UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

High-dimensional polytopes defined by oracles:
algorithms, computations and applications

Vissarion G.E. Fisikopoulos

Athens

April 2014

EONIKO KAI KAMOAIZTPIAKO NANENIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZMOYAQN

AIAAKTOPIKH AIATPIBH

NMoAUToTtra peydAng S1G0TAONG OPICHEVA HECW HAVTEIWV:
aAyopiBuol, UTTOAOYIOHOI KAl EQAPHUOYEG

Bnooapiwv I'.E. Puoiké1TOUAOG

AOHNA

ATPIAIOZ 2014

PhD THESIS

High-dimensional polytopes defined by oracles:

algorithms, computations and applications

Vissarion G.E. Fisikopoulos

SUPERVISOR: loannis Z. Emiris, Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
loannis Z. Emiris, Professor UoA
Dimitrios Gunopulos , Professor UoA

Monique Teillaud, Research Director INRIA Sophia-Antipolis

SEVEN-MEMBER EXAMINATION COMMITTEE

loannis Z. Emiris, Dimitrios Gunopulos,
Professor UoA Professor UoA
Monique Teillaud, Michael Joswig,
Research Director Professor TU Berlin

INRIA Sophia-Antipolis

Apostolos Giannopoulos, Menelaos Karavelas,

Professor UoA Assistant Professor University of Crete

Stavros Kolliopoulos,

Associate Professor UoA

Examination Date: 24/04/2014

AIAAKTOPIKH AIATPIBH

MoAUToTTa pEYAANG S1IG0TOONG OPICUEVA PJECW PAVTEIWV:
aAyop1Bpol, UTTOAOYIOUOI KAl EQAPUOYEG

Bnooapiwv I'.E. Puoiké1TOUAOG

ENIBAENMQN KAOHIMHTHZ: lwdvvng Z. Epipng, Kabnyntig EKIMA

TPIMEAHZ ENITPOMNH MNAPAKOAOYOHZHZ:
lwavvng Z. Epipng, KaBnyntig EKMA
AnuRtpng NouvoétrouAog , Kabnyntr¢ EKIMA

Monique Teillaud, AicuB. Epsuvwyv IvoTitouTto INRIA Sophia-Antipolis

ENTAMEAHZ EZETAZTIKH EMITPOIMNH

lwavvng Z. Epipng, AnuniTpng MNouvoTtrouAog,
KaBnyntg EKIA KaBnyntrg EKIMA
Monique Teillaud, Michael Joswig,
AiguBuvTpia Epguviov KaBnyntg TU Berlin

IvoTitouto INRIA Sophia-Antipolis

AtréoToAog MNavvotrouAog, Mevéldaog KapaBéAag,
KaBnyntAg EKMA ETtrikoupog Kabnyntig MavemoTtiuio Kpntng

ZTaupog KoAAIdTTOUAOG,
AvatrAnpwtnr¢ Kabnyntg¢ EKMA

Huepopnvia e¢€taong: 24/04/2014

ABSTRACT

The processing and analysis of high dimensional geometric data plays a fun-
damental role in disciplines of science and engineering. The last decades many
successful geometric algorithms has been developed in 2 and 3 dimensions. How-
ever, in most cases their performance in higher dimensions is poor. This behavior
is commonly called the curse of dimensionality. A solution framework adopted for
the healing of the curse of dimensionality is the exploitation of the special struc-
ture of the data, such as sparsity or low intrinsic dimension and the design of
approximation algorithms. This thesis studies problems inside this framework.

The main research area of this thesis is discrete and computational geometry
and its connections to branches of computer science and applied mathematics
like polytope theory, algorithm engineering, randomized geometric algorithms,
computational algebraic geometry and optimization. The fundamental geometric
objects of the study are polytopes, with main properties of being convex and
defined by an oracle in a high dimensional space.

The contribution of this thesis is threefold. First, the design and analysis of ge-
ometric algorithms for problems concerning high-dimensional, convex polytopes,
such as convex hull and volume computation and their applications to computa-
tional algebraic geometry and optimization. Second, the establishment of combi-
natorial characterization results for essential polytope families. Third, the imple-
mentation and experimental analysis of the proposed algorithms and methods.
The developed software is open-source, publicly available and builds on, extends
and is competitive with state-of-the-art geometric and algebraic software libraries

such as CGAL and polymake.

SUBJECT AREA: Discrete and Computational Geometry

KEYWORDS: convex polytopes, general dimension, polytope oracle, edge-
skeleton, volume computation, Newton polytope of sparse resul-
tant, secondary polytope, regular triangulations, mixed subdivi-
sion, geometric predicates, algorithm engineering, experimental

analysis

IIEPIAHWH

H ene§epyaoia kat avdluon yeoperpikov dedopévav oe uypniég draotdoeig Sa-
dpapartidetl Eva Beped1mdn poAo oe S1apopoug KAASOUG NG EMOTHING KAl TNG PNXa-
VIKrG. Tig teAeutaieg bekactieg €xouv avarttuyBei moAAol emTuxnpEvol YE@UETPIKOT
aAyopiOpot oe 2 kat 3 draotaoelg. QotO00, OTIG IIEPIOCOTEPES TTEPUTTINOELG, Ol ETTOO0-
0€1g Toug og UPnAotepeg Hraotaoeilg dev eival 1KavomoUKeGg. Autr] 1 oupInepipopd
elval eUPERG YVROT] ®G Katdpa twv pueydidwv dtaotaoewv (curse of dimensionality).
Avo mAaiola Auong rou €xouv u00etnBei yla va Semepaotel auty) n SuokolAia ei-
vati 1 eKPEeTtdAAeuon g €101k g dourg twv 6edopévav, ONIOG 0L MIEPUTINOELS APALDV
(sparse) 6edopévav 1) otnv repinteorn rmou ta dedopéva Bpiokovial oe X®Po Xapnio-
TePNG 81doTaong, Kat 0 oXed1a0p0g MPOOEYY1I0TIKGV aAyopifpwev. X1 dratpiBr) avtr
peAetape npoBAnpata peoa oe autda ta rmiaioa.

To rUp10 epeuvnUIKO 1edio NG Iapovoag epyaociag sivat n Hraxkpitr] Kat UTtoAoyt-
OTIKIG YEQUETPIA KAl 01 OXE0ELG TNG PE TOUG KAAOOUG TG EMMOTI NG TOV UTTOAOY10T®V
Kadl Ta epappoopéva pabnuatikd, onwg sivat n Be@pia moAutonwv, ol UAOTIO0e1g
aAyopiBpwv, ot mbavoBewpnuikol yeoperpikol aAlyopiBpotl, n uroAoyloukn adye-
Bpkn) yeoperpia kat n BeAtiotornoinon. Ta OepeAiddn yeoperpikd avukeipeva g
peAéng pag sivat ta moAvtona, Kat ot BaoikeEg toug 1810t teg elval) KUptomIa Kat
ot opidovratl amno €va uavteio (oracle) os €va x®po vyning drtaotaong.

H oupBoAn autrg tng diatpibrig eivatl tputdn. [pwtov, oto oxedlaopo kat v
avAdAuon TRV YE@PETPIK®V adyopifpemv yia poBAnjpata oe peydAeg daotdoetg. Asu-
TEPOV, OINV AO6e§n BeRPNTKOV ATIOTEAEOPNAT®V OXETIKA PE T0 oUvOUAoTIKO Xapa-
KT P00 BA01KWV O1KOYEVEIDV MTOAUTOTIOV. Tpitov, otnv epappoyr) Kat IEPAPATIKY)
avAAuon TV MPOTEVOREVRV adyopidpev kat pebodawv. H avdrtuén tou Aoyilopikou
elvatl avoiytou Kwdika, 1o Aoylopiko eivat d1ab€op1o oto Kowvo kat Baoidetat kat erte-
Kteivel 81a6edopéveg yeoperpikrég kat alyeBpikeg B16A10011Keg AOY1IO01KOU, OTIKG 1)

CGAL xat to polymake.

OEMATIKH ITEPIOXH: Awakpttr] kat Yriodoyiotikn 'eopetpia

AEEEIZ KAEIAIA: kuptd roAutorna, yeviky 61dotaot), pavieio moAUTOn®v, OKEAETOG
AKHP®V, UTTOAOY10P0G OYKOU, TTOAUTOITO NG apairg arnalsipouoag,
deutepeUov MOAUTOITO, KAVOVIKEG TPLY®VOITOINoelg, NIKTEG urtodiat-
PEOELG, YEMUETPIKA KATNYOop1jpatd, UAOTIow)oelg aAyopifpwv, met-

PAPATIKI] avAAUOT)

Acknowledgements

First and foremost I would like to thank my thesis advisor loannis Emiris for
his inspired guidance. Our white-board discussions have helped me many times
to overcome difficulties and deadlocks in my research. I truly enjoy working with
him.

