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ABSTRACT 

A two-stage bioreactor, comprising a biotrickling filter (BTF) as the first-stage and a biofilter 

(BF) as the second-stage, operated under steady-and transient-state conditions, was tested to 

remove gas-phase hydrogen sulphide, methanol and α-pinene. Hydrogen sulphide and 

methanol were removed in the first-stage, while α-pinene, was removed predominantly in the 

second-stage. The bioreactors were tested with two types of shock loads, long-term (66h) low 

to medium concentration loads, and short-term (12h) low to high concentration loads. Their 

performances were modelled using artifitial neural network (ANN), in order to predict the 

removal efficiencies (REs). It was observed that, a multi-layer perceptron with the topology 3-

4-2 was able to predict RE of methanol H2S in the BTF, while a topology of 3-3-1 was able to 

approximate RE of α-pinene in the BF. The same gaseous mixture was later examined in a 

biotrickling filter (BTF), inoculated with a highly adapted microbial consortium. The presence 

of methanol showed an antagonistic removal pattern for α-pinene, but the opposite did not 

occur. α-Pinene, removals were affected by itself. H2S did not show any declining effect on 

the other compounds. This BTF was also modeled using ANNs and subjected to different 

types of short-term shock-loads. It was observed that, short-term shock-loads of individual 

pollutants (methanol or hydrogen sulfide) did not significantly affect their own removal, but 

the removal of α-pinene was affected by 50%. 
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RESUMEN 

Un biorreactor en dos etapas, consistente en un biofiltro percolador (BTF) como  primera 

etapa y un biofiltro (BF) como segunda etapa, se operó bajo estados estacionario y transitorio, 

para purificar una mezcla gaseosa compuesta por sulfuro de hidrógeno, metanol y α-pineno. 

El sulfuro de hidrógeno y el metanol se eliminaron en la primera etapa, mientras que el α-

pineno se eliminó fundamentalmente en la segunda etapa. Los biorreactores fueron sometidos 

a dos tipos de sobrecargas: a largo plazo (66h) con cargas bajas-medias y de corto plazo (12 

horas) con altas cargas. Utilizando redes de neuronas artificiales (ANNs), se realizó un 

modelado para predecir las respectivas eficiencias de eliminación (EEs). Se observó que un 

perceptrón multicapa con topología 3-4-2 fue capaz de predecir la eliminación del H2S y del 

metanol en el BTF, mientras que una topología de 3-3-1 fue capaz de aproximar la 

eliminación del α-pineno en el BF. La misma mezcla gaseosa fue posteriormente examinada 

en un BTF inoculado con un consorcio microbiano altamente adaptado. Se observó que la 

presencia del metanol afectó negativamente a la eliminación del α-pineno, sin embargo lo 

opuesto no sucedió. La eliminación del α-pineno se vió afectada por su propia presencia. El 

H2S no mostró ningún efecto sobre la eliminación de los otros compuestos. Este BTF también 

fue modelado usando ANNs y fue también sometido a diferentes tipos de sobrecargas a corto 

plazo, de cada contaminante por separado. Para el metanol y el sulfuro de hidrógeno, se 

observó que estas sobrecargas no afectaron significativamente a su propia eliminación, pero la 

eliminación del α-pineno se vio afectada en un 50%. 
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RESUMO 

Un biorreator en dúas etapas consistente nun biofiltro percolador (BTF) como primeira etapa 

e nun biofiltro (BF) como segunda etapa, foi operado baixo estados estacionario e transitorio, 

para a purificación dunha mestura gasosa formada por sulfuro de hidróxeno, metanol e α-

pineno. O sulfuro de hidróxeno e o metanol foron eliminados na primeira etapa, mentres co α-

pineno foi principalmente eliminado na segunda etapa. Os biorreactores foron sometidos a 

dous tipos de sobrecargas: a longo prazo (66h) con cargas medias-baixas, e de curta duración 

(12 horas) a cargas elevadas. Utilizando redes de neuronas artificiais (ANNs), realizouse unha 

modelaxe para prever as correspondentes eficiencias de eliminación (EEs). Observouse que 

un perceptrón multicapa con topología 3-4-2 foi capaz de prever a eliminación do H2S e do 

metanol no BTF, mentres que unha topoloxía 3-3-1 foi quen de aproximarse á eliminación do 

α-pineno no BF. A mesma mestura gasosa foi examinada posteriormente nun BTF inoculado 

cun consorcio microbiano altamente adaptado. A presenza do metanol afectou negativamente 

a eliminación do α-pineno, con todo, o contrario non aconteceu. A eliminación de α-pineno, 

foi afectada pola súa propia presenza. O H2S non mostrou ningún efecto sobre a eliminación 

dos outros compostos. Este BTF tamén foi modelado utilizando ANNs e tamén foi suxeito a 

varios tipos de sobrecargas a curto prazo, de cada contaminante por separado. Para o metanol 

e o sulfuro de hidrógeno observouse que estas sobrecargas non afectaron significativamente 

as súas eliminacións, pero a eliminación do α-pineno foi afectada nun 50%. 
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SUMARIO 

La problemática de la contaminación atmosférica es un tema de primordial importancia y uno 

de los problemas ambientales más urgentes que todavía quedan por resolver en la mayor parte 

del mundo. Las estrategias y los reglamentos de control de la contaminación del medio 

ambiente se han centrado en los efectos agudos de los contaminantes del aire y del agua en la 

salud humana y el medio ambiente natural. En los últimos cincuenta años, sin embargo, los 

avances en las ciencias médicas y ambientales han dado lugar a una mejor comprensión de 

otros efectos nocivos de estos contaminantes. Contaminantes comúnmente presentes en 

actividades industriales, como el benceno, tolueno, xileno, estireno, sulfuro de hidrógeno 

(H2S), amoniaco (NH3), diclorometano (DCM), hexano y contaminantes del agua como 

fármacos, pesticidas, colorantes sintéticos, nitratos y fosfatos, con frecuencia pueden entrar en 

el medio ambiente natural a través de prácticas inadecuadas de manipulación y eliminación de 

residuos, tecnologías de tratamiento ineficaces, fugas durante el almacenamiento y el 

transporte y deshechos de derivados del petróleo. El efecto potencial para la salud causado por 

una fuga accidental depende del tiempo de exposición total de la especie en cuestión y la 

concentración del contaminante liberado. 

La producción de papel es una industria en auge que cuenta en su haber con cerca de 5.000 

plantas de pasta y papel a nivel mundial, las cuales producen cerca de 400 millones de 

toneladas de papel al año [1], [2], [3]. La industria de la pasta y el papel genera grandes 

cantidades de residuos, tanto en corrientes sólidas, así como en corrientes líquidas y gaseosas, 

a través de sus diferentes procesos. Las emisiones atmosféricas originadas en ciertos procesos 

de este tipo de industrias, especialmente en el proceso Kraft, incluyen tanto partículas como 

gases contaminantes. Las emisiones gaseosas suelen estar conformadas por mezclas de 

compuestos inorgánicos volátiles y orgánicos volátiles. Los compuestos orgánicos volátiles 
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(COV) más representativos de estas industrias incluyen alcoholes (principalmente metanol y 

algo de etanol), terpenos y cierta cantidad de acetona [3]. Por otra parte, los compuestos 

inorgánicos volátiles (CIV), integrados principalmente por compuestos de azufre tales como 

el sulfuro de hidrógeno (H2S), el metil mercaptano, el sulfuro de dimetilo (DMS), el disulfuro 

de dimetilo (DMDS) y los óxidos de azufre, también se emiten a partir de la industria de la 

pasta y papel. Estos compuestos volátiles son extremadamente malolientes y su purificación 

es uno de los principales desafíos para este tipo de industria. Otros contaminantes peligrosos 

como las dioxinas y los furanos y otros compuestos clorados volátiles tales como el cloruro de 

metileno, el cloroformo, el clorometano, el diclorometano, etc., entre otros, también aparecen 

en las emisiones de la industria de pasta y papel [4], [5]. El metanol es un subproducto 

derivado del proceso Kraft de fabricación de pasta y, abarca alrededor de un  70% de la 

emisión total de sustancias químicas tóxicas. Aunque el metanol es muy hidrófilo, puede ser 

liberado a la atmósfera a partir de varias fuentes, como pueden ser los evaporadores, debido a 

la naturaleza estos procesos, a las temperaturas de operación relativamente altas y a la baja 

presión de vapor de metanol [6]. Los terpenos, que están presentes de forma natural en la 

madera, son el otro grupo de compuestos orgánicos volátiles emitidos por las industrias de 

pasta y papel. El α-pineno, un COV hidrófobo, es un mono-terpeno natural presente en los 

productos de madera. Su solubilidad en agua varía entre 2 y 22 mg L-1 a 25 ° C [7], y debido a 

su naturaleza volátil, está comúnmente presente en las emisiones de gases residuales 

procedentes de la industria de la pasta y el papel. 

Otro problema ambiental importante que con frecuencia se asocia a las industrias de pulpa y 

papel es la generación de grandes cantidades de aguas residuales. Desde un punto de vista de 

valorización de residuos, una de las posibilidades para el tratamiento de aguas residuales sería 

el uso de un digestor anaerobio para la producción de biogás [3]. Sin embargo, hay que tener 
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en cuenta que este biogás también contendría una cantidad importante de contaminantes 

volátiles, como el sulfuro de hidrógeno. Por lo tanto, sería del todo necesario un proceso 

posterior de purificación, con el fin de mejorar la calidad del combustible. Las diferentes 

tecnologías de tratamiento de gases residuales descritos en esta tesis (biofiltros y biofiltros 

percoladores) también se pueden aplicar para la purificación de biogás, teniendo en cuenta 

ciertos ajustes necesarios. 

El sulfuro de hidrógeno, el metanol y el α-pineno son contaminantes representativos de 

compuestos hidrófilos, hidrófobos e inorgánicos, respectivamente, generalmente presentes en 

las emisiones de las industrias de pasta y papel. De entre las distintas técnicas de tratamiento 

utilizadas para eliminar dichos compuestos de corrientes gaseosas contaminadas, los 

tratamientos biológicos son una de las opciones más versátiles y prometedoras, teniendo en 

cuenta el grado de depuración conseguido, así como a su bajo coste. La biodegradación 

explota las ventajas inherentes de los microorganismos mediante la transformación de 

contaminantes peligrosos en productos finales inocuos. 

En el capítulo 1, se da una visión general de los problemas globales relativos a las emisiones 

atmosféricas. Así mismo, se presentan las diferentes tecnologías que se pueden utilizar para 

paliarlas. Por otra parte, se introducen los procesos industriales de pasta y papel y se analizan 

los distintos contaminantes volátiles presentes en la susodicha industria. Adicionalmente, se 

presenta una introducción general a la utilización de redes de neuronas (ANN) para sistemas 

ambientales, así como también al procedimiento que se debe seguir para aplicar este tipo de 

modelo. También se analiza si este modelo es adecuado para biorreactores que tratan gases 

residuales. Por último en este capítulo, se enumeran los objetivos y se explica el alcance y de 

esta tesis. 
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En el capítulo 2, se explora el tratamiento biológico de una mezcla gaseosa de H2S, metanol y 

α-pineno a través de un sistema de biorreactor de dos etapas, consistente en un biofiltro 

percolador (BTF) como la primera etapa, seguido de un biofiltro (BF) como la segunda etapa, 

con el fin de estudiar el efecto de los parámetros de operación más importantes. El BTF se 

inoculó con una mezcla de un cultivo bacteriano autótrofo, con poder degradante para el H2S 

y una levadura ácido tolerante, degradante de  metanol (Candida boidinii) que se obtuvo a 

partir de trabajos anteriores sobre el co-tratamiento del H2S y metanol en un BTF de bajo pH 

[8] . Ophiostoma stenoceras sp, un hongo bien conocido por colonizar la savia y la madera, se 

aisló de un previo BF existente, el cual había estado tratando vapores de α-pineno, se utilizó 

para inocular la segunda etapa BF. Los experimentos se realizaron en modo continuo en 

ambos biorreactores, variando distintos parámetros del proceso tales como caudal de gas, 

concentración de contaminantes y la tasa de recirculación del medio líquido, con el fin de 

realizar los siguientes estudios: (i) el efecto de la carga de los contaminantes, en el tiempo de 

residencia del lecho vacío (EBRTs), (ii) el efecto de la tasa de recirculación del medio líquido 

en el BTF (primera etapa), (iii) el efecto de sobrecagas puntuales de los contaminantes en la 

eliminación de cada uno de ellos y (iv) el efecto del cambio de operación a estado no 

estacionario, en los rendimientos de los BTF y BF. Los resultados fundamentales de este 

capítulo fueron los siguientes: 

- La primera etapa (BTF) mostró una capacidad máxima de eliminación 45 g m- 3 h - 1 para el 

sulfuro de hidrógeno y de 894 g m - 3 h - 1 para el metanol. En la segunda etapa (BF), cuando 

el caudal de gas se aumentó dos veces, la capacidad máxima de eliminación (ECmax), del α-

pineno, aumentó de 100 a 138 g m - 3 h – 1. 

- La estratificación en términos de biodegradación de contaminantes a lo largo de la altura del 

del lecho, se observó para ambas configuraciones de reactores. En el primer tercio de sección 
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del BTF se eliminó casi el 78% de metanol, mientras que el H2S se eliminó de forma lineal 

durante los dos restantes tercios del lecho. 

- El estudio del efecto de la tasa de recirculación de líquido mostró que, debido a las 

limitaciones de transferencia de masa, tasas altas de recirculación del líquido sometidas a altas 

y moderadamente altas cargas de contaminantes, podrían no favorecer una mejor eliminación 

simultánea de la mezcla gaseosa de H2S, metanol y α - pineno. 

- El aumento de la concentraciσn del metanol (COV hidrσfilo) o el α-pineno (COV 

hidrófobo), en ell BTF, llevó a una bajada en la eficiencia de eliminación (EE) del H2S de un 

25%, sin embargo, un aumento gradual en la concentración H2S, no pareció afectar la 

eliminación de los COV, tanto en el BTF como en el BF. Al ser un compuesto fácilmente 

biodegradable, el metanol también fue eliminado en la segunda etapa (BF), lo que podría 

haber sido posible gracias a la utilización preferente del metanol como fuente de carbono y 

energía por el Ophiostoma sp. presente en el BF originalmente. 

- Con respecto a los experimentos de sobrecargas, se observó que cuando la sobrecarga 

aplicada fue inferior a su carga crítica, la eliminación de H2S en el BTF fue afectada 

fuertemente mientras que la del metanol no se vio tan afectada. Durante altas sobrecargas, las 

eliminaciones de H2S y de de metanol en el BTF fueron inferiores, mientras que altas 

eliminaciones (75%) de α - pineno tuvieron lugar, con una EC de 130,1 g m- 3 h - 1. Esto 

muestra que el biorreactor  en dos etapas fue sensible a los cambios en las cargas. 

El enfoque del capítulo 3 fue determinar el rendimiento del reactor en dos etapas, en estado no 

estacionario, utilizando modelos de redes de neuronas (ANN). ANN se utilizó con el fin de 

predecir los perfiles de eficacia de eliminación (RE) de cada contaminante individual, es 

decir, metanol (REM), α-pineno (REP), y sulfuro de hidrógeno (REHS). La identificación de los 
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parámetros más importantes que afectan a la eliminación de cada contaminante se realizó 

mediante análisis de sensibilidad, y así mismo, también se identificaron los efectos de la 

interacción entre los tres contaminantes. Después de la optimización adecuada de los 

parámetros de red, se obtuvieron las siguientes topologías: 3-4-2 y 3-3-1, respectivamente, 

para el BTF y el BF. Los resultados del análisis de sensibilidad mostraron que el factor más 

crítico, que afectaba antagónicamente las REM y REHS en el BTF durante el estado transitorio, 

fue la concentración del  α-pineno, mientras que la REP en el BF, fue sinérgicamente afectada 

por la concentración de sulfuro de hidrógeno. 

El capítulo 4 muestra los resultados obtenidos a partir de nuestra idea original de desarrollar 

un BTF de una etapa altamente eficiente, mediante la inoculación con microorganismos que 

habían sido previamente testados para la eliminación de la mezcla de metanol, α-pineno y 

H2S. Por lo tanto, se realizó una evaluación del rendimiento del biorreactor en una etapa, 

mediante el estudio del efecto tiempo de residencia del lecho vacío (EBRT) en el rendimiento 

del BTF. También se describe comprensivamente, la dinámica de la eliminación de los 

contaminantes para diferentes secciones del BTF (estratificación sustrato) y se analiza en 

conjunto con los diferentes tipos de efectos de interacción (antagónicos o sinérgicos) entre los 

contaminantes y su patrón de eliminación en el BTF. Utilizando herramientas de biología 

molecular fueron realizados análisis de la comunidad microbiana en diferentes secciones del 

BTF después de una operación a largo plazo, con el fin de determinar la prevalencia o 

ausencia de las especies dominantes, con respecto al inóculo original, en el sistema. 

Los resultados mostrados nos enseñan que la capacidad de eliminación ha mejorado con el 

tiempo de operación, llegando a 302, 175 y 191 gm-3h-1, para el metanol, el α-pineno y el H2S, 

respectivamente. Los microorganismos degradadores del metanol y del H2S fueron activos 

poco después de la puesta en marcha, mientras que el rendimiento de los microorganismos 
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degradadores del α-pineno mejoró lentamente debido a una lenta adaptación microbiana. 

Algunas de las bacterias inoculadas todavía se detectaron en el BTF aún después de ser 

operado a largo plazo. La distribución de las poblaciones microbianas del BTF se 

correlacionaron bien con el patrón de la estratificación de los perfiles de eficiencias de 

eliminación de los diferentes contaminantes. 

En el capítulo 5, se realizó un modelado por redes de neuronas,  basado en los resultados del 

biorreactor en una etapa, operado a largo plazo (resultados del Capítulo 4). Como 

continuación de nuestros esfuerzos para entender mejor el funcionamiento de dichos 

contaminantes en el BTF bajo diferentes condiciones de operación, este estudio se llevó a 

cabo con los siguientes objetivos: (i) identificar los efectos de la interacción entre los 

diferentes contaminantes a través del modelado con ANN, (ii) entender el patrón de 

interacción entre los compuestos orgánicos volátiles, es decir, metanol y α-pineno, y (iii) 

estudiar el efecto del cambio de operación a estado transitorio en el rendimiento del BTF.  

Un modelo ANN de tres capas (5-8-3) fue desarrollado para predecir el rendimiento de un 

BTF usando concentraciones de entrada de sulfuro de hidrógeno (H), metanol (M) y α-pineno 

(P), UF y el tiempo de operación como parámetros de entrada. Los coeficientes de causalidad 

(CI) revelaron las relaciones entre los parámetros de funcionamiento y los eficiencias de 

eliminación de los contaminantes (REs), lo que puede ayudar en el diseño de biorreactores 

futuros. La RE de los tres contaminantes se vio afectada por el UF (IC -ve), mientras que el 

tiempo de funcionamiento del BTF sinérgicamente mejoró sus REs (+ ve CI). Los resultados 

de los tests de perturbación mostraron ECmax de 183, 239 y 76 gm-3h-1 correspondientes a 

cargas de entrada de 192, 260 y 302 gm-3h-1, respectivamente, para el sulfuro de hidrógeno, el 

metanol y el  α-pineno. 
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La parte final de esta tesis, se presenta como el Capítulo 6. En dicho capítulo, se proporciona 

una comparativa entre los dos sistemas de biorreactores operados, (una y dos etapas), junto 

con sus resultados del modelado con ANN. Las capacidades de eliminación más altas (ECmax) 

obtenidas para el metanol, α-pineno y H2S se compararon para ambas configuraciones. 

Nuevamente, hemos presentado los resultados importantes obtenidos durante el modelado 

ANN junto con estrategias propuestas, prácticamente demostrables, para desarrollar 

novedosos sistemas de control basados en el modelo ANN, con el fin monitorizar las variables 

de estado y el rendimiento del BTF o de cualquier otro sistema de tratamiento de gases 

residuales. Basándonos en nuestra experiencia, nuevas estrategias se han recomendado como 

una continuación de nuestras iniciativas de investigación, centrándose principalmente en el 

tratamiento de las emisiones volátiles de la industria de la pasta y el papel. 
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SUMARIO 

O problema da contaminación atmosférica é unha cuestión de primordial importancia e un dos 

máis urxentes problemas medioambientais que seguen sen solución en moitas partes do 

mundo. Estratexias e normativas para controlar a contaminación ambiental téñense centrado 

nos efectos dos contaminantes do aire e da auga sobre a saúde humana e o medio ambiente 

natural. Nos últimos cincuenta anos, con todo, os avances das ciencias médicas e ambientais 

levaron a unha mellor comprensión doutros efectos nocivos destes compostos. Os 

contaminantes normalmente presentes en actividades industriais, tales como benceno, tolueno, 

xileno, estireno, sulfuro de hidróxeno (H2S), amoníaco (NH3), diclorometano (DCM), hexano 

e contaminantes da auga, como fármacos, pesticidas, colorantes sintéticos, nitratos e fosfatos 

moitas veces poden entrar no medio ambiente natural a través de prácticas inadecuadas de 

manipulación e eliminación de residuos, tecnoloxías de tratamento ineficaces, fugas durante o 

almacenamiento e o transporte e residuos dos derivados do petróleo. O efecto potencial para a 

saúde causado por unha fuga accidental depende do tempo de exposición total da especie en 

cuestión e a concentración do contaminante liberado. 

A produción de papel é unha industria florecente que conta no seu haber con preto de 5.000 

plantas de pasta e papel no mundo enteiro, que producen uns 400 millóns de toneladas de 

papel ó ano [1], [2] [3 ]. A industria de pasta e papel xera grandes cantidades de residuos, 

tanto en correntes sólidas, así como en correntes líquidas e gasosas, a través dos seus 

diferentes procesos. As emisións atmosféricas procedentes de determinados procesos destas 

industrias, especialmente do proceso de Kraft, inclúen partículas e gases contaminantes. Estas 

emisións están xeralmente integradas por mesturas de compostos volátiles orgánicos e 

inorgánicos. Os compostos orgánicos volátiles (COV) máis representativos das industrias da 

pasta e o papel, inclúen alcois (sobre todo metanol e un pouco de etanol), terpenos e unha 
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certa cantidade de acetona [3]. Por outra banda, os compostos inorgánicos volátiles (CIV), 

integrados principalmente por compostos de xofre, tales como o sulfuro de hidróxeno (H2S), o 

metilmercaptano, o sulfuro de dimetilo (DMS), o disulfuro de dimetilo (DMDS) e óxidos de 

xofre, tamén aparecen nas emisións procedentes da industria da pasta e do papel. Estes 

compostos inorgánicos volátiles son moi fedorentos e a súa purificación é un dos principais 

retos para estes tipos de industrias. Outros contaminantes nocivos, como dioxinas, furanos e 

outros compostos clorados volátiles, tales como o cloruro de metileno, cloroformo, cloruro de 

metilo, diclorometano, etc., entre outros, tamén aparecen nas emisións da industria de pasta e 

papel [ 4], [5]. O metanol é un subproduto do proceso de produción de celulosa e abrangue 

preto do 70% do total de emisións de produtos químicos tóxicos. Aínda que o metanol é moi 

hidrófilo, pode ser liberado á atmósfera a partir de varias fontes, como son os evaporadores, 

debido á natureza destes procesos, as temperaturas de operación relativamente elevadas e a 

baixa presión de vapor de metanol [6]. Os terpenos, que están naturalmente presentes na 

madeira, son un dos outros grandes grupos de compostos orgánicos volátiles emitidos polas 

industrias de papel e celulosa. O α-pineno, un COV hidrofóbo, é un monoterpeno 

naturalmente presente en produtos da madeira. A súa solubilidade na auga varía entre 2 e 22 

mg L-1 a 25 ° C [7], e debido á súa natureza volátil, está comúnmente presente nas emisións 

de gases residuais da industria de pasta e papel. 

Outro problema ambiental importante, que está frecuentemente asociado coa industria da 

pasta e o papel, é a xeración de grandes cantidades de augas residuais. Dende o punto de vista 

da valorización de residuos, unha das posibilidades do tratamento destas augas residuais é o 

uso dun dixestor anaerobio para a produción de biogás [3]. Con todo, hai que ter en conta que 

este biogás tamén contén unha cantidade significativa de contaminantes volátiles, como o 

sulfuro de hidróxeno. Polo tanto, sería absolutamente necesario outro proceso de depuración a 
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mayores, coa fin de mellorar a calidade do combustible. As distintas tecnoloxías de 

tratamento de efluentes gasosos descritos nesta tese (biofiltros e biofiltros percoladores) 

tamén poden ser aplicadas para a purificación de biogás, tendo en conta determinados axustes. 

O sulfuro de hidróxeno, o metanol e α-pineno son contaminantes representativos dos 

compostos volátiles inorgánicos, orgánicos hidrófilos e orgánicos hidrófobos, 

respectivamente, xeralmente presentes nas emisións das industrias de pasta e papel. Entre as 

distintas técnicas de tratamento utilizadas para eliminar tales compostos presentes en 

correntes gasosas contaminadas, os tratamentos biolóxicos son unha das opcións máis 

versátiles e prometedoras, dado o grao de purificación obtida, así como polo seu baixo custo. 

A biodegradación explora as vantaxes inherentes dos microorganismos mediante a 

transformación de contaminantes peligrosos en productos finais inocuos. 

No Capítulo 1, dase unha visión xeral dos problemas globais relacionados coas emisións 

atmosféricas. Así mesmo, expóñense as diferentes tecnoloxías que poden ser utilizadas para 

palialas. Por outra banda, introdúcense os procesos industriais de producción de pasta e papel 

e analízanse os contaminantes volátiles individuais da referida industria. Adicionalmente, 

preséntase unha introdución xeral ao uso de redes de neuronas (RNAs) para modelar sistemas 

ambientais, así como o procedemento a seguir para aplicar este tipo de modelo. Despois, 

examínase se este modelo é adecuado para o tratamento gases residuais con biorreactores. Por 

último neste capítulo, enuméranse os obxectivos e explícase o alcance desta tese. 

No capítulo 2, o tratamento biolóxico dunha mestura gasosa de H2S, metanol e α-pineno a 

través dun sistema de bioreactor de dúas etapas, composto dun biofiltro percolador (BTF) 

como a primeira etapa, seguido por un biofiltro (BF) coma a segunda etapa, coa fin de estudar 

o efecto dos parámetros operativos máis importantes. O BTF foi inoculado cunha mestura dun 

cultivo de bacterias autotróficas con poder para degradar o H2S,  e cunha lévedo ácido- 
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tolerante, capaz de degradar metanol (Candida boidinii) obtida a partir dun traballo anterior 

sobre o co-tratamento conxunto de H2S e de metanol nun BTF operado a baixo pH [8]. 

Stenoceras Ophiostoma sp, un fungo ben coñecido por colonizar a saiba da madeira, foi illado 

a partir dun BF previamente existente tratando vapores de α-pineno, e foi usado para inocular 

a segunda etapa (BF). Os experimentos foron realizados en continuo para os  dous 

biorreactores variando diferentes parámetros do proceso, tales como o caudal de gas, a 

concentración de contaminantes e a taxa de recirculación do medio líquido, coa fin de realizar 

os seguintes estudos: (i) o efecto da carga dos contaminantes presentes no tempo de residencia 

do leito baleiro (EBRT), (ii) o efecto da taxa de recirculación do medio líquido no BTF 

(primeira estapa), (iii) o efecto de sobrecargas puntuais dos contaminantes na eliminación de 

cada un deles, (iv) e o efecto de cambios na operación para o estado non-estacionario, nos 

rendementos dos BTF e BF. Os principais resultados deste capítulo foron: 

- A primeira etapa (BTF) mostrou unha capacidade máxima de eliminación de 45 g m- 3 h - 1 

para o sulfuro de hidróxeno e 894 g m- 3 h - 1 para o metanol. Na segunda etapa (BF), cando o 

caudal de gas foi aumentado dúas veces, a capacidade máxima de eliminación (ECmax) do α-

pineno, aumentou de 100-138 g m- 3 h – 1. 

- A estratificación en termos de biodegradación dos contaminantes foi observada ó longo da 

altura do leito, para ámbalas opcións de reactores. No primeiro terzo de sección do BTF case 

o 78% de metanol foi eliminado, mentres co H2S foi eliminado dun modo lineal nos restantes 

dous terzos do leito. 

