High-dimensional polytopes defined by oracles: algorithms, computations and applications

Abstract

Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις διαδραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχανικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδόσεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Αυτή η συμπεριφορά είναι ευρέως γνωστή ως κατάρα των μεγάλων διαστάσεων (curse of dimensionality). Δυο πλαίσια λύσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία είναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών (sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλότερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Στη διατριβή αυτή μελετάμε προβλήματα μέσα σε αυτά τα πλαίσια. Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογιστικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών και τα εφαρμοσμένα μαθηματικά, όπως είναι η θεωρία πολυτόπων, οι υλοποιήσεις αλγορίθμων, οι πιθανοθεωρητικοί γεωμετρικοί αλγόριθμοι, η υπολογιστική αλγεβρική γεωμετρία και η βελτιστοποίηση. Τα θεμελιώδη γεωμετρικά αντικείμενα της μελέτης μας είναι τα πολύτοπα, και οι βασικές τους ιδιότητες είναι η κυρτότητα και ότι ορίζονται από ένα μαντείο (oracle) σε ένα χώρο υψηλής διάστασης. Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις διαδραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχανικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδόσεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Δυο πλαίσια λύσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία είναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών (sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλότερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογιστικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών και τα εφαρμοσμένα μαθηματικά. Η συμβολή αυτής της διατριβής είναι τριπλή. Πρώτον, στο σχεδιασμό και την ανάλυση των γεωμετρικών αλγορίθμων για προβλήματα σε μεγάλες διαστάσεις. Δεύτερον, θεωρητικά αποτελέσματα σχετικά με το συνδυαστικό χαρακτηρισμό βασικών οικογενειών πολυτόπων. Τρίτον, η εφαρμογή και πειραματική ανάλυση των προτεινόμενων αλγορίθμων και μεθόδων. Η ανάπτυξη λογισμικού ανοιχτού κώδικα, που είναι διαθέσιμο στο κοινό και βασίζεται και επεκτείνει διαδεδομένες γεωμετρικές και αλγεβρικές βιβλιοθήκες λογισμικού, όπως η CGAL και το polymake.The processing and analysis of high dimensional geometric data plays a fundamental role in disciplines of science and engineering. The last decades many successful geometric algorithms has been developed in 2 and 3 dimensions. However, in most cases their performance in higher dimensions is poor. This behavior is commonly called the curse of dimensionality. A solution framework adopted for the healing of the curse of dimensionality is the exploitation of the special structure of the data, such as sparsity or low intrinsic dimension and the design of approximation algorithms. The main research area of this thesis is discrete and computational geometry and its connections to branches of computer science and applied mathematics. The contribution of this thesis is threefold. First, the design and analysis of geometric algorithms for problems concerning high-dimensional, convex polytopes, such as convex hull and volume computation and their applications to computational algebraic geometry and optimization. Second, the establishment of combinatorial characterization results for essential polytope families. Third, the implementation and experimental analysis of the proposed algorithms and methods. The developed software is opensource, publicly available and builds on and extends state-of-the-art geometric and algebraic software libraries such as CGAL and polymake

    Similar works