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ABSTRACT

The processing and analysis of high dimensional geometric data plays a fun-

damental role in disciplines of science and engineering. The last decades many

successful geometric algorithms has been developed in 2 and 3 dimensions. How-

ever, in most cases their performance in higher dimensions is poor. This behavior

is commonly called the curse of dimensionality. A solution framework adopted for

the healing of the curse of dimensionality is the exploitation of the special struc-

ture of the data, such as sparsity or low intrinsic dimension and the design of

approximation algorithms. This thesis studies problems inside this framework.

The main research area of this thesis is discrete and computational geometry

and its connections to branches of computer science and applied mathematics

like polytope theory, algorithm engineering, randomized geometric algorithms,

computational algebraic geometry and optimization. The fundamental geometric

objects of the study are polytopes, with main properties of being convex and

defined by an oracle in a high dimensional space.

The contribution of this thesis is threefold. First, the design and analysis of ge-

ometric algorithms for problems concerning high-dimensional, convex polytopes,

such as convex hull and volume computation and their applications to computa-

tional algebraic geometry and optimization. Second, the establishment of combi-

natorial characterization results for essential polytope families. Third, the imple-

mentation and experimental analysis of the proposed algorithms and methods.

The developed software is open-source, publicly available and builds on, extends

and is competitive with state-of-the-art geometric and algebraic software libraries

such as CGAL and polymake.

SUBJECT AREA: Discrete and Computational Geometry

KEYWORDS: convex polytopes, general dimension, polytope oracle, edge-

skeleton, volume computation, Newton polytope of sparse resul-

tant, secondary polytope, regular triangulations, mixed subdivi-

sion, geometric predicates, algorithm engineering, experimental

analysis





ΠΕΡΙΛΗΨΗ

Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις δια-

δραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχα-

νικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί

αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδό-

σεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Αυτή η συμπεριφορά

είναι ευρέως γνωστή ως κατάρα των μεγάλων διαστάσεων (curse of dimensionality).

Δυο πλαίσια λύσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία εί-

ναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών

(sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλό-

τερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Στη διατριβή αυτή

μελετάμε προβλήματα μέσα σε αυτά τα πλαίσια.

Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογι-

στικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών

και τα εφαρμοσμένα μαθηματικά, όπως είναι η θεωρία πολυτόπων, οι υλοποιήσεις

αλγορίθμων, οι πιθανοθεωρητικοί γεωμετρικοί αλγόριθμοι, η υπολογιστική αλγε-

βρική γεωμετρία και η βελτιστοποίηση. Τα θεμελιώδη γεωμετρικά αντικείμενα της

μελέτης μας είναι τα πολύτοπα, και οι βασικές τους ιδιότητες είναι η κυρτότητα και

ότι ορίζονται από ένα μαντείο (oracle) σε ένα χώρο υψηλής διάστασης.

Η συμβολή αυτής της διατριβής είναι τριπλή. Πρώτον, στο σχεδιασμό και την

ανάλυση των γεωμετρικών αλγορίθμων για προβλήματα σε μεγάλες διαστάσεις. Δεύ-

τερον, στην απόδειξη θεωρητικών αποτελεσμάτων σχετικά με το συνδυαστικό χαρα-

κτηρισμό βασικών οικογενειών πολυτόπων. Τρίτον, στην εφαρμογή και πειραματική

ανάλυση των προτεινόμενων αλγορίθμων και μεθόδων. Η ανάπτυξη του λογισμικού

είναι ανοιχτού κώδικα, το λογισμικό είναι διαθέσιμο στο κοινό και βασίζεται και επε-

κτείνει διαδεδομένες γεωμετρικές και αλγεβρικές βιβλιοθήκες λογισμικού, όπως η

CGAL και το polymake.



ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Διακριτή και Υπολογιστική Γεωμετρία

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κυρτά πολύτοπα, γενική διάσταση, μαντείο πολυτόπων, σκελετός

ακμών, υπολογισμός όγκου, πολύτοπο της αραιής απαλείφουσας,

δευτερεύον πολύτοπο, κανονικές τριγωνοποίησεις, μικτές υποδιαι-

ρέσεις, γεωμετρικά κατηγορήματα, υλοποιήσεις αλγορίθμων, πει-

ραματική ανάλυση
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Συνοπτική Παρουσίαση

1 Εισαγωγή

Η επεξεργασία και ανάλυση γεωμετρικών δεδομένων σε υψηλές διαστάσεις δια-

δραματίζει ένα θεμελιώδη ρόλο σε διάφορους κλάδους της επιστήμης και της μηχα-

νικής. Τις τελευταίες δεκαετίες έχουν αναπτυχθεί πολλοί επιτυχημένοι γεωμετρικοί

αλγόριθμοι σε 2 και 3 διαστάσεις. Ωστόσο, στις περισσότερες περιπτώσεις, οι επιδό-

σεις τους σε υψηλότερες διαστάσεις δεν είναι ικανοποιητικές. Αυτή η συμπεριφορά

είναι ευρέως γνωστή ως κατάρα των μεγάλων διαστάσεων (curse of dimensionality).

Δυο πλαίσια επίλυσης που έχουν υιοθετηθεί για να ξεπεραστεί αυτή η δυσκολία εί-

ναι η εκμετάλλευση της ειδικής δομής των δεδομένων, όπως σε περιπτώσεις αραιών

(sparse) δεδομένων ή στην περίπτωση που τα δεδομένα βρίσκονται σε χώρο χαμηλό-

τερης διάστασης, και ο σχεδιασμός προσεγγιστικών αλγορίθμων. Στη διατριβή αυτή

μελετάμε προβλήματα μέσα σε αυτά τα πλαίσια.

Το κύριο ερευνητικό πεδίο της παρούσας εργασίας είναι η διακριτή και υπολογι-

στικής γεωμετρία και οι σχέσεις της με τους κλάδους της επιστήμης των υπολογιστών

και τα εφαρμοσμένα μαθηματικά, όπως είναι η θεωρία πολυτόπων, οι υλοποιήσεις

αλγορίθμων, οι πιθανοθεωρητικοί γεωμετρικοί αλγόριθμοι, η υπολογιστική αλγε-

βρική γεωμετρία και η βελτιστοποίηση. Τα θεμελιώδη γεωμετρικά αντικείμενα της

μελέτης μας είναι τα πολύτοπα, και οι βασικές τους ιδιότητες είναι η κυρτότητα και

ότι ορίζονται από ένα μαντείο (oracle) σε ένα χώρο υψηλής διάστασης.

Η συμβολή αυτής της διατριβής είναι τριπλή. Πρώτον, στο σχεδιασμό και την

ανάλυση των γεωμετρικών αλγορίθμων για προβλήματα σε μεγάλες διαστάσεις. Δεύ-

τερον, σε θεωρητικά αποτελέσματα σχετικά με το συνδυαστικό χαρακτηρισμό βασι-

κών οικογενειών πολυτόπων. Τρίτον, στην εφαρμογή και πειραματική ανάλυση των

προτεινόμενων αλγορίθμων και μεθόδων. Η ανάπτυξη λογισμικού είναι ανοιχτού

κώδικα. Το λογισμικό είναι διαθέσιμο στον παρακάτω σύνδεσμο
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convex hull problem

vertex enumeration problem

Σχήμα 1.1: Η V- και η H-αναπαράσταση ενός κυρτού πολυτόπου σε δύο διαστάσεις
(πολύγωνο).

http://sourceforge.net/users/fisikop.

Το λογισμικό που αναπτύχθηκε βασίζεται και επεκτείνει διαδεδομένες γεωμετρικές

και αλγεβρικές βιβλιοθήκες λογισμικού, όπως η CGAL και το polymake.
Στη θεωρία πολυτόπων, ένα (κυρτό) πολύτοπο P δέχεται δύο αναπαραστάσεις.

Η πρώτη είναι ως το σύνολο των κορυφών του, και ονομάζεται V-αναπαράσταση ή

αναπαράσταση κορυφών. Η δεύτερη είναι η τομή που οριοθετείται από ένα σύνολο

γραμμικών ανισοτήτων ή υπόχωρων, η οποία ονομάζεται H-αναπαράσταση ή ανα-

παράσταση υπόχωρων. Δεδομένου ενός πολυτόπου σε V-αναπαράσταση, ο υπολογι-

σμός της H-αναπαράστασης ονομάζεται πρόβλημα υπολογισμού του κυρτού περι-

βλήματος (convex hull problem), ενώ το αντίθετο ονομάζεται πρόβλημα απαρίθμη-

σης κορυφών (vertex enumeration problem). Αυτά τα προβλήματα είναι ισοδύναμα

λόγω δυϊκότητας και είναι δύο από τα πιο σημαντικά υπολογιστικά προβλήματα στη

διακριτή και υπολογιστική γεωμετρία. Το Σχήμα 1.1 απεικονίζει ένα παράδειγμα

στις δύο διαστάσεις. Για μια αναλυτική παρουσίαση σχετικά με διάφορα θέματα

που σχετίζονται με τα κυρτά πολύτοπα αναφερόμαστε στο [140].

Ένα πολύτοπο P μπορεί επίσης να δοθεί σε μια έμμεση αναπαράσταση, που

ονομάζεται μαντείο ή χρησμός. Ένας χρησμός είναι ένα μαύρο κουτί που απαντά σε

ερωτήσεις σχετικά με το P . Ένας χρησμός βελτιστοποίησης, ή γραμμικού προγραμ-

ματισμού (LP), δέχεται ένα διάνυσμα c και επιστρέφει μια κορυφή του P που έχει

το μέγιστο εσωτερικό γινόμενο με το c μεταξύ όλων των κορυφών στο P . Μια άλλη

σημαντική έμμεση αναπαράσταση για το P είναι να δοθεί από ένα χρησμό διαχω-

ρισμού. Δηλαδή, δίνεται ένα σημείο x και το μαντείο επιστρέφει ναι, αν x 2 P ή
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A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e

Σχήμα 1.2: Η απαλείφουσα ενός συστήματος δύο πολυωνύμων σε μια μεταβλητή.

ένα υπερεπίπεδο που χωρίζει το P από το x διαφορετικά. Για παράδειγμα, αν το P

δοθεί σε H-αναπαράσταση, ένας χρησμός βελτιστοποίησης για το P δεδομένου ενός

διανύσματος c λύνει ένα γραμμικό πρόβλημα στο P , ενώ ένας χρησμός διαχωρισμού

για το P δεδομένου σημείου x αποτιμά το σύνολο των ανισοτήτων του P στο σημείο

x .

Οι σχέσεις μεταξύ των διαφόρων χρησμών έχουν μελετηθεί από τους Grötschel,

Lovàsz και Schrijver στο [78] με τη χρήση ενός μοντέλου υπολογισμού σύμφωνα

με το οποίο οι μηχανές Turing επιτρέπεται να καλούν χρησμούς. Για τον υπολογι-

σμό, για παράδειγμα, ενός χρησμού βελτιστοποίησης για το P όταν το P δίνεται από

ένα μαντείο διαχωρισμού, πρέπει κανείς να λύσει ένα γραμμικό πρόγραμμα στο P .

Αυτό μπορεί να γίνει με τη μέθοδο του ελλειψοειδούς [96]. Λαμβάνοντας υπόψη ένα

χρησμό για το P , το πολύτοπο P μπορεί να ανακατασκευαστεί σε κάποια αναπαρά-

σταση (κορυφών ή υπόχωρων) χρησιμοποιώντας ένα αυξητικό αλγόριθμο υπολογι-

σμού κυρτού περιβλήματος, όπως ο Beneath-and-Beyond [37].

2 Αλγόριθμοι για τον υπολογισμό του πολύτοπου της
απαλείφουσας

Υπό το πρίσμα της αλγεβρικής γεωμετρίας τα (κυρτά) πολύτοπα χαρακτηρίζουν

με μεγαλύτερη ακρίβεια ένα πολυώνυμο από ό,τι ο συνολικός του βαθμός. Για το

λόγο αυτό αποτελούν ένα θεμελιώδες αντικείμενο μελέτης στη θεωρία αραιής αλγε-

βρικής απαλοιφής. Μια βασική κατηγορία πολυτόπων αυτής της μορφής με εφαρ-
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μογή και στην επίλυση εξισώσεων είναι το πολύτοπο του Νεύτωνα της αραιής απαλεί-

φουσας, ή απλά πολύτοπο της απαλείφουσας που το συμβολίζουμε ως N(R). Τα πο-

λύτοπα αυτά έχουν μελετηθεί από τους Gelfand, Kapranov και Zelevinsky στο [74]

και από τον Sturmfels στο [131]. Ένα παράδειγμα της απαλείφουσας δύο πολυω-

νύμων f0; f1 σε μια μεταβλητή x απεικονίζεται στο Σχήμα 1.2. Είναι ένα πολυώνυμο

R στους συντελεστές a; b; c; d; e των δύο πολυωνύμων που μηδενίζεται αν το σύστημα

που παίρνουμε με την αντικατάσταση των a; b; c; d; e με αριθμητικές τιμές έχει λύση.

Εδώ, το πολύτοπο της απαλείφουσας N(R) είναι ένα τρίγωνο.

Στο [74] η μελέτη του πολυτόπου της απαλείφουσας συνδέεται με την μελέτη του

δευτερεύοντος πολυτόπου. Το δευτερεύον πολύτοπο ενός συνόλου σημείων A είναι

ένα σημαντικό αντικείμενο στην γεωμετρική συνδυαστική, δεδομένου ότι προσφέ-

ρει μια αναπαράσταση του γραφήματος των κανονικών τριγωνοποιήσεων του A. Η

εικόνα 1.3 απεικονίζει το δευτερεύον πολύτοπο ενός κυρτού εξαγώνου. Αυτή είναι

μια ειδική περίπτωση, όπου τα σημεία είναι σε κυρτή θέση στις δύο διαστάσεις.

Σε αυτή την περίπτωση όλες οι τριγωνοποιήσεις είναι κανονικές και το δευτερεύον

πολύτοπο είναι το 3-διάστατο ασοσιάεδρο (associahedron) [119].

Το κεφάλαιο 2 παρουσιάζει το σχεδιασμό και την ανάλυση του πρώτου ευαί-

σθητου εξόδου αλγόριθμου για τον υπολογισμό πολυτόπων της απαλείφουσας και

προβολών αυτών. Ο αλγόριθμος είναι ευαίσθητος εξόδου, δεδομένου ότι κάνει μια

κλήσης στο μαντείο ανά κορυφή και μία ανά έδρα του πολυτόπου. Τα βασικά στοι-

χεία του αλγορίθμου είναι η αναπαράσταση του πολυτόπου της απαλείφουσας από

ένα χρησμό βελτιστοποίησης και η εκμετάλλευση της χαμηλής εγγενούς (intrinsic)

του διάστασης. Το μαντείο κατασκευάζει κανονικές τριγωνοποιήσεις προκειμένου

να υπολογίσει τη βέλτιστη κορυφή του πολυτόπου. Τέλος, το πολύτοπο της απα-

λείφουσας ανακατασκευάζεται χρησιμοποιώντας έναν αυξητικό αλγόριθμο κυρτού

περιβλήματος που χρησιμοποιεί αυτό το μαντείο.

Ο αλγόριθμος υλοποιείται στο πακέτο λογισμικού respol, το οποίο υπολογίζει

5, 6 - και 7 διαστάσεων πολύτοπα με 35 � 103, 23 � 103 και 500 κορυφές, αντίστοιχα,

μέσα σε 2 ώρες σε έναν τυπικό υπολογιστή. Επίσης υπολογίζει τα πολύτοπα πολλών

σημαντικών εξισώσεων επιφανειών που απαντώνται στην γεωμετρική μοντελοποίηση

σε < 1 δευτερόλεπτα, ενώ η απαρίθμηση των κορυφών των αντίστοιχων δευτερευό-

ντων πολυτόπων είναι αδύνατη με τους υπάρχοντες υπολογιστές. To respol έχει

χρησιμοποιηθεί για να λύσει κάποια βασικά προβλήματα στην περιοχή της γεωμε-

τρικής σχεδίασης με υπολογιστή [61], καθώς και για τον υπολογισμό πολυωνύμων
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Σχήμα 1.3: Το δευτερεύον πολύτοπο ενός εξαγώνου.

της διακρίνουσας [62]. Επιπλέον, προτείνουμε και υλοποιούμε μια τεχνική που ονο-

μάζεται κατακερματισμός των οριζουσών, η οποία αποτρέπει την αλληλοεπικάλυψη

υπολογισμών με ταυτόχρονη αξιοποίηση της δομής των οριζουσών που υπολογίζο-

νται από τον αλγόριθμο. Στην πράξη, αυτή η τεχνική επιταχύνει την εκτέλεση μέχρι

και 100 φορές. Τα αποτελέσματα της εργασίας αυτής έχουν δημοσιευτεί στο διεθνές

συνέδριο της υπολογιστικής γεωμετρίας [59] καθώς και στην ειδική έκδοση του πε-

ριοδικού [60]. Μια επέκταση της παραπάνω μεθόδου για τον υπολογισμό πολυτόπων

της διακρίνουσας παρουσιάζεται στην ενότητα 2.6 και έχει δημοσιευτεί στο [58].

3 Υπολογισμός πολυτοπικών σκελετών από ακμές

Το γεγονός ότι ο παραπάνω αλγόριθμος δεν είναι αποδοτικός σε περισσότερες

από 8 διαστάσεις μας οδηγεί στη μελέτη αλγορίθμων συνολικά πολυωνυμικού χρό-

νου. Ένας αλγόριθμος τρέχει σε συνολικά πολυωνυμικό χρόνο αν η χρονική πο-

λυπλοκότητα του φράσσεται από ένα πολυώνυμο στο μέγεθος της εισόδου, στο μέ-

γεθος της εξόδου και στη διάσταση. Γενικά, το πρόβλημα της εύρεσης αλγορίθμων

συνολικά πολυωνυμικού χρόνου για το πρόβλημα του κυρτού περιβλήματος είναι

ένα σημαντικό ανοικτό πρόβλημα στην αλγοριθμική διακριτή γεωμετρία. Ωστόσο,

υπάρχουν αλγόριθμοι συνολικά πολυωνυμικού χρόνου για ειδικές περιπτώσεις πο-

λυτόπων όπως, simplicial πολύτοπα [8] και 0/1-πολύτοπα [32].

Εδώ μελετάμε μια άλλη ειδική περίπτωση για την οποία δείχνουμε ότι υπάρχουν
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αλγόριθμοι συνολικά πολυωνυμικού χρόνου. Παρουσιάζουμε τον πρώτο αλγόριθμο

συνολικά πολυωνυμικού χρόνου για μια ειδική περίπτωση του προβλήματος της

απαρίθμησης κορυφών, όπου το πολύτοπο δίνεται από ένα χρησμό βελτιστοποίη-

σης και μας δίνεται επίσης και ένα υπερσύνολο των κατευθύνσεων των ακμών του.

Ειδικότερα ο αλγόριθμος υπολογίζει το σκελετό των ακμών του πολυτόπου, το οποίο

είναι το γράφημα των κορυφών και των ακμών του πολυτόπου. Δεδομένου ότι οι

κορυφές υπολογίζονται μαζί με το σκελετό, ο αλγόριθμος υπολογίζει και μια απα-

ρίθμηση των κορυφών.

Μελετάμε δυο βασικές εφαρμογές. Εναλλασσόμενα Minkowski αθροίσματα κυρ-

τών πολυτόπων, όπου τα πολύτοπα μπορούν να αφαιρεθούν υπό την προϋπόθεση

ότι το αποτέλεσμα είναι επίσης κυρτό πολύτοπο, και δευτερεύοντα πολύτοπα, πο-

λύτοπα της απαλείφουσας και της διακρίνουσας. Περαιτέρω εφαρμογές περιλαμβά-

νουν προβλήματα από την κυρτή συνδυαστική βελτιστοποίηση και κυρτό ακέραιο

προγραμματισμό, όπου ο αλγόριθμος μας προσφέρει μια εναλλακτική προσέγγιση,

αίροντας την εκθετική εξάρτηση από τη διάσταση στην πολυπλοκότητα.

Τα αποτελέσματα της εργασίας αυτής παρουσιάζονται στο κεφάλαιο 3. Ορισμένα

αποτελέσματα έχουν δημοσιευθεί στο [56] και η πλήρη έκδοση τους στο [57].

4 Προσεγγιστικός υπολογισμός όγκου

Η προσπάθεια απαρίθμησης κορυφών σε υψηλές διαστάσεις (π.χ. εκατό) χρησι-

μοποιώντας τις παραπάνω μεθόδους είναι μάταιη. Η διατριβή αυτή αποσκοπεί στην

εξερεύνηση των ορίων του υπολογισμού βασικών χαρακτηριστικών ενός πολυτόπου,

όπως ο όγκος του. Αν και το πρόβλημα υπολογισμού του όγκου είναι #P-hard για

V- και H-αναπαραστάσεις πολυτόπων [51] υπάρχουν πιθανοθεωρητικοί αλγόριθ-

μοι πολυωνυμικού χρόνου για την προσέγγιση του όγκου ενός κυρτού σώματος με

μεγάλη πιθανότητα και αυθαίρετα μικρό σχετικό σφάλμα. Ο πρώτος τέτοιος αλ-

γόριθμος παρουσιάστηκε στο [50], και μια σειρά νέων αποτελεσμάτων μείωσε τον

εκθέτη στην πολυπλοκότητα των αλγορίθμων αυτών από 27 σε 4 [104]. Ωστόσο, το

πρόβλημα μιας αποδοτικής υλοποίησης παρέμεινε ανοικτό.

Αυτή η διατριβή μελετάει αυτό το πρόβλημα πειραματικά δεδομένου ενός κυρ-

τού πολυτόπου σε Η-αναπαράσταση. Εφαρμόζουμε και αξιολογούμε στην πράξη

πιθανοκρατικούς αλγόριθμους για την προσέγγιση όγκου πολυτόπων σε υψηλές
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διαστάσεις (π.χ. εκατό). Για να πραγματοποιηθεί η υλοποίηση αποτελεσματικά συ-

σχετίζουμε πειραματικά την επίδραση παραμέτρων, όπως το μήκος τυχαίων περιπά-

των και ο αριθμός των σημείων δειγματοληψίας, με την ακρίβεια του υπολογισμού

και το χρόνο. Επιπλέον, εκμεταλλευόμαστε τη γεωμετρία του προβλήματος με την

εφαρμογή μιας επαναληπτικής διαδικασίας στρογγυλοποίησης, υπολογίζοντας γε-

νιές τυχαίων σημείων και σχεδιάζοντας αποδοτικά μαντεία για τα πολύτοπα. Η υλο-

ποίηση είναι σημαντικά ταχύτερη από αυτές που υπολογίζουν τον όγκο ντετερμινι-

στικά. Υπολογίζουμε επίσης προσεγγίσεις για τους όγκους των Birkhoff πολυτόπων

B11; : : : ;B15, ενώ μόνο ο όγκος του B10 έχει υπολογιστεί με ακρίβεια.

Τα αποτελέσματα της εργασίας αυτής παρουσιάζονται στο Κεφάλαιο 4 και έχουν

δημοσιευθεί στο [55].

5 Συνδυαστική των πολυτόπων της απαλείφουσας

Μελετάμε τη συνδυαστική των πολυτόπων της απαλείφουσας. Υπάρχουν γνωστά

αποτελέσματα στην περίπτωση των δύο πολυωνύμων σε μία μεταβλητή [73] και στην

περίπτωση όπου η διάσταση του πολυτόπου είναι μέχρι και 3 [131]. Επεκτείνουμε τα

αποτελέσματα αυτά και απαντάμε σε ένα ανοιχτό ερώτημα που τίθεται στο [86] με τη

μελέτη της συνδυαστικής των 4-διάστατων πολυτόπων της απαλείφουσας. Η μελέτη

δείχνει μια μεγαλύτερη ποικιλία πολυτόπων σε αυτή τη διάσταση και περιλαμβάνει

υπολογιστικές και συνδυαστικές προκλήσεις.

Ειδικότερα, τα πειράματα μας, με βάση το respol, δίνουν κάτω φράγματα στο

μέγιστο πλήθος των όψεων των πολυτόπων. Με τη μελέτη των υποδιαιρέσεων των

Minkowski αθροισμάτων, που ονομάζονται μικτές υποδιαιρέσεις, παίρνουμε σφιχτά

(tight) άνω φράγματα για το μέγιστο αριθμό των όψεων που δείχνουμε ότι είναι 22.

Τα αποτελέσματα της εργασίας αυτής παρουσιάζονται στο Κεφάλαιο 5 και έχουν

δημοσιευθεί στο [47].

6 Γεωμετρικά κατηγορήματα

Οι γεωμετρικοί αλγόριθμοι περιλαμβάνουν τόσο συνδυαστικούς όσο και αλγεβρι-

κούς υπολογισμούς. Σε πολλές περιπτώσεις, όπως ο υπολογισμός του κυρτού περι-

βλήματος, οι τελευταίοι συνίστανται στον υπολογισμό του πρόσημου μιας ορίζουσας,
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που ονομάζεται γεωμετρικό κατηγόρημα. Όσο η διάσταση του χώρου υπολογισμού

μεγαλώνει, ένα μεγαλύτερο ποσοστό του χρόνου υπολογισμού καταναλώνεται από

αυτά τα κατηγορήματα. Στόχος μας είναι να μελετήσουμε τις ακολουθίες των κα-

τηγορημάτων που εμφανίζονται στους γεωμετρικούς αλγόριθμους. Χρησιμοποιούμε

δυναμικούς αλγορίθμους υπολογισμού της ορίζουσας για να επιταχύνουμε τον υπο-

λογισμό του κάθε κατηγορήματος χρησιμοποιώντας πληροφορία από τα προηγου-

μένως υπολογισμένα κατηγορήματα.

Προτείνουμε δύο δυναμικούς αλγορίθμους υπολογισμού οριζουσών με τετραγω-

νική πολυπλοκότητα όταν χρησιμοποιούνται σε υπολογισμούς κυρτού περιβλήμα-

τος, και με γραμμική πολυπλοκότητα όταν χρησιμοποιούνται σε προβλήματα εύ-

ρεσης σημείου. Επιπλέον, τους υλοποιούμε και τους αναλύουμε πειραματικά. Οι

υλοποιήσεις μας είναι ταχύτερες από τις πιο αποδοτικές υλοποιήσεις κυρτών πε-

ριβλημάτων, καθώς δίνουν επιτάχυνση ως και 78 φορές σε προβλήματα εύρεσης

σημείου.

Τα αποτελέσματα της εργασίας αυτής παρουσιάζονται στο Κεφάλαιο 6 και έχουν

δημοσιευθεί στο [65]. Το πακέτο λογισμικού που αναπτύχθηκε έχει υποβληθεί στη

βιβλιοθήκη CGAL [35].

7 Επεκτάσεις και ανοικτά προβλήματα

Αρκετά ενδιαφέροντα ανοικτά προβλήματα αναδεικνύονται μέσα από τη μελέτη

της παρούσας διατριβής. Από την οπτική της γεωμετρικής συνδυαστικής ένα ερώ-

τημα είναι να καταλάβουμε τη συμμετρία των μέγιστων f-διανυσμάτων, που προκύ-

πτουν από τη μελέτη των 4-διάστατων πολυτόπων της απαλείφουσας.

Επιπλέον προκύπτουν αρκετά ανοικτά προβλήματα που σχετίζονται με τη δειγ-

ματοληψία. Το πρώτο είναι να μελετηθεί ο αλγόριθμος προσέγγισης όγκου όταν δί-

νεται ένας χρησμός βελτιστοποίησης. Η τρέχουσα έρευνα εστιάζει σε κυρτά σώματα,

ή πολύτοπα, που δίνονται από ένα χρησμό διαχωρισμού. Άλλα ανοικτά προβλήματα

αφορούν τον υπολογισμό του όγκου των σπεκταέδρων (spectahedra) ή γενικά ημι-

αλγεβρικών συνόλων, την εφαρμογή του τρέχοντος λογισμικού σε άλλα # P-hard

προβλήματα όπως η καταμέτρηση των γραμμικών επεκτάσεων ενός μερικών διατε-

ταγμένου συνόλου, τον υπολογισμό ολοκληρωμάτων πολυωνυμικών συναρτήσεων

ορισμένα σε κυρτά πολύτοπα, τη μελέτη της ποιότητας των μεθόδων δειγματολη-
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ψίας, και μελέτη της δειγματοληψίας σε ακέραια σημεία μέσα σε πολύτοπα.

Τέλος το πρόβλημα του πλησιέστερου γείτονα έχει θεωρηθεί ως ένα από τα πιο

θεμελιώδη προβλήματα στην επιστήμη των υπολογιστών από τη σκοπιά των εφαρμο-

γών. Η μελέτη μας στο κεφάλαιο 4 ανοίγει το δρόμο για την εφαρμογή αλγορίθμων

για τον υπολογισμό του κατά προσέγγιση πλησιέστερου γείτονα στον υπολογισμό

προσεγγιστικών μαντείων πολυτόπων.
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Chapter 1

Polytopes, Algorithms and
Applications

1.1 Introduction

The processing and analysis of high dimensional geometric data plays a fun-

damental role in disciplines of science and engineering. In the last decades many

successful geometric algorithms have been developed in 2 and 3 dimensions.

However, in most cases their performance in higher dimensions is poor. This

behaviour is commonly called the curse of dimensionality. A solution framework

adopted for the healing of the curse of dimensionality is the exploitation of the

special structure of the data, such as sparsity or low intrinsic dimension, and

the design of approximation algorithms. This thesis studies problems inside this

framework.

The main research area is discrete and computational geometry and its con-

nections to branches of computer science and applied mathematics like polytope

theory, algorithm engineering, randomized geometric algorithms, computational

algebraic geometry and optimization. The fundamental geometric objects of the

study are polytopes, with main properties of being convex and defined in a high

dimensional space.

The contribution of this thesis is threefold. First, the design and analysis of ge-

ometric algorithms for problems concerning high-dimensional convex polytopes,

such as convex hull and volume computation and their applications to computa-

tional algebraic geometry and optimization. Second, the establishment of combi-
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convex hull problem

vertex enumeration problem

Figure 1.1: The V- and H-representation of a convex polygon.

natorial characterization results for essential polytope families. Third, the imple-

mentation and experimental analysis of the proposed algorithms and methods.

The developed software is open-source, publicly available from:

http://sourceforge.net/users/fisikop.

It builds on, extends and is competitive with state-of-the-art geometric and al-

gebraic software libraries such as CGAL [35] and polymake [72]. What follows is

a smooth introduction to the research topics and contributions of the thesis,

avoiding technical details.

In polytope theory, a (convex) polytope P admits two explicit representations.

The first is the set of P vertices, which is called the V-representation or vertex

representation. The second is the bounded intersection of a set of linear inequali-

ties or half-spaces, which is called H-representation or halfspace representation.

Given a polytope in V-representation, computing the H-representation consti-

tutes the convex hull problem, while the opposite is the vertex enumeration prob-

lem. These problems are algorithmically equivalent from a computational com-

plexity point of view by polytope duality and establish two of the most important

computational problems in discrete geometry. See Figure 1.1 for an illustration.

For a detailed presentation on several aspects related to convex polytopes we refer

to [140].

A polytope P can also be given by an implicit representation, called (polytope)

oracle. An oracle is a black box routine that answers questions regarding P . An

optimization, or linear programming (LP), or vertex oracle given a vector c returns
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A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e

Figure 1.2: The resultant of a system of two polynomials in one variable.

a vertex of P that has the maximum inner product with c among all points in

P . Another important implicit representation for P is to be given by a separation

oracle. That is, given a point x the oracle returns yes if x 2 P or a hyperplane that

separates P from x otherwise. To illustrate the above definitions, let P be given

in H-representation. Then an optimization oracle for P given a vector c solves an

LP problem on P , while a separation oracle for P given point x evaluates the set

of defining inequalities of P with x.

The relations among various oracles have been studied by Grötschel, Lovàsz

and Schrijver in [78] by adopting the oracle Turing machine model of computa-

tion. To acquire, for example, an optimization oracle for P when P is given by a

separation oracle, one has to solve a linear program over P . This can be done

by the ellipsoid method [96]. Given an oracle for P , the entire polytope P can be

reconstructed and its explicit representation can be found using an incremental

convex hull algorithm such as the Beneath-and-Beyond [37].

1.2 Algorithms for resultant polytopes

From the algebraic geometry perspective polytopes characterize polynomials

better than total degree thus offering the fundamental representation in sparse

elimination theory, called Newton polytopes. An important class of such polytopes

is the Newton polytopes of the sparse resultant polynomial or simply the resultant

polytopes. They have been studied by Gelfand, Kapranov and Zelevinsky in [74]

and by Sturmfels in [131]. An example of the resultant of two polynomials f0; f1
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Figure 1.3: The secondary polytope of a hexagon.

in one variable x is depicted in Figure 1.2. It is a polynomial R in the coefficients

a; b; c; d; e of the two polynomials which vanishes if the system we get by specializ-

ing a; b; c; d; e to numerical values has a solution. Here, the Newton polytope N(R)

of the resultant is a triangle.

In [74] the study of resultant polytopes is connected to the study of secondary

polytopes. The secondary polytope of a pointset A is a fundamental object in geo-

metric combinatorics since it offers a polytope realization of the graph of regular

triangulations of the pointset. Figure 1.3 depicts the secondary polytope of a con-

vex hexagon. This is a special case where the points in A are in convex position

and two dimensional. In this case all triangulations are regular and the secondary

polytope is the 3-dimensional associahedron [119].

Chapter 2 presents the design and the analysis of the first output-sensitive

algorithm for computing (projections of) resultant polytopes. The algorithm is

output-sensitive as it makes one oracle call per vertex and facet of the polytope.

The key ingredients of that algorithm is the compact representation of resultant

polytopes by an optimization oracle and the exploitation of their low intrinsic

dimension. The oracle constructs regular triangulations in order to compute the

optimal vertex in the polytope. Finally, the resultant polytope is reconstructed

using an incremental convex hull algorithm that uses this oracle.

The algorithm is implemented in the software package respol, which com-

putes 5-, 6- and 7-dimensional polytopes with 35 � 103, 23 � 103 and 500 vertices, re-
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spectively, within 2 hours on a standard computer, and the Newton polytopes of

many important surface equations encountered in geometric modelling in < 1sec,

whereas the enumeration of the vertices of the corresponding secondary polytopes

is intractable. respol has been used to solve essential problems in CAD [61] as

well as to compute discriminant polynomials [62]. We propose and implement

a technique called hashing of determinants, which avoids duplication of compu-

tations by exploiting the nature of determinants computed by the algorithm. In

practice, this technique accelerates execution up to 100 times.

The results of this work have been published in [59] and their full version

in [60]. An extension of the above method to computing discriminant polytopes

is discussed in Section 2.6 and has appeared in [58].

1.3 Edge-skeleton computation

Motivated by the fact that the above algorithm is impractical in 8 or more

dimensions since it relies on an incremental convex hull algorithm, the study

extends in finding more efficient, i.e. total polynomial-time, algorithms for convex

hulls. An algorithm runs in total polynomial-time if its time complexity is bounded

by a polynomial in the input and output size. In general dimension finding a total

polynomial time algorithm for vertex enumeration is a major open problem in

algorithmic geometry. However, total polynomial-time algorithms exist for vertex

enumeration of special polytope cases, such as simplicial polytopes [8] and 0/1-

polytopes [32].

Here we establish another case where total polynomial-time algorithms exist.

We present the first total polynomial-time algorithm for a special case of the vertex

enumeration problem where the polytope is given by an optimization oracle and

we are also given a superset of its edge directions. In particular the algorithm

computes the edge-skeleton (or 1-skeleton) of the polytope, which is the graph

of polytope vertices and edges. Since the vertices are computed along with the

skeleton, the edge-skeleton computation subsumes vertex enumeration.

We consider two main applications. We obtain total polynomial-time algo-

rithms for computing signed Minkowski sums of convex polytopes, where poly-

topes can be subtracted provided the signed sum is a convex polytope, and for
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computing secondary, resultant, and discriminant polytopes. Further applica-

tions include convex combinatorial optimization and convex integer program-

ming, where we offer an alternative approach, thus removing the exponential

dependence on the dimension in the complexity.

The results of this work are presented in Chapter 3. Some preliminary results

have been published in [56] and their full version in [57].

1.4 Approximate volume computation

Vertex enumeration in high dimensions (e.g. one hundred) using the above

methods is a futile attempt. Thus, this thesis aims at exploiting the limits of

learning fundamental characteristics of a polytope such as its volume. Although

volume computation is #-P hard for V- and H-representations of polytopes [51]

there exist randomized polynomial time algorithms to approximate the volume

of a convex body with high probability and arbitrarily small relative error. Start-

ing with the breakthrough polynomial time algorithm of [50], subsequent results

brought down the exponent on the dimension from 27 to 4 [104]. However, the

question of an efficient implementation had remained open.

This thesis undertakes this by experimentally studying the fundamental prob-

lem of computing the volume of a convex polytope given as an intersection of

linear inequalities. We implement and evaluate practical randomized algorithms

for accurately approximating the polytope’s volume in high dimensions (e.g. one

hundred). To carry out this efficiently we experimentally correlate the effect of

parameters, such as random walk length and number of sample points, on accu-

racy and runtime. Moreover, we exploit the problem’s geometry by implementing

an iterative rounding procedure, computing partial generations of random points

and designing fast polytope boundary oracles. Our publicly available code is sig-

nificantly faster than exact computation. We provide volume estimations for the

Birkhoff polytopes B11; : : : ;B15, whereas only the volume of B10 has computed ex-

actly.

The results of this work are presented in Chapter 4 and have been published

in [55].
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1.5 Combinatorics of resultant polytopes

We study the combinatorics of resultant polytopes. These are known in the

case of two polynomials in one variable, also known as the Sylvester case [73]

and in the case where the polytope’s dimension is up to 3 [131]. We extend this

work and at the same time answer an open question raised in [86] by studying the

combinatorial characterization of 4-dimensional resultant polytopes, which show

a greater diversity and involve computational and combinatorial challenges.

In particular, our experiments, based on respol, establish lower bounds on

the maximal number of faces. By studying subdivisions of Minkowski sums,

called mixed subdivisions, we obtain tight upper bounds on the maximal number

of facets and ridges. These yield an upper bound for the number of vertices, which

is 28 whereas the previous known bound was 6608 [131]. We establish a result of

independent interest, namely that the f-vector is maximized when the input is

sufficiently generic, namely full dimensional and without parallel edges. Lastly,

we offer a classification result of all possible 4-dimensional resultant polytopes.

The results of this work are presented in Chapter 5 and have been published

in [47].

1.6 Geometric predicates

Geometric algorithms involve both combinatorial and algebraic computation.