- O estudo do efecto da taxa de recirculación do medio líquido mostrou que, debido ás 

limitacións de transferencia de masa, a elevadas taxas de recirculación de líquido, baixo 

cargas elevadas e moderadamente elevadas de contaminantes, non promoven unha mellor 

eliminación simultánea da mestura gasosa de H2S, metanol e α - pineno. 
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- O aumento na concentración do metanol (COV hidrófilo) ou do α-pineno (COV hidrófobo) 

no BTF, levou a unha diminución na eficiencia de eliminación (RE) do 25% de H2S, con todo, 

un aumento gradual da concentración de H2S non pareceu afectar á eliminación dos 

compostos orgánicos volátiles, tanto no BTF como no BF. Como o metanol é un composto 

facilmente biodegradable, tamén foi eliminado na segunda fase (BF), o que podería ser 

posible grazas á utilización preferente de metanol como fonte de carbono e enerxía por parte 

do sp Ophiostoma. orixinalmente presente no BF. 

- En relación as experiencias con sobrecargas, observouse que cando a sobrecarga aplicada foi 

menor cá carga crítica, a eliminación do H2S no BTF foi fortemente afectada, mentres que 

para o metanol non foi  a tal punto afectada. Durante altas sobrecargas, as eliminacións do 

H2S e do metanol no BTF foron máis baixos, mentres que elevadas eliminacións (75%) de α - 

pineno tiveron lugar, cunha capacidade de eliminación de 130,1 g m- 3 h - 1 . Este feito amosa 

co biorreactor de dúas etapas foi sensible a variacións nas cargas. 

O enfoque no capítulo 3 foi o de determinar a eficiencia do reactor en dúas etapas, sometido a 

condicións de estado non estacionario, utilizando modelos de redes de neuronas (RNAs). Os 

modelos de redes de neuronas (RNAs) son utilizados, coa fin de prever os perfís de 

eficiencias de eliminación (RE) dos contaminantes individuais, é dicir, do metanol (REM), do 

α-pineno (REP), e do sulfuro de hidróxeno (REHS). A identificación dos parámetros máis 

importantes que afectan a eliminación de cada contaminante realizouse por análise de 

sensibilidade e, do mesmo xeito, tamén foron identificados os efectos de interacción entre os 

tres contaminantes. Despois da optimización adecuada dos parámetros de rede, obtivéronse as 

seguintes topoloxías: 3-4-2 para o BTF e 3-3-1 para o BF. Os resultados da análise de 

sensibilidade amosan que o factor máis crítico que afectaba antagonicamente á REM e á REHS 
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no BTF durante o estado de transición, foi a concentración do α-pineno, mentres ca REP no 

BF, foi sinérxicamente afectado pola concentración do sulfuro de hidróxeno. 

O capítulo 4 mostra os resultados obtidos a partir da nosa idea orixinal de desenvolvemento 

dun BTF altamente eficiente nunca sola etapa, a través da inoculación con microorganismos 

que foran anteriormente utilizados con éxito na eliminación do metanol, do α-pineno e do 

H2S. Polo tanto, unha avaliación do rendemento do biorreactor nunca etapa, mediante o 

estudo do tempo de residencia do leito baleiro (EBRT) no desempeño do BTF. Tamén se 

describe amplamente, a dinámica da eliminación de contaminantes nas diferentes seccións do 

BTF (estratificación do substrato) e analízase en conxunto cos diferentes tipos de efectos de 

interaccións (sinerxías ou antagonistas) entre os contaminantes e as súas eficiencias de 

eliminación no BTF. Utilizando ferramentas de bioloxía molecular foron realizadas análises 

da comunidade microbiana en diferentes seccións do BTF despois dunha operación a longo 

prazo, para determinar a prevalencia ou ausenza das especies dominantes orixinais. Os 

resultados presentados ensínannos que a capacidade de eliminación mellorou co tempo de 

actividade, chegando a 302, 175 e 191 g m- 3 h – 1, para o metanol, o α-pineno e o H2S, 

respectivamente. Os degradadores do metanol e do H2S foron activos xa dende pouco tempo 

despois da inoculación, mentres que o rendemento dos degradadores de α-pineno mellorou 

lentamente debido á lenta adaptación microbiana. Algunhas das bacterias inoculadas aínda se 

detectaron no BTF, incluso tras o  longo prazo operado. A distribución das poboacións 

microbianas no BTF estiveron ben correlacionadas co patrón da estratificación dos perfí de 

eficiencias de eliminación dos diferentes contaminantes. 

No Capítulo 5, unha modelización por redes de neuronas foi efectuada a partir dos resultados 

do bioreactor de longa duración de operación, dunha etapa (resultados de Capítulo 4). Como 

unha continuación dos nosos esforzos para comprender mellor o funcionamento de ditos 
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contaminantes no BTF baixo diferentes condicións de operación, este estudo realizouse cos 

seguintes obxectivos: (i) identificar os efectos da interacción dos diferentes contaminantes a 

través da modelaxe con RNA, (ii) entender o nivel de interacción entre compostos orgánicos 

volátiles, é dicir, o metanol e o α-pineno, e (iii) para estudar o efecto do cambio de operación 

a estado transitorio no desempeño do BTF. 

Un modelo de RNA de tres capas (5-8-3) foi desenrolado para prever o desempeño dun BTF 

usando as concentracións de entrada de sulfuro de hidróxeno (H), metanol (H) e α-pineno (P), 

o tempo operación e UF como parámetros de entrada. Os Coeficientes de Causalidade (CI) 

revelaron a relación entre os parámetros de funcionamento e as eficiencias de eliminación dos 

contaminantes (REs), feito que pode axudar na posible deseño de biorreatores no futuro. As 

eficiencias de eliminación dos tres contaminantes foron afectadas polo UF (CI-ve), mentres 

que o tempo de funcionamento do BTF sinerxícamente mellorou as súas REs (+ ve CI). Os 

resultados das probas de perturbacións mostraron capacidades máximas de eliminación de 

183, 239 e 76 g m- 3 h – 1, correspondentes a cargas de entrada de 192, 260 e 302 g m- 3 h – 1 

respectivamente, para o sulfuro de hidróxeno, o metanol e o α-pineno. 

A parte final desta tese é presentada como o capítulo 6. Neste capítulo, subministrase unha 

comparativa entre os dous sistemas de biorreatores operados (unha e dúas etapas), xunto cos 

seus resultados de modelaxe con RNA. As maiores capacidades de eliminación (ECmax) 

obtidas para o metanol, o α-pineno e o H2S foron comparadas para ámbalas opcións. Unha 

vez máis, presentamos os resultados máis significativos obtidos durante a modelaxe con redes 

de neuronas artificiales, acompañado de estrategias propostas, practicamente demostrables, 

para desenvolver sistemas innovadores, baseados no modelo de redes de neuronas artificiales, 

coa fin de monitorizarr as variables de estado e o rendemento do BTF ou de calquera outro 

sistema de tratamento de gases residuais. En base a nosa experiencia, recomendáronse novas 
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estratexias coma unha continuación das nosas iniciativas de investigación, incidindo 

principalmente sobre o tratamento das emisións volátiles da industria de pasta e papel. 
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1.1 Background to emissions from the pulp and paper industry 

The issue of air pollution has been a topic of great importance, and one of the most 

urgent environmental problems to be solved worldwide. Environmental pollution 

control strategies and regulations have focused on the acute effects of air and water 

pollutants on human health and natural environment. In the past fifty years, however, 

advances in medical and environmental sciences have led to a better understanding of 

other deleterious effects of these pollutants. Well known industrial air pollutants like 

benzene, toluene, xylene, styrene, hydrogen sulphide (H2S), ammonia (NH3), 

dichloromethane (DCM), hexane and water pollutants like pharmaceutical drugs, 

pesticides, synthetic dyes, nitrates and phosphates could frequently enter into the 

natural environment through improper handling and disposal practices, ineffective 

treatment procedures, leakage during storage and transportation and disposal of 

petroleum by-products. The potential health effect caused by an accidental release 

depends on the total exposure time of the species with the released chemical and its 

concentration level, usually expressed as ppm or gm-3. 

Paper production is a growing industry with about 5000 pulp and paper mills 

worldwide, producing nearly 400 million tons of paper annually [1], [2], [3]. The pulp 

and paper industry generates solid, liquid and gaseous waste streams from its various 

processes. The atmospheric emissions from pulp and paper making operations, 

especially from the Kraft's pulping process, include both particulate and gaseous 

pollutants. The gaseous emissions are usually a mixture of volatile organic and 

volatile inorganic compounds. Representative volatile organic compounds (VOCs) 

include alcohols (mainly methanol and some ethanol), terpenes and some amount of 

acetone [3]. The most concentrated emission sources are the non-condensable gases 

from the digester, brown stock washers and evaporator operations [4]. On the other 
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hand, volatile inorganic compounds (VICs), comprising mainly of sulphur compounds 

such as hydrogen sulphide (H2S), methyl mercaptan, dimethyl sulphide (DMS), 

dimethyl disulphide (DMDS) and sulphur oxides are also emitted from the pulp and 

paper industry. These volatile sulphur compounds (VSCs) are extremely malodorous 

and their removal is one of the major challenges for this type of industry. Other 

hazardous pollutants such as dioxins and furans, and other volatile chlorinated 

compounds such as methylene chloride, chloroform, chloromethane, dichloromethane, 

etc, among others, are also emitted in pulp and paper industry emissions [5], [6]. 

Methanol is a normal by-product of the Kraft's pulping process and methanol accounts 

for ~70% of the total toxic chemical release. Although methanol is very hydrophilic, it 

can be released into the atmosphere from several sources such as evaporators and 

brown stock washers due to the nature of the processes, their relatively high 

temperatures and methanol's low vapour pressure [7]. Terpenes, which are naturally 

present in softwood, are another group of VOCs emitted from pulp and paper 

industries. α-Pinene, a hydrophobic VOC, is a natural mono-terpene present in wood 

products. Its water solubility varies between 2 and 22 mgL-1 at 25ºC [8], and due to its 

volatile nature, it is commonly present in waste gas emissions from the pulp and paper 

industry.  

Another important environmental issue frequently associated with the pulp and paper 

industries is the generation of large quantities of wastewater. From a resource 

recovery view point, one of the possibilities for wastewater treatment would be the 

use of an anaerobic digester for biogas generation [3]. However, it is noteworthy to 

mention that the biogas would also contain volatile pollutants such as hydrogen 

sulphide as an impurity. Therefore, biogas upgradation is required in order to improve 

the fuel quality. The different biological waste gas treatment technologies described in 
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this thesis (biofilter and biotrickling filter) can also be applied for biogas upgradation, 

with some adjustments, for improving its effectiveness. 

1.2 Technologies for waste gas treatment 

The different technologies used for the treatment of gaseous emissions or waste gases 

can be classified into physical, chemical and biological. For the selection of an 

appropriate treatment technique, a number of considerations must be taken into 

account, such as the composition and property of the waste stream, its quantity and 

concentration, characteristics of the air or waste gas stream and the generation of by-

products from the selected process. In this section, the different physico-chemical 

technologies used typically for waste gas treatment are briefly discussed. As the focus 

of this thesis is on the use of biological techniques (biotrickling filter and biofilter), 

important literature information in relation to their use in treating volatile organic 

compounds (VOCs) and volatile inorganic compounds (VICs) has been provided.   

1.2.1 Physico-chemical techniques 

1.2.1.1 Absorption 

In absorption techniques for waste gases purification, the polluted gas stream is placed 

in contact with a continuously trickling liquid phase, the purpose being the mass 

transfer of the contaminant from the gas-phase to the liquid-phase [9]. The different 

absorption technologies use different types of absorbents, viz., water scrubbing, 

organic physical scrubbing and chemical scrubbing [10]. The pollutants transferred to 

the liquid phase must be treated. The mass transfer depends on the partition 

coefficient, as well as temperature and pH. Efficient gas-liquid mass transfer can be 

accomplished by using packed or bubble columns, washing towers or venturi 

contactors [11].  
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Water is the most frequently used scrubbing absorbent for volatile pollutants with a 

high solubility and organic solvents such as silicone oil or polyethylene glycol are 

more adequate for high hydrophobic waste gases. In chemical scrubbing, absorption 

involves the formation of reversible chemical bonds between the pollutants and the 

solvent. Regeneration of the solvent, therefore, involves breaking of these bonds and 

correspondingly, a relatively high energy input [12]. 

 The main disadvantage of this technique is the creation of a new waste stream, 

emerging from the transfer of pollutants from the gas phase to the liquid phase. 

Therefore, other strategies (a post-treatment step) should be applied in order to treat 

the pollutant, which in turn increases the investment and operating costs. 

1.2.1.2 Adsorption 

In adsorption systems, the gas-phase contaminants are retained in the surface of a 

solid-phase adsorbent. The adsorption mechanism can be of chemical or physical 

nature. In chemical adsorption, a chemical reaction between the contaminants and the 

solid adsorbent occurs and therefore solid-phase regeneration by desorption is 

difficult. On the other hand, in physical adsorption, contact is achieved through 

intermolecular forces [13]; this allows solid regeneration, usually by thermal 

treatment. Well known commercial adsorbents are activated carbon, zeolites, silica 

gel, and molecular sieves. Carbon activated adsorption provides a very good 

performance for the treatment of highly hydrophobic VOCs, with removals ranging 

from 90 to 99%. However, their affinities for VICs such as NH3 or H2S are not so 

strong. Carbon activated beds are exhausted quite soon, depending on the adsorbent 

nature and the characteristics of the waste gases, but usually ranges between 3 and 9 

months. After this period, it has to be replaced and treated as a hazardous waste, thus 
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increasing the operational costs of the system. Regeneration can also be possible with 

pollutant recovery by desorption, either with steam or hot air [11]. 

1.2.1.3 Condensation 

Condensation technologies involve the conversion of a gas or a vapour into a liquid, 

either by pressure increase or by lowering the temperature, although combination of 

both temperature and pressure variations is also possible. By pressurization of air the 

molecules are brought closer together, while lowering the temperature reduces the 

kinetics energy of the molecules [9]. This technique is useful to remove volatile 

compounds if the concentration of pollutants is very high and the mass flow rates are 

low. Contaminants with a high boiling point can be concentrated by simultaneous 

cycles of cooling and compression of gas. 

1.2.1.4 Incineration 

Incineration involves the complete combustion of the volatile pollutant at high 

temperatures. As an example, under optimal conditions, hydrocarbons are converted 

to CO2 and water, although if combustion is not complete, it can release more toxic 

products than the original pollutant, such as dioxins, CO and nitrogen oxides. As the 

pollutant concentration would be relatively low, this technology requires high energy 

inputs in order to maintain the high temperatures necessaries for the correct oxidation. 

Depending on the type of catalyst used, incineration can be classified into two types 

[9]: thermal incineration, which takes place in most of the cases at temperatures 

ranging between 700 and 1400ºC, and catalytic incineration, in which the 

temperatures can be reduced up to 300 to 700ºC by introducing a catalyst in the 

combustion unit, such as metals (platinum, palladium, copper, etc.) or metal oxides 

(cobalt, manganese, iron, etc.). Incineration is a destructive technique and it does not 

allow the recovery of the contaminant. 
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1.2.1.5 Ultraviolet oxidation 

During ultraviolet oxidation, the volatile pollutant is disintegrated by UV light 

releasing radicals, which then reacts with oxygen or other oxidants such as O3, H2O2, 

OH, O- [13]. For the case of H2S, equation 1.1 shows the breakdown of the H-S bond 

by UV light: 

  HHShSH 2         (1.1) 

Similar to absorption, the pollutant has to be passed from the gas phase to a liquid 

solution. Then, the contaminated solution is passed through a chamber where it is 

exposed to intense UV radiation provided by UV lamps of appropriate wavelengths 

and intensity. Oxidation of pollutant can also be achieved by direct action of UV light 

in combination with O3 and/or H2O2. The main factor governing the success of this 

technique is UV light transmission to the dissolved pollutants. However, this system 

poses some problems. Some VOCs such as trichloroethane (TCA) cannot be oxidized 

and moreover high turbidity of the water would cause interferences with light 

penetration. Besides, untreated pollutants may be vaporized and would need to be 

treated in an off-gas system. This technology can be improved by the use of a catalyst, 

wherein UV light is combined with a semiconductor and a photo catalyst (TiO2, CdS, 

etc). The mechanism is based on the excitation of the electrons of the semi-conductor 

material, inducing areas with both an excess and a deficit of electrons [14]. 

Photocatalytic oxidation allows the oxidation of a wide variety of organic compounds 

(Table 1.1), and recently they have also been tested for treating inorganic pollutants in 

gas phase. However, as shown in this table, some of the degradation products are 

difficult to degrade than the parent compound and therefore they will require addition 

post-treatment steps.  
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Table 1.1: Photocatalytic oxidation products of gas-phase pollutants in photocatalytic 

reactors (adapted from [15]) 

Main pollutant 

 

Degradation products 

 

 

Trichloroethylene, 

Perchloroethylene 

 

Benzene 

 

Toluene 

 

 

Formaldehyde 

 

α-Pinene 

 

 

 

2-Propanol 

 

Methylene chloride, carbon tetrachloride, phosgene, CO2 and dichloroaceyl 

chloride 

 

Phenol, hydroquinone, benzoquinone, and malonic acid 

 

Benzaldehyde, benzene, benzyl alcohol, formic acid, acetic acid, CO2 and 

trace amounts of benzoic acid and phenol 

 

Formic acid 

 

Pinocamphone, 3-hydroxyl - α-pinene, acetaldehyde, acetone, formic acid, 

acetic acid, glycolic acid, propionic acid, 

propanedioic acid, CO, and CO2 

 

Acetone, mesityl oxide, CO2 and H2O 

 

 

1.2.1.6 Membrane processes 

Membrane processes are based on different rates of diffusion of compounds through a 

thin membrane. This separation technique is highly dependent on the type of 

membrane used. Many different membranes are commercially available, with 

different specifications, in order to permit or avoid the transport of specific 

compounds [10]. The driving force is the pressure difference on both sides of the 

membrane, i.e., between the feed and permeate. A vacuum pump creating a lower 

pressure on one side of the membrane respective to the other enhances the separation 

process. There are two types of membrane systems, i.e., with high pressure gas phase 

on both sides and with low pressure of adsorbent liquid on one side. In this case, the 

final products are a permeate containing most of the organic pollutants and a residual 

gas streams that still contains small quantities of the same pollutants, so complete 

removal cannot be achieved. The most important parameters for membrane design 

include the gas flow rate, the temperature and the pollutant concentrations [9]. 
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1.2.2 Biological techniques 

Although some examples of biological treatment for air pollutants can be found as 

early as in the 1920s [16], it is not up to the late 1970s when systems were designed 

with prior knowledge gained in the field of chemical engineering and biotechnology 

Biodegradation of VOCs has always been a promising and comprehendible technique 

for waste gas treatment. Gas phase biological reactions utilize microbial metabolic 

reactions to treat contaminated air [11], [17]. The major advantages of biological 

methods are that they are inexpensive, reliable and environmentally compatible. 

Furthermore, the pollutants are not merely transferred from one phase to another; 

instead they are completely mineralized to simple end products such as CO2 and H2O. 

In this section, details pertaining to the operation of bioprocesses such as a biofilter, a 

biotrickling filter, a continuous stirred tank bioreactor and a membrane bioreactor are 

discussed. 

1.2.2.1 Biofilters  

Biofiltration utilizes a support matrix for microbial growth to remove odors and 

contaminants from air streams. A typical biofilter (BF) consists of a packed bed 

containing microorganisms. It is a two step process consisting of the transfer of the 

compounds from the air phase to the water phase and oxidation of the absorbed 

compound by the microorganisms present in the BF. The dissolved contaminant is 

transported by diffusion and by advection in the air [11], [18]. When air flows around 

the particle there is continuous mass transfer between the gas phase and the biofilm 

(Figure 1.1). 
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Figure 1.1: Schematic of pollutant removal mechanism in the biofilm attached to the 

filter bed of waste gas treatment systems (Cg is the gas phase pollutant concentration) 

  

The solid support matrix consisting typically of compost, peat moss, wood chips and 

synthetic materials provides adequate nutrients required for the activity of the 

microorganisms. An ideal packed bed should have a long working life and offer low 

pressure drop for the gases to pass through. The humidified contaminated air is 

pumped through a distributor placed at the top or the bottom of the filter bed (Figure 

1.2a). Besides, a nutrient solution comprising inorganic salts and trace elements is 

added periodically to the bioreactor to supply the nutrients required for microbial 

growth, and to maintain optimal moisture content in the filter bed (usually 40-60%). 

The contaminants in the air stream are absorbed and metabolized by the microbial 

flora. The treated air is discharged into the atmosphere through an outlet at either the 
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top or the bottom of the BF, depending on whether air is fed in either upflow or down 

flow mode. Most BFs that are in operation today can treat odors and VOCs effectively 

with efficiencies greater than 90%.  

Conventional biofilters have some interesting advantages over other biological 

technologies. It is an eco-friendly and cost-effective technology with few operation 

problems. A drop in pH during the conversion of acidic compound such as hydrogen 

sulfide into sulfur or sulfate can seriously affect both the microbial population and the 

removal efficiency. In order to solve this problem, periodic adjustment of the pH 

should be done. The addition of inorganic materials such as ceramic, plastics, lava 

rock, or activated carbon adds more structural stability, reduce the pressure drops and 

increase the biofilter lifespan. 

Typical examples for maximum elimination capacity (ECmax) envisioned in different 

bioreactor configurations under steady state conditions are given in Table 1.2. 

1.2.2.2 Biotrickling filters 

The schematic of a biotrickling filter (BTF) is shown in Figure 1.2b. The packing is 

generally made of chemically inert materials such as a plastic support, polyurethane 

foams, activated carbon, lava rock, pall rings, etc. that can be either arranged in a 

random or structured manner [19]. These materials offer no nutrients to the 

microorganisms. Hence, nutrient medium is continuously trickled from the top of the 

reactor. The liquid phase and gas phase flow can be fed co -or counter currently 

through the bed depending on the convenience of the user. The trickling solution 

contains inorganic and other trace nutrients for sustaining microbial activity in the 

biofilm. It can also act as a buffer, especially for compounds that are difficult to 

degrade or for compounds that generate more acidic metabolites [20].  
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The advantages of BTFs compared to BFs include; (i) better process control (ii) 

smaller footprints (iii) treatment of high concentration of VOCs, (iv) treatment of hot 

gases and acid producing contaminants and (v) good adaptation capacity of biomass 

[11], [9]. The factors affecting pollutant removal are, among others; (i) composition 

and concentration of the waste gas  stream, (ii) structural configuration of the packing 

material, (iii) flow pattern, (iv) nutrient composition, (v) residence time, (vi) pH, and 

(vii) temperature. Biotrickling filters are more complex than biofilters. This is due to 

its better performance in handling acidic compounds like hydrogen sulfide, and its 

easiness in controlling the different physico-chemical operational parameters, viz., pH, 

temperature and others. 

1.2.2.3 Bioscrubbers 

A typical bioscrubber consists of two reactors (Figure 1.2c). The first part is an 

absorption tower where pollutants are absorbed in a liquid phase followed by 

biodegradation in the second stage bioreactor. This bioreactor contains suspended 

activated sludge which is sufficiently aerated and much larger than the absorber. The 

effluent of this bioreactor is then re-circulated over the absorption tower in a co-or 

countercurrent mode to the flow of waste gas. Microbial activity is enhanced by 

adding sufficient nutrients in the reactor. This makes them flexible to handle 

fluctuating loads of waste gas streams [21], [22]. The main advantages of this 

technique are (i) better removal of reaction products by washing out (ii) no clogging 

problem and (iii) low occurrence of toxic metabolites in water phase.  

The volatile compounds commonly removed in this system are phenol, NH3, 

methanol, isopropyl alcohol, acetone, heptane and H2S [22], [23]. However, this 

technique is only effective for pollutants having partition coefficient values less than 

0.01 [24]. The mass transfer resistance of pollutant from gas phase to water phase 
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poses a major problem for hydrophobic VOCs. The energy consumption is high due 

to continuous liquid recycle and extra aeration which in turn increases the operating 

cost. Moreover, there are sufficient chances for the slowest growing microbial 

community to get washed out resulting in lesser removal of the target contaminant. 

1.2.2.4 Continuous stirred tank bioreactors 

Removal of air pollutants by means of diffusion through suspended growth 

bioreactors is often done in completely mixed type reactors (CSTB or continuous 

stirred tank bioreactors), with constant aeration (Figure 1.2d), where microbes are 

kept in suspension in a nutrient rich aqueous phase. However, CSTBs for waste gas 

treatment often use the gas phase pollutant as their sole carbon and energy source, 

preferably hydrophilic or slightly hydrophilic pollutants. As these systems are 

designed for aerobic biodegradation of the contaminants, mass transfer can be 

optimized for specific contaminants and both mass transfer and oxygen requirements 

would be the driving force for good reactor design [25]. The efficiency of the CSTB 

depends on the following factors: (i) the hydraulic retention time (HRT), (ii) 

concentration and characteristics of the gas phase pollutant, (iii) the presence of 

inhibitory metabolites within the system, and (iv) the gas hold up. The major 

challenge regarding its long term operation in industrial facilities is reducing biomass 

growth and disposal. A few methods have been suggested for reducing biomass 

accumulation in CSTBs; (i) increasing the mean cell residence time so that the 

requirement for maintenance energy increases, and/or (ii) decrease efficiency of 

energy generation for biomass growth by limiting nutrient supply. The advantages of 

this process include; better temperature and pH control, simple construction, good 

process control, adaptability to fit reactor configurations such as two stage systems, 

better control of different phases. CSTBs also facilitate the addition of an oil phase for 
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increasing pollutant solubility, easy maintenance and low operating costs. CSTBs 

have been tested under lab scale conditions for removing trichloroethylene (TCE) and 

dichloromethane (DCM), among others [26], [27]. 

 

Figure 1.2: Schematic of different waste gas treatment systems, (a) biofilter, (b) 

biotrickling filter, (c) bioscrubber, and (d) continuous stirred tank bioreactor 
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Table 1.2: Typical gas phase pollutants treated in waste gas treatment systems and their corresponding EC values 

 

Pollutant Packing material Microorganism Reactor type ECmax, gm-3h-1  References 

Benzene GAC Mixed culture from wastewater 

treatment plant 

BF 20.1 [28] 

Toluene Perlite Paecilomyces variotii BF 60 [29] 

TEX Perlite 2 bacteria + 1 fungi BF >120 [30] 

Styrene Perlite Sporothrix sp. BF 336 [31] 

DCM Lava rock Hyphomicrobium sp. BTF 160 [27] 

HS-P-M Pall rings + perlite Ophiostoma sp.,+ autotrophic 

bacteria + 

Candida boidinii 

BTF + BF HS / 45 

P / 138 

M / 894  

[32] 

Toluene Ceramic particles Bacillus cereus BTF 152 [33] 

Styrene Celite pellets Mixed culture BTF 62 [34] 

Styrene Ceramic monolith Sporothrix sp. MB 67.4 [35] 

DCM  Hyphomicrobium sp. CSTB 117 [27] 

 

Note: GAC - granular activated carbon, TEX - toluene, ethyl benzene and xylene mixture, HS-P-M - mixture of H2S+ α - pinene + methanol, DCM - dichloromethane, BF - 

biofilter, BTF - biotrickling filter, MB - monolith bioreactor, CSTB - continuous stirred tank bioreactor, ECmax - maximum elimination capacity 
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1.3 Microbial aspects of biofiltration 

The elimination of organic substrates by microorganisms results from the fact that these 

organisms generally use organic compounds as their sole energy (catabolism) and 

carbon source (anabolism) [36]. 

BiomassHeatOHCOOVOC ismsmicroorgan   222     (1.2) 

A prior knowledge of the species that are present, their densities, their metabolic 

transformations and their interactions with the environment is useful to biofilter 

operation. Bacteria and fungi are the main groups of microorganisms used in most 

biological techniques. Bacteria present high growth and biodegradation rates, a high 

resistance to toxicity and have the capacity to biodegrade a great variety of compounds. 

However, most bacteria growing on aromatic VOCs are inhibited in acid environments 

[37] and they require high water activity. Typical bacteria include the following; 

Pseudomonas putida, Coryneformic bacteria, Bacillus sp., Methylobacterium, 

Mycobacterium sp., and Pseudomonas fluorescens, amongst others.  