I would like to thank Monique Teillaud, member of my thesis three-person
committee, for the fruitful discussions on several aspects of my thesis and for
being a kind advisor while I was an intern at INRIA Sophia-Antipolis.

I would also like to thank the other member of my thesis three-person commit-
tee, Dimitrios Gunopulos, for his interest in my research and for our discussions
on subjects that connect computational geometry with more applied topics such
as data mining.

I am thankful for the other members of my thesis seven-person committee:
Michael Joswig for our interesting discussions on my thesis topics in our few
meetings the last two years in U.S. and Berlin; Apostolos Giannopoulos for ac-
cepting to participate in my committee and for his kind comments; Menelaos
Karavelas for several enlightening discussions on various topics in computational
geometry; Stavros Kolliopoulos for his useful comments and discussions on com-
binatorial optimization topics.

I would like to thank Alicia Dickenstein for her continuous support and en-
couragement, for our productive collaboration starting with her visit in Athens
and for helping me to understand fundamental concepts in algebraic geometry.

I also like to thank Bernd Gaertner for hosting me in ETH Zurich the summer
of 2012, for our collaboration and his advice in the topics of discrete geometry
and optimization.

I am grateful to my colleague and friend Christos Konaxis for his support and
guidance in my first steps of my PhD. I’d also like to thank my other colleague and
friend Luis Penaranda for our fruitful and enjoyable collaboration while being in
Athens.

[thank Manolis Koubarakis for giving me the opportunity to work in a research
project in databases and for the financial support the first months as a PhD
student in the University of Athens. Also I’d like to thank Babis Nikolaou for our

enjoyable collaboration while working in that project.

I thank all my colleagues in the University of Athens for providing a wonderful
working and social environment. I would like to thank my family for their support
and their unconditional love. I also thank my friends for reminding me that the
adventure is out there. Last but not least, I would like to thank my life partner,
Sofia, for her love, her encouragement and her help to overcome my fears. This
thesis is dedicated to her.

Part of this thesis was partially supported by the European Commission re-
search project Computational Geometric Learning, which acknowledges the finan-
cial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission,
under FET-Open grant number: 255827. Part of this thesis was co-financed by
the European Union (European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) - Research Funding Program: THALIS
- UOA (MIS 375891).

Vissarion Fisikopoulos
Athens, 24 April 2014.

Contents

List of Figures
List of Tables

Zuvontikn IIapouoiaon

1 E0aylyr] o o e e e e e e e e e e e
AAyop18101 yia 1oV UTIOAOY10p0 TOU ITOAUTOIOU g araAsigpouoag . .
YToAOy1010G TIOAUTOTUK®V OKEAET®V ATTO AKHPEG . . v v v v v v v . . .
[TpOOEYY10TIKOG UTTOAOYIOHOG OYVKOU .« v v v v v v v o e e e e e e e
Zuvbuaotiky] T®V MOAUTONI®V NG arnaAdsipovoag

Fe@PETIPIKA RKATNYOPHATA &« v v v v v v v v e e e e e e e e e e e

N O O o W

Enektdoeig Kat avolktd mPoBAATA .« . .« v v v v v e e e e e e .

1 Polytopes, Algorithms and Applications
1.1 Introduction e
1.2 Algorithms for resultant polytopes
1.3 Edge-skeleton computation. 0L,
1.4 Approximate volume computation
1.5 Combinatorics of resultant polytopes
1.6 Geometric predicates oL

1.7 Extensions and open problems

2 Algorithms for resultant polytopes
2.1 Introduction L e
2.2 Resultant polytopes and their projections
2.3 Algorithms and complexity

2.4 Hashing of Determinants

19

21

23
23
25
27
28
29
29
30

33
33
35
37
38
39
39
40

2.5 Implementation and Experiments
2.6 Computing discriminant polytopes

2.7 Future work e e

3 Algorithms for the edge skeleton
3.1 Introduction o e
3.1.1 Applications e
3.1.2 Our contribution 0L,
3.2 Well-described polytopes and oracles
3.3 Computing the edge-skeleton
3.3.1 Reverse search for edge-skeleton.
3.4 Applications. e
3.4.1 Signed Minkowski sums
3.4.2 Secondary and resultant polytopes

3.5 Concludingremarks Lo,

4 Algorithms for polytope volume approximation
4.1 Introduction e e
4.2 RandomwalksandOracles.
4.3 The volume algorithm
4.4 Experimentso e e
4.5 Furtherwork

5 Combinatorics of 4-dimensional resultant polytopes
5.1 Introduction e
5.2 Resultant polytopes oo
5.2.1 4-dimensional resultant polytopes.
5.3 The case (3,3,3)ingeneral
5.3.1 Input genericity maximizes complexity
5.4 The case (3,3,3) with non-paralleledges
5.4.1 Polar mixed subdivisions
5.4.2 Bounds on the number of cells in a subdivision
5.4.3 Bounds on the number of types of subdivisions
5.4.4 Subsystems and cells of subdivisions
5.4.5 Typesof N(R)facets

73
73
75
77
78
80
84
85
85
88
92

5.4.6 The numberof N(R)facets 143

5.4.7 The number of N(R)faces 146

5.5 Classification 147
5.6 Open problems and Extensions 149
6 Geometric predicates: algorithms and software 151
6.1 Introduction L e 151
6.2 Dynamic Determinant Computations 154
6.3 Geometric Algorithms o L Lo, 156
6.3.1 Definitions o o oL 156
6.3.2 Incrementalconvexhull 157
6.3.3 Point location and other geometric algorithms 160
6.3.4 Datastructures. 000 161

6.4 Implementation and Experimental Analysis 162
6.4.1 Experimentalsetup, . 163
6.4.2 Determinant computation experiments 164
6.4.3 Convex hull experiments 168
6.4.4 Volume computation experiments 170
6.4.5 Point location experiments 171
6.4.6 Memory consumptiono 0000 172

6.5 Concludingremarkso, 173

Bibliography 175

List of Figures

1.1

1.2
1.3

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4

H V- ka1 n H-avanapdotaon evog kuptou roAutornou oe 6Uo draotdoelg
(OAUY@VO). o o e e e e e e e e e e e e e 24

H anaAeipouoa evog ouotrjpatog U0 MoAumvVUP®V o pia petabAnt). 25

To 6eUTEPEVOV TTOAUTOIIO EVOG EEAYWVOU. . . .« « v v v v v v o v o e o . 27
The V- and H-representation of a convex polygon. 34
The resultant of a system of two polynomials in one variable. 35
The secondary polytope of a hexagon. 36

The Newton polytope of a polynomial of degree 5 in two variables. . 42

Example of secondary and resultant polytopes. 50
Example of Newton polygons and mixed subdivisions. 52
Proof sketch for Lemma 10, 57
Comparison of convex hull packages. 63
Graphs with respol performance. 65

Experimental results for the volume and the size of triangulation of

resultant polytopes. L Lo Lo 66
Signed Minkowski sum oracles. 86
Secondary and resultant polytopes. 90
Runtime of VolEsti w.r.t. dimension 109

Experiments with Bs on the effect of W and e on accuracy and runtimel10

Vertex graph and facet graph of the largest 4-d resultant polytope . 123
A subdivision S and its polar dual S*. 129
Arrangements of two polar triangles with > 3 intersection points. . 130

Arrangements of three polar triangles with 3 mixed points. 133

5.5 The normal fan of the Example 10. 135
5.6 The dual points of a hexagon, a heptagon and an octagon cell (from

lefttoright). 136
5.7 Left: A non-regular subdivision of P of Example 10. A regular sub-

divisionof Pof Example 11. 139
5.8 The 3 types of generic facets of 4d resultant polytopes in the (3, 3, 3)

case with non-paralleledges 141
5.9 Types of degenerate facets of 4d resultant polytopes in the (3,3, 3)

case with non-paralleledges 142
5.10The complex of 4 zonotope (cube) facets 144

6.1
6.2

6.3

The course of an incremental convex hull algorithm in 3 dimensions. 157
Comparison of convex hull packages for 6-dimensional inputs with
integer coefficientso oL Lo oL 172
Comparison of convex hull packages for 6-dimensional inputs with

rational coefficients 173

List of Tables

2.1
2.2

2.3
2.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Respol and convex hull packages comparison. 63
Typical f-vectors of projections of resultant polytopes and the size of

their triangulations. Lo oL 66
Comparison of respol with Gfan. 67

Experimental results of approximation algorithms for the resultant

polytope. e e e e 68
Overall volume computation experimental results 106
Experiments with CDHRvs RDHRwalks 107
Experiments with NN for boundary oracle on cross-polytopes 107
Experiments with varying walk length W 111
Experiments with polytope rounding 111
Experiments with qhull 112
Comparison of the software [42] vs VolEsti 112
Comparison between asymptotic and experimental approximation

ofthevolume of By,. e 112
The f-vectors of 4d N(R) computed in experiments 121
f-vectors correspond to case (3, 3,3) without parallel edges 122
Determinant tests, inputs of scenario(a) 166
Determinant tests, inputs of scenario(b) 167
Determinant tests, inputs of scenario(c) 167
Determinant tests, inputs of scenario(d) 168
Comparison of convex hull algorithms on random data 170
Comparison of convex hull algorithms on resultant polytopes ... 171

Volume computation experiments 171

6.8 Point location experiments

........................