In many cases, such as convex hull computations, the later boils down to deter-

minant sign computations, also called geometric predicates. As the dimension of

the computation space grows, a higher percentage of the computation time is con-

sumed by these predicates. Our goal is to study the sequences of determinants

that appear in geometric algorithms. We use dynamic determinant algorithms to

speed-up the computation of each predicate by using information from previously

computed predicates.

We propose two dynamic determinant algorithms with quadratic complexity

when employed in convex hull computations, and with linear complexity when

used in point location problems. Moreover, we implement them and perform an

experimental analysis. Our implementations outperform the state-of-the-art de-

terminant and convex hull implementations in most of the tested scenarios, as
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well as giving a speed-up of 78 times in point location problems.

The results of this work are presented in Chapter 6 and have been published

in [65]. The developed software package has been submitted in CGAL [35] and is

currently under revision.

1.7 Extensions and open problems

Several intriguing open questions emerge by the study of this thesis. From the

geometric combinatorics point of view one question is to understand the symme-

try of the maximal f-vector, i.e. vector of polytope’s face cardinalities, that appear

in the study of the combinatorics of 4-dimensional resultant polytopes.

There are a few questions related to sampling. The first is to study volume ap-

proximation algorithms when an optimization oracle is available. The current re-

search focuses on convex bodies, or polytopes, represented by a membership ora-

cle. A special case which is also interesting is to sample random points from poly-

topes given in V-representation without using membership queries. Other related

problems are computing the volume of spectahedra or general semi-algebraic

sets, application of the current software to other #P-hard problems like counting

linear extensions of partial ordered sets, integration of polynomial functions over

convex polytopes, study polytopes that are easy/difficult to sample from under

the assumption that they are rounded, study the quality of sampling or compare

point samples, and sampling integer points from polytopes.

Nearest neighbour searching has been considered as one of the most funda-

mental problems in computer science. Our study in Chapter 4 paves the way

for an application of approximate nearest neighbour searching to approximate

polytope oracles and polytope volume approximation.
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Chapter 2

Algorithms for resultant polytopes

2.1 Introduction

Given pointsets A0; : : : ; An � Zn, we define the pointset

A :=
n[
i=0

(Ai � feig) � Z2n; (2.1)

where e0; : : : ; en form an affine basis of Rn: e0 is the zero vector, ei = (0; : : : ; 0;

1; 0; : : : ; 0); i = 1; : : : ; n. Clearly, jAj = jA0j+ � � �+ jAnj, where j � j denotes cardinality.
By Cayley’s trick (Proposition 2) the regular tight mixed subdivisions of the Mink-

owski sum A0+� � �+An are in bijection with the regular triangulations of A, which
are in bijection with the vertices of the secondary polytope �(A) (see Section 2.2).

The Newton polytope of a polynomial is the convex hull of its support, i.e. the

exponent vectors of monomials with nonzero coefficient. It subsumes the notion

of degree for sparse multivariate polynomials by providing more precise infor-

mation (see Figures 2.1 and 2.3). Given n + 1 polynomials in n variables, with

fixed supports Ai and symbolic coefficients, their sparse (or toric) resultant R is

a polynomial in these coefficients which vanishes exactly when the polynomials

have a common root (Definition 1). The resultant is the most fundamental tool

in elimination theory, it is instrumental in system solving and optimization, and

is crucial in geometric modeling, most notably for changing the representation of

parametric hypersurfaces to implicit.

The Newton polytope of the resultant N(R), or resultant polytope, is the object
of our study; it is of dimension jAj � 2n � 1 (Proposition 4). We further consider
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f(x1, x2) = 8x2 + x1x2 − 24x22 −
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1

Figure 2.1: The Newton polytope of a polynomial of degree 5 in two variables. Every
monomial corresponds to an integral point on the plane. The dashed triangle is
the corresponding polytope of the dense polynomial of degree 5.

the case when some of the input coefficients are not symbolic, hence we seek

an orthogonal projection of the resultant polytope. The lattice points in N(R)
yield a superset of the support of R; this reduces implicitization [61, 132] and

computation ofR to sparse interpolation (Section 2.2). The number of coefficients

of the n+1 polynomials ranges from O(n) for sparse systems, to O(nddn), where d

bounds their total degree. In system solving and implicitization, one computes R
when all but O(n) of the coefficients are specialized to constants, hence the need

for resultant polytope projections.

The resultant polytope is a Minkowski summand of �(A), which is also of di-

mension jAj � 2n � 1. We consider an equivalence relation defined on the �(A)
vertices, where the classes are in bijection with the vertices of the resultant poly-

tope. This yields an oracle producing a resultant vertex in a given direction, thus

avoiding to compute �(A), which typically has much more vertices than N(R).
This is known in the literature as an optimization oracle since it optimizes inner

product with a given vector over the (unknown) polytope.

Example 1. [The bicubic surface] A standard benchmark in geometric modeling

is the implicitization of the bicubic surface, with n = 2, defined by 3 polynomi-

als in two parameters. The input polynomials have supports Ai � Z2; i = 0; 1; 2,

with cardinalities 7; 6; 14, respectively; the total degrees are 3; 3; 6, respectively. The

Cayley set A � Z4, constructed as in Equation 2.1, has 7 + 6 + 14 = 27 points. It

is depicted in the following matrix, with coordinates as columns, where the sup-
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ports from different polynomials and the Cayley coordinates are distinguished.

By Proposition 4 it follows that N(R) has dimension jAj� 4� 1 = 22; it lies in R27.

0 0 1 0 2 0 3 0 0 1 2 0 3 0 0 1 0 1 2 1 2 1 2 3 2 3 3 o
support

0 1 0 2 0 3 0 0 1 0 0 3 0 0 1 0 2 1 0 2 1 3 2 1 3 2 3

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o
Cayley

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Implicitization requires eliminating the two parameters to obtain a constraint

equation over the symbolic coefficients of the polynomials. Most of the coefficients

are specialized except for 3 variables, hence the sought for implicit equation of

the surface is trivariate and the projection of N(R) lies in R3.

TOPCOM [120] needs more than a day and 9GB of RAM to compute 1; 806; 467

regular triangulations of A, corresponding to 29 of the vertices of N(R), and

crashes before computing the entire N(R). Our algorithm yields the projected ver-

tices f(0; 0; 1); (0; 1; 0); (1; 0; 0); (0; 0; 9); (0; 18; 0); (18; 0; 0)g of the 3-dimensional pro-

jection of N(R), which is the Newton polytope of the implicit equation, in 30msec.

Given this polytope, the implicit equation of the bicubic surface is interpolated

in 42 seconds [62]. It is a polynomial of degree 18 containing 715 terms which

corresponds exactly to the lattice points contained in the predicted polytope.

Our main contribution is twofold. First, we design an oracle-based algorithm

for computing the Newton polytope of R, or of specializations of R. The algo-

rithm utilizes the Beneath-and-Beyond method to compute both vertex (V) and

halfspace (H) representations, which are required by the algorithm and may also

be relevant for the targeted applications. Its incremental nature implies that we

also obtain a triangulation of the polytope, which may be useful for enumerating

its lattice points. The complexity is proportional to the number of output ver-

tices and facets; in this sense, the algorithms is output sensitive. The overall

cost is asymptotically dominated by computing as many regular triangulations

of A (Theorem 11). We work in the space of the projected N(R) and revert to the

high-dimensional space of �(A) only if needed. Our algorithm readily extends to

computing �(A), the Newton polytope of the discriminant and, more generally,

any polytope that can be efficiently described by a vertex oracle or its orthogonal

projection. In particular, it suffices to replace our oracle by the oracle in [122] to
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obtain a method for computing the discriminant polytope.

Second, we describe an efficient, publicly available implementation based on

CGAL [35] and its experimental package triangulation. Our method computes

instances of 5-, 6- or 7-dimensional polytopes with 35K, 23K or 500 vertices, re-

spectively, in < 2hr. Our code is faster up to dimensions 5 or 6, compared to

a method computing N(R) via tropical geometry, implemented in the Gfan li-

brary [86]. In higher dimensions Gfan seems to perform better although neither

implementation can compute enough instances for a fair comparison. Our code,

in the critical step of computing the convex hull of the resultant polytope, uses

triangulation. On our instances, triangulation, compared to state-of-the-art

software lrs, cdd, and polymake, is the fastest together with polymake. We fac-

tor out repeated computation by reducing the bulk of our work to a sequence of

determinants: this is often the case in high-dimensional geometric computing.

Here, we exploit the nature of our problem and matrix structure to capture the

similarities of the predicates, and hash the computed minors which are needed

later, to speedup subsequent determinants. A variant of our algorithm computes

successively tighter inner and outer approximations: when these polytopes have,

respectively, 90% and 105% of the true volume, runtime is reduced up to 25 times.

This may lead to an approximation algorithm.

Previous work. Sparse (or toric) elimination theory was introduced in [74]. They

show that N(R), for two univariate polynomials with k0+1; k1+1 monomials, has�k0+k1
k0

�
vertices and, when both ki � 2, it has k0k1+3 facets. In Section 6 of [131] is

proven that N(R) is 1-dimensional if and only if jAij = 2, for all i, the only planar

N(R) is the triangle, whereas the only 3-dimensional ones are the tetrahedron,

the square-based pyramid, and the resultant polytope of two univariate trinomi-

als; we compute an affinely isomorphic instance of the latter (Figure 2.2(b)) as the

resultant polytope of three bivariate polynomials. Following Theorem 6.2 of [131],

the 4-dimensional polytopes include the 4-simplex, some N(R) obtained by pairs

of univariate polynomials, and those of 3 trinomials, which have been investi-

gated with our code in [47]. The maximal (in terms of number of vertices) such

polytope we have computed has f-vector (22; 66; 66; 22) (Figure 2.2(c)). Further-

more, Table 2.2 presents some typical f-vectors of 4; 5; 6 dimensional projections

of resultant polytopes.
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A lower bound on the volume of the Newton polytope of the discriminant poly-

nomial that refutes a conjecture in algebraic geometry is presented in [117].

A direct approach for computing the vertices ofN(R)might consider all vertices

of �(A) since the vertices of the former are equivalence classes over the vertices

of the latter. Its complexity grows with the number of vertices of �(A), hence is

impractical (Example 1).

The computation of secondary polytopes has been efficiently implemented in

TOPCOM [120], which has been the reference software for computing regular

or all triangulations. The software builds a search tree with flips as edges over

the vertices of �(A). This approach is limited by space usage. To address this,

reverse search was proposed [83], but the implementation cannot compete with

TOPCOM. The approach based on computing �(A) is not efficient for computing

N(R). For instance, in implicitizing parametric surfaces with up to 100 terms,

which includes all common instances in geometric modeling, we compute the

Newton polytope of the equations in less than 1sec, whereas �(A) is intractable

(see e.g. Example 1).

In [109] they describe all Minkowski summands of �(A). In [110] is defined an

equivalence class over �(A) vertices having the samemixed cells. The classes map

in a many-to-one fashion to resultant vertices; our algorithm exploits a stronger

equivalence relationship.

Tropical geometry is a polyhedral analogue of algebraic geometry and can

be viewed as generalizing sparse elimination theory. It gives alternative ways

of recovering resultant polytopes [86] and Newton polytopes of implicit equa-

tions [132]. See Section 2.5 for comparisons of the software in [86], called Gfan,
with our software. In [122], tropical geometry is used to define vertex oracles for

the Newton polytope of the discriminant polynomial.

In [82] there is a general implementation of a Beneath-and-Beyond based pro-

cedure which reconstructs a polytope given by a vertex oracle. This implementa-

tion, as reported in [86], is outperformed by Gfan, especially in dimensions higher

than 5.

As is typical in computational geometry, the practical bottleneck is in com-

puting determinantal predicates. For determinants, the record bit complexity is

O(n2:697) [90], while more specialized methods exist for the sign of general de-

terminants, e.g. [27]. These results are relevant for higher dimensions and do
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not exploit the structure of our determinantal predicates, nor the fact that we

deal with sequences of determinants whose matrices are not very different (this

is formalized and addressed in Section 2.4). We compared linear algebra libraries

LinBox [48] and Eigen [79], which seem most suitable in dimension greater than

100 and medium to high dimensions, respectively, whereas CGAL provides the

most efficient determinant computation for the dimensions to which we focus.

The roadmap of the chapter follows: Section 2.2 describes the combinatorics

of resultants, and the following section presents our algorithm. Section 2.4 over-

comes the bottleneck of Orientation predicates. Section 2.5 discusses the imple-

mentation, experiments, and comparison with other software. We conclude with

future work.

A preliminary version containing most of the presented results appeared in

[59]. This extended version contains a more detailed presentation of the back-

ground theory of resultants, applications and examples, a more complete account

of previous work, omitted proofs, an improved description of the approximation

algorithm, an extended version of the hashing determinants method, and more

experimental results.

2.2 Resultant polytopes and their projections

We introduce tools from combinatorial geometry [101, 140] to describe result-

ants [74, 44]. We shall denote by vol(�) 2 R the normalized Euclidean volume,

(Rm)� the linear m-dimensional functionals, Aff(�) the affine hull, and conv(�) the
convex hull.

Let A � Rd be a pointset whose convex hull is of dimension d. For any trian-

gulation T of A, define vector �T 2 RjAj with coordinate

�T (a) =
X

�2T :a2�

vol(�); a 2 A; (2.2)

summing over all simplices � of T having a as a vertex; �(A) is the convex hull of

�T for all triangulations T . Let Aw denote pointset A lifted to Rd+1 via a generic

lifting function w in (RjAj)�. Regular triangulations of A are obtained by projecting

the upper (or lower) hull of Aw back to Rd.
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Proposition 1. [[74]] The vertices of �(A) correspond to the regular triangulations
of A, while its face lattice corresponds to the poset of regular polyhedral subdivi-
sions of A, ordered by refinement. A lifting vector produces a regular triangulation
T (resp. a regular polyhedral subdivision of A) if and only if it lies in the normal
cone of vertex �T (resp. of the corresponding face) of �(A). The dimension of �(A)
is jAj � d� 1.

Let A0; : : : ; An be subsets of Zn, P0; : : : ; Pn � Rn their convex hulls, and P =

P0 + � � � + Pn their Minkowski sum. A Minkowski (maximal) cell of P is any full-

dimensional convex polytope B =
Pn

i=0Bi, where each Bi is a convex polytope

with vertices in Ai. Minkowski cells B;B0 =
Pn

i=0B
0
i intersect properly when Bi \

B0
i is a face of both and their Minkowski sum descriptions are compatible, i.e.

coincide on the common face. A mixed subdivision of P is any family of Minkowski

cells which partition P and intersect properly. A Minkowski cell is i-mixed or vi-

mixed, if it is the Minkowski sum of n one-dimensional segments from Pj ; j 6= i,

and some vertex vi 2 Pi. In the sequel we shall call a Minkowski cell, simply cell.

Mixed subdivisions contain faces of all dimensions between 0 and n, the max-

imum dimension corresponding to cells. Every face of a mixed subdivision of P

has a unique description as Minkowski sum of Bi � Pi. A mixed subdivision is

regular if it is obtained as the projection of the upper (or lower) hull of the Mink-

owski sum of lifted polytopes Pwi
i := f(pi; wi(pi)) j pi 2 Pig, for lifting wi : Pi ! R.

If the lifting function w := (w0 : : : ; wn) is sufficiently generic, then the mixed sub-

division is tight, and
Pn

i=0 dimBi = dim
Pn

i=0Bi, for every cell. Given A0; : : : ; An

and the affine basis fe0; : : : ; eng of Rn, we define the Cayley pointset A � Z2n as

in equation (2.1).

Proposition 2. [Cayley trick, [74]] There exist bijections between: the regular tight

mixed subdivisions of P and the regular triangulations of A; the tight mixed sub-
divisions of P and the triangulations of A; the mixed subdivisions of P and the
polyhedral subdivisions of A.

The family A0; : : : ; An � Zn is essential if they jointly affinely span Zn and every

subset of cardinality j; 1 � j < n, spans a space of dimension greater than or equal

to j. It is straightforward to check this property algorithmically and, if it does not

hold, to find an essential subset [131]. In the sequel, the input A0; : : : ; An � Zn is
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supposed to be essential. Given a finite A � Zn, we denote by CA the space of all

Laurent polynomials of the form
P

a2A cax
a; ca 6= 0; x = (x1; : : : ; xn). Similarly, given

A0; : : : ; An � Zn we denote by
Qn

i=0C
Ai the space of all systems of polynomials

f0 = f1 = � � � = fn = 0; (2.3)

where
P

a2Ai
ci;ax

a; ci;a 6= 0. The vector of all coefficients (: : : ; ci;a; : : :) of (2.3) de-

fines a point in
Qn

i=0C
Ai. Let Z � Qn

i=0C
Ai be the set of points corresponding to

systems (2.3) which have a solution in (C�)n, and let Z be its closure. Z is an

irreducible variety defined over Q.

Definition 1. If codim(Z) = 1, then the sparse (or toric) resultant of the system

of polynomials (2.3) is the unique (up to sign) polynomial R in Z[ci;a : i = 0; : : : ; n;

a 2 Ai], which vanishes on Z. If codim(Z) > 2, then R = 1.

The resultant offers a solvability condition from which x has been eliminated,

hence is also known as the eliminant. For n = 1, it is named after Sylvester.

For linear systems, it equals the determinant of the (n + 1) � (n + 1) coefficient

matrix. The discriminant of a polynomial F (x1; : : : ; xn) is given by the resultant of

F; @F=@x1; : : : ; @F=@xn.

The Newton polytope N(R) of the resultant is a lattice polytope called the resul-

tant polytope. The resultant has jAj =Pn
i=0 jAij variables, hence N(R) lies in RjAj,

though it is of smaller dimension (Proposition 4). The monomials corresponding

to vertices of N(R) are the extreme resultant monomials.

Proposition 3. [[74, 131]] For a sufficiently generic lifting function w 2 (RjAj)�,

the w-extreme monomial of R, whose exponent vector maximizes the inner product
with w, equals

�
nY
i=0

Y
�

c
vol(�)
i;vi

; (2.4)

where � ranges over all vi-mixed cells of the regular tight mixed subdivision S of P

induced by w, and ci;vi is the coefficient of the monomial x
vi in fi.

Let T be the regular triangulation corresponding, via the Cayley trick, to S,

and �T 2 NjAj the exponent of the w-extreme monomial. For simplicity we shall
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denote by �, both a cell of S and its corresponding simplex in T . Then,

�T (a) =
X

a�mixed
�2T :a2�

vol(�) 2 N; a 2 A; (2.5)

where simplex � is a-mixed if and only if the corresponding cell is a-mixed in S.

Note that, �T (a) 2 N, since it is a sum of volumes of mixed simplices � 2 T , and

each of these volumes is equal to themixed volume[44] of a set of lattice polytopes,

the Minkowksi summands of the corresponding � 2 S. In particular, assuming

that � 2 S is i-mixed, it can be written as � = �0 + � � � + �n; �j � Aj ; j = 0; : : : ; n,

and vol(�) = MV (�0; : : : ; �i�1; �i+1; : : : ; �n); where MV denotes the mixed volume

function which is integer valued for lattice polytopes [44]. Now,N(R) is the convex
hull of all �T vectors [74, 131].

Proposition 3 establishes amany-to-one surjection from regular triangulations

ofA to regular tight mixed subdivisions of P , or, equivalently, from vertices of�(A)
to those ofN(R). One defines an equivalence relationship on all regular tight mixed

subdivisions, where equivalent subdivisions yield the same vertex in N(R). Thus,
equivalent vertices of �(A) correspond to the same resultant vertex. Consider

w 2 (RjAj)� lying in the union of outer-normal cones of equivalent vertices of

�(A). They correspond to a resultant vertex whose outer-normal cone contains

w; this defines a w-extremal resultant monomial. If w is non-generic, it specifies

a sum of extremal monomials in R, i.e. a face of N(R). The above discussion is

illustrated in Figure 2.2(a),(b).

Proposition 4. [[74]] N(R) is a Minkowski summand of �(A), and both �(A) and
N(R) have dimension jAj � 2n� 1:

Let us describe the 2n + 1 hyperplanes in whose intersection lies N(R). For
this, let M be the (2n + 1) � jAj matrix whose columns are the points in the Ai,

where each a 2 Ai is followed by the i-th unit vector in Nn+1. Then, the inner

product of any coordinate vector of N(R) with row i of M is: constant, for i =

1; : : : ; n, and known, and depends on i, for i = n + 1; : : : ; 2n + 1, see Prop. 7.1.11

of [74]. This implies that one obtains an isomorphic polytope when projecting

N(R) along 2n + 1 points in A which affinely span R2n; this is possible because

of the assumption of essential family. Having computed the projection, we obtain

N(R) by computing the missing coordinates as the solution of a linear system:
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Figure 2.2: Example of secondary and resultant polytopes: (a) The secondary
polytope �(A) of two triangles (dark, light grey) and one segment A0 =

f(0; 0); (1; 2); (4; 1)g; A1 = f(0; 1); (1; 0)g; A2 = f(0; 0); (0; 1); (2; 0)g, where A is defined
as in Equation 2.1; vertices correspond to mixed subdivisions of the Minkowski
sum A0 + A1 + A2 and edges to flips between them (b) N(R), whose vertices cor-
respond to the dashed classes of �(A). Bold edges of �(A), called cubical flips,
map to edges of N(R) (c) 4-dimensional N(R) of 3 generic trinomials with f-vector
(22; 66; 66; 22); figure made with polymake.

we write the aforementioned inner products asM [X V ]T = C, where C is a known

matrix and [X V ]T is a transposed (2n+ 1)� u matrix, expressing the partition of

the coordinates to unknown and known values, where u is the number of N(R)
vertices. If the first 2n + 1 columns of M correspond to specialized coefficients,

M = [M1M2], where submatrix M1 is of dimension 2n + 1 and invertible, hence

X =M�1
1 (C �M2B).

We compute some orthogonal projection of N(R), denoted �, in Rm:

� : RjAj ! Rm : N(R)! �; m � jAj:

By reindexing, this is the subspace of the first m coordinates, so �(�) = (�1; : : : ;

�m). It is possible that none of the coefficients cij is specialized, hence m = jAj,
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� is trivial, and � = N(R). Assuming the specialized coefficients take sufficiently

generic values, � is the Newton polytope of the corresponding specialization of

R. The following is used for preprocessing.

Lemma 5. [[86] Lemma 3.20] If aij 2 Ai corresponds to a specialized coefficient of

fi, and lies in the convex hull of the other points in Ai corresponding to specialized

coefficients, then removing aij from Ai does not change the Newton polytope of the

specialized resultant.

We focus on three applications. First, we interpolate the resultant in all coef-

ficients, thus illustrating an alternative method for computing resultants.

Example 2. Let f0 = a2x
2+a1x+a0, f1 = b1x

2+b0, with supports A0 = f2; 1; 0g; A1 =

f1; 0g. Their (Sylvester) resultant is a polynomial in a2; a1; a0; b1; b0. Our algorithm

computes its Newton polytope with vertices (0; 2; 0; 1; 1), (0; 0; 2; 2; 0), (2; 0; 0; 0; 2);

it contains 4 lattice points, corresponding to 4 potential resultant monomials

a21b1b0; a
2
0b

2
1; a2a0b1b0; a

2
2b

2
0. Knowing these potential monomials, to interpolate the

resultant, we need 4 points (a0; a1; a2; b0; b1) for which the system f0 = f1 = 0 has

a solution. For computing these points we use the parameterization of resultants

in [92], which yields: a2 = (2t1+ t2)t
2
3t4, a1 = (�2t1� 2t2)t3t4, a0 = t2t4, b1 = �t1t23t5,

b0 = t1t5; where the ti’s are parameters. We substitute these expressions to the

monomials, evaluate at 4 sufficiently random ti’s, and obtain a matrix whose

kernel vector (1; 1;�2; 1) yields R = a21b1b0 + a20b
2
1 � 2a2a0b1b0 + a22b

2
0.

Second, consider system solving by the rational univariate representation of

roots [14]. Given f1; : : : ; fn 2 C[x1; : : : ; xn], define an overconstrained system by

adding f0 = u0 + u1x1 + � � � + unxn with symbolic ui’s. Let coefficients cij ; i � 1,

take specific values, and suppose that the roots of f1 = � � � = fn = 0 are isolated,

denoted ri = (ri1; : : : ; rin). Then the u-resultant is Ru = a
Q

ri
(u0 + u1ri1 + � � � +

unrin)
mi, a 2 C�, wheremi is themultiplicity of ri. ComputingRu is the bottleneck;

our method computes (a superset of) N(Ru).

Example 3. Let f1 = x21 + x22 � 4, f2 = x1 � x2 + 2, and f0 = u0 + u1x1 + u2x2.

Our algorithm computes a polygon with vertices f(2; 0; 0); (0; 2; 0); (0; 0; 2)g, which
contains N(Ru) = conv(f(2; 0; 0); (1; 1; 0); (1; 0; 1); (0; 1; 1)g). The coefficient special-

ization is not generic, hence N(Ru) is strictly contained in the computed polygon.
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c00
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2
11c21 c401c

2
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Figure 2.3: The supports A0; A1; A2 of Example 4, their Newton polytopes (seg-
ments) and the two mixed subdivisions of their Minkowski sum.

Proceeding as in Example 2, Ru = 2u20 + 4u0u1 � 4u0u2 � 8u1u2, which factors as

2(u0 + 2u1)(u0 � 2u2).

The last application comes from geometric modeling, where yi = fi(x), i =

0; : : : ; n, x = (x1; : : : ; xn) 2 
 � Rn, defines a parametric hypersurface. Many ap-

plications require the equivalent implicit representation F (y1; : : : ; yn) = 0. This

amounts to eliminating x, so it is crucial to compute the resultant when coef-

ficients are specialized except the yi’s. Our approach computes a polytope that

contains the Newton polytope of F , thus reducing implicitization to interpola-

tion [62, 61]. In particular, we compute the polytope of surface equations within

1sec, assuming � 100 terms in parametric polynomials, which includes all com-

mon instances in geometric modeling.

Example 4. Let us see how the above computation can serve in implicitization.

Consider the surface given by the polynomial parameterization

(y1; y2; y3) = (x1x2; x1x
2
2; x

2
1):

For polynomials f0 := c00 � c01x1x2; f1 := c10 � c11x1x
2
2; f2 := c20 � c21x

2
1 with sup-

ports A0 = f(0; 0); (1; 2)g; A1 = f(0; 0); (1; 2)g and A2 = f(0; 0); (2; 0)g. The resultant

polytope is a segment in R6 with endpoints (4; 0; 0; 2; 0; 1), (0; 4; 2; 0; 1; 0) and, ac-

tually, R = �c400c211c21 + c401c
2
10c20. The supports and the two mixed subdivisions
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corresponding to the vertices of N(R) are illustrated in Figure 2.3. Specializing

the symbolic coefficients of the polynomials as:

(c00; c01; c10; c11; c20; c21) 7! (y1;�1; y2;�1; y3;�1)

yields the vertices of the implicit polytope: (4; 0; 0); (0; 2; 1), which our algorithm can

compute directly. The implicit equation of the surface turns out to be �y41 + y22y3.

2.3 Algorithms and complexity

This section analyzes our exact and approximate algorithms for computing

orthogonal projections of polytopes whose vertices are defined by an oracle. This

oracle computes a vertex of the polytope which is extremal in a given direction w.

If there are more than one such vertices the oracle returns exactly one of these.

Moreover, we define such an oracle for the vertices of orthogonal projections �

of N(R) which results in algorithms for computing � while avoiding computing

N(R). Finally, we analyze the asymptotic complexity of these algorithms.

Given a pointset V , reg_subdivision(V; !) computes the regular subdivision of

its convex hull by projecting the upper hull of V lifted by !, and conv(V ) computes

the H-representation of the convex hull of V . The oracle VTX(A; w; �) computes

a point in � = �(N(R)), extremal in the direction w 2 (Rm)�. First it adds to

w an infinitesimal symbolic perturbation vector, thus obtaining wp. Then calls

reg_subdivision(A;cwp), cwp = (wp;~0) 2 (RjAj)� that yields a regular triangulation T

ofA, since wp is generic, and finally returns �(�T ). It is clear that the triangulation

T constructed by VTX(�) is regular and corresponds to some secondary vertex �T
which maximizes the inner product with cwp. Since the perturbation is arbitrarily

small, both �T ; �T also maximize the inner product with bw = (w;~0) 2 (RjAj)�.

We use perturbation to avoid computing non-vertex points on the boundary

of �. The perturbation can be implemented in VTX(�), without affecting any other

parts of the algorithm, either by case analysis or by a method of symbolic pertur-

bation. In practice, our implementation does avoid computing non-vertex points

on the boundary of � by computing a refinement of the subdivision obtained

by calling reg_subdivision(A; bw). This refinement is implemented in triangula-
tion by computing a placing triangulation with a random insertion order [22]
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(Section 2.5).

Lemma 6. All points computed by VTX(�) are vertices of �.

Proof. Let v = �(�T ) = VTX(A; w; �). We first prove that v lies on @�. The point �T
ofN(R) is a Minkowski summand of the vertex �T of �(A) extremal with respect to

bw, hence �T is extremal with respect to bw. Since bw is perpendicular to projection

�, �T projects to a point in @�. The same argument implies that every vertex �0T ,

where T 0 is a triangulation refining the subdivision produced by bw, corresponds
to a resultant vertex �T 0 such that �(�T 0) lies on a face of �. This is actually the

same face on which �(�T ) lies. Hence �T 0 also lies on @�.

Now we prove that v is a vertex of � by showing that it does not lie in the

relative interior of a face of �. Let w be such that the face f of N(R) extremal with

respect to bw contains a vertex �T which projects to relint(�(f)), where relint(�)
denotes relative interior. However, f will not be extremal with respect to cwp and

since VTX(A; w; �) uses the perturbed vector wp, it will never compute a vertex of

N(R) whose projection lies inside a face of �.

The initialization algorithm computes an inner approximation of � in both V-

and H-representations (denoted Q; QH , respectively), and triangulated. First, it

calls VTX(A; w; �) for w 2W � (Rm)�; the setW is either random or contains, say,

vectors in the 2m coordinate directions. Then, it updates Q by adding VTX(A; w; �)
and VTX(A;�w; �), where w is normal to hyperplaneH � Rm containingQ, as long

as either of these points lies outside H. Since every new vertex lies outside the

affine hull of the current polytope Q, all polytopes produced are simplices. We

stop when these points do no longer increase dim(Q).

Lemma 7. The initialization algorithm computesQ � � such that dim(Q) = dim(�).

Proof. Suppose that the initialization algorithm computes a polytope Q0 � � such

that dim(Q0) < m. Then there exists vertex v 2 �, v =2 Aff(Q0) and vector w 2 (Rm)�

perpendicular to Aff(Q0), such that w belongs to the normal cone of v in � and

dim(Aff(Q0 [ v)) > dimQ0. This is a contradiction, since such a w would have been

computed as VTX(A; w; �) or VTX(A;�w; �), where w is normal to the hyperplane

H containing Q0.
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Incremental Algorithm 1 computes both V- and H-representations of � and

a triangulation of �, given an inner approximation Q;QH of � computed at the

initialization. A hyperplane H is called legal if it is a supporting hyperplane to a

facet of �, otherwise it is called illegal. At every step of Algorithm 1, we compute

v = VTX(A; w; �) for a supporting hyperplane H of a facet of Q with normal w.

If v =2 H, it is a new vertex thus yielding a tighter inner approximation of � by

inserting it to Q, i.e. Q � conv(Q [ v) � �. This happens when the preimage

��1(f) � N(R) of the facet f of Q defined by H, is not a Minkowski summand

of a face of �(A) having normal bw. Otherwise, there are two cases: either v 2 H

and v 2 Q, thus the algorithm simply decides hyperplane H is legal, or v 2 H and

v =2 Q, in which case the algorithm again decides H is legal but also inserts v to

Q.

The algorithm computes QH from Q, then iterates over the new hyperplanes

to either compute new vertices or decide they are legal, until no increment is

possible, which happens when all hyperplanes are legal. Algorithm 1 ensures

that each normal w to a hyperplane supporting a facet of Q is used only once, by

storing all used w’s in a set W . When a new normal w is created, the algorithm

checks if w =2 W , then calls VTX(A; w; �) and updates W  W [ w. If w 2 W then

the same or a parallel hyperplane has been checked in a previous step of the

algorithm. It is straightforward that w can be safely ignored; Lemma 8 formalizes

the latter case.

Lemma 8. Let H 0 be a hyperplane supporting a facet constructed by Algorithm 1,

and H 6= H 0 an illegal hyperplane at a previous step. If H 0; H are parallel then H 0

is legal.

Proof. Let w;w0 be the outer normal vectors of the facets supported by H;H 0 re-

spectively. If H;H 0 are parallel then v = VTX(A; w; �) maximizes the inner product

with w0 in Q which implies that hyperplane H 0 is legal.

The next lemma formulates the termination criterion of our algorithm.

Lemma 9. Let v = VTX(A; w; �), where w is normal to a supporting hyperplane H
of Q, then v 62 H if and only if H is not a supporting hyperplane of �.

Proof. Let v = �(�T ), where T is a triangulation refining subdivision S in VTX(�).
It is clear that, since v 2 @� is extremal with respect to w, if v 62 H then H cannot
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Algorithm 1: Compute� (A0; : : : ; An; �)

Input : essential A0; : : : ; An � Zn processed by Lemma 5,
projection � : RjAj ! Rm,
H-, V-repres. QH ; Q; triang. TQ of Q � �.

Output : H-, V-repres. QH ; Q; triang. TQ of Q = �.

A  Sn
0 (Ai � ei) // Cayley trick

Hillegal  ;
foreach H 2 QH do Hillegal  Hillegal [ fHg
while Hillegal 6= ; do

select H 2 Hillegal and Hillegal  Hillegal n fHg
w is the outer normal vector of H
v  VTX(A; w; �)
if v =2 H \Q then

QH
temp  conv(Q [ fvg) // convex hull computation
foreach (d� 1)-face f 2 TQ visible from v do

TQ  TQ [ ffaces of conv(f; v)g
foreach H 0 2 fQH nQH

tempg do
Hillegal  Hillegal n fH 0g // H 0 separates Q; v

foreach H 0 2 fQH
temp nQHg do

Hillegal  Hillegal [ fH 0g // new hyperplane
Q Q [ fvg
QH  QH

temp

return Q;QH ; TQ

be a supporting hyperplane of �. Conversely, let v 2 H. By the proof of Lemma 6,

every other vertex �(�0T ) on the face of N(R) is extremal with respect to w, hence

lies on H, thus H is a supporting hyperplane of �.

We now bound the complexity of our algorithm. Beneath-and-Beyond, given

a k-dimensional polytope with l vertices, computes its H-representation and a

triangulation in O(k5lt2), where t is the number of full-dimensional faces (cells)

[87]. Let j�j; j�H j be the number of vertices and facets of �.

Lemma 10. Algorithm 1 executes VTX(�) at most j�j+ j�H j times.

Proof. The steps of Algorithm 1 increment Q. At every such step, and for each

Vissarion Fisikopoulos 56



High-dimensional polytopes defined by oracles: algorithms, computations and applications

+ =

X N(R)

Q

Σ(A)

Q + X

Figure 2.4: Proof sketch for Lemma 10: each illegal hyperplane of Q with normal
w, separates the already computed vertices of � (here equal to N(R)) from new
ones, extremal with respect to w. X is a polytope such that X +N(R) = �(A).

supporting hyperplane H of Q with normal w, the algorithm calls VTX(�) and com-

putes one vertex of �, by Lemma 6. If H is illegal, this vertex is unique because

H separates the set of (already computed) vertices of Q from the set of vertices of

� nQ which are extremal with respect to w, hence, an appropriate translate of H

also separates the corresponding sets of vertices of �(A) (Figure 2.4). This vertex

is never computed again because it now belongs to Q. The number of VTX(�) calls
yielding vertices is thus bounded by j�j.

For a legal hyperplane of Q, we compute one vertex of � that confirms its

legality; the VTX(�) call yielding this vertex is accounted for by the legal hyper-

plane. The statement follows by observing that every normal to a hyperplane of

Q is used only once in Algorithm 1 (by the earlier discussion concerning the set

W of all used normals).

Let the size of a triangulation be the number of its cells. Let sA denote the size

of the largest triangulation of A computed by VTX(�), and s� that of � computed

by Algorithm 1. In VTX(�), the computation of a regular triangulation reduces to a

convex hull, computed inO(n5jAjs2A); for �T we compute Volume for all cells of T in

O(sAn
3). The overall complexity of VTX(�) becomes O(n5jAjs2A). Algorithm 1 calls,

in every step, VTX(�) to find a point on @� and insert it to Q, or to conclude that a
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hyperplane is legal. By Lemma 10 it executes VTX(�) as many as j�j+ j�H j times,

in O((j�j+j�H j)n5jAjs2A), and computes the H-representation of� in O(m5j�js2�).

Now we have, jAj � (2n+1)sA and as the input jAj;m; n grows large we can assume

that j�j � jAj and thus s� dominates sA. Moreover, s�(m + 1) � j�H j. Now, leteO(�) imply that polylogarithmic factors are ignored.

Theorem 11. The time complexity of Algorithm 1 to compute� � Rm isO(m5j�js2�+

(j�j+ j�H j)n5jAjs2A), which becomes eO(j�js2�) when j�j � jAj.
This implies our algorithm is output sensitive. Its experimental performance

confirms this property, see Section 2.5.

We have proven that oracle VTX(�) (within our algorithm) has two important

properties:

1. Its output is a vertex of the target polytope (Lemma 6).

2. When the direction w is normal to an illegal facet, then the vertex computed

by the oracle is computed once (Lemma 10).

The algorithm can easily be generalized to incrementally compute any polytope P

if the oracle associated with the problem satisfies property (1); if it satisfies also

property (2), then the computation can be done in O(jP j+jPH j) oracle calls, where
jP j, jPH j denotes the number of vertices and number of facets of P , respectively.

For example, if the described oracle returns �(�T ) instead of �(�T ), it can be used

to compute orthogonal projections of secondary polytopes.

The algorithm readily yields an approximate variant: for each supporting hy-

perplane H, we use its normal w to compute v =VTX(A; w; �). Instead of com-

puting a convex hull, now simply take the hyperplane parallel to H through v.

