376 research outputs found

    Animating physical phenomena with embedded surface meshes

    Get PDF
    Accurate computational representations of highly deformable surfaces are indispensable in the fields of computer animation, medical simulation, computer vision, digital modeling, and computational physics. The focus of this dissertation is on the animation of physics-based phenomena with highly detailed deformable surfaces represented by triangle meshes. We first present results from an algorithm that generates continuum mechanics animations with intricate surface features. This method combines a finite element method with a tetrahedral mesh generator and a high resolution surface mesh, and it is orders of magnitude more efficient than previous approaches. Next, we present an efficient solution for the challenging problem of computing topological changes in detailed dynamic surface meshes. We then introduce a new physics-inspired surface tracking algorithm that is capable of preserving arbitrarily thin features and reproducing realistic fine-scale topological changes like Rayleigh-Plateau instabilities. This physics-inspired surface tracking technique also opens the door for a unique coupling between surficial finite element methods and volumetric finite difference methods, in order to simulate liquid surface tension phenomena more efficiently than any previous method. Due to its dramatic increase in computational resolution and efficiency, this method yielded the first computer simulations of a fully developed crown splash with droplet pinch off.Ph.D.Committee Chair: Turk, Greg; Committee Member: Essa, Irfan; Committee Member: Liu, Karen; Committee Member: Mucha, Peter J.; Committee Member: Rossignac, Jare

    Prevalence of hemineglect syndrome in patients after ischemic stroke

    Get PDF
    Neglect of one half of space is a result of damage to one hemisphere, most often after right-sided, nondominant damage. The term "neglect" is used to describe inattention specific to space or body usually contralateral to the side of brain injury. Unilateral neglect is a heterogeneous syndrome and inattention includes ignoring contralesional sights, sounds, smells, tactile or imagined stimuli. The aim of this study was to asses the frequency of hemispatial neglect and resolution of symptoms with time in a consecutive group of patients with ischemic stroke. The following data were analyzed: medical history patients after ischemic stroke, neurological examination, activities of daily leaving. Five "pencil-paper" tests from Behavioral Innatention Test were used to verify diagnosis of neglect. The examination was performed in the first and fourteenth day of patient's hospital stay. The neglect was diagnosed in 41% of patients. The most common symptoms were: sensory neglect, anosognosia and extrapersonal neglect. The resolution of symptoms was seen during a few weeks, especially with regard to activities of everyday leaving

    Characterization of the hemineglect syndrome : specificity of the nursing care

    Get PDF
    Hemineglect results from the damage of the single, usually right brain hemisphere (non-dominant one). It consists of the lack of awareness of the intra- and extrapersonal space contralaterally to the affected hemisphere. This disturbance combines complex abnormalities in various modalities of special senses: visual, auditory, sensory, and kinesthetic-motor one. Hemineglect is predominantly a cognitive disorder. Patients live in limited space, being unaware of functional restrictions. Causes and pathomechanisms of hemineglect remain poorly understood. The occurrence of the disorder results from the damage of the various cerebral structures. Analysis of the attitude, attention and emotions suggests the neuropsychological background of that phenomenon. The diagnosis of hemineglect is based mainly on neuropsychological testing. Clinical picture of the hemineglect syndrome is dominated by the disordered communication, recall, orientation towards the stimuli coming from the neglected side, frequently with preserved motor and sensory functions. Reeducational management is still at the research stage. It is based mainly on the rehabilitation programs including psychological elements that promote stimuli from the neglected side, stimulation of the neglected parts of the body, improvement of the visuospatial analysis, as well as the perceptive-motor integration. Specific patient’s problems require the adequate approach of the therapeutic team. Important activities include motivation and making patient aware of the deficit, elimination of the neglect signs, and consequently, improvement of patient’s self-dependence and quality of life. The goal of this work is the presentation of the hemineglect syndrom characteristics and the nursing proceedings aimed at the alleviation of the occuring disorders, and at improving patients performance in their daily funcions

    Water wave animation via wavefront parameter interpolation

    Get PDF
    We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms

    High-resolution brittle fracture simulation with boundary elements

    Get PDF
    We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front. Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation. Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix

    ACM Transactions on Graphics

    Get PDF
    When aiming to seamlessly integrate a fluid simulation into a larger scenario (like an open ocean), careful attention must be paid to boundary conditions. In particular, one must implement special "non-reflecting" boundary conditions, which dissipate out-going waves as they exit the simulation. Unfortunately, the state of the art in non-reflecting boundary conditions (perfectly-matched layers, or PMLs) only permits trivially simple inflow/outflow conditions, so there is no reliable way to integrate a fluid simulation into a more complicated environment like a stormy ocean or a turbulent river. This paper introduces the first method for combining nonreflecting boundary conditions based on PMLs with inflow/outflow boundary conditions that vary arbitrarily throughout space and time. Our algorithm is a generalization of stateof- the-art mean-flow boundary conditions in the computational fluid dynamics literature, and it allows for seamless integration of a fluid simulation into much more complicated environments. Our method also opens the door for previously-unseen postprocess effects like retroactively changing the location of solid obstacles, and locally increasing the visual detail of a pre-existing simulation

    Putting holes in holey geometry: Topology change for arbitrary surfaces

    Get PDF
    This paper presents a method for computing topology changes for triangle meshes in an interactive geometric modeling environment. Most triangle meshes in practice do not exhibit desirable geometric properties, so we develop a solution that is independent of standard assumptions and robust to geometric errors. Specifically, we provide the first method for topology change applicable to arbitrary non-solid, non-manifold, non-closed, self-intersecting surfaces. We prove that this new method for topology change produces the expected conventional results when applied to solid (closed, manifold, non-self-intersecting) surfaces---that is, we prove a backwards-compatibility property relative to prior work. Beyond solid surfaces, we present empirical evidence that our method remains tolerant to a variety of surface aberrations through the incorporation of a novel error correction scheme. Finally, we demonstrate how topology change applied to non-solid objects enables wholly new and useful behaviors

    ACM Transactions on Graphics

    Get PDF
    We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crackfront. The transition from a full boundary element method to our faster variant is possible at the beginning of any time step. This allows us to build a hybrid method, which uses the expensive but more accurate BEM while the number of degrees of freedom is low, and uses the fast method once that number exceeds a given threshold as the crack geometry becomes more complicated. Furthermore, we integrate this fracture simulation with a standard rigid-body solver. Our rigid-body coupling solves a Neumann boundary value problem by carefully separating translational, rotational and deformational components of the collision forces and then applying a Tikhonov regularizer to the resulting linear system. We show that our method produces physically reasonable results in standard test cases and is capable of dealing with complex scenes faster than previous finite- or boundary element approaches

    A practical method for animating anisotropic elastoplastic materials

    Get PDF
    This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate

    Fundamental solutions for water wave animation

    Get PDF
    This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples
    corecore