Yuvontikn Ilapouoiaon

1 Ewayoyr

H ene§epyaoia kat avdduon yeopetpikov dedopévav oe uypnlég draotdoeig Sia-
dpapartidetl Eva Beped1mdn poAo oe S1apopoug KAASOUG NG EMMOTHING KAl TNG PnXa-
viknG. Tig tedeutaieg deraetieg €xouv avarttuxOel ToAAo1 ermTtuXnNpPEVol Ye@UETPIKOL
aAyopiOpot oe 2 rat 3 Haotdoetg. 01000, OTIG TEPIOCOTEPES MEPUTIWOELS, O1 EMOO-
0€1G Toug og UPnAotepeg draotaoelg dev eivatl ikavormonukeg. Autr) 11 oUpIeplpopd
elval eUp€mg Yvoot] g kartdoa towv ueydiov dtaotacswv (curse of dimensionality).
Avo mAaiola eriAduong rmou €xouv U100t Bet yia va Eernepaotetl auvtr)) GuokoAia ei-
vatl 1 ekpetdAAeuon g e181knG dopurng v 6edopEvVaV, OIS O MIEPIITIMOELS APAIDV
(sparse) 6edopévav 1) otnv repirteorn rmou ta dedopéva Bpiokovial oe X®Po Xapnio-
Tepng d1dotaong, Kat 0 0Xed1a00G IPOOEYYI0TIKGV aAyopifpwev. X1 datpibr) avt)
peAetdape poBArjpata péoa os autd ta riaioia.

To kUp10 gpeuvnTIKO 11edi0 NG ITapovoag epyaociag eivat nj H1aKp1tr] KAt UITOAOy1-
OTIKIG YEQUETPIA KAl O1 OXE0€1G TNG P€ TOUG KAAO0UG NG EMMOTIUNG TRV UTTOAOY10TOV
Kadl ta epappoopéva pabnpatkd, oneg sivat n Oe@pia moAutonwv, o1 UAOTION0e1g
aAyopifpwv, ot rmbavobewpnukol yeoperpikoi adyopiOpot, 1 UoAoylotiky] alye-
Bpkn) yeoperpia kat n BeAtiotonoinon. Ta Oepediddn yeoperpikd avukeipeva g
HEAEING pag eival ta mwoAUTona, Kal o1 BaolkEG Toug 1010Tnteg ivatl 1 Kuptomta Kat
ot opidovrat amno €va pavieio (oracle) os €va xopo vyning ditaotaong.

H oupBoAn autng tng datpiBrg eivat tputdr. [Ipwtov, oto oxedlaopo kat v
avAdAuon TRV YEQUETPIKOV aAyopifuev yia npoBAnpata os peydieg draotaoesig. Asu-
TEPOV, 0 BePNTIKA ATTOTEAEOPATA OXETIKA HE TO OUVOUAOTIKO XAPAKINPIOWNo Baot-
KOV OIKOYEVEI®V MTOAUTOTI®V. Tpitov, otnv epappoyn Kat MEPAPATIKLY avdaAuon oV
TIPOTEIVOPEVROV aAyopiBumv kat pefodwv. H avarmtuén Aoylopikou sival avoiytou

KOwKa. To Aoylopiko eivat 81ab£o1ppo otov nmapaxkdt® ouvoeoio

23

MoAuTtotra peydAng didoTaong OpIoUEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

. vertex enumeration problem

-

L] R E—

. convex hull problem

Zxnpa 1.1: H V- kat n H-avantapdotaon evog Kuptou 1oAutornou os dUo draotdoetg
(rtoAuywvo).

http://sourceforge.net/users/fisikop.

To Aoylopiko rou avarttuxOnke Baoidetal kat erexkteivel H1adedopéveg YEOPETPIKEG
Kat aAyeBpikég B18A10011keg Aoyiopikou, onwg 1 CGAL kat to polymake.

Zin Bewpia moAutonwv, €va (kuptd) moAutorno P d€xetatl dUo avanapaotdoels.
H npotn eivat @g 1o oUvolo tov Kopupwv tou, Katl ovopddetal V-avarniapdotaon 1
avartapdotaon kopupwv. H deutepn sivat n) topr] mou optoBeteitat arno €va ouvolo
YPAPHIKGOV AVICOTTOV 1) UMOX®PKV, 1 oroia ovopddetat H-avanapdotaon 1 ava-
apAotact) UnoXwp®v. AeBopEVoU £vog MOAUTOTIOU o V-avarnapdotaoct], O UITOAOY1-
opog g H-avanapdotaong ovopddetat ripoBAnpa UroAoylopou ToUu KUPToU TtePl-
BAnpatog (convex hull problem), eve to avtiBeto ovopddetat poBAnpa anapiOpn-
ong Kopudwv (vertex enumeration problem). Autd ta rpoBAnpata eivat woduvapa
Aoyw OuUikOTnTag KAt etvatl HUo aro ta 1o onPavilkd UItoAoy1oTikd rpoBAnpata ot
dlakpir} kat urtodoylotiky yeoperpia. To Zxnpa 1.1 anewkovidel éva mapadetypa
oug 6uo draotdocetg. a pa avadutikn napouociaon oxeukd pe ddpopa Oépata
nou oyetidovial pe ta Kuptd rmoAutona avadepopaote oto [140].

Eva nmoAutono P prnopei ertiong va 606el o pa €ppeon avarnapdotact), ITOU
ovopddetatl puavieio 1 xpnouog. Evag xpnopog sivat €va paupo KouTi rmou anavtd oe
EPWINOEIG OXETIKA e 10 P. 'Evag xpnopog 6edtiotonoinong, 11 YoauuikoU Tooyoail-
uatiopov (LP), 6€xetal eva 6idvuopa ¢ Kat ermotp€Pel Yia Kopudpr) Tou P 1ou €xet
10 PEYIOTO E0MTEPIKO YIVOHUEVO HE TO ¢ PETASU OA®V T®V KOpUPaV oto P. Mia dAAn
ONUavuKI €Ppeocn avarnapdaotacn yla to P eivat va 600et ano éva xpnopo dayw-

plopovu. Andadr), divetar €éva onpeio z Kat to pavieio smotpedel vat, av ¢ € P 1)

Bnooapiwv duacikdmoulog 24

http://sourceforge.net/users/fisikop

MoAuTtoTtra peydAng didoTaong OpIoPEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

Ao - fo(z) = az® +b
Aq .- e fi(x) =cx? +dx +e
N(R) R(a,b,c,d,e) = ad*b + c*b* — 2caeb + a?e?

Zxnpa 1.2: H antaAeipouca evog cuotrjpatog SU0 MOAUGVUP®V o pia PetaBAnty).

éva urnepertinedo rou xowpidet 1o P amno 10 z drapopetikd. ['a mapdderypa, av to P
600¢et oe H-avanapdotaon, €évag xpnopog BeAtiotornoinong ya to P §edopévou evog
dlavuopartog ¢ Auvet €éva ypappiko rpobAnpa oto P, eve €vag Xpropog dtaxmpiopou
yla 1o P 8edopévou onpeiou ¢ anmotipd 10 cUVOAO TOV AvicOoTTI®V Tou P 0To onueio
T .

O1 oxéoe1g Petady 1wV 1aPpopwv Xpnopwv £xouv pedetmBei amno toug Grotschel,
Lovasz kat Schrijver oto [78] pe) xprjon £vog POViEAOU UTTOAOY10P0U oURd®VA
pe 1o ortoio ot pnyaveég Turing ermrpénetal va kKaAouv xpnopous. I'a tov uroAoyt-
opo, yla napddetypa, £vog xpnopou BeAdtiotornoinong yla to P étav to P divetat ano
éva pavieio dl1axwplopou, mpenet Kaveig va Auoet €éva Ypappiko npoypappa oto P.
Auto propeti va yivel pe) pébodo tou eAdstpoeidoug [96]. AapbBavoviag unoyn eva
XPNOPO yia to P, 1o roAutorno P priopei va avaxkataoKeuaotel oe KAamnowa avarapd-
otaon (KopupaVv 1] UNOX®P®V) XPNOTHIOIol®vIag éva ausntiko alyopiOpo urtoloyt-

opou Kuptou repiBAnjpatog, oniwg o Beneath-and-Beyond [37].