The set of these hyperplanes defines a polytope Qo � �, i.e. an outer approxima-

tion of �. In particular, at every step of the algorithm, Q and Qo are an inner

and an outer approximation of �, respectively. Thus, we have an approximation

algorithm by stopping Algorithm 1 when vol(Q)=vol(Qo) achieves a user-defined

threshold. Then, vol(Q)=vol(�) is bounded by the same threshold. Implementing

this algorithm yields a speedup of up to 25 times (Section 2.5). It is clear that

vol(Q) is available by our incremental convex hull algorithm. However, vol(Qo) is

the critical step; we plan to examine algorithms that update (exactly or approxi-

mately) this volume.
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When all hyperplanes of Q are checked, knowledge of legal hyperplanes accel-

erates subsequent computations of QH , although it does not affect its worst-case

complexity. Specifically, it allows us to avoid checking legal facets against new

vertices.

2.4 Hashing of Determinants

This section discusses methods to avoid duplication of computations by ex-

ploiting the nature of the determinants appearing in the inner loop of our algo-

rithm. Our algorithm computes many regular triangulations, which are typically

dominated by the computation of determinants. A similar technique, using dy-

namic determinant computations, is used to improve determinantal predicates

in incremental convex hull computations [65].

Consider the 2n � jAj matrix with the points of A as columns. Define P as

the extension of this matrix by adding lifting values bw as the last row. We use

the Laplace (or cofactor) expansion along the last row for computing the deter-

minant of the square submatrix formed by any 2n + 1 columns of P ; without

loss of generality, we assume these are the first 2n+ 1 columns a1; : : : ; a2n+1. Let

(1; : : : ; 2n+ 1) n i be the vector resulting from removing the i-th element from the

vector (1; : : : ; 2n + 1) and let P(1;:::;2n+1)ni be the (2n) � (2n) matrix obtained from

the 2n elements of the columns whose indices are in (1; : : : ; 2n+ 1) n i.
The Orientation predicate is the sign of the determinant of Phom

(1;:::;2n+2)
, con-

structed by columns a1; : : : ; a2n+2 and adding ~1 2 R2n+2 as the last row. Comput-

ing a regular subdivision is a long sequence of such predicates, varying ai’s on

each step. We expand along the next-to-last row, which contains the lifting val-

ues, and compute the determinants jP(1;:::;2n+2)nij for i 2 f1; : : : ; 2n + 2g. Another
predicate is Volume, used by VTX(�). It equals the determinant of Phom

(1;:::;2n+1)
, con-

structed by columns a1; : : : ; a2n+1 and replacing the last row of the matrix by
~1 2 R2n+1.

Example 5. Consider the polynomials f0 := c00�c01x1x2+c02x2, f1 := c10�c11x1x22+
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c12x
2
2 and f2 := c20 � c21x

2
1 + c22x2 and the lifting vector bw yielding the matrix P .

P =

0 0 0 1 1 2 0 0 0 o
support coordinates

0 0 0 1 2 0 1 2 1

0 1 0 0 1 0 0 1 0 o
Cayley trick coordinates

0 0 1 0 0 1 0 0 1

w1 w2 w3 0 0 0 0 0 0 } bw

We reduce the computations of predicates to computations of minors of thematrix

obtained from deleting the last row of P . Computing an Orientation predicate

using Laplace expansion consists of computing
�6
4

�
= 15 minors. On the other

hand, if we compute jPhom
(1;2;3;4;5;6)

j, the computation of jPhom
(1;2;3;4;5;7)

j requires the

computation of only
�6
4

� � �54� = 10 new minors. More interestingly, when given a

new lifting cw0, we compute jP 0 hom
(1;2;3;4;5;6)

j without computing any new minors.

Our contribution consists in maintaining a hash table with the computed mi-

nors, which will be reused at subsequent steps of the algorithm. We store all

minors of sizes between 2 and 2n. For Orientation, they are independent of w

and once computed they are stored in the hash table. The main advantage of our

scheme is that, for a new w, the only change in P are m (nonzero) coordinates

in the last row, hence computing the new determinants can be done by reusing

hashed minors. This also saves time from matrix constructions.

Laplace expansion computation of amatrix of size n has complexityO(n)
Pn

i=1 Li,

where Li is the cost of computing the i-th minor. Li equals 1 when the i-th mi-

nor was precomputed; otherwise, it is bounded by O
�
(n � 1)!

�
. This allows us to

formulate the following Lemma.

Lemma 12. Using hashing of determinants, the complexity of the Orientation and

Volume predicates is O(n) and O(1), respectively, if all minors have already been

computed.

Many determinant algorithms modify the input matrix; this makes necessary

to create a newmatrix and introduces a constant overhead on each minor compu-

tation. Computing with Laplace expansion, while hashing the minors of smaller

size, performs better than state-of-the-art algorithms, in practice. Experiments

in Section 2.5 show that our algorithm with hashed determinants outperforms
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the version without hash. For m = 3 and m = 4, we experimentally observed that

the speedup factor is between 18 and 100; Figure 2.6(b) illustrates the second

case.

The drawback of hashing determinants is the amount of storage, which is in

O(n!). The hash table can be cleared at any moment to limit memory consump-

tion, at the cost of dropping all previously computed minors. Finding a policy

to clear the hash table according to the number of times each minor was used

would decrease the memory consumption, while keeping running times low. Ex-

ploring different heuristics, such as using a LRU (least recently used) cache, to

choose which minors to drop when freeing memory will be an interesting research

subject.

It is possible to exploit the structure of the above (2n) � (2n) minor matrices.

LetM be such a matrix, with columns corresponding to points of A0; : : : ; An. After

column permutations, we split M into four n� n submatrices A;B;D; I, where I

is the identity matrix and D has at most one 1 in each column. This follows from

the fact that the bottom half of every column in M has at most one 1 and the

last n rows of M contain at least one 1 each, unless detM = 0, which is easily

checked. Now, detM = �det(B � AD), with AD constructed in O(n). Hence, the

computation of (2n)� (2n) minors is asymptotically equal to computing an n� n

determinant. This only decreases the constant within the asymptotic bound. A

simple implementation of this idea is not faster than Laplace expansion in the

dimensions that we currently focus. However, this idea should be valuable in

higher dimensions.

2.5 Implementation and Experiments

We implemented Algorithm 1 in C++ to compute �; our code can be obtained

from

http://respol.sourceforge.net.

All timings shown in this section were obtained on an Intel Core i5-2400 3:1GHz,

with 6MB L2 cache and 8GB RAM, running 64-bit Debian GNU/Linux.

Our implementation, respol, relies on CGAL, using mainly a preliminary ver-

sion of package triangulation [22], for both regular triangulations, as well as
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for the V- and H-representation of �. As for hashing determinants, we looked for

a hashing function, that takes as input a vector of integers and returns an in-

teger, which minimizes collisions. We considered many different hash functions,

including some variations of the well-known FNV hash [66]. We obtained the best

results with the implementation of Boost Hash [85], which shows fewer collisions

than the other tested functions. We clear the hash table when it contains 106

minors. This gives a good tradeoff between efficiency and memory consumption.

Last column of Table 2.1 shows that the memory consumption of our algorithm

is related to jAj and dim(�).

We start our experiments by comparing four state-of-the-art exact convex hull

packages: triangulation implementing [39] and beneath-and-beyond (bb) in

polymake [72]; double description implemented in cdd [68]; and lrs implement-

ing reverse search [6]. We compute �, actually extending the work in [7] for the

new class of polytopes �. The triangulation package was shown to be faster in

computing Delaunay triangulations in � 6 dimensions [22]. The other three pack-

ages are run through polymake, where we have ignored the time to load the data.

We test all packages in an offline version. We first compute the V-representation

of � using our implementation and then we give this as an input to the convex

hull packages that compute the H-representation of �. Moreover, we test trian-
gulation by inserting points in the order that Algorithm 1 computes them, while

improving the point location of these points since we know by the execution of

Algorithm 1 one facet to be removed (online version). The experiments show that

triangulation and bb are faster than lrs, which outperforms cdd. Furthermore,

the online version of triangulation is 2:5 times faster than its offline counterpart

due to faster point location (Table 2.1, Figure 2.5).

A placing triangulation of a set of points is a triangulation produced by the

Beneath-and-Beyond convex hull algorithm for some ordering of the points. That

is, the algorithm places the points in the triangulation with respect to the order-

ing. Each point which is going to be placed, is connected to all visible faces of the

current triangulation resulting to the construction of new cells. An advantage of

triangulation is that it maintains a placing triangulation of a polytope in Rd by

storing the 0; 1; d� 1; d dimensional cells of the triangulation. This is useful when

the oracle VTX(A; w; �) needs to refine the regular subdivision of A which is ob-

tained by projecting the upper hull of the lifted pointset A bw (Section 2.3). In fact
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m jAj
# of � time (seconds) respol
vertices respol tr/on tr/off bb cdd lrs Mb

3 2490 318 85.03 0.07 0.10 0.07 1.20 0.10 37
4 27 830 15.92 0.71 1.08 0.50 26.85 3.12 46
4 37 2852 97.82 2.85 3.91 2.29 335.23 39.41 64
5 15 510 11.25 2.31 5.57 1.22 47.87 6.65 44
5 18 2584 102.46 13.31 34.25 9.58 2332.63 215.22 88
5 24 35768 4610.31 238.76 577.47 339.05 > 1hr > 1hr 360
6 15 985 102.62 20.51 61.56 28.22 610.39 146.83 2868
6 19 23066 6556.42 1191.80 2754.30 > 1hr > 1hr > 1hr 6693
7 12 249 18.12 7.55 23.95 4.99 6.09 11.95 114
7 17 500 302.61 267.01 614.34 603.12 10495.14 358.79 5258

Table 2.1: Total time and memory consumption of our code (respol) and time
comparison of online version of triangulation (tr/on) and offline versions of
all convex hull packages for computing the H-representation of �.
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Figure 2.5: Comparison of convex hull packages for 4-dimensional (a) and 5-
dimensional (b) �. triang_on/triang_off are the online/offline versions of tri-
angulation package (y-axis is in logarithmic scale).

this refinement is attained by a placing triangulation, i.e., by computing the pro-

jection of the upper hull of the placing triangulation of A bw. This is implemented

in two steps:

Step 1. compute the placing triangulation T0 of the last jAj � m points with a

random insertion order as described in [22] (they all have height zero),

Step 2. place the first m points of A bw in T0 with a random insertion order [22].
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Step 1 is performed only once at the beginning of the algorithm, whereas Step 2 is

performed every time we check a new w. The order of placing the points in Step 2

only matters if w is not generic; otherwise, w already produces a triangulation of

the m points, so any placing order results in this triangulation.

This is the implemented method; although different from the perturbation in

the proof of Lemma 6, it is more efficient because of the reuse of triangulation T0

in Step 1 above. Moreover, our experiments show that it always validates the two

conditions in Section 2.3.

We can formulate this 2-step construction using a single lifting. Let c > 0 be

a sufficiently large constant, ai 2 A; qi 2 R, qi > c qi+1; for i = 1; : : : ; jAj. Define
lifting h : A ! R2, where h(ai) = (wi; qi); for i = 1; : : : ;m, and h(ai) = (0; qi),

for i = m + 1; : : : ; jAj. Then, projecting the upper hull of Ah to R2n yields the

triangulation of A obtained by the 2-step construction.

Fixing the dimension of the triangulation at compile time results in < 1%

speedup. We also tested a kernel that uses the filtering technique based on inter-

val arithmetic from [26] with a similar time speedup. On the other hand, trian-
gulation is expected to implement incremental high-dimensional regular trian-

gulations with respect to a lifting, faster than the above method [46]. Moreover,

we use a modified version of triangulation in order to benefit from our hashing

scheme. Therefore, all cells of the triangulated facets of � have the same normal

vector and we use a structure (STL set) to maintain the set of unique normal

vectors, thus computing only one regular triangulation per triangulated facet of

�.

We perform an experimental analysis of our algorithm. We design experiments

parameterized on: the total number of input points jAj, the dimension n of pointsets

Ai, and the dimension of projection m. First, we examine our algorithm on ran-

dom inputs for implicitization and u-resultants, where m = n + 1, while varying

jAj; n. We fix � 2 N and select random points on the �-simplex to generate dense

inputs, and points on the (�=2)-cube to generate sparse inputs. For implicitiza-

tion the projection coordinates correspond to point ai1 = (0; : : : ; 0) 2 Ai. For n = 2

the problem corresponds to implicitizing surfaces: when jAj < 60, we compute

the polytopes in < 1sec (Figure 2.6(a)). When computing the u-resultant polytope,

the projection coordinates correspond to A0 = f(1; : : : ; 0); : : : ; (0; : : : ; 1)g. For n = 2,

when jAj < 500, we compute the polytopes in < 1sec (Figure 2.6(a)).
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Figure 2.6: (a) Implicitization and u-resultants for n = 2;m = 3; (b) Comparison
of respol (hashing and not hashing determinants) and Gfan (traversing tropical
resultants and computing normal fan from stable intersection) for m = 4; (c)
Performance of Alg. 1 for m = 3; 4; 5 as a function of input; (d) Performance of
Alg. 1 as a function of its output; y-axes in (b), (c), (d) are in logarithmic scale.

By using the hashing determinants scheme we gain a 18� speedup when n =

2; m = 3. Form = 4 we gain a larger speedup; we computed in < 2min an instance

where jAj = 37 and would take > 1hr to compute otherwise. Thus, when the

dimension and jAj becomes larger, this method allows our algorithm to compute

instances of the problem that would be intractable otherwise, as shown for n =

3; m = 4 (Figure 2.6(b)).

We confirm experimentally the output-sensitivity of our algorithm. First, our

algorithm always computes vertices of � either to extend � or to legalize a facet.
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# cells in triangulation time (sec)
f-vector of �

� � min max � � min max
4781 154 4560 5087 0.35 0.01 0.34 0.38 449 1405 1438 482

16966 407 16223 17598 1.51 0.03 1.45 1.56 1412 4498 4705 1619
18229 935 16668 20058 1.92 0.10 1.77 2.11 432 1974 3121 2082 505

563838 6325 548206 578873 99 1.62 93.84 103.07 9678 43569 71004 50170 13059
289847 15788 264473 318976 69 4.88 61.67 77.31 1308 7576 16137 16324 7959 1504
400552 14424 374149 426476 96.5 4.91 88.86 107.12 1680 9740 21022 21719 10890 2133

Table 2.2: Typical f-vectors of projections of resultant polytopes and the size of
their triangulations. We perform 20 runs with random insertion order of vertices
for each polytope and report the minimum, maximum, average value � and the
standard deviation � for the number of cells and the runtime.
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Figure 2.7: (a) vol(Q)=vol(�) as a function of the number of random normal
vectors used to compute Q; (b) The size of the triangulation of � as a function of
the output of Alg. 1.

We experimentally show that our algorithm has, for fixed m, a subexponential

behaviour with respect to both input and output (Figure 2.6(c), 2.6(d)) and its

output is subexponential with respect to the input.

As the complexity analysis (Theorem 11) indicates, the runtime of the algo-

rithm depends on the size of the constructed placing triangulation of �. The size

of the placing triangulation depends on the ordering of the inserted points. We

perform experiments on the effect of the inserting order to the size of the trian-

gulation as well as the running time of the computation of the triangulation (Ta-

ble 2.2). These sizes as well as the runtimes vary in a very narrow range. Thus,

the insertion order is not crucial in both the runtime and the space of our algo-

rithm. Further experiments in 4-dimensional N(R) show that the size of the in-
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put bounds polynomially the size of the triangulation of the output (Figure 2.7(b))

which explains the efficiency of our algorithm in this dimension.

We explore the limits of our implementation. By bounding runtime to < 2hr,

we compute instances of 5-, 6-, 7-dimensional � with 35K, 23K, 500 vertices, re-

spectively (Table 2.1).

We also compare with the implementation of [86], which is based on Gfan li-

brary. They develop two algorithms to compute projections of N(R). Assuming

R defines a hypersurface, their methods compute a union of (possibly overlap-

ping) cones, along with their multiplicities, see Theorem 2.9 of [86]. From this

intermediate result they construct the normal cones to the resultant vertices.

examples in [86] a b c d e f g h i
jAj 12 12 15 12 12 16 27 16 20
m 12 12 15 6 7 9 3 4 5
n 3 2 4 2 2 3 2 3 4

Gfan(secs�) 1.40 6 55 0.70 1.30 798 0.40 2.60 184
respol(secs) 1.40 18.41 99.90 0.26 1.24 934 0.02 0.96 292.01

Table 2.3: Comparison of our implementation with Gfan. � Timings for Gfan as
reported in [86].

We compare with the best timings of Gfan methods using the examples and

timings of [86] (Table 2.3). Our method is faster in examples (d), (e), (g), (h) where

m < 7, is competitive (up to 2 times slower) in (a) where m = jAj = 12 and (i)

where m = 5; jAj = 20 and slower in (b), (c), (f) where m � 12. The bottleneck of

our implementation, that makes it slower when the dimension of the projection

m is high, is the incremental convex hull construction in Rm. Moreover, since our

implementation considers that N(R) lies in RjAj instead of RjAj�2n�1, (see also the

discussion on the homogeneities of R in Section 2.2), it cannot take advantage

of the fact that dim(N(R)) could be less than m when jAj � 2n � 1 < m < jAj.
This is the case in examples (b), (c) and (f). On the other hand, we run extensive

experiments for n = 3, considering implicitization, where m = 4 and our method,

with and without using hashing, is much faster than any of the two algorithms

based on Gfan (Figure 2.6(b)). However, for n = 4; m = 5 the beta version of Gfan
used in our experiments was not stable and always crashed when jAj > 13.

We analyze the computation of inner and outer approximations Q and QH
o . We

test the variant of Section 2.3 by stopping it when vol(Q)=vol(QH
o ) > 0:9. In the
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input
m 3 3 4 4 5 5
jAj 200 490 20 30 17 20

approximation
# of Q vertices 15 11 63 121 > 10hr > 10hr
vol(Q)=vol(�) 0.96 0.95 0.93 0.94 > 10hr > 10hr

algorithm
vol(Qo)=vol(�) 1.02 1.03 1.04 1.03 > 10hr > 10hr

time (sec) 0.15 0.22 0.37 1.42 > 10hr > 10hr

uniformly
jQj 34 45 123 207 228 257

random vectors 606 576 613 646 977 924

random
vol(Q)=vol(�) 0.93 0.99 0.94 0.90 0.90 0.90
time (sec) 5.61 12.78 1.10 4.73 8.41 16.90

exact # of � vertices 98 133 416 1296 1674 5093
algorithm time (sec) 2.03 5.87 3.72 25.97 51.54 239.96

Table 2.4: Results on experiments computing Q;QH
o using the approximation al-

gorithm and the random vectors procedure; we stop the approximation algorithm
when vol(Q)=vol(Qo) > 0:9; the results with random vectors are the average values
over 10 independent experiments; “> 10hr” indicates computation of vol(Qo) was
interrupted after 10hr.

experiments, the number of Q vertices is < 15% of the � vertices, thus there is

a speedup of up to 25 times over the exact algorithm at the largest instances.

The approximation of the volume is very satisfactory: vol(QH
o )=vol(�) < 1:04 and

vol(Q)=vol(�) > 0:93 for the tested instances (Table 2.4). The bottleneck here is

the computation of vol(QH
o ), where QH

o is given in H-representation: the runtime

explodes for m � 5. We use polymake in every step to compute vol(QH
o ) because

we are lacking of an implementation that, given a polytope P in H-representation,

its volume and a halfspace H, computes the volume of the intersection of P and

H. Note that we do not include this computation time in the reported time. Our

current work considers ways to extend these observations to a polynomial time

approximation algorithm for the volume and the polytope itself when the latter is

given by an optimization oracle, as is the case here.

Next, we study procedures that compute only the V-representation of Q. For

this, we count how many random vectors uniformly distributed on the m-dim-

ensional sphere are needed to obtain vol(Q)=vol(�) > 0:9. This procedure runs

up to 10 times faster than the exact algorithm (Table 2.4). Figure 2.7(a) illus-

trates the convergence of vol(Q)=vol(�) to the threshold value 0:9 in typical 3; 4; 5-

dimensional examples. The basic drawback of this method is that it does not

provide guarantees for vol(Q)=vol(�) because we do not have sufficient a priori

information on �. These experiments also illustrate the extent in which the nor-
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mal vectors required to deterministically construct � are uniformly distributed

over the sphere.

2.6 Computing discriminant polytopes

We extend ResPol to compute (reduced) discriminant polytopes following two

approaches. The first focuses on reduced discriminants. By employing the Horn-

Kapranov parameterization, the problem is reduced to implicitization. The Newton

polytope of the implicit equation of the parameterization, or implicit polytope, is

computed as the projection of a resultant polytope [61] and it contains (a translate

of) the reduced discriminant polytope. This approach is discussed below.

The second approach defines vertex oracles for the discriminant polytope and

uses Beneath-Beyond. There are several procedures to get a vertex oracle. In [122]

is given a procedure and an implementation (tropli) for such an oracle using

tropical geometry: tropli, given direction c 2 RjAj, computes a vertex v 2 N(�A)

s.t. cT v is minimized. Respol can use this oracle to reconstruct the discriminant

polytope. One can also define a vertex oracle using the �-vectors from [74, ch.11],

Such an oracle involves the computation of (normalized) volumes of lower dimen-

sional simplices, and has not yet been implemented in ResPol.
Regarding the first approach, given A, let B = (bij) 2 Zn�(m�n�1) be a matrix

whose column vectors are a basis of the integer kernel of A. Then B is of full

rank. We assume that its maximal minors have unit gcd (i.e. the rows generate

Zm�n�1). Since the first row of A equals (1; : : : ; 1), the columns of B add up to

0. Set d = m � n � 1. Let y1; : : : ; yd be homogenous parameters and set y1 = 1 so

as to dehomogenize the parameterization. We denote by li; i = 1; : : : ;m the inner

product of the i-th row ofB and the parameter vector (1; y2; : : : ; yd): li :=
Pd

j=1 bijyj.

The li correspond bijectively to the coefficients ca; a 2 A of f and are thus the

discriminant variables. The, so called, Horn-Kapranov parametrization [74, 92],

is defined as:

xj =
mY
i=1

l
bij
i ; j = 1; 2; : : : ; d: (2.6)

The implicit equation of (the closure of) its image is a polynomial �B in x :=

(x1; : : : ; xd), called the reduced discriminant, which is the dehomogenized version

of �A; it is obtained from �A by specializing some n + 1 of its variables so as to
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remove the n + 1 quasi-homogeneities. It follows that N(�B) is the projection of

N(�A) in a space of dimension equal to its intrinsic dimension and retains the

combinatorial structure of N(�A).

Example 6. Let A = f0; 1; 2; 3; 4g and f = c0 + c1t
1 + c2t

2 + c3t
3 + c4t

4 be a generic
quartic.

A =

 
1 1 1 1 1

0 1 2 3 4

!
; B =

0BBBBBBB@

3 2 1

�4 �3 �2

0 0 1

0 1 0

1 0 0

1CCCCCCCA
:

Herem = 5; n = 1; d = 3 and l1 = 3+2y2+y3; l2 = �4�3y2�2y3; l3 = y3; l4 = y2; l5 = 1,

and the Horn-Kapranov parameterization is:

x1 =
(3 + 2y2 + y3)

3

(�4� 3y2 � 2y3)4
; x2 =

(3 + 2y2 + y3)
2y2

(�4� 3y2 � 2y3)3
; x3 =

(3 + 2y2 + y3)y3
(�4� 3y2 � 2y3)2

: (2.7)

We prefer to have rational parameterizations with a single monomial in the de-

nominator because this facilitates the computation of the implicit polytope. We

introduce a new parameter y4 expressing the common denominator in (2.7) and

obtain the parameterization

x1 =
(3 + 2y2 + y3)

3

y44
; x2 =

(3 + 2y2 + y3)
2y2

y34
; x3 =

(3 + 2y2 + y3)y3

y24
; y4 = �4�3y2�2y3;

from which we define the polynomials

F0 : = x1y
4
4 � (3 + 2y2 + y3)

3; F1 := x2y
3
4 � (3 + 2y2 + y3)

2y2;

F2 : = x3y
2
4 � (3 + 2y2 + y3)y3; F3 := y4 + 4 + 3y2 + 2y3;

whose supports are given as input to ResPol. The above procedure is demon-
strated in the Maple file horn_example2.mw available with our distribution. Then,
we prepare the input file.txt:

3
11 7 4 4 | 0 11 18
[[0, 0, 4], [0, 0, 0], [1, 0, 0], [0, 1, 0], [2, 0, 0], [1, 1, 0], [0, 2, 0],
[3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 3, 0], [0, 0, 3], [1, 0, 0], [2, 0, 0],
[1, 1, 0], [3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 0, 2], [0, 1, 0], [1, 1, 0],
[0, 2, 0], [0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0]]
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The second line after ‘|’ instructs ResPol to project to the space defined by
x1; x2; x3. Executing ./res_enum_d < file.txt, we obtain the vertices (0; 0; 12),
(0; 8; 0), (6; 0; 0), (0; 0; 0) in the standard output. They define a polytope contain-
ing a translate of N(�B). To compute the discriminant polytope using tropli we
prepare a textfile file.txt:

1
5 0 |

[[0], [1], [2], [3], [4]]

where the zero after the cardinality 5 of the support in the second line is needed

because ResPol expects the number of supports to be one more than the di-

mension. Executing the command ./res_enum_d -d < file.txt, we obtain

the vertices of N(�A): (1; 0; 4; 0; 1); (0; 3; 0; 3; 0); (0; 4; 0; 0; 2); (0; 2; 3; 0; 1); (0; 2; 2; 2; 0);

(2; 0; 0; 4; 0); (3; 0; 0; 0; 3); (1; 0; 3; 2; 0) in the standard output. The corresponding ver-

tices of N(�B) may be computed as follows: By renaming the li’s as ci’s we have

from (2.7) that x1 = c30c
�4
1 c4, x2 = c20c

�3
1 c3, x3 = c0c

�2
1 c2, which gives the correspon-

dence: (�; �; �) 7�! (3� + 2� + �;�4� � 3� � 2�; �; �; �), between the vertices of �B

and �A. Moreover, this yields the correspondence: (a1; a2; a3; a4; a5) 7�! (a5; a4; a3)

between the vertices of �A and �B. Hence, from the set of vertices of N(�A)

above, we obtain the vertices of N(�B): (0; 2; 3), (0; 2; 2), (1; 0; 3), (1; 0; 4), (0; 3; 0),

(0; 4; 0), (3; 0; 0), (2; 0; 0), which are all contained in the polytope defined by the set

of vertices predicted by ResPol.

2.7 Future work

One algorithm that should be experimentally evaluated is the following. We

perform a search over the vertices of �(A), that is, we build a search tree with

flips as edges. We keep a set with the extreme vertices with respect to a given

projection. Each computed vertex that is not extreme in the above set is discarded

and no flips are executed on it, i.e. the search tree is pruned in this vertex. The

search procedure could be the algorithm of TOPCOM or the one presented in

[110] which builds a search tree in some equivalence classes of �(A). The main

advantage of this algorithm is that it does not involve a convex hull computation.

On the other hand, it is not output-sensitive with respect to the number of vertices

of the resultant polytope; its complexity depends on the number of vertices on the
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silhouette of �(A), with respect to a given projection and those that are connected

by an edge with them.

As shown, polymake’s convex hull algorithm is competitive, thus one may use

it for implementing our algorithm. On the other hand, triangulation is expected

to include fast enumeration of all regular triangulations for a given (non generic)

lifting, in which case � may be extended by more than one (coplanar) vertices.

Our proposed algorithm uses an incremental convex hull algorithm and it

is known that any such algorithm has a worst-case super-polynomial total time

complexity [25] in the number of input points and output facets. The basic open

question that this chapter raises is whether there is a polynomial total time al-

gorithm for � or even for the set of its vertices.
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Chapter 3

Algorithms for the edge skeleton

3.1 Introduction

Convex polytopes in general dimension admit a number of alternative repre-

sentations. The best known, explicit representations for a polytope P are either

the set of its vertices (V-representation) or a bounded intersection of halfspaces

(H-representation). Switching between the two representations constitutes the

convex hull and vertex enumeration problems. A linear programming problem

(LP) on P consists in finding a vertex of P that maximizes the inner product with

a given objective vector c. This is very easy if P is in V-representation, but also if

P is in H-representation, LP can be solved in polynomial time.

In general dimension, there is no polynomial-time algorithm for either con-

vex hull or vertex enumeration, since the output size can be exponential in the

worst case by the upper bound theorem [108]. In addition to, generating all ver-

tices of a polyhedron is also hard [95]. We therefore want to take the output size

into account and say that an algorithm runs in total polynomial time if its time

complexity is bounded by a polynomial in the input and output size. There is no

known total polynomial-time algorithm for either convex hull or vertex enumera-

tion. In [7] they provide for each known types of convex hull algorithms, explicit

families of polytopes with which as input the algorithms run in superpolynomial

time.

However, finding the vertices of the convex hull of a given point set reduces

to LP and has thus polynomial complexity in the input (cf. [38]). The algorithm

in [8] solves, in total polynomial-time, vertex enumeration for simple polytopes
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and convex hull for simplicial polytopes. For 0/1-polytopes a total polynomial-

time algorithm for vertex enumeration is presented in [32], where a 0/1-polytope

is one, all of whose vertices have coordinates 0 or 1. On the other hand, there is

no such algorithm for the more general case of 0/1-polyhedra unless P=NP [24].

In this thesis we establish another case where total polynomial-time algorithms

exist.

An important explicit representation of a polytope is the edge-skeleton (or 1-

skeleton), which is the graph of polytope vertices and edges, but none of the faces

of dimension larger than one. For simple polytopes, the edge-skeleton determines

the complete face lattice (see [88] and the references therein), but in general, this

is false. The edge-skeleton is a useful and compact representation employed in

different problems, e.g. in computing general-dimensional Delaunay triangula-

tions of a given pointset: In [22] the authors show how the edge-skeleton suffices

for point location by allowing them to recover only the needed full-dimensional

simplices of the triangulation.

In this chapter we study the case where a polytope P is given by an implicit

representation, where the only access to P is a black box subroutine (oracle) that

solves the LP problem on P for a given vector c. Then, we say that P is given

by an optimization, or LP oracle. Given such an oracle, the entire polytope can

be reconstructed, and both V- and H-representations can be found using the

Beneath-Beyond method; see e.g. [59, 82], although not in total polynomial-time.

Another important implicit representation of P is obtained through a separa-

tion oracle (Section 3.2). Celebrated results of Khachiyan [96] as well as Grötschel,

Lovász and Schrijver [78] show that separation and optimization oracles are poly-

nomial time equivalent (Proposition 14). Many important results in combinatorial

optimization use the fact that separation implies optimization. In our study, we

also need the other direction: Given an optimization oracle, compute a separation

oracle for P .

The problem that we study is a special case of vertex enumeration. We are

given an optimization oracle for a polytope P and a set of vectors that is guaran-

teed to contain the directions of all edges of P ; edge directions are given by unit

vectors. We are asked to compute the edge-skeleton of P . Since the vertices are

computed along with the skeleton, our problem subsumes vertex enumeration for

polytopes for which we know the edge directions. This resembles the fundamental
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Minkowski reconstruction problem, e.g. [75], except that, instead of information

on the facets, we have information about the 1-dimensional faces (and an oracle).

The problem of the reconstruction of a simple polytope by its edge-skeleton graph

is studied in [88].

The most relevant previous work is an algorithm for vertex enumeration of P ,

given by an optimization oracle and a superset D of all edge directions, proposed

in [115] (Proposition 15). It runs in total polynomial-time in fixed dimension. The

algorithm computes the zonotope Z of D, then computes an arbitrary vector in

the normal cone of each vertex of Z and calls the oracle with this vector. It outputs

all vertices without further information. Computing the edges from n vertices can

be done by O(n2) calls to LP.

3.1.1 Applications

The problem of edge-skeleton computation given an oracle and a superset of

the polytope’s edge directions naturally appears in many applications. In Sec-

tion 3.4 we offer new efficient algorithms for the first two applications below.

One application is the signedMinkowski sum problem where, besides addition,

we also allow a restricted case of Minkowski difference. Let A � B be polytope C

such thatA can be written as a sumA = B+C. In other words, a signedMinkowski

sum equality such as P �Q+R�S = T should be interpreted as P +R = Q+S+T .

Such sums are motivated by the fact that resultant and discriminant polytopes

(to be defined later) are written as signed sums of secondary polytopes [109],

[74, Thm 11.1.3]. Also, matroid polytopes and generalized permutahedra can be

written as signed Minkowski sums [4].

Minkowski sums have been studied extensively. Given r V-polytopes in Rd,

Gritzmann et al. [76] deal with the various Minkowski sum problems that occur

if they regard none, one, or both of r and d as constants. They give polynomial

algorithms for fixed d regardless of the input representation. For varying d they

show that no polynomial-time algorithm exists except for the case of fixed r in

the binary model of computation. Fukuda [67] (extended in [69]) gives an LP-

based algorithm for the Minkowski sum of polytopes in V-representation whose

complexity, in the binary model of computation, is total polynomial, and depends

polynomially on �, which is the sum of the maximum vertex degree in each sum-
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mand. However, we are not aware of any algorithm for signed Minkowski sums

and it is not obvious how the above algorithms for Minkowski sums can be ex-

tended to the signed case.

The second application is resultant, secondary as well as discriminant poly-

topes. For resultant polytopes at least, the only plausible representation today

seems to be via optimization oracles [59]. Resultants are fundamental in com-

putational algebraic geometry since they generalize determinants to nonlinear

systems [131, 74]. The Newton polytope R of the resultant, or resultant polytope,

is the convex hull of the exponent vectors corresponding to nonzero terms. A re-

sultant is defined for k+1 pointsets in Zk. If R lies in Rd, the total number of input

points is d+2k+1. If n is the number of vertices in R, typically n� d� k, so k is

assumed fixed. A polynomial-time optimization oracle yields an output-sensitive

algorithm for the computation of R [59] (Lemma 25).

This approach can also be used for computing the secondary and discrimi-

nant polytopes, defined in [74]; cf [101] on secondary polytopes. The secondary

polytope of a pointset is a fundamental object since it offers a polytope realiza-

tion of the graph of regular triangulations of the pointset. A total polynomial-time

algorithm for the secondary polytope when k is fixed is given in [106]. A specific

application of discriminant polytopes is discussed in [117], where the author es-

tablishes a lower bound on the volume of the discriminant polytope of a multi-

variate polynomial, thus refuting a conjecture by E.I. Shustin on an asymptotic

upper bound for the number of real hypersurfaces.

The size of all these polytopes is typically exponential in d: the number of

vertices of R is O(d2d
2
) [131], and the number of j-faces (for any j) of the secondary

polytope is O(d(d�1)2), which is tight if d is fixed [19].

More applications of our methods exist. One is in convex combinatorial opti-

mization: given F � 2N with N = f1; : : : ; ng, a vectorial weighting w : N ! Qd,

and a convex functional c : Qd ! Q, find F 2 F of maximum value c(w(F )). This

captures a variety of (hard) problems studied in operations research and math-

ematical programming, including quadratic assignment, scheduling, reliability,

bargaining games, and inventory management, see [114] and references therein.

The standard linear combinatorial optimization problem is the special case with

d = 1; w : N ! Q, and c : Q ! Q : x 7! x being the identity. As shown in [114], a

convex combinatorial optimization problem can be solved in polynomial-time for
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fixed d, if we know the edge directions of the polytope given by the convex hull of

the incidence vectors of the sets in F .
Another application is convex integer maximization, where we maximize a con-

vex function over the integer hull of a polyhedron. In [100], the vertex enumer-

ation algorithm of [115]—based on the knowledge of edge directions—is used to

come up with polynomial algorithms for many interesting cases of convex inte-

ger maximization, such as multiway transportation, packing, vector partitioning

and clustering. A set that contains the directions of all edges is computed via

Graver bases, and the enumeration of all vertices of a projection of the integer

hull suffices to find the optimal solution.

3.1.2 Our contribution

We present the first total polynomial-time algorithm for computing the edge-

skeleton of a polytope, given an optimization oracle, and a set of directions that

contains the polytope’s edge directions. The polytope is assumed to have some

(unknown) H-representation with an arbitrary number of inequalities, but each

of known bitsize, as shall be specified below. Our algorithm also works if the poly-

tope is given by a separation oracle. All complexity bounds refer to the (oracle)

Turing machine model, thus leading to (weakly) polynomial-time algorithms when

the oracle is of polynomial-time complexity. By employing the reverse search

method of [8] we offer a space-efficient variant of our algorithm. It remains open

whether there is also a strongly polynomial-time algorithm in the real RAM model

of computation.

Our algorithm yields the first (weakly) total polynomial-time algorithms for

the edge-skeleton (and vertex enumeration) of signed Minkowski sum, and re-

sultant polytopes. For both polytope classes, optimization oracles are naturally

and efficiently constructed, whereas it is not straightforward to obtain the more

commonly employed membership or separation oracles. For resultant polytopes,

optimization oracles offer the most efficient known representation. Our results on

resultant polytopes extend to secondary polytopes, for which a different approach

in the same complexity class is known, as well as discriminant polytopes.

Regarding the problems of convex combinatorial optimization and convex inte-

ger programming the current approaches use the algorithm of [115] whose com-
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plexity has an exponential dependence on the dimension (Proposition 15). The

utilization of our algorithm instead offers an alternative approach while remov-

ing the exponential dependence on the dimension.

Outline. The next section specifies our theoretical framework. Section 3.3 intro-

duces polynomial-time algorithms for the edge-skeleton. Section 3.4 applies our

results to signed Minkowski sums, as well as resultant and secondary polytopes.

We conclude with open questions.

3.2 Well-described polytopes and oracles

This section describes our theoretical framework and relates the most relevant

oracles. We start with the notation used in this chapter following by some basics

from polytope theory; for a detailed presentation we refer to [140].

We denote by d the ambient space dimension and n the number of vertices of

the output (bounded) polytope; k denotes dimension when it is fixed (e.g. input

space for resultant polytopes); conv(A) is the convex hull of A. Moreover, ' is an

upper bound for the encoding length of every inequality defining a well-described

polytope (see the next section); hXi denotes the binary encoding size of an ex-

plicitly given object X (e.g., a set of vectors). For a well-described and implicitly

given polytope P � Rd, we will define hP i := d + '. Let O : R ! R denote a poly-

nomial such that the oracle conversion algorithms of Proposition 14 all run in

oracle polynomial-time O(hP i) for a given well-described polytope P . The polyno-

mial LP : R! R is such that LP(hAi+ hbi+ hci) bounds the runtime of maximizing

cTx over the polyhedron fx j Ax � bg.
A convex polytope P � Rd can be represented as the convex hull of a finite

set of points, called the V-representation of P . In other words, P = conv(A),

where A = fp1; : : : ; png � Rd. Another, equivalent representation of P is as the

bounded intersection of a finite set of halfspaces or linear inequalities, called the

H-representation of P . That is, P = fx jAx � bg; A � Rm�d; x 2 Rd; b 2 Rm. Given P ,

an inequality or a halfspace faTx � �g (where a 2 Rd; � 2 R) is called supporting

if aTx � � for all x 2 P and aTx = � for some x 2 P . The set fx 2 P j aTx = bg is a

face of P .
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Definition 2. The polar dual polytope of P is defined as:

P � := fc 2 Rd : cTx � 1 for all x 2 Pg � Rd;

where we assume that the origin 0 2 int(P ), the relative interior of P , i.e. 0 is not

contained in any face of P of dimension < d.