Concerning fungi, they can tolerate low pH environments (2.0-5.0), nutrients limitation 

and low humidity (which favors the biodegradation of hydrophobic pollutants) better 

than bacteria. Moreover, fungi form a filamentous network that would enhance the mass 

transfer between gaseous pollutant and biocatalyst. However, fungi seem to biodegrade 

a small range of substances compared to bacteria [38]. Among fungal cultures, the most 

extensively studied organism belongs to the genus Exophiala, although strains of 

Scedosporium, Fusarium, Paecilomyces, Cladosporium, Cladophialophora, Pleurotus, 

Trametes, Bjerkandera and Phanerochaete have also been detected in BFs or used to 

treat gas phase VOCs [38], [18], [23]. 
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The biodegradation mechanisms/pathways of VICs such as H2S or NH3 are quite 

different than VOCs. VICs can be used as a source of energy by chemolithotrophic 

bacteria through oxidation of their inorganic reduced forms. In most of the cases, 

chemolithotrophs are autotrophic bacteria that have the capability to fix carbon dioxide 

and use it as a carbon source for microbial growth, although some of them can make use 

of other compound as a carbon source (heterotrophic bacteria). This group 

of microorganisms includes sulfur oxidizers, nitrifying bacteria, iron oxidizers, and 

hydrogen oxidizers. Among them, the sulfur oxidizing bacteria (SOB) has proved to be 

an excellent biocatalyst for the removal of malodorous sulfur compounds, especially 

hydrogen sulfide. The microbial pathways to oxidize inorganic compounds such as 

hydrogen sulphide can occur in quite different environments, depending on the bacterial 

nature and the available carbon sources. Table 1.3 shows some examples of different 

SOB and their requirements. 

Under aerobic conditions, chemotrophs use oxygen as their electron acceptor, and 

hydrogen sulfide, thiosulfate or elemental sulfur as the electron donor, according to the 

following reactions [39], [40]: 

 2

4222 / SOSNutrientsCellsONutrientsCOSH                                    (1.3) 

  OHSOHS 222 0

2                                 ΔG0 = -169.35 kJ/mol                   (1.4) 

  HSOOHS 2242 2

42                              ΔG0 = -732.58 kJ/mol                   (1.5) 

According to the above-mentioned equations, oxygen is the key parameter to control the 

level of final oxidation. In biogas streams, oxygen is present in small quantities and the 

main end-product would be elemental sulfur. Sulfate will be formed when sulfide is 

limited. Recently, several studies have reported the biological conversion of hydrogen 

sulfide using sulfur-utilizing chemolithoautotrophic denitrifiers. Among others, two 

species are well known, Thiobacillus denitrificans (autotroph) and Thiomicrospira 
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denitrificans (authotroph or heterotroph) that grow at neutral pH under aerobic or 

anoxic conditions. Under anoxic conditions, nitrate is used as an electron acceptor 

during the biological oxidation of sulfide to elemental sulfur or sulfate, according to the 

reaction shown below [41], [42];  

222

2

4

0

322 // NNOOHSOSCellsNONutrientsCOSH rsdenitrifie          (1.6) 

Table 1.3: Typical examples of sulfur oxidizing bacteria and their required conditions  

Condition Thiobacillus 

thiooxidans 

Thiobacillus 

novellus 

Thiobacillus 

denitrificans 

Thiomicrospira 

pelophila 

pH 

 

Trophy 

 

 

Energy source 

 

 

Oxygen 

requirements 

2.0-3.5 

 

Obligate 

chemoautotroph 

 

H2S, polithionates, 

S 

 

Strictly aerobe 

7.0 

 

Mixotroph 

 

 

H2S, MM, 

DMS, DMDS 

 

Strictly aerobe 

6.8-7.4 

 

Obligate 

Chemoautotroph 

 

Thiosulfate, tetrathionate, 

thiocyanate, sulfide, S 

 

Facultative anaerobe 

6.0-8.0 

 

Obligate autotroph 

 

 

Sulfide, 

thiosulfate, S 

 

Strictly aerobe 

 

1.4 Two stage bioreactors for waste gas treatment 

Combination of two biological techniques can be used, especially when the waste gas 

contains mixtures of pollutants with different physico chemical characteristics or 

different biodegradation rates. In this case, the first stage biological reactor would be 

designed and operated in such a way that it would serve as the primary system 

responsible for removing some of the gas phase pollutants, while the second stage 

system would remove the non-treated pollutants from the first stage, as well as other 

specific pollutants present in gas phase (Figure 1.3).  

In a BF, aimed at removing H2S and VOCs from waste gases emitted from the head 

works and other facilities at POTWs, Cox et al. [43], observed EC of 13.8 gm-3h-1, 

while VOC removal was poor irrespective of the experimental conditions. About 25 to 

35% of low concentrations of benzene, toluene and chlorobenzene (BTC) were 

removed, while other chlorinated VOCs could not be removed in the BTF. In that study, 
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the low VOC removal was attributed to the presence of inhibitory concentrations of 

sulphate in the recycle liquid and the possible accumulation of metabolites other than 

sulphate that inhibits VOC biodegradation. Under such condition and for situations like 

emissions from typical pulp and paper industries, a two stage bioreactor (Figure 1.3) 

appears to be more promising and a practically feasible option for the co treatment of 

H2S and VOCs and other gaseous pollutant mixture, which has shown positive results in 

the recent past [44], [45], [46], [32]. 

 

Figure 1.3: A two stage bioreactor for waste gas treatment 

 

 

Nutrient supply tank 

Polluted air Treated air from 
the second-stage 

FIRST-STAGE 
BIOTRICKLING 

FILTER 

Medium distributor 

Treated air from 
the first-stage 
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Chitwood and Devinny [44] evaluated the feasibility of using a two stage biofilter for 

the treatment of H2S, air toxics and smog precursors. The 1st stage acid gas biofilter 

(AGB) packed with lava rock contained acidophilic autotrophic bacteria to remove H2S, 

while the 2nd stage wood chip BF removed other air toxics that includes, methanol, 

acetone, methylene chloride, chloroform, toluene, xylene, ethyl benzene, methyl-tert- 

butyl ether (MTBE) and 2-methyl butane. However, they observed that the 1st stage 

AGB removed acetone and methanol completely, while other VOCs were intermittently 

removed depending on the concentrations, in addition to 99.6% removal of H2S at an 

inlet loading rate (ILR) of 0.057 gm-3h-1. Manninen et al. [47] studied the 

biodegradation of acetone, methanol, methyl ethyl ketone (MEK), naphthalene, α-

pinene and toluene in a coupled bioreactor that consists of a 1st stage liquid bioreactor 

and a 2nd stage BF. The coupled system yielded 97% overall VOC removal from initial 

start up to shutdown.  

Ruokojarvi et al. [48] observed EC as high as 47.9 and 36.6 gm-3h-1 of H2S and dimethyl 

sulphide (DMS) in a two stage BTF connected in series and inoculated with a microbial 

consortium enriched from wastewater treatment plant sludge. Similarly, Sercu et al. [45] 

showed that high ECs could be easily achieved in a two stage BTF for treating gas 

phase DMS and H2S. The 1st and 2nd stage BTFs were inoculated with pure cultures of 

Acidithibacillus thiooxidans and Hyphomicrobium VS, and the maximum EC achieved 

were 83 gH2S m-3h-1 in the 1st stage and 58 gDMS m-3h-1 in the 2nd stage, that 

predominantly removed DMS. In yet another study, the feasibility of using sequential 

biofilters for H2S and a mixture of VOC vapors from wastewater treatment plant air was 

evaluated in laboratory scale and field studies [43]. At loading rate of 8.3 g H2S m-3h-1 

and 33 g MTBE m-3h-1, near complete removal of these pollutants were noticed. 

However in field trials, the removal efficiency profiles followed the order, H2S > VOC 
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> chlorinated VOC. In a recent study, a hybrid bioreactor system consisting of a low pH 

BTF and a neutral pH biofilter contained within a single reactor column with different 

microbial population and two different pH zones was tested for removal of H2S, 

methanol and α-pinene from polluted air. Though the hybrid reactor did not exhibit any 

synergistic effect in pollutant removal characteristics, even when fed with low 

concentrations of these pollutants, the results suggested the need for a two stage system 

for achieving high ECs. Low fungal growth in the BF section due to the only moderate 

tolerance of the fungus to acidification was considered as the major reason for such low 

EC values. The EC achieved from this study were 3.9, 4.3 and 1 gm-3h-1 for H2S, 

methanol and α-pinene respectively [49].   

1.5 Shock loads in bioreactors for waste gas treatment 

The dynamic behavior of biofilters to sudden variations in operating conditions has 

received little attention, as most of the reported studies were carried out at steady state. 

It is worthy to mention here that variation in concentrations and gas flow rates are 

common to any industrial emission and it is a pre-requisite to simulate these conditions 

at the laboratory scale to know whether the biofilter can respond effectively to such 

changes. The occurrence of transient conditions in biofilters (or in any bioreactors for 

waste gas treatment) can be either regular or frequent. These type of shock loads are 

expected in process industries under the following conditions; overnight and weekend 

closures, plant maintenance, when higher rate of solvent is used in a particular process, 

and regular change in process operation encountered in the paint spraying industry, 

coating and chemical manufacturing industries. The response of the immobilized 

biomass, bacterial and fungal colonies, to shock loading conditions can be identified by 

monitoring their removal efficiency, or elimination capacity profiles, during and at the 

end of the shock load.  
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Figure 1.4 (simulated graphical representation) shows a typical shock loading profile in 

a waste gas treatment system (for example, a biofilter), where the onset of low and high 

shock loads is clearly visible. The corresponding fluctuations in the removal efficiency 

profiles are also illustrated in Figure 1.4. It is clearly evident that the removal efficiency 

values are higher at low shock loads than when higher shock loads were introduced to 

the biofilter, and the biofilter shows good resilience to restore to its original (high) 

performance when normal conditions are restored after 34 hours of continuous 

operation. 

 

Figure 1.4: Simulated response of the biofilter to sudden variations in pollutant 

concentration, and corresponding pollutant removal efficiency profiles (region inside 

dotted brackets show the variations of shock load) 

 

According to Wright [50], ``microbial population in biofilters is related to the 

availability of substrates or nutrients, and has been shown to decrease by one or four 

orders of magnitude between the inlet and outlet, when systems are operated under 

nominal steady state conditions´´. However, for cases involving large transient 
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operations, such as conditions where the bioreactor receives an instantaneous, yet 

severely high concentration levels of a particular pollutant, either the mass transfer 

capacity or the reaction capacity of the initial sections of the bed are exceeded and 

contaminants move into the latter sections where the microbial populations and reaction 

capacities are low and contaminant breakthrough may occur [51], [52], [18], [23]. 

Wright [50] outlined four effective, yet practically feasible strategies for industrial 

facilities, for managing transient loads in a biofilter system. These include; providing 

downstream polishing units, dampening variations in contaminant loading using sorbent 

material placed upstream (example: adsorption unit), supplemental feeding during 

extended periods of downtime, and maximizing reactor capacity. 

Several lab-scale experimental results have shown that sudden fluctuations in loading 

rates (due to variation in both inlet concentration, and gas flow rates) either increased or 

decreased the removal profiles, but did not pose a threat or deteriorate (zero removal of 

the target pollutant) the microbial dynamics and performance of biological waste gas 

treatment systems, such as a biofilter, biotrickling filter, continuous stirred tank 

bioreactor (CSTB), and two liquid phase partitioning bioreactors (TLPPBs). Baltzis and 

Adroutsopoulou [53] studied shock loading effects in the biofilter containing 

peat/perlite as the filter medium for the treatment of ethanol and butanol and reported 

that the filter bed never failed completely under shock loading conditions. They further 

conclude that fluctuations in mass loading rates take a long time to decay the filter bed 

performance, and adsorption and desorption processes play an important role in the 

response to shock loadings. Arulneyam [54] investigated the performance of two 

biofilters treating methanol and ethanol vapors at two different upset modes, such as 

changes in flow rate and concentrations. The results reveal that the biofilm was quite 
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sensitive to changes in loading rates as seen from the removal patterns and the biofilm 

was able to recover quickly to the normal performance within two days.  

Rene et al. [17] studied the transient behavior of the perlite biofilter by subjecting it to 

different types of shock loads, i.e., short term shock load of 12 h and long term shock 

load of 10 d. Short term shock loads were studied at a flow rate of 0.15 m3h-1, in two 

stages, viz., at a normal inlet loading rate (ILR) of approximately 60 gm-3h-1 and a shock 

load of 200 gm-3h-1 (low and medium loading rates, L-M), and at a normal ILR of 60 

gm-3h-1 and a shock load of 450 gm-3h-1 (low and high loading rates, L-H). The results 

from that study indicated that the biofilter was able to maintain a high performance, 

close to 100%, when applying a medium shock load (L-M), however, when a higher, 

short term, shock load of 450 gm-3h-1 was applied, the removal efficiency dropped 

suddenly to 70% and then remained constant at such value during the shock load period 

of 12 h. Anew, the response of the biofilter was fast as seen from the immediate 

decrease in removal profile at high loads and the retrieval in performance (100%), when 

restoring low loads. In a biofilter handling hydrogen sulfide vapors, Barona et al. [55] 

investigated low and medium shock loads over 36 days of continuous operation. Their 

biofilter was subjected to an instant shock from 8 to 68 gH2S m-3h-1 after a brief 

starvation period of 80 and 25 h, where the EC dropped from 68 to 48 gH2S m-3h-1, and 

a restoration in the RE was reported when the original low loading rates were re-

applied. Jin et al. [56] conducted long term shock loading experiments of one month, by 

subjecting a fungal biofilter to multiple medium and high shock loads of α-pinene and 

observed that the performance of the biofilter quickly recovered after every 4 h shock 

load, reaching EC values of 60 gm-3h-1 with removal efficiency greater than 90% over 

the 13 h period after the shock load.  
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1.6 Neural network modeling of waste gas treatment systems 

Neural Networks are able to learn non linear static or dynamic behavior exclusively by 

measuring data. Since the knowledge of internal procedure is not necessary, the 

modeling can take place with minimum previous knowledge about the process through 

proper training of the network. The impetus of employing artificial neural networks 

(ANNs) to model dynamic biological waste gas treatment systems is due to their 

inherent advantage over other non linear modeling paradigms, that can be summarized 

as follows; 

(i) usefulness in solving data intensive problems where the algorithm or rules to 

solve the problem are unknown [57], (ii) the ability to detect all possible 

interactions between predictor variables, (iii) less formal statistical training, (iv) 

ability to implicitly detect complex nonlinear relationships between dependent 

and independent variables, (v) ability to generalize and find relations in 

imperfect data as long as they do not have enough neurons to over fit data 

imperfections [58], and (vi) the availability of multiple training algorithms [59]. 

Besides, ANNs can be easily applied to solve seven categories of problems: pattern 

classification, clustering, function approximation, prediction, optimization, data 

retrieval and process control [60]. Livingstone et al. [61] nicely describe ANNs as 

‘’Data modeling with neural networks is certainly not ‘an answer to the maiden’s 

prayer’, but neural networks do offer a number of advantages over some of the more 

traditional methods of data modeling and should be viewed as an useful adjunct to these 

techniques’’.  

Hussain [62] reasons that ‘the versatility in structure and application of neural networks 

enables them to be utilized in the middle ground between conventional model based 

approaches and black box approaches for solving many classes of problems’. 
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1.6.1 Multilayer perceptron  

A multilayer perceptron (MLP) belongs to the class of supervised feed-forward 

networks in which the processing elements are arranged in a multi-layered structure 

(Figure 1.5). The structure of MLPs consists of an input layer, one or more hidden 

layers and an output layer. The input from each processing element in the previous layer 

(χi) is multiplied by a connection weight (Wji). These connection weights are adjustable 

and may be linked to the coefficients in statistical models. At each PE, the weighted 

input signals are summed and a bias value (θj) is added or subtracted. This combined 

input (Ij) is then passed through a non-linear transfer function (f(.)) to produce the 

output of the PE (yj). The output of one PE provides the input to the PEs in the next 

layer. This process can be illustrated as follows; 

j ji i j
I w             (1.7) 

( )j jy f I           (1.8) 

The global ANN model framework illustrated in Figure 1.6 shows the different steps 

involved in the modeling process. More detailed information concerning the selection of 

network training parameters and methodology involved has been described adequately 

in Rene et al. [63]. 

1.6.2 Literature reports on neural modeling  

Applying the concepts of ANNs to model waste gas treatment systems was initiated 

only recently, in the mid 2000’s, when a BTF and BF were modelled for their 

performance [64], [65], [31], [63]. Table 1.4 summarizes the literatures pertaining to the 

use of neural models for different bioreactor configurations used to treat gas phase 

pollutants. Elías et al. [65] obtained start up, intermittent fluctuation, steady state and 

shut down data from a lab scale BF packed with pig manure and saw dust, handling H2S 

vapors. Data division was done using cluster analysis in combination with a genetic 
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algorithm, and the data were divided as training (50%), testing (40%) and validation 

(10%). Inlet H2S concentration and unit flow values (Q/V, h-1) were used as the input to 

the model, for predicting the removal efficiency of the BF (RE, %). The best MLP was 

decided by trial and error, by testing nearly 10,000 different combinations of MLPs, and 

it was observed that a 2-2-1 network architecture was able to predict RE well with 

relatively high R2 values (0.92). Results from sensitivity analysis showed the influence 

of flow rate in affecting the BF performance, and these findings were similar to the 

actual experimental data collected from the BF during 3 years of operation.  

In another study, Rene et al. [31] modeled the performance of a BF (RE, %) using a 

back propagation algorithm for a reactor inoculated with a mixed culture taken from the 

wastewater sludge of a petrochemical refinery and treating gas phase styrene. A log-

sigmoid transfer function was used with inlet styrene concentration and unit flow as the 

inputs, and the best network topology obtained through trial and error was found to be 

2-4-1. During regular experiments, greater than 92% styrene removal was achievable 

for loading rates up to 250 gm-3h-1, and the critical load to the system was found to 

depend highly on the gas flow rate, i.e., EBRT. The authors also carried out a sensitivity 

analysis, in terms of absolute average sensitivity (AAS), for the developed model to 

determine the most influencing input parameter for the model, The higher AAS value 

for unit flow suggested that the BF performance highly depended on the gas flow rate, 

and that the effects due to the pollutant, gas phase styrene, was only minimal. 
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Table 1.4: Summary of artificial neural network models developed for different waste-gas treatment systems 

 
Pollutant Type of neural network Network 

parameters 

Input 

parameters 

Performance 

indicator 

Data points Network 

topology 

Bioreactor 

configuration 

R2 Reference 

H2S BP - conjugated gradient decent η-0.01 UF, Ci RE 194 2-2-1 BF 0.92 [65] 

Toluene 
Dynamic neural network 

observer 
Sigmoid TF CO2, ΔP EC 350  BF 1 [66] 

Toluene 
Dynamic neural network 

observer 

Least mean 

square 

algorithm┼ 

ΔP CO2
1 60  BF 0.92 [67] 

BTX BP with gradient decent 

η-0.4 

α-0.9 

Tc-10,000 

Ci, Q, ILR, ΔP 
a)- Co 

b)- EC, RE 
55 

a)4-4-1 

b)4-4-2 
BTF 

0.000113 

0.001863 
[64] 

H2S BP with gradient decent 

η-0.1 

α-0.9 

Tc-16,000 

Ci, Q, ILR, ΔP RE, EC 67 4-4-2 ICBF 0.9157 [68] 

NH3 BP with gradient decent 

η-0.9 

α-0.9 

Tc-16,000 

Ci, Q, ILR, ΔP RE, EC 67 4-4-2 ICBF 0.9825 [69] 

Styrene BP with gradient decent 

η-0.8 

α-0.8 

Tc-22,000 

UF, Ci RE 157 2-4-1 BF 0.973 [31] 

DCM BP with gradient decent 

η-0.9 

α-0.9 

Tc-9,000 

Ci, Q RE 260 2-4-1 BF 0.944 [70] 

Styrene BP with gradient decent 

η-0.75 

α-0.8, 0.9 

Tc-10,000 to 

50,000 

UF, Ci, G/L 

ratio, ΔP 
RE 

83 

 

81 

68 

3-5-1 

2-5-1 

2-5-1 

3-4-1 

BF 

 

CSTB 

MB 

>0.95 

 

0.9667 

0.8838 

 

[63] 

Note:  

 

1) Elimination capacity (EC) was numerically reconstructed from this observer. 

2) R2 value was for EC vs CO2 production profiles predicted from the network. 
3) Sum squared error (SSE) values were reported by the authors, and two models (a and b) were developed in that study. 

Pollutant: H2S-Hydrogen sulphide, NH3-Ammonia, BTX-Benzene, toluene and xylene, DCM-Dichloromethane. 

Network parameters: η is the learning rate, α is the momentum term, Tc is the training count. 
Input parameters: UF is unit flow, Ci and Co are the inlet and exit pollutant concentrations, ILR is the inlet loading rate, G/L is the gas to liquid ratio, ΔP is the pressure drop. 

Bioreactor configuration: BF-Biofilter, BTF-Biotrickling filter, ICBF-Immobilized cell biofilter, CSTB-Continuous stirred tank bioreactor, MB-Monolith bioreactor. 

R2 is the coefficient of regression during testing. 
BP - Backpropagation algorithm. 
┼-More details concerning this algorithm is given elsewhere [71]



 
 

Figure 1.5: Structure of a multilayer perceptron (MLP) having 4 input parameters and one 

output parameter 

 

 

 
 

 

Figure 1.6: Steps involved in neural modeling of waste gas treatment systems  
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pressure drop 
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2. Data collection from the bioreactor 
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1.7 Objectives of this research 

The main objective of this research was to compare the removal of a mixture of volatile 

compounds of different nature, viz., methanol, hydrogen sulphide and α-pinene using one and 

two-stage bioreactor configurations.  

The specific objectives of this research were to; 

 Assess the performance of a two-stage bioreactor (first stage biotrickling filter and a 

second stage biofilter) for the treatment of a gaseous mixture of hydrogen sulphide, 

methanol and α-pinene under steady and transient-state operations 

 Demonstrate the performance of a one-stage biotrickling filter for the removal of a 

mixture a gaseous mixture of hydrogen sulphide, methanol and α-pinene under steady 

and transient-state operations 

 Perform microbial community analysis in the one-stage biotrickling filter and relate 

the microbial community distribution to the removal of individual pollutants  

 Understand the interactions between the VOC and VIC pollutants in the mixture under 

the influence of stable and fluctuating pollutant loading rates 

 Formulate artificial neural network (ANN) based models to describe the performance 

of the two and one stage bioreactor configurations 

 Compare the performances of two bioreactor configurations and suggest future 

research perspectives, in terms of practically applying these bioreactors for industrial 

situations 
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Chapter 2  

 

Steady- and transient-state operation of a two-stage bioreactor for 

the treatment of a gaseous mixture of hydrogen sulphide, 

methanol and α-pinene 
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ABSTRACT 

A two - stage bioreactor, comprising a biotrickling filter (BTF) as the first - stage and a 

biofilter (BF) as the second - stage, operated under steady - and transient - state 

conditions, was tested to remove gas - phase hydrogen sulphide, methanol and α - 

pinene. Hydrogen sulphide and methanol were removed in the first - stage, while α - 

pinene, was removed predominantly in the second - stage fungal BF. The effect of the 

liquid trickling rate was evaluated in the BTF, while concentration dependent 

synergistic and antagonistic interactions in both the reactors were understood by varying 

the concentration of one pollutant, and by maintaining 100% removal of other 

pollutants. Increasing the liquid trickling rate decreased methanol removal significantly, 

from >93% to 40%. Increasing the concentration of hydrogen sulphide from low to high 

loading rates did not affect the removal of VOCs, however the reverse occurred. Under 

all the tested conditions, α - pinene removal in the second stage biofilter still remained 

higher than 80%. The results show the maximum elimination capacities achievable for 

this complex ternary mixture, under a wide range of operating conditions. 

KEYWORDS: Two - stage bioreactor, biotrickling filter, biofilter, liquid trickling rate, 

hydrogen sulphide, VOC, shock loads 
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2.1 INTRODUCTION 

The acclivitous rise in the emission levels of toxic pollutants from the pulp and paper 

industry is a major health concern. Reduced sulphur compounds as hydrogen sulphide, 

methyl mercaptans, dimethyl sulphide and dimethyl disulphide are emitted from the 

sulphate process when sodium sulphide reacts with lignin [1]. On the other hand, a 

typical pulp and paper industry would also emit substantial amounts of volatile organic 

compounds (VOCs) such as methanol, terpenes, alcohols, phenols, ketones and 

formaldehyde. Hydrogen sulphide (H2S), methanol (CH3OH) and α - pinene (C10H16) 

are major representative air pollutants in such industries [2]. Exposure to respiratory 

irritants such as H2S among pulp mill workers has shown to increase obstructive lung 

disorders, prevalence of respiratory symptoms, occupational asthma, reactive airways 

dysfunction syndrome (RADS) and increased risky for ischemic heart disease [3-5]. 

Accidental exposure to methanol through either inhalation or ingestion could result in 

headache, dizziness, gastric disturbances, visual disturbance, conjunctivitis and severe 

neurological damage [6]. α - pinene is released not only during the mechanical 

treatment of wood, but also during the storage of saw dust and shavings [7,8]. It is an 

irritant to the skin, eyes and mucous membranes and can easily penetrate the different 

barriers of the body, the gastro intestinal track and intact skin [9]. 

Microbial purification of mixture of waste gases such as hydrogen sulphide, methanol 

and α - pinene appears to be the most economical and efficient option for emissions of 

low pollutant concentrations, at moderately high flow rates. Biotrickling filters (BTFs) 

and biofilters (BFs) are two typical bioreactor configurations that are characterized by 

the use of packed beds with attached biomass [10]. The application of BTF and BF have 

been extended to several industrial facilities, as they appear to be reliable and cost - 

effective compared to physico - chemical gas treatment technologies [11-13]. Earlier 
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our research group had developed a series of studies, in order to implement bioreactor 

technologies, specifically using BTF and BF, for the treatment of off - gas emissions 

containing formaldehyde, methanol, dimethyl ether [14], α – pinene [2], hydrogen 

sulphide [15], and hydrogen sulphide and methanol [16]. Most of the previously 

reported works have focused mainly on the biofiltration of mixtures of VOCs or 

mixtures of reduced sulphur compounds [17-19]. Recently, there are however, only a 

few reports that pertain to the co - treatment of H2S and a VOC using either BTF or BF 

[16, 20-22]. One of the most commonly reported problems during the co - treatment of 

H2S and VOC is that the pH of the biofilm would drop when H2S is converted to 

sulphuric acid, which conversely inhibits the biological activity in the BF and 

subsequent degradation steps. These include, acid attack to the organic media, 

channelling in some site specific areas and filter bed compaction.  

In BTFs, the trickling liquid, usually a well - defined nutrient medium, acts as a main 

agent for oxygen and substrate transport from the gas - phase to the biofilm [23]. As a 

consequence of increased pollutant transfer limitations from the gas - phase to the 

biofilm, as a result of the thicker liquid layer than in BFs, removal efficiencies in BTF 

do sometimes not reach 100%, even at low inlet loads, thereby affecting the maximum 

EC that can be reached [14]. However, this depends on the characteristics of the 

incoming gaseous stream, whether hydrophilic or hydrophobic. For BTFs treating 

mixtures of H2S and other VOCs, the continuous re - circulation of the trickling liquid 

phase easily eliminates the sulphuric acid produced during the biodegradation step, and 

helps to control the physiological conditions in the liquid phase such as nutrient supply 

to the attached biomass, contaminant absorption, removal of metabolites and toxic by - 

products and biofilm moistening [15]. The flow rate of the re - circulation liquid or the 

liquid trickling rate, a major hydrodynamic parameter in trickle beds, has also shown to 
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strongly affect the performance of BTFs, and is very critical for full utilization of the 

filter bed capacity [24]. 

The aim of the present research was to study the biological treatment of gaseous mixture 

of H2S, methanol and α - pinene in a two - stage bioreactor system, consisting of a 1st 

stage BTF followed by the 2nd stage BF, and understand the effect of the most important 

operational parameters. Experiments were carried in continuous mode, in the BTF and 

BF, by changing the process parameters such as gas flow rate, pollutant concentration 

and liquid trickling rate, in order to undertake the following studies; (i) dependency of 

pollutant loading rate on the gas flow rate, i.e., the empty bed residence times (EBRTs), 

(ii) effect of liquid trickling rate in the 1st stage BTF, (iii) effect of increasing pollutant 

peak load on the removal of other pollutants present in mixture and (iv) effect of 

transient - state operating conditions on the performance of BTF and BF. 

