114 research outputs found

    Computing tool accessibility of polyhedral models for toolpath planning in multi-axis machining

    Get PDF
    This dissertation focuses on three new methods for calculating visibility and accessibility, which contribute directly to the precise planning of setup and toolpaths in a Computer Numerical Control (CNC) machining process. They include 1) an approximate visibility determination method; 2) an approximate accessibility determination method and 3) a hybrid visibility determination method with an innovative computation time reduction strategy. All three methods are intended for polyhedral models. First, visibility defines the directions of rays from which a surface of a 3D model is visible. Such can be used to guide machine tools that reach part surfaces in material removal processes. In this work, we present a new method that calculates visibility based on 2D slices of a polyhedron. Then we show how visibility results determine a set of feasible axes of rotation for a part. This method effectively reduces a 3D problem to a 2D one and is embarrassingly parallelizable in nature. It is an approximate method with controllable accuracy and resolution. The method’s time complexity is linear to both the number of polyhedron’s facets and number of slices. Lastly, due to representing visibility as geodesics, this method enables a quick visible region identification technique which can be used to locate the rough boundary of true visibility. Second, tool accessibility defines the directions of rays from which a surface of a 3D model is accessible by a machine tool (a tool’s body is included for collision avoidance). In this work, we present a method that computes a ball-end tool’s accessibility as visibility on the offset surface. The results contain all feasible orientations for a surface instead of a Boolean answer. Such visibility-to-accessibility conversion is also compatible with various kinds of facet-based visibility methods. Third, we introduce a hybrid method for near-exact visibility. It incorporates an exact visibility method and an approximate visibility method aiming to balance computation time and accuracy. The approximate method is used to divide the visibility space into three subspaces; the visibility of two of them are fully determined. The exact method is then used to determine the exact visibility boundary in the subspace whose visibility is undetermined. Since the exact method can be used alone to determine visibility, this method can be viewed as an efficiency improvement for it. Essentially, this method reduces the processing time for exact computation at the cost of introducing approximate computation overhead. It also provides control over the ratio of exact-approximate computation

    Strings with Discrete Target Space

    Full text link
    We investigate the field theory of strings having as a target space an arbitrary discrete one-dimensional manifold. The existence of the continuum limit is guaranteed if the target space is a Dynkin diagram of a simply laced Lie algebra or its affine extension. In this case the theory can be mapped onto the theory of strings embedded in the infinite discrete line Z\Z which is the target space of the SOS model. On the regular lattice this mapping is known as Coulomb gas picture. ... Once the classical background is known, the amplitudes involving propagation of strings can be evaluated by perturbative expansion around the saddle point of the functional integral. For example, the partition function of the noninteracting closed string (toroidal world sheet) is the contribution of the gaussian fluctuations of the string field. The vertices in the corresponding Feynman diagram technique are constructed as the loop amplitudes in a random matrix model with suitably chosen potential.Comment: 65 pages (Sept. 91

    High-dimensional polytopes defined by oracles: algorithms, computations and applications

    Get PDF
    Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις διαδραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχανικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδόσεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Αυτή η συμπεριφορά είναι ευρέως γνωστή ως κατάρα των μεγάλων διαστάσεων (curse of dimensionality). Δυο πλαίσια λύσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία είναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών (sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλότερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Στη διατριβή αυτή μελετάμε προβλήματα μέσα σε αυτά τα πλαίσια. Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογιστικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών και τα εφαρμοσμένα μαθηματικά, όπως είναι η θεωρία πολυτόπων, οι υλοποιήσεις αλγορίθμων, οι πιθανοθεωρητικοί γεωμετρικοί αλγόριθμοι, η υπολογιστική αλγεβρική γεωμετρία και η βελτιστοποίηση. Τα θεμελιώδη γεωμετρικά αντικείμενα της μελέτης μας είναι τα πολύτοπα, και οι βασικές τους ιδιότητες είναι η κυρτότητα και ότι ορίζονται από ένα μαντείο (oracle) σε ένα χώρο υψηλής διάστασης. Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις διαδραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχανικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδόσεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Δυο πλαίσια λύσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία είναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών (sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλότερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογιστικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών και τα εφαρμοσμένα μαθηματικά. Η συμβολή αυτής της διατριβής είναι τριπλή. Πρώτον, στο σχεδιασμό και την ανάλυση των γεωμετρικών αλγορίθμων για προβλήματα σε μεγάλες διαστάσεις. Δεύτερον, θεωρητικά αποτελέσματα σχετικά με το συνδυαστικό χαρακτηρισμό βασικών οικογενειών πολυτόπων. Τρίτον, η εφαρμογή και πειραματική ανάλυση των προτεινόμενων αλγορίθμων και μεθόδων. Η ανάπτυξη λογισμικού ανοιχτού κώδικα, που είναι διαθέσιμο στο κοινό και βασίζεται και επεκτείνει διαδεδομένες γεωμετρικές και αλγεβρικές βιβλιοθήκες λογισμικού, όπως η CGAL και το polymake.The processing and analysis of high dimensional geometric data plays a fundamental role in disciplines of science and engineering. The last decades many successful geometric algorithms has been developed in 2 and 3 dimensions. However, in most cases their performance in higher dimensions is poor. This behavior is commonly called the curse of dimensionality. A solution framework adopted for the healing of the curse of dimensionality is the exploitation of the special structure of the data, such as sparsity or low intrinsic dimension and the design of approximation algorithms. The main research area of this thesis is discrete and computational geometry and its connections to branches of computer science and applied mathematics. The contribution of this thesis is threefold. First, the design and analysis of geometric algorithms for problems concerning high-dimensional, convex polytopes, such as convex hull and volume computation and their applications to computational algebraic geometry and optimization. Second, the establishment of combinatorial characterization results for essential polytope families. Third, the implementation and experimental analysis of the proposed algorithms and methods. The developed software is opensource, publicly available and builds on and extends state-of-the-art geometric and algebraic software libraries such as CGAL and polymake

    Abstracts for the twentyfirst European workshop on Computational geometry, Technische Universiteit Eindhoven, The Netherlands, March 9-11, 2005

    Get PDF
    This volume contains abstracts of the papers presented at the 21st European Workshop on Computational Geometry, held at TU Eindhoven (the Netherlands) on March 9–11, 2005. There were 53 papers presented at the Workshop, covering a wide range of topics. This record number shows that the field of computational geometry is very much alive in Europe. We wish to thank all the authors who submitted papers and presented their work at the workshop. We believe that this has lead to a collection of very interesting abstracts that are both enjoyable and informative for the reader. Finally, we are grateful to TU Eindhoven for their support in organizing the workshop and to the Netherlands Organisation for Scientific Research (NWO) for sponsoring the workshop
    corecore