For our results, we need to assume that the output polytope is well-describ-

ed [78, Definition 6.2.2]. This will be the case in all our applications.

Definition 3. A rational polytope P � Rd is well-described (with a parameter '

that we need to know explicitly) if there exists an H-representation for P in which

every inequality has encoding length at most '. The encoding length of a well-

described polytope is hP i = d+'. Similarly, the encoding length of a set of vectors

D � Rd is hDi = d+ � if every vector in D has encoding length at most �.

In defining P , the inequalities are not known themselves, and we make no

assumptions about their number. The following lemma connects the encoding

length of inequalities with the encoding length of vertices.

Lemma 13. [78, Lemma 6.2.4] Let P � Rd. If every inequality in anH-representation
for P has encoding length at most ', then every vertex of P has encoding length at

most 4d2'. If every vertex of P has encoding length at most �, then every inequality

of its H-representation has encoding length at most 3d2�.

The natural model of computation when P is given by an oracle is that of an

oracle Turing machine [78, Section 1.2]. This is a Turing machine that can (in one

step) replace any input to the oracle (to be prepared on a special oracle tape) by

the output resulting from calling the oracle, where we assume that the output

size is polynomially bounded in the input size. An algorithm is oracle polynomial-

time if it can be realized by a polynomial-time oracle Turing machine. Moreover

it is total polynomial-time if its time complexity is bounded by a polynomial in the

input and output size.

In this chapter, we consider three oracles for polytopes; they can more gen-

erally be defined for (not necessarily bounded) polyhedra, but we do not need

this:
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• Optimization (OPTP (c)): Given vector c 2 Rd, either find a point y 2 P maxi-

mizing cTx over all x 2 P , or assert P = ;.

• Violation (VIOLP (c; 
)): Given vector c 2 Rd and 
 2 R, either find point y 2 P
such that cT y > 
, or assert that cTx � 
 for all x 2 P .

• Separation (SEPP (y)): Given point y 2 Rd, either certify that y 2 P , or find a

hyperplane that separates y from P ; i.e. find vector c 2 Rd such that cT y >

cTx for all x 2 P .

The following is a main result of [78] and the cornerstone of our method.

Proposition 14. [78, Theorem 6.4.9] For a well-described polytope, any one of

the three aforementioned oracles is sufficient to compute the other two in oracle

polynomial-time. The runtime (polynomially) depends on the ambient dimension d

and the bound ' for the maximum encoding length of an inequality in some H-

representation of P .

For applications in combinatorial optimization, an extremely important fea-

ture is that the runtime does not depend on the number of inequalities that are

needed to describe P . Even if this number is exponential in d, the three oracles

are polynomial-time equivalent.

Another important corollary is that linear programs can be solved in polynomial-

time. Indeed, an explicitly given (bounded coefficient) system Ax � b; x 2 Rd of

inequalities defines a well-described polytope P , for which the separation oracle

is very easy to implement in time polynomial in hP i; hence, the oracle polynomial-

time algorithm for OPTP (c) becomes a (proper) polynomial-time algorithm.

3.3 Computing the edge-skeleton

This section studies total polynomial-time algorithms for the edge-skeleton.

We are given a well-described polytope P � Rd via an optimization oracle OPTP (c)

of P . Moreover, we are given a superset D of all edge directions of P ; to be precise,

we define

D(P ) :=

�
v � w

kv � wk : v and w are adjacent vertices of P
�
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to be the set of (unit) edge directions, and we assume that for every e 2 D(P ), the

set D contains some positive multiple te; t 2 R; t > 0. Slightly abusing notation,

we write D � D(P ).

The goal is to efficiently compute the edge-skeleton of P , i.e. its vertices and

the edges connecting the vertices. Even if D = D(P ), this set does not, in general,

provide enough information for the task, so we need additional information about

P ; here we assume an optimization oracle.

Vertex enumeration with this input has been studied in the real RAM model

of computation where we count the number of arithmetic operations:

Proposition 15. [115] Let P � Rd be a polytope given by OPTP (c), and letD � D(P )

be a superset of the edge directions of P . The vertices of P are computed using

O(jDjd�1) arithmetic operations and O(jDjd�1) calls to OPTP (c).

If P has n vertices, then jD(P )j � �n2�, and this is tight for neighborly poly-

topes in general position [140]. This means that the bound of Proposition 15 is

O
�
n2d�2

�
, assuming that jDj = �(jD(P )j).

We show below that the edge-skeleton can be computed in oracle total polyno-

mial-time for a well-described polytope, which possesses an (unknown) H-re-

presentation with encoding size '. Thus, we show that the exponential depen-

dence on d in Proposition 15 can be removed in the Turing machine model of

computation, leading to a (weakly) total polynomial-time algorithm. It remains

open whether there is also a strongly total polynomial-time algorithm with a total

polynomial runtime bound in the real RAM model of computation.

The algorithm (Algorithm 2) is as follows. Using OPTP (c), we find some vertex

v0 of P (this can be done even if OPTP (c) does not directly return a vertex [78,

Lemma 6.51], [53, pp. 255–256]).

We maintain sets VP ; EP of vertices and their incident edges, along with a

queue W � VP of the vertices for which we have not found all incident edges yet.

Initially, W = fv0g; VP = EP = ;. When we process the next vertex v from the

queue, it remains to find its incident edges: equivalently, the neighbors of v. To

find the neighbors, we first build a set Vcone of candidate vertices. We know that

for every neighbor w of v, there must be an edge direction e such that w = v + te

for suitable t > 0. More precisely, w is the point corresponding to maximum t in

the 1-dimensional polytope Q(e) := P \ fx j x = v + te; t � 0g, where the latter
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Algorithm 2: Edge_Skeleton (OPTP ; D)

Input : Optim. oracle OPTP (c), superset D of edge directions D(P )

Output: The edge-skeleton (and vertices) of P

Compute some vertex v0 2 P ;
VP  ;; W  fv0g; EP  ;;
while W 6= ; do

Choose the next element v 2W and remove it from W ;
VP  VP

Sfvg;
Vcone  ;;
foreach e 2 E do

w  argmaxfv + te 2 P; t � 0g;
if w 6= v then

Vcone  Vcone
Sfwg;

Remove non-vertices of P from Vcone;
foreach w 2 Vcone do
if w =2 VP then W  W

Sfwg;
if fv;wg =2 EP then EP  EP

Sfv;wg;
return VP ; EP ;

equals the intersection of P with the ray in direction e and apex at v. Hence, by

solving jDj linear programs, one for every e 2 D, we can build a set Vcone that is

guaranteed to contain all neighbors of v. To solve these linear programs, we need

to construct optimization oracles for Q(e). To do this, we first construct SEPP (y)

from OPTP (c) in oracle polynomial-time according to Proposition 14. Thus, the

construction of SEPQ(e)(y) is elementary, and since also Q(e) is well-described,

we can obtain OPTQ(e)(c) in oracle polynomial-time.

In a final step, we remove the candidates that do not yield neighboring vertices.

For this, we first solve a linear program to compute a hyperplane h separating

v from the candidates in Vcone; since Vcone is a finite subset of P n fvg, such a

hyperplane exists, and w.l.o.g. v = 0 and h = fx j xd = 1g. Let C be the cone

generated by the set Vcone. We compute the extreme points of C \ fxd = 1g, giving
us the extremal rays of C. Finally, we remove every point from Vcone that is not

on an extremal ray.

The correctness of the algorithm relies on the following Lemma.
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Lemma 16. Let v be a vertex of P processed during Algorithm 2, where we as-

sume w.l.o.g. that v = 0 and the set Vcone of candidates is separated from v by the

hyperplane fx j xd = 1g.
A point w 2 Rd is a neighbor of v if and only if w is on some extremal ray of the

cone C generated by Vcone. Here, an extremal ray is a ray whose intersection with

the hyperplane fxd = 1g is an extreme point of the polytope C \ fx j xd = 1g.

Proof. Suppose that w is a neighbor of v. By construction, w 2 Vcone. Moreover,

since fv;wg is an edge, there is a supporting hyperplane h = faTx = 0g (recall
that v = 0) such that aTx = 0 for all x 2 conv(fv;wg) and aTx > 0 for all p 2
P n conv(fv;wg). For each q 2 Vcone, let c(q) = 1

qd
q 2 C \fx j xd = 1g. We have qd > 0

by construction. Furthermore, aT c(w) = 0 while aT c(q) > 0 for q 2 Vcone, unless

q 2 conv(fv;wg). In the latter case, c(q) = c(w). Hence, c(w) is the only point y in

C \ fxd = 1g such that aT y = 0, and this implies that c(w) is an extreme point of

C \ fxd = 1g. So w is on some extremal ray of C.

For the other direction, suppose that w 2 Vcone is on the extremal ray fte j t 2
Rg. So c(w) is an extreme point of C \ fx j xd = 1g. This means, there exists

a vertical hyperplane h = faTx = �g with ad = 0 such that aT c(w) = �, and

aT c(q) > �, for all q 2 Vcone satisfying c(q) 6= c(w). Now define the hyperplane

h = faTx = 0g with a = (a1; : : : ; ad�1;��). It follows that aT q � 0 for all q 2 Vcone, so
the positive halfspace of h contains C and thus also P since P � C. We claim that

h \ P = conv(fv;wg), which proves that conv(fv;wg) is an edge of P and hence w

is a neighbor of v.

To see this, we first observe that aTw = 0 and aT q > 0 for all q 2 Vcone that are
not multiples of p, so h\P � h\C = fte j t 2 Rg. On the other hand, we know from

the construction of Vcone that w is the highest point of P (the one with maximum

t) on the ray fte j t 2 Rg, so we indeed get h \ P = conv(fv;wg).

We now bound the time complexity of Algorithm 2.

Theorem 17. Given OPTP and a superset of edge directions D of a well-described

polytope P � Rd with n vertices, and m edges Algorithm 2 computes the edge-

skeleton of P in oracle total polynomial-time

O
�
njDj

�
O(hP i+ hDi) + LP(d3jDj (hP i+ hDi)) + d logn

��
;
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where hDi is the binary encoding length of the vector set D.

Proof. We call OPTP (x) to find the first vertex of P . Then, there are O(n) iterations.

In each one, we construct O(jDj) oracles for polytopes Q(e) of encoding length at

most hP i + hDi. We also compute the (at most n) extreme points from a set of

at most jDj candidate points. This can be done by solving jDj linear programs

whose inequalities have coefficients that are in turn coordinates of vertices of

the Q(e)’s. By Lemma 13, these coordinates have encoding lengths bounded by

4d2(hP i+hDi), and the number of coefficients in each linear program is O(jDjd). At
each vertex we have to test whether the computed vertices and edges are new. In

the course of the algorithm these tests are at most O(m) = O(njDj), where m the

number of P edges. We can test whether a vertex (or an edge) is new in O(d logn)

by using a binary search tree.

3.3.1 Reverse search for edge-skeleton.

We define a reverse search procedure based on [8] to optimize the space used

by Algorithm 2. Given a vertex of P , the set of adjacent edges can be constructed

as described above. Then we need to define a total order over the vertices of the

polytope. Any generic vector c 2 Rd induces such an order on the vertices, i.e. the

order of a vertex u is that of cTu. In other words, we can define a reverse search

tree on P with root the vertex v that maximizes cT v over all the vertices of P ,

where c is the vector given to OPTP for initializing P . Technically, the genericity

assumption on c can be avoided by sorting the vertices w.r.t. the lexicographical

ordering of their coordinates.

Reverse search also needs an adjacency procedure which, given a vertex v

and an integer j, returns the j-th adjacent vertex of v, as well as a local search

procedure allowing us to move from any vertex to its optimal neighbor w.r.t. the

objective function. Both procedures can be implemented by computing all the

adjacent vertices of a given vertex of P as described above, and then returning

the best (or the j-th) w.r.t. the ordering induced by c.

The above procedures can be used by a reverse search variant of Algorithm 2

that traverses (forward and backward) the reverse search tree while keeping in

memory only a constant number of P vertices and edges. On the contrary, both

the original Algorithm 2 and the algorithm of Proposition 15 need to store all
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vertices of P whose number is exponential in d in the worst case. Note that any

algorithm should use space at least O(djDj) to store the input set of edge di-

rections. The above discussion yields the following result (encoding length of P

vertices comes from Lemma 13).

Corollary 18. Given OPTP and a superset of edge directions D, a variant of Algo-

rithm 2 that uses reverse search runs in additional to the input space O(4d2hP i +
hDi) while keeping the same asymptotic time complexity.

3.4 Applications

We examine two important classes of polytopes and provide new, total polynomial-

time algorithms for their representation by an edge-skeleton: signed Minkowski

sums, and resultant and secondary polytopes. These polytopes are well-described

and naturally defined by optimization oracles, which provide a compact represen-

tation.

3.4.1 Signed Minkowski sums

Recall that the Minkowski sum of (convex) polytopes A;B � Rd is defined as

A+B := fa+ b j a 2 A; b 2 Bg:

Following [125] the Minkowski difference is defined as

A�B := fx 2 Rd j B + x � Ag:

Here we consider a special case of Minkowski difference where B is a summand

of A. Equivalently, if A�B = C then A = B+C. A signed Minkowski sum combines

Minkowski sums and differences, namely

P = s1P1 + s2P2 + � � �+ srPr; si 2 f�1; 1g;

where all Pi are convex polytopes and so is P .

We also define the sum (or difference) of two optimization oracles as the Mink-

owski sum (or difference) of the resulting vertices. In particular, if OPTP (c) = v and
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P = P1 − P2 + P3

P ∗

p

pT

cT

c

P2P1 P3

Figure 3.1: Signed Minkowski sum oracles.

OPTP 0(c0) = v0 for v; v0 vertices of P; P 0 respectively, then OPTP (c)+OPTP 0(c) = v+v0

and OPTP (c)�OPTP 0(c) = v� v0. An optimization oracle for the signed Minkowski

sum is given by the signed sum of the optimization oracles of the summands.

Lemma 19. If P1; : : : ; Pr � Rd are given by optimization oracles, then we compute
an optimization oracle for signed Minkowski sum P =

Pr
i=1 siPi in O(r).

Proof. Assume w.l.o.g. that s1 = � � � = sk = 1 6= sk+1 = � � � = sr = �1. Then, given
P =

Pr
i=1 siPi we have P +

Pr
i=k+1 Pi =

Pk
i=1 Pi = P 0. Let OPTP 0(c) = v for some

vertex v of P 0 and vector c 2 Rd. It suffices to show that

OPTP 0(c) = v = v1 + � � �+ vk =
kX
i=1

OPTPi;

which follows from Minkowski sum properties: v = v1 + � � � + vk for vertices vi of

Pi and normP (v) � normPi(vi), for i = 1 : : : k. Here normP (v) denotes the normal

cone of vertex v of P , i.e. the set of all vectors c such that cTx � cT v for all x 2 P .
Therefore, we can compute OPTP with r oracle calls to OPTPi for i = 1; : : : ; r. This

yields a complexity of O(r) for OPTP since, by definition of oracle polynomial-time,

the oracle calls in every summand are of unit cost.

Example 7. Here we illustrate the above definitions and constructions as well as

the standard reductions from [78]. Consider the polytopes P1; P2; P3, their signed
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Minkowski sum P = P1 � P2 + P3, and its polar P � as shown in Figure 3.1. Ob-

serve that P1 = P2 + S, where S is a square. Assume that P1; P2; P3 are given by

OPTP1;OPTP2; OPTP3 oracles.

Then, OPTP (c) = OPTP1(c) � OPTP2(c) + OPTP3(c) for some vector c 2 Rd. If

P satisfies the requirements of Proposition 14 then, having access to OPTP (c),

we compute SEPP (p) in oracle polynomial-time for point p 2 Rd. In particular,

asking if p 2 P is equivalent to asking if H := fx j pTx � 1g is a valid inequality

for P �. The latter can be solved by computing the point cT in P � that maximizes

the inner product with the outer normal vector of H and test if it validates H. If

this happens then SEPP (p) returns that p 2 P , otherwise it returns p =2 P with

separating hyperplane fx j cx = 1g.

Let n denote the number of vertices of P . An oracle for P is provided by

Lemma 19. Then, the entire polytope can be reconstructed, and both V- and

H-representations can be found by Proposition 20.

Proposition 20. [59] Given OPTP for P � Rd, its V- and H-representations as well
as a triangulation T of P can be computed in

O(d5ns2) arithmetic operations, and O(n+ f) calls to OPTP ;

where n and f are the number of vertices and facets of P , respectively, and s the

number of d-dimensional simplices of T .

Corollary 21. Given optimization oracles for P1; : : : ; Pr � Rd, we construct the V-

and H-representations, and a triangulation T of signed Minkowski sum P = P1 +

s2P2 + � � �+ srPr; si 2 f�1; 1g in output sensitive complexity, namely O(d5ns2 + (n+

f)r), where n; f are the number of vertices and facets in P and s the number of

full-dimensional simplices of T .

The output representation of the above algorithm can be exponential in n,

thus we focus on total polynomial-time algorithms for the edge-skeleton of P .

Note that it is not assumed that the polytopes are well-described. We assume the

input contains a superset of all edges for each Pi. If, instead, we are given the

vertices of all summands Pi, then we can compute all edges in each Pi by solving

a linear program for each pair of vertices. Each such pair defines a candidate

edge. Hence, the overall computation of Pi edges is polynomial.
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Corollary 22. Given optimization oracles for well-described P1; : : : ; Pr � Rd, and

supersets of their edge directions D1; : : : ; Dr, the edge-skeleton of the signed Mink-

owski sum P can be computed in oracle total polynomial-time by Algorithm 2.

Proof. To be able to apply Algorithm 2, first we should show that P is well-

described. Let hPmaxi be the maximum encoding length of summands P1; : : : ; Pr.

Then by Lemma 13, the encoding length of the coordinates of summand vertices is

4d2hPmaxi. Thus, 4d2hPmaxi+hri is the encoding length of the coordinates of P ver-

tices. Finally, hP i = d+12d4hPmaxi+3d2hri by Lemma 13. Now OPTP is computed

by Lemma 19 in O(r). The superset of the edge directions of P is D =
S
si>0Di,

because D(P1 � P2) � D(P1) since P1 � P2 = P3 , P1 = P2 + P3.

Our algorithm assumes that, in the Minkowski difference A � B, B is a sum-

mand of A and does not verify this assumption.

3.4.2 Secondary and resultant polytopes

The secondary polytope � of a set of d points A = fp1; : : : ; pdg � Zk is a fun-

damental object since it expresses the triangulations of conv(A) via a polytope

representation. For any triangulation T of conv(A), define vector �T 2 Rd with

i-coordinate

�T (i) =
X

�2T j pi2vtx(�)

vol(�); (3.1)

summing over all simplices � of T having pi as a vertex, where vtx(�) is the vertex

set of simplex �, and i 2 f1; : : : ; dg. Now the secondary polytope �(A), or just �,
is defined as the convex hull of �T for all triangulations T . A famous theorem

of [74], which is also the central result in [101], states that there is a bijection

between the vertices of � and the regular triangulations of conv(A). This extends

to a bijection between the face poset of � and the poset of regular subdivisions

of conv(A). Moreover, �, although in ambient space Rd, has actual dimension

dim(�) = d� k � 1.

Let us now consider the Newton polytope of resultants, or resultant polytopes,

for which optimization oracles provide today the only plausible approach for their

computation [59].
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Let us consider sets A0; : : : ; Ak � Zk. In the algebraic setting, these are the

supports of k + 1 polynomials in k variables. Let the Cayley set be defined by

A :=
k[

j=0

(Aj � fejg) � Z2k;

where e0; : : : ; ek form an affine basis of Zk. Clearly, each point in A corresponds

to a unique point in some Ai. The (regular) triangulations of A are in bijective

correspondance with the (regular) fine mixed subdivisions of the Minkowski sum

A0 + � � � + Ak [74]. Mixed subdivisions are those where all cells are Minkowski

sums of convex hulls of subsets of the Ai. A mixed subdivision is fine if, for every

cell, the sum of its summands’ dimensions equals the dimension of the cell.

Let d :=
Pk

j=0 jAj j, then given triangulation T of conv(A), define vector �T 2 Rd
with i-coordinate

�T (i) :=
X

i-mixed �2T

vol(�); (3.2)

where i 2 f1; : : : ; dg. A simplex � is called i-mixed if it contains pi 2 A` for some ` 2
f1; : : : ; kg and exactly 2 points from each Aj, where j ranges over f0; 1; : : : ; kg�f`g.
The resultant polytope R is defined as the convex hull of �T for all triangulations

T . Similarly with the secondary polytope, it is in ambient space Rd but has di-

mension dim(R) = d� 2k� 1 [74]. There is a surjection, i.e. many to one relation,

from the regular triangulations of conv(A) to the vertices of R.

Example 8. Let A0 = ff0g; f2gg; A1 = ff0g; f1g; f2gg, then the Cayley set will be

A = ff0; 0g; f2; 0g; f0; 1g; f1; 1g; f2; 1gg. The 5 vertices of the secondary polytope �(A)

are computed using equation (3.1):

�(T1) = (2; 4; 2; 0; 4);

�(T2) = (4; 2; 4; 0; 2);

�(T3) = (4; 2; 3; 2; 1);

�(T4) = (3; 3; 1; 4; 1);

�(T5) = (2; 4; 1; 2; 3);

and the 3 vertices of the resultant polytope N(R) are computed using equa-
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A0

A1
T1 T2

T3

T4

T5

Σ(A)

Figure 3.2: Secondary and resultant polytopes.

tion (3.2):

�(T1) = (0; 2; 0; 0; 2);

�(T2) = (2; 0; 2; 0; 0);

�(T3) = (2; 0; 2; 0; 0);

�(T4) = (1; 1; 0; 2; 0);

�(T5) = (0; 2; 0; 0; 2):

Note that there are two pairs of triangulations that yield one resultant vertex

each. Figure 3.2 illustrates this example.

We consider k fixed because in practice it holds k� d� n, where n stands for

the number of polytope vertices. Note that R is computed as a full-dimensional

polytope in a space of its intrinsic dimension [59] and this approach extends to

�.

Computing the V-representation of � and R by the algorithm in [59] is not total

polynomial. In fact, the complexity depends on the number of polytope vertices

and facets, but also the number of simplices in a triangulation of the polytope

(see Proposition 20). However, we show that Algorithm 2 computes � and R in

oracle total polynomial-time. Our results readily extend to the Newton polytope

of discriminants, or discriminant polytopes, discussed in [74].

Lemma 23. Both � and R are well-described polytopes.
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Proof. For the case of �, given A 2 Zk, let hAi be its encoding length and � :=

vol(conv(A)). It is clear that � = O(hAik) and thus h�i = O(khAi). For each trian-

gulation T each coordinate of �T is upper bounded by �, since the sum of the

volumes of its adjacent simplices cannot exceed vol(conv(A)). This bound is tight

for the points a 2 A of a regular triangulation T where the simplices containing a

partition conv(A). It follows that the encoding length of � vertices is h�i and thus

h�i = 4n2h�i + d = O(dn2hAi) by Lemma 13. Similarly, we bound the encoding

length of �T which yields that R is also a well-described polytope.

In the sequel, we characterize the set of edge directions of � and R. The edge

directions of both �; R can be computed by enumerating circuits of A. More specif-

ically, circuit enumeration suffices to compute the edge vectors, i.e. both direc-

tions and lengths of the edges.

We first give some fundamental definitions from combinatorial geometry. For

a detailed presentation we recommend [101]. A circuit C � A is a minimum

affinely dependent subset of A. It holds that conv(C) has exactly two triangu-

lations C+; C�. The operation of switching from one triangulation to another is

called flip. Triangulation T of A, which equals C+ when restricted on circuit C, is

supported on C if, by flipping C+ to C�, we obtain another triangulation T 0 of A.

The dimension of a circuit is the dimension of its convex hull. If A is in generic

position, then all circuits C are full dimensional. Then all the edges of � corre-

spond to full dimensional circuits. If A is not in generic position, some edges may

correspond to lower-dimensional circuits.

In the case of R, where A =
Sk
j=0Aj, a circuit C is called cubical if and only if

jC\Aj j 2 f0; 2g, j = 0; : : : ; k. If A is in generic position, all the edges of R correspond

to full dimensional cubical circuits [131].

Lemma 24. Given A 2 Zk in generic position, we compute the set of edge directions
of � in O(dk+2). Given A 2 Z2k in generic position the set of edge directions of R is
computed inO(d2k+2). In both cases, genericity ofA is checkedwithin the respective

time complexity.

Proof. For �, we enumerate all
� jAj
k+2

�
circuits in O(dk+2), obtaining the set of all

edge vectors. Genericity of A is established by checking whether all
�jAj
k

�
subsets,

k 2 f1; : : : ; k + 1g, are independent. This is in O(dk+1) for k = O(1).
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In the case of R, where A =
Sk
j=0Aj, a flip on T is cubical iff it is supported on

a cubical circuit C.In generic position, jCj = 2k + 2. For those supporting cubical

flips, jC \ Aj j = 2, j = 0; : : : ; k. Every edge dC of R is supported on cubical flip C,

where dC(a) equals �C+(a) � �C�(a), if a 2 C, and 0 otherwise [131]. Given A, all

such circuits are enumerated in
� jAj
2k+2

�
= O(d2k+2); a better bound is O(t2k+2) if t

bounds jAj j; j = 0; : : : ; k.

Lemma 25. [59] For k+1 pointsets in Zk of total cardinality d, optimization over R

takes polynomial-time, when k is fixed.

Corollary 26. In total polynomial-time, we compute the edge-skeleton of � � Rd,
given A 2 Zk in generic position, and the edge-skeleton of R, given A 2 Z2k in

generic position.

Proof. Since by Lemma 23 �; R are well-bounded, optimization oracles are avail-

able by Lemma 25 and the set of edge directions by Lemma 24, the edge-skeletons

of �; R can be computed by Algorithm 2 in oracle total polynomial-time. More-

over, since the optimization oracle is polynomial-time this yields a (proper) total

polynomial-time algorithm for �; R.

Follwoing Lemma 24, for �, R we also obtain their edge lengths. This can lead

to a more efficient edge-skeleton algorithm on the real RAM.

3.5 Concluding remarks

We have presented the first total polynomial-time algorithm for computing

the edge-skeleton of a polytope, given an optimization oracle, and a set of di-

rections that contains the polytope’s edge directions. Our algorithm yields the

first (weakly) total polynomial-time algorithms for the edge-skeleton (and vertex

enumeration) of signed Minkowski sum, and resultant polytopes.

An open question is a strongly total polynomial-time algorithm for the edge-

skeleton problem. Another is to solve the edge-skeleton problem without edge

directions; characterizations of edge directions for polytopes in H-representation

are studied in [116]. It is also interesting to investigate new classes of convex

combinatorial optimization problems where our algorithm offers a polynomial-

time algorithm.
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Chapter 4

Algorithms for polytope volume
approximation

4.1 Introduction

A fundamental problem in discrete and computational geometry is to com-

pute the volume of a convex body in general dimension or, more particularly, of

a polytope. In the past 15 years, randomized algorithms for this problem have

witnessed a remarkable progress. Starting with the breakthrough poly-time algo-

rithm of [50], subsequent results brought down the exponent on the dimension

from 27 to 4 [104]. However, the question of an efficient implementation had

remained open.

Notation. Convex bodies are typically given by a membership oracle. A poly-

tope P � Rd can also be represented as the convex hull of vertices (V-polytope)

or, as is the case here, as the (bounded) intersection

P := fx 2 Rd j Ax � bg

of m halfspaces given by A 2 Rm�d, b 2 Rm (H-polytope); @P is its boundary, and

O�(�) hides polylog factors in the argument. The input includes approximation

factor � > 0; W denotes the most important runtime parameter, namely random

walk length.

Previous work. Volume computation is#-P hard for V- and for H-polytopes [51].

Several exact algorithms are surveyed in [30] and implemented in VINCI [29],

which however cannot handle general polytopes for dimension d > 15. An inter-
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esting challenge is the volume of the n-Birkhoff polytope, computed only for n � 10

using highly specialized software (Sect. 4.4). Regarding deterministic approxima-

tion, no poly-time algorithm can compute the volume with less than exponential

relative error [54]. The algorithm of [18] has error � d!.

The landmark randomized poly-time algorithm in [50] approximates the vol-

ume of a convex body with high probability and arbitrarily small relative error.

The best complexity, as a function of d, given a membership oracle, is O�(d4) ora-

cle calls [104]. All approaches except [104] define a sequence of co-centric balls,

and produce uniform point samples in their intersections with P to approximate

the volume of P .

Concerning existing software (cf Sect. 4.5), [43] presented recently Matlab code

based on [104] and [42]. The latter offers a randomized algorithm for Gaussian

volume (which has no direct reduction to or from volume) in O�(d3), as a function

of d. In [102] they implement [104], focusing on variance-decreasing techniques,

and an empirical estimation of mixing time. In [99], they use a straightforward

acceptance-rejection method, which is not expected to work in high dimension;

it was tested only for d � 4. An approach using thermodynamic integration [84]

offers only experimental guarantees on runtime and accuracy.

The key ingredient of all approaches is random walks that produce an almost

uniform point sample. Such samples is a fundamental problem of independent in-

terest with important applications in, e.g., global optimization, statistics, machine

learning, Monte Carlo (MC) integration, and non-redundant constraint identifica-

tion. Several questions of sampling combinatorial structures such as contingency

tables and more generally lattice points in polytopes may be reduced to sampling

a polytope.

No simple sampling method exists unless the body has standard shape, e.g.,

simplex, cube or ellipsoid. Acceptance-rejection techniques are inefficient in high

dimensions. E.g., the number of uniform points one needs to generate in a bound-

ing box before finding one in P is exponential in d. A Markov chain is the only

known method, and it may use geometric random walks such as the grid walk,

the ball walk (or variants such as the Dikin walk), and Hit-and-run [129]. The

Markov chain has to make a (large) number of steps, before the generated point

becomes distributed approximately uniformly (which is the stationary limit distri-

bution of the chain). We focus on Hit-and-run which yields the fastest algorithms
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today.

In contrast to other walks, Hit-and-run is implemented by computing the in-

tersection of a line with @P . In general, this reduces to binary search on the line,

calling membership at every step. For H-polytopes, the intersection is obtained

by a boundary oracle; for this, we employ ray-shooting with respect to them facet

hyperplanes (Sect. 4.2). In exact form, it is possible to avoid linear-time queries by

using space in o(mbd=2c), achieving queries in O(logm) [121]. Duality reduces or-

acles to (approximate) "-nearest neighbour queries, which take O(dm(1+")�2+o(1))

using O(dm +m1+(1+")�2+o(1)) space by locality sensitive hashing [3]. Moreover,

space-time tradeoffs from O(1="(d�O(1))=8) time and O(1="(d�O(1))=2) space to O(1)

time and O(1="(d�O(1))) space are available by [5]. Approximate oracles are also

connected to polytope approximation. Classic results, such as Dudley’s, show

that O((1=")(d�1)=2) facets suffice to approximate a convex body of unit diameter

within a Hausdorff distance of ". This is optimized to O(
p
vol(@P )="(d�1)=2) [5]. The

boundary oracle is dual to finding the extreme point in a given direction among a

known pointset. This is "-approximated through "-coresets for measuring extent,

in particular (directional) width, but requires a subset of O((1=")(d�1)=2) points

[2]. The exponential dependence on d or the linear dependence on m make all

aforementioned methods of little practical use. Ray shooting has been studied in

practice only in low dimensions, e.g., in 6-dimensional V-polytopes [139].

Contribution.We implement and experimentally study efficient algorithms for

approximating the volume of polytopes. Point sampling, which is the bottleneck of

these algorithms, is key in achieving poly-time complexity and high accuracy. To

this end, we study variants of Hit-and-run. It is widely believed that the theoret-

ical bound on W is quite loose, and this is confirmed by our experiments, where

we set W = O(d) and obtain a < 2% error in up to 100 dimensions (Sect. 4.4).

Our emphasis is to exploit the underlying geometry. Our algorithm uses the

recursive technique of co-centric balls (cf. Sect. 4.3) introduced in [50] and used

in a series of papers, with the most recent to be [91]. This technique forms a

sequence of diminishing radii which, unlike previous papers, allowing us to only

sample partial generations of points in each intersection with P , instead of sam-

pling N points for each. In fact, the algorithm starts with computing the largest

interior ball by an LP. Unlike most theoretical approaches, that use an involved

rounding procedure, we sample a set of points in P and compute the minimum
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enclosing ellipsoid of this set, which is then linearly transformed to a ball. This

procedure is repeated until the ratio of the minimum over the maximum ellipsoid

axes reaches some user-defined threshold. This iterative rounding allows us to

handle skinny polytopes efficiently.

We study various oracles (Sect. 4.2). Line search using membership requires

O(md + log r
�s
) arithmetic operations. This is improved to a boundary oracle in

O(md) by avoiding membership. Using Coordinate Direction Hit-and-run, we fur-

ther improve the oracle to O(m) amortized complexity. We also exploit duality to

reduce the oracle to "-nearest neighbour search: although the asymptotic com-

plexity is not improved, for certain instances such as cross-polytopes in d = 16,

kd-trees achieve a 40x speed-up.

Our C++ code is open-source (sourceforge) and uses the CGAL library. A series

of experiments establishes that it handles dimensions substantially larger than

existing exact approaches, e.g., cubes and products of simplices within an error

of 2% for d � 100, in about 20 min. Compared to approximate approaches, it

computes significantly more accurate results. It computes in few hours volume

estimations within an error of 2% for Birkhoff polytopes B2; : : : ;B10; vol(B10) has
been exactly computed by specialized parallel software in a sequential time of

years. More interestingly, it provides volume estimations for vol(B11),…,vol(B15),
whose exact values are unknown, within 9 hours. In conclusion, we claim that

the volume of general H-polytopes in high dimensions (e.g. one hundred) can be

efficiently and accurately approximated on standard computers.

Paper organization. The next section discusses walks and oracles. Sect. 4.3

presents the overall volume algorithm. Sect. 4.4 discusses our experiments, and

we conclude with open questions in Sect. 4.5.

4.2 Random walks and Oracles

This section introduces the paradigm of Hit-and-run walks and focuses on

their implementation, with particular emphasis on exploiting the geometry of H-

polytopes. The methods presented here are analysed experimentally in Sect. 4.4.

Hit-and-run random walks. The main method to randomly sample a polytope

is by (geometric) random walks. We shall focus on variants of Hit-and-run, which
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generate a uniform distribution of points [130]. Assume we possess procedure

Line(p), which returns line ` through point p 2 P � Rd; ` will be specified below.

The main procedure of Hit-and-run is Walk(p; P;W ), which reads in point p 2 P

and repeats W times: (i) run Line(p), (ii) move p to a random point uniformly

distributed on P \ `. We shall consider two variants of Hit-and-run.

In Random Directions Hit-and-run (RDHR), Line(p) returns ` defined by a ran-

dom vector uniformly distributed on the unit sphere centered at p. The vector

coordinates are drawn from the standard normal distribution. RDHR generates

a uniformly distributed point in

O�(d2r2); or O�(d3r2) oracle calls; (4.1)

with hidden constants 1030; or 1011 respectively,

starting at an arbitrary, or at a uniformly distributed point (also known as warm

start), respectively, where r is the ratio of the radius of the smallest enclosing ball

over that of the largest enclosed ball in P [103].

In Coordinate Directions Hit-and-run (CDHR), Line(p) returns ` defined by

a random vector uniformly distributed on the set fe1; : : : ; edg, where ei =

(0; : : : ; 0; 1; 0; : : : ; 0); i = 1; : : : ; d: This is a continuous variant of the Grid walk.

As far as the authors know, the mixing time has not been analyzed. We offer ex-

perimental evidence that CDHR is faster than RDHR and sufficiently accurate.

An intermediate variant is Artificially Centering Hit-and-run [93], where first a

set S of sample points is generated as with RDHR, then Line(p) returns ` through
p and a randomly selected point from S. This however is not a Markov chain,

unlike CDHR and RDHR.

Procedure Walk(p, P , W ) requires at every step an access to a boundary oracle

which computes the intersection of line `with @P . In the sequel we discuss various

implementations of this oracle.

Boundary oracle by membership. For general convex bodies, a boundary

oracle can be implemented using a membership oracle which, given vector y 2 Rd,
decides whether y 2 P . The intersection of ` with @P is computed by binary search

on the segment defined by any point on ` lying in the body and the intersection of

` with a bounding ball. Each step calls membership to test whether the current

point is internal, and stops when some accuracy �s is certified. Checking the

Vissarion Fisikopoulos 97



High-dimensional polytopes defined by oracles: algorithms, computations and applications

point against a hyperplane takes O(d) operations, thus obtaining the intersection

of ` with the hyperplane. We store this intersection so that subsequent tests

against this hyperplane take O(1). The total complexity is O(md+log r
�s
) arithmetic

operations, where r is the ball radius.

Boundary oracle by facet intersection. Given an H-polytope P the direct

method to compute the intersection of line ` with @P is to examine all m hyper-

planes. Let us consider Walk(p0; P;W ) and line ` = fx 2 Rd : x = �v+p0g, where p0 2
Rd lies on `, and v is the direction of `. We compute the intersection of ` with the i-

th hyperplane aix = bi, ai 2 Rd; bi 2 R, namely pi := p0+
bi�aip0
aiv

v; i 2 f1; : : : ;mg: We

seek points p+; p� at which ` intersects @P , namely p+v = min1�i�mfpiv j piv � 0g
and p�v = max1�i�mfpiv j piv � 0g: This is computed in O(md) arithmetic opera-

tions. In practice, only the �� are computed, where p� = p0 + ��v.

In the context of the volume algorithm (Sect.4.3), the intersection points of `

with @P are compared to the intersections of ` with the current sphere. Assuming

the sphere is centered at the origin with radius R, its intersections with ` are

p = p0 + �v such that �2 + 2�p0v + jp0j2 � R2 = 0. If �+; �� give a negative sign

when substituted to the aforementioned equation then p+; p� are the endpoints

of the segment of ` lying in the intersection of P and the current ball. Otherwise,

we have to compute one or two roots of the aforementioned equation since the

segment has one or two endpoints on the sphere.