2 AAyop10potl yia ToOV UItOAOYLOHO TOU MOAUTOIOU NG
anaAsijpovoag

Yo 1o npiopa ng adyebpikng yeoperpiag ta (kuptd) moAutona yapakrtnpidouv

HE peyaAutepn akpibela €va moAu®vupo aro 0,1t 0 0UVOAIKOG tou Babnog. IMa to

Aoyo auto arotedouv éva Bspediwdeg aviikeipevo pedéng ot Bswpia aparg adye-

Bpkng artadoiprig. Mia Baoikr) Katnyopia MOAUTONOV autrg tng HopPpris Be spap-

Bnooapiwv GuaikdTouhog 25

MoAuTtotra peydAng didoTaong OpIoUEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

HOY1] Kat otny rtiduon e§1000emV eivat to rtoAutorto tou Neutova tng apatrig anaiei-
pouoag, 1] arAd nodvtono ¢ anaisipovoag nou 10 oupBoAiloupe wg N(R). Ta mo-
AUtonia autd €xouv pedenBel ano toug Gelfand, Kapranov kat Zelevinsky oto [74]
kat aro tov Sturmfels oto [131]. Eva napddetypa tng analdsigpovoag dUo rmoAvw-
vUpv fo, f1 oe pa petaBAnt) z aneikovietatl oto Zxnpa 1.2. Eivat éva moAucdvupo
R 010UG OUVTEAEOTES a, b, ¢, d, e TV 6U0 MOAUVUPGV TTou pundevidetatl av 1o cuotnpa
ITOU Iaipvoupe P TV avilikatdaotaor eV a, b, ¢, d, e pe aplOunukeg Tipeg €xet Avorn).
Eb®, 1o noAutorno tng analdeipouvcag N(R) eivat éva tpiyavo.

210 [74] n peAén Tou IoAUTOToU g analeipouocag ouvdeeTal pe v PeAETn Tou
beutepevovtog ToAUTOToU. To SeutepeUov MOAUTOITO £vOg GUVOAOU onpeiov A eivat
€va ONUavIKO AVUIKEIPEVO OV VEDUEIPIKY] ouvduaotiky], dedopévou Ot TIPOohE-
PEL Y1a avarnapdotacn ToU ypadprpatog TV KAVOVIK®OV TPy®vororjoe®v tou A. H
ewkova 1.3 arnekovidel 1o Seutepeov MOAUTOIO £vOg KUPTOU e§aymvou. Auty eivat
pla €101kn mepimorn, ornou ta onueia eivat oe kupty) B€on otg duvo Hraotdoeg.
Ze autr) Vv nepint®on O0Aeg Ol TIPIY®VOITO)0E1S £ival KAVOVIKEG KAl TO deutepeUov
rtoAutorto eivat 1o 3-6taotato acootdaedpo (associahedron) [119].

To repdAalo 2 mapouotddel 1o oxedlaopod KAl vV avdAuon ToU TPOIOU evat-
o0dntou e€660U aAydp1B0OU yia TOV UMTOAOY10UO TIOAUTON®V NG analsigpouocag Kat
ipoBoAav autav. O alyopiBpog sivatl euaiobntog e§66ou, 6edopévou Ot KAvel pia
KANjong oto pavieio avda kopudr kat pia avd £€6pa tou nmoAutonou. Ta Baowkda otot-
Xela tou aAyopiBpou eival) avarapdotaorn ToU MOAUTOIIOU g arnaisipouoag aro
€va Xpnopo BeAtiotonoinong Kat 1 ekpetadAeuon g XapnAng eyyevoug (intrinsic)
tou H1dotaong. To pavieio KataokeUddel KAVOVIKEG TPIY®VOITOU|0ElS IIPOKETIEVOU
va urnoAoyioet) BEAtiotn Kopudr] tou 1moAutortou. T€Aog, to 1oAUtono Ing arna-
Aeipouoag avarataokeUddetal Xpnotponomviag £vav ausntiko adyopidpo Kuptou
MePBANATOG TIOU XPNO1HoTIolel autod to pavieio.

O alAyop1Bpog uvdoroteital oto MAKETIO AOYIOUIKOU respol, to oroio urtoAoyidet
5, 6 - ka1 7 61a0Tdoev ToAuTora je 35 - 103, 23 - 103 kat 500 Kopugég, avriotoya,
péoa oe 2)peg os £vav TUTIIKO urtodoyiotr]. Ermiong urtoAoyidetl ta rmoAutona rmoAAmv
ONMAVIIKOV £§1000ERDV ETUPAVEIOV TTOU ATIAVIOVIAL OTHV YEQUETPIKIY] POVIEAOTTOINOT)
oe < 1 deutepolerta, evo 1 anapidpnon v KopuPpwv TRV aviiotolX®v deutepeuo-
VIOV MOAUTONI®V eivat aduvatn pe 1oug unapyovieg urtodoyloteg. To respol €xet
XpnowortonOei ylia va Aucet karnotla 8aoikd rpoBArjpata oty meploxr) s yYeWHe-

Tp1KYG oxedlaong pe unodoyiotr] [61], kKaBwg KAl yia TOV UMTOAOY10H0 TTOAUGVUR®V

Bnooapiwv ®uaikdoulog 26

MoAuTtoTtra peydAng didoTaong OpIoPEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

Zxnpa 1.3: To dsutepeviov TOAUTOTIO £VOG £EAYOVOU.

¢ dtakpivouoag [62]. ErmumtAéov, ripoteivoupie Katl UAOTIOI0UHE Pd TEXVIKT] TTOU OVO-
padetal KatakepUatiopog T 0pi{OUC®U, 1) OTTOla ATIOTPETIEL TNV AAANAOETTIKAAUYD)
UTTOAOY10U®V H€ TaUToXpovr agloroinon tng dourng tov op1{ouc®v rmou urodoyilo-
vtat aro tov aAyopiOpo. Ztnv rpdgdn), autt] 1) TEXVIKY ErmTtayUvel TV eKTEAE0T HEXPL
Kkat 100 popég. Ta anotedéopata g epyaociag autrg €xouv dnpooteutel oto H1eOveg
OUVEDP10 NG UTTIOAOY10TIKIG Yeoperpiag [59] kabmg kat otnv £101kr) €Kd00™ TOU Ie-
plodikou [60]. Mia enéktaon g rnaparndve pebodou yia tov UrtoAoy10p0 ITOAUTOTIOV

¢S Stakpivouoag napouotddetatl otnv evotnta 2.6 rat £€xet dnpooteutet oto [58].

3 YmnolAoylopog MOAUTOMIKOV CKEAETWV ANO AKHNEG

To yeyovog o1l 0 maparndve alyopifpog dev eival arnodotikog os mePLocOTEPES
arno 8 draotdoelg pag odnyel otn pedétn alyopiOpev ovvodukd TOAUG@UVUUIKOU Y PO0-
vou. Evag aAyop1Opog tp€xel 0 OUVOAIKA TMTOAUGVUHPIKO XPOVO av 1] XPOVIKI] ITO-
Aurdokotnta tou Pppdcostal arnod €va ITOAU®VURO oto peyefog tng €100d0u, oto pé-
yebog g €§660u kat ot didotaor). Fevikd, 1o pdBAnpa g eVpeong alyopiOpwy
OUVOA1KA TIOAUGVUPIKOU XPpOVOU yla To IMpOoBAnpa 1ou Kuptou rnept8Anpatog sivat
€va ONPavilko avoikto mpoBAnpa otnv adyoplOuikn diarpitr] yeoperpia. Qotodoo,
UTIAPXOUV aAyop101101 OUVOAIKA TTOAUGVUNIIKOU XPOVOU Y1d £101KEG TTEPUTIOOELS TT0-
Auténev onwg, simplicial moAutorna [8] kat 0/ 1-ttoAutona [32].

Ebd pedetdpe pia dAAn €101k niepintoon yia v ornoia deiyvoupe ot urtdpyouv

Bnooapiwv ®uaikdToulog 27

MoAuTtotra peydAng didoTaong OpIoUEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

aAyop181101 cUVOAIKA TTIOAUGVUHIKOU Xpovou. [Tapouoiddoupie tov paoto adyopiOpo
OUVOAIKA TTOAU®VUHIKOU XPOVOU Yld pila €181K1] mepinm®on Tou mpoBAnpatog g
anapidpnong Kopupwv, 010U 1o oAutorto divetat anod €va Xpnopo BeAtotornoin-
ong Kat pag divetat eriong Kat €va UMEPOUVOAO TOV KATEUOUVOERDV TV AKHUWV TOU.
E181kotepa 0 aAyop10110g urtodoyidel 10 OKEAETO T®V AKP®V TOU ITOAUTOITOU, TO OITo10
elval 10 ypdonpa v KopuPpov Kal TOV AKPOV TOU IMTOAUTOITouU. Asedopévou ott ot
KOpUPEG urtodoyilovrat padi pie 10 oreAETO, 0 aAyopiOpog urodoyidel kat pla ana-
p1Bunon twv Kopudp®v.

