f-MWCNTs-based BP/PVA membrane. This simulation can 

help optimize the design and operation of the membrane-based water 

treatment systems and shed light on the transport phenomena governing 

the adsorption process.  
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SUPPLEMENTARY DATA 

APPENDIX A 

 

Tab. A.1: Physicochemical properties of furazolidone 

Generic Name 

Furazolidone 

Summary 

It is a nitrofuran anti-microbial agent, generally used for the treatment of diarrhea/ 

enteritis caused by protozoan/ bacterial infections. Besides, it also possess anti-

protozoal and anti-bacterial characteristics, thus also used for cholera and giardiasis 

treatment. 

Structure 

 

Chemical Formula 

C8H7N3O5 

International Union of Pure and Applied Chemistry (IUPAC) name 

3-[(E)-[(5-Nitro-2-furyl) methylene] amino]-1, 3- oxazolidine-2-one 

Synonym 

Furazolidona, furazolidonum, nirofurazolidonium, nitrofuroxon 

Weight 

Average: 225.16 

Mono-isotopic: 225.038570337 

Physical Colour 

Yellow odorless solid 

Maximum absorption wavelength, λmax (nm) 

356 

Solubility in water 

40 mg/L at 25 oC (pH 6) 
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Tab. A.2: FZD micropollutant concentration standard curve 

Concentration of FZD 

micropollutant (mg/L) 

Average Absorbance λmax (nm) 

0 0 

5 0.15 

10 0.29 

15 0.43 

20 0.605 

25 0.765 
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APPENDIX B 

 

Tab. B.1: Experimental design matrix for FZD removal efficiency 

Run Initial pH 
Agitation speed 

(rpm) 

Contact time 

(min.) 

FZD removal 

efficiency (%) 

1 4 200 20 35.82 

2 8 200 20 56.71 

3 6 150 185 87.6 

4 4 100 350 92.59 

5 8 200 350 87.99 

6 6 150 350 89.3 

7 4 100 20 31.62 

8 8 150 185 73.14 

9 6 100 185 81.68 

10 8 100 350 86.54 

11 4 100 20 44.59 

12 8 100 350 89.12 

13 6 200 350 98.74 

14 4 200 20 45.95 

15 4 150 185 49.36 

16 8 200 20 63.97 

17 4 200 350 87.07 

18 6 200 185 86.41 

19 8 100 20 76.43 

20 8 100 20 77.56 

21 6 150 20 68.41 

22 8 200 350 87.99 

23 4 200 350 89.49 

24 4 100 350 92.59 
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APPENDIX C 

Source codes, Functions and System Files 

C.1: Training, Testing and Output Data 

 

>>fuzzy 

>>dataTraining= []; 

 

Tab. C.1: ANFIS training data 

pH 

Agitation speed 

(rpm) Time (min.) Removal % 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 
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pH 

Agitation speed 

(rpm) Time (min.) Removal % 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 



APPENDIX C 

279 

 

pH 

Agitation speed 

(rpm) Time (min.) Removal % 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 
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pH 

Agitation speed 

(rpm) Time (min.) Removal % 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

 

  



APPENDIX C 

281 

 

>> dataTesting= []; 

Tab. C.2: ANFIS testing data 

pH 

Agitation speed 

(rpm) Time (min.) Removal % 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 
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4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 

6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

4 200 20 35.82 

8 200 20 56.71 

6 150 185 87.6 

4 100 350 92.59 

8 200 350 87.99 

6 150 350 89.3 

4 100 20 31.62 

8 150 185 73.14 
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6 100 185 81.68 

8 100 350 86.54 

4 100 20 44.59 

8 100 350 89.12 

6 200 350 98.74 

4 200 20 45.95 

4 150 185 49.36 

8 200 20 63.97 

4 200 350 87.07 

6 200 185 86.41 

8 100 20 76.43 

8 100 20 77.56 

6 150 20 68.41 

8 200 350 87.99 

4 200 350 89.49 

4 100 350 92.59 

 

>>dataOutput= []; 

Tab. C.3: ANFIS output data 

pH Agitation speed (rpm) Time (min.) 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 
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pH Agitation speed (rpm) Time (min.) 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 
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pH Agitation speed (rpm) Time (min.) 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 
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pH Agitation speed (rpm) Time (min.) 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 



APPENDIX C 

287 

 

pH Agitation speed (rpm) Time (min.) 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 
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pH Agitation speed (rpm) Time (min.) 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 
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pH Agitation speed (rpm) Time (min.) 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

6 200 185 

8 100 20 

8 100 20 

6 150 20 

8 200 350 

4 200 350 

4 100 350 

4 200 20 

8 200 20 

6 150 185 

4 100 350 

8 200 350 

6 150 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 150 185 

6 100 185 

8 100 350 

4 100 20 

8 100 350 

6 200 350 

4 200 20 

4 150 185 

8 200 20 

4 200 350 

4 100 350 
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C.2: Epoch for Train and Testing 

1. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) then 

(output is out1mf1) (1) 

 

2. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf2) then 

(output is out1mf2) (1) 

 

3. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf3) then 

(output is out1mf3) (1) 

 

4. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf1) then 

(output is out1mf4) (1) 

 

5. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf2) then 

(output is out1mf5) (1) 

 

6. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf3) then 

(output is out1mf6) (1) 