2.2 MATERIALS AND METHODS 

2.2.1 Microorganisms and media composition 

The BTF was inoculated with a mixture of autotrophic H2S - degrading culture and an 

acid - tolerant methanol degrading yeast (Candida boidinii) that was obtained from our 

previous work on the co - treatment of H2S and methanol in a low - pH BTF [16]. A 

Ophiostoma stenoceras sp., a well known sap - wood colonizing fungus, isolated from a 

biofilter efficiently degrading α - pinene was used to inoculate the 2nd stage BF [2]. The 

composition of the mineral salt medium used in the BTF, was (in g L - 1 of de - ionized 

water); KH2PO4: 2; K2HPO4: 2; NH4Cl: 0.4; MgCl2·6H2O: 0.2; FeSO4·7H2O: 0.01. The 

medium used in the fungal BF had the following composition (g L - 1); K2HPO4: 0.5, 

MgSO4·7H2O: 0.1, KH2PO4: 4.5, NH4Cl: 2, and 2 mL trace elements and vitamin 

solutions [15]. The BF bed’s moisture content was maintained constant by periodic 

addition (once every 3 d) of fresh mineral salt medium (pH - 5.9) from the top.  
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2.2.2 Experimental setup and operation 

The two - stage bioreactor comprising a BTF and a BF is shown in Figure 2.1. The first 

stage is a 2.78 L BTF, constructed using glass, 75 mm in diameter and 700 mm in 

height. The active height of the packed column, filled with polypropylene pall rings, 

was 640 mm. The pall ring bed had an initial porosity of 91% and a specific surface area 

of 350 m 2 m - 3. The BF stage consisted of a cylindrical glass column with an inner 

diameter of 100 mm and a total height of 700 mm. The length of the BF bed was 600 

mm, leading to a working volume of approximately 4.88 L. In the BF, irregular grains 

of perlite with a mean diameter of 4.5 mm were mixed with 50 % (weight) of the same 

polypropylene pall rings as used in the former BTF. The bioreactors were provided with 

four equidistant gas sampling ports, located along the reactor at 50 (outlet), 250, 450, 

and 650 (inlet) mm from the bottom. Two filter material sampling ports were uniformly 

distributed on the other side of the column. All fittings, connections and tubing’s were 

made of either glass or Teflon.  

A compressed air stream was split into three flows. H2S was generated by passing the 

major portion of the air stream over a H2SO4 solution into which a solution of Na2S was 

dripped. Different gas phase H2S concentrations were obtained by changing the Na2S 

concentration and/or dripping rate. The other two minor air streams were bubbled 

through flasks containing either liquid methanol or α - pinene separately. The three 

streams were combined in a mixing chamber, and fed to the bottom of the BTF column 

in a counter - current flow mode (Figure 2.1). The aqueous mineral medium described 

above was continuously recirculated over the packed bed using a peristaltic pump 

(323E/D, Watson - Marlow Ltd, Falmouth Cornwall, England). During start - up and for 

experiments undertaken to ascertain the maximum elimination capacity, the liquid 

trickling rate was held constant at 50 mL min - 1, besides varying its flow rate between 
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50 - 150 mL min - 1 for certain experiments, depending on the study condition. The exit 

air from the top of the BTF was later fed through the fungal BF in a downflow mode. 

The two - stage bioreactor’s performance was estimated by calculating the elimination 

capacity of the filter bed and removal efficiency of the corresponding pollutant at 

different inlet loading rates, according to equations defined elsewhere [24]. 

 

Figure 2.1: Schematic of the two - stage, BTF and BF connected in series 

2.2.3 Analytical methods 

Hydrogen sulphide concentration was determined using a hand held sensor (Dräger 

Sensor XSEC H2S HC6809180). Inlet and outlet gas - phase concentrations of methanol 

and α - pinene were measured via gas chromatographic analysis using a Hewlett - 

Packard 5890 series II GC. The GC was equipped with a flame ionization detector 

(FID). The following flow rates were used; H2: 30 mL min - 1, air: 300 mL min - 1. The 

GC was equipped with a 50 m TRACER column (TR - WAX, ID: 0.32 mm, film 

thickness: 1.2 μm) and helium was used as the carrier gas (flow rate: 2.0 mL min - 1). 

The temperatures at the GC injection, oven and detection ports were 150, 150 and 150 

C respectively. Similarly, CO2 concentrations were measured using another Hewlett - 

Packard 5890 GC fitted with a thermal conductivity detector (TCD). The CO2 
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concentrations were determined at an injection temperature of 90 oC, an oven 

temperature of 25 oC and using a TCD at 100 oC (Jin et al., 2007). pH was measured 

with a Crison pH - meter 507, using a combined glass electrode. A glass U - tube water 

manometer was used to measure the pressure drop across the filter bed height. At 

different time intervals, packing samples were gently removed from the upper and lower 

port of the 2nd stage BF. Dry biomass weight was measured by placing, around 2 g of 

perlite sample with biomass in an oven at 90 oC for 12 h until reaching constant weight. 

After drying, moisture content (MC) in the packing material was determined by 

measuring the weight loss. The dried samples were later placed in a muffle furnace at 

550 oC for 2 h, and the dry biomass content was determined by measuring the weight 

loss. After each biomass sampling, the same quantity of fresh perlite grains was added 

to compensate for the withdrawn samples. Pall ring and perlite samples, immobilized 

with biomass and exposed to methanol, H2S and α - pinene vapours were prepared for 

observations under a scanning electron microscope (SEM). Examinations were 

performed with a JOEL JSM - 6400 SEM working at a voltage of 20 kV and a working 

distance of 15 mm, and with Oxford Instruments EDX equipment, and quantitative 

elemental composition analysis, to confirm the accumulation of crystalline - sulphur 

particles, was done with the same equipment. Before the SEM analysis, the samples 

were dried for 24 h, placed on a metallic stub and covered with gold by means of a 

Balzers SCD - 004 sputter coater. 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Start - up of the bioreactors 

The first - stage BTF and second - stage BF were acclimated with low concentrations of 

mixture of H2S, methanol and α - pinene at a flow rate of 0.12 m 3 h - 1, that corresponds 

to an EBRT of 83.4 s in the 1st stage BTF and 146.4 s in the 2nd stage BF. The inlet 
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loading rates during the start - up were as follows: 1.5 - 2.8 g H2S m - 3 h - 1, 28.9 - 205.1 

g methanol m - 3 h - 1 and 0.7 - 3.9 g α - pinene m - 3 h - 1. The removal efficiency of H2S and 

methanol in the BTF improved slowly reaching an EC of 1.9 g m - 3 h - 1 for H2S and 197 

g m - 3 h - 1 for methanol. The much higher EC reached for methanol than H2S was 

presumably due to the much faster growth and activity of the heterotrophic Candida 

boidinii strain. The nutrient medium was changed once every 4 d or when its pH 

dropped below 2.7. On the other hand, the BF (2nd stage), though fed with low 

concentrations of α - pinene (< 0.2 g m - 3), showed steady and increasing removal 

performance, where nearly 100% of the incoming α - pinene was removed at the end of 

28th d, corresponding to an EC of 3.9 g m - 3 h - 1. After this start - up period (28 d), both 

the BTF and BF were ready to be tested for their performance under different operating 

conditions according to the operational schedule shown in Table 2.1.  

Table 2.1: Operational schedule of the two – stage bioreactor 

 

Nature of study 

Range of inlet loading rates, g m – 3 h – 1 Operation 

time H2S
1 Methanol1 α – pinene2 

1. Acclimation 

2. Effect of pollutant load on RE and EC 

3. Effect of liquid tricking rate 

4. Effect of increasing concentrations 

5. Effect of transient loads 

- Long – term shock loads 

- Short – term shock loads 

1.5 – 2.8 

0.6 – 45 

28 – 48 

4 – 20 

 

10 – 38 

8 – 106 

28 – 205 

28 – 1260 

308 – 489 

37 – 775 

 

60 – 254 

95 – 1220 

0.7 – 3.9 

0.7 – 161 

69 – 126 

3 – 36 

 

11 – 70 

17 – 176 

28 d 

132 d 

20 d 

23 d 

 

66 h 

12 h 
Note: 1, 2 – Pollutant loading rates to the BTF, BF respectively 

2.3.2 Effect of inlet loading rate on the elimination capacity and removal efficiency 

The effect of H2S, methanol and α - pinene load on the removal efficiency of these 

compounds in the BTF and BF was evaluated at different gas flow rates (0.12 to 1 m 3 h 

- 1), for 132 d, corresponding to EBRTs varying between 83.4 and 10 s in the 1st stage 

BTF and 146.4 and 17.6 s in the 2nd stage BF (Table 2.2). It was observed that the 

maximum EC (ECmax) achieved at different EBRT, for each pollutant in either the BTF 

or BF, was highly dependent on the inlet loading rate (ILR). The removal efficiencies of 
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each pollutant in each step of operation, corresponding to different EBRTs, depended 

not only on the concentration of individual pollutant, but also on the concentrations of 

other pollutant in the mixture, suggesting interaction effects could play a major role in 

determining the removal of a given compound in the mixture, as also shown in later 

experiments. As seen from Table 2.2, the ECmax of methanol decreased from 894 g m - 3 

h - 1 to 695 g m - 3 h - 1, when α - pinene load was increased from 61 to 245 g m - 3 h - 1, in 

the first - stage BTF, which occurred due to a decrease in the EBRT from 41.7 to 20 s, 

as well as the combined effect of the hydrophobic and hydrophilic VOC concentrations. 

On the other hand, the critical H2S and methanol load in the BTF, dominantly removing 

these two pollutants, decreased with an increase in the gas flow rate. For instance, at an 

EBRT of 83.4 s in the BTF, the critical H2S load to achieve > 90% removal was 11 g m 

- 3 h - 1, while for the same pollutant, at an EBRT of 27.8 s, the critical load decreased to 

7.9 g m - 3 h - 1. A maximum EC of 45 g H2S m - 3 h - 1 was achieved with 70% removal 

in the BTF. Similarly, the critical methanol loads to reach > 90% removal decreased 

from 497 to 186 g m - 3 h - 1, when the gas flow rate was increased from 0.36 (27.8 s) to 

1 m 3 h - 1 (10 s). For a load of almost 1200 g m - 3 h - 1, the maximum methanol EC 

decreased when decreasing the EBRT from 41.7 to 20 and 10 s (Table 2.2). However, 

this dependency of critical load on the gas flow rate was not clearly evident in the 

second stage BF, where α - pinene was predominantly removed by the Ophiostoma sp., 

followed by the removal of residual methanol and H2S entering from the 1st stage BTF. 

Batch experiments with attached microbes taken from the perlite, from different ports 

along the bed height, confirmed that the heterotrophic microbial population in the BF 

and the predominantly available Ophiostoma sp. was able to remove both methanol and 

mixtures of methanol and α - pinene in aqueous phase (data not shown). The maximum 

EC achieved in the BF, for each step of operation, for α - pinene was a strong function 
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of the inlet loading rate. The high EC achieved in the BF, 138 g m - 3 h - 1, for a 

hydrophobic VOC, α - pinene, was plausible due to the inoculation of that reactor with 

the fungus Ophiostoma stenoceras.  It was later confirmed through SEM analysis results 

and by means of periodically examining the perlite particle under an optical microscope, 

that the second stage BF showed a predominant presence of the original fungus. 

Besides, the maximum EC of hydrogen sulphide and methanol in the BTF were 16.8 g 

m - 3 h - 1 and 315 g m - 3 h - 1 respectively. It has been shown earlier that fungal dominant 

systems could offer contaminant removal rates greater than those observed from 

bacterial systems [2]. For biofiltration of hydrophobic compounds, like α - pinene, 

fungal growth is preferred over bacterial growth owing to their ability to degrade the 

substrates under extreme operating conditions regardless of pH and water content 

fluctuations, and limiting nutrient concentrations [25]. 

Table 2.2: Maximum elimination capacity in the first - stage BTF and second stage BF 

 

EBRT (s) 

Hydrogen sulphide Methanol α – pinene 

ILRmax ECmax ILRmax ECmax ILRmax ECmax 

First – stage BTF 

83.4 

41.7 

27.8 

20 

10 

5.7 

18.4 

25 

72 

93.5 

4.5 

13.9 

15.1 

33.2 

45 

294 

1145 

553 

1260 

1139 

282 

894 

439 

695 

613 

 

13.3 

61.8 

150.7 

244.5 

248.5 

5.8 

21.4 

8.2 

35 

18.1 

Second – stage BF 

146.7  

73.2  

48.8  

35.2  

17.6 

0.68 

3.5 

6.16 

23.8 

34.2 

0.68 

1.98 

2.54 

8.2 

16.8 

7.16 

142.8 

64.9 

321.7 

411.2 

7.16 

84.1 

40.9 

315.9 

161.9 

4.9 

33.7 

82.7 

138.7 

161.1 

4.8 

30.5 

44.6 

100.7 

138.1 
Note: ILRmax and ECmax are in g m – 3 h – 1 

2.3.3 Sulphur accumulation in the filter bed 

Pall rings with attached biomass from the BTF were collected after 44 d of continuous 

operation and subjected to SEM and elemental composition analysis. As seen from the 

SEM photograph in Figure 2.2, the rod - shaped particles formed on the surface of the 
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pall rings was mainly condensed crystal - like elemental sulphur, which was also 

confirmed by elemental analysis as well as by the change in colour (colourless to pale 

yellow in less than 6 h and to dark yellow in less than 24 h) of the nutrient medium 

collected in the reservoir of the recirculation liquid. The sulphur content in the attached 

biomass, on the 44th d of our experiment was about 60% (wt basis), in a condition where 

nearly 80% of the incoming H2S vapour was removed at an inlet loading rate of 6.1 g m 

- 3 h - 1. On the same day, methanol removal efficiency was about 96% at an inlet loading 

rate of 146 g m - 3 h - 1. Sulphur formation during the partial oxidation of sulphide 

instead of the complete oxidation to sulphate, as shown in Eqs. (1) and (2), could be due 

to oxygen limitation caused by preferential utilization of methanol by the acid tolerant 

yeast, because of its good biodegradability [16]. 

2 HS- + O2  2So + 2 OH-          (1) 

2HS- + 4O2  2SO4
2- + 2 H+        (2) 

Similar observation has been reported extensively in the literature, and this presents 

environmental implications as elemental sulphur can be easily removed by 

sedimentation. During biodegradation, the incomplete oxidation of H2S is generally 

reflected by high values of SO3
2- and S2-. The accumulation of elemental sulphur or 

ammonium sulphate have also been observed in biofilters, packed with wood chips and 

granular activated carbon, treating H2S and NH3 as single compounds [26].  Such 

periodic accumulation led to a rapid decrease in the performance of those systems, from 

99% to 75% and 30%, respectively. Elias et al.  [27], showed that at a loading rate of 45 

g H2S m - 3 h - 1, the conversion products in biofilters were mainly sulphur (82%), 

followed by sulphates and thiosulphates (<18%). Buisman et al. [28] reported that, at 

sulphide concentrations below 20 mg L - 1, the oxygen concentration should be kept 

sufficiently low, below 1 mg L - 1, to limit sulphur oxidation to sulphate. The 
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accumulation of sulphur in the packing material of a BTF, as well as in the re-

circulation liquid has shown to decrease the removal efficiency of H2S, additionally 

causing operational problems such as blockage of pores and channeling [15]. However, 

in this study, as the recirculation liquid was changed once every 4 d or, when the pH 

dropped to values below 2.7, it was presumed that consistent accumulation of sulphur 

and other metabolic end - products was minimized, thereby reducing some major 

operational problems. 

 
Figure 2.2: SEM image showing the accumulation of elemental sulphur crystals  

on the pall rings 

 

2.3.4 Substrate stratification along the bed height of the BTF and BF 

In order to understand the dynamics of pollutant removal within the BTF and BF, their 

concentration profiles were measured at different heights in the column. Figure 2.3 a 

and b shows the normalized concentration profiles of H2S, methanol and α - pinene 

along the length of the BTF and BF, measured on the 57th and 126th d of operation, 

when gas flow rates were 0.24 and 1 m 3 h - 1 respectively (EBRT: in BTF - 83.4, 10 s ; 

in BF - 146.7, 17.6 s). From Figure 2.3 a, it is evident that for different flow rates and at 

methanol concentrations of 3.70 and 4.12 g m - 3, the first one - third section of the filter 

bed (BTF) removed most of the alcohol (nearly 78% and 56%, respectively). On the 
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other hand, H2S was predominantly removed linearly over the next two - third section of 

the filter bed, suggesting that methanol was biodegraded before H2S. The first one - 

third section of the filter bed was only able to remove <10% H2S, while the second and 

third section removed more than 50% of H2S under the tested condition.  

(a) 

(b) 

Figure 2.3: Normalized concentration profile along bioreactor bed height at different 

flow rates, (a) BTF and (b) BF 

[- - - dotted line: 0.24 m 3 h – 1; ── dashed line: 1 m 3 h – 1; H-S: Hydrogen sulphide, M: 

Methanol and P: α – pinene] 
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As expected, removal of α - pinene did not occur in the BTF. Therefore, it could be 

envisaged that, the acid - tolerant, heterotrophic, yeast Candida boidinii colonized 

predominantly in the inlet section of the filter bed, while the autotrophic H2S degraders 

prevailed in the later two sections of the column. An obvious explanation for this is that 

the fast growing heterotrophic methanol - degrading culture overgrows the slower H2S - 

degrading organisms, at neutral to slightly acidic - pH, close to the inlet of the BTF. 

Conversely, a slow pH decline takes place in the lower part of the reactor as a result of 

H2S removal. The pH of the leachate reaches a minimum value of 2.7 at the outlet of the 

BTF, which becomes inhibitory for the methanol - degraders overgrown by the H2S - 

degraders in the bottom section of the reactor. A similar behaviour was observed in 

another study on the removal of H2S and methanol in a BTF. In that study, more than 

75% of methanol was degraded in the first one - third section of the column, while H2S, 

at low concentrations, was removed at a constant rate over the bed height [16]. 

For the 2nd stage BF, expected to remove α - pinene linearly over the bed height by 

Ophiostoma sp., clear stratification in terms of methanol and α - pinene removal was 

noticed (Figure 2.3 b). At gas flow rates of 0.24 and 1 m 3 h - 1, corresponding to EBRTs 

of 73.2 and 17.6 s in the BF, methanol was removed in the first one - third section of the 

column, while the other sections predominantly removed α - pinene. When low 

concentrations of methanol (0.12 g m - 3) entered the BF, nearly 100% was removed in 

the first - section of the filter bed, while more than 60% methanol was also removed in 

the first - section when methanol concentrations were high (1.35 g m - 3). The other two 

sections contributed to more than 80% of the α - pinene removed in the BF, irrespective 

of their concentrations in gas phase (0.43 - 0.75 g m - 3). At low concentrations (0.042 g 

m - 3), nearly 60% of the non - treated H2S entering into the BF from the 1st stage BTF 

was removed in the second and third section of the column, suggesting the presence of 
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H2S degraders that would have developed in the BF. Presumably, air from BTF carrying 

methanol - and H2S - degraders, reached the inlet of the 2nd stage BF. The fast, 

heterotrophic, methanol - degraders colonized the inlet section of that reactor, while H2S 

- degraders colonized deeper sections of the system.  

Biomass concentration, measured as dry biomass weight per g of perlite is shown in 

Figure 2.4. During the start - up step, biomass concentration was initially low (0.9 g g - 1 

perlite) and this value then gradually increased up to a maximum of 1.6 g g - 1 perlite 

over a period of 102 d. However, a minor increase in these values was noticed when the 

EBRT was decreased beyond 48.8 s after 102 d, where the pollutant load to the two - 

phase bioreactor, both BTF and BF, was linearly increased to observe the maximum 

EC. The moisture content was also monitored periodically by collecting known amounts 

of samples, taken 2 d after medium addition, from the two sampling ports (Figure 2.5). 

It was found that, the moisture levels across the biofilter height varied somewhat 

depending on the gas flow rate, but remained within an optimal moisture range, i.e., 53 - 

64%, for biofilters [10]. The lowest moisture content (MC) was found at the highest gas 

flow rate of 1 m 3 h - 1, while the highest MC was attained at a gas flow rate of 0.12 m 3 

h - 1. 

 

Figure 2.4: Variation of biomass concentration in the second phase BF 
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Figure 2.5: Variation of bed moisture content in the second phase BF 

2.3.5 Effect of the liquid trickling rate 

In order to understand the effect of the liquid trickling rate on the removal of H2S, 

methanol and α - pinene in the BTF and BF, experiments were carried out at constant 

gas flow rate (0.5 m 3 h - 1) corresponding to EBRTs of 20 s in the BTF and 35.2 s in the 

BF, respectively. The liquid trickling rate or the liquid recirculation rate was varied in 4 

steps at equal intervals of 25 mL min - 1, from 50 mL min - 1 to 150 mL min - 1, while the 

corresponding loading rates to the BTF ranged from 28 - 48 g H2S m 3 h - 1, 308 - 489 g 

methanol m - 3 h - 1 and 121 - 247 g α - pinene m - 3 h - 1. At each of the aforementioned 

trickling rates, experiments were carried out for 4 - 5 d. The nutrient medium was 

changed at the end of every step - change in the liquid trickling rate to remove the acidic 

metabolites formed (pH ~ 2.7) and start each experiment under the same conditions. 

Only a few data have been published in the literature on the influence of that parameter 

[24], with sometimes different conclusions, showing the importance of aspects as the 

type of pollutant or the range of liquid flow rate. The results from this study are shown 

in Figure 2.6 a - c.  
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Figure 2.6: Effect of liquid trickling rate on the removal efficiency of (a) hydrogen 

sulphide (b) methanol and (c) α – pinene in BTF 
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In the BTF, at a liquid trickling rate of 50 mL min - 1, and for an ILR up to 40 g H2S m - 

3 h - 1, the removal of H2S was about 40%. However, though this value of RE seemed to 

increase slightly at a higher liquid trickling rate of 75 mL min - 1, it can be considered 

that it actually remained almost constant, considering the somewhat fluctuating 

behaviour of the inlet load (36 - 51% removal). On the other hand, stepwise increase in 

the liquid trickling rate from 50 - 150 mL min - 1 showed a clear decreasing trend in the 

removal profile for methanol. Initially, even at methanol loading rates greater than 350 

g m - 3 h - 1, high RE (> 95%) were noticed at 75 mL min - 1, nevertheless, at ILR of 407 

g m - 3 h - 1 and at a liquid trickling rate of 150 mL min - 1, the removal efficiency 

dropped significantly, to 22%. The influence of the liquid trickling rate on the BTF 

performance has been reported in the literature. Liquid flow rates have shown to have 

higher impact on the removal of the pollutant at higher inlet loads, compared to lower 

ones, such as for H2S observed in this study [24]. At near constant loads, the high 

removal of methanol at 75 mL min - 1 and the subsequent decrease in removal at high 

liquid trickling rates, suggests that high liquid trickling rates and moderate pollutant 

loading rates may not favour better removal of gaseous mixtures of H2S and methanol. 

Under operational conditions such as batch recirculation modes with continuous recycle 

of medium, although liquid residence time per - pass decreased with increase in liquid 

trickling rate, the number of passes increased [29]. Hence, during all the 20 d of 

operation in this study, irrespective of the liquid flow, the overall liquid residence time 

inside the BTF remained the same over the duration of the experiment. Changes in 

liquid trickling rate did not appear to have any effect on the removal of α - pinene in the 

1st stage BTF. Under all the tested conditions, α - pinene removal was less, and in some 

instance even slightly negative due to improper residence times of that pollutant in the 

BTF, and this can be attributed to the low solubility of α - pinene in the liquid phase, 
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that eventually shows that mass transfer resistance was present in the trickling liquid 

(Figure 2.6 c). Another explanation for observing negative RE profile for α - pinene is 

given in a later section. Some possible explanation for reduction in methanol removal, a 

hydrophilic VOC, at high liquid trickling rates and high pollutant loads are given 

herein; (i) an increase in the thickness of the liquid phase at higher liquid flow rate 

causes mass transfer limitation, due to high methanol concentrations, between gas - 

phase and the liquid / biofilm phase [15], (ii) high liquid flow rates could cause liquid 

channeling in the centre region of the column, which in - turn affects the liquid - gas - 

biomass contact, (iii) the high gas velocity (0.5 m 3 h - 1) used in this study could have 

affected methanol removal, in addition to the liquid trickling rate, as it has been reported 

that, at high gas flow rates, the external mass transfer resistance becomes negligible, but 

transfer from the liquid to the biofilm becomes limiting [30], and (iv) changes in flow 

pattern at high liquid trickling rates, as the liquid trickling rate increases, the rivulets 

will grow in size and an enlargement of the existing channels or the formation of 

additional channel would occur. However, in order to ascertain the exact reason and to 

find a proper trickling rate that ensures higher removal at high pollutant loads, more 

studies on the hydrodynamic aspects that uses critical factors such as property of 

support matrix, amount of biomass present, bed void fraction, pressure drop, liquid hold 

- up, liquid distribution, partial wetting and stagnant water, would be needed. In the BF, 

for ILR up to 88 g m - 3 h - 1, > 95% of α - pinene was removed, irrespective of the 

loading rate of H2S and methanol, reaching maximum EC as high as 83.4 g m - 3 h - 1. 

Methanol loading rate to the BF varied between 69 - 126 g m - 3 h - 1 depending on its 

removal in the 1st stage BTF, and the BF was able to maintain high RE for this 

compound (83 - 86%).        
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2.3.6 Effect of high concentrations of one pollutant on the removal of mixtures  

In general, multi - component gas - phase mixtures having different biodegradation rates 

and characteristics tend to show interactive effects, i.e. the presence of one pollutant can 

increase or decrease the removal of the other pollutant in biological systems. In order to 

understand the synergistic and antagonistic interactions during the removal of H2S, 

methanol and α - pinene, experiments were conducted for 23 d, by varying the 

concentration of one pollutant from low to high values at a constant gas flow rate of 

0.24 m 3 h - 1, EBRT - 41.7 s in the BTF and 73.2 s in the BF, and by maintaining the 

concentrations of the other pollutants constant so as to achieve near 100% removal 

(Figure 2.7 and 2.8). The reduction in removal performance of the individual pollutant, 

due to the presence of other pollutant was then calculated from the original 100% 

removal achieved at constant, yet low loading rates. On days 1 - 9, in the BTF, the 

concentration of H2S was increased from 0.05 - 0.23 g m - 3 (i.e., loading rate of 4.8 - 

20.4 g H2S m - 3 h - 1), while the loading of methanol and α - pinene were kept constant 

at 50 g m - 3 h - 1 and 12 g m - 3 h - 1, respectively. The removal of methanol in the BTF 

was >98%, and the RE of H2S dropped from 100% to 71%, while as usual, α - pinene 

removal in the BTF was not significant (Figure 2.7 a - b). In the next step (days 10 - 

18), an increase in α - pinene concentrations from 0.11 to 0.73 g m - 3 (i.e., loading rate 

of 9.7 to 63.3 g m - 3 h - 1) rapidly decreased the removal of H2S by 23% and slowly 

decreased methanol removal by 10% in the BTF, when their loading rates were 8 and 42 

g m - 3 h - 1. However, due to an increase in the concentration of α - pinene in the 1st 

stage BTF, the α - pinene load to the 2nd stage BF also increased from 3 to 35 g m - 3 h - 

1, and its removal decreased by about 15% in that reactor (Figure 2.8). In the BF, H2S 

and methanol ECs were 1.2 and 3.8 g m - 3 h - 1 respectively, and these values were low, 

as most of the H2S and methanol were removed in the 1st stage BTF. On days 19 - 23, 
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when methanol concentration was increased stepwise from 1.4 to 9 g m - 3, 

corresponding to loading rates as high as 775 g m - 3 h - 1 to the BTF, its removal in the 

BTF decreased from 95% to 71%, the removal of H2S decreased by 25% and α - pinene 

removal was non - altered. A maximum EC of 554 g m - 3 h - 1 was noticed for methanol 

in the BTF. However, in the BF, the remaining non - treated methanol caused an 

increase in the inlet load from 3 - 125 g methanol m - 3 h - 1, where the RE of methanol 

also decreased from 88 to 78%. An increase in the concentration of methanol in the 2nd 

stage BF also caused an average decrease in the removal of α - pinene of in that reactor 

14% (Figure 2.8). In other words, the Ophiostoma sp. had preferential utilization 

property for methanol biodegradation in some zones of the biofilter. In a compost 

biofilter, fed with equal proportions of gas - phase methanol and ethanol, the presence 

of ethanol decreased methanol removal by 32%, while ethanol removal was also 

reduced by 30% [31]. This phenomenon, mutual inhibition, was later explained by the 

presence of two different groups of microorganisms, namely methanol utilizers and 

ethanol utilizers, while the methanol utilizers showed the ability to switch to ethanol 

utilization in the presence of ethanol, the ethanol utilizers appeared to be inhibited by 

the presence of methanol.  