Meletape duo Baokeg epappoyeg. Evaddaocoopeva Minkowski aBpoiopata kup-
TOV TMTOAUTON®V, OITOU Td ITOAUTOIA PIopouVv va apalpebouv uno v rnpounobeson
OTl T0 arnotédeopa eival emiong KUPTO MOAUTOIo, Kat deutepevovia MmoAUTona, Io-
AUtorna tng anaAeipouoag Kat tng dtakpivouoag. Iepattépw epappoyeg neptdapba-
VOUV TIpoBANrjpata armo v Kuptr] ouviuaotikr] BeATioTOroinon Kat KUpto arEpAlo
POYPAPPATIONO, OTIOU 0 aAyop1Opog pag IPooPEPEL piia eVAAAAKTIKY] ITPOCEYY10T,
aipovtag v ekBetikr) e€dptnon amnod) 6idotact oty MOAUTTAOKOTHTA.

Ta anotedéopata g epyaoiag avtrg rapouvotddoviatl oto kepadaio 3. Opopgva

anoteAéopata £xouv dnpooteubei oto [56] kat n A pn €kdoon toug oto [57].

4 TIpOCEYYLOTIKOG UNMOAOYLOPROG OYKOU

H nipoortdBeia anapibunong kopupwv oe uyndég draotaoeig (rt.X. eKATO) XPnot-
porotwvtag tig raparndave pebodoug eivat patawn. H datpBr) avtr) anookornel otnv
€EEPEVUVN 0T TV OPI®V TOU UTOAOY10110U BACIK®V XAPAKINPIOTIKWV £VOG TIOAUTOTIOU,
OI®S 0 OYKOG ToU. Av Kat T0 IpoBAnpa unoAoylopou tou oykou eivatl #P-hard yua
V- kat H-avantapaotdoelg moAuvtoniov [51] untdpxouv mbBavoBewpntikoi aiyopld-
POl MOAUGVUPIKOU XPOVOU Y1d TV IIPOCEYY10I] TOU OYKOU £VOG KUPTOU O®PATOS HE
peydAn mbavotnta kat auvbaipeta PKPO oXeUkoO opdApa. O mpmTog TET010G AA-
yop1Bpog rnapouctactnke oto [50], Kat pla oepd VEXV AroteAeopdiev Pel®oe Tov
eKOETN otV MOAUMAOKOTNTA TRV aAyopifpev autewv and 27 ot 4 [104]. Qotdéoo, 10
npoBANpa pag arodotiknyg UAOIoinong rnap€Peive avoikto.

Avutr) n Satp1Br) peAdetdel auto 1o rpoBAnpa nelpapatikd dedop€vou evog Kup-
10U moAutorou oe H-avarnapdotaorn. E@appoloupe kat aflodoyoupe oty mipddn

rmOavokpaukoug aAyoplOpoug yla v IIPocEyy10n OYKOU TOAUTOII®V O UWPNAEG

Bnooapiwv ®uaikdoulog 28

MoAuTtoTtra peydAng didoTaong OpIoPEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

Odlaotdoeig (.. ekatod). 'a va npaypatonownBei n vAdornoinon anotedecpatikda ou-
oxetidoupe melpapatikd v emidpacn MAPAPETPOV, OTIOG TO NI)KOG TUXATI®V IEpTd-
TRV Kat 0 apOpog tov onpeiov derypatoAnyiag, pe v akpiBela tou urtoAoyiopou
Kat 1o Xpovo. ErmrnAéov, ekpetaAdeuopaote) YEQUETPia TOU IPOoBAT|NATOg PE TNV
epappoyn plag eravainnukng dradikaoiag orpoyyuldornoinong, urodoyidoviag ye-
Vviég tuxainv onpeiov kat oxedialoviag arnodotikd pavieia yia ta moAutornta. H vdo-
noinorn eivat cnpuavukd taxutepn) arnod auteg IoU UITOAOYiouv TOV OYKO VIETEPUIVL-
oukd. YrioAoyidoupe emiong rmpooeyyioeig yia toug oykoug tov Birkhoff moAutonaov
Bi1,...,Bis, eve 1OVO 0 OYKOG TOU B €xel urtoAoylotel pe akpibeia.

Ta anoteAéopata g epyaociag autrg rapouvoiddoviat oto KepdAaio 4 kat €xouv

OnpooteuBei oto [55].

5 ZXZuvduaotiki TV MOAUTON®V tng anaAsipouoag

Meletdpe) ouvOUAOTIKY] TOV ITOAUTONI®OV NG anaAeipovoag. Yidpxouv yvootd
aroteAéopata oty rnepinaon t@v dU0 MoAUGVUNGV ot pia petabAntn [73] kat otnv
nepintoon o1nou n di1dotacn tou MoAUTorou eivat péxpt kat 3 [131]. Enexkteivoupe ta
arotedéopata autd Katl Aravidpe o€ €va avolyto ep@tnpa mou tibetat oto [86] pe tn
peAétn g ouvduaoTIKYG TRV 4-61d0TatVv MOAUTONIOV tng artadsipouocag. H pedétn
delxvel pa peyadutepn nowkidia nMoAUTOnI®V oe auty)) diaotaon Kat rneptAapBdvet
UTTOAOY10TIKEG KAl OUVOUAOTIKES TTPOKAT|OELG.

E1dwkotepa, ta nepapata pag, pe 8aon to respol, divouv KAt Pppdypata oto
péyloto AN00G TRV OPEDV TOV IMOAUTONIOV. Me T PeA€tn TV UTod1alp€oenV TV
Minkowski aBpolopdtev, rmou ovopddovial utktee vnodialpgoeig, maipvoupe opixtd
(tight) dve ¢ppaypata yla to peyioto aplfpo tov oyewv mou deixvoupe ot eivat 22.

Ta anoteAéopata g epyaociag autrg rapouoiddoviat oto KepdAaio 5 kat €xouv

OnpooteuBei oto [47].

6 TepeTplrad RKatnyopnpata
O1 yeoperpikol adyop1Bpot rieptdapBavouv 1000 ouviuaoTikoug 000 Kat alyeBpt-

KOUG UTTOAOY1010UG. L& TTOAAEG MEPUTIMOELG, OTIOG O UITOAOY10H0G TOU KUPTOU ITEPT-

BAnpatog, o1 teAgutaiol ouviotaviatl otov UTIOAOY10H10 TOU IPOoou piag opidouoag,

Bnooapiwv ®uaikdéoulog 29

MoAuTtotra peydAng didoTaong OpIoUEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

ITOU OVOPAdETal YEQUEIPIKO Katnyopnpua. Oco n d1dotaon 10U XOPou UTTIOAOY1010U
peyadavel, éva peyaAutepo ITOCO0TO TOU XPOVOU UITOAOY10POU KATAVAA®VETAL ATTO
autd Ta Katyoprjpata. LtoxXog pag €ival va PeAetrjooupe Tig akoAouBieg tov Ka-
TNYOPNPAT®V ITOU eppavi{ovial 0ToUg YEOUETIPIKOUG aAyopiOpoug. Xpnoiponotoupe
duvapikoug aiyopiBpoug urtoAoylopou g opiouoag yia va ermtayUvoue TOV UITO-
Aoy10p0 T0U KdBe KATNyoprjpatog Xp1notHornotnviag mAnpogopia amno ta nponyou-
Pévag urodoylopéva Katnyopnpata.

[Tpoteivoupe 6Uo duvapikoug alyopiBpoug UrtoAoy1lopou op1{oucmV HE TETPAY®-
VIKY] TIOAUTTAOKOTITA OTaV XPI1O1HOIT010UVIal O€ UITOAOY10P0UG KUPTOU MeplBAnpa-
T0G, KAl Y€ YPAPHPIKI] ITOAUTAOKOTTA OTAV XP1NO1orolouvial os IpoBAnpata eu-
peong onueiou. ErmrmAéov, toug vdorolovpe Kat toug avaduoupe nelpapatikd. Ot
vlorooelg pag sival tayxUtepeg amnod TG Mo artodotkeég UAOTIOW|0E1g KUPTMV TTe-
pBAnpdtev, kabng divouv ermtdyuvon g Kat 78 Ppopég oe mpobBAnpata supsong
onpueiou.

Ta anotedéopata g epyaociag autrg rapouvotddoviat oto KepdAaio 6 kat €xouv
dnpooteuBei oto [65]. To makéto Aoyiopikou rou avartuxOnke €xet unoBAnOei otn
616A100nkn CGAL [35].