However, in CDHR, where ` and v are vertical, after the computation of the first

pair p+; p�, all other pairs can be computed in O(m) arithmetic operations. This is

because two sequential points produced by the walk differ only in one coordinate.

Let j; k be the walk coordinate of the previous and the current step respectively.

Then, assuming P = fx 2 Rd : Ax � bg, where A 2 Rm�d, �� = maxf� j A(p0��v) �
bg: This becomes ��Av = ��Aj � �Ap0+ b, where Aj is the j-th column of A. The

two maximizations are solved in O(md) ops. Let vector t = �Ap0 + b 2 Rm. At the

next step, given point p00 = p0+ cej, where ej is the j-th standard basis vector, we

perform two maximizations � : ��Ak � t� cAj in O(m).

Boundary oracle by duality. Duality reduces the problem to nearest neigh-
bour (NN) search and its variants. Given a pointset B � Rd and query point q,
NN search returns a point p 2 B s.t. dist(q; p) � dist(q; p0) for all p0 2 B, where
dist(q; p) is the Euclidean distance between points q; p. Let us consider, w.l.o.g.,
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boundary intersection for line ` parallel to the xd-axis: ` = fx : x = �v + p; � �
0g; v = (0; : : : ; 0;�1): It reduces to two ray-shooting questions; it suffices to de-
scribe one, namely with the upward vertical ray, defined by � � 0. We seek the
first facet hyperplane hit which, equivalently, has the maximum negative signed
vertical distance from p to any hyperplane H of the upper hull, for fixed v. This
distance is denoted by sv(p;H). Let us consider the standard (aka functional)
duality transform between points p and non-vertical hyperplanes H:

p = (p1; : : : ; pd) 7! p� : xd = p1x1 + � � �+ pd�1xd�1 � pd;

H : xd = c1x1 + � � �+ cd�1xd�1 + c0 7! H� = (c1; : : : ; cd�1;�c0):

This transformation is self-dual, preserves point-hyperplane incidences, and

negates vertical distance, hence sv�(p�; H�) = �sv(p;H), where sv�(�; �) is the

signed vertical distance from hyperplane p� to point H� in dual space. Hence,

our problem is equivalent to minimizing sv�(p�; H�) � 0. Equivalently, we seek

point H� minimizing absolute vertical distance to hyperplane p� on its side of

positive distances. In dual space, consider

point t = (t1; : : : ; td); and hyperplane

p� = q : xd = q1x1 + � � �+ qd�1xd�1 + q0 : (4.2)

sv�(q; t) = td � (q1t1 + � � �+ qd�1td�1 + q0)

= �(q0; q1; : : : ; qd�1;�1) � (1; t1; : : : ; td�1; td);

where the latter operation is inner product in Euclidean space Rd+1 of “lifted”

datapoint t0 = (1; t1; : : : ; td�1; td) with “lifted” query point q0 = (q0; q1; : : : ; qd�1;�1).
Let

q00 = (q0; 0); t00 = (t0;
q
M � kt0k22); for M � max

t
f1 + ktk22g;

following an idea of [13]. By the cosine rule,

dist2d+2(q
00; t00) = kq0k22 +M + 2sv�(q; t);

where distd+2(�; �) stands for Euclidean distance in Rd+2. Since the t00 lie on hy-

perplane x1 = 1, optimizing distd+2(q
00; t00) over a set of points t00 is equivalent to
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optimizing distd+1(q̂; t̂), q̂ = (q1; : : : ; qd�1;�1; 0); over points t̂ = (t;
q
M � 1� ktk22):

Hence, point t minimizing sv�(q; t) � 0 corresponds to t̂ minimizing dist2d+1(q̂; t̂).

Thus the problem is reduced to (exact) nearest neighbor in Rd+1. Ray shooting

to the lower hull with same v reduces to farthest neighbor. Unfortunately, an

approximate solution to these problems incurs an additive error to the corre-

sponding original problem.

Alternatively, we shall consider hyperplane queries. Let us concentrate on hy-

perplanes supporting facets on the lower hull of P . Their dual points lie in con-

vex position. Given that point p is interior in P , the dual points of the lower hull

facets lie on the upper halfspace of p�. In dual space, consider point t and hy-

perplane q as in expression (4.2). Let sd�(q; t) be the signed Euclidean distance

from q to t, i.e. the minimum Euclidean distance of any point on q to t. Then

sv�(q; t) = sd�(q; t) = k(q1; : : : ; qd�1; 1)k2; where the normal is (q1; : : : ; qd�1; 1). Our

question, therefore, becomes equivalent to minimizing sd�(q; t) over all datapoints

t 2 Rd for which sd�(q; t) � 0; i.e., we seek the NN above q. Starting with facets on

the upper hull, the problem becomes that of maximizing sd�(q; t) � 0, i.e. finding

the NN below q.

The above approaches motivate us to use NN software for exact point and

hyperplane queries (Sect. 4.4).

4.3 The volume algorithm

This section details our poly-time methods for approximating the volume of P .

Algorithms in this family are the current state-of-the-art with respect to asymp-

totic complexity bounds. Moreover, they can achieve any approximation ratio

given by the user, i.e., they form a fully polynomial randomized approximation

scheme (FPRAS). Given polytope P � Rd, they execute sandwiching and Multi-

phase Monte Carlo (MMC) [129].

We consider that P is a full-dimensional H-polytope. However, we can also

consider P to be lower dimensional and be given in form fx 2 Rd jAx = b; x � 0g,
where A 2 Rm�d, x 2 Rd, b 2 Rm, A0 2 Rm�m�d+1, x0 2 Rm�d+1. Using Gauss-

Jordan elimination the linear system Ax = b can be transformed to its unique

reduced row echelon form [IjA0]x = b0, where I is the identity matrix. Then P can
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be written as fx0 2 Rm�d+1 j A0x0 � b0; x0 � 0g, i.e. a full-dimensional H-polytope

in Rm�d+1.

Rounding and sandwiching. This stage involves first rounding P to reach a

near isotropic position, second sandwiching, i.e. to compute ball B and scalar

� such that B � P � �B. There is an abundance of methods in literature for

rounding and sandwiching (cf. [129] and references therein). However, here we

develop a simple, efficient method that succeed significantly accurate results in

practice (cf. Sect. 4.4 and Table 4.5). The method doesn’t compute a ball that

covers P but a ball B0 such that B0 \ P contains almost all the volume of P .

For rounding, we sample a set S of O(n) random points in P . Then we approx-

imate the minimum volume ellipsoid E that covers S, and satisfies the inclusions
1

(1+")d
E � conv(S) � E, in time O(nd2("�1 + ln d+ ln lnn)) [97]. Let us write

E = fx 2 Rd j (x� cE)
T E (x� cE ) � 1g

= fx 2 Rd jLT (x� cE ) � 1g; (4.3)

where E � Rd�d is a positive semi-definite (p.s.d.) matrix and LTL its Cholesky de-

composition. By substituting x = (LT )�1y+cE we map the ellipsoid to the ball fy 2
Rd j yT y � 1g. Applying this transformation to P we have P 0 = fy 2 Rd jA(LT )�1 �
b � AcEg which is the rounded polytope, where vol(P ) = det(LT )�1vol(P 0). We it-

erate this procedure until the ratio of the minimum over the maximum ellipsoid

axes reaches some user defined threshold.

For sandwiching P we first compute the Chebychev ball B(c; r) of

P , i.e. the largest inscribed ball in P . It suffices to solve the LP:

fmaximize R; subject to: Aix + RkAik2 � bi; i = 1; : : : ;m; R � 0g; where Ai is

the i-th row of A, and the optimal values of R and x 2 Rd yield, respectively, the

radius r and the center c of the Chebychev ball.

Then we may compute a uniform random point in B(c; r) and use it as a start

to perform a random walk in P , eventually generating N random points. Now,

compute the largest distance between each of the N points and c; this defines a

(approximate) bounding ball. Finally, define the sequence of balls B(c; 2i=d); i =

�;�+ 1; : : : ; �; where � = bd log rc and � = dd log �e.

Multiphase Monte Carlo (MMC). MMC constructs a sequence of bodies Pi :=
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P \ B(c; 2i=d); i = �;� + 1; : : : ; �; where P� = B(c; 2�=d) � B(c; r) and P� (almost)

contains P . Then it approximates vol(P ) by the telescopic product

vol(P�)
�Y

i=�+1

vol(Pi)
vol(Pi�1)

; where vol(P�) =
2�d=2(2blog rc)d

d�(d=2)
:

This reduces to estimating the ratios vol(Pi)=vol(Pi�1), which is achieved by gen-

erating N uniformly distributed points in Pi and by counting how many of them

fall in Pi�1.

For point generation we use random walks as in Sect. 4.2. We set the walk

length W = b10 + d=10c = O(d), which is of the same order as in [102] but signifi-

cantly lower than theoretical bounds. This choice is corroborated experimentally

(Sect. 4.4).

Unlike typical approaches, which generate points in Pi for i = �;� + 1; : : : ; �,

here we proceed inversely. First, let us describe initialization. We generate an

(almost) uniformly distributed random point p 2 P�, which is easy since P� =

B(c; 2�=d) � B(c; r). Then we use p to start a random walk in P�; P�+1; P�+2 and

so on, until we obtain a uniformly distributed point in P�. We perform N random

walks starting from this point to generate N (almost) uniformly distributed points

in P� and then count how many of them fall into P��1. This yields an estimate of

vol(P�)=vol(P��1). Next we keep the points that lie in P��1, and use them to start

walks so as to gather a total of N (almost) uniformly distributed points in P��1.

We repeat until we compute the last ratio vol(P�+1)=vol(P�).

The implementation is based on a data structure S that stores the random

points. In step i > �, we wish to compute vol(P��i)=vol(P��i�1) and S contains

N random points in P��i+1 from the previous step. The computation in this step

consists in removing from S the points not in P��i, then sampling N�size(S) new
points in P��i and, finally, counting howmany lie in P��i�1. Testing whether such

a point lies in some Pi reduces to testing whether p 2 B(2i=d) because p 2 P .
One main advantage of our method is that it creates partial generations of

random points for every new body Pi, as opposed to having always to generate N

points. This has a significant effect on runtime since it reduces it by a constant

raised to �. Partial generations of points have been used in convex optimiza-

tion [17].
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Algorithm 3: VolEsti (P; �; tr)

Input : H-polytope P , objective approximation �, rounding threshold tr
Output : approximation of vol(P )

N  400��2d log d; W  b10 + d=10c;
// rounding and sandwiching
compute the Chebychev ball B(c; r);
generate a random point p in B(c; r);
repeat

S  ;;
for i = 1 to N do

p Walk(p; P;W );
add p in S;

compute min encl. ellipsoid E of S, with p.s.d. E;
set as Emin; Emax the min and max E axes;
compute the Cholesky decomposition LTL of E;
transform P and p w.r.t. L;

until Emax=Emin < tr;
set � the largest distance from c to any point in S;

// MMC
set � blog rc; �  dlog �e;
Pi  P \B(c; 2i=d) for i = �;�+ 1; : : : ; �;
vol(P�) 2�d=2(2blog rc)d=d�(d=2);
i �;
while i > � do

Plarge  Pi; i i� 1; Psmall  Pi;
count_prev  size(S); remove from S the points not in Psmall;
count size(S);
Set p to be an arbitrary point from S;
for j = 1 to N � count_prev do

p Walk(p; Plarge;W );

if p 2 B(c; 2i=d) then
count count+ 1;
add p in S;

vol vol � (N=count);
return vol=det(LT ) ;
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We use threads, also in [102], to ensure independence of the points. A thread

is a sequence of points each generated from the previous point in the sequence

by a random walk. The first point in the sequence is uniformly distributed in the

ball inscribed in P . Alg. 3 describes our algorithm using a single thread.

Complexity. The first O�(d5) algorithm was in [91], using a sequence of sub-

sets defined as the intersection of the given body with a ball. It uses isotropic

sandwiching to bound the number of balls by O�(d), it samples N = 400��2d log d =

O�(d) points per ball, and follows a ball walk to generate each point in O�(d3) or-

acle calls. Interestingly, both sandwiching and MMC each require O�(d5) oracle

calls. Later the same complexity was obtained by Hit-and-run under the assump-

tion the convex body is well sandwiched.

Proposition 27. [91] Assuming B(0; 1) � P � B(0; �), the volume algorithm of [91]

returns an estimation of vol(P ), which lies between (1� �)vol(P ) and (1 + �)vol(P ),

with probability � 3=4, by

O

�
d4�2

�2
ln d ln � ln2

d

�

�
= O�(d4�2)

oracle calls with probability � 9=10, where we have assumed � is fixed. Sandwich-

ing yields � =
p
d= log(1=�), implying a total of O�(d5) calls.

In [104], they construct a sequence of log-concave functions and estimate ra-

tios of integrals, instead of ratios of balls, using simulated annealing. The com-

plexity reduces to O�(d4) by decreasing both number of phases and number of

samples per phase to O�(
p
d). Using Hit-and-run, O�(d3) still bounds the time to

sample each point. Moreover, they improve isoperimetric sandwiching to O�(d4).

The following Lemma states the runtime of Alg. 3, which is in fact a variant of

the algorithm analysed in [91] (see also Prop. 27). Although there is no theoretical

bound on the approximation error of Alg. 3, our experimental analysis in Sect. 4.4

shows that in practice the achieved error is always better than the one proved

in Prop. 27.

Lemma 28. GivenH-polytope P , Alg. 3 performs k phases of rounding inO�(d3mk),

and approximates vol(P ) in O(md3 log d log(�=r)) arithmetic operations, assuming

� > 0 is fixed, where r and � denote the radii of the largest inscribed ball and of the

co-centric ball covering P .
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Proof. Our approach generates d log(�=r) balls and uses Hit-and-run. Assuming

P contains the unit ball, an upper bound on �=r is diameter �. In each ball in-

tersected with P , we generate � N = 400��2d log d random points. Each point is

computed after W = O(d) steps of CDHR.

The boundary oracle of CDHR is implemented in Sect. 4.2. In particular, k

CDHR steps require O(dm+(k�1)m+kd) arithmetic operations. It holds d = O(m)

and k = 
(d). Thus, the amortized complexity of a CDHR step is O(m). Overall,

the algorithm needs O(��2md3 log d log(�=r)) operations.

Each rounding iteration decreases � and runs in O(nd2("�1 + ln d + ln ln(n))),

where n stands for the number of sampled points, and " is the approximation of

the minimum volume ellipsoid of Eq. (4.3). We generate n = O(d) points, each in

O(m) arithmetic operations. Hence, rounding runs in O�(d3mk), where " is fixed.

Moreover, k is typically constant since k = 1 is enough to handle, e.g., polytopes

with �=r = 100 in dimension up to 20.

Let us check this bound with the experimental data for cubes, products of

simplices, and Birkhoff polytopes, with d � 100 and � = 1, where m = 2d, d + 2

and d+1+ 2
p
d, respectively, for the 3 classes, and for cubes log(�=r) � log(

p
d) =

O(log d). Fig. 4.1 shows that the 3 classes behave similarly. Performing a fit of

adb log2 d, runtime follows 10�5d3:08 log2 d which shows a smaller dependence on d

than our bounds, at this range of experiments.

4.4 Experiments

We implement and experimentally test the above algorithms and methods in

the software package VolEsti. The code currently consists of around 2.5K lines

in C++ and is open-source1. It relies on the CGAL library [35] for its d-dimensional

kernel to represent objects such as points and vectors, for its LP solver [64], for the

approximate minimum ellipsoid [63], and for generating random points in balls.

We use Eigen [79] for linear algebra. The memory consumption is dominated by

the list of random points which needs O(dN) space during the entire execution

of the algorithm (Sect. 4.3). Arithmetic uses the double data type of C++, except

from the LP solver, which uses the GNU Multiple Precision arithmetic library to

1http://sourceforge.net/projects/randgeom
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P d m vol(P ) N � [min, max] std-dev vol(P )��
vol(P )

VolEsti Exact
(sec) (sec)

cube-10 10 20 1.024E+003 9210 1.027E+003 [0.950E+003,1.107E+003] 3.16E+001 0.0030 0.42 0.01
cube-15 15 30 3.277E+004 16248 3.24E+004 [3.037E+004,3.436E+004] 9.41E+002 0.0088 1.44 0.40
cube-20 20 40 1.048E+006 23965 1.046E+006 [0.974E+006,1.116E+006] 3.15E+004 0.0028 4.62 swap
cube-50 50 100 1.126E+015 78240 1.125E+015 [1.003E+015,1.253E+015] 4.39E+013 0.0007 117.51 swap

cube-100 100 200 1.268E+030 184206 1.278E+030 [1.165E+030,1.402E+030] 4.82E+028 0.0081 1285.08 swap
�-10 10 11 2.756E-007 9210 2.76E-007 [2.50E-007,3.08E-007] 1.08E-008 0.0021 0.56 0.01
�-50 60 61 1.202E-082 98264 1.21E-082 [1.07E-082,1.38E-082] 6.44E-084 0.0068 183.12 0.01
�-100 100 101 1.072E-158 184206 1.07E-158 [9.95E-159,1.21E-158] 4.24E-160 0.0032 907.52 0.02

�-20-20 40 42 1.689E-037 59022 1.70E-037 [1.54E-037,1.87E-037] 7.33E-039 0.0088 53.13 0.01
�-40-40 80 82 1.502E-096 140224 1.50E-096 [1.32E-096,1.70E-096] 7.70E-098 0.0015 452.05 0.01
�-50-50 100 102 1.081E-129 184206 1.10E-129 [1.01E-129,1.19E-129] 4.65E-131 0.0154 919.01 0.02
cross-10 10 1024 2.822E-004 9210 2.821E-004 [2.693E+004,2.944E+004] 5.15E-006 0.0003 1.58 388.50
cross-11 11 2048 5.131E-005 10550 5.126E-005 [4.888E-005,5.437E-005] 1.15E-006 0.0010 5.19 6141.40
cross-12 12 4096 8.551E-006 11927 8.557E-006 [8.130E-006,9.020E-006] 1.69E-007 0.0007 12.21 —
cross-15 15 32768 2.506E-008 16248 2.505E-008 [2.332E-008,2.622E-008] 5.15E-010 0.0004 541.22 —
cross-18 18 262144 4.09E-011 20810 4.027E-011 [3.97E-011,4.08E-011] 5.58E-013 0.0165 5791.06 —
rh-8-25 8 25 7.859E+002 6654 7.826E+002 [7.47E+002,8.15E+002] 1.93E+001 0.0042 0.30 1.14
rh-8-30 8 30 2.473E+002 6654 2.449E+002 [2.28E+002,2.68E+002] 1.06E+001 0.0099 0.27 5.56

rh-10-25 10 25 5.729E+003 9210 5.806E+003 [5.55E+003,6.06E+003] 1.85E+002 0.0134 0.66 6.88
rh-10-30 10 30 2.015E+003 9210 2.042E+003 [1.96E+003,2.21E+003] 7.06E+001 0.0132 0.67 swap
rv-8-10 8 24 1.409E+019 6654 1.418E+019 [1.339E+019,1.497E+019] 5.24E+017 0.0107 0.37 0.01
rv-8-11 8 54 3.047E+018 6654 3.056E+018 [2.562E+018,3.741E+018] 3.98E+017 0.0028 0.76 0.54
rv-8-12 8 94 4.385E+019 6654 4.426E+019 [4.105E+019,4.632E+019] 2.07E+018 0.0093 0.59 261.37
rv-8-20 8 1191 2.691E+021 6654 2.724E+021 [2.517E+021,2.871E+021] 1.05E+020 0.0123 3.69 swap
rv-8-30 8 4482 7.350E+021 6654 7.402E+021 [7.126E+021,7.997E+021] 2.19E+020 0.0072 12.73 swap

rv-10-12 10 35 2.136E+022 9210 2.155E+022 [1.952E+022,2.430E+022] 1.53E+021 0.0093 1.00 0.01
rv-10-13 10 89 1.632E+023 9210 1.618E+023 [1.514E+023,1.714E+023] 6.23E+021 0.0088 1.24 59.50
rv-10-14 10 177 2.931E+023 9210 2.962E+023 [2.729E+023,3.195E+023] 1.71E+022 0.0135 2.08 swap
cc-8-10 8 70 1.568E+005 26616 1.589E+005 [1.52E+005,1.64E+005] 3.50E+003 0.0138 1.95 0.05
cc-8-11 8 88 1.391E+006 26616 1.387E+006 [1.35E+006,1.43E+006] 2.65E+004 0.0034 2.10 0.08

Fm-4 6 7 8.640E+001 4300 8.593E+001 [7.13E+001,1.12E+002] 8.38E+000 0.0055 0.19 0.01
Fm-5 10 25 7.110E+003 9210 7.116E+003 [6.35E+003,8.10E+003] 3.01E+002 0.0009 0.69 0.02
Fm-6 15 59 2.861E+005 16248 2.850E+005 [2.42E+005,3.22E+005] 1.55E+004 0.0038 3.24 swap
ccp-5 10 56 2.312E+000 9210 2.326E+000 [2.16E+000,2.52E+000] 7.43E-002 0.0064 0.49 38.00
ccp-6 15 368 1.346E+000 16248 1.346E+000 [1.26E+000,1.45E+000] 3.81E-002 0.0002 6.14 swap
B8 49 64 4.42E-023 76279 4.46E-023 [4.05E-023, 7.32E-024] 1.93E+004 0.0092 192.97 1920.00
B9 64 81 2.60E-033 106467 2.58E-033 [2.23E-033, 3.07E-033] 2.13E-034 0.0069 499.56 8 days
B10 81 100 8.78E-046 142380 8.92E-046 [7.97E-046, 9.96E-046] 4.99E-047 0.0152 1034.74 6160 days
B11 100 121 ??? 184206 1.40E-060 [1.06E-060, 1.67E-060] 1.10E-061 ??? 2398.17 —
B12 121 144 ??? 232116 7.85E-078 [6.50E-078, 9.31E-078] 5.69E-079 ??? 4946.42 —
B13 144 169 ??? 286261 1.33E-097 [1.13E-097, 1.62E-097] 1.09E-098 ??? 9802.73 —
B14 169 196 ??? 346781 5.96E-120 [5.30E-120, 6.96E-120] 3.82E-121 ??? 17257.61 —
B15 196 225 ??? 413804 5.70E-145 [5.07E-145, 6.52E-145] 1.55E-145 ??? 31812.67 —

Table 4.1: Overall results; � = 1, “swap” indicates it ran out of memory and started
swapping. “???” indicates that the exact volume is unknown; “—” indicates it
didn’t terminate after at least 10h. VINCI is used for exact volume computation
except Birkhoff polytopes where birkhoff is used instead.

avoid double exponent overflow. We experimented with several pseudo-random

number generators in Boost [107] and chose the fastest, namely mersenne twister

generator mt19937. All timings are on an Intel Core i5-2400 3:1GHz, 6MB L2 cache,

8GB RAM, 64-bit Debian GNU/Linux.

Data. The following polytopes are tested (the first 7 are from the VINCI web-

page):

• cube-d: fx = (x1; : : : ; xd) jxi � 1; xi � �1; xi 2 R for all i = 1; : : : ; dg,
• cross-d: cross polytope, the dual of cube, i.e. conv(f�ei; ei; i = 1; : : : ; dg),
• rh-d-m: polytopes constructed by randomly choosingm hyperplanes tangent

to the sphere,

• rv-d-n: dual to rh-d-m, i.e. polytopes with n vertices randomly distributed on

the sphere,
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RDHR CDHR

P d � � [min, max] (vol(P )� �) VolEsti � [min, max] (vol(P )� �) VolEsti
=vol(P ) (sec) =vol(P ) (sec)

B5 16 1 2.27E-07 [1.66E-07,2.85E-07] 0.0072 22.90 2.25E-07 [1.87E-07,2.80E-07] 0.0003 4.06
B6 25 1 8.53E-13 [3.72E-13,1.22E-12] 0.0982 105.96 9.53E-13 [7.30E-13,1.15E-12] 0.0083 17.26
B7 36 1 2.75E-20 [1.78E-21,6.71E-20] 0.4259 479.40 4.82E-20 [3.86E-20,6.18E-20] 0.0056 56.64

cube-10 10 1 1022.8 [944.3951,1103.968] 0.0012 2.03 1026.83 [970.3117,1096.469] 0.0027 0.34
cube-10 10 0.4 – – – – 1022.88 [993.0782,1060.409] 0.0011 2.02
cube-20 20 1 1.04E+6 [9.38E+5,1.14E+6] 0.0033 25.44 1.04E+6 [9.74E+5,1.12E+6] 0.0028 4.62

Table 4.2: Experiments with CDHR vs RDHR; W = 10.

d m vol(P ) N � [min, max] std-dev (vol(P )� �) VolEsti mem. VolEsti* mem.
=vol(P ) (sec) MB (sec) MB

10 1024 2.82E-04 9210 2.82E-04 [2.67E-04,3.00E-04] 5.74E-06 0.0001 1.58 35 0.51 42
12 4096 8.55E-06 11927 8.54E-06 [8.04E-06,8.89E-06] 1.72E-07 0.0010 12.21 35 1.62 72
14 16384 1.88E-07 14778 1.88E-07 [1.80E-07,1.99E-07] 4.09E-09 0.0006 237.22 36 6.49 230
16 65536 3.13E-09 17744 3.13E-09 [2.97E-09,3.33E-09] 6.44E-11 0.0004 1430.93 37 32.87 992
18 262144 4.09E-11 20810 4.09E-11 [3.99E-11,4.29E-11] 7.19E-13 0.0013 5791.06 38 188.43 4781

Table 4.3: Experiments with NN for boundary oracle on cross-polytopes; VolEsti�

uses flann; � = 1.

• cc-8-n: the 8-dimensional product of two 4-dimensional cyclic polyhedra

with n vertices,

• ccp-n: complete cut polytopes on n vertices,

• Fm-d: one facet of the metric polytope in dimension d,

• �-d: the d-dimensional simplex conv(fei; for i = 0; 1; : : : ; dg),
• �-d-d: product of two simplices, i.e f(p; p0) 2 R2d j p 2 �-d; p0 2 �-dg,
• skinny-cube-d: fx = (x1; : : : ; xd) jx1 � 100; x1 � �100; xi � 1; xi � �1; xi 2 R i =
2; : : : ; dg, rotated by 30o in the plane defined by the first two coordinate axes,

• Bn: the n-Birkhoff polytope (defined below).

Each experiment is repeated 100 times with � = 1 unless otherwise stated. The

reported timing for each experiment is the mean of 100 timings. We keep track of

and report the min and the max computed values, the mean �, and the standard

deviation. We measure the accuracy of our method by (vol(P ) � �)/vol(P ) and

(max�min)/�; unless otherwise stated mean error of approximation refers to the

first quantity. The reader should not confuse these quantities which refer to the

approximation error that computed in practice with � which refers to the objective

approximation error. Comparing the practical and objective approximation error,

our method is in practice more accurate than indicated by the theoretical bounds.

In particular, in all experiments all computed values are contained in the interval

((1� �)vol(P ); (1+ �)vol(P )), while theoretical results in [91] guarantee only 75% of

them. Actually, the above interval is larger than [min, max]. In general our exper-

imental results show that our software can approximate the volume of general
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polytopes up to dimension 100 in less than 2 hours with mean approximation

error at most 2% (cf. Table 4.1).

Randomwalks and oracles. First, we compare the implementations of bound-

ary oracles using membership oracles versus using facet intersection. By per-

forming experiments with RDHR our algorithm approximate the volume of a 10-

cube in 42.58 sec using the former, whereas it runs in 2.03 sec using the latter.

We compare RDHR to CDHR. The latter take advantage of more efficient

boundary oracle implementations as described in Sect. 4.2. Table 4.2 shows that

our algorithm using CDHR becomes faster and more accurate than using RDHR

by means of smaller [min,max] interval. Additionally, since CDHR is faster we can

increase the accuracy (decrease �) and obtain even more accurate results than

RDHR, including smaller error (vol(P )� �)=vol(P ).

Finally, we evaluate our implementations of boundary oracles using duality

and NN search (Sect. 4.2). The motivation comes from the fact that the bound-

ary oracle becomes slow when the number of facets is large, e.g., for cross-d,

m = 2d. We consider state-of-the-art NN software: CGAL’s dD Spatial Searching

implements kd-trees [133], ANN [111] implements kd- and BBD-trees, LSH imple-

ments Locality Sensitive Hashing [3], and FLANN [112] implements randomized

kd-trees. We compare them against our oracle running in O(m), on cross-17, B10
and cpp-7. We build two kd-trees per coordinate, i.e. one per direction, each tree

storing the dual of the corresponding lower and upper hulls.

Consider point queries. FLANN, is very fast in high dimensions (typically > 100),

but lacks theoretical guarantees. It turns out that KDTreeSingleIndexParams on

cross-d returns exact results for all " and d tested, since the tree stores vertices

of a cube. Compared to the O(m) oracle, for " = 0 it is 10x slower, for " = 2 it is

competitive, and for " = 5 it lets us approximate vol(cross-18) with a 40x speed-

up, but with extra memory usage (Table 4.3). On other datasets, FLANN does not

always compute the exact NN even for " = 0. ANN, is very fast up to dimension

20 and offers theoretical guarantees. For " = 0, it guarantees the exact NN, but

is > 103x slower than our O(m) oracle, though it becomes significantly faster for

" > 1. In [113], LSH is reported to be 10x slower than FLANN and competitive with

ANN, thus we do test it here.

CGAL for point queries is slower than ANN, but can be parametrized to handle
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Figure 4.1: Runtime of VolEsti w.r.t. dimension; � = 1, y-axis in logscale; fitting
on cube-d results.

hyperplane queries with theoretical guarantees. Given hyperplane H, we set as

query point the projection of the origin on H and as distance-function the inner

product between points. With the Sliding_midpoint rule and " = 0, this is a bit

(while ANN is 1000x) slower than our boundary oracle for cross-17. It is important

to design methods for which " > 0 accelerates computation so as to use them

with approximate boundary oracles.

The above study provides motivation for the design of algorithms that can use

approximate boundary queries and hence take advantage of NN software to han-

dle more general polytopes with large number of facets. Of particular relevance

is the development of efficient methods and data-structures for approximate hy-

perplane queries.

Choice of parameters and rounding. We consider two crucial parameters,

the length of a random walk, denoted by W , and approximation �, which deter-

mines the number N of random points. We set W = b10+ d=10c. Our experiments

indicate that, with this choice, either (vol(P )-�)/vol(P ) or (min;max)=� is < 1% up

to d = 100 (Table 4.4). Moreover, for higher W the improvement in accuracy is not

significant, which supports the claim that asymptotic bounds are unrealistically

high. Fig. 4.2 correlates runtime (expressed by NW ) and accuracy (expressed by

(min;max)=� which actually measures some “deviation”) to W and � (expressed

by N ). A positive observation is that accuracy tightly correlates with runtime: e.g.,
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Figure 4.2: Experiments with B5 on the effect of W and � (or N ) on accuracy,
measured by (min, max)/� (crosses), and runtime, measured by levels ofN �W = c,
for c = 105; : : : ; 2:5 � 106.

accuracy values close to or beyond 1 lie under the curve NW = 105, and those

rounded to � 0:3 lie roughly above NW = 3 � 105. It also shows that, increasing W

converges faster than increasing N to a value beyond which the improvement in

accuracy is not significant.

To experimentally test the effect of rounding we construct skinny hypercubes

skinny-cube-d. We rotate them to avoid CDHR taking unfair advantage of the de-

generate situation where the long edge is parallel to an axis. Table 4.5 on these

and other polytopes shows that rounding reduces approximation error by 2 or-

ders of magnitude. Without rounding, for polytope rv-8-11 one needs to multiply

N (thus runtime) by 100 in order to achieve approximation error same as with

rounding.

Other software. Exact volume computation concerns software computing

the exact value of the volume, up to round-off errors in case it uses floating

point arithmetic. We mainly test against VINCI1.0.5 [29], which implements

state-of-the art algorithms, cf. Table 4.1. For H-polytopes, the method based on

Vissarion Fisikopoulos 110



High-dimensional polytopes defined by oracles: algorithms, computations and applications

P d m W � [min,max] std-dev (vol(P )-�) (min, max)
/vol(P ) /�

(*) cube-10 10 20 10 1026.953 [925.296,1147.101] 33.91331 0.0029 0.2160
cube-10 10 20 15 1024.157 [928.667,1131.928] 31.34121 0.0002 0.1985
cube-10 10 20 20 1026.910 [932.118,1144.601] 30.97023 0.0028 0.2069

cube-50 50 100 10 1.123E+15 [1.019E+15,1.257E+15] 4.135E+13 0.0022 0.2125
(*) cube-50 50 100 15 1.131E+15 [1.039E+15,1.237E+15] 3.882E+13 0.0044 0.1744

cube-50 50 100 20 1.127E+15 [1.033E+15,1.216E+15] 3.893E+13 0.0007 0.1629

cube-100 100 200 10 1.278E+30 [1.165E+30,1.402E+30] 4.819E+28 0.0081 0.1856
cube-100 100 200 15 1.250E+30 [1.243E+30,1.253E+30] 4.075E+27 0.0140 0.0083

(*) cube-100 100 200 20 1.263E+30 [1.190E+30,1.321E+30] 3.987E+28 0.0038 0.1038

�-20-20 40 42 10 1.699E-37 [1.527E-37,1.881E-37] 7.670E-39 0.0056 0.2083
(*) �-20-20 40 42 14 1.694E-37 [1.526E-37,1.892E-37] 7.096E-39 0.0025 0.2166

�-20-20 40 42 20 1.694E-37 [1.433E-37,1.836E-37] 7.006E-39 0.0024 0.2382

�-50-50 100 102 10 1.098E-129 [1.012E-129,1.189E-129] 4.652E-131 0.0154 0.1612
�-50-50 100 102 15 1.111E-129 [1.090E-129,1.139E-129] 1.610E-131 0.0281 0.0437

(*) �-50-50 100 102 20 1.079E-129 [1.011E-129,1.148E-129] 3.685E-131 0.0015 0.1266

B10 81 100 10 7.951E-55 [6.291E-55,9.077E-55] 8.533E-56 0.0946 0.3504
B10 81 100 15 8.124E-55 [7.451E-55,8.774E-55] 5.015E-56 0.0750 0.1629

(*) B10 81 100 20 7.489E-55 [7.398E-55,7.552E-55] 6.615E-57 0.1472 0.0106

Table 4.4: Experiments with varying W ; � = 1. (*) indicate minimum W where
either (vol(P )-�)/vol(P ) or (min, max)/� is < 1%.

P vol(P ) N � [min,max] vol(P )��
vol(P ) VolEsti(sec)

rv-8-11 3.047E+18 6654 1.595E+18 [6.038E+17,3.467E+18] 0.4766 1.48
rv-8-11 3.047E+18 665421 3.134E+18 [3.134E+18,3.134E+18] 0.0283 157.46

(*) rv-8-11 3.047E+18 6654 3.052E+18 [2.755E+18,3.383E+18] 0.0013 1.34
skinny-cube-10 1.024E+05 9210 5.175E+04 [2.147E+04,1.228E+05] 0.4946 0.69

(*) skinny-cube-10 1.024E+05 9210 1.029E+05 [8.445E+04,1.149E+05] 0.0050 0.71
skinny-cube-20 1.049E+08 23965 4.193E+07 [2.497E+07,7.259E+07] 0.6001 5.59

(*) skinny-cube-20 1.049E+08 23965 1.040E+08 [8.458E+07,1.163E+08] 0.0084 6.70

Table 4.5: Experiments with rounding; (*): means that we use rounding.

Lawrence’s general formula is numerically unstable resulting in wrong results in

many examples [30], and thus was excluded. Therefore, we focused on Lasserre’s

method. For all polytopes there is a threshold dimension for which VINCI cannot

compute the volume: it takes a lot of time (e.g. > 4 hrs for cube-20) and consumes

all system memory, thus starts swapping.

LRS is not useful for H-polytopes as stated on its webpage: “If the volume

option is applied to an H-representation, the results are not predictable.” Latte
implements the same decomposition methods as VINCI; it is less prone to round-

off error but slower [45]. Normaliz applies triangulation: it handles cubes for

d � 10, in < 1 min, but for d = 15, it did not terminate after 5 hours. Qhull
handles V-polytopes but does not terminate for cube-10 nor random polytope rv-
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P :
rv-15- rv-10- cube-

30 40 50 60 100 150 200 250 7 8 9 10
time (sec) 7.7 82.8 473.3 swap 37.3 107.8 282.5 449.0 0.1 2.2 119.5 >5h

Table 4.6: Experiments with qhull; “swap” indicates it ran out of memory and
started swapping; “>5h” indicates it did not terminate after 5 hours.

software of [42] Volesti
P [min, max] std-dev vol(P )��

vol(P )
# total time(sec) [min, max] std-dev vol(P )��

vol(P )
# total time(sec)

steps steps
cube-20 [5.11E+05, 1.55E+06] 1.67E+05 0.0198 7.96E+04 21.48 [9.74E+05, 1.12E+06] 3.15E+04 0.0028 3.61E+06 4.62
cube-30 [6.75E+08, 1.45E+09] 1.72E+08 0.0440 2.22E+05 49.24 [9.91E+08, 1.16E+09] 3.89E+07 0.0039 1.21E+07 17.96
cube-40 [7.90E+11, 1.38E+12] 1.67E+11 0.0731 4.30E+05 88.09 [1.01E+12, 1.23E+12] 4.46E+10 0.0039 2.84E+07 50.72
cube-50 [8.75E+14, 1.45E+15] 1.43E+14 0.0327 7.16E+05 148.06 [1.00E+15, 1.25E+15] 4.39E+13 0.0007 5.49E+07 117.51
cube-60 [8.89E+17, 1.43E+18] 1.64E+17 0.0473 1.15E+06 229.33 [1.06E+18, 1.27E+18] 4.00E+16 0.0051 9.42E+07 222.10
cube-70 [9.01E+20, 1.36E+21] 1.49E+20 0.0707 1.66E+06 427.82 [1.02E+21, 1.32E+21] 5.42E+19 0.0013 1.49E+08 358.93
cube-80 [9.30E+23, 1.36E+24] 1.46E+23 0.1145 2.30E+06 531.46 [1.13E+24, 1.30E+24] 4.42E+22 0.0009 2.21E+08 582.19
cube-90 [1.07E+27, 1.88E+27] 2.20E+26 0.0394 3.30E+06 701.54 [1.09E+27, 1.44E+27] 5.18E+25 0.0019 3.15E+08 875.69

cube-100 [9.53E+29, 1.64E+30] 1.93E+29 0.0357 4.19E+06 884.43 [1.17E+30, 1.40E+30] 4.82E+28 0.0081 4.33E+08 1285.08
B8 [2.12E-23, 2.45E-22] 6.25E-23 0.3970 9.31E+05 221.30 [4.05E-23, 7.32E-24] 1.93E+04 0.0092 1.01E+08 192.97
B9 [1.54E-33, 2.77E-33] 3.71E-34 0.1830 2.05E+06 420.07 [2.23E-33, 3.07E-33] 2.13E-34 0.0069 2.27E+08 499.56
B10 [3.39E-46, 1.92E-45] 4.75E-46 0.1207 3.69E+06 691.97 [7.97E-46, 9.96E-46] 4.99E-47 0.0152 4.62E+08 1034.74

Table 4.7: Comparison of the software [42] vs VolEsti; each experiment is run
10 times, total steps refer to the mean of the total number of Hit-and-run steps
in each execution.

n 3 4 5 6 7 8 9 10

estimate
actual

[33] 1.25408 1.22556 1.19608 1.17258 1.15403 1.13910 1.12684 1.11627
VolEsti 0.99485 1.09315 1.00029 1.00830 1.00564 0.99440 0.99313 1.01525

Table 4.8: Comparison between asymptotic and experimental approximation of
the volume of Bn.