Overall, increasing the H2S concentrations from low to high values, did not affect the 

removal of VOC in both the reactor configurations, however increasing the 

concentration of either methanol or α - pinene reduced the removal of H2S by almost 

25% in the BTF. Increasing the concentration of methanol in the BTF, indirectly also 

had an effect on α - pinene and methanol removal in the 2nd stage BF. An increase in the 

α - pinene concentrations from low to high values, did not significantly decrease 

methanol removal (10%) in the 1st and 2nd stage bioreactors, however H2S removal was 

affected strongly in the 1st stage BTF, and α - pinene removal decreased slightly in the 
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2nd stage BF, depending on the loading rate. In a two - stage biofilter, BTF followed by 

BF, for the treatment of a gaseous mixture of formaldehyde and methanol, RE as high 

as 88% and 72% in the 1st stage BTF followed by >95% removal of both the 

compounds in the 2nd stage BF was observed.14 However, no cross - inhibition effects 

were reported in that work. In a biofilter packed with inert glass beads, the removal of 

methanol in the presence and absence of H2S was found to be more stable than H2S 

biofiltration alone, reaching EC as high as 480 g m - 3 h – 1 [21]. No mutual cross - 

inhibition occurred during biofiltration of H2S and toluene in two BTFs operated in 

parallel at pH 7 or 4.5 was noticed [20]. This was attributed to the possible presence of 

two different types of microbes within the BTF, viz., autotrophic microorganisms for 

H2S degradation and heterotrophic microorganisms for toluene degradation. Apparently, 

these behaviours are clearly different from the results observed in our study and some of 

the other literature. During the co - treatment of methanol and H2S, the presence of 

methanol significantly affected the removal of H2S, while the removal of methanol was 

not affected by the presence of H2S, despite low - pH values.16 Greater than 90% 

removal of H2S in a two - stage BF, with a maximum EC of 1.46 g m - 3 h - 1, in the first 

- stage acid - gas biofilter and moderate removal (73%) in the second - stage BF, has 

been reported during the treatment of H2S and a wide range of VOCs present in the 

waste gas [32]. The low pH might have caused poor VOC removal in some of the 

studies using mixtures of H2S and VOC. Jeong et al. [33] studied the removal of 

ethanol, acetaldehyde and toluene in a single - and two - stage biofilters and envisaged 

that the two - stage BF indeed improved the performance with no cross - inhibition 

patterns occurring amongst pollutants. Mohseni and Allen [34] studied the removal 

pattern of gas - phase methanol and α - pinene in a biofilter packed with a mixture of 

wood - chips and spent mushroom compost. The presence of pinene did not affect 
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methanol removal, which indicated that α - pinene did not interfere with the activity of 

the methanol degrading microorganisms, however maximum EC of α - pinene depended 

highly on the concentration of the incoming vapour and a value of 45 g α - pinene m - 3 

h - 1 was observed when methanol was not present in the air stream. Jianwei et al. [35] 

attributed multi - substrate inhibition or cross - substrate interactions effects to low ECs 

of H2S, ethyl mercaptans, ammonia, styrene and butyric acid (1.7 - 3.1 g m - 3 h - 1) in 

low and neutral - pH biofilters.  
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Figure 2.7: Effect of changing pollutant concentration on the removal efficiency of 

hydrogen sulphide, methanol and α – pinene in BTF, (a) concentration profile, (b) 

removal efficiency 
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Figure 2.8: Effect of changing pollutant concentration on the removal efficiency of 

hydrogen sulphide, methanol and α – pinene in BF, (a) concentration profile, (b) 

removal efficiency 
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2.3.7 Effect of transient loads on bioreactor performance 

The effect of transient - state conditions, such as shock loads, imparted on biofilters in 

practical situations was stimulated in two steps, viz., as long - term shock loads (66 h - 

experiment, low to medium loads) and short - term shock loads (12 h - experiment, low 

to high loads), by increasing the concentration of all three compounds, H2S, methanol 

and α - pinene, during the applied shocks. 

2.3.7.1 Long - term shock loads 

In this study, the gas flow rate was set to the maximum, 1 m 3 h - 1, and experiments 

were carried out for 66 h, that includes a shock load period of 52 h for the BTF and BF. 

Initially for 8 h, the loading rates of H2S, methanol and α - pinene were maintained low 

at 10, 60 and 18 g m - 3 h - 1, respectively. The bioreactors were subjected to shock loads 

from the 8th h and the concentrations of pollutants were measured after 12 h, allowing 

the BTF and BF to respond to the shock load. Figure  2.9 shows the shock loading and 

pollutant removal pattern observed in the BTF. As can be noticed, the removals of H2S 

decreased from 100% to as low as 50%, at a shock load of 38 g m - 3 h - 1, while 

methanol removal decreased slightly by 30%, when the load was 250 g m - 3 h - 1. 

However no removal of α - pinene was noticed in the BTF. Barona et al. [36] 

investigated the response of a biofilter to abrupt changes in flow rate and concentration 

and showed that an increase in concentration of H2S from low to high levels (0.59 g m - 

3) reduced the RE significantly. When the concentration was decreased to 0.07 g m - 3 

the biofilter performance fully recovered to 100% efficiency. The fraction of the non - 

treated H2S and methanol, as well as the incoming pinene vapours induced a shock load 

to the 2nd stage BF, where the EBRT of the pollutants were 17.6 s (Figure 2.10). Though 

the ILR of H2S and methanol were low in the BF (< 9.9 and < 41.9 g m - 3 h - 1), the α - 

pinene loads increased from 11 to 70 g m - 3 h - 1. It was observed that the removal of α - 
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pinene in the BF was not affected much by this medium shock load, dropping the RE by 

just 10%. 

2.3.7.2 Short - term shock loads     

During this experimental step, the BTF and BF were submitted to short - term high 

shock loads for 8 h. The concentrations of individual pollutants were increased from 

low values to very high values during the shock loading step, that corresponds to 

increases from 8.5 to 106 g H2S m - 3 h - 1, 95 to 1220 g methanol m - 3 h - 1 and 30 to 305 

g α - pinene m - 3 h - 1, respectively. Earlier, the BTF and BF were adjusted to receive 

low loads of H2S, methanol and α - pinene overnight, and measurements were taken the 

next day for 2 h initially at these low loads, before subjecting both the bioreactors to the 

shock loads as shown in Figures 2.11 and 2.12. It was observed that the high shock 

loads instantaneously and severely affected the removal of both H2S and methanol in 

the BTF, though nearly 100% removal was noticed for all the pollutants before the 

shock load. From the 3rd h, H2S removal was just 31%, when the H2S load was 106 g m 

- 3 h - 1, while at a loading rate of 1220 g methanol m - 3 h - 1, methanol removal 

decreased by 50% initially and occasionally reached as low as 33%. On the other hand, 

as observed during the previous shock loading study (Figure 2.9), α - pinene was not 

removed in the 1st stage BTF during the shock load, irrespective of the applied load, 

whether medium or high. Instead, just after the shock load, when the concentrations 

were brought down to previously applied low values, α - pinene concentrations were 

even somewhat higher, by a margin of 0.03 to 0.12 g m - 3, in the outlet of the 1st stage 

BTF than the inlet section, giving rise to short, transient, negative removal profiles as 

shown in Figures 2.10 and 2.12, a phenomenon that was also noticed earlier (Figure 2.6 

c).  
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It has been reported that organic pollutants tend to adsorb to the surface of the solid 

surfaces, packing material and biomass related compounds, and also partially absorb 

into the liquid film present over the packing material. In such cases, the pollutant would 

be retained for a somewhat longer period in the BTF than the mean residence time of 

the pollutant. Similarly, Mendoza et al. [37] observed through tracer studies that, in a 

biofilter operated at a calculated EBRT of 56 s, the mean residence time of styrene were 

185 s during start - up, while during the second year of continuous biofilter operation, 

that value increased 5.35 fold. The lower volatility and higher density of styrene, as well 

as heavy biomass growth during the experimental period was considered as the main 

reason for such a major change in the residence time of the pollutant.  

However, as a result of this high shock load, and the lower removal of both H2S and 

methanol in the BTF, the 2nd stage BF received loads of 42.4, 414 and 176 g m - 3 h - 1 of 

H2S, methanol and α - pinene, respectively (Figure 2.12). H2S and methanol removal 

efficiencies were lower, about 8.5% and 25%, while high removals (75%) of α - pinene 

were maintained in the BTF giving rise to a maximum EC of 130.1 g m - 3 h - 1.  

Besides, H2S and methanol EC in the BF were 8.6 and 101.7 g m - 3 h - 1, respectively. 

The consistent high performance of the 2nd stage BF during shock loads is not 

surprising, as results from our previous study have shown the ability of the Ophiostoma 

sp. to withstand periodic shock loads of gas - phase pinene, for more than one month of 

transient - state operations, where EC and RE were found to be 60 g m - 3 h - 1 and >90% 

respectively.2 Moreover, the presence of filamentous fungi as Ophiostoma stenoceras in 

the BF offers some advantages for the treatment of hydrophobic compounds such as α - 

pinene. Fungi develop hyphea which provide a large surface area in contact with the gas 

phase so that a direct efficient mass transfer from the gas phase to the biofilm phase is 
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possible. This allows a faster uptake of hydrophobic compounds (α - pinene), than in 

flat aqueous bacterial biofilms [10]. 

 

 
Figure 2.9: Effect of long – term, low to medium shock loads on the first – stage BTF 

(a) inlet loading rate and (b) removal efficiency 
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Figure 2.10: Effect of long – term, low to medium shock loads on the second – stage 

BF (a) inlet loading rate and (b) removal efficiency 
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Figure 2.11: Effect of short – term, low to high shock loads on the first – stage BF (a) 

inlet loading rate and (b) removal efficiency 
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Figure 2.12: Effect of short – term, low to high shock loads on the second – stage BF 

(a) inlet loading rate and (b) removal efficiency 
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removal increased from 100 to 138 g m - 3 h - 1 at an ILR of 127 and 161 g m - 3 h - 

1.  

 Stratification in terms of biodegradation of pollutants along the bed height was 

observed in both reactor configurations. The first one - third section of the BTF 

was able to remove nearly 78% of methanol, while H2S was removed linearly 

over the next two - sections of the filter bed.  

 The effect of the liquid recirculation rate on pollutant removal characteristics in 

the BTF was understood by changing the liquid trickling rate from 50 to 150 mL 

min - 1. The results showed that, due to mass transfer limitations, high liquid 

trickling rates and moderately high pollutant loading rates might not favour better, 

simultaneous removal of gaseous mixture of H2S, methanol and α - pinene. 

 Increasing the concentration of the hydrophilic VOC, methanol, or the 

hydrophobic VOC, α - pinene to the BTF, lead to decline in the RE of H2S by 

about 25%, however, a stepwise increase in H2S concentration did not appear to 

affect the removal of VOC in both the BTF and BF. Being an easily 

biodegradable compound, methanol was also removed in the second - stage BF, 

which could have been possible due to the preferential utilization of methanol as 

carbon and energy source by the original Ophiostoma sp. in the BF. 

 The commonly reported practical problems in continuous bioreactor operation 

such as prevalence of unexpected shock loads, either medium and / or high loads, 

were simulated in the present study. H2S removal was affected strongly in the 

BTF, while methanol removals were not affected much, when the applied shock 

load was less than their critical load. During high shock loads, H2S and methanol 

removal was less in the BTF, while high removals (75%) of α - pinene was 
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maintained with an EC of 130.1 g m - 3 h - 1. This shows that the two - phase 

bioreactor system was sensitive to changes in loading rates.  

 The results from this study provide sufficient information on the antagonistic and 

synergistic effects occurring during the biological treatment of a complex gaseous 

mixture containing organic, inorganic, hydrophilic and hydrophobic pollutants.  
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Chapter 3 

 

Modeling the removal of volatile pollutants under transient 

conditions in a two-stage bioreactor using artificial neural 

networks 
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ABSTRACT 

A two-stage biological waste-gas treatment system consisting of a first-stage 

biotrickling filter (BTF) and second-stage biofilter (BF) was tested for the removal of 

gas-phase methanol, α-pinene and hydrogen sulphide mixture. The bioreactors were 

tested with two types of shock loads, i.e., long-term (66h) low to medium concentration 

loads, and short-term (12h) low to high concentration loads. Methanol and hydrogen 

sulphide were removed in the BTF, reaching maximum elimination capacities (ECmax) 

of 684, and 33.1 gm-3h-1, respectively. α-pinene was removed better in the second-stage 

BF with an ECmax of 130.1 gm-1h-1. Their performances were modelled using two multi-

layer perceptrons (MLPs) that employed the error backpropagation with momentum 

algorithm, in order to predict the removal efficiencies (RE, %) of methanol (REM), α-

pinene (REP) and hydrogen sulphide (REHS), respectively. It was observed that, a MLP 

with the topology 3-4-2 was able to predict REM and REHS in the BTF, while a topology 

of 3-3-1 was able to approximate REP in the BF. The results show that artificial neural 

network (ANN) based models can effectively be used to model the transient-state 

performance of bioprocesses treating gas-phase pollutants. 

KEYWORDS: Artificial neural networks, biofilter, biotrickling filter, two-stage 

bioreactor, transient-state performance 
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3.1 INTRODUCTION    

The deleterious short-term acute and long-term chronic effects of a wide variety of air 

pollutants have been well documented in several reports, and major air pollution 

episodes have shown their effect on human health and environment. Point source 

emissions from petrochemical and refinery complexes, incinerators, painting works, 

pulp and paper industry, pharmaceutical industry and electrical power generators, 

among others, have to be controlled and curtailed in order to improve air quality. Thus, 

research pertaining to the development of suitable, eco-efficient and cost-effective air 

pollution control technologies has gained interest. Besides, regulations on controlling 

air pollutants have been issued worldwide, and this has further compelled process 

industries to adopt suitable remediation techniques to prevent unwanted air pollutants 

from entering the environment. For example, according to the Directive on Ambient Air 

Quality (DAAQ) and Cleaner Air for Europe (Clean Air for Europe-CAFE programme), 

the total volatile organic compound (VOC) limit was set at 35 g total organic compound 

m-3 gasoline loaded [1]. 

Although there are different physical, chemical, and biological techniques for air 

pollution control, the pertinence of applying a particular treatment process depends on 

the composition and amount of pollutants present in the waste-gas [2]. Biofilters (BF) 

and biotrickling filters (BTF) can be used in industrial situations as a single-stage or 

stand-alone system, and are considered to be technically best suited for the removal of 

relatively low concentrations of pollutants, over a rather wide range of gas-flow rates, 

i.e., empty bed residence times (EBRT) [3-7]. However, for the (bio)treatment of 

mixture of pollutants such as methanol, α-pinene and hydrogen sulphide, representative 

volatile hydrophilic, hydrophobic and inorganic gas-phase pollutants emitted from the 

pulp and paper industry, a combination of a BTF and a BF (two-stage process) was 
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recently tested under steady and transient-state conditions [8, 9]. In that study, during 

steady-state conditions, the first-stage BTF inoculated with hydrogen sulphide utilizing 

autotrophic bacteria and the yeast Candida boidinii was able to handle the prevailing 

low-pH conditions caused by the conversion of hydrogen sulphide to sulphuric acid and 

both methanol and hydrogen sulphide were removed effectively with high elimination 

capacities (ECmax= 894.4 and 45.1 gm-1h-1). Subsequently, in the second-stage BF 

inoculated with the fungus Ophiostoma stenoceras, α-pinene was removed with an 

ECmax of 138.1 gm-3h-1, which is a similar efficiency as reached during the fungal 

biodegradation of α-pinene as single pollutant in a BF [10].    

Although till date there are several experimental studies that have demonstrated the 

steady-state performance of different waste-gas treatment systems, their dynamic 

behaviour to sudden variations in operating conditions has received only little attention 

from researchers [6, 8, 11-14]. From a practical view-point, sudden variations in 

concentrations and/or gas-flow rates (shock loads) are common to any industrial 

emission, and by simulating these loading patterns under laboratory conditions, one 

would easily understand the effectiveness and operational limits of the waste-gas 

treatment system [15, 16]. During transient operation, if the waste-gas treatment system 

receives exceedingly high pollutant loads, either the mass transfer capacity or the 

reaction capacity of the initial sections of the bed are exceeded and pollutants move into 

the later sections where microbial populations and reaction capacities are low and 

contaminant breakthrough could easily occur [17]. Jin et al. [18] performed shock load 

experiments of one month, by subjecting a fungal BF inoculated with O. stenoceras to 

multiple medium and high shock loads of α-pinene. It was observed that the 

performance of the BF quickly recovered after every 4h shock load, reaching EC values 

of 60 gm-3h-1 with removal efficiency (RE) >90% over the 13h period after the shock 
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load. According to Wright [17], it is important to characterize transient response and 

minimize contaminant breakthrough in BTF and BF because of the following reasons: 

(i) the actual operating conditions should be monitored continuously and linked to the 

treatment efficiency, (ii) transient operations are inherent to waste-gas characteristics 

and thus cannot be avoided, and (iii) the microbial activity could be limited (substrate 

inhibition) in biological treatment systems leading to a drastic reduction in performance 

when pre-shock conditions are restored.      

3.2 ARTIFICIAL NEURAL NETWORKS FOR MODELING TRANSIENT-

STATE OPERATIONS 

Contaminant transport in fixed-bed waste gas treatment systems such as BTF and BF 

occurs by the continuous transfer of pollutants from the gas-phase to the biofilm phase, 

and the following phenomenological steps are involved: absorption, adsorption, 

diffusion, and biodegradation [19-21]. Most of the conventional mathematical models 

proposed in the literature were derived to represent steady-state behaviour, and not 

derived to accommodate transient-state operations [19, 20, 22-24].  

Artificial neural networks (ANNs) possess the inherent capability to learn ‘by example’ 

wherein an actual measured set of input and output variables are presented to determine 

the rules that regularizes the relationship between the variables [24-27]. A recently 

published ANN modeling study has shown that there is good prospect to model waste 

gas treatment systems such as a BF, a continuous stirred tank bioreactors and a monolith 

bioreactor using ANNs, due to its process complexity, dynamic behaviour and 

persistence of uncertainty due to changing pollutant loads and microbial characteristics 

[27]. In a typical ANN topology, the neurons in different layers of a multi-layer 

perceptron (MLP) are interconnected to form a network of nodes mimicking the 

biological structure of a human brain. The number of neurons in the input layer usually 
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depends on the number of input variables. The number of neurons in the hidden layer 

depends on the complexity of the problem presented to the network and the size of 

inputs, while the number of neurons in the output layer depends on the number of 

performance monitoring variables chosen for a particular study. The input signals flow 

through a gain or weight called synaptic weight, whose objective function is analogous 

to that of the synaptic junction in a biological neuron [26-28]. The weights (Wji) can be 

positive or negative corresponding to the acceleration or inhibition of the flow of 

electrical signals in a biological cell. The summing node accumulates all the input 

weighted signals, adds a bias signal and then passes to the output through the activation 

function, which is usually non-linear in nature [27-29]. The commonly used activation 

function f(x) for prediction purposes is the sigmoid transfer function which can be 

represented as follows; 

1
(x) x1 e

f  
         (3.1) 

Training of neural networks can be performed using the most commonly used error 

backpropagation with momentum algorithm that uses a gradient descent procedure to 

minimize the objective function [30]. The goal of this training process is to minimize 

the sum-squared error in the overall training pattern. The weight update for the tth epoch 

between nodes i and j can be given by; 
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Where, 
ij

E

W




is a gradient of error with respect to weight, η is the learning rate, and α is 

the momentum term. 

Although ANNs have found widespread applications in modeling bioremediation [31] 

and wastewater treatment systems [32-35]; the ANN concept was tested only recently to 
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model waste-gas treatment systems [7, 27, 36-38]. Elías et al. [37] modeled the 

performance of a lab-scale BF packed with pig manure and saw dust, handling H2S 

vapours. The authors divided the large data set, as training (50%), testing (40%), and 

validation (10%) sets, respectively, using a combination of cluster analysis and genetic 

algorithm. The inlet H2S concentration and unit flow (gas-flow rate/volume, h-1) values 

tested in the BF were used as inputs to the model, while the RE of the BF was used as 

the output. The best MLP was chosen after evaluating 10,000 different combinations of 

MLPs, and it was reported that a 2-2-1 MLP was able to predict the RE well with high 

correlation coefficients (R2 = 0.92). Ravi et al. [7] used a MLP to predict the 

performance of a compost BF handling dichloromethane vapors. The authors performed 

long-term experiments, at gas-flow rates of 0.024-0.144 m3h-1, with dichloromethane 

concentrations varying between 0.1 and 1.1 gm-3. It was reported that the RE profiles 

were a strong function of the inlet loading rate (ILR), i.e., less removal at high ILRs and 

vice versa, and an ECmax of 20 gm-3h-1 was reported. On modeling this data set with 

ANNs, the authors reported that a 2-4-1 neural architecture was optimum to predict the 

RE profiles of the BF with high R2 values (0.9321). Zamir et al. [39] reported the ANN 

modeling results of a compost BF treating n-hexane vapours by varying the operating 

temperature of the BF between 30 and 45oC. The BF was inoculated with a non-

identified fungal consortium and operated under intermittent loading conditions (10 h 

aeration d-1). Besides achieving an ECmax of 491 gm-3h-1, at 35oC, the authors also 

formulated a 2-10-1 ANN to predict the RE profiles using ILR and operating 

temperature as the inputs. Although high R2 (0.914) was observed during training, the 

training/generalization pattern of the network was affected when the RE of the BF 

dropped significantly, from 100% at 35oC to <50% during its operation at 45oC.          
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The main aim of this study was to model and analyze the results of transient-state 

performance of a previously described two-stage waste-gas treatment system [8, 9], and 

predict the RE profiles of individual pollutants, i.e., methanol (REM), α-pinene (REP), 

and hydrogen sulphide (REHS), using ANNs. Sensitivity analysis was carried out to 

envisage the most important parameter affecting the removal of each pollutant in this 

system, and the interaction effects between pollutants were identified. The practical 

implications of this modeling work have also been stated. 

3.3 MATERIALS AND METHODS 

3.3.1 Media composition and microorganisms  

The mineral salt medium used in the first-stage BTF had the following composition (in 

gL-1 of de-ionized water); KH2PO4: 2, K2HPO4: 2, NH4Cl: 0.4, MgCl2·6H2O: 0.2, and 

FeSO4·7H2O: 0.01. The medium used in the second-stage fungal BF had the following 

composition (gL-1); K2HPO4: 0.5, MgSO4·7H2O: 0.1, KH2PO4: 4.5, NH4Cl: 2, and 2 mL 

trace elements and vitamin solutions [8, 9]. The first-stage BF was inoculated with 

autotrophic hydrogen sulphide degrading culture and an acid tolerant methanol 

degrading yeast (C. boidinii), while the fungus O. stenoceras was the dominant strain in 

the second-stage BF.  

3.3.2 Experimental setup and operation 

The following configurations of bioreactors were used in this study; glass column BTF: 

diameter-75 mm and height-700 mm (Working volume-2.78L); glass column BF: 

diameter-100 mm and height-700 mm (Working volume-4.88L). The BTF was packed 

with pall-rings (porosity-91% and specific surface area-350 m2m-3), while the BF was 

packed with a composite mixture of pall-rings and perlite (mean diameter-4.5 mm). To 

generate the desired levels of gas-phase pollutants, compressed air stream was split into 

three flows viz., as one major and two minor streams. Hydrogen sulphide was generated 
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by passing the major portion of the air stream over a H2SO4 solution into which a 

solution of Na2S was dripped. The desired values of gas-phase hydrogen sulphide 

concentrations were obtained by changing either the Na2S concentration and/or the 

dripping rate. The two minor streams were bubbled through troughs containing liquid 

methanol and α-pinene, respectively. The waste-gas containing a mixture of methanol, 

α-pinene, and hydrogen sulphide was passed first through the BTF in upflow mode, 

counter-current to the trickling liquid, where methanol and hydrogen sulphide were 

removed. The outlet of the BTF was connected in series to the second-stage fungal BF, 

operated in downflow mode, to remove α-pinene vapours. During continuous steady-

state experiments, it was observed that some of the non-treated methanol and hydrogen 

sulphide vapours from the first-stage BTF were also removed in the latter system [8, 9]. 

Four equidistant gas sampling ports and two filter material sampling ports were 

provided along the depth of the column.  

During shock load studies, gas samples were collected from the inlet and outlet port of 

the two bioreactors and subjected to gas chromatographic analysis. The performance of 

the individual bioreactor to remove gas-phase methanol, α-pinene, and hydrogen 

sulphide were ascertained by periodically monitoring the EC and RE profiles, 

determined by the following equations (Eqs. 3.3 and 3.4): 

Elimination capacity: 

 i o -3 -1
Q C - C

EC = , gm h
V


  

      (3.3) 

Removal efficiency: 

 
 i o

i

C - C
RE= , %

C
        (3.4) 

Where, Q is the gas flow rate (m3h-1), V is the volume of the filter bed (m3), and Ci and 

Co is the inlet and outlet pollutant concentrations (gm-3), respectively.  
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3.3.3 Analytical methods 

Hydrogen sulphide concentrations (0-1000 ppm) were determined using a hand held 

sensor (Dräger Sensor XSEC H2S HC6809180). Gas-phase methanol and α-pinene 

concentrations were measured via gas chromatographic analysis using a Hewlett-

Packard 5890 series II GC, fitted with a flame ionization detector (FID). The following 

flow rates were used; H2: 30 mL min-1, air: 300 mL min-1. A 50 m TRACER column 

(TR-WAX, ID: 0.32 mm, film thickness: 1.2 μm) and helium (2.0 mL min-1) were used 

in the GC. The temperatures at the GC injection, oven and detection ports were 150, 

150 and 250 C, respectively.  

3.4 ANN MODEL DEVELOPMENT 

Two MLPs (input-hidden-output layer) were formulated to predict the RE of different 

pollutants in the BTF and the BF, respectively, using inlet concentrations of methanol 

(CM), α-pinene (CP), and hydrogen sulphide (CHS) as the input parameters. Although one 

model could be developed for the whole system under consideration (two-stage 

bioprocess), it could not be then used in cases where either the BTF or the BFr, is used 

as a stand alone bioprocess to eliminate methanol and hydrogen sulphide (BTF) and α-

pinene (BF) from gas-phase. Anew, as envisaged in our study, as the first-stage BTF 

removed most of the methanol and hydrogen sulphide entering the system, the model 

developed for the BTF had only two outputs, namely REM and REHS. On the other hand, 

the model developed for the BF used only one output, i.e., REP, because that bioreactor 

predominantly removed α-pinene vapours [8, 9]. The schematic of these two MLPs is 

illustrated in Figure 3.1. The experimental data points were normalized and scaled to the 

range of 0 to 1. The sigmoid transfer function was used in the hidden layer, while a 

linear transfer function was used in the output layer. The dataset (100%) was divided 

into two sets, as training (NTr: 58%), and testing sets (NTe: 42%). Table 3.1 describes the 
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basic statistical information about the training and test data sets, for the BTF and the 

BF, respectively. The training data set was randomly chosen in order to represent the 

minimum and the maximum values from the experimental conditions, i.e., the pre-

shock, shock and post-shock loading patterns. NTe were kept aside during training, and 

the performance of the trained network was intermittently assessed to avoid over-

training of the network. More details concerning the selection of data points and internal 

network parameters have been described elsewhere [26-28].   

Table 3.1: Basic statistics of the training and test data set 

 

(a) Model for the first-stage BTF 

 Training data (NTr=18) Test data (NTe=13) 

 Mean Mininmum Maximum Mean Mininmum Maximum 

CM 

CP 

CHS 

REM 

REHS 

1.069 

0.3308 

0.1120 

74.92 

63.41 

0.167 

0.0505 

0.026 

33.71 

27.17 

3.391 

0.792 

0.287 

100 

100 

1.043 

0.311 

0.105 

80.37 

70.86 

0.176 

0.067 

0.0236 

51.67 

29.79 

3.349 

0.848 

0.296 

100 

100 

(b) Model for the second-stage BF 

 Training data (NTr=18) Test data (NTe=13) 

 Mean Mininmum Maximum Mean Mininmum Maximum 

CM 

CP 

CHS 

REP 

0.4334 

0.338 

0.0579 

91.97 

0.000 

0.0568 

0.000 

72.14 

2.020 

0.792 

0.207 

100.00 

0.378 

0.319 

0.053 

90.79 

0.000 

0.0606 

0.000 

67.97 

1.608 

0.859 

0.204 

100.00 

 

Weight corrections between interconnected neurons were modified using the error 

backpropagation algorithm with gradient descent [28, 30]. The best values of network 

parameters, viz., training count (Tc), number of neurons in the hidden layer (NH), 

learning rate (η), momentum term (α), and epoch size (ε), were selected by trial and 

error [7, 27, 38, 39]. These values are shown in Table 3.2. More information concerning 

the effect of these network parameters and neural network modeling can be found 

elsewhere [27, 28, 36-39]. ANN training, testing and sensitivity analysis were 

performed using the multivariable statistical and neural network modeling software, 

NNMODEL (Version 1.4, Neural Fusion, NY). Details pertaining to the application of 
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ANNs for evaluating the performance of a BF has been elaborated and discussed in 

recent publications [27, 38]. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3.1: Schematic of the multi-layer perceptron model for; (a) first-stage BTF, and 

(b) second-stage BF (CM-Concentration of methanol, CP-Concentration of α-pinene, and 

CHS-Concentration of hydrogen sulphide; Unit-gm-3). 