7 EnerRtdoelg Kat avoilktda npobAnpata

Apxketd evdlapEpovia avolktd npobBAnpata avadeikvuovial p€oa aro 1) PeAL
G rapouoag datpibrig. Amo TV OITUKI] TG VEDUEIPIKNG OUVOUAOTIKNG €va £p®-
pa eival va kataddBoupe) cupperpia TV péylotev f-61avuopdinv, Iou rmpoKu-
ITTOUV aro 1 PeA€tn 1oV 4-61dotatov MoAUTOn®v g anaisipouoag.

EmurmA€ov mpoKUItouv apKetd avolktd rmpoBAnpata mou oxetidovrat pe) dery-
patoAnyia. To pwto eivat va peAetnBei o adyop1Opog npoodyyiong oykou otav oi-
vetat €vag Xpnopog BeAtiotortoinong. H tpéxouoa €peuva eotiddel oe Kuptd oopata,
1) TtoAutorna, rou divoviatl amno éva xpnopo diaxwplopou. AAAa avolktd rpoBAnpata
agpopoUV TOV UTTOAOY10HUO0 TOU OYKOU TV oreKtacdpwv (spectahedra) 1) yevika nut-
aAyeBplkvV CUVOA®V, TNV £PAPPIOYI] TOU TPEXOVIOG AOylopikoU oe dAda # P-hard
nPoBANpata ONwg 1 KATAPETPI O TRV YPAPUHIK®V EMEKTACERDV EVOG PEPIKAOV dlate-
TAYHEVOU GUVOAOU, TOV UITOAOY1IOPO OAOKANPOUATOV MTOAUDVUHUIKWV OUVAPTIOED®V

oplopéva 0 KUpTd IOAUTOra, T PeALTn tng molotntag tov pebodwv detypatoAn-

Bnooapiwv ®uaikdoulog 30

MoAuTtoTtra peydAng didoTaong OpIoPEVA HECW PAVTEIWV:
aAyopIBuol, UTTOAOYIOUOI KOl EQAPUOYES

piag, kat pedétn g derypatoAnyiag oe arképaia onueia péoa oe rtoAutona.

TéAlog 10 pdBANpa tou mAnoiEotepou yeitova £xel Bewpndel g €va arod ta mo
BepeAd106n poBAnjpata otV MOt TV UTTOAOY10T®V artd 1) oKord TV epapjio-
yov. H peAétn pag oto kepadaio 4 avoiyet 1o 6popo yia v epappoyr] alyopidpev
yld TOV UTTOAOY10HUO TOU KATd TPOOEYY1on IMANOIECTEPOU YEITOVA OTOV UTTIOAOY1ONO

IIPOOEYYI0TIKWV PAVIEI®V TTOAUTOTIOV.

Bnooapiwv ®uaikdéoulog 31

Chapter 1

Polytopes, Algorithms and
Applications

1.1 Introduction

The processing and analysis of high dimensional geometric data plays a fun-
damental role in disciplines of science and engineering. In the last decades many
successful geometric algorithms have been developed in 2 and 3 dimensions.
However, in most cases their performance in higher dimensions is poor. This
behaviour is commonly called the curse of dimensionality. A solution framework
adopted for the healing of the curse of dimensionality is the exploitation of the
special structure of the data, such as sparsity or low intrinsic dimension, and
the design of approximation algorithms. This thesis studies problems inside this
framework.

The main research area is discrete and computational geometry and its con-
nections to branches of computer science and applied mathematics like polytope
theory, algorithm engineering, randomized geometric algorithms, computational
algebraic geometry and optimization. The fundamental geometric objects of the
study are polytopes, with main properties of being convex and defined in a high
dimensional space.

The contribution of this thesis is threefold. First, the design and analysis of ge-
ometric algorithms for problems concerning high-dimensional convex polytopes,
such as convex hull and volume computation and their applications to computa-

tional algebraic geometry and optimization. Second, the establishment of combi-

33

High-dimensional polytopes defined by oracles: algorithms, computations and applications

o vertex enumeration problem

-

L] _—p

. convex hull problem

Figure 1.1: The V- and H-representation of a convex polygon.

natorial characterization results for essential polytope families. Third, the imple-
mentation and experimental analysis of the proposed algorithms and methods.

The developed software is open-source, publicly available from:
http://sourceforge.net/users/fisikop.

It builds on, extends and is competitive with state-of-the-art geometric and al-
gebraic software libraries such as CGAL [35] and polymake [72]. What follows is
a smooth introduction to the research topics and contributions of the thesis,
avoiding technical details.

In polytope theory, a (convex) polytope P admits two explicit representations.
The first is the set of P vertices, which is called the V-representation or vertex
representation. The second is the bounded intersection of a set of linear inequali-
ties or half-spaces, which is called H-representation or halfspace representation.
Given a polytope in V-representation, computing the H-representation consti-
tutes the convex hull problem, while the opposite is the vertex enumeration prob-
lem. These problems are algorithmically equivalent from a computational com-
plexity point of view by polytope duality and establish two of the most important
computational problems in discrete geometry. See Figure 1.1 for an illustration.
For a detailed presentation on several aspects related to convex polytopes we refer
to [140].

A polytope P can also be given by an implicit representation, called (polytope)
oracle. An oracle is a black box routine that answers questions regarding P. An

optimization, or linear programming (LP), or vertex oracle given a vector ¢ returns

Vissarion Fisikopoulos 34

http://sourceforge.net/users/fisikop

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Ao - fo(z) = az® +b
Aq .- e fi(x) =cx? +dx +e
N(R) R(a,b,c,d,e) = ad*b + c*b* — 2caeb + a?e?

Figure 1.2: The resultant of a system of two polynomials in one variable.

a vertex of P that has the maximum inner product with ¢ among all points in
P. Another important implicit representation for P is to be given by a separation
oracle. That is, given a point z the oracle returns yes if z € P or a hyperplane that
separates P from z otherwise. To illustrate the above definitions, let P be given
in H-representation. Then an optimization oracle for P given a vector ¢ solves an
LP problem on P, while a separation oracle for P given point z evaluates the set
of defining inequalities of P with z.

The relations among various oracles have been studied by Grotschel, Lovasz
and Schrijver in [78] by adopting the oracle Turing machine model of computa-
tion. To acquire, for example, an optimization oracle for P when P is given by a
separation oracle, one has to solve a linear program over P. This can be done
by the ellipsoid method [96]. Given an oracle for P, the entire polytope P can be
reconstructed and its explicit representation can be found using an incremental

convex hull algorithm such as the Beneath-and-Beyond [37].

1.2 Algorithms for resultant polytopes

From the algebraic geometry perspective polytopes characterize polynomials
better than total degree thus offering the fundamental representation in sparse
elimination theory, called Newton polytopes. An important class of such polytopes
is the Newton polytopes of the sparse resultant polynomial or simply the resultant
polytopes. They have been studied by Gelfand, Kapranov and Zelevinsky in [74]
and by Sturmfels in [131]. An example of the resultant of two polynomials fy, f1

Vissarion Fisikopoulos 35

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 1.3: The secondary polytope of a hexagon.

in one variable z is depicted in Figure 1.2. It is a polynomial R in the coefficients
a, b, c,d, e of the two polynomials which vanishes if the system we get by specializ-
ing a, b, c, d, e to numerical values has a solution. Here, the Newton polytope N(R)
of the resultant is a triangle.

In [74] the study of resultant polytopes is connected to the study of secondary
polytopes. The secondary polytope of a pointset A is a fundamental object in geo-
metric combinatorics since it offers a polytope realization of the graph of regular
triangulations of the pointset. Figure 1.3 depicts the secondary polytope of a con-
vex hexagon. This is a special case where the points in A are in convex position
and two dimensional. In this case all triangulations are regular and the secondary
polytope is the 3-dimensional associahedron [119].

Chapter 2 presents the design and the analysis of the first output-sensitive
algorithm for computing (projections of) resultant polytopes. The algorithm is
output-sensitive as it makes one oracle call per vertex and facet of the polytope.
The key ingredients of that algorithm is the compact representation of resultant
polytopes by an optimization oracle and the exploitation of their low intrinsic
dimension. The oracle constructs regular triangulations in order to compute the
optimal vertex in the polytope. Finally, the resultant polytope is reconstructed
using an incremental convex hull algorithm that uses this oracle.

The algorithm is implemented in the software package respol, which com-

putes 5-, 6- and 7-dimensional polytopes with 35 - 103, 23-10% and 500 vertices, re-

Vissarion Fisikopoulos 36

High-dimensional polytopes defined by oracles: algorithms, computations and applications

spectively, within 2 hours on a standard computer, and the Newton polytopes of
many important surface equations encountered in geometric modelling in < 1sec,
whereas the enumeration of the vertices of the corresponding secondary polytopes
is intractable. respol has been used to solve essential problems in CAD [61] as
well as to compute discriminant polynomials [62]. We propose and implement
a technique called hashing of determinants, which avoids duplication of compu-
tations by exploiting the nature of determinants computed by the algorithm. In
practice, this technique accelerates execution up to 100 times.