15-60 (Table 4.6). This should be juxtaposed to the duals, namely our software

approximates the volume of cross-10 in 2 sec with < 1% error and rh-15-60 in

3.44 sec. A general conclusion for exact software is that it cannot handle d > 15.

We compare with the most relevant approximation method, namely the Matlab
implementation of [43] for bodies represented as the intersection of an H-polytope

and an ellipsoid. They report that the code is optimized to achieve about 75%

success rate for bodies of dimension � 100 and � 2 [0:1; 0:2] (not to be confused

with the � of our method). Testing [43] with default options and � = 0:1, our

implementation with � = 1 runs faster for d < 80, performs roughly 100 times

more total Hit-and-run steps and returns significantly more accurate results,

e.g. from 4 to 100 times smaller error on cube-d when d > 70, and from 5 to 80

times on Birkhoff polytopes (Table 4.7).

Birkhoff polytopes are well studied in combinatorial geometry and offer an

important benchmark. The n-th Birkhoff polytope Bn = fx 2 Rn�n j xij �
0;
P

i xij = 1;
P

j xij = 1; 1 � i � ng; also described as the polytope of the
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perfect matchings of the complete bipartite graph Kn;n, the polytope of the n� n

doubly stochastic matrices, and the Newton polytope of the determinant. In [15],

they present a complex-analytic method for this volume, implemented in package

birkhoff, which has managed to compute vol(B10) in parallel execution, which

corresponds to a single processor running at 1 GHz for almost 17 years.

First, dimBn = n2 � 2n+ 1: we project Bn to a subspace of this dimension. Our

software, with � = 1, computes the volume of polytopes up to B10 in < 1 hour with

mean error of � 2% (Table 4.1). The computed approximation values improves

upon the best known upper bounds on vol(Bn), obtained through the asymptotic

formula of [33], cf. Table 4.8. By setting � = :5 we obtain an error of 0:7% for

vol(B10), in 6 hours. The computed approximation of the volume has two correct

digits, i.e. its first two digits equal to the ones of the exact volume. More inter-

estingly, using � = 1 we compute, in < 9 hours, an approximation as well as

an interval of values for vol(B11),…, vol(B15), whose exact values are unknown

(Table 4.1).

4.5 Further work

NN search seems promising and could accelerate our code, especially if it were

performed approximately with hyperplane queries. Producing (almost) uniform

point samples is of independent interest in machine learning, including sam-

pling contingency tables and learning the p-value. We plan to exploit such appli-

cations of our software. We may also study sampling for special polytopes such as

Birkhoff. It is straightforward to parallelize certain aspects of the algorithm, such

as random walks assigning each thread to a processor, though other aspects,

such as the algorithm’s phases, require more sophisticated parallelization. Our

original motivation and ultimate goal is to extend these methods to V-polytopes

represented by an optimization oracle.
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Chapter 5

Combinatorics of 4-dimensional
resultant polytopes

5.1 Introduction

Let A = (A0; : : : ; An) be a family of subsets of Zn and let f0; : : : ; fn 2 C[x1; : : : ; xn]
be polynomials with this family of sets as supports, and symbolic coefficients

cij 6= 0, i = 0; : : : ; n; j = 1; : : : ; jAij, i.e. fi =
P

a2Ai
cijx

a. The family A is essential

if these sets jointly affinely span Zn, and every subfamily of Ai’s of cardinality

j; 1 � j < n, spans an affine space of dimension � j. In this chapter we assume

that A is essential. The sparse (or toric) resultant R = RA of f0; : : : ; fn is then a

non-constant irreducible polynomial in Z[cij : i = 0; : : : ; n; j = 1; : : : ; jAij], defined
up to sign, which vanishes if f0 = f1 = � � � = fn = 0 has a solution in (C�)n,

C� = C n f0g. The Newton polytope N(R) of the resultant, that is, the convex hull

of the exponents occurring in R with non-zero coefficient, is a lattice polytope

called resultant polytope. A famous example is the Birkhoff polytope of a linear

system, cf Example 9.

The resultant has

m =
nX
i=0

jAij

variables, hence N(R) lies in Rm. However, for essential families, R satisfies

n+(n+1) natural homogeneities [74], so its dimension is dim(N(R)) = m�2n�1.

If A is not essential, but contains a single essential subfamily, the resultant de-

pends only on the coefficients of the polynomials in this subfamily. Otherwise, the
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resultant locus has codimension bigger than one, and then the sparse resultant

is defined to be the constant 1.

Previous work. In [60] an algorithm is described for computing the vertex and

facet representations of N(R); the algorithm also produces a triangulation of the

polytope’s interior into simplices. The input to this algorithm is an oracle for

computing the extreme resultant vertex given a direction. The software imple-

mentation is called respol (available at http://respol.sourceforge.net) and
is the one used in our experiments. This method is readily generalized to compute

the discriminant and secondary polytopes, although for the latter there exists a

faster method to enumerate the vertices, when only these are needed [120]. An

alternative way for computing resultant polytopes exploits tropical geometry [86]

and is implemented based on the software library Gfan.
The combinatorics of resultant polytopes is known only in small cases, namely

for linear systems (Example 9), in the Sylvester case (n = 1), and when dimN(R) =
3. The univariate case is fully described in [73]: N(R) is combinatorially isomor-

phic to a polytope denoted by Nk0;k1, of dimension k0+k1�1, where the Ai may be

multisets with cardinality ki. They may lead to polytopes in any dimension if one

picks the Ai accordingly. In [74] they show that Nk0;k1 has
�k0+k1

k0

�
vertices and,

when both ki � 2, it has k0k1 + 3 facets. Sturmfels [131] classifies all resultant

polytopes up to dimension 3. In his notation, the 3-dimensional polytope N111;111,

denoted by N2;2 in [73], depicted in Figure 5.8 (resultant), has maximal f-vector.

Proposition 29. [131, Section 6] AssumeA is an essential family. Then,N(R) is 1-
dimensional if and only if jAij = 2, for all i. The only planar resultant polytope is the

triangle. The only 3-dimensional N(R) are, combinatorially: (a) the tetrahedron, (b)
the square-based pyramid, and (c) the polytope N3;2, first in Figure 5.8 (resultant).

In [86] the authors raise explicitly the open question of describing 4-

dimensional resultant polytopes, which we undertake here.

Our contribution.We study the combinatorial characterization of 4-dimensional

resultant polytopes. To bound the maximum number of faces, we prove that it

suffices to focus on one case, which corresponds to 3 Newton polygons with sup-

port cardinalities jAij = 3, thus m = 9 and n = 2. We further show it is enough

to consider sufficiently generic polygons, namely where they all have non-zero
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area, and no parallel edges exist among them. Our experiments, based on re-
spol [60], establish lower bounds on the maximal number of faces (Table 5.1).

By studying mixed subdivisions, we obtain tight upper bounds on the maximal

number of facets and ridges, thus raising new conjectures, the most important

of which is that the maximal f-vector is (22; 66; 66; 22) for 4-dimensional N(R).
These results are summarized in Theorem 63. Our (loose) upper bound on the

number of vertices, namely 28, significantly improves the known bound of 6608

[131, Corollary 6.2]. Certain general features emerge, such as the symmetry of

the maximal f-vector, which are intriguing but still under investigation. However,

the Newton polytopes are not self-dual. Our main result is Theorem 64, where we

offer a characterization of all possible 4-dimensional resultant polytopes.

The rest of the chapter is organized as follows. The next section introduces 4-

dimensional resultant polytopes. Section 5.3 focuses on three 2d-triangles with

non-parallel edges, which maximizes the number of faces, and upper bounds the

number of facets and ridges in N(R) by combinatorial arguments. Section 5.5

classifies all 4-dimensional resultant polytopes, and proves we can ignore parallel

edges when maximizing the number of faces. We conclude with open questions

and generalizations.

5.2 Resultant polytopes

This section defines resultant polytopes and recalls the concepts needed for

their study, including some previous results from [131, 74].

The polar (dual) polytope of a polytope P � Rd is defined as:

P � := fc 2 Rd : cTx � 1 for all x 2 Pg � Rd;

where we assume that the origin 0 2 relint(P ), the relative interior of P , i.e. 0 is

not contained in any face of P of dimension < d. Two polytopes are combinatorially

equivalent if and only if their face lattices are isomorphic.

The main tool for computing sparse resultants are the regular mixed subdivi-

sions of the convex hull of Minkowski sum P =
P

iAi. By abuse of notation, we

may also refer to this sum as
P

i Pi, where Pi denotes the convex hull of Ai and it

is understood that the information from the Ai’s is preserved. A subdivision of P
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is a collection of subsets of P , the cells of the subdivision, such that the union of

the cells’ convex hulls equals the convex hull of P and every pair of convex hulls

of cells intersect at a common face. Maximal cells are those with dimension equal

to the dimension of the subdivision. Fine (or tight) are those whose dimension

equals the sum of its summands’ dimensions.

Definition 4. A subdivision is regular if it can be obtained as the projection of the

lower hull of the Minkowski sum
P

i
bAi of the lifted point sets bAi, for some lifting

to Rn+1. A subdivision is mixed when its cells are expressed (or, can be written)

as Minkowski sums of convex hulls of point subsets in the Ai’s; these expressions

are unique. The subdivision is fine (or tight) if all its cells are fine, otherwise, it is

coarse.

In the sequel, we typically refer to mixed subdivisions simply as subdivisions.

Usually they are regular; if not, we explicitly mention it. However, no subdivision

is necessarily fine and often we work with coarse subdivisions.

Maximal cells are mixed if the dimension of every summand, except possibly

one, equals one. In the sequel, we focus only on regular subdivisions, thus we

occasionally omit the word “regular” in general.

Given a family A, the associated Cayley configuration C is the lattice configu-

ration in Zn+1 � Zn = Z2n+1 defined by

fe0g � A0 [ � � � [ feng � An;

where e0; : : : ; en denotes the canonical basis in Zn+1. We denote by Q its convex

hull. Regular fine mixed subdivisions of P are in bijection with regular triangula-

tions of Q. Indeed, there is a bijection of maximal cells given as follows: any max-

imal cell (simplex) �T in a given regular triangulation T = Tw of Q (with vertices in

C) has 2n vertices; the corresponding maximal cell in the associated regular fine

subdivision S = Sw of P has vertices of the form �0+ � � �+�n, with (ei; �i) a vertex

of �T . Note that for �T to be of maximal dimension, at least one of its vertices

lies in ei � Ai, for all i. For more details about the translation between regular

subdivisions of Q and regular mixed subdivisions of P , see [101, Section 9.2].

Let C be the (2n + 1) � m associated Cayley matrix, i.e., the matrix whose

columns are the points in the Cayley configuration C. The inner product of any
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point in N(R) with any vector in the rowspan of the Cayley matrix C is constant,

and so N(R) lies in a parallel translate to the null-space of C. This explains why

dim(N(R)) = m� 2n� 1.

The faces (resp. vertices) of N(R) can be obtained, by a many-to-one mapping,

from the set of all regular (resp. fine) mixed subdivisions of P [131]. Given a

mixed subdivision of P , every cell � defines a subsystem of the fij�, where each

polynomial is a restriction of fi on the face of Ai appearing as a summand in �. If

the subdivision is the projection of the lower hull under a lifting w, then the face

of N(R) whose outer normal is w is

Y
�

R(f0j�; : : : ; fnj�)d� ; (5.1)

where d� 2 N is specified in [131, Theorem 4.1]. We shall call � essential if the

corresponding fij� define an essential subsystem. Hence, all faces of N(R) are
Minkowski sums of lower-dimensional resultant polytopes, corresponding to es-

sential subsystems. These lower-dimensional resultant polytopes correspond to

subsets of the cells of the subdivision defining the face of N(R). In particular,

resultant vertices are obtained when all resultants in (5.1) are monomials, hence

all � are mixed. In general, d� is the normalized volume of �.

We call flip the transformation of a fine mixed subdivision of P to another

fine mixed subdivision of P . Following [131], if these subdivisions correspond to

different vertices of N(R) we call this flip cubical. In other words, a cubical flip

corresponds to a resultant edge.

In short, a mixed subdivision S is specified by a lifting function w. A face of

N(R) corresponds to the initial form of R specified by w. In [131, Theorem 4.1]

under the assumption that fA0; A1; A2g is essential, which we have also assumed,

it is shown that the initial form of R w.r.t. w is the product of resultant polytopes

corresponding to the cells � � S, each raised to the power d�. The above discus-

sion yields the following, which will be our basic tool for counting the faces of

N(R), and is direct consequence of [131, Theorem 4.1].

Proposition 30. A mixed subdivision S of P corresponds to a face of N(R), which
is the Minkowski sum of the resultant polytopes of the cells � of S, each scaled by

d�.
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5.2.1 4-dimensional resultant polytopes.

In this case, m = 2n + 5, where m =
Pn

i=0 jAij; and jAij � 2. So, there are only

3 cases, up to reordering:

(i) All jAij = 2, except for one with cardinality 5.

(ii) All jAij = 2, except for two with cardinalities 3 and 4.

(iii) All jAij = 2, except for three with cardinality 3.

Cases (i) and (ii) are similar to the study of 3d-resultant polytopes in [131], cf

Theorem 64. So, we concentrate on the new case (iii) and, more precisely, on the

main case n = 2 and each jAij = 3, which we term the case (3; 3; 3). This is done

without loss of generality, by the following:

Theorem 31. [131, Theorem 6.2] Every resultant polytope of an essential family is

affinely isomorphic to a resultant polytope of an essential family (A0; : : : ; An) with

jAij � 3, for all i = 0; : : : ; n.

Let us focus on case (iii). The proof is an algorithm to produce this reduction:

up to an affine change of variables and reordering, we can assume that Ai =

f0; �iei+1g; i = 0; : : : ; n � 3, so we can solve (with rational powers) the first n � 2

variables and replace them in the last 3 polynomials. Then, N(R) has the same

combinatorial type as an essential (3; 3; 3) configuration, where we could have

repeated points or parallel edges, even if they were not present in An�2; An�1 and

An (and some coefficients could be equal to the sum of Laurent monomials in the

original coefficients).

Our study shows the richness of possible polytopes, in contrast to the case of

resultant polytopes with dimension � 3.

5.3 The case (3; 3; 3) in general

In this section, we start with some examples and computational experiments

for a family with n = 3;m = 9, where each Ai has cardinality 3. This is a (3; 3; 3)

configuration A = (A0; A1; A2). Then, we focus on the case of non-parallel edges

and study the combinatorics of the corresponding resultant polytope, denoted by

N(R).

Vissarion Fisikopoulos 120



High-dimensional polytopes defined by oracles: algorithms, computations and applications

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
(9, 24, 25, 10)

(10, 24, 23, 9)
(10, 25, 24, 9)
(10, 25, 25, 10)
(10, 26, 25, 9)
(11, 28, 27, 10)
(11, 29, 28, 10)
(11, 29, 29, 11)
(12, 29, 26, 9)
(12, 30, 27, 9)
(12, 30, 28, 10)
(12, 32, 31, 11)
(12, 33, 33, 12)
(13, 32, 29, 10)
(13, 33, 30, 10)
(13, 33, 31, 11)
(13, 34, 32, 11)
(13, 34, 33, 12)

(13, 37, 37, 13)
(14, 35, 32, 11)
(14, 36, 33, 11)
(14, 36, 34, 12)
(14, 37, 34, 11)
(14, 37, 35, 12)
(14, 37, 36, 13)
(14, 38, 36, 12)
(14, 38, 37, 13)
(14, 38, 38, 14)
(14, 40, 40, 14)
(15, 39, 36, 12)
(15, 40, 36, 11)
(15, 40, 37, 12)
(15, 40, 38, 13)
(15, 41, 39, 13)
(15, 41, 40, 14)
(15, 42, 41, 14)
(15, 42, 42, 15)
(16, 42, 39, 13)
(16, 43, 39, 12)

(16, 43, 40, 13)
(16, 43, 41, 14)
(16, 44, 41, 13)
(16, 44, 42, 14)
(16, 45, 43, 14)
(16, 45, 44, 15)
(16, 46, 45, 15)
(16, 46, 46, 16)
(17, 46, 43, 14)
(17, 47, 43, 13)
(17, 47, 44, 14)
(17, 47, 45, 15)
(17, 48, 45, 14)
(17, 48, 46, 15)
(17, 48, 47, 16)
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)

(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)
(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Table 5.1: The largest f-vectors of 4d N(R) computed: 9 highlighted f-vectors
correspond case (3; 3; 3) without parallel edges.

We write the f-vectors as (f0; f1; f2; f3), omitting the f4 = 1 corresponding to

the unique 4-face, where fi stands for the cardinality of i-dimensional faces. We

define the minimum and maximum f-vector to be the one with minimum and

maximum number of facets, i.e., with minimum or maximum value of f3.

A complete list of f-vectors when A0 = f(0; 0); (0; 1); (1; 0)g and A1 = f(5; 5); a11,
a12g; A2 = f(5; 5); a21, a22g where aij take all the possible values from the set

f(�; �) j �; � 2 N ^ �; � � 10g is presented in Table 5.1. There is a unique f-

vector, (22; 66,66; 22), which is maximal, and corresponds to more than one input

family of supports. Highlighted f-vectors correspond to triangles that share no

parallel edges between any of them. Table 5.2 shows one example for each of these

cases and the types of facets for each resultant polytope. The computations have

been performed using respol and last several days. The minimum f-vector is

(6; 15; 18; 9) and is attained by Example 9.

Example 9 (Birkhoff polytope). Let A0 = A1 = A2 = f(0; 0); (1; 0); (0; 1)g. Then N(R)
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a11 a12 a21 a22 f-vector facets of N(R)

(0, 0) (1, 7) (1, 0) (2, 6) (19; 55; 52; 16) 9R, 5P , 2P8
(0, 0) (1, 2) (0, 1) (2, 6) (19; 56; 54; 17) 9R, 7P5, 1P10
(0, 0) (1, 2) (0, 1) (2, 0) (18; 54; 54; 18) 9R, 9P5
(0, 0) (1, 2) (2, 1) (4, 7) (20; 59; 57; 18) 9R, 7P5, 1P10, 1Z3

(0, 0) (1, 2) (0, 1) (1, 4) (19; 57; 57; 19) 9R, 9P5, 1Z3

(0, 1) (9, 2) (1, 6) (2, 7) (21; 62; 60; 19) 9R, 9P5, 1Z4

(0, 0) (1, 2) (0, 2) (2, 3) (20; 60; 60; 20) 9R, 9P5, 2Z3

(0, 0) (1, 2) (1, 0) (3, 8) (21; 63; 63; 21) 9R, 9P5, 3Z3

(0, 1) (8, 3) (0, 6) (1, 7) (22; 66; 66; 22) 9R, 9P5, 4Z3

Table 5.2: f-vectors correspond to case (3; 3; 3) without parallel edges. Generic
resultant, prism, and zonotope facets are denoted R;P5; Z3 respectively. They de-
picted in Figure 5.8. The degenerate zonotope and two different prism facets are
denoted Z4; P8; P10 respectively. They depicted in Figure 5.9.

is the 4-dimensional Birkhoff polytope [140] which has f-vector (6,15,18,9).

A particular extremal case follows:

Example 10. Let A0 = f(0; 0); (1; 0); (0; 1)g, A1 = f(0; 0); (5; 4); (9; 1)g, A2 =

f(5; 0); (0; 1); (1; 2)g. Then, N(R) has f-vector (22; 66; 66; 22); the vertex and facet

graphs are in Figure 5.1. A non-regular subdivision of P =
P

i Pi is depicted in

Figure 5.7 (see also Rem. 3).

A particular non-extremal case follows:

Example 11. Let A0 = f(0; 0); (2; 0); (1; 3)g, A1 = f(0; 0); (3; 1); (2; 3)g, A2 =

f(0; 1); (3; 0); (1; 3)g. Then, N(R) has f-vector (21; 62; 60; 19). A regular subdivision

of P =
P

i Pi is depicted in Figure 5.7 (see also Rem. 3).

On the other hand, the following example concerns the case of three 1-

dimensional configurations, excluded from the above list.

Example 12. Let A0 = f(0; 0); (0; 1); (0; 2)g, A1 = f(0; 0); (1; 0); (2; 0)g, A2 =

f(0; 0); (1; 1); (2; 2)g. Then, N(R) has f-vector (20; 57; 51; 14).

If we replace the configuration (A0; A1; A2) in Example 12 by the configuration

(A0; A1; f(0; 0); (1; 1); (2; 3)g), where two parallelisms are broken without introduc-

ing any new one, the f-vector becomes (20; 58; 54; 16). Note that we get higher

values for the different fi.
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Figure 5.1: Vertex graph and facet graph (courtesy of M. Joswig) of the resultant
polytope in Example 10.

An interesting observation regarding Table 5.1 is the existence of symmetric

f-vectors. It is known that self-dual (or self-polar) polytopes enjoy this property. A

polytope is self-dual if it is combinatorially equivalent to its polar-dual polytope.

However, this is not the case of resultant polytopes. The polytope of Example 10

has 36 triangular and 30 parallelogram ridges while its polar-dual has 42; 19 and

5 triangular, parallelogram and pentagonal ridges respectively. Additionally, note

that in the case without parallel edges symmetric f-vectors appear when the

facets are generic (cf. Table 5.2). Generic facets are described in detail in the next

sections. Here we observe that polytopes with symmetric f-vectors have facets

that are either resultant or prism or cube depicted in Figure 5.8.

5.3.1 Input genericity maximizes complexity

In this section we prove a stronger version of the following result for the special

case where the Minkowski summands are triangles.

Proposition 32. [71, Theorem 1] Let P = P1 + � � �+ Pr be a Minkowski sum. There

is a Minkowski sum P = P1 + � � �+ Pr of polytopes relatively in general position so

that fk(P 0
i) = fk(Pi) for all i and k, and so that fk(P 0) � fk(P ) for all k.

Given a polytope Q � R3 and a direction u 2 R3, its lower hull along u, denoted

LHuQ, is the union of all facets whose outer normal has negative or zero inner
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product with u. In the case of zero inner product, the facet is called degenerate

and its projection is not a maximal cell. We assume that the trianglesAi = fpij ; j =
0; 1; 2g, i = 0; 1; 2; have 2d convex hulls Pi. Let S be a regular subdivision of P , andbAi; bP be the lifted Newton polytopes and their Minkowski sum; LHe3

bP , where e3

is the unit vector on the x3-axis, is in bijection with S. Consider edges E0; E1 with

the same outer normal v:

E0 = (p00; p01) � P0; E1 = (p10; p11) � P1:

For some vertex p2k 2 A2, E1+E2+ p2k is an edge of P with outer normal v. Thus,

their lifting bE1 + bE2 + bp2k has outer normal (v; 0) and yields one or two facets ofbP , yielding one or two degenerate facets on LHe3
bP , i.e. segments, depending on

whether the lifting leads, resp., to a coarse or fine subdivision. In the latter case,

the two segments are collinear but their union has been subdivided into one of

two possible mixed subdivisions, each with two cells. W.l.o.g., these are:

fp00 + E1 + p2k; E0 + p11 + p2kg; fE0 + p10 + p2k; p01 + E1 + p2kg (5.2)

We consider a perturbation in the direction of v

p�00 := p00 + �v; (5.3)

with indeterminate � ! 0+. Since we are considering a finite process that

branches on signs of algebraic expressions, namely Cayley minors, � can take

sufficiently small positive rational values, as is the case in standard symbolic

perturbation methods.

Lemma 33. With the above hypotheses and notation, let

A� := (fp�00; p01; p02g; A1; A2);

and P � := A�0 + A1 + A2 be the family and Minkowski sum associated with a per-

turbation (5.3). Let S be a (regular fine) mixed subdivision of P associated with

a generic weight vector w, and S� the regular subdivision of P � associated to the

same vector w. Then, S� is mixed and contains at most one more cell � than does

S. There is a bijection between all cells of S� (except �, if it exists) and the cells of
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S, which associates combinatorially equivalent cells.

We expect this lemma to extend to any dimension.

Proof. Eq. (5.3) defines p�00 2 Q2. As in the proof of Theorem 64, by an appropriate

dilation we define a family of supports in Z2. By abuse of notation, we denote the

latter by A�. To prove the lemma for any S, we consider two cases according to the

subdivisions of E0+E1+p2k in (5.2). In the first case, p00+p11+p2k is not a vertex

of P but p�00+ p11+ p2k is a vertex of P �: the perturbation has moved outward the

middle point of E0 + E1 + p2k. LHe3
bP is combinatorially equivalent to LHe3+�v

bP ,
where the latter is defined by shifting our viewpoint by an infinitesimal amount:

the two degenerate facets whose union is bE0 + bE1 + bp2k appear in both lower

hulls (the subdivision to two facets occurs because S is fine). The non-degenerate

facets are clearly combinatorially equivalent in both lower hulls. Formally, non-

degenerate facets on LHe3
bP , i.e. with positive area, have outer normal (w;�1) and

we claim that

(w;�1) � (e3 + �(v; 0)) = �1 + �w � v < 0;

for sufficiently small � > 0. Thus, these facets also lie on LHe3+�v
bP . Non-

degenerate facets of bP but not on LHe3
bP have outer normal (w; 1) and we claim

that

(w; 1) � (e3 + �(v; 0)) = 1 + �w � v > 0;

for sufficiently small � > 0. So, these facets do not lie on LHe3+�v
bP . We now show

LHe3
bP � is combinatorially equivalent to LHe3+�v

bP . Any facet except the degener-

ate ones in LHe3+�v
bP clearly corresponds to a combinatorially equivalent facet

in LHe3
bP �. The degenerate facets give rise to two edges in bP �, which proves that

S� is fine, hence a mixed subdivision; moreover, these edges are combinatorially

equivalent to those on LHe3+�v
bP . Thus the lemma is proved in the case no new

cell is created.

In the second subdivision of E0 + E1 + p2k, the middle point is p01 + p10 + p2k;

this point is perturbed to the relative interior of P �. The perturbation creates an

extra (mixed) cell E�
0 + E1 + p2k which intersects @P �. For all other cells in S� the

discussion for the above case holds. This settles the case a new cell is created.

Theorem 34. For any family A whose triangles have one or more pairs of par-
allel edges, there exists a family of triangles A� without any parallel edges as in
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section 5.4, whose resultant polytope N(R�) has at least as many faces of any
dimension as those in the polytope N(R) of A.

Proof. We first assume all Pi’s have non-zero area. Given A with strongly parallel

edges E0 � P0, E1 � P1, perturbation (5.3) defines A�, where the corresponding

edges are not parallel. In the case of other strongly parallel edges, we apply the

same procedure sufficiently many times. For every mixed subdivision S of A the

same lifting defines a mixed subdivision S�, as in Lemma 33. This shows that the

vertices of N(R) can be mapped in a 1-1 fashion to, possibly a subset of, vertices

of N(R�). Hence the number of vertices in N(R�) is at least as large as that of

N(R).
To prove the statement for k-faces, k � 1, we extend Lemma 33 to an arbitrary

(coarse) regular subdivision S and its perturbed counterpart S�. The only differ-

ence is that S may contain a single 1d cell E0 + E1 + p2k and cells of the form

� = E0 + E1 + F2, for a face F2 � P2. Each � is subdivided to 3 or 2 cells in S�,

depending on whether a new cell is created or not. The subdivision follows one

of the subdivisions of E0+E1+ p2k discussed in the proof of Lemma 33. Now � is

not essential hence contributes a point summand to the N(R) face correspond-

ing to S. The N(R�) face corresponding to S� is an edge if �� is a hexagon, thus

establishing the lemma for k-faces.

If parallel edges E0; E1 have anti-parallel outer normals, no regular subdivision

(even coarse) may contain a cell of the form E0 + E1 + F2, though there may be

adjacent cells E0 + p1j + F2; p0i + E1 + F2. Any infinitesimal perturbation, such

as (5.3), yields S� combinatorially equivalent to S.

When some Pi’s have zero area, the result still holds in a similar way after a

detailed study of each possible case (including repeated points), which we omit

due to space restrictions. The key case is the following: A satisfies jA0j = jA1j =
jA2j = 3, dimP0 = 1, dimP1 = dimP2 = 2, then let A� = (A�0; A1; A2) such that the

middle point of A0 is infinitesimally perturbed to yield dimP �
0 = 2. Then there is an

injection of regular subdivisions of A to those of A�, such that if S maps to S� then

S� contains one more cell equal to A�0+p1j+p2k, for vertices p1j 2 A1; p2k 2 A2, and

all other cells are combinatorially equivalent to the corresponding cells in S.
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5.4 The case (3; 3; 3) with non-parallel edges

In this section, we assume that we have an essential family with n = 3; m = 9

and each Ai has cardinality 3, i.e., dim(Pi) = 2, for all i. Moreover no edges coming

from two different Pi are parallel, i.e. any pair of edges e 2 Pi; e0 2 Pj where i 6= j for

all i; j are non-parallel. This is an essential (3; 3; 3) configuration A = (A0; A1; A2).

5.4.1 Polar mixed subdivisions

Recall that a regular mixed subdivision of
P

iAi � R2 can be obtained as the

projection of the lower hull bP` of the Minkowski sum bP =
P

i
bAi of the lifted point

sets bAi, for some lifting to R3.

Given a vector w 2 Rd and polytope P � Rd, denote

facew(P ) = fx 2 P j x � w � y � w; 8y 2 Pg

the extremal face of P w.r.t. w. Then w is an outer normal to the face. The normal

cone of P at face F is

NC(F ) = fw 2 Rd j facew(P ) = Fg:

The normal fan of P is the collection of all normal cones of P i.e.

NF (P ) = fNC(F ) j F a face of Pg:

Given a regular mixed subdivision S of P , we define the polar (dual) mixed

subdivision or configuration S� to be the intersection of a generic hyperplane h

in the dual space (R3)� with the normal fan NF ( bP`). Given Ai � Z2 for some

i 2 f0; 1; 2g we call A�i the dual triangle. The dual of an edge of Ai is called a ray

and the dual of a vertex of Ai is called a cone.

There is a bijection from vertices, edges and facets of
P

i
bAi to cells, edges and

vertices of S� respectively, which induce a bijection from vertices, edges and cells

of S to cells, edges and vertices of S� respectively. Moreover, there is a bijection of

boundary vertices and edges of S to cones and rays of S�. The above construction

is similar to the construction of the polar (dual) polytope defined in Section 5.5.
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Lemma 35. Given an edge e from some Ai, consider all edges in S that have e as

Minkowski summand. Then, the union of their polar edges in S� is a ray.

Proof. Consider the set of edges of bP` whose summand is the lifted e. The union of

the normal cones of the edges in that set is two dimensional. To see this observe

that all the edges have the same edge as summand (and the other summands

are vertices) and thus they are translations of the same edge. The intersection of

that union with h is a ray.

Observe that rays in S� are in bijection with edges of Ai’s. Figure 5.2 provides

an illustration. We call mixed the points that are defined as an intersection of

three rays from different Ai’s. We define aAi to be the apex of the dual triangle A�i ,

that is the common apex of its rays, and define ar to be the apex of a ray r. Let

nr denotes the normal vector parallel to r.

GivenA0; A1; : : : ; An � Zn we define int(A0; A1; : : : ; An) to be themaximumnum-

ber of intersection points among A�0; A
�
1; : : : ; A

�
n. Given a ray r 2 A�i , let intr(C) be

the maximum number of intersection points of a ray r with A�j when ar 2 C � A�j
and i 6= j.

Consider the 3 rays of A�i and count the intersection points with some Aj

when i 6= j. We call signature of Ai the multiset of intersection cardinalities of the

3 rays of A�i with respect to some Aj when i 6= j. Note that the each element of

the signature that correspond to a ray r is less than intr(C), where C is the cone

such that �Ai 2 C. The signature vector of Ai is the vector whose i-th coordinate

is the intersection cardinality of the i-th ray of A�i .

Lemma 36. Given ray r 2 A�i and cone C � A�j such that i 6= j then

intr(C) =

8>><
>>:

0; if nr 2 C;
2; if � nr 2 C;
1; otherwise.

Proof. Define Hr to be the halfplane defined by the supporting line of r for which

there exist a unique cone C 0 2 A�0 such that C\Hr = C. Let ar 2 Hr. If nr 2 C then

r does not intersect any cone. If �nr 2 C then r does intersect C 0 and intr(C) = 2.

Otherwise, nr 2 C 0 and intr(C) = 1.

If we sum over all cones of Aj of Lemma 36 then we have the following.
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Figure 5.2: A subdivision S and its polar dual S�.
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a b c

Figure 5.3: Arrangements of two polar triangles with � 3 intersection points.

Corollary 37. For any Aj � Z2 it holds
P

C2A�

j
intr(C) = 3, where the sum is over

all cones C of A�j and r is a ray of A
�
i for some i 6= j.

5.4.2 Bounds on the number of cells in a subdivision

We study upper bounds on the number of cells of a subdivision. This can be

derived from the upper bound on the number of facets of the Minkowski sum of

the lifted Ai’s for any lifting function.

Given polytopes P1; : : : ; Pr in Rd, Gritzmann and Sturmfels [77] prove that

fi � 2

�
k

i

� d�1�iX
j=0

�
k � 1� i

j

�

where k denote the number of non-parallel edges of P1; : : : ; Pr, and here fi denotes

the cardinality of i-dimensional faces of P1+� � �+Pr. The equality holds if P1; : : : ; Pr
are zonotopes. For our case where k = 9, i = 2, d = 3, r = 3 the above formula

gives 2
�9
2

�
= 72. Thus, the best upper bound that can be implied for the cells of

the lower hull and therefore for the cells of a subdivision is 36.

In the sequel we introduce a tool that allow as to derive an better upper bound,

namely 15. Similar constructions have been used in tropical geometry [134].

We first prove a technical lemma.

Lemma 38. For fixed (A0; A1; A2) there is no subdivision S with cells a+ s+ s0 and

a0 + s+ s0 for any points a 2 Ai, a0 2 Aj , segments s 2 Pk, s0 2 Pl, i; j; k; l 2 f0; 1; 2g.
Proof. If there exist a subdivision S with cells a+ s+ s0 and a0 + s+ s0, then there

is a lifting on Ai’s such that the lower hull of the Minkowski sum of the lifted Pi’s

contains the facets a�+ s�+ s0� and a0�+ s�+ s0�. Where � denotes the lifted faces.

Note that the normal vectors of these facets are equal, a contradiction.
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A basic property of polar mixed subdivisions follows.

Corollary 39. Two rays in S� have at most one common intersection point.

Lemma 40. For any A0; A1 � Z2, int(A0; A1) � 4.

Proof. Fix A0 and assume there is an A1 such that int(A0; A1) = 5. Observe that

there should exists a signature (2; 2; 1), since there are 5 intersection points and

each ray can intersect a dual triangle at most twice by Corollary 37. By Lemma 36,

the signature (2; 2; 1) forces the inverse of 2 normals to be in C and forbids the

third from being in C. Note that there is no triangle A1 with such a property; a

contradiction.

Lemma 41. For any configuration S� of A�0; A
�
1; : : : ; A

�
n where jA0j = jA1j = � � � =

jAnj = 3 it holds int(A0; A1; : : : ; An) � 4
�n
2

�
.

Proof. By Lemma 40 a configuration of two dual triangles has at most 4 inter-

sections. In any configuration of n triangles each of the
�n
2

�
pairs of triangles will

contribute at most 4 intersections in the total intersections and thus at most

4
�n
2

�
.

By duality the following result holds for the special case of n = 3 triangles.

Corollary 42. For fixed (A0; A1; A2) where jA0j = jA1j = jA2j = 3 there is no subdi-

vision with more than 15 cells.

Lemma 43. For fixed (A0; A1; A2) there is no subdivision with more than 10 and

6 cells when w.l.o.g. (jA0j = jA1j = 3; jA2j = 2) and (jA0j = 3; jA1j = jA2j = 2)

respectively.

Proof. The polar of Ai is a line when jAij = 2. Hence, for the case jA0j = 3; jA1j =
jA2j = 2 we have at most 2 intersections between a line and a polar triangle (i.e.

the polar of A0) and at most 1 intersection between two lines. Therefore, there are

in total at most 5 intersection points plus the point of the polar triangle that yield

a bound of at most 10 cells in any subdivision.

For the case jA0j = jA1j = 3; jA2j = 2, we have at most 4 intersection points

between the two polar triangles by Lemma 40. Moreover, the line that corresponds

to A2 can have at most 2 intersection points with each of the polar triangles. In

total there are at most 8 intersection points and two points of the polar triangles

yielding a bound of at most 10 cells in any subdivision.
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5.4.3 Bounds on the number of types of subdivisions

First we study the case of intersection of two dual triangles, A�0; A
�
1. We restrict

to the cases with at least 3 intersections. By Corollary 37 each coordinate of the

signature vectors is at most 3. Then we have the following cases of signatures:

f1; 1; 1g; f2; 1; 0g; f2; 2; 0g; f2; 1; 1g that denote intersection cardinalities in the 3 rays

of A�0 with A�1. By Lemma 40 the sum of coordinates is at most 4. Then we have

the following corollary.

Corollary 44. The only possible cases in the intersections of two dual triangles

with at least 3 intersection points are the f1; 1; 1g, f2; 1; 0g, f2; 2; 0g, f2; 1; 1g depicted
in Figure 5.3.

The cases f1; 1; 1g and f2; 1; 0g are symmetric. A dual triangle has exactly one

intersection point at each ray. They depicted in Figure 5.3 (a), f2; 2; 0g is depicted

in Figure 5.3 (b) and f2; 1; 1g in Figure 5.3 (c).

Lemma 45. Given a fixed set A0; A1 either f2; 2; 0g or f2; 1; 1g will occur in the set
of all subdivisions.