 

 

 

 

Bias term 

Bias term 

CM 

CP 

CHS 

 

REP 

Bias term 

Bias term 

CM 

CP 

CHS 

 

REM 

REHS 



 

 91 

 

Table 3.2: Best values of network parameters and other variables during model training 

 

Parameter 
Model for BTF Model for BF 

Best value Best value 

Training count, Tc 

Learning rate, η 

Momentum term, α 

Error of training 

Epoch size, ε 

Neurons in input layer, NI 

Neurons in hidden layer, NH 

Neurons in output later, NO 

Network topology 

Sum squared error 

Size of training data, NTr 

Size of test data, NTe 

5,000 

0.7 

0.5 

0.0001 

18 

3 

4 

2 

3-4-2 

0.00626 

18 

13 

15,000 

0.75 

0.8 

0.0001 

18 

3 

3 

1 

3-3-1 

0.00034 

18 

13 

 

3.5 RESULTS AND DISCUSSION 

3.5.1 Performance of BTF and BF during transient-state operations 

Transient-state experiments were conducted in the two bioreactors in the form of long-

term and short-term shock loads at a constant gas-flow rate of 1m3h-1. The ILRs of 

methanol, α-pinene, and hydrogen sulphide were thus varied from low to medium (66h), 

and low to high (12h) values during the shock loading step, and the performance was 

evaluated by monitoring the RE and EC profiles for each bioreactor [3]. When the BTF 

was subjected to medium shock loads (38 ghydrogen sulfide m
-3h-1), the REHS decreased from 

100% to 50%, while REM decreased from 100 to ~30% when the load was >250 

gmethanolm
-3h-1. During this step, the second-stage BF experienced α-pinene loads of 

about 70 gm-3h-1, and high REP were noticed (90%). The EC profiles of individual 

pollutants observed in the BTF and the BF, respectively, are plotted in Figure 3.2 as a 

function of the ILR.  
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Figure 3.2: Effect of ILR on the EC of: (a) first-stage BTF, and (b) second-stage BF, 

during long-term low to medium shock loads. 

 

During short-term low to high concentration shock loads, the ILRs were increased as 

follows; 8.5 to 106 ghydrogen sulphide m
-3h-1, 95 to 1220 gmethanol m

-3h-1, and 30 to 305 gα-

pinene m-3h-1. It was observed that REM and REHS dropped significantly in the BTF, 

reaching ~50 and 31%, respectively. The non-treated methanol and hydrogen sulphide 

thus imparted a shock load of 414 and 42.4 gm-3h-1 to the second-stage BF, in addition 

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

Inlet loading rate, gm -3h-1

E
li
m

in
a
ti

o
n

 c
a
p

a
c
it

y
, 
g

m
-3
h

-1

Methanol

Pinene

Hydrogen sulfide

(a)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Inlet loading rate, gm-3h-1

E
li

m
in

a
ti

o
n

 c
a
p

a
c
it

y
, 

g
m

-3
h

-1

Methanol

Pinene

Hydrogen sulfide

(b)



 

 93 

to the already entering high loads of α-pinene (176 gm-3h-1). The second-stage BF was 

able to achieve only low REM and REHS (8.5% and 25%), while high REP (75%) were 

maintained in the BF giving rise to an ECmax of 130.1 gα-pinene m
-3h-1 (Figure 3.3). The 

ECmax for methanol and hydrogen sulphide in the first-stage BTF were 684, and 33.1 

gm-3h-1, respectively.  

3.5.2 ANN modeling 

The first step of this modeling task was to identify a suitable network topology for the 

two MLPs through proper optimization of the network parameters [28, 29, 34, 39]. In 

order to achieve this, the Tc and NH were varied from 1,000 to 20,000, and 3 to 6, 

respectively, by keeping the η and α at their default values of 0.5. After assigning the Tc 

as 5,000 and 15,000, and NH as 4 and 3 for the models developed for, respectively, the 

BTF and the BF (Figure 3.1), the best values for η and α were estimated by changing 

their values from 0.1 to 0.9. The optimized values of network parameters for both the 

models are shown in Table 3.2. The best network topology for the first-stage BTF, and 

the second-stage BF, were found to be 3-4-2 and 3-3-1, respectively.   

The measured and model fitted profiles of RE for the individual pollutants, during 

model training and testing are shown in Figures 3.4 and 3.5, respectively. As seen from 

these figures, the transient-state ANN model developed for the BTF and the BF showed 

high R2 values during both training and testing. The BTF model gave R2 values of 

0.8955 and 0.9725 for methanol, and 0.9206 and 0.9457 for hydrogen sulphide, 

respectively, during training and testing.  
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Figure 3.3: Effect of ILR on the EC of; (a) first-stage BTF, and (b) second-stage BF, 

during short-term low to high shock loads. 
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Figure 3.4: Experimental and ANN model predicted profiles of RE in the training data 

set; (a) methanol, (b) hydrogen sulphide, and (c) α-pinene. 

0

20

40

60

80

100

R
e

m
o

v
a

l 
e

ff
ic

ie
n

c
y

, 
%

Long-term low to medium 

shock loads
Short-term low to high 

shock loads
(a) 

0

20

40

60

80

100

R
e

m
o

v
a

l 
e

ff
ic

ie
n

c
y

, 
%

(b) 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Data points

R
e
m

o
v
a
l 

e
ff

ic
ie

n
c
y
, 

%

Experimental

ANN Predicted (c) 



 

 96 

 
Figure 3.5: Experimental and ANN model predicted profiles of RE in the test data set; 

(a) methanol, (b) hydrogen sulphide, and (c) α-pinene. 
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On the other hand, R2 values of 0.9486 and 0.9540 were obtained for the BF model 

during training and testing. Thus, overall, only <10% of the total deviations could not be 

mapped by these models during the training process. However, some of these deviations 

in the BTF model can be attributed to the fluctuating values of REHS during the long-

term low to medium shock loading step. At this stage of operation, during pre-shock 

conditions, nearly complete REHS was noticed at an inlet loading rate of 10 gm-3h-1, and 

when the shock load was introduced (38 gm-3h-1) the REHS fluctuated between 80 and 

50%, even when CHS was maintained constant at ~0.3 gm-3 to the first-stage BTF. The 

fluctuating pollutant removal profiles that are usually governed by the activity of the 

microorganisms in the bioreactor are not interpreted by a neural network during 

training, unless a process based model is integrated with a neural network model. Thus, 

any unannounced variations in RE profiles can beset the ANNs learning capacity, 

eventually leading to a decline in performance of the model [39]. 

After obtaining the best network topology for the two models (3-4-2 and 3-3-1), the 

connection weights and bias term were obtained for the interconnections between 

different neurons in different layers of the MLP (Table 3.3). According to Garson [40], 

the connection weights Wih and Who determine which input neuron dominates the 

contribution to a hidden neuron, while the sign (+, –) suggests the nature of correlation 

between an input to a neuron and the output from the neuron. Sensitivity analysis was 

performed in order to estimate the strength and magnitude of relationships prevailing 

between the output variables (REM, RHS, and REP) and the input variables (CM, CHS and 

CP) [7, 27, 37-39]. 
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Table 3.3: Connection weights between the input - hidden layer (Wih), and hidden - 

output layer (Who) of the developed ANN models 

(a) Model for the first-stage BTF 

Model 

inputs 

Input-hidden layer (Wih) Hidden-output layer (Who) 

HID-1 HID-2 HID-3 HID-4  REM REHS 

CM 

CP 

CHS 

Bias term 

2.307 

3.681 

-0.330 

0.005 

-1.991 

-4.522 

0.047 

0.462 

1.737 

0.999 

0.275 

-0.735 

-6.272 

-9.856 

3.132 

4.722 

HID-1 

HID-2 

HID-3 

HID-4 

Bias term 

-1.661 

1.790 

0.977 

5.250 

0.704 

-1.468 

2.570 

-0.149 

5.354 

0.920 

(b) Model for the second-stage BF 

Model 

inputs 

Input-hidden layer (Wih) Hidden-output layer (Who) 

HID-1 HID-2 HID-3  REP 

CM 

CP 

CHS 

Bias term 

0.802 

-0.647 

-3.234 

0.637 

-0.377 

-1.342 

1.663 

-0.612 

-0.710 

-4.044 

9.452 

0.075 

HID-1 

HID-2 

HID-3 

Bias term 

-2.062 

0.406 

3.421 

-0.098 

 

Table 3.4: Sensitivity analysis of model inputs 

Model 

inputs 

BTF BF 

REM REHS REP 

AAS AS AAS AS AAS AS 

CM 

CP 

CHS 

0.2437 

0.5870 

0.1692 

-0.2416 

-0.5870 

+0.1692 

0.2624 

0.5847 

0.1528 

-0.2624 

-0.5847 

+0.1528 

0.0915 

0.3320 

0.5764 

-0.0915 

-0.3320 

-0.5764 

Note: AAS-Absolute average sensitivity, AS-Average sensitivity 

 

For waste-gas treatment systems handling mixtures of gas-phase pollutants, it has been 

reported that small changes in the inlet concentration of one pollutant could have a 

significant impact on overall reactor performance and synergistic and/-or antagonistic 

interactions can be expected [19, 20]. Sensitivity analysis in the form of absolute 

average sensitivity (AAS) and average sensitivity (AS) values were computed to 

determine the most influential input parameter affecting the output of the ANN models 

[27, 38]. If the direction of the change in the output variable is always the same then 

both these sensitivity values would be identical. The results of sensitivity analysis for 

the first-stage BTF and second-stage BF models are shown in Table 3.4. It can be 

inferred from this table that, the REM in the BTF was affected more, in an antagonistic 
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way (AS=-0.5870), by the presence of α-pinene, a hydrophilic VOC, than by its own 

concentration, CG (AS=-0.2416). Regarding REHS, both CM and CP affected REHS in the 

first-stage BTF during transient-state operations. Nevertheless, the presence of 

hydrogen sulphide did not affect the REM, an easily biodegradable hydrophilic VOC, in 

the biotrickling filter (AS=+0.1692). These results are in strong agreement with a 

previous study, where it was shown that the presence of methanol significantly affected 

the REHS, but the REM was not affected by the presence of hydrogen sulphide [41]. The 

authors reported an ECmax of 236 gm-3h-1 for methanol, and 6.4 gm-3h-1 for hydrogen 

sulphide, respectively, and occasionally the pH dropped to very low values. During 

steady-state operation in the first-stage BTF, it was shown that when increasing either 

CM or CP while maintaining the CHS at constant values, the REHS reduced by almost 

25%, but the reverse did not occur [8]. However, in the case of the second-stage BFr, 

both CM and CP negatively affected REP, and the presence of hydrogen sulphide 

synergistically affected the BF performance (AS=+0.5762) despite a drop in the pH of 

that bioreactor from 5.9 to 3.5 during steady-state operations [8, 9]. The drop in pH 

values can be attributed to the formation of hydrogen chloride during α-pinene 

biodegradation, as the mineral medium used contained ammonium chloride as the 

nitrogen source. On the other hand, the non-treated hydrogen sulphide entering the 

fungal BF from the first-stage BTF was also partially removed in the BF [8]. Thus, 

during its biodegradation, it could also have interacted with the different chemical 

species present in the mineral medium to produce sulphuric acid as one of its main end-

product, thereby contributing to a decline in the pH values. Despite a drop in the 

operating pH of the BF, the REP values were found to be significantly high both during 

long-term and short-term shock loads. This can be explained by the dominant presence 

of the fungus O. stenoceras in the BF, and its ability to degrade α-pinene vapours under 
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fluctuating conditions of pH and water content [42]. Moreover, recent research suggests 

that fungal species such as Cladosporium sphaerospermum, Penicillium 

brevicompactum, Exophiala jeanselmei, Fusarium oxysporum, Fusarium nygamai, 

Talaromyces flavus, and Fonsecaea pedrosi can degrade a wide variety of VOCs (n-

butyl acetate, methyl ethyl ketone, methyl propyl ketone and toluene), at rates equal to 

or greater than those observed in bacterial systems even under no pollutant loading 

(starvation) conditions [43].  

3.5.3 Practical implications 

Neural networks have recently found application to predict the performance of lab-scale 

waste-gas treatment systems such as BF and BTF [7, 27, 36-39], though no serious 

effort has been made so far by plant managers to implement this technique for real-time 

systems. Some salient features of neural networks include the following: adaptive 

nature, ability to perform data analysis and recognize patterns, ability to deal with 

highly non-linear data, and high processing speeds. In industrial wastewater treatment 

plants (WWTPs), ANNs have successfully been implemented for fault detection and 

diagnosis, plant and instrument monitoring, dynamic forecasting and robust process 

control [44]. However, for waste-gas applications, ANN based models can provide 

adequate information on the different safe operational regimes of the bioreactor, in 

terms of inlet concentrations of the different pollutants, to reach high REs. These 

regimes can be represented by two-dimensional contour plots as shown in Figure 3.6. 

This figure shows the response of the second-stage BF (REP) as a function of methanol 

and α-pinene concentrations during transient-state operations. It is evident that, to 

achieve more than 99% REP, the BF should be fed with <1.8 g methanol m-3, and <0.3 g 

α-pinene m-3. However, for increasing concentrations of α-pinene (>0.3 g m-3), the REP 

can decrease significantly in the second-stage BF to values as low as 39%. Besides 
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identifying the safe operating regimes for the system under consideration, the ANN 

model also provides data on the most important factor that is likely to affect the removal 

of methanol, α-pinene and hydrogen sulphide in the two-stage system, in the form of a 

sensitivity analysis report (Table 3.4).  

 
Figure 3.6: Representative contour plot showing the RE profiles of α-pinene in the 

second-stage BF as a function of methanol and α-pinene concentrations. 

 

Models developed from lab-scale experimental data, where input parameters to the BF 

such as concentration and gas flow rates are systematically controlled and other 

physico-chemical and environmental factors are adequately maintained to exhibit high 

microbial activity, might not accurately predict the efficiency of full-scale BF. Thus, for 

real-time/full-scale applications, the waste-gas treatment system should be fitted with 

online measurement devices to periodically monitor process parameters such as inlet 

concentrations of the pollutant(s), gas-flow rate, pressure drop, relative humidity, 

temperature, and carbon dioxide generation rate. This information has to be stored in a 
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large database, and the system has to be equipped with an automatic control system to 

maintain the desired values of these process variables. The trained neural model can 

then be integrated with a programmable logic controller (PLC) to ascertain and control 

the process variables, and also estimate the performance of the system on a regular 

basis, once every 6h. The neural network model can also be programmed to warn the 

plant operator of any discrepancies in waste-gas characteristics and concentrations, 

sudden changes in gas-flow rate, and notify the operator to take suitable actions. The 

time-series data collected from real-time bioreactor operation can be merged with the 

already existing database, and the ANN model can be trained in offline/online mode, 

and the connection weights can be updated before integrating it with the PLC.   

3.6 CONCLUSIONS 

ANN based models were successfully developed and tested to predict the transient-state 

performance of a two-stage waste-gas treatment system. The REM and REHS in a first-

stage BTF and the REP in a second-stage BF were predicted using CM), CP and CHS as 

the inputs to the models. After proper optimization of network parameters, and through 

vigorous training and testing, the following network topologies were obtained: 3-4-2 

and 3-3-1, respectively, for the BTF and the BF. The results from sensitivity analysis 

showed that the most critical factor that antagonistically affects the REM and REHS in 

the BTF during transient operations was CP, while REP in the BF was synergistically 

affected by CHS. The ANN models developed in this work for the two-stage system 

under transient-state conditions would yield more promising results when tested with 

adequate online control systems, thus allowing better access to control process variables 

and improve the performance of bioreactors for waste-gas treatment.  
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Chapter 4 

 

One-stage biotrickling filter for the removal of a mixture of 

volatile pollutants from air: performance and microbial 

community analysis 
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ABSTRACT 

The biodegradation of gas-phase mixtures of methanol, α-pinene and H2S was examined in a 

biotrickling filter (BTF), inoculated with a microbial consortium composed of an autotrophic 

H2S-degrading culture, and pure strains of Candida boidinii, Rhodococcus erythropolis, and 

Ophiostoma stenoceras. The inlet concentrations of methanol, α-pinene and H2S varied from 

0.05 to 3.3 gm-3, 0.05 to 2.7 gm-3, and 0.01 to 1.4 gm-3, respectively, at empty bed residence 

times (EBRT) of either 38 or 26s. The maximum elimination capacities (ECmax) of the BTF 

were 302, 175, and 191 gm-3h-1, with 100%, 67%, and >99% removal of methanol, α-pinene 

and H2S, respectively. The presence of methanol showed an antagonistic removal pattern for 

α-pinene, but the opposite did not occur. For α-pinene, inlet loading rates (ILRs) >150 gα-

pinenem
-3h-1 affected its own removal in the BTF. The presence of H2S did not show any 

declining effect on the removal of both methanol and α-pinene. 

KEYWORDS: Hydrogen sulphide; methanol; α-pinene; paper industry; wood industry 
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4.1 INTRODUCTION 

Wood industries have been constantly striving to reduce their emissions of odorous 

compounds from various plant operations that usually contain a mixture of volatile organic 

compounds (VOCs) and volatile inorganic compounds (VICs). Among those, methanol, α-

pinene, and hydrogen sulphide (H2S), are representative hydrophilic, hydrophobic, and 

inorganic pollutants present in emissions from some pulp and paper- and wood- related 

industries [1]. The Occupational Safety and Health Administration (OSHA) permissible 

exposure limit (PEL) and ACGIH threshold limit value (TLV) for industrial workers are set at 

200 ppm (260 mg m-3) for methanol, 100 ppm (560 mg m-3) for α-pinene, and 10 ppm (15 mg 

m-3) for H2S, respectively, for a 8-h time weighted average concentration and a 40-h work per 

week [2]. 

Biodegradation is a well established method for the complete mineralization of volatile 

organic and inorganic compounds, present in both liquid and gaseous state [3, 4]. It exploits 

the advantage of the ability of microorganisms to transform hazardous and odorous pollutants 

into innocuous and inodorous end-products. Among the different bioreactor configurations 

used to carry out this biodegradation process, biofiltration appears to be a safe, reliable, eco-

friendly and economic technique [5, 6, 7]. Biotrickling filters (BTF) exploit the advantages of 

the conventional biofilter, and uses a trickling nutritive medium that contains nutrients for 

sustaining microbial activity in the biofilm [8, 9]. The packing in a BTF is generally made of 

chemically inert materials such as plastic supports, polyurethane foam, lava rock, pall rings, 

among others, that can be arranged either in a random or a structured manner [8, 10, 6,11]. 

Nevertheless, BTFs facilitate more consistent operation than traditional biofilters (BFs) due to 

better control of overall pressure drop, nutrient concentration, and pH, and enable higher 

pollutant elimination rates to be obtained for a broader range of pollutants [5]. Hence, BTF 
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are suitable bioreactors for the treatment of complex mixtures of various organic and 

inorganic pollutants such as mixtures of methanol, α-pinene, and hydrogen sulphide (H2S).  

There are a few publications that investigated the removal of H2S and VOCs solely. The pH 

drop due to the accumulation of sulphuric acid from the conversion of H2S can hinder the 

activity of microbial populations involved in the biodegradation of VOCs. To avoid 

bioreactor disfunction, a two-stage bioreactor configuration was recently tested in our 

laboratory for the combined removal of VOC and VIC.  For the purification of waste-gases 

containing H2S and VOCs (methanol and α-pinene), H2S and methanol were degraded in the 

first-stage reactor by autotrophic bacteria and an acid-tolerant yeast, followed by the effective 

removal of α-pinene in the second stage by a fungus [1]. In order to improve the biological 

treatment of such a mixture and the bioreactors design, the development of one-stage 

bioreactors is suggested here. Previously, studies had been undertaken with a one-stage 

bioreactor for the removal of gas-phase methanol, α-pinene or H2S as stand-alone pollutants 

[12, 13]. When considering VICs and VOCs mixtures, VOCs degrading microorganisms in 

one-stage BTFs have sometimes shown to tolerate the prevailing acidic conditions over a long 

period of time, with variable degradation rates, depending on the nature of the pollutants. In a 

pilot-scale BTF packed with lava rock, the efficient co-treatment of H2S and VOCs at acidic 

pH was highlighted, revealing the activity of both chemoautotrophs (H2S oxidizing bacteria) 

and heterotrophs (VOC oxidizing bacteria) within the BTF [14]. Cox and Deshusses (2002) 

[15], reported that the pH (4.5 or 7) of operation did not affect long-term performance of a 

BTF used for the co-treatment of H2S and toluene, but the start-up time was longer at the 

lowest pH of 4.5.  

The aim of this work was then to develop a highly efficient one-stage BTF, by utilizing 

different microorganisms that had proven to be effective for the removal of the mixture of 

methanol, α-pinene and H2S. In this context, our objectives were: (i) to evaluate the 
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performance of a one-stage BTF, inoculated with different microbial species, for the removal 

of methanol, α-pinene and H2S, (ii) to study the effect of the empty bed residence time (EBRT 

of either 38 or 26 s) on BTF performance, (iii) to understand the dynamics of pollutant 

removal in different sections of the BTF (substrate stratification), (iv) to identify the different 

types of interaction effects, i.e., antagonistic or synergistic, between pollutants and their 

removal pattern in the BTF, and (v) to perform microbial community analysis in different 

sections of the BTF after long-term operation using molecular biology tools. 

4.2 Materials and Methods 

4.2.1 Nutrient medium composition 

The composition of the mineral medium used in the BTF, was (in gL-1 of de-ionized water); 

K2HPO4: 0.5, MgSO4·7H2O: 0.1, KH2PO4: 4.5, NH4Cl: 2, and 2 mL trace elements and 

vitamin solutions [1]. 

4.2.2 Microbial consortium  

The BTF was inoculated with a mixture of (i) an autotrophic H2S-degrading culture (100 mL 

leachate from a previously operated BTF), (ii) Candida boidinii, a methanol degrading acid-

tolerant yeast (~3 gL-1), (iii) a co-culture of Rhodococcus erythropolis (~3 gL-1) and (iv) the 

fungus Ophiostoma stenoceras (~3 gL-1) [12, 16]. The latter bacterium and fungus are capable 

of utilizing α-pinene as their sole carbon and energy source. The different microbial cultures 

were grown on agar plates (15 gL-1), maintained in desiccators at ambient temperature, and 

supplied with vapour phase methanol or α-pinene at low concentrations. The BTF was also 

inoculated with biomass obtained from the leachate (100 mL) of a previously operated two-

stage bioreactor, i.e., a biotrickling filter + a biofilter (BTF+BF), as described elsewhere, 

where methanol, α-pinene and H2S were collectively treated in gas-phase [1]. 

 

http://pir.uniprot.org/taxonomy/1833
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4.2.3 Experimental setup 

The schematic of the one-stage BTF is shown in Figure 4.1. The BTF was constructed of 

glass (70 cm high × 9.4 cm inner diameter), and packed with polypropylene pall rings 

yielding a total working bed volume of 4.55 L. The pall ring bed had an initial porosity of 

91% and a specific surface area of 350 m2m-3. The BTF was provided with gas sampling ports 

located along the height of the reactor, at 20 cm and at 60 cm (outlet port) from the inlet. The 

BTF was also provided with filter material sampling ports, to collect biomass samples, 

uniformly distributed along the column (10 and 50 cm from the inlet). Fittings, connections 

and tubings were made of either glass or Teflon. 

 

Figure 4.1: Schematic of the one-stage BTF for the combined removal of gas-phase 

methanol, α-pinene and H2S. 

4.2.4 Inoculation of the BTF 

The microbial consortium described above was mixed with 2 L nutrient medium to obtain a 

uniform suspension of the initial inoculums. This culture was aseptically added to the BTF 

from the top; the leachate was collected in a collection tank and then continuously re-



117 

 

circulated at 2.77 Lh-1 for the next 4 d, until visible biomass remained attached to the pall 

rings.  

4.2.5 BTF operation 

During BTF operation, the target concentrations of the individual pollutants; methanol (0.05 

to 3.3 gm-3), α-pinene (0.05 to 2.7 gm-3) and H2S (0.01 to 1.4 gm-3) were generated at a sea 

level atmospheric pressure of 101.3 Kpa, at a laboratory temperature of 22±2 oC, as described 

hereafter. A main stream of compressed air was split into two minor and one major flow. The 

two minor air streams were then bubbled through either liquid methanol or α-pinene, 

introduced separately in flasks. H2S was generated by passing the major portion of the air 

stream over a H2SO4 solution into which a solution of Na2S was dripped. Different gas phase 

H2S concentrations were obtained by changing the Na2S concentration and/or dripping rate 

[16]. The three streams were combined in a mixing chamber, and fed to the bottom of the 

BTF column in a counter-current flow mode. The aqueous mineral medium described above 

was continuously re-circulated over the packed bed using a peristaltic pump (323E/D, 

Watson-Marlow Limited, Falmouth Cornwall, England) at a constant flow rate of 2.8 Lh-1. 

The pH of the re-circulated nutrient medium was maintained constant, at 6.0±0.4, by means of 

a pH electrode (EASYFERM 120, Hamilton) attached to the nutrient collection tank and a 

controller coupled to an electro-valve (DO 9765T, Dual 3½ Digit pH redox indicator and 

regulator, Italy), by dosing a 2N NaOH solution to neutralize the acidic metabolites formed 

during the biodegradation process. Fresh nutrient medium was added once a week to the 

nutrient tank in order to compensate the loss of medium that occurred due abiotic 

phenomenon and the prevailing high gas flow rates in the BTF. This ensured adequate supply 

of nutrients to the attached biomass. Gas samples were collected from the sampling ports and 

analyzed for residual methanol, α-pinene and H2S concentrations.  
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The performance of the BTF was estimated by calculating the elimination capacity (EC, gm-

3h-1) and removal efficiency (RE, %) of the filter bed for each pollutant at different inlet 

loading rates (ILR, gm-3h-1), according to equations (4.1), (4.2) and (4.3), respectively [6]: 

.
Inlet loading rate,  inQ S

ILR
V

       (4.1) 
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in outQ S S
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
      (4.2) 
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S S
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S


       (4.3) 

Where, Q is the gas-flow rate (m3h-1), V is the volume of the filter bed (m3) and Sin and Sout 

are, respectively, the inlet and outlet pollutant concentrations (gm-3).  

4.2.6 Analytical methods 

The H2S concentration (maximum measurable limit-1000 ppm) was determined using a hand-

held sensor (Dräger Sensor XSEC H2S HC6809180). Inlet and outlet gas-phase 

concentrations of methanol and α-pinene were measured via gas chromatographic analysis 

using a Hewlett-Packard 6890 series II GC, and a flame ionization detector (FID). The GC 

was equipped with a 50 m TRACER column (TR-WAX, ID: 0.32 mm, film thickness: 1.2 

μm) and helium was used as the carrier gas (flow rate: 2.0 mLmin-1). The temperatures at the 

GC injection, oven and detection ports were 250, 120 and 250 ºC respectively. The pressure 

drop (ΔP) across the BTF was measured using a differential U-tube water manometer 

connected to the top and bottom section of the reactor, with the operational range of 0-40 cm 

H2O. 
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4.2.7 Microbiological analysis 

4.2.7.1 Scanning electron microscopic (SEM) observations 

The biomass attached to the pall rings was detached (280th day) by sonicating the samples for 

15 min, and later prepared for observations under the electron microscope according to the 

procedure described by [12].  SEM observations were made with a JOEL JSM-6400 SEM 

working at a voltage of 20 kV and a working distance of 15 mm, and with Oxford Instruments 

EDX equipment. 

4.2.7.2 DNA recovery procedure 

DNA was recovered from the biofilm covering the polypropylene pall rings (280th day). Cells 

were dislodged from the carrier by shaking (Vibro-Shaker MM200, Retsch, Haan, Germany) 

at rotating frequency of 15 Hz, during 1 min, and DNA was extracted by a commercial 

extraction kit (FastDNA SPIN Kit for Soil, MP Biomedicals, Irvine, CA). DNA was 

quantified by absorbance at 260 nm (Biophotometer, Eppendorf, Hamburg, Germany).  

4.2.7.3 Polymerase chain reaction (PCR)  

The V3 region of the bacterial 16S rRNA gene was PCR amplified using a protocol described 

by [17]. Negative controls were included to verify the absence of contamination. PCR 

products were quantified by absorbance at 535 nm after PicoGreen staining (Quant-iT ds 

DNA HS reagent, Invitrogen, Carlsbad, CA). 