The results of this work have been published in [59] and their full version
in [60]. An extension of the above method to computing discriminant polytopes

is discussed in Section 2.6 and has appeared in [58].

1.3 Edge-skeleton computation

Motivated by the fact that the above algorithm is impractical in 8 or more
dimensions since it relies on an incremental convex hull algorithm, the study
extends in finding more efficient, i.e. total polynomial-time, algorithms for convex
hulls. An algorithm runs in total polynomial-time if its time complexity is bounded
by a polynomial in the input and output size. In general dimension finding a total
polynomial time algorithm for vertex enumeration is a major open problem in
algorithmic geometry. However, total polynomial-time algorithms exist for vertex
enumeration of special polytope cases, such as simplicial polytopes [8] and 0/1-
polytopes [32].

Here we establish another case where total polynomial-time algorithms exist.
We present the first total polynomial-time algorithm for a special case of the vertex
enumeration problem where the polytope is given by an optimization oracle and
we are also given a superset of its edge directions. In particular the algorithm
computes the edge-skeleton (or 1-skeleton) of the polytope, which is the graph
of polytope vertices and edges. Since the vertices are computed along with the
skeleton, the edge-skeleton computation subsumes vertex enumeration.

We consider two main applications. We obtain total polynomial-time algo-
rithms for computing signed Minkowski sums of convex polytopes, where poly-

topes can be subtracted provided the signed sum is a convex polytope, and for

Vissarion Fisikopoulos 37

High-dimensional polytopes defined by oracles: algorithms, computations and applications

computing secondary, resultant, and discriminant polytopes. Further applica-
tions include convex combinatorial optimization and convex integer program-
ming, where we offer an alternative approach, thus removing the exponential

dependence on the dimension in the complexity.

The results of this work are presented in Chapter 3. Some preliminary results

have been published in [56] and their full version in [57].

1.4 Approximate volume computation

Vertex enumeration in high dimensions (e.g. one hundred) using the above
methods is a futile attempt. Thus, this thesis aims at exploiting the limits of
learning fundamental characteristics of a polytope such as its volume. Although
volume computation is #-P hard for V- and H-representations of polytopes [51]
there exist randomized polynomial time algorithms to approximate the volume
of a convex body with high probability and arbitrarily small relative error. Start-
ing with the breakthrough polynomial time algorithm of [50], subsequent results
brought down the exponent on the dimension from 27 to 4 [104]. However, the

question of an efficient implementation had remained open.

This thesis undertakes this by experimentally studying the fundamental prob-
lem of computing the volume of a convex polytope given as an intersection of
linear inequalities. We implement and evaluate practical randomized algorithms
for accurately approximating the polytope’s volume in high dimensions (e.g. one
hundred). To carry out this efficiently we experimentally correlate the effect of
parameters, such as random walk length and number of sample points, on accu-
racy and runtime. Moreover, we exploit the problem’s geometry by implementing
an iterative rounding procedure, computing partial generations of random points
and designing fast polytope boundary oracles. Our publicly available code is sig-
nificantly faster than exact computation. We provide volume estimations for the
Birkhoff polytopes Bi1,..., Bis, whereas only the volume of Big has computed ex-
actly.

The results of this work are presented in Chapter 4 and have been published
in [55].

Vissarion Fisikopoulos 38

High-dimensional polytopes defined by oracles: algorithms, computations and applications

1.5 Combinatorics of resultant polytopes

We study the combinatorics of resultant polytopes. These are known in the
case of two polynomials in one variable, also known as the Sylvester case [73]
and in the case where the polytope’s dimension is up to 3 [131]. We extend this
work and at the same time answer an open question raised in [86] by studying the
combinatorial characterization of 4-dimensional resultant polytopes, which show
a greater diversity and involve computational and combinatorial challenges.

In particular, our experiments, based on respol, establish lower bounds on
the maximal number of faces. By studying subdivisions of Minkowski sums,
called mixed subdivisions, we obtain tight upper bounds on the maximal number
of facets and ridges. These yield an upper bound for the number of vertices, which
is 28 whereas the previous known bound was 6608 [131]. We establish a result of
independent interest, namely that the f-vector is maximized when the input is
sufficiently generic, namely full dimensional and without parallel edges. Lastly,
we offer a classification result of all possible 4-dimensional resultant polytopes.

The results of this work are presented in Chapter 5 and have been published
in [47].

1.6 Geometric predicates

Geometric algorithms involve both combinatorial and algebraic computation.
In many cases, such as convex hull computations, the later boils down to deter-
minant sign computations, also called geometric predicates. As the dimension of
the computation space grows, a higher percentage of the computation time is con-
sumed by these predicates. Our goal is to study the sequences of determinants
that appear in geometric algorithms. We use dynamic determinant algorithms to
speed-up the computation of each predicate by using information from previously
computed predicates.

We propose two dynamic determinant algorithms with quadratic complexity
when employed in convex hull computations, and with linear complexity when
used in point location problems. Moreover, we implement them and perform an
experimental analysis. Our implementations outperform the state-of-the-art de-

terminant and convex hull implementations in most of the tested scenarios, as

Vissarion Fisikopoulos 39

High-dimensional polytopes defined by oracles: algorithms, computations and applications

well as giving a speed-up of 78 times in point location problems.
The results of this work are presented in Chapter 6 and have been published
in [65]. The developed software package has been submitted in CGAL [35] and is

currently under revision.

1.7 Extensions and open problems

Several intriguing open questions emerge by the study of this thesis. From the
geometric combinatorics point of view one question is to understand the symme-
try of the maximal f-vector, i.e. vector of polytope’s face cardinalities, that appear
in the study of the combinatorics of 4-dimensional resultant polytopes.

There are a few questions related to sampling. The first is to study volume ap-
proximation algorithms when an optimization oracle is available. The current re-
search focuses on convex bodies, or polytopes, represented by a membership ora-
cle. A special case which is also interesting is to sample random points from poly-
topes given in V-representation without using membership queries. Other related
problems are computing the volume of spectahedra or general semi-algebraic
sets, application of the current software to other #P-hard problems like counting
linear extensions of partial ordered sets, integration of polynomial functions over
convex polytopes, study polytopes that are easy/difficult to sample from under
the assumption that they are rounded, study the quality of sampling or compare
point samples, and sampling integer points from polytopes.

Nearest neighbour searching has been considered as one of the most funda-
mental problems in computer science. Our study in Chapter 4 paves the way
for an application of approximate nearest neighbour searching to approximate

polytope oracles and polytope volume approximation.

Vissarion Fisikopoulos 40

Chapter 2

Algorithms for resultant polytopes

2.1 Introduction

Given pointsets Ay, ..., An, C Z", we define the pointset
n
A= J(4i x {e}) c 2", (2.1)
1=0
where eq,...,e, form an affine basis of R": eg is the zero vector, e; = (0,...,0,

1,0,...,0),i=1,...,n. Clearly, |A| = |Ag|+---+ |A4n
By Cayley’s trick (Proposition 2) the regular tight mixed subdivisions of the Mink-

, where | - | denotes cardinality.

owski sum Ag+- - -+ Ap, are in bijection with the regular triangulations of A, which
are in bijection with the vertices of the secondary polytope ©(A) (see Section 2.2).

The Newton polytope of a polynomial is the convex hull of its support, i.e. the
exponent vectors of monomials with nonzero coefficient. It subsumes the notion
of degree for sparse multivariate polynomials by providing more precise infor-
mation (see Figures 2.1 and 2.3). Given n + 1 polynomials in n variables, with
fixed supports A; and symbolic coefficients, their sparse (or toric) resultant R is
a polynomial in these coefficients which vanishes exactly when the polynomials
have a common root (Definition 1). The resultant is the most fundamental tool
in elimination theory, it is instrumental in system solving and optimization, and
is crucial in geometric modeling, most notably for changing the representation of
parametric hypersurfaces to implicit.

The Newton polytope of the resultant N(R), or resultant polytope, is the object

of our study; it is of dimension |A| — 2n — 1 (Proposition 4). We further consider

41

High-dimensional polytopes defined by oracles: algorithms, computations and applications

ot

f(x1,29) = 89 + 3179 — 2473 — 2
1623 + 22023z — 3dzy23 —

84x319 + 62203 — 8wy 3 + 833+ !
8x3 + 1823

Figure 2.1: The Newton polytope of a polynomial of degree 5 in two variables. Every
monomial corresponds to an integral point on the plane. The dashed triangle is
the corresponding polytope of the dense polynomial of degree 5.

the case when some of the input coefficients are not symbolic, hence we seek
an orthogonal projection of the resultant polytope. The lattice points in N(R)
yield a superset of the support of R; this reduces implicitization [61, 132] and
computation of R to sparse interpolation (Section 2.2). The number of coefficients
of the n + 1 polynomials ranges from O(n) for sparse systems, to O(n%d"), where d
bounds their total degree. In system solving and implicitization, one computes R
when all but O(n) of the coefficients are specialized to constants, hence the need
for resultant polytope projections.