Proof. Assume that A0; A1 are fixed and there exist two subdivisions of A0 + A1

with signatures f2; 2; 0g and f2; 1; 1g respectively. First note that aA1 is forced to

belong in different cones of A�0 in each of the two subdivisions. By Corollary 37 the

per coordinate sum of the signature vectors is a vector where every coordinate is

� 3. Thus, the two signature vectors in our case are (2; 1; 1) and (0; 2; 2). Hence the

signature vector for placing the apex of A1 in the third cone has two 0 coordinates

and the third coordinate should be � 1. The contradiction comes from the fact

that it is always possible to place any dual triangle in the cone of another in order

to have at least two intersection points.

Consider the normal fanNF (P ) of P = A0+A1+A2. A coneAi for some i is called

empty if it contains no ray in NF (P ). We call a cone of A�i full if it contains one

non-empty cone of Aj and one non-empty cone of Ak in NF (P ), where i 6= j 6= k.

Consider all configurations with at least 3 mixed points. We categorize them

by the number of apexes of the dual triangles that are in the convex hull T of the

3 mixed points. Clearly, the only possible cases are 3; 2; 1; 0 denoted (a); (b); (c); (d)
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a b c1 c2 d

Figure 5.4: Arrangements of three polar triangles with 3 mixed points.

respectively. They are depicted in Figure 5.4. Observe that a dual triangle has

either its apex in T or out with one of its rays passes through two mixed points.

Observe that configurations of type (a) have signatures f2; 1; 1g, since all the

dual triangles are in T and therefore they have no intersection in each ray and

there is one more intersection point between each pair of dual triangles that lays

inside T . Configurations of type (b) have 1 empty cone that belongs to the dual

triangle whose apex is outside T . Moreover, the dual triangles which apexes are

inside T have f2; 1; 1g signatures. Configurations of type (c) are of two kinds. The

first case (c1), are those with signature f2; 1; 0g in the two dual triangles, which

apexes are outside T (Cf. Figure 5.4 (c1)). The second case (c2), are those with

signature f2; 2; 0g in the two dual triangles, which apexes are outside T (Cf. Fig-

ure 5.4 (c2)). Observe that (c1) has 1 full cone that belongs to the dual triangle

whose apex is inside T . Observe that (c2) has 2 empty cones, one that belongs

to each dual triangle that lay outside T . Configurations of type (d) have at least

one empty cone and signature f2; 2; 0g (that belongs to the blue dual triangle in

Figure 5.4 (d)).

Lemma 46. The configuration of type (a) can appear at most once.

Proof. Observe that the sequence of rays in a mixed point is uniquely defined by

the normal fan of P . This implies a unique configuration of type (a).

Lemma 47. Given a fixed set A0; A1; A2 the sum of the number of empty and the

number of full cones is at most 3. In particular, the possible cases are 3; 2; 1; 0; 0 full

and 0; 0; 1; 2; 3 empty cones respectively.

Proof. Observe that every dual triangle has at most one full and one empty cone.

By the definition of full if there exist one in Ai then there is no empty in Aj ; Ak,

where i 6= j 6= k. This yields possible cases of one full and two empty and two full
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and zero empty. This completes the proof since in all the possible cases the sum

of the number of empty and the number of full cones is at most 3.

Lemma 48. Given a fixed set A0; A1; A2, a configuration of type (d) can occur at

most once. It has two pairs of dual triangles with signature f2; 2; 0g and implies the
existence of at least one empty cone.

Proof. We consider the 3 lines that support the edges of T and take cases of

the apices of the dual triangles on these lines. Let a; b; c the three mixed points

and `ab; `bc; `ac the three lines index by the points that they intersect. W.l.o.g. let

�0; �1; �2 lay on `ab; `ac; `bc respectively. Moreover, w.l.o.g. �0 lay on the side of a.

First, if �1 lay on the other side of a then this implies a f2; 2; 0g signature. Then
placing �2 on the one side of bc implies a f2; 2; 0g signature with the one dual

triangle and placing to the other side implies a f2; 2; 0g signature with the other

dual triangle. Second, if �1 lay on the same side of a as �0 any placement of �2
implies a f2; 2; 0g signature with both dual triangles. This proves the existence of

at least two pairs with f2; 2; 0g signatures.
Since there are two pairs of dual triangles with f2; 2; 0g signature there is one

dual triangle, say A�0, that belongs to both pairs. Now observe that a f2; 2; 0g sig-
nature implies one empty cone to each participant dual triangle. Thus, A�0 has an

empty cone. This completes the proof of the existence of at least one empty cone.

To show that there is only one occurrence of (d), observe (similar to the proof

of Lemma 46) that the sequence of rays in a mixed point is uniquely defined by

the normal fan of P . This implies a unique configuration of type (d).

Proposition 49. Given a fixed set A0; A1; A2 there are at most 4 distinct triplets of

mixed points that appear in the set of all subdivisions.

Proof. Since in case (a) the three pairs of dual triangles all have a f2; 1; 1g signa-
ture, we know (a) cannot occur together with (c2) nor with (d) in the set of all

configurations for a fixed input. On the other hand, (a) may occur together with

(b) and (c1). By Lemma 47, there are at most 3 triplets of mixed points of type (b)

or (c1), and by Lemma 46 there is at most one triplet of mixed points of type (a).

In total, there are at most 4 triplets of mixed points.

We consider two cases where (a) does not appear and (d) appears. The ap-

pearance of (d) implies there is at most one pair with f2; 1; 1g since (d) has two
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Figure 5.5: The normal fan of the Example 10.

pairs with f2; 2; 0g by Lemma 48. This implies the appearance of at most one (b).

Now the two cases depend on whether (c1) or (c2) may occur. The appearance

of (d) implies there is at least one empty cone by Lemma 48, hence at most one

full cone by Lemma 47, which implies that there is at most one occurrence of

(c1). Thus, in total, there are at most 3 triplets of mixed points. In the other case,

the maximum number of the occurrences of (c2) and (b) is 3, since there are 3

pairs of dual triangles that have either f2; 2; 0g or f2; 1; 1g signature and imply the

occurrence of either (c2) or (b), respectively. Since (d) occur only once, in total,

there are at most 4 triplets of mixed points.

We then consider the case where none of (a) and (d) appear. Then the two pos-

sible cases of (b); (c1) and of (b); (c2) yield at most 3 mixed triplets, by Lemmas 47

and 45 respectively.

Therefore, 4 is the total maximum number of triplets of mixed points.

The above bound is tight as shown in Example 10, which corresponds to the

first case, namely (a) and three (c2) occurrences. Figure 5.5 illustrates this case.

Observe the existence of the 3 full cones, the absence of an empty cone and the

existence of the (a). We do not have an example with 4 triplets of mixed points in

the case of (b); (c2); (d), which would have made the corresponding analysis tight.

5.4.4 Subsystems and cells of subdivisions

Let us now describe the subsets A0i � Ai, which form subsystems, that define

cells of a subdivision S of P , and their connection to the faces of N(R). Clearly,
the possible cells of S are a point, a segment, or an i-gon for i in f3; : : : ; 9g. Non-
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Figure 5.6: The dual points of a hexagon, a heptagon and an octagon cell (from
left to right).

trivial subsystems are those that correspond to a face of N(R) of dimension 1; 2;

or 3.

Lemma 50. The only non-trivial subsystems in the (3; 3; 3) case of non-parallel

edges are the 6; 7 ; 8-gons or the hexagon, heptagon and octagon respectively.

Proof. The triangular cells and parallelogram cells (Minkowski sums of two seg-

ments) correspond to zero dimensional faces of N(R) (Proposition 4.1 in [131]). A

pentagonal cell (Minkowski sum of a triangle, a segment and a point) also corre-

sponds to a zero dimensional face ofN(R) because it corresponds to a non-cubical
flip (see also Theorem 5.2 in [131]). A 9-gon (Minkowski sum of three triangles) is

P and thus corresponds to the whole 4-dimensional N(R).

Hexagon. The simplest non-trivial subsystem includes 2-element subsets A0i in

each Ai (namely edges). Such a subsystem is essential when no two of the convex

hulls of the A0i are parallel. In this case, the cell in S is a Minkowski sum of 3 edges

from the different Ai’s which we call a hexagon. Every hexagon can be refined in

two possible ways to a regular mixed decomposition and corresponds to an edge

of N(R) (see the cubical flips discussed above).

Remark 1. In the regular subdivision of an essential family, the existence of two

hexagons implies a parallelogram resultant face for a (3; 3; 3) family, or resultant

facet for a (2; 3; 3) family.

Fact: Each hexagon corresponds to a full-dimensional circuit hence (Sturm-

fels) it can be refined without affecting the rest of the subdivision. Thus, refining

the two hexagons defines 4 points in N(R).
These points are vertices iff the subdivision is regular because, if the overall

subdivision is regular before refinement, the new subdivision is again regular (we

have such a Lemma).

Vissarion Fisikopoulos 136



High-dimensional polytopes defined by oracles: algorithms, computations and applications

We now show that it is NOT possible for the 4 points to be collinear (Irrespective

of whether the hexagons are contained in a regular subdivision or not). Assume

X1 \X2 is an edge of P0 and, by convexity, this is the unique common edge. Let

X1 = (p00; p01) + (p10; p11) + (p20; p21); X2 = (p00; p01) + (p10; p12) + (p20; p22):

Refining X1; X2 each in two ways corresponds to two segments (possibly resultant

edges) with directions

(a;�a; 0; b;�b; 0; c;�c; 0); (a0;�a0; 0; b0; 0;�b0; c0; 0;�c0) for a; b; c; a0; b0; c0 > 0:

The zero pattern in each vector implies that the two segments cannot be parallel.

Two hexagons in S give rise to the Minkowski sum of two segments that form

a parallelogram 2-face of N(R) in the general case. Similarly, three hexagons in

S give rise to the Minkowski sum of three segments that form a 2-face of N(R)

which is a hexagon (cf Figure 5.9a) or a facet of N(R) which is a 3-cube (cf last

polytope in Figure 5.8). In general, k hexagons in S give rise to the Minkowski

sum of k segments, also known as a zonotope, that form a face of N(R) of proper
dimension (cf. proof of Lemma 57).

Heptagon. A heptagon cell is a Minkowski sum of an Ai, w.l.o.g. A0, and 2 edges

A01; A
0
2 from A1; A2 respectively, which form an essential subfamilyA0 = (A0; A

0
1; A

0
2)

provided the A01; A
0
2 are not parallel. The heptagon contains a hexagon cell which

is the sum of one edge of A0 and A01 +A02, where the former is not parallel to any

of A0i.

Remark 2. If it lies in a regular subdivision, then the heptagon has up to 3 refine-

ments, each preserving regularity. To see this, observe that all fine subdivisions

contain mixed cell v0i +A01 +A02, for some vertex p0i 2 A0; clearly, this cell refines

the hexagon. The fine subdivisions correspond to up to 3 choices for p0i.

In this general case, a heptagon corresponds to a triangular 2-face of N(R).

Octagon. An octagon cell is a Minkowski sum of two Ai, w.l.o.g. A0; A1, and an

edge A02 of A2. If it lies in a regular subdivision it give rise to a facet of N(R), in
particular, the first polytope in Figure 5.9.
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Lemma 51 (Technical). Assume that we have, for i 2 f0; 1; 2g, the subsets A0i � Ai.

Consider a regular subdivision of A0 +A1 +A2 defined by lifting w containing cells

Bj = Bj0 + Bj1 + Bj2, for j ranging in a finite set J , where Bji � A0i. Then, it is

possible to construct a regular subdivision of A00 + A01 + A02 containing all cells Bj ,

by restricting w to the A0i.

Proof. By assumption, bBj0+ bBj1+ bBj2 is a facet, for every j 2 J, on the lower hull ofbA0+ bA1+ bA2, obtained by lifting according to w. Then w, restricted to the A0i, yields

a regular subdivision of A00+A01+A02. Moreover, the hyperplane of bBj0+ bBj1+ bBj2

supports the lower hull of bA00 + bA01 + bA02, hence bBj0 + bBj1 + bBj2 is a facet of this

lower hull for every j 2 J.

Lemma 52 (Technical). Given a regular coarse subdivision S with a coarse cell C,

it is possible to define a new regular subdivision S0 that contains a fine subdivision

of C and, for every other cell of S, it contains either the same cell or a refinement of

it.

In this setting, if H � S is heptagon A0 + s1 + s2 and a 2 A0 is a specific vertex,

it is possible to create in S0 a hexagon X = s0 + s1 + s2, where s0 = conv(A0 n fag).

Proof. Let w be the lifting defining S. Let C = C0 + C1 + C2, Ci � Ai, and consider

a sufficiently generic lifting � which is nonzero only for the Ci. Now consider

lifting w + ��, for sufficiently small � > 0. This is different from w therefore, by

construction of �, it yields a fine subdivision of C. The new lifting does not affect

any fine cell of S but may refine coarse cells of S whose expression includes at

least one point in the Ci’s for which � is nonzero.

For the second part, let C = H and let � be zero for every support point except

a. Then S0 is regular, X is created by refining H, and all other cells of S are either

maintained or refined. Those that are refined contain a in their summand from

A0.

5.4.5 Types of N(R) facets

We describe resultant polytopes corresponding to maximum facet cardinality.

We start with several lemmata that serve as tools later.

First we consider the case (3; 3; 2).
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X4
X1

X2

X3

X4

X1
X3

X2

Figure 5.7: Left: A non-regular subdivision of P of Example 10. A regular subdi-
vision of P of Example 11. Each subdivision has 4 hexagons X1; X2; X3; X4.

Lemma 53. Given is an essential (3; 3; 3) configuration A = (A0; A1; A2). When

there are no parallel edges in the subfamily A0 = (A0; A1; A
0
2), A

0
2 � A2, jA02j =

2, their corresponding resultant polytope N(RA0) gives a facet of N(R), which is
combinatorially equivalent to the first polytope of Fig 5.8 (resultant).

Proof. If all edges in A0 are non-parallel, then every set of subsets of two points

from each A0; A1, together with A02, define a hexagon within a regular subdivision

of A0. For this, it suffices to lift only the third vertex of A0 and of A1; moreover,

the hexagon can be refined independently of the rest of the subdivision because

it forms a full-dimensional circuit. This gives a different resultant edge direction

of N(RA0). Thus, the number of edge directions of N(RA0) is 9.

The dimension of N(RA0) is 3 hence, by [131, Cor.6.3(b)], there are three types

of 3-dimensional resultant polytopes, see also Prop. 29. Two of these, namely the

tetrahedron and square-based pyramid, have 6 and 8 edges, respectively. Hence

the claim follows.

Assume we have

hexagon X = s0 + s1 + s2; and heptagon H = A0 + s01 + s02; (5.4)

where si; s
0
i � Ai are all of cardinality 2, for i 2 f1; 2g, with the corresponding

support sets for X and for H being essential. The next lemma proves that edges

si; s
0
i are distinct, i 2 f1; 2g.
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Lemma 54. Given any regular subdivision of A0 + A1 + A2 which includes a hep-

tagon H and a hexagon X, there is exactly one edge from Ai, for some i 2 f0; 1; 2g,
which appears in the expression of both H and X.

Proof. Observe that X;H always share one edge since the latter has a triangle as

a summand: w.l.o.g., this edge is s0 � A0, using the notation of expression (5.4).

Thus, if they have one more common edge, this should be from A1 or A2. W.l.o.g.

it is edge s1 = s0i � A1. By lemma 51, we can construct a subdivision of A0+s1+A2

that containsX;H. This yields a 3d (prism) or 2d (trapezoid or pentagon) resultant

polytope which is the Minkowski sum of a segment and the polytope or polygon

corresponding to H. Neither of these exists in the list of Proposition 29.

Lemma 55. If we fix an edge s0 � A0, there is at most one way to construct a reg-

ular subdivision which contains a hexagon and a heptagon sharing s0 (i.e., where

their intersection equals a copy of s0).

Proof. Assume there are two such subdivisions: one with X;H, following the no-

tation of expression (5.4), and one with X� � s0 + A1 + A2, H� = A0 + s�1 + s�2,

s�i � Ai, for i 2 f1; 2g. H can be refined just enough so as to create a hexagon with-

out destroying overall regularity, by Lemma 52 and Remark 2, namely hexagon

s0 + s01 + s02, which is different from X. The two hexagons define a parallelogram

facet, by remark 1, in the resultant polytope of fs0; A1; A2g.
Analogously, we can subdivide H� s.t. it contains s0+s�1+s�2 as a cell, which is

different from X�, defining a parallelogram facet in the same resultant polytope.

Thus, we have defined two parallelogram facets which are distinct, because the

subdivisions containing X;H and X�; H� are distinct, since they were so at the

beginning and remain so after refinement. But it is impossible to have two such

facets in the 3d resultant polytope of s0 + A1 + A2, by examining the possible 3d

polytopes.

Corollary 56. There is no regular subdivision with an octagon and a hexagon cell,

nor with two heptagon cells.

Proof. Assume that there is a subdivision with an octagon cell and a hexagon cell

X. Then we can subdivide the octagon cell in (at least) two ways such that there

is a heptagon cell in the octagons subdivision. This yields two subdivisions of P

with a different heptagon cell each and X, which contradicts Lemma 55.
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resultant prism zonotope

Figure 5.8: The 3 types of generic facets of 4d resultant polytopes in the (3; 3; 3)

case with non-parallel edges. The black, red, blue colors indicate the 3; 2; 1 di-
mensional resultant polytopes respectively.

Assume now there is a subdivision with two heptagon cells H;H 0 written,

w.l.o.g., H = A0 + s1 + s2 and H 0 = s0 + A1 + s02. We apply the second part of

lemma 52, by using function � that lifts vertex A0 n s0. This creates a new reg-

ular subdivision containing hexagon X = s0 + s1 + s2 � H, which contradicts

Lemma 54, since X shares two edges with H 0.

Alternative proof. Let, i 6= j 6= k have values f0; 1; 2g. The dual point of an octagon

cell is two apexes of the dual triangles A�i ; A
�
j intersected by a ray from A�k. If

we have a hexagon cell with an octagon cell in a configuration this implies that

a ray from A�i and a ray from A�j should intersect at some point different than

the apexes of the dual triangles. This is not possible since the apexes of A�i ; A
�
j

coincide and the rays are non parallel. Given a configuration the dual point of a

heptagon cell is the apex of a dual triangle A�i intersected by a ray from A�j and

one from A�k. If there exist another heptagon cells in this configuration then the

apex of either A�j or A
�
k should be intersected by a ray from A�i which is impossible

since there are no parallel rays. See also Figure 5.6 for an illustration.

We are now ready to describe all the possible types of facets. We call resultant

facets the facets that correspond to a 3-dimensional resultant polytope; prism

facets the facets that correspond to Minkowski sums of a 2-dimensional resultant

polytope and 1-dimensional resultant polytopes; and zonotope facets the facets

that correspond to Minkowski sums of 1-dimensional resultant polytopes.

Lemma 57. If the 3 triangles Ai share no parallel edges, then the only possible

facet types are resultant, prism and zonotope.
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prism zonotope

(a) (b)

Figure 5.9: Types of degenerate facets of 4d resultant polytopes in the (3; 3; 3) case
with non-parallel edges. The red and blue colors indicate the 2 and 1 dimensional
resultant polytopes respectively.

Proof. Considering that the facets are Minkowski sums of lower-dimensional re-

sultant polytopes [131]. Let S a subdivision of P . By Corollary 42 the number

of mixed cells of S is at most 12. The possible non-trivial cells by Lemma 50 are

the hexagon, the heptagon and the octagon, that can be subdivided in at most

3; 5; 8 mixed cells respectively by Lemma 43. Using these cardinalities we perform

a case analysis over all these possible Minkowski sums and hence N(R) facets.
If S contains an octagon, then the only other non-trivial cell is hexagon. This

is impossible by Corollary 56. Then the sum has a 3-dimensional summand and

the facet is the resultant facet of Figure 5.8 with f-vector (6; 11; 7).

If S contains a heptagon, then the only possible cases for the other non-

trivial cells are a heptagon (which is impossible by Corollary 56 and one or two

hexagons. The case of a heptagon and a hexagon yields generically a N(R) facet
which is a Minkowski sum of a segment and a triangle, called prism (cf. Fig-

ure 5.8). The case of a heptagon and two hexagons yields a face which is a Mi-

nkowski sum of two segments and a triangle. If all the summands are relatively

in general position the sum is a 4 dimensional polytope that contains two prism

facets. Otherwise, we encounter the degenerate cases depicted in Figure 5.9.

The last possible case is to have k hexagons in S. These yield facets that are

Minkowski sums of segments, i.e. zonotope facets. By the discussion above it

follows k � 4. If the summands are relatively in general position and k is 3 or 4 then
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the sum yields a polytope of dimension 4 with 4 cube facets (cf. Figure 5.10) or a

3-dimensional cube facet depicted in Figure 5.8, respectively. A degenerate case

is the 3-dimensional Minkowski sum of 4 segments depicted in Figure 5.9.

5.4.6 The number of N(R) facets

Now we bound the number of the facet types described above.

Resultant facets: counting octagons

We start by bounding the number of resultant facets, see Figure 5.8 (resultant).

They contain 6 vertices, 11 edges, and 7 ridges: 6 triangular and one parallelo-

gram.

Lemma 58. A 4-dimensional resultant polytope can have at most 9 resultant facets

in the (3; 3; 3) case, and this is tight.

Proof. The resultant facet is a 3d resultant polytope, corresponding to a sub-

system with no parallel edges and support cardinalities (3; 3; 2). This subsystem,

comprised of two triangles and an edge, defines a Minkowski sum equal to an

octagon. Consider a coarse mixed subdivision S of A0; A1; A2, containing this oc-

tagon as a cell. All the other cells of S correspond to non-essential subsystems,

hence their resultant is a monomial. There are 9 different subsystems with sup-

port cardinalities 3; 3; 2, because there are 3 ways to choose the Ai contributing an

edge, and 3 ways to specify this edge. This bound is tight because it is achieved

in Example 10.

Prism facets: counting heptagon-hexagon pairs

A prism facet is the Minkowski sum of a triangular ridge T and an edge E of

N(R), see Figure 5.8 (prism), where T;E are resultant polytopes of subsystems

with cardinalities (3; 2; 2) and (2; 2; 2) resp. This type of facet has 6 vertices. The

ridges are two translates of T , and 3 Minkowski sums of E with every edge of T .

Each prism facet has 9 edges: 3 translates of E, and two translates of each edge

of T . The subdivision of P which corresponds to a prism facet should contain a

hexagon X and a heptagon H, where X corresponds to E and H to T .
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Figure 5.10: The complex of 4 zonotope (cube) facets: a Minkowski sum of 4

affinely independent segments, each associated to a hexagon in the subdivision;
each subfigure highlights a cube.

Lemma 59. There are at most 9 different hexagon-heptagon pairs in the set of all

subdivisions of a fixed family (A0; A1; A2) in the (3; 3; 3) case, and this is tight.

Proof. For fixed A0; A1; A2, consider hexagon X = s0 + s1 + s2, where si � Ai, and

heptagon H, which is the Minkowski sum of A0 and segments s01 6= s1; s
0
2 6= s2,

where s0i � Ai, for i 2 f1; 2g. By Lemma 54, X and H have common edge s0 � A0.

By Lemma 55, if we fix s0 � A0, there is a unique way to construct a regular mixed

subdivision with X and H. Hence, there are at most 9 possible different hexagon-

heptagon pairs. This bound is tight because it is achieved in Example 10.

Corollary 60. A 4-dimensional resultant polytope can have at most 9 prism facets

in the (3; 3; 3) case, and this is tight.

Proof. The maximal number of prism facets occur when the 9 different hexagon-

heptagon pairs appear in different subdivisions. Degenerate cases occur when a

subdivision with a heptagon and two hexagons yields a facet of N(R). This is a

degenerate prism facet (cf. Figure 5.9). These cases decrease the total number of

prism facets since two different hexagon-heptagon pairs yield only one facet. This

bound is tight because it is achieved in Example 10.

Zonotope facets: counting tuples of hexagons

The zonotope facet is a Minkowski sum of N(R) edges, each corresponding to

a hexagon, see the zonotope facet types in Figures 5.8, 5.9. We study tuples of

hexagons that appear in subdivisions to prove lemmas that bound the number

of zonotope facets.
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Since mixed points in dual subdivisions correspond to hexagon cells in sub-

divisions, we use counting of triplets of mixed points to count zonotope facets.

Therefore, by Proposition 49 we get the following result.

Corollary 61. A 4-dimensional resultant polytope can have at most 4 zonotope

facets in the (3; 3; 3) case, and this is tight.

A note on regularity

Remark 3. We describe here when a subdivision that contain 4 hexagons is regular

or when is not. For a fixed family A0; A1; A2, let X1; X2; X3; X4 be the hexagons and

S0 � S1 � � � � � S4 be a chain in the refinement poset of all subdivisions where S0 is

the most coarse subdivision among them and every element differs from the next

by a refinement in one hexagon. Since the length of this chain is 5 the refinement

poset has a chain of length 6, by considering the maximal element (the coarsest

subdivision). Thus one of these subdivisions should be non regular and not corre-

spond to any face because the corresponding resultant polytope has dimension 4

and its face poset cannot have a chain longer than 5. When the hexagons corre-

spond to 4 affinely independent segments then S0 should be non regular because

the Minkowski sum is 4-dimensional and the subdivision neither corresponds to

the whole 4-dimensional polytope nor to any of its faces. In the case of 4 affinely

dependent segments S0 corresponds to a facet and S1 should be non regular be-

cause the Minkowski sum is 3-dimensional and it neither corresponds to a facet

nor to a ridge.

We indicate now the topology of the zonotope facets correspond to refinements

of this subdivision. Let (a; b; c; d) 2 f0; 1g4 stand for the two possible flips in the 4
hexagons. There are 16 fine subdivisions of S: those which are regular correspond

to resultant vertices. Let us denote, w.l.o.g., by

(0bcd); (a0cd); (ab0d); (abc0) � f0; 1g4;

the subsets of regular fine subdivisions defining zonotope facets, each with cardi-

nality 8. The flip graph corresponds to 4 zonotope facets, each defined by all possi-

ble flips in 3 of the hexagons. Hence, each is a neighbour of the other 3, as shown in

Figure 5.10, with a parallelogram in common. The facet graph is a 4-clique. Over-
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all, 15 fine subdivisions are involved, hence regular, while one fine subdivision,

namely (1111), is non-regular and not contained in any of the 4 facets. Of course,

each zonotope (cube) has another 3 parallelograms in common with prism or resul-

tant facets.

5.4.7 The number of N(R) faces

We denote by ~fi the maximum number of faces of dimension i of any (3; 3; 3)

resultant polytope. It follows from Theorem 34 that it is enough to bound the

maximal number of faces in the generic case with no parallel edges, considered

in Section 5.4.

We will make use of a powerful result extending Barnette’s Lower bound to

non-simplicial polytopes:

Proposition 62. [89, thm.1.4] For d-dimensional polytopes:

f1 +
X
i�4

(i� 3)f i2 � df0 �
�
d+ 1

2

�
;

where f i2 is the number of 2-faces which are i-gons.

The following theorem summarizes our results on the maximum numbers ~fi.

Theorem 63. . The maximal number of ridges of a (3; 3; 3) resultant polytope is
~f2 = 66 and the maximal number of facets is ~f3 = 22. Moreover, ~f1 = ~f0 + 44,

22 � ~f0 � 28, and 66 � ~f1 � 72. The lower bounds are tight.

Proof. Assume that we have a non parallel (3; 3; 3) configuration and let us relate

f2 and f3. Let �1; �2; �3 be the number of resultant, prism and cube facets resp.;

i.e. �i is the number of facets with i summands. By Lemma 57, the total num-

ber of facets is f3 = �1 + �2 + �3. We observe that there are only triangular and

parallelogram ridges, whose cardinalities are at most 36 and 30, resp.:

1

2
(6�1 + 2�2) = 3�1 + �2 � 36;

1

2
(�1 + 3�2 + 6�3) =

1

2
(�1 + 3�2) + 3�3 � 30:
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The total number of ridges is then

f2 =
1

2
(7�1 + 5�2) + 3�3 � 66: (5.5)

Thus, ~f2 � 66 and our maximal instance establishes the lower bound.

With respect to the number of facets, there are at most 9 resultant, 9 prism,

and 4 cubical facets by Lemmata 58, 59, and 61. Thus ~f3 � 22 and again, our

maximal instance in Example 10 establishes the lower bound.

By Euler’s equality, for any resultant polytope we have f0+f2 = f1+f3 � ~f1+ ~f3,

therefore ~f0 + ~f2 � ~f1 + ~f3. By symmetry, we get ~f0 + ~f2 = ~f1 + ~f3. Then,

~f1 � ~f0 = ~f2 � ~f3 = 44 (5.6)

With respect to the two last inequalities in the statement, the lower bounds are

given by our maximal instance and by equality (5.6), it is enough to prove ~f0 � 28.

Again, assume we are in the non parallel case. In the resultant polytope with

maximal number of facets, the 2-faces are either triangles or parallelograms and

there are f42 = 30 parallelograms. Proposition 62 becomes ~f1+30 � 4 ~f0�10: Then,

~f1 + 40 = ~f0 + 84 � 4 ~f0;

and the desired bound follows.

5.5 Classification

Let us summarize the characterization of 4d resultant polytopes. We need

to consider 3 special instances, corresponding to 3 possible cardinalities of sup-

ports in Section 5.2.1. As mentioned before, the cases n = 0; 1 are similar to those

in [131], so we concentrate on (3; 3; 3). We fix n = 2 and m = 9 = 3+3+3 and con-

sider such families. The associated mixed Grassmannian G(2; 3; 3; 3;Q), defined

in [34], is the linear subvariety of the Grassmanian of 5-dimensional subspaces

in Q9 which contain the vectors e1 + e2 + e3; e4 + e5 + e6, and e7 + e8 + e9. Given a

(3; 3; 3) family A, its associated Cayley matrix C represents (via its rowspan) an el-

ement in G(2; 3; 3; 3;Q). All 5� 9 matrices representing an element in G(2; 3; 3; 3;Q)

are affinely equivalent to an integer Cayley matrix of an integer (3; 3; 3) family and
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have some structural vanishing minors. In the case of Cayley matrices of essen-

tial configurations, not too many minors can be 0, but there could be parallel

vectors and repeated points. In Sturmfels’ notation [131], the Newton polytope

N12;111 corresponds to two univariate configurations of multisets of 3 points, but

in the first, two of the points coincide: this is a square-based pyramid. Thus, this

is a degeneration of N111;111, which is the Newton polytope for two univariate con-

figurations with 3 different points each, cf. the first polytope in Figure 5.8. Note

that from the point of view of the Cayley matrix C, having a configuration with

a repeated point is just an occurrence of the fact that some minors of C vanish,

similarly to the existence of parallel edges in A, which is the new feature that we

have encountered in the study of 4-d resultant polytopes.

Theorem 64. Assume we have an essential family A of n + 1 (finite) lattice point

configurations in Rn with N(R) of dimension 4. Then, up to reordering, we are in

one of the situations (i), (ii) or (iii) in Section 5.2.1. These resultant polytopes are,

resp., a degeneration of the following:

1. n = 0, jA0j = 5, which is a 4-simplex with f-vector (5; 10; 10; 5),

2. n = 1, jA0j = 3; jA1j = 4, which is a Sylvester case, with f-vector (10; 26; 25; 9),

3. n = 2, jA0j = jA1j = jA2j = 3, which are the polytopes described in Section 5.3.

In particular, no resultant polytope of dimension 4 can have more than 22 facets

and 66 ridges.

Proof. By Theorem 31, we restrict our attention to cases 1 to 3. We discuss case 3

because cases 1 and 2 are settled, resp., in [131] and [74, ch.12], cf also the 8th

instance in Table 5.1.

We can perturb (with values in Q), e.g. a point p 2 A0 to a nearby rational

point p�. We get a perturbed matrix C 0
Q 2 G(2; 3; 3; 3;Q) of the Cayley matrix C.

The resultant is an affine invariant of a configuration or its Cayley matrix, so we

can left multiply C 0
Q by an invertible matrix M in block form with a 3� 3 identity

matrix in the upper left corner and an integer 2 � 2 integer matrix M 0 with non-

zero determinant in the lower right corner, to get an integer matrix C 0 = MC 0
Q,

which corresponds to the same point in the mixed Grassmanian. Then, C 0 is

the Cayley matrix of an essential integer family A0. We can say that A is then a
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degeneration of this new integer family A0, which is the image of the family A0Q =

(A0 � fpg [ fp�g; A1; A2) by M 0.

Given a regular mixed subdivision S of A associated to a generic lifting vector

w (i.e., w is generic among the vectors that produce the same regular subdivi-

sion), we consider the regular subdivision S0Q that w induces on the perturbed

configuration AQ. We then translate S0Q via multiplication by M 0 to a combinato-

rially equivalent regular subdivision S0 of A0. It follows from Theorem 34 that the

number of facets of N(R) cannot exceed the number of facets of N(R0), and we

conclude by Theorem 63.

Example 13. Let us consider degeneracy when n = 1, i.e. points are repeated:

A0 = f0; 1g; A1 = f0; 1; 1; 2g. We perturb A1 and get A�1 = f0; 1, 101=100, 2g. We

dilate by 100 (multiply a row of the Cayley matrix) and get B0 = f0; 100g; B1 =

f0; 100; 101; 200g, which span Z. The resultant polytopes for A, B are combinatori-

ally equivalent, although the former resultant has total degree 2 + 1 = 3, and the

latter 200 + 100 = 300.

5.6 Open problems and Extensions

Open problem 1. Prove that either f0 � 22 or f1 � 66. That is, we conjecture that

the maximum f-vector of a 4d-resultant polytope is (22; 66; 66; 22).

Open problem 2. Is it true that, for maximal f-vectors, it holds f0 = f3? Is it

always true that f1 � f2, if f0 � 10?

The proof of Theorem 34 should extend to high dimensions. Lemma 65 gener-

alizes Lemma 58 in any dimension and is proven analogously. It motivates us to

raise Conj. 1.

Lemma 65. A d-dimensional resultant polytope has at most m resultant facets.

Conjecture 1. The number of vertices of a d-dimensional resultant polytope is

bounded above by

3 �
X

kSk=d�1

Y
i2S

~f0(i)

where S is any multiset with elements in f1; : : : ; d� 1g, kSk :=Pi2S i, and ~f0(i) is

the maximum number of vertices of a i-dimensional N(R).
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The only bound in terms of d is (3d� 3)2d
2
[131], yielding ~f0(5) � 1250 whereas

our conjecture yields ~f0(5) � 231:
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Chapter 6

Geometric predicates: algorithms
and software

6.1 Introduction

Computing the sign of a determinant, or in other words evaluating a determi-

nantal predicate, is in the core of many important geometric algorithms. Convex

hull and regular triangulation algorithms use orientation predicates, the Delau-

nay triangulation algorithms also involve the in-sphere predicate. Furthermore,

the computation of the value of a determinant, or in other words a determinantal

construction, is also important in some geometric algorithms. For example, the

exact volume computation of a convex polytope using either of triangulation or a

sign decomposition method relies on the computation of the volume of simplices,

which reduces to a determinant computation [30].

In general dimension d, the orientation predicate of d+1 points is the sign of the

determinant of a matrix containing the homogeneous coordinates of the points

as columns. In a similar way we can define the volume determinant formula of

a simplex defined by d + 1 points in general position as wells as the in-sphere

predicate of d+2 points. In practice, as the dimension grows, a higher percentage

of the computation time is consumed by these core procedures. In this thesis, we

study effective algorithms and implementations for the computation of the deter-

minantal predicates and constructions that appear in geometric computations.

We follow the exact computation paradigm presented in [138] and advocated

by the Computation Geometry Algorithms Library (CGAL) [35], a state-of-the-
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art library for geometric computations. Note that in geometric algorithms the

naive use of floating point arithmetic may lead to incorrect results [94]. In this

thesis we study two scenarios regarding exactness. In the first, we provide exact

predicates but not necessarily exact constructions while in the second we provide

both exact predicates and exact constructions. We give a particular emphasis to

exact division and division-free algorithms. Avoiding divisions is crucial when

working on a ring that is not a field, e.g., integers or polynomials.

Contribution. The observation is that, in a sequence of computations of de-

terminants or signs of determinants that appear in geometric algorithms, a sin-

gle computation can be accelerated by using the information from the previous

computations in the sequence. A special case is the sequence of computations

of the orientation predicates that appear in convex hull algorithms. The convex

hull problem is probably the most fundamental problem in discrete and com-

putational geometry. In fact, the problems of regular, Delaunay triangulations

and Voronoi diagrams reduce to it by computing a convex hull in one dimension

higher.

First, we propose algorithms with quadratic complexity for the determinants

involved in incremental or gift wrapping convex hull algorithms and linear com-

plexity for those involved in point location algorithms. Additionally, we nominate

a variant of these algorithms that can perform computations over the integers.

Second, we implement our proposed algorithms along with division-free deter-

minant algorithms from the literature. We perform an experimental analysis of

the current state-of-the-art packages for exact determinant computations along

with our implementations. Without taking the dynamic algorithms into account,

our experiments present a result of independent interest: they serve as a study

of state-of-the art determinant algorithms and implementations.

Experiments also show that dynamic algorithms outperform all the other

tested determinant implementations in almost all the cases. Moreover, we adapt

our implementations to work with the convex hull package triangulation [22].

We carry out experiments with random and real data in medium dimensions (i.e.,

ranging from 6 to 11 depending on the problem). We show that our implementa-

tion attains a speed-up up to 3:5 times and results in a convex hull package faster

than the package triangulation in tested scenarios, and is a competitive imple-
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mentation for exact volume computation. More interestingly, when used in point

location problems in triangulations, it attains a speed-up of up to 78 times.

Previous work. There is a variety of algorithms and implementations for com-

puting the determinant of a d � d matrix. Let us denote by O(d!) the complexity

of matrix multiplication. First, we consider the case where the matrix has values

from a field. For ! > 2, an algorithm for matrix multiplication imply an algo-

rithm for determinant computation with the same ! [31]. The best current ! is

2:3727 [137]. Another category of algorithms is ones that apply exact divisions i.e.

with no remainder. An application is the computation of the determinant of a

matrix with integer entries using only integer arithmetic. A typical algorithm in

this category is [10].

A different category is division-free algorithms that use no divisions at all, e.g.

when the matrix values are from an abstract commutative ring. The best current

! in this category is 2:697263 [90]. Here, it is worth mentioning a family of deter-

minant algorithms that use combinatorial approaches. They were introduced by

Mahajan and Vinay [105], and are based on clow (closed ordered walk) sequences.