 

7. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf1) then 

(output is out1mf7) (1) 

 

8. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf2) then 

(output is out1mf8) (1) 

 

9. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf3) then 

(output is out1mf9) (1) 

 

10. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf1) then 

(output is out1mf10) (1) 

 

11. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf2) then 

(output is out1mf11) (1) 
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12. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf3) then 

(output is out1mf12) (1) 

 

13. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf1) then 

(output is out1mf13) (1) 

 

14. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf2) then 

(output is out1mf14) (1) 

 

15. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf3) then 

(output is out1mf15) (1) 

 

16. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf1) then 

(output is out1mf16) (1) 

 

17. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf2) then 

(output is out1mf17) (1) 

 

18. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf3) then 

(output is out1mf18) (1) 

 

19. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf1) then 

(output is out1mf19) (1) 

 

20. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf2) then 

(output is out1mf20) (1) 

 

21. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf3) then 

(output is out1mf21) (1) 

 

22. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf1) then 

(output is out1mf22) (1) 
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23. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf2) then 

(output is out1mf23) (1) 

 

24. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf3) then 

(output is out1mf24) (1) 

 

25. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf1) then 

(output is out1mf25) (1) 

 

26. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf2) then 

(output is out1mf26) (1) 

 

27. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf3) then 

(output is out1mf27) (1) 

 

C.3: ANFIS Train and Testing 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 



APPENDIX C 

355 

 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 



APPENDIX C 

368 

 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  



APPENDIX C 

377 

 

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 



APPENDIX C 

380 

 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 



APPENDIX C 

405 

 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 



APPENDIX C 

435 

 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 
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Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 
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Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.
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Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  
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1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 
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Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 
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2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 
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Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   
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Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 

 

Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  

 

ANFIS info:   

Number of nodes: 78 

Number of linear parameters: 27 

Number of nonlinear parameters: 27 

Total number of parameters: 54 

Number of training data pairs: 144 

Number of checking data pairs: 0 

Number of fuzzy rules: 27 

 

 

Start training ANFIS ...  

 

1 2.651 

2 2.651 
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Designated epoch number reached --> ANFIS training completed at epoch 2.

  

 

Minimal training RMSE = 2.651003  
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APPENDIX D 

Tab. D.1: ANFIS models 

Process Parameters Removal efficiency (%) 

pH Agitation 

speed (rpm) 

Contact time 

(min.) 

Experiment ANFIS 

prediction 

4 200 20 35.82 40.86 

8 200 20 56.71 60.34 

6 150 185 87.6 87.60 

4 100 350 92.59 92.59 

8 200 350 87.99 87.99 

6 150 350 89.3 89.30 

4 100 20 31.62 38.11 

8 150 185 73.14 73.14 

6 100 185 81.68 81.68 

8 100 350 86.54 87.83 

4 100 20 44.59 38.11 

8 100 350 89.12 87.83 

6 200 350 98.74 98.74 

4 200 20 45.95 40.86 

4 150 185 49.36 49.36 

8 200 20 63.97 60.34 

4 200 350 87.07 88.28 

6 200 185 86.41 86.41 

8 100 20 76.43 76.99 

8 100 20 77.56 76.99 

6 150 20 68.41 68.41 

8 200 350 87.99 87.99 

4 200 350 89.49 88.28 

4 100 350 92.59 92.59 
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Tab. D.2: Comparison of RSM and ANFIS model 

Process Parameters Removal efficiency (%) Residuals 

 Exp. Model 

prediction (%) 

 

pH Agitation 

speed 

(rpm) 

Contact 

time 

(min.) 

 RSM ANFIS RSM ANFIS 

4 200 20 35.82 38.46 40.86 -2.64 -5.065 

8 200 20 56.71 65.05 60.34 -8.34 -3.629 

6 150 185 87.6 79.19 87.60 8.41 0.001 

4 100 350 92.59 87.56 92.59 5.03 0.001 

8 200 350 87.99 84.38 87.99 3.61 0.001 

6 150 350 89.3 96.73 89.30 -7.43 0.001 

4 100 20 31.62 40.58 38.11 -8.96 -6.485 

8 150 185 73.14 71.4 73.14 1.74 0.001 

6 100 185 81.68 87.26 81.68 -5.58 0.001 

8 100 350 86.54 89.94 87.83 -3.4 -1.289 

4 100 20 44.59 40.58 38.11 4.01 6.485 

8 100 350 89.12 89.94 87.83 -0.82 1.291 

6 200 350 98.74 99.69 98.74 -0.95 0.001 

4 200 20 45.95 38.46 40.86 7.49 5.065 

4 150 185 49.36 56.92 49.36 -7.56 0.001 

8 200 20 63.97 65.05 60.34 -1.08 3.631 

4 200 350 87.07 89.49 88.28 -2.42 -1.209 

6 200 185 86.41 83.42 86.41 2.99 0.001 

8 100 20 76.43 74.66 76.99 1.77 -0.565 

8 100 20 77.56 74.66 76.99 2.9 0.565 

6 150 20 68.41 63.57 68.41 4.84 0.0002 

8 200 350 87.99 84.38 87.99 3.61 0.001 

4 200 350 89.49 89.491 88.28 -0.001 1.211 

4 100 350 92.59 87.56 92.59 5.03 0.001 
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