4.2.7.4 Denaturing gradient gel electrophoresis (DGGE)  

DGGE was performed with Ingeny phor U-2 system (Goes, The Netherlands) according to the 

protocol of [18], with denaturing gradient ranging from 43 to 63% as previously described 

[19]. Gel images were analyzed with Gelcompar II software (Applied Maths, Gent, Belgium). 
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4.2.7.5 Numerical analysis 

The diversity was measured by the Shannon index H’ (Eq. 4) that takes into account both the 

number of DGGE bands and their relative intensity.  
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        (4.4) 

Where, pi is the relative abundance of the ith band of the profile. 

After exclusion of the rarest bands (i.e. less than 3% intensity in all samples) the initial data 

matrix (relative intensities according to position) was standardized and transformed by square 

root to down-weight the influence of more abundant species [20]. The pair-wise similarity 

index (Si,j) between community profiles i and j was calculated by Bray-Curtis coefficient (Eq. 

5), that takes the form;  
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Where, Pi,k is the relative abundance of the kth band in the profile i, and Pj,k is the relative 

abundance of the kth band in the profile j, in the transformed matrix. The similarity matrix was 

used to perform hierarchical clustering with UPGMA linking, using the Gel Compar II 

software.  

4.3 RESULTS AND DISCUSSION 

4.3.1 BTF performance at an EBRT of 38s 

The BTF was acclimated by passing low concentrations of methanol (<0.5 gm-3), α-pinene 

(<0.06 gm-3) and H2S (<0.5 gm-3) through the reactor, at a gas-flow rate of 430 Lh-1, 

corresponding to an EBRT of 38s (Figure 4.2).  
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Initially, despite the good removal of methanol and H2S in the mixture (Figures 4.2 a and c), 

the removal efficiency (RE) of α-pinene was <50% (Figure 4.2b). This result could be 

explained more particularly by changes between pure culture growth conditions and pilot-

scale environment, competitive exclusion, substrate availability (food to microorganism ratio) 

and toxic effect of contaminants [21]. These phenomena could induce a lower growth of α-

pinene degraders, and more accurately Rhodococcus sp. and Ophiostoma sp. in the BTF, 

when compared to the growth of H2S-degrading bacteria and the methanol-degrading 

microorganisms. The higher aqueous solubility or/and the rather good biodegradability of 

methanol and H2S could explain their high removal in the BTF [22]  

The RE profile during start-up was different for each pollutant (Figure 4.2). A high and stable 

efficiency level was reached after 50 d for hydrogen sulphide (RE-90%) and around 80 d for 

methanol (RE-100%). In turn, the RE of α-pinene improved only slightly and its value 

stabilized at about 75-80% after 150 d of BTF operation. Miller and Allen (2005) [23], 

reported that, in order to observe a significant concentration drop in biofilters, i.e., high REs, 

α-pinene degrading microorganisms would require longer acclimation periods to induce the 

production of enzymes that facilitate degradation. 

In order to evaluate the performance of the system under these operating conditions, the 

concentration of H2S was first increased to 1.5 gm-3 after the 180th d; then, from days 209 to 

254, the concentration of both methanol and α-pinene were increased slowly, from 0.4 to 3.3 

gm-3 and 0.8 to 2.4 gm-3, respectively, while the H2S concentration was maintained at 1.5 gm-

3. When the concentration of H2S was increased to 1.5 gm-3, only α-pinene removal was 

affected and its removal efficiency decreased to 60%.When the concentration of VOCs was 

increased, the elimination of methanol and H2S (100% RE) remained stable, while the 

removal of α-pinene decreased dramatically from 60% to 20%. 
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Figure 4.2: RE profile of; (a) methanol, (b) α-pinene, and (c) hydrogen sulphide at different 

initial concentrations and EBRTs. 

4.3.2 BTF performance at an EBRT of 26s 

In a second phase, experiments were carried out at a flow rate of 630 Lh-1, for 118 d. From 

days 270 to 340, the inlet concentrations of methanol, α-pinene and H2S were varied between 

0.05 and 0.8 gm-3, 0.7 and 1.3 gm-3, and 0.3 and 0.7 gm-3, respectively. In this concentration 

range, methanol and H2S REs were 100% and >85%, respectively.  However, the removal of 

α-pinene remained low (~20%) even when the concentration of methanol was lower than that 

of α-pinene. After the 340th d of operation, when the concentrations of both methanol (0.8 to 

2.5 gm-3) and α-pinene (1.3 to 1.9 gm-3) were increased, the removal of α-pinene improved, 

stabilizing between 50 and 70% towards the end of this whole experimental period (Figure 

4.2). The removal levels of both methanol and H2S were consistently high in this phase, with 

100% and >90% RE, respectively. The RE of α-pinene increased and achieved 60%. The 

observed biodegradation order, methanol > H2S > α-pinene, may be due to limitations in 

biodegradability and preferential biodegradation of hydrophilic substrates compared to 

hydrophobic ones [24, 25].  
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The pressure drop in the BTF was <0.5 cm H2O, during the first 100 d of operation, before 

stabilizing at around 0.8 cm H2O for an EBRT of 38s. However, at an EBRT of 26s, due to 

relatively high gas-flow rates (630 Lh-1), and due to the fact that α-pinene degraders grew 

well, leading to a somewhat better removal of  α-pinene at 26s than 38s, the pressure drop 

increased to about 2 cm H2O. This pressure drop value is comparable to the pressure drop 

observed in a previously operated acidic BTF for methanol and H2S removal (<2 cm H2O), 

and comparable with some of the literature observations from BTFs, where the pressure drop 

was found to vary between 0.3 to 2 cm H2O [26]. Despite the long-term BTF operation, 

detachment of biomass did not occur at these two EBRTs (38 and 26s) as the aqueous mineral 

medium was continuously re-circulated over the packed bed at a constant flow rate of 2.8 Lh-

1. 

4.3.3 Pollutant removal profile along the bed height 

Substrate stratification profiles for methanol, α-pinene and H2S removal was studied by 

measuring their concentration profiles along the bed height. The normalized methanol, α-

pinene and H2S concentrations vs bed height are shown in Figure 4.3, measured at a constant 

EBRT of 26s (300th d). The concentrations of the individual pollutants were as follows: 

MeOH - 1.2 gm-3, α-pinene - 0.35 gm-3, and H2S - 0.3 gm-3, respectively. For all three 

pollutants, the biodegradation occurred mainly in the inlet section of the BTF. At these 

concentration levels, the first section (20 cm from the inlet) removed almost all the incoming 

methanol and nearly 88% of H2S, while α-pinene removal was only 30%. α-Pinene removal in 

the later section of the filter bed improved only slightly (9%), reaching an overall α-pinene 

removal efficiency of 39%. This observed removal efficiency distribution may be due to a 

higher concentration of active H2S degraders, methanol degraders and α-pinene degraders in 

the section close to the gas inlet than in the top of the BTF. 
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Figure 4.3: Normalized concentration profile along the bed height at an EBRT of 26 s (300th 

day); MeOH - 1.2 gm-3, α-pinene - 0.35 gm-3, and H2S - 0.3 gm-3
. Gas sampling ports were 

located along the height of the reactor, at 20 cm (Port 1) and at 60 cm (Port 2) from the inlet. 

4.3.4 Elimination capacity (EC) profiles 

In order to estimate the limits within which the BTF functions, the EC is plotted against the 

ILR of methanol, α-pinene and H2S, at both EBRTs, in Figures 4.4 a, b and c, respectively. 

For methanol and H2S, a near linear relationship (slope = 1) between both variables was 

observed up to an inlet load of 337 gmethanolm
-3h-1, and 192 

2H Sg m-3h-1, at both EBRTs. The EC 

does not reach the maximum value allowed to estimate the limits within which the biofilter 

functions. Higher EC could thus have been reached. Conversely, the EC vs ILR profile for α-

pinene was somewhat different. At an EBRT of 38s, the EC increased linearly up to an ILR of 

100 gα-pinenem
-3 h-1, then the EC stabilized around 50-60 gm-3h-1 for  ILRs >100 gα-pinenem

-3 h-1. 

Two distinct operating regions can thus be interpreted from Figure 4.4b (EBRT = 38s), and 

discussed. It could be suggested that the region before an ILR of 100 gm-3h-1 corresponds to 

20 cm 
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the diffusion limiting region (DLR), while the region >100 gm-3h-1 corresponds to the reaction 

limited region (RLR). Presumably, the RLR occurs when the amount active α-pinene 

degrading microorganisms is insufficient to degrade all the gas-phase pollutant that could 

possibly be transferred to the biofilm. Under this condition, the quantity of pollutant that is 

transferred to the biofilm is always limited by the biodegradation capacity of the microbial 

community present in that biofilm. In BTFs, the trickling liquid, usually a well-defined 

nutrient medium, acts as a major medium for oxygen and substrate transport from the gas-

phase to the biofilm [27]. As a result of the continuously tricking water phase in BTFs, the 

removal efficiencies of hydrophobic pollutants such as α-pinene do sometimes not reach 

100%, even at low inlet loads, thereby affecting the maximum EC that can be reached [28]. 

On the other hand, at an EBRT of 26s, these two regions were not observed as the EC 

increased with the ILR during the whole experiment. The increase of  the α-pinene 

degradation activity at an EBRT of 26s (ECmax-175 gm-3h-1, Figure 4.4c) could be due to the 

selective pressure imposed onto the α-pinene degraders, after long term operation under non-

sterile conditions, and the possible emergence of strains that were better adapted to high gas-

flow rates and high α-pinene concentrations [29].  

Figure 4.4d shows the total EC (ECTotal) of VOCs as a function of the total ILR of VOCs, 

which was based on the total (methanol + α-pinene) concentration fed to the system. As 

shown in the figure, a high ECTotal (477 
VOC

g m-3h-1) was achieved at an EBRT of 26s with 

almost 90% RE, and the corresponding ECmax for methanol and α-pinene, were 302 and 175 

gm-3h-1, respectively. Also, as seen from the data points scattering, the performance of the 

BTF to remove VOCs was close to 90% at an EBRT of 38s, while the total VOC removal did 

hardly drop at a shorter EBRT of 26s. 

 

4.3.5 Microbial component investigation 
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SEM observations (day 280; EBRT of 26s) highlighted the colonization of pall rings by 

bacterial and fungal biomass. The observed hyphal growth and morphology of fungi looked 

similar to the hyphae of Ophiostoma sp. as reported previously for a biofilter treating α-

pinene [30, 1]. In both bacteria- and fungi-inoculated biofilters, some authors have reported 

that the inoculated microorganisms may sometimes remain dominant even after continuous 

operation of several months, above all under rather selective or extreme conditions [31, 12, 

32].  To provide a better understanding of microbial implications in biotechniques for waste 

gas treatment [33, 18], molecular tools such as nucleic acid fingerprinting, have been applied 

to gain insight into the diversity and structure of microbial communities.  The total bacterial 

community structure was explored along the height of the column, after long-term operation 

of the BTF, in order to evaluate the persistence of the inoculated microorganisms (autotrophic 

H2S-degrading culture and Rhodococcus sp.), under the influence of different operating 

conditions. Species richness and Shannon diversity index (H’) were determined through the 

univariate DGGE pattern analysis (Figure 4.5). The species richness (6 bands for the 

autotrophic H2S-degrading culture and 21 and 18 bands for BTF samples collected at 10 cm 

and 50 cm distance from the inlet, respectively) and diversity (H’ = 1.2 for the autotrophic 

H2S-degrading culture and H’ = 2.8 and 2.1 for BTF samples collected at 10 cm and 50 cm 

distance from the inlet, respectively) is higher in BTF samples, when compared to the 

inoculated community (autotrophic H2S-degrading culture). The low diversity of the 

inoculum can be explained by the emergence of a specific community able to degrade H2S. 

As illustrated by clustering (Figure 4.5), two distinct groups could clearly be separated on the 

basis of species composition and relative abundances: autotrophic H2S-degrading culture, and 

BTF samples. Moreover, the DGGE profile analysis highlights that two populations only 

coming from the autotrophic H2S-degrading culture were maintained in the BTF. It has been 

reported that the structure of the microbial community developing in bioreactors after 
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acclimatization is usually dramatically divergent from the original inoculum even if the 

system has been seeded with an inoculum that was previously adapted to the contaminants 

[34, 19]. In this study, as the inoculum had previously been adapted to H2S, this divergence 

seems to highlight the impact of the contaminants (the BTF was fed a mixture of H2S, 

methanol and α-pinene) on both species composition and relative abundances with the 

development of specific methanol and α-pinene-degrading communities.  

The results from the DGGE profile analysis appeared to reveal the presence of the inoculated 

Rhodococus strain within the BTF after long-term operation. This is not surprising as this 

microorganism had been selected for its potentiality to degrade α-pinene. Besides, this work 

also reveals the emergence of species which were not detected in the inoculum. They may 

proceed from the inoculum wherein their abundance was below the detection limit of the 

analytical method and the polluted gaseous effluent or aerosols through immigration 

mechanisms [35, 21]. Difference in diversity (2.8 for level 1 and 2.1 for level 2) and 

stratification of the microbial structures along the filter bed (percentage of similarity of 50-

55% between level 1 and 2) were also evidenced. This longitudinal distribution of microbial 

communities seems to be correlated with the stratification pattern of the RE profiles of 

different pollutants. Methanol and H2S were almost removed in the first 20 cm of the filter 

bed, while α-pinene removal (RE-39%) required the total height of the BTF. This result can 

be explained by differences in mass transfer and biodegradation capacities. Moreover, higher 

microbial population diversity was observed near the gas inlet port, suggesting that the 

constant availability of various resources provided adequate conditions for the development 

of a more diverse microflora [17].  

Several published works in biological waste-gas treatment systems not only emphasized the 

higher microbial diversity near the inlet sections, but also markedly different community 
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structures down the biofilters in relation with macroscopic parameters [21](Cabrol and 

Malhautier, 2011).  

(a) 

(b) 
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  (d) 

Figure 4.4: Influence of ILR on the EC of BTF for; (a) methanol, (b) α-pinene, (c) hydrogen 

sulphide removal, and (d) total VOC load vs total VOC EC of the BTF. 
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Figure 4.5: Characterization of microbes present in the BTF: UPGMA clustering of DGGE 

patterns based on Bray-Curtis similarities. BTF represents samples from the BTF, while the 

number next to the pilot name indicates the sampling depth from the gas inlet. Duplicate 

samples (a and b) have been realized. Inoculum corresponds to a sample from the H2S 

autotrophic-degrading culture. Rhodococcus population (grey arrow) is indicated. 

4.3.6 Practical implications and future work 

The very high ECTotal (477 
VOC

g m-3h-1) obtained in this single-stage BTF for a mixture of 

hydrophobic and hydrophilic VOCs together with an ECmax of 191 gm-3h-1 for H2S prove the 

potential application of this technique for industrial purposes, for example in the pulp and 

paper and wood-related industries. The type of inoculum, whether mixed or pure cultures, and 

its propensity to get acclimated to the target gas-phase pollutant plays a crucial role in the 

removal of pollutants in the BTF. For full-scale waste-gas treatment systems, considering the 

practical difficulty to maintain the original inoculum within the system under non-sterile 

conditions, it is worth being aware that the inoculated biocatalyst does not necessarily need to 

remain dominant as long as performance remains high. In this study, among the different pure 

cultures inoculated in the BTF, only the Rhodococus strain remained dominant even after 

long-term operation. For successful long-term operation, the BTF should also be able to 

handle fluctuations in nutrient concentrations and pollutant loads, as this would alter the 
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composition of the microbial community within the BTF. Research is presently being carried 

out in order to evaluate the reactor´s performance under more vigorous transient conditions, 

and by subjecting the BTF to pollutant starvations. 

4.4 CONCLUSIONS 

A single-stage BTF, set-up for the removal of mixed VOC/VIC, can effectively overcome 

space constraints at industrial facilities by inoculating different microbial populations. The EC 

improved with operation time (EBRT-26s), reaching 302, 175 and 191 gm-3h-1, for methanol, 

α-pinene and H2S, respectively. Methanol and H2S degraders were active soon after start-up, 

while the performance of α-pinene degraders improved slowly due to the slow microbial 

adaptation. Some of the inoculated bacteria were still detected in the BTF after long-term 

operation. The distribution of microbial populations in the BTF correlated well with the 

stratification pattern of the RE profiles of different pollutants.  
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Chapter 5 

 

One-stage bioreactor: neural modeling and performance under 

transient conditions 
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ABSTRACT 

The removal efficiency (RE) of gas-phase hydrogen sulfide (H), methanol (M) and α-pinene 

(P) in a biotrickling filter (BTF) was modeled using artificial neural networks (ANNs). The 

inlet concentrations of H, M, P, unit flow and operation time were used as the model inputs, 

while the outputs were the RE of H, M and P, respectively. After testing and validating the 

results, an optimal network topology of 5-8-3 was obtained. The model predictions were 

analyzed using Casual Index (CI) values. M removal in the BTF was influenced positively by 

the inlet concentration of M in mixture (CI=3.79), while the removal of P and H were 

influenced more by the time of BTF operation (CI=25.36, 15.62). The BTF was subjected to 

different types of short-term shock-loads: 5-h shock-load of HMP mixture simultaneously, 

and 2.5-h shock-load of either H, M, or P, individually. It was observed that, short-term 

shock-loads of individual pollutants (M or H) did not significantly affect their own removal, 

but the removal of P was affected by 50%. The results from this study also show the 

sensitiveness of the well-acclimated BTF to handle sudden load variations and also revival 

capability of the BTF when pre-shock conditions were restored. 

KEYWORDS: Biotrickling filter, neural modeling, casual index, interaction effects, shock-

loads 
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5.1 INTRODUCTION 

The gradual strengthening of domestic paper demand alongside price levels in the global raw 

material markets and economic growth has promoted an increase in the production output 

from the pulp and paper industry. The pulp and paper industry has constantly been striving to 

reduce its emissions of odorous compounds from various plant operations that usually contain 

a mixture of volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). 

Hydrogen sulfide (H), methanol (M) and α-pinene (P) are, respectively, representative 

inorganic, hydrophilic and hydrophobic pollutants present in emissions from pulp and paper 

industries [1]. Among the different treatment techniques used to eliminate these compounds 

from waste-gas emissions, biodegradation is the most versatile and promising option, 

considering the degree of treatment achieved and their low cost [2-5]. Biodegradation exploits 

the inherent advantages of microorganisms by transforming hazardous pollutants to innocuous 

end-products.  

There are however only few publications that have focussed on the simultaneous removal of 

H (a VIC) and VOCs. In those studies, the pH of the biofilm was shown to drop when H was 

converted to sulphuric acid, which in turn hindered the activity of the microbes that were 

degrading the VOC [6-10]. Among the different bioreactors tested for handling a mixture of 

VIC and VOC in waste-gas emissions, biotrickling filters (BTF) have proven to be more 

advantageous and effective than other bioreactor configurations [3,4,11-13]. BTF use a 

trickling nutrient medium for sustaining microbial activity of the attached biofilm [14]. The 

medium also acts as a buffer, especially for compounds that are difficult to degrade and for 

compounds that generate acidic metabolites [15].   

In an effort to understand the mechanism of pollutant removal from a waste-gas mixture 

containing VICs and VOCs, and to achieve high biotreatment efficiencies, two bioreactor 

configurations were proposed recently in our laboratory. The first configuration was a two-
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stage system comprising a BTF and a biofilter (BF), wherein H and M were degraded in the 

first-stage BTF by autotrophic bacteria and an acid tolerant yeast (Candida boidinii) followed 

by the removal of the hydrophobic VOC, α-pinene, in the second-stage BF by a fungus, 

Ophiostoma stenoceras [9]. The second configuration was a single-stage BTF that was 

inoculated with a mixture of an autotrophic H2S-degrading culture, Candida boidinii, 

Rhodococcus erythropolis (terpenes degrading microorganism) and Ophiostoma stenoceras. 

In the latter, high maximum elimination capacities (EC) of 191, 302 and 175 gm-3h-1 were 

reached, with >99%, 100% and 67% removal of H, M and P, respectively [16]. 

Traditionally, the performance of conventional waste-gas treatment systems have been 

modeled using process-based models that considers mass balance principles, simple reaction 

kinetics and a plug flow behavior of the air stream [3,4,13]. Phenomenological models are 

anchored on the underlying physico-chemical and biological processes and the results 

obtained generally provide a good understanding and interpretation of the system dynamics. 

An alternate modeling procedure consists of a data-driven approach wherein the principles of 

artificial intelligence (AI) are applied with the help of artificial neural networks (ANNs). The 

concept of neural network modeling has widespread applications in the field of applied 

science and environmental engineering [17-21]. ANN was used for modeling the behaviour of 

a large wastewater treatment plant in Israel [20]. However, ANNs were only very recently 

used for modeling waste-gas treatment systems such as BFs and BTFs [22-26]. Rene et al. 

[23] modeled the performance of a BF (RE, %) using a backpropagation neural network 

(BPNN) wherein inlet styrene concentration and unit flow (UF= gas-flow rate/volume, h-1) 

were used as the inputs. The best network topology obtained through trial and error was found 

to be 2-4-1. The ANN model is considered (wrongly) as a “black box”, but system knowledge 

can be elicited from the trained ANN model by the Causal Index (CI) calculations [27]. ANNs 

can be considered as a mathematical structure that is contrived to mimic the biological neural 

http://pir.uniprot.org/taxonomy/1833
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system in terms of the information processing functions of neurons [21]. These data-driven 

models can also be used to identify complex patterns in datasets, which often are not 

represented by mathematical formulae.  

One of the specific objectives of this research was to model the long-term performance data of 

a BTF [16] using a multilayer perceptron (MLP), as shown in Fig. 5.1, in terms of H, M and P 

removal efficiencies (REs), and envisage the most important parameter affecting the RE of 

individual pollutants using CI values. As a continuation of our sustained research efforts to 

better understand the performance of such BTF under different operating conditions, this 

study was planned with the following objectives: (i) identify the interaction effects between 

different pollutants from the ANN model, (ii) understand the interaction pattern among the 

VOCs, viz., M and P, and (iii) study the effect of transient-state operating conditions on the 

BTFs performance. 

 

 

Figure 5.1: Schematic of a MLP used to model the performance of the BTF 

(architecture: 5-8-3) 
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5.2 MATERIALS AND METHODS 

5.2.1 Microorganisms and medium composition 

The BTF was originally inoculated with a mixture of an autotrophic H-degrading culture, as 

well as Candida boidinii, a M degrading acid-tolerant yeast, Rhodococcus erythropolis and 

Ophiostoma stenoceras [16]. The composition of the mineral salt medium used in the BTF, 

was (in gL-1 of de-ionized water); K2HPO4: 0.5, MgSO4·7H2O: 0.1, KH2PO4: 4.5, NH4Cl: 2, 

and 2 mL trace elements and vitamin solutions. 

5.2.2 BTF setup and operation 

The BTF (Fig. 5.2) was constructed of glass, with 94 mm inner diameter (ID)×700 mm height 

(total operating volume of 4.55 L), and packed with polypropylene pall rings [16]. The gas-

phase concentrations of the individual pollutants, H, M and P, were generated as described 

elsewhere [9, 16]. The three pollutant streams were combined in a mixing chamber, and fed 

through the bottom of the BTF, while the nutrient medium was continuously recirculated over 

the Pall ring bed using a peristaltic pump (323E/D, Watson-Marlow Limited, England), at a 

constant volumetric flow rate of 2.77 Lh-1. The pH of the recirculated nutrient medium was 

maintained constant, at 6.0±0.4, by dosing a 2N NaOH solution. After estimating and 

reporting the maximum performance of the BTF [16], the interactions between the VOCs (M 

and P) were tested by holding the concentration of one pollutant constant, in the absence of H, 

and increasing the concentration of the other VOC from low to high levels. The transient-state 

performance of the BTF, in the form of short-term shock-loads, was tested by: a) increasing 

the concentration of all three pollutants simultaneously for 5-h, or b) increasing the 

concentration of only one pollutant, either H, M or P, for 2.5-h, while maintaining the 

concentration of the other two pollutants nearly constant. Two empty bed residence times 

(EBRTs) were tested during long-term steady-state experiments (38 and 26s), while the 

EBRT was maintained constant at 26s during studies on interaction effects and shock-loads. 

http://pir.uniprot.org/taxonomy/1833
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The performance of the BTF was assessed by estimating the RE (%) of individual pollutants, 

and the elimination capacity (EC, gm-3h-1) under different inlet loading rates (ILRs) [5]. 

 

Figure 5.2: Schematic of the one-stage BTF for the removal gas-phase methanol, α-pinene, 

and hydrogen sulfide from polluted air 

5.2.3 Analytical methods 

The inlet and outlet H concentrations (maximum measurable limit of 1000 ppmv) were 

measured using a hand-held sensor (Dräger Sensor XSEC H2S HC6809180). Some of the 

final results were also obtained with a GC Tracer. Gas-phase concentrations of M and P, as 

well as M in the liquid-phase (collected from the nutrient tank and centrifuged to remove the 

suspended biomass) were measured via gas chromatographic analysis using a Hewlett-

Packard 6890 series II GC, equipped with a flame ionization detector (FID) [9]. 

5.2.4 ANN model development 

5.2.4.1 Model input-outputs and data division 

A three layered ANN (input-hidden-output layer) was developed for the BTF using inlet 

concentrations of H (CHS), M (CM),  P (CP), UF and BTF operational time (days) as the model 

inputs, while the RE of H (REHS), M (REM) and P (REP) were used as the outputs (Fig. 5.1). 
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The reason for including BTF operation time as one of the model inputs can be justified as 

follows: the operation time appeared to influence the degree of acclimation and the prevalence 

of active P-degrading microbial community within the BTF, and the performance of the BTF 

to remove P improved only after ~150 d, although, at that time during experiments, the RE of 

P was suspected to be largely influenced by the antagonistic interaction effects resulting from 

the presence of M, an easily biodegradable VOC in the gas-phase mixture [16].     

The experimental data (112 data points) were non-randomly divided into training (NTr:64%), 

test (NTe:25%), and validation sets (Nv:11%) [18,21]. The test data was kept aside during 

network training and was used only for evaluating the predictive potentiality of the trained 

network, while the validation set was used to periodically check the error convergence during 

training. The closeness of prediction between the experimental and model predicted outputs 

were evaluated by computing the coefficient of determination (R2) and mean average 

percentage error (MAPE) values [18,25]. The data were also normalized and scaled to the 

range of 0 to 1 using Eq. 5.1, so as to suit the transfer function in the hidden (sigmoid) and 

output layer (pure linear). 

X X
minX    

X Xmax min

 


        (5.1) 

where, 

X is the normalized value, Xmin and Xmax are the minimum and maximum values of X 

respectively. 

5.2.4.2 Network parameters 

The internal parameters of the back propagation network namely epoch size, error function, 

number of neurons in the hidden layer (NH), learning rate (), momentum term (α), training 

cycle (Tc) and transfer function are to be appropriately selected (using trial and error) to 

obtain the best network architecture that gives high predictions for the performance variables 

(Table 5.1). In this study, the number of neurons in the input layer (NI = 5) and output layer 
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(NO = 3) were chosen based on the number of input and output variables to the network. The 

connection weights were initialized using the inbuilt function of the software, with random 

values, and adjusted in order to minimize the network error. Several network architectures 

were trained until high R2 values were achieved between the model fitted and experimentally 

determined RE profiles. The best network topology was selected based on the high R2 values. 

A detailed study on the effect of internal network parameters on the performance of back 

propagation networks [28] and the procedure involved in selecting the best network topology 

have been described elsewhere [21,23,25,26,]. The MLP was developed using the 

NNMODEL shareware version software (Version 1.4, Neural Fusion, NY). 

 

Table 5.1: Network training parameters for choosing the best network architecture 

Training parameters Range of values Best value 

Training cycle 

Number of neurons in input layer 

Number of neurons in hidden layer 

Number of neurons in output layer 

Learning rate 

Momentum term 

Fixed parameters during training 

Error tolerance 

Epoch size 

Training algorithm 

Number of data points used 

Number of training data set 

Number of test data set 

Number of validation data set 

1000 – 20,000 

5 

5-12 

3 

0.1-0.9 

0.1-0.9 

 

0.0001 

70 

Back propagation 

112 

71 

29 

12 

10,000 

5 

8 

3 

0.8 

0.8 
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5.2.4.3 Discovering relationships in the trained ANN 

Once an ANN is trained, there are several techniques available to gain knowledge of the 

modeled system by simple analysis of the trained ANN [29]. One of them is the Causal Index 

(CI) proposed by Baba et al. [27]. The CI is calculated as the sum of the products of all 

“pathways” between each input to each output (Eq. 5.2),  

               

1

 
h

ji kj

j

CI W W


      (5.2) 

where there are ‘h’ hidden neurons, Wji are the connection weights between input i to hidden 

neuron j, and Wkj are the connection weights from hidden neuron j to output k, respectively.  