Several similar methods with complexity O(d4) are surveyed in [123]. Based on

the idea of clow sequences Bird introduced a simpler algorithm that uses ma-

trix operations [20]. Its complexity is O(dM(d)), where M(d) is the complexity of

matrix multiplication. Urbańska conceived a method that uses fast matrix mul-

tiplication [41] to obtain a complexity O(d3:03) [135]. When d is small, however,

Bird’s algorithm behaves better than other division-free algorithms, as it will be

discussed later in the text; see Section 6.4.2.

Determinants of matrices over a ring arise in combinatorial problems [98], in

algorithms for lattice polyhedra [12] and secondary polytopes [120] or in compu-

tational algebraic geometry problems [44]. A special case of the latter is resultant

polytopes that have applications in polynomial system solving [14] and geometric

modeling [61].

However, good asymptotic complexity does not imply good behaviour in prac-

tice for small and medium dimensions. For instance, LinBox [48], which imple-

ments algorithms with state-of-the-art asymptotic complexity, introduces a sig-

nificant overhead in medium dimensions, and seems most suitable in very high

dimensions (see Section 6.4.2 for details). Eigen [80] implements LU decomposi-
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tion, of complexity O(d3), and seems to be suitable for low to medium dimensions.

In addition, there exists a variety of algorithms for determinant sign computa-

tion [27, 1].

The problem of computation of sequences of determinants has also been stud-

ied. TOPCOM [120] is the reference software for enumerating all regular triangu-

lations of a set of points in high dimensions. It efficiently pre-computes all orien-

tation determinants that will be needed in the computation and stores their signs.

In [60], a similar problem is studied in the context of computational algebraic ge-

ometry. The computation of orientation predicates is accelerated by maintaining

a hash table of computed minors of the determinants. These minors appear many

times in the computation. However, the above methods study sequences of deter-

minants that appear in the computation of several triangulations (or equivalently

convex hulls) and cannot be efficiently applied to the case of a single convex hull

computation.

Our main tools are the Sherman-Morrison formulas [128, 11]. They relate the

inverse of a matrix after a small-rank perturbation to the inverse of the original

matrix. Other applications of these formulas include solving the dynamic tran-

sitive closure problem in graphs [124] and studying the effect of new links on

Google Page Rank [9].

Overview of the chapter. The chapter is organized as follows. Section 6.2 in-

troduces the dynamic determinant algorithms and the following section presents

their application to the convex hull and point location problems. Section 6.4 dis-

cusses the implementation, experiments, and comparison with other software.

We end up with conclusions and future work.

6.2 Dynamic Determinant Computations

In the dynamic determinant problem, a d� d matrix A is given. Allowing some

preprocessing, we should be able to handle updates of elements of A and re-

turn the current value of the determinant. We consider here only non-singular

updates, that is, updates that do not make A singular.
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The Sherman-Morrison formula [128, 11] states that

�
A+ wvT

��1
= A�1 � (A�1w)(vTA�1)

1 + vTA�1w
; (6.1)

where A a d � d matrix and v;w vectors of dimension d. Let A0 be the matrix

resulting from replacing the i-th column of A by a vector u. Also let (A)i denotes

the i-th column ofA, and ei the vector with 1 in its i-th place and 0 everywhere else.

An i-th column update of A is performed by substituting v = ei and w = u� (A)i

in Equation 6.1. Then, we can write A0�1 as follows.

A0�1 =
�
A+ (u� (A)i)e

T
i

��1
= A�1 �

�
A�1(u� (A)i)

�
(eTi A

�1)

1 + eTi A
�1(u� (A)i)

: (6.2)

If A�1 is computed, we compute A0�1 using Equation 6.2. The computation is

performed as follows:

h1 = A�1(u� (A)i) (6.3)

h2 = h1=(1 + (h1)
i) (6.4)

H3 = h2 (A
�1)i (6.5)

A0�1 = A�1 �H3 (6.6)

where (A)i; (h1)
i denote the i-th row of A and the i-th element h1 respectively.

The intermediate results are the d-dimensional vectors h1; h2 and the d�dmatrix

H3. Hence, the equations 6.3, 6.4, 6.5, 6.6 are computed in d2+ d; d+O(1); d2; d2

arithmetic operations respectively and thus 3d2 + 2d+O(1) in total.

The matrix determinant lemma [81] states that

det(A+ wvT ) = (1 + vTA�1w) det(A) (6.7)

which yields the following equation

det(A0) = det
�
A+ (u� (A)i)e

T
i

�
=
�
1 + eTi A

�1(u� (A)i)
�
det(A) (6.8)

Using Equation 6.8 we compute det(A0) in 2d+O(1) arithmetic operations, if det(A)

is known. Equations 6.2 and 6.8 lead to the following result.
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Proposition 66. [128] The dynamic determinant problem can be solved using

O(d!) arithmetic operations for preprocessing and O(d2) for non-singular one col-

umn updates. The preprocessing consist in the computation of A�1 and det(A).

Then we show how this computation can be performed over a ring. To this

end, we use the adjoint of A, denoted by Aadj, rather than the inverse. It holds

that Aadj = det(A)A�1, thus we obtain the following two equations.

A0adj =
1

det(A)

�
Aadj det(A0)�

�
Aadj(u� (A)i)

� �
eTi A

adj
��

(6.9)

det(A0) = det(A) + eTi A
adj(u� (A)i) (6.10)

The only division in Equation 6.9 is known to be exact, i.e., its remainder is zero. If

the computation follows the order of operations as determined by the parenthesis

in Equations 6.9, 6.10 then the computation can be performed in 5d2 + d + O(1)

arithmetic operations for Equation 6.9 and in 2d + O(1) for Equation 6.10. In

the sequel, we will call dyn_inv the dynamic determinant algorithm that uses

Equations 6.2 and 6.8, and dyn_adj the one that uses Equations 6.9 and 6.10.

6.3 Geometric Algorithms

We introduce in this section our methods for optimizing the computation of

sequences of determinants that appear in geometric algorithms. First, we utilize

dynamic determinants in incremental convex hull algorithms, which is one of the

basic classes of convex hull algorithms. Then, we show how this solution can be

extended to point location in triangulations.

6.3.1 Definitions

Let us start with some basic definitions from discrete geometry. Let A � Rd be
a pointset. We define the convex hull of a pointset A, denoted by conv(A), as the

smallest convex set containing A. A hyperplane supports conv(A) if conv(A) is en-
tirely contained in one of the two closed half-spaces determined by the hyperplane

and has at least one point on the hyperplane. A face of conv(A) is the intersection
of conv(A) with a supporting hyperplane that does not contain conv(A). Faces of

dimension 0 and d� 1 are called vertices and facets respectively. We call a face f
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a

F u

Figure 6.1: The course of an incremental convex hull algorithm in 3 dimensions.

of conv(A) visible from a 2 Rd if there is a supporting hyperplane that contains f

such that conv(A) is contained in one of the two closed half-spaces determined

by the hyperplane and a in the other. A k-simplex of A is the convex hull of an

affinely independent subset S of A, where dim(conv(S)) = k. A triangulation of A
is a collection of simplices of A, called the cells of the triangulation, such that the

union of the simplices equals conv(A) and every pair of simplices intersect at a

common face or have an empty intersection. We define the orientation matrix AC

of a set C of points fa1 : : : ad+1g � Rd to be the (d + 1) � (d + 1) matrix such that

for every ai, the column i of AC contains ~ai’s coordinates as entries, where ~ai is

the homogeneous vector (ai; 1).

6.3.2 Incremental convex hull

For simplicity, we assume general position ofA and present our method for the

Beneath-and-Beyond (BB) algorithm [127]. However, our method can be extended

to handle degenerate inputs as in [52, §8.4], as well as to be applied to more

efficient incremental convex hull algorithms (e.g. [40]) by utilizing the dynamic

determinant computations to answer the predicates appearing in point location

(Corollary 69). A clarification of this claim is our implementation in Section 6.4

which first handles degenerate inputs in practice and second is faster compared

to other software. In what follows, we use the dynamic determinant algorithm

dyn_adj, which can be replaced by dyn_inv yielding a variant of the presented

convex hull algorithm.

The BB algorithm is initialized by computing a d-simplex of A. At every subse-
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Algorithm 4: Incremental Convex Hull (A)
Input : pointset A � Rd
Output: convex hull of A
sort A by increasing lexicographic order of coordinates, i.e., A = fa1; : : : ; ang;
T  fa1; : : : ; ad+1g;
Q facets of conv(a1; : : : ; ad+1);

foreach a 2 fad+2; : : : ; ang do
Q0  Q;

foreach F 2 Q do
C  the unique d-face s.t. C 2 T and F 2 C;
u the unique vertex s.t. u 2 C and u =2 F ;
C 0  F [ fag;
// det(AC) and Aadj were computed in a previous step
det(AC 0) (det(AC) after updating u with a using Equations 6.9,
6.10);

if det(AC 0) det(AC) < 0 then
T  T [ fd-face of conv(C 0)g;
Q0  Q0 	 f(d� 1)-faces of C 0g; // symmetric difference

Q Q0;

return Q;

quent step, a new point from A is inserted, while keeping a triangulated convex

hull of the inserted points. Let t be the number of cells of this triangulation. As-

sume that, at some step, a new point a 2 A is inserted and T is the triangulation

of the convex hull of the points of A inserted up to now. To determine if a facet F

is visible from a, an orientation predicate involving a and the vertices of F has to

be computed (Figure 6.1). That is, we have to compute the sign of the determinant

of the matrix AC , where C is the set of vertices of F union with a. If we know the

adjoint and the determinant of the orientation matrix of a cell of T that contains

F , this can be done by applying Equation 6.10. If F is on the boundary, this cell

is unique (e.g. (F; u) in Figure 6.1) otherwise we arbitrarily select one of the two

cells that contain F .

Algorithm 4, as initialization, computes from scratch the adjoint matrix and
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the determinant of the orientation matrix AC , where C contains the vertices of

the initial d-simplex. At every incremental step, it first computes the orientation

predicates using the adjoint matrices and determinants computed in previous

steps utilizing Equation 6.10. Second, it computes the adjoint and determinant

of the orientation matrices of the new cells using Equation 6.9. By Proposition 66,

this method leads to the following result.

Lemma 67. Given a d-dimensional pointset the first orientation predicate of in-

cremental convex hull algorithms is computed in O(d!) time, and all the others in

O(d2) time in total O(d2t) space, where t is the number of cells of the constructed

triangulation.

Essentially, this result improves the computational complexity of the deter-

minants involved in incremental convex hull algorithms from O(d!) to O(d2) by

using more space and dynamic determinant updates. Recall that O(d!) is the

current best complexity (Section 6.1). To analyze the complexity of Algorithm 4,

we bound the number of facets of Q in every step of the outer loop of Algorithm 4

with the number of (d�1)-faces of the constructed triangulation of conv(A), which
is bounded by (d+ 1)t. Thus, using Lemma 67, we have the following complexity

bound for Algorithm 4, where we assume that n � d to hide the preprocessing

complexity O(d!).

Corollary 68. Given n d-dimensional points, the complexity of BB algorithm is

O(n logn+ d3nt), where n� d and t is the number of cells of the constructed trian-

gulation.

Note that the complexity of BB, without using the method of dynamic determi-

nants, is bounded byO(n logn+d!+1nt). Recall that t is bounded byO(nbd=2c) [140,

§8.4], which shows that Algorithm 4, and convex hull algorithms in general, do

not have polynomial complexity in n and d. The schematic description of Algo-

rithm 4 and its coarse analysis is good enough for our purpose: to elucidate the

application of dynamic determinants to incremental convex hull computation and

to quantify the improvements using this method. See Section 6.4 for a practi-

cal approach to incremental convex hull algorithms using dynamic determinant

computations.

In Section 6.2 we have addressed only non-singular updates. Here we show

that this will not limit our method to handle degenerate cases. In a degenerate
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case, the determinant of an orientation matrix will be zero if the points in the

orientation test span a space of dimension less than d. However, in this case, we

do not have to update the adjoint or the determinant of the orientation matrix

(which would be equivalent to a singular update operation) since no new cell is

going to be created.

6.3.3 Point location and other geometric algorithms

The above results can be used to improve the efficiency of geometric algorithms

that use convex hull computations. For Delaunay triangulations in Rd and their

dual Voronoi diagrams one way is to be computed as the convex hull of the points

lifted on the paraboloid in Rd+1. For generic liftings the above construction leads

to regular triangulations.

Another important geometric problem where our method could be applied is

exact volume computation, since one of the two major classes of volume computa-

tion algorithms is based on triangulation methods [30]. To elucidate this, observe

that in Algorithm 4we can compute the volume of the polytope by summing up the

volumes of all full dimensional simplices in the resulting triangulation. Indeed,

the volume of a simplex is the absolute value of the determinant of its orientation

matrix. The difference of an incremental convex hull and a volume computation

algorithm using a triangulation method is that the former needs to evaluate de-

terminantal predicates while the latter needs determinantal constructions.

As mentioned above, more efficient incremental convex hull algorithms

(e.g. [40]) are not sorting the input points and are using point locationmethods to

find the position of the point that is going to be inserted into the convex hull. It is

straightforward to apply our scheme in orientation predicates appearing in point

location algorithms, that perform orientation tests w.r.t. the facets of the trian-

gulation. The orientation predicates queried by a point location algorithm can be

computed using Equation 6.10, if the adjoint and determinant of the orientation

matrices of the cells of the triangulation have been precomputed. That yields the

following result.

Corollary 69. Given a triangulation of a d-dimensional pointset computed by an

incremental convex hull algorithm like Algorithm 4, the orientation predicates in-

volved in point location algorithms that perform orientation tests w.r.t. the facets
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of the triangulation can be computed in O(d) time and O(d2t) space, where t is the

number of cells of the triangulation.

6.3.4 Data structures

In this section we present how we store and retrieve the determinants and the

matrices computed in the course of the geometric algorithms that we study. We

will use a hash table as a data structure.

Assume that the input points are indexed as fa1; : : : ; ang. We use as hash keys

the tuples of indices of the (d � 1)-faces of the triangulation. Each (d � 1)-face is

mapped to one of the two cells (i.e. d-faces) of the triangulation that it belongs to.

The selection between the two cells is arbitrary and does not affect the efficiency

of the method. For every cell we also store the adjoint and the determinant of the

matrix that corresponds to its vertices’ coordinates.

In the course of geometric algorithms a given point b should be tested for

orientation with respect to a hyperplane defined by points that are locally indexed

as a1; : : : ; ad. Querying the hash table for the tuple (a1; : : : ; ad)we obtain the adjoint

and the determinant of the matrix with entries the coordinates of a1; : : : ; ad and

one more point c. Thus, the requested orientation determinant is computed by

updating c with b applying Equations 6.9 and 6.10.

The following 2-dimensional example illustrates our approach.

Example 14. Let A = fa1 = (0; 1); a2 = (1; 2); a3 = (2; 1); a4 = (1; 0); a5 = (2; 2)g
where every point ai has an index i from 1 to 5. Assume we are in some step of an

incremental convex hull or point location algorithm and let T = ff1; 2; 4g; f2; 3; 4gg
be the 2-dimensional triangulation of conv(A) computed so far. The cells of T are

indexed using the indices of the points in A. For each cell, the hash table will

store as keys the set of indices of the 2-faces of the cell, e.g. for the cells ff1; 2; 4g
the keys are ff1; 2g; f2; 4g; f1; 4gg mapping to the adjoint and the determinant of

the matrix constructed by the points a1; a2; a4. Similarly, ff2; 3g; f3; 4g; f2; 4gg are
mapped to the adjoint matrix and determinant of a2; a3; a4. To insert a5 in T one

should compute the orientation determinant of a2; a3; a5 to determine whether the

facet f2; 3g is visible from a5 and hence should be connected to construct a new

cell f2; 3; 5g. Similar computations are performed for the other facets. By querying

the hash table for f2; 3g the adjoint and the determinant of the matrix of a2; a3; a4
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are returned. Then, we perform an update of the column corresponding to point

a4, replacing it by a5 and apply Equations 6.9 and 6.10 to compute the adjoint

and the determinant of the new cell. Finally, the two new keys f2; 5g; f3; 5g are
added to the hash table and are mapped to the new cell f2; 3; 5g.

6.4 Implementation and Experimental Analysis

We propose the hashed dynamic determinants scheme and implement it in

C++. The scheme consists of efficient implementations of algorithms dyn_inv and

dyn_adj (Section 6.2) and a hash table, which stores intermediate results (matri-

ces and determinants) based on the method presented in Section 6.3. The design

of our implementation is modular, that is, it can be used by either an algebraic

software providing dynamic determinant algorithm implementations or by a ge-

ometric software providing fast geometric predicates and constructions (e.g. ori-

entation, volume).

The geometric software builds the hashed dynamic determinants scheme on

top of CGAL (experimental) package triangulation, presented in [22]. We will

call this hdch. Hdch uses Eigen for initial determinant and adjoint or inverse ma-

trix computation and Laplace determinant algorithm for dimensions lower than

6. Note that triangulation and [22] propose two implementations: one called

New DT and a memory efficient variant called Del graph. Here, we use New DT,
hence any reference to triangulation or [22] will refer to New DT. The pack-

age triangulation works on top of a CGAL-compliant d-dimensional kernel. We

used a faster version of CGAL d-dimensional kernel, hacked by the authors of

triangulation and provided as a part of the experimental package.

The triangulation package implements an incremental convex hull algo-

rithm, like Algorithm 4 in Section 6.3. Their main difference is that triangu-
lation does not sort the points along one coordinate but along a d-dimensional

Hilbert curve and performs a fast point location at every insertion. Thus, we can

take advantage of our scheme in two places: in the orientation predicates appear-

ing in the point location procedure and in the ones that appear in the construc-

tion of the convex hull. Our implementation is independent of the data-structures

used by triangulation and this is one feature of hdch. In practice, hash tables
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have constant insertion and retrieval times, and thus our approach does not in-

troduce a significant overhead in computing time while remains modular. The

only drawback is the overhead in space.

The hash table has been implemented using the Boost libraries [23]. To reduce

memory consumption and speed-up look-up time, we sort the lists of indices that

form the hash keys. We also use the GNU Multiple Precision arithmetic library

(GMP), the current standard for multiple-precision arithmetic, which provides

integer and rational types mpz_t and mpq_t, respectively.
The code is publicly available from

http://hdch.sourceforge.net.

We design and perform experiments with both algebraic and geometric software

to quantify the efficiency of our method. The data used in the experiments are

also available in the above web-page and thus all the experimental results can

be reproduced.

6.4.1 Experimental setup

All experiments ran on an Intel Core i5-2400 3:1GHz, with 6MB L2 cache and

8GB RAM, running 64-bit Debian GNU/Linux. We divide our tests in four sce-

narios, according to the number type involved in computations:

a rationals where the bit-size of both numerator and denominator is 10000,

b rationals converted from doubles, that is, numbers of the form m � 2p, where

m and p are integers of bit-size 53 and 11 respectively,

c integers with bit-size 10000, and

d integers with bit-size 32.

However, it is rare to find in practice input coefficients of scenarios (a) and (c).

Inputs are usually given as 32 or 64-bit numbers. These inputs correspond to the

coefficients of scenario (b). Scenario (d) is also very important, since points with

integer coefficients are encountered in many combinatorial applications (Sec-

tion 6.1).
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6.4.2 Determinant computation experiments

We compare state-of-the-art software for exact computation of the determinant

of a matrix. We consider LU decomposition in Eigen [80], LinBox determinant [48],

applied to integers, and Maple 14 LinearAlgebra[Determinant]. LinBox imple-

ments state-of-the-art algorithms with the best known complexity bounds. How-

ever, their implementation usually has a big computational overhead and LinBox

shows the best results only when working in high dimensions (the results of the

tests of this section will corroborate this claim). LinBox provides a myriad of algo-

rithms for computing determinants: many known dense and sparse elimination

methods, the block Wiedemann algorithm [136] and an algorithm using a hybrid

method mixing Chinese remaindering and last invariant factor [49]. We tested

them and used for our tests the faster algorithm for our scenarios, the hybrid

elimination algorithm (which is also the default in LinBox). Maple implementa-

tion chooses between Bareiss algorithm [10], Gaussian elimination [118, §2.2]

and Berkowitz algorithm [16], based on the properties of the underlying alge-

braic structure. To test the behaviour of the class of division-free combinatorial

algorithms, we choose to implement Bird’s algorithm [20]. This choice may seem

odd, because there are combinatorial algorithms with better complexity bounds.

However, good complexity bounds are based here on fast matrix multiplication,

which carries big constants in the complexity. In small to medium dimensions,

which we are focusing in the present work, algorithms using fast matrix mul-

tiplication will show thus worse timings than naive multiplication algorithms.

Bird’s algorithm, on the other hand, leaves the choice of the matrix multiplica-

tion algorithm to the implementer. We choose to implement high-school matrix

multiplication [118, §3.1] and, since Bird’s algorithm operates with some rows

of upper-triangular matrices, few multiplications are actually done (that is, the

constant hidden in the complexity bound is very small). We also implemented

another division-free algorithm, the Laplace expansion [118, §4.2]. Finally, we

consider our implementations of dyn_inv and dyn_adj.

We do not consider in our tests the exact LU decomposition implemented in

CGAL d-dimensional kernel [126] for two reasons. On one hand, Eigen is always

around two times faster than CGAL. On the other hand, future versions of CGAL

d-dimensional kernel will rely on Eigen for determinant computations. Let us
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mention, finally, that triangulation uses a hacked version of CGAL determi-

nant. Since they compute with cartesian coordinates, the last row of the matri-

ces is always full of ones. Thus, to compute the determinant of a matrix of size d,

they create a new matrix of size d� 1 by eliminating the last row and subtracting

the last column of the original matrix to the d� 1 first columns. Then, they com-

pute the determinant of the new matrix, which is the same as the determinant

of the original one. This method reduces the constant of the complexity of the

determinant computation, but it is never faster than Eigen.

We test the above implementations in the four coefficient scenarios described

above. When coefficients are integers, we can use integer exact division algo-

rithms, which are faster than quotient-remainder division algorithms. In this

case, Bird, Laplace and dyn_adj enjoy the advantage of using the number type

mpz_t while the others are using mpq_t. The input matrices are constructed start-

ing from a random d � d matrix, replacing a randomly selected column with a

random d vector. We present experimental results of the four input scenarios in

Tables 6.1–6.4. We tested a fifth coefficient scenario (rationals of bit-size 32), but

do not show results here because timings are quite proportional to those shown

in Table 6.1. We stop testing an implementation when it is slow and far from

being the fastest (denoted by “–” in the Tables).

On one hand, without considering the dynamic algorithms, the experiments

show the most efficient determinant algorithm implementation in the different

scenarios described. This is a result of independent interest, and shows the ef-

ficiency of division-free algorithms in some settings. The simplest determinant

algorithm, Laplace expansion, proved to be the best in all scenarios, until di-

mension 4 to 6, depending on the scenario. It has exponential complexity, thus

it is slow in dimensions higher than 6 but it behaves very well in low dimensions

because of the small constant of its complexity and the fact that it performs no

divisions. Bird is the fastest in scenario (c), starting from dimension 7, and in

scenario (d), in dimensions 7 and 8. It has also a small complexity constant, and

performing no divisions makes it competitive with decomposition methods (which

have better complexity) when working with integers. Eigen is the fastest imple-

mentation in scenarios (a) and (b), starting from dimension 5 and 6 respectively,

as well as in scenario (d) in dimensions between 9 and 12. It should be stressed

that decomposition methods are the current standard to implement determinant
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d Bird CGAL Eigen Laplace Maple dyn_inv dyn_adj
3 16.61 17.05 15.02 11.31 16.234 195.38 191.95
4 143.11 98.15 71.35 63.22 115.782 746.32 896.58
5 801.26 371.85 239.97 273.27 570.582 2065.08 2795.53
6 3199.79 1086.80 644.62 1060.10 1576.592 4845.38 7171.81
7 10331.30 2959.80 1448.60 7682.24 4222.563 – –

Table 6.1: Determinant tests, inputs of scenario (a): rationals of bit-size 10000.
Times in milliseconds, averaged over 1000 tests. We highlight the best non-
dynamic algorithm and the dynamic algorithm if it is the fastest over all.

computation. Maple is the fastest only in scenario (d), starting from dimension

13. In our tests, LinBox is never the best, due to the fact that it focuses on higher

dimensions. Finally, we report results of inexact computation for scenarios (b)

and (d), that is, CGAL d-dimensional kernel using double-precision floating-point

arithmetic (denoted by inexact in Tables 6.2 and 6.4). Though not comparable

with the timings of exact computations, this approach does not compute the cor-

rect value of the determinant and serve as an experimental lower bound on the

running time of all the above implementations. Furthermore, this experiments

provide an insight of the timings one would obtain using double-precision fil-

tered computations. Typically, these take at least twice the computing time of

the shown values.

On the other hand, when dynamic determinant algorithm enter the competi-

tion, experiments show that dyn_adj defeats all the other algorithms in scenarios

(b), (c), and (d). On each of these scenarios, there is a threshold dimension, start-

ing from which dyn_adj is the most efficient, which happens because of its better

asymptotic complexity. In scenarios (c) and (d), with integer coefficients, division-

free performs much better, as expected, because integer arithmetic is faster than

rational. In general, the sizes of the coefficients of the adjoint matrix are bounded.

That is, the sizes of the operands of the arithmetic operations are bounded. This

explains the better performance of dyn_adj over the dyn_inv, despite its worse

arithmetic complexity.
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d Bird CGAL Eigen Laplace Maple dyn_inv dyn_adj inexact
3 .013 .021 .014 .008 .058 .046 .023 .001
4 .046 .050 .033 .020 .105 .108 .042 .002
5 .122 .110 .072 .056 .288 .213 .067 .002
6 .268 .225 .137 .141 .597 .376 .102 .002
7 .522 .412 .243 .993 .824 .613 .148 .003
8 .930 .710 .390 – 1.176 .920 .210 .003
9 1.520 1.140 .630 – 1.732 1.330 .310 .004
10 2.380 1.740 .940 – 2.380 1.830 .430 .004
11 – 2.510 1.370 – 3.172 2.480 .570 .005
12 – 3.570 2.000 – 4.298 3.260 .760 .005
13 – 4.960 2.690 – 5.673 4.190 1.020 .006
14 – 6.870 3.660 – 7.424 5.290 1.360 .007
15 – 9.060 4.790 – 9.312 6.740 1.830 .008

Table 6.2: Determinant tests, inputs of scenario (b): rationals converted from
double. Each timing (in milliseconds) corresponds to the average of computing
10000 (for d < 7) or 1000 (for d � 7) determinants. Highlighting as in Table 6.1.
The last column of the table shows the time spent in inexact computations with
double-precision floating point arithmetic, by performing an LU decomposition
using the CGAL d-dimensional kernel.

d Bird CGAL Eigen Laplace LinBox Maple dyn_inv dyn_adj
3 .23 3.24 2.58 .16 132.64 .28 27.37 2.17
4 1.04 14.51 10.08 .61 164.80 1.36 76.76 6.59
5 3.40 45.52 28.77 2.02 367.58 4.52 176.60 14.70
6 8.91 114.05 67.85 6.16 – 423.08 325.65 27.97
7 20.05 243.54 138.80 42.97 – – 569.74 48.49
8 40.27 476.74 257.24 – – – 904.21 81.44
9 73.90 815.70 440.30 – – – 1359.80 155.70
10 129.95 1358.50 714.40 – – – 1965.30 224.10
11 208.80 – – – – – – 328.50
12 327.80 – – – – – – 465.00
13 493.90 – – – – – – 623.80
14 721.70 – – – – – – 830.80
15 1025.10 – – – – – – 1092.30
16 1422.80 – – – – – – 1407.20
17 1938.40 – – – – – – 1795.60

Table 6.3: Determinant tests, inputs of scenario (c): integers of bit-size 10000.
Times in milliseconds, averaged over 1000 tests for d < 9 and 100 tests for d � 9.
Highlighting as in Table 6.1.
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d Bird CGAL Eigen Laplace LinBox Maple dyn_inv dyn_adj inex.
3 .002 .021 .013 .002 .872 .045 .030 .008 .001
4 .012 .041 .028 .005 1.010 .094 .058 .015 .002
5 .032 .080 .048 .016 1.103 .214 .119 .023 .002
6 .072 .155 .092 .040 1.232 .602 .197 .033 .002
7 .138 .253 .149 .277 1.435 .716 .322 .046 .003
8 .244 .439 .247 – 1.626 .791 .486 .068 .003
9 .408 .689 .376 – 1.862 .906 .700 .085 .004
10 .646 1.031 .568 – 2.160 1.014 .982 .107 .004
11 .956 1.485 .800 – 10.127 1.113 1.291 .133 .005
12 1.379 2.091 1.139 – 13.101 1.280 1.731 .160 .005
13 1.957 2.779 1.485 – – 1.399 2.078 .184 .006
14 2.603 3.722 1.968 – – 1.536 2.676 .222 .007
15 3.485 4.989 2.565 – – 1.717 3.318 .269 .008
16 4.682 6.517 3.391 – – 1.850 4.136 .333 .010

Table 6.4: Determinant tests, inputs of scenario (d): integers of bit-size 32. Times
in milliseconds, averaged over 10000 tests. Highlighting as in Table 6.1. The last
column shows the timings using inexact arithmetic, as in Table 6.2.

6.4.3 Convex hull experiments

For the experimental analysis of the behaviour of dynamic determinants used

in convex hull algorithms (Section 6.3), we experiment with four state-of-the-

art exact convex hull packages. Two of them implement incremental convex hull

algorithms: triangulation [22] implements [39] and beneath-and-beyond (bb)
implements the Beneath-and-Beyond algorithm in polymake [72]. The package

cdd [70] implements the double description method, and lrs implements the

gift-wrapping algorithm using reverse search [6].

We design the input of our experiments parametrized on the number type of

the coefficients and on the distribution of the points. The number type is either

rational or integer. From now on, when we refer to rational and integer we mean

scenario (b) and (d), respectively. We test three uniform point distributions:

i in the d-cube [�100; 100]d,

ii in the origin-centered d-ball of radius 100, and

iii on the surface of that ball.

We perform an experimental comparison of the four above packages and hdch,
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with input points from distributions (i)-(iii) with either rational or integer coeffi-

cients. In the case of integer coefficients, we test hdch using mpq_t (hdch_q) or
mpz_t (hdch_z). In this case hdch_z is the most efficient with input from distri-

bution (ii) (Figure 6.2( ); distribution (i) is similar to this) while in distribution

(iii) both hdch_z and hdch_q perform better than all the other packages (see Fig-

ure 6.2( )). In the rational coefficients case, hdch_q is competitive to the fastest

package (Figure 6.3). Note that the rest of the packages cannot perform arithmetic

computations using mpz_t because they are lacking division-free determinant al-

gorithms. It should be noted that hdch is always faster than triangulation. The
sole modification of the determinant algorithm made it faster than all other im-

plementations in the tested scenarios.

At this point, it may arise the question about filtering: will our method be

faster if using arithmetic filters to compute the signs of determinants? This ques-

tion is answered in [22]: in the dimensions we are focusing, the truth is that

simple filtering is not efficient, since it reverts too often to exact computations.

[28] study this problem and propose a more complicated filtering scheme for de-

terminant computations in higher dimensions; but it must be implemented in

a layer lower than the triangulation algorithm, in this case, the d-dimensional

kernel. CGAL does not, and does not plan in the near future to, implement such

an algorithm.Preliminary tests with triangulation using filtered computations

corroborated the need of better algorithms for computing signs of determinants

in high dimensions.

triangulation would greatly benefit from this high-dimensional filtering tech-

niques. On the other hand, implementing filtering is very difficult with our

scheme.

We test the improvements of hashed dynamic determinants scheme on tri-
angulation and their memory consumption. For input points from distribution

(iii) with integer coefficients, when dimension ranges from 3 to 8, hdch_q is up to

1:7 times faster than triangulation and hdch_z up to 3:5 times faster (Table 6.5).

We carry out experiments using as input the vertices of resultant polytopes

which have integral coefficients (Section 6.1). The results in Table 6.6 emphasize

the utilization of the hashed dynamic determinants scheme when working with

real data.
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jAj d

hdch_q hdch_z triangulation
time memory time memory time memory
(sec) (MB) (sec) (MB) (sec) (MB)

260 2 0.02 35.02 0.01 33.48 0.05 35.04
500 2 0.04 35.07 0.02 33.53 0.12 35.08
260 3 0.07 35.20 0.04 33.64 0.20 35.23
500 3 0.19 35.54 0.11 33.96 0.50 35.54
260 4 0.39 35.87 0.21 34.33 0.82 35.46
500 4 0.90 37.07 0.47 35.48 1.92 37.17
260 5 2.22 39.68 1.08 38.13 3.74 39.56
500 5 5.10 45.21 2.51 43.51 8.43 45.34
260 6 14.77 1531.76 8.42 1132.72 20.01 55.15
500 6 37.77 3834.19 21.49 2826.77 51.13 83.98
220 7 56.19 6007.08 32.25 4494.04 90.06 102.34
320 7 swap swap 62.01 8175.21 164.83 185.87
120 8 86.59 8487.80 45.12 6318.14 151.81 132.70
140 8 swap swap 72.81 8749.04 213.59 186.19

Table 6.5: Comparison of hdch_q, hdch_z and triangulation using points from
distribution (iii) with integer coefficients; swap means that the machine used swap
memory.

6.4.4 Volume computation experiments

The aforementioned packages compute the volume of the polytope, defined

by the input points, as part of the convex hull computation (Section 6.3). It is

important to remark that volume computation does not benefit from filtering, as

algorithms using the Orientation predicate do. Due to this fact, our algorithm

outperforms competitors in exact volume computation.

The last column of Table 6.6 shows the volume of resultant polytopes com-

puted using hdch. Therefore, hdch also yields a competitive implementation (Fig-

ure 6.2) for the exact computation of the volume of a polytope given by its vertices.

Computing only signs of determinants would not give, as output of the algorithm

computing resultant polytopes, the volume. Table 6.7 shows the gain of using

hdch over lrs, a state-of-the-art software to compute polytope volumes in low

dimensions, when computing volumes of 6-dimensional polytopes.
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jAj d
time(sec)

volumehdch_q hdch_z triang
80 6 0.54 0.27 0.66 368986.7
100 6 0.69 0.33 0.87 108096.3
110 6 1.20 0.52 1.40 1456226058.5
125 6 1.28 0.61 1.66 66137.3
376 7 17.07 7.80 24.41 1713149926.2
414 7 23.02 10.91 32.54 82132445.9
500 7 29.40 13.05 41.22 2593047991.6
528 7 38.22 17.96 54.91 33727790.7

Table 6.6: Comparison of hdch_q, hdch_z and triangulation computing resul-
tant polytopes.

jAj lrs (sec) hdch (sec)
100 3.87 1.41
200 20.33 3.36
300 43.08 6.44
400 85.61 8.60
500 135.44 10.76
600 172.34 13.65
700 226.47 15.04
800 297.48 18.59
900 408.19 21.84

Table 6.7: Volume computation experiments; input is random points in a cube of
dimension 6

6.4.5 Point location experiments

We test the efficiency of hashed dynamic determinants scheme on the point lo-

cation problem in a triangulation. Given a pointset, triangulation constructs a

triangulation of the convex hull of the pointset and a data structure that can per-

form point locations of new points. In addition to that, hdch constructs the hash

table with matrices and determinants used for faster orientation computations.

We perform tests with triangulation and hdch using input points uniformly

distributed on the surface of a ball (distribution (iii)) as a preprocessing to build

the data structures. Then, we perform point locations using points uniformly dis-

tributed inside a cube (distribution (i)). Experiments show that our method yields
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Figure 6.2: Comparison of convex hull packages for 6-dimensional inputs with
integer coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) on
its surface.

a speed-up in query time by a factor of 35 to 78 when dimension ranges from 8 to

11 using points with integer coefficients (scenario (d)) (Table 6.8).

6.4.6 Memory consumption

The main disadvantage of hdch is the amount of memory consumed, which

allows us to compute up to dimension 8 (Table 6.5). One can think at this point

that an intelligent memory allocation scheme could improve the performance of

our algorithms. However, tests with an implementation of hdch using the Boehm-

DeMers-Weiser conservative garbage collector [21] did not show improvements in

computing time. This can be due to the fact that the complexity of the operations

performed on the allocated numbers surpasses the complexity of the allocated

space. Thus, changing the allocation scheme would not reduce significantly the

computation time. This drawback can be seen as the price to pay for the obtained

speed-up.

The large memory consumption of our method can be overhauled by exploiting

hybrid techniques. That is, to use the dynamic determinant hashing scheme as

long as there is enough memory and subsequently use the best available deter-

minant algorithm (Section 6.4). Alternative options are to clean periodically the

hash table or to use a Least Recently Used (LRU) cache to avoid storing for long
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Figure 6.3: Comparison of convex hull packages for 6-dimensional inputs with
rational coefficients. Points are uniformly distributed (a) inside a 6-ball and (b)
on its surface.

time unused determinants and matrices. For the latter, techniques for efficiently

computing determinants of matrices with more than one update, as described

in [124], could be utilized.

6.5 Concluding remarks

We provide efficient determinantal predicates by utilizing the well known

Sherman-Morrison formulas and describe how they can be used by algorithms

that make heavy use of similar determinant computations. We also presented ex-

perimental evidences about the supremacy of these methods over state-of-the-art

methods in determinant, convex hull and point location computations.

A future improvement in the memory consumption of our method could be

the exploitation of hybrid memory management techniques as discussed in Sec-

tion 6.4. One extension of the proposed method of this work would be the ap-

plication of dynamic determinants to the gift wrapping (GfR) convex hull algo-

rithms [36, 6]. Such an extension would certainly improve the memory consump-

tion of our method.

Finally, studying the behaviour of our scheme using filtered computations,

could lead to even more efficient implementations. Moreover, implementing mod-

ern algorithms for filtered computation of determinants would improve our im-
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d jAj
preproc. data # of query time
time structs. cells in (sec)
(sec) (MB) triangul. 1K 1000K

hdch_z 8 120 45.20 6913 319438 0.41 392.55
triang 8 120 156.55 134 319438 14.42 14012.60
hdch_z 9 70 45.69 6826 265874 0.28 276.90
triang 9 70 176.62 143 265874 13.80 13520.43
hdch_z 10 50 43.45 6355 207190 0.27 217.45
triang 10 50 188.68 127 207190 14.40 14453.46
hdch_z 11 39 38.82 5964 148846 0.18 189.56
triang 11 39 181.35 122 148846 14.41 14828.67

Table 6.8: Point location time of 1K and 1000K (1K=1000) query points for hdch_z
and triangulation (triang), using distribution (iii) for preprocessing and distri-
bution (i) for queries and integer coefficients.

plementation, as well as its competitors.
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