Examining the CI for each output as a function of the inputs number reveals the direction 

(positive or negative) and the relative magnitude of the relationship of the inputs on the 

particular output. Although somewhat heuristic, it is more reliable than local sensitivity 

checks, and it was found that engineers recognize from their own experience some of the CI 

relationships and thus are more likely to accept the new knowledge revealed by the CI 

analysis of the ANN model (Zvi Boger, unpublished). The CI coefficients advantage is that 

they do not depend on a particular input vector, but on the connection weight set that 

represents all the training input vectors. This is also one of their limitations, as a local 

situation may be lost in the global representation. 

5.3 Results and discussions 

5.3.1 Maximum performance of the BTF 

The long-term performance of the BTF was evaluated for ~400 d by varying the 

concentrations of individual H, M and P, at two different EBRTs of 38s and 26s. Regarding to 

EC vs ILR profiles, for M and H removal, a near linear relation (slope = 1) between the two 

variables was observed up to an inlet load of 337 and 192 gm-3h-1, respectively. However, for 

P, the EC increased with an increase in ILR, up to a maximum, yet at a slower rate, but then it 

almost stabilized within a rather wide range. A high ECTotal (477 gVOCm-3h-1) was achieved 
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at an EBRT of 26s with ~90% RE, and the corresponding ECmax for M, P, and H were 302, 

175, and 191 gm-3h-1, respectively. Microscopic observations of biomass attached to the pall-

rings, at different bed heights, as well as results from molecular biology analysis suggested 

that some microorganisms of the original inoculum were still present in the BTF after long-

term operation, and some new microbial species appeared in the long run as well [16].    

5.3.2 Development of the neural network model 

The performance data of the BTF reported by Lόpez et al. [16] were modeled using a three-

layered ANN, with different combinations of network parameters (Table 5.1) so as to achieve 

high R2 values (target value = 1, i.e., 100% correlation between measured and predicted 

variables) and low MAPE values. This was achieved by a vigorous trial and error approach, 

by keeping some training parameters constant and by slowly moving the other parameters 

over a wide range of values, as suggested in some previous works [19,25]. The following 

observations were made during network training: (i) increasing the NH from 5 to 8 increased 

the R2 values from ~0.6 to 0.82, but this value did not improve during training when the NH 

were increased beyond 8, and hence 8 was considered as the optimum NH, (ii) Tc appears to 

have a larger influence on increasing the R2 values and it was observed that the model 

predictions were high (>0.82) and significant when the Tc was set to 10,000, (iii) similarly, 

increasing the η from 0.1 to 0.8 increased the mapping efficiency of the network, and (iv) high 

values of α (0.8) showed R2 values >0.8 in the training and test data during the predictions of 

RE profiles of different pollutants. Thus, it can be concluded that high  (0.8), high  (0.8), 

and a TC of 10,000 with 8 neurons in the hidden layer are favourable values of the internal 

network parameters. The experimental and model fitted removal profiles of M, P and H are 

shown in Fig. 5.3, for the training and test datasets. The R2 values during training were 

0.8272, 0.8762, and 0.8852 (MAPE values: 0.92, 13.8 and 2%) for REs of M, P and H, 

respectively. Thus, only about 12-18% of the total deviations in the training data could not be 
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explained by the model for predicting the RE profile of these compounds in the BTF. Among 

the test data predictions (Figs. 5.3D-F), although the model mapped both H and M removal 

adequately, it was not able to map P removal well mainly due to the scatteredness of the RE 

profiles from ~20 to 80% (Fig. 5.3E). This could be explained by the slow growth of P 

degraders compared to the growth of H and M degrading microorganisms, resulting in low P 

removals, and the relatively longer acclimation times (~150 d) required by P degraders at an 

EBRT of 38s to start utilizing P as the carbon source [16]. The best network architecture for 

the BTF was found to be 5-8-3.  

5.3.3 Interaction effects between input parameters 

The CI values were examined for each output as a function of the inputs and their connection 

weights between neurons in different layers (Tables 5.2 and 5.3), and the gathered 

information is particularly useful in identifying the effect of key parameters on the output(s) 

of the developed ANN Model [30]. This approach has been reported to be semi-quantitative, 

although it would serve as a guide to reduce the amount of experimentation required [31]. 

From the CI values shown in Table 5.3, it is clearly evident that the RE of M is influenced by 

its own concentration, in the +ve direction (3.796), while the concentration of P negatively 

influences M removal (-9.612). This can partly be explained by the reported biodegradation 

order of the pollutants in the BTF, M>H>P [16], and due to slower (bio)degradation rates of 

these pollutants in the mixtures caused by substrate inhibition from toxicity, non-competitive 

inhibition, competitive inhibition, and the preferential utilization of hydrophilic substrates 

compared to the hydrophilic ones [32,33].  

Concerning H and P removal, the operating time of the BTF appears to strongly influence the 

removal of these pollutants, as evident from the high +ve CI values of 15.625 and 25.368, 

respectively. For all the pollutants, an increase in the gas-flow rate, i.e., UF, showed an 

antagonistic effect on the RE. In BFs and BTFs, it is not unusual to observe a decrease in the 
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RE profiles of the gas-phase pollutant due to an increase in the gas-flow rate, i.e., a decrease 

in the EBRT. The REs of the pollutant in BFs and BTFs are mainly controlled by the mass 

transfer rate of the pollutant from the gas-phase to the biofilm-phase, and by the thickness of 

the gas-liquid interface layer, which is in fact controlled by the EBRT and the trickling rate of 

the aqueous phase. At high EBRTs (i.e., low gas-flow rates), there is more contact time 

between the biofilm-layer and the pollutant, and thus better removal of the pollutant [34,35]. 

The better removal of P at an EBRT of 26s (ECmax:175 gm-3h-1), compared to an EBRT of 

38s, could have resulted from the selective pressure imposed onto the P degraders, after long-

term operation under non-sterile conditions.  

 

Table 5.2: Connection weights of the developed ANN model (5-8-3) 

 

Input layer to hidden layer 

 HID1 HID2 HID3 HID4 HID5 HID6 HID7 HID8 

CM -2.741 4.271 -3.563 16.230 -13.631 1.638 -2.551 33.009 

CP -0.972 -4.068 1.406 -2.546 -9.217 -1.848 11.273 0.313 

CHS -1.745 -1.459 0.163 -1.088 -0.503 -2.734 -6.334 -8.522 

UF -1.653 -11.234 0.929 -3.006 -6.480 -7.491 -3.528 1.449 

Days -3.188 2.372 -0.635 -9.578 7.634 0.367 -10.413 -31.471 

Bias 2.243 4.128 -1.209 1.720 4.011 1.759 2.136 5.442 

Hidden layer to output layer 

 REM REP REHS HID1-HID8-Hidden layer neurons 

Bias-Bias term 

Input to the model 

CM – Inlet concentration of methanol, gm-3 

CP – Inlet concentration of α-pinene, gm-3 

CHS – Inlet concentration of hydrogen sulfide, gm-3 

UF – Unit flow, h-1 

Days – BTF operation time, days 

Output of the model 

REM – Removal efficiency of methanol, % 

REP – Removal efficiency of α-pinene, % 

REHS – Removal efficiency of hydrogen sulfide, % 

HID1 -2.342 2.743 -3.492 

HID2 5.909 2.333 5.313 

HID3 4.707 0.640 -0.157 

HID4 0.069 2.568 -0.094 

HID5 0.692 8.151 -0.338 

HID6 0.348 5.590 1.184 

HID7 -0.246 8.149 1.864 

HID8 0.178 -3.018 -0.270 

Bias 0.219 -0.513 1.332 
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Table 5.3: Casual index (CI) values for the trained ANN Model 

Parameter REM, % REP, % REHS, % 

CM, gm-3 3.796 -5.588 5.310 

CP, gm-3 -9.612 -10.941 -0.922 

CHS, gm-3 1.670 -6.749 -1.332 

UF, h-1 -2.562 -20.393 -8.561 

Days 1.381 25.368 15.625 

Note: CM, CP and CHS are the inlet concentrations of methanol, α-pinene and hydrogen sulfide, respectively; UF-

unit flow; Days-BTF operation time; REM, REP and REHS are the removal efficiencies of methanol, α-pinene and 

hydrogen sulfide, respectively.  

 

Figs. 5.4 (A-C) depicts important contours for the removal of P in the BTF, as a function of 

different combinations of input parameters. These complex contours reveal adequate 

information about the range of conditions required to achieve the desired RE of P, which can 

be interpreted as follows: P concentrations >1.8 gm-3, irrespective of the M concentrations 

leads to RE >65% (Fig. 5.4A). However, for M concentrations >1.5 gm-3, and P 

concentrations <1.5 gm-3, the RE of P decreased, (ii) an increase in the UF from low to high 

values, irrespective of the varying H concentrations (CI=-20.393), decreased the RE of P (Fig. 

5.4B), and (iii) an increase in the BTF operating time improved the RE of P (97.7%), for 

concentrations <0.9 gm-3; this increase however depended on the concentration levels of the 

other two pollutants in the mixture (Fig. 5.4C). Briefly stating, the predictive ability of the 

developed ANN model was reflective of the actual experimental behaviour, and with the help 

of CI estimation, the best operating conditions of the BTF, and the synergistic and 

antagonistic interactions between the five input parameters were envisaged. 
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Figure 5.3: Experimental and ANN model fitted profiles: Training data for the removal of (A) methanol, (B) α-pinene, and (C) hydrogen sulfide, 

and test data for the removal of (D) methanol, (E) α-pinene, and (F) hydrogen sulfide 
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Figure 5.4: Removal of α-pinene as a function of: (A) inlet methanol and α-pinene concentrations, B)  unit flow and hydrogen sulfide 

concentrations, and C) BTF operational time and α-pinene concentrations 
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5.3.4 Interaction between VOCs 

An understanding of the interaction effects between the different VOC species and a prior 

estimation of their optimal range of concentrations that will not cause self and mutual 

inhibition to the removal of other pollutants can be beneficial to maintain long-term BTF 

performance and prevent the biofilm from losing its activity. Thus, for VOCs like M and P 

having different physico-chemical properties and biodegradation rates, it is expected to 

observe interactive effects that could affect the overall VOC removal in the bioreactor. 

Experiments were performed at a constant EBRT of 26s, by increasing the concentrations of 

either M or P, and by maintaining the concentration of the other pollutant at low values, 

resulting in varying ILRs of M or P to the BTF. During these experiments (~512h), H was not 

supplied to the bioreactor. Fig. 5.5 shows the effect of increasing M and P loading rates on the 

removal of M and P from the BTF. From Figs. 5.5 A and B, it can be seen that, an increase in 

the ILR of M (ILRM) from 60 to 200 gm-3h-1, (ILRP: ~50 gm-3h-1), decreased its removal from 

100 to 75%. At this stage (100h), the removal of P decreased by ~15% due to an increase in 

M concentration. However, M concentration in the nutrient collection tank also started to 

build up, increasing from an initial value of 0 (time t=0h), to ~9 gL-1 (t=128h). The gas-phase 

M concentrations were reduced to low values (ILRM~50 gm-3h-1) for the next 72h, in order to 

remove the accumulated M from the liquid-phase. The gas-phase concentrations of M were 

then increased when M in the liquid-phase was completely removed through biodegradation, 

to nearly similar values, reaching an ILRM of ~190 gm-3h-1 at the 320th h. This increase once 

again led to the build up of M in the liquid-phase. A similar strategy was followed in order to 

eliminate the sorbed fraction of M from the liquid-phase. In order to envisage the maximum 

performance of the system to varying concentrations of M, the ILRM was increased to a 

maximum of ~508 gm-3h-1.  
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Figure 5.5: Effect of increasing methanol (A, B) or α-pinene (C, D) load on the evolution of liquid-phase methanol profiles (A, C) and RE of 

gas-phase M and P (B, D) in the BTF. Gas-phase methanol was stopped for few hours in order to completely remove the liquid-phase methanol 

from the trickling liquid-phase 
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Despite this increase, the RE of M was maintained at ~82% reaching an ECmax of 430 gm-3h-1, 

while the RE of P decreased to 20%. Similar studies were also conducted by varying the P 

loads from low to high values (10 to 538 gm-3h-1) and by maintaining low M loads (<200 gm-

3h-1), over a period of 552h. The following interactions were observed in this study: (i) an 

increase in the ILRP from low to high values decreased its removal significantly from ~50 to 

14%, while the removal of M was only slightly affected (~20 to 25%) depending on both the 

ILR of M and P supplied to the BTF (ECmax of P: 218 gm-3h-1), and (ii) despite low ILRs of 

M, the build up of M occurred, peaking to 2.9 and 5 gL-1 on the 192th and 456th h of BTF 

operation. As done previously, by lowering and/or by completely stopping the ILR of gas-

phase M (Fig. 5.5 C) to the BTF for few hours, and by maintaining the same trickling rate, the 

liquid-phase M could be easily removed from the system, through biodegradation.  

5.3.5 Effect of individual and combined shock-loads on the BTF performance 

Several lab-scale experimental results have shown that sudden fluctuations in pollutant ILRs 

(due to variations in both inlet concentration and EBRT) either increased or decreased the RE 

profiles, but did not pose a threat or deteriorate (zero removal of the target pollutant) the 

performance of biological waste-gas treatment systems [36-40]. In this study, the BTF was 

subjected to short-term shock-load perturbations (5-h), by imparting a sudden high load of all 

three pollutants (Fig. 5.6). Furthermore, in order to analyze and identify how the load 

fluctuation of only one pollutant would affect the removal of the remaining compounds, short-

term shock-loads of 2.5-h were applied to individual pollutants, while holding the 

concentrations of others constant (Figs. 5.7, 5.8 and 5.9). The experiments were conducted at 

the same EBRT of 26s. In case of a simultaneous shock-load of all three pollutants (Fig. 5.6), 

the RE of H reduced from an initial value of 100 to 94% during the perturbation step, while P 

removal decreased to about half its initial value, from 28 to 14%.  
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Figure 5.6: Effect of simultaneous H, M and P shock-load on the performance of the BTF: 

(A) ILR profiles of H, M and P, (B) RE profiles of H, M and P, and (C) liquid-phase 

methanol concentration profiles during the shock-load 
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In the case of M, REs dropped only from 100 to 84 % during the shock-load. However, when 

the inlet concentrations were restored again to values <0.6 gm-3, M removal from the gas-

phase, decreased by up to 25%, due to the accumulation of high M concentrations in the 

liquid-phase (~2.7 gL-1), and partly due to the stripping of liquid-phase M by the exiting non-

treated air from the BTF. As observed previously, the liquid-phase M gradually biodegraded 

within the BTF in ~40h, when the M concentrations were reduced. The ECmax of H, M and P 

from this study were 183, 239 and 76 gm-3h-1 at ILRs of 192, 260 and 302 gm-3h-1, 

respectively.  

When shock-loads were applied individually as H, M or P (Figs. 5.7, 5.8 and 5.9), more 

interaction effects were observed. For example, in the case of H shock-loads (Fig. 5.7), it can 

be seen that, when the ILR of H was increased from ~40 to 192 gm-3h-1, the RE of M dropped 

from 100 to 85%, while the RE of P was maintained constant at 20% during the perturbation. 

However, the RE of P showed –ve RE profiles, presumably due to the accumulation of P in 

the bioreactor, leading to unusually high concentrations of P in the outlet compared to the 

inlet of the BTF. Similar –ve RE profiles for P were also noticed when the BTF was subjected 

to perturbations of P alone (Fig. 5.9), when the ILRP was increased from 25 to ~415 gm-3h-1 

for 2.5-h. Although high P shock-loads did not alter the RE profiles of P, when pre-shock 

conditions were re-stored –ve RE of P was noticed. Increasing the ILR of M from 50 to 600 

gm-3h-1 (Fig 5.8) did not largely affect the removal of M and H (RE>90%), while the RE of P 

dropped by almost 35%. On the other hand, the results from P shock-load tests show that, the 

RE of both M and H remained largely unaffected, while the RE of P dropped from 25 to 15%. 

This phenomenon was also reported in earlier studies, which was attributed to the low 

solubility of P in the liquid-phase and improper residence times of that pollutant in the BTF, 

that eventually led to high mass transfer resistance in the trickling liquid (Rene et al., 2010).  

 



 158  
 

 

 

Figure 5.7: Effect of hydrogen sulfide shock-load on the performance of the BTF: (A) ILR 

profiles of H, M and P, (B) RE profiles of H, M and P, and (C) liquid-phase methanol 

concentration profiles during the hydrogen sulfide shock-load 
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Figure 5.8: Effect of methanol shock-load on the performance of the BTF: (A) ILR profiles 

of H, M and P, (B) RE profiles of H, M and P, and (C) liquid-phase methanol concentration 

profiles during the methanol shock-load 
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Figure 5.9: Effect of α-pinene shock-load on the performance of the BTF: (A) ILR profiles of H, M 

and P, (B) RE profiles of H, M and P, and (C) liquid-phase methanol concentration profiles during the 

α-pinene shock-load 
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This occurrence of relatively short, transient negative removal profiles for the hydrophobic 

pollutant P could also be attributed to the partial adsorption of P to the surface of the biofilm, 

packing material and biomass related compounds, and also absorption into the liquid-film 

flowing over the packing material. As reported by Mendoza et al. [41], in such cases, the 

pollutant would be retained for a somewhat longer period in the BTF than the actual or 

computed mean residence time of the pollutant. The build up of M in the liquid-phase was 

also evident during all these shock-load tests (Figs 5.7C, 5.8C and 5.9C). The concentrations 

of M, however, depended on the ILR of M to the BTF. During M perturbations (Fig 5.7), the 

liquid-phase concentrations of M increased gradually from 0 to 4 gL-1 within 2.5-h. This 

distinctly exemplifies the fact that absorption is one of the main contributing factors 

governing the removal of hydrophilic pollutants like M in biofilm reactors. The ECmax values 

of H, M and P during individual short-term shock-load tests were found to be 192, 703 and 

180 gm-3h-1 at ILRs of 192, 710 and 560 gm-3h-1, respectively.   

5.4 CONCLUSIONS 

A three-layered ANN model (5-8-3) was developed to predict the performance of a BTF using 

inlet concentrations of H, M, and P, UF and operational time as the input parameters. The CI 

coefficients revealed the relationships between the operating parameters and the pollutants 

REs that may help optimal design of future bioreactors. The RE of all three pollutants was 

affected by UF (-ve CI), while BTF operating time synergistically improved their REs (+ve 

CI). The results from perturbation tests showed ECmax values of 183, 239 and 76 gm-3h-1 at 

ILRs of 192, 260 and 302 gm-3h-1, respectively, for H, M and P. 
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6.1 Background information  

There are only a few publications that focussed on the removal of air emissions containing 

H2S and volatile organic compounds (VOCs) (Example: gaseous emissions from wastewater 

treatment facilities, and pulp and paper industry), using biological waste-gas treatment 

systems. In those studies, the pH of the biofilm was shown to drop when H2S was converted 

to sulphuric acid, which in turn hindered the activity of the microbes that were degrading the 

VOC. Recently, our research group has been involved in the process of developing one-stage 

and two-stage bioreactors for the removal of gas-phase methanol, α-pinene and H2S, either as 

stand-alone pollutants or as mixtures. This PhD study is a continuation of that initiative to 

develop high performance bioreactors, by utilizing different microorganisms that had earlier 

proved to be effective for the removal of these pollutants, i.e. methanol, α-pinene and H2S. 

6.2 Comparison of one- and two-stage bioreactors performance 

Pulp, paper and wood-related industries produce toxic air-pollutants like H2S, α-pinene and 

methanol, which appear at different stages of unit operations. In order to efficiently handle 

this pollutant mixture, both a two-stage bioreactor (BTF→BF) and a single-stage BTF were 

operated separately and their performance was compared. In the two-stage bioreactor, the first 

stage BTF was inoculated with a mixture of an autotrophic H2S degrading culture and an acid-

tolerant methanol degrading yeast (Candida boidinii), while an Ophiostoma stenoceras sp., 

was used to inoculate the second-stage BF. In the second experiment, with the one-stage BTF, 

a mixture of the above mentioned consortium was used and a Rhodococcus strain was added. 

The BTFs were packed with pall rings, while the BF was packed with a mixture of perlite and 

pall rings. The empty bed residence times (EBRTs) used in the two-stage bioreactor were: 

83.4, 41.7 and 27.8 s (BTF) and 146.4, 73.2 and 48.8 s (BF). In the one-stage BTF, EBRTs of 

38 and 26 s were used. 
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Concerning the key results achieved in these two bioreactor configurations, the performance 

of the two different bioreactors is compared in Figure 6.1. In the two-stage bioreactor, H2S 

and methanol were better removed in the first-stage BTF with elimination capacities (ECs) of 

45 and 894 gm-3h-1, respectively, when compared to α-pinene (35 gm-3h-1). In the second-

stage BF, the EC was 138 gm-3h-1 for α-pinene, yet still a high EC was observed for methanol 

(~ 315 gm-3h-1). In the one-stage BTF, the highest ECs were observed for methanol (302 gm-

3h-1) followed by H2S (191 gm-3h-1) and α-pinene (175 gm-3h-1). The behavior of the one-stage 

BTF was explored when maintaining the pH at a constant value (6.0 ± 0.3), leading to better 

removal of the hydrophobic pollutant (α-pinene) by the fungus, when compared to the other 

reactor configuration. It also helped to maintain a high activity for the surviving bacterial and 

yeast populations that removed methanol and H2S. After long-term operation, the results from 

microbial community analysis (samples collected along the filter bed height), showed that the 

inoculated  autotrophic H2S-degrading culture was less diverse than the BTF samples. The 

low diversity of the inoculum can be explained by the emergence of a specific community 

able to degrade H2S. A DGGE profile analysis of BTF samples after long-term operation 

suggests that two populations coming from the original autotrophic H2S-degrading culture, as 

well as the inoculated Rhodococus strain are dominantly present within the BTF.  
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Figure 6.1: Highest elimination capacities reached for the three compounds in the one - stage 

and two - stage systems 
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6.3 Interaction effects 

6.3.1 Two-stage reactor 

The methanol degrader (a yeast) appeared to tolerate very low pHs below 3.0, but the α-

pinene degrader (a fungus) did only tolerate mild acidification (around pH 4.0), while the pH 

dropped below 3.0 in the first-stage reactor removing H2S and methanol. In the BTF, the 

presence of methanol had a significant effect on H2S removal, at high inlet loading rates of 

methanol. For methanol loading rates less than 66 gm-3h-1, though 100% methanol was 

removed, more than 90% H2S was removed for H2S loads lesser than 18 gm-3h-1. The 

presence of α-pinene in the waste gas stream did not appear to show any antagonistic nor 

synergistic effect on H2S and methanol removal in the BTF. In the BF, α-pinene removal was 

not affected by the presence of non-degraded methanol from the first stage. Thus, it can be 

concluded that the high EC achieved in the BF can be attributed to the dominant presence of 

the filamentous fungus Ophiostoma stenoceras which acts as a biological catalyst for rapid 

mass transfer of the hydrophobic pollutant, α-pinene, from gas phase to the aqueous biofilm. 

6.3.2 One-stage reactor 

In the one-stage BTF, the concentration of methanol (a hydrophilic pollutant) in the nutrient 

collection tank started to build up, increasing from an initial value of 0 to a final value of 9 

gL-1. However, when the gas-phase methanol concentrations were reduced to low values, the 

accumulated liquid phase methanol concentrations were removed by biodegradation. An 

increase in the inlet loading rate of α-pinene (ILRP) from low to high values decreased its 

removal significantly from ~50 to 14%, while the removal of methanol was only slightly 

affected (~20 to 25%) depending on both the ILR of methanol and α-pinene supplied to the 

BTF (ECmax of α-pinene: 218 gm-3h-1). Regarding synergistic and antagonistic effects, the 

presence of H2S did not have any effect on the removal of methanol and α-pinene, and the 

presence of these two volatile organic compounds (VOCs) did not hinder the activity of the 
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autotrophic H2S degraders. The presence of methanol, an easily biodegradable hydrophilic 

VOC, affected the removal of α-pinene in the BTF, while the reverse did not occur. 

6.4 Neural network modeling 

The removal efficiency of methanol (REM) and the removal efficiency of hydrogen sulfide 

(REHS) in the first-stage BTF and the removal efficiency of α-pinene (REP) in the second-

stage BF were predicted using the inlet concentrations of methanol, α-pinene and H2S as the 

inputs to the models. After proper optimization of network parameters, and through vigorous 

training and testing, the following network topologies were obtained: 3-4-2 and 3-3-1, 

respectively, for the BTF and the BF. The results from sensitivity analysis showed that the 

most critical factor that antagonistically affects the REM and REHS in the BTF during transient 

operations was the inlet concentration of α-pinene, while REP in the BF was synergistically 

affected by the concentration of H2S.  

Concerning ANN modeling of the one-stage BTF performance, a three-layered ANN model 

(5-8-3) was developed to predict the performance of the BTF using inlet concentrations of 

H2S, methanol, α-pinene, unit flow (UF) and operational time (in days) as the input 

parameters. Casual Index (CI) estimations were used to identify the most influential model 

parameter affecting the removal of individual pollutants. The CI coefficients revealed the 

relationships between the operating parameters and the pollutants REs that may help optimal 

design of future bioreactors. The removal efficiencies of all three pollutants was affected by 

unit flow (i.e., EBRT), while BTF operating time synergistically improved their removal 

efficiencies. 

6.5 Neural network modeling coupled to real-time bioreactor operation 

For real-time/full-scale applications, the BTF should be fitted with online measurement 

devices to periodically monitor process parameters such as inlet concentrations of the 
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pollutant(s), gas-flow rate, pressure drop, relative humidity, temperature, and carbon dioxide 

generation rate (Figure 6.2).  

 

Figure 6.2: Schematic of a BTF fitted with online monitoring and control devices. (1) 

monitoring inlet concentrations, (2) analysis of pollutants using gas chromatography, (3) 

monitoring outlet concentrations, (4) monitored data to the computer, (5) treated gas, (6) data 

storage and modeling device, (7) nutrient tank, (8) pH sensor, (9) pS sensor, (10) pump for 

nutrient recycling, (11) BTF, (12) programmable logic controller, and (13) actuators 

 

This information has to be stored in a large database, and the system has to be equipped with 

an automatic control system to maintain the desired values of these process variables. The 

trained neural model can then be integrated with a programmable logic controller (PLC) 

coupled to actuators to ascertain and control the process variables, and also predict the 

performance of the system on a regular basis (for instance, once every 6h). The neural 
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network model can also be programmed to warn the plant operator of any discrepancies in 

waste-gas characteristics and concentrations, sudden changes in gas-flow rate, and notify the 

operator to take suitable actions. The time-series data collected from real-time bioreactor 

operation can be merged with the already existing database, and the ANN model can be 

trained in offline/online mode, and the connection weights can be updated before integrating 

it with the PLC (Figure 6.3).   

 
 
 

Figure 6.3: Integrated online monitoring, optimization and control of BTF operation 

using neural networks 
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6.6 Future perspectives 

The following research directions are suggested in order to completely envisage aspects 

pertaining to bioreactor performance and neural network modeling, keeping in mind the 

practical implication of applying bioreactor technology (BT) for treating pulp and paper 

emissions:  

(i) Estimate the bio-kinetics and characterize the biomass present in the BTF using actual pulp 

and paper wastewater effluents, 

(ii) Transient state experiments should be performed under nitrogen and phosphorus limiting 

conditions in order to clearly understand the metabolic assimilation pathway of the microbial 

consortia, 

(iii) Technologies for the treatment of greenhouse gas emissions from the pulp and paper 

industry should be developed and integrated (for example: algae photobioreactor coupled to a 

BTF), 

(iv) Development of more versatile mathematical models coupled to neural network based 

models to describe steady and transient-state behavior of BTF and BF operation,  

(v) Understanding the interactions between mixtures of gas phase pollutants (emissions from 

pulp and paper industry) in bioreactors, including methyl mercaptan, dimethyl sulfide, 

dimethyl disulphide, oxides of sulfur nitrogen and chlorinated VOCs, 

(vi) Perform cost-benefit analysis of bioreactor operation during steady and transient-state 

operations,  

(vii) Exploring the application of fuzzy-logic based models for biological waste gas treatment 

systems, and  

(ix) Development of new algorithms that would avoid the conventional trial-and error 

approach for determining the optimal network topology during neural network modeling. 
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