The resultant polytope is a Minkowski summand of 3(.A), which is also of di-
mension |A| — 2n — 1. We consider an equivalence relation defined on the X(.A)
vertices, where the classes are in bijection with the vertices of the resultant poly-
tope. This yields an oracle producing a resultant vertex in a given direction, thus
avoiding to compute %(.A), which typically has much more vertices than N(R).
This is known in the literature as an optimization oracle since it optimizes inner

product with a given vector over the (unknown) polytope.

Example 1. [The bicubic surface] A standard benchmark in geometric modeling
is the implicitization of the bicubic surface, with n = 2, defined by 3 polynomi-
als in two parameters. The input polynomials have supports A4; C Z?,i = 0,1, 2,
with cardinalities 7, 6, 14, respectively; the total degrees are 3, 3, 6, respectively. The
Cayley set A C Z4, constructed as in Equation 2.1, has 7+ 6 + 14 = 27 points. It

is depicted in the following matrix, with coordinates as columns, where the sup-

Vissarion Fisikopoulos 42

High-dimensional polytopes defined by oracles: algorithms, computations and applications

ports from different polynomials and the Cayley coordinates are distinguished.
By Proposition 4 it follows that N(R) has dimension |A| — 4 — 1 = 22; it lies in R?7.

V001020300120300101212123233<
0102030010030/01021021321323
ooooo000/11111100000000000000
ooooo0o00000O0OO0OO0OI11111111111111

} support

} Cayley

Implicitization requires eliminating the two parameters to obtain a constraint
equation over the symbolic coefficients of the polynomials. Most of the coefficients
are specialized except for 3 variables, hence the sought for implicit equation of
the surface is trivariate and the projection of N(R) lies in R3.

TOPCOM [120] needs more than a day and 9GB of RAM to compute 1, 806, 467
regular triangulations of A, corresponding to 29 of the vertices of N(R), and
crashes before computing the entire N(R). Our algorithm yields the projected ver-
tices {(0,0,1),(0,1,0), (1,0,0),(0,0,9),(0,18,0),(18,0,0)} of the 3-dimensional pro-
jection of N(R), which is the Newton polytope of the implicit equation, in 30msec.
Given this polytope, the implicit equation of the bicubic surface is interpolated
in 42 seconds [62]. It is a polynomial of degree 18 containing 715 terms which

corresponds exactly to the lattice points contained in the predicted polytope.

Our main contribution is twofold. First, we design an oracle-based algorithm
for computing the Newton polytope of R, or of specializations of R. The algo-
rithm utilizes the Beneath-and-Beyond method to compute both vertex (V) and
halfspace (H) representations, which are required by the algorithm and may also
be relevant for the targeted applications. Its incremental nature implies that we
also obtain a triangulation of the polytope, which may be useful for enumerating
its lattice points. The complexity is proportional to the number of output ver-
tices and facets; in this sense, the algorithms is output sensitive. The overall
cost is asymptotically dominated by computing as many regular triangulations
of A (Theorem 11). We work in the space of the projected N(R) and revert to the
high-dimensional space of £(A) only if needed. Our algorithm readily extends to
computing ¥(A), the Newton polytope of the discriminant and, more generally,
any polytope that can be efficiently described by a vertex oracle or its orthogonal

projection. In particular, it suffices to replace our oracle by the oracle in [122] to

Vissarion Fisikopoulos 43

High-dimensional polytopes defined by oracles: algorithms, computations and applications

obtain a method for computing the discriminant polytope.

Second, we describe an efficient, publicly available implementation based on
CGAL [35] and its experimental package triangulation. Our method computes
instances of 5-, 6- or 7-dimensional polytopes with 35K, 23K or 500 vertices, re-
spectively, in < 2hr. Our code is faster up to dimensions 5 or 6, compared to
a method computing N(R) via tropical geometry, implemented in the Gfan li-
brary [86]. In higher dimensions Gfan seems to perform better although neither
implementation can compute enough instances for a fair comparison. Our code,
in the critical step of computing the convex hull of the resultant polytope, uses
triangulation. On our instances, triangulation, compared to state-of-the-art
software 1rs, cdd, and polymake, is the fastest together with polymake. We fac-
tor out repeated computation by reducing the bulk of our work to a sequence of
determinants: this is often the case in high-dimensional geometric computing.
Here, we exploit the nature of our problem and matrix structure to capture the
similarities of the predicates, and hash the computed minors which are needed
later, to speedup subsequent determinants. A variant of our algorithm computes
successively tighter inner and outer approximations: when these polytopes have,
respectively, 90% and 105% of the true volume, runtime is reduced up to 25 times.

This may lead to an approximation algorithm.

Previous work. Sparse (or toric) elimination theory was introduced in [74]. They
show that N(R), for two univariate polynomials with kg + 1, k; + 1 monomials, has
(kol;; kl) vertices and, when both k; > 2, it has kgk;+3 facets. In Section 6 of [131] is
proven that N(R) is 1-dimensional if and only if |4;| = 2, for all 7, the only planar
N(R) is the triangle, whereas the only 3-dimensional ones are the tetrahedron,
the square-based pyramid, and the resultant polytope of two univariate trinomi-
als; we compute an affinely isomorphic instance of the latter (Figure 2.2(b)) as the
resultant polytope of three bivariate polynomials. Following Theorem 6.2 of [131],
the 4-dimensional polytopes include the 4-simplex, some N(R) obtained by pairs
of univariate polynomials, and those of 3 trinomials, which have been investi-
gated with our code in [47]. The maximal (in terms of number of vertices) such
polytope we have computed has f-vector (22,66, 66,22) (Figure 2.2(c)). Further-
more, Table 2.2 presents some typical f-vectors of 4, 5,6 dimensional projections

of resultant polytopes.

Vissarion Fisikopoulos 44

High-dimensional polytopes defined by oracles: algorithms, computations and applications

A lower bound on the volume of the Newton polytope of the discriminant poly-
nomial that refutes a conjecture in algebraic geometry is presented in [117].

A direct approach for computing the vertices of N(R) might consider all vertices
of 2(A) since the vertices of the former are equivalence classes over the vertices
of the latter. Its complexity grows with the number of vertices of ¥(A), hence is
impractical (Example 1).

The computation of secondary polytopes has been efficiently implemented in
TOPCOM [120], which has been the reference software for computing regular
or all triangulations. The software builds a search tree with flips as edges over
the vertices of X(A). This approach is limited by space usage. To address this,
reverse search was proposed [83], but the implementation cannot compete with
TOPCOM. The approach based on computing ¥(A) is not efficient for computing
N(R). For instance, in implicitizing parametric surfaces with up to 100 terms,
which includes all common instances in geometric modeling, we compute the
Newton polytope of the equations in less than 1sec, whereas 2(A) is intractable
(see e.g. Example 1).

In [109] they describe all Minkowski summands of £(A). In [110] is defined an
equivalence class over X(A) vertices having the same mixed cells. The classes map
in a many-to-one fashion to resultant vertices; our algorithm exploits a stronger
equivalence relationship.

Tropical geometry is a polyhedral analogue of algebraic geometry and can
be viewed as generalizing sparse elimination theory. It gives alternative ways
of recovering resultant polytopes [86] and Newton polytopes of implicit equa-
tions [132]. See Section 2.5 for comparisons of the software in [86], called Gfan,
with our software. In [122], tropical geometry is used to define vertex oracles for
the Newton polytope of the discriminant polynomial.

In [82] there is a general implementation of a Beneath-and-Beyond based pro-
cedure which reconstructs a polytope given by a vertex oracle. This implementa-
tion, as reported in [86], is outperformed by Gfan, especially in dimensions higher
than 5.

As is typical in computational geometry, the practical bottleneck is in com-
puting determinantal predicates. For determinants, the record bit complexity is
O(n?%97) [90], while more specialized methods exist for the sign of general de-

terminants, e.g. [27]. These results are relevant for higher dimensions and do

Vissarion Fisikopoulos 45

High-dimensional polytopes defined by oracles: algorithms, computations and applications

not exploit the structure of our determinantal predicates, nor the fact that we
deal with sequences of determinants whose matrices are not very different (this
is formalized and addressed in Section 2.4). We compared linear algebra libraries
LinBox [48] and Eigen [79], which seem most suitable in dimension greater than
100 and medium to high dimensions, respectively, whereas CGAL provides the
most efficient determinant computation for the dimensions to which we focus.

The roadmap of the chapter follows: Section 2.2 describes the combinatorics
of resultants, and the following section presents our algorithm. Section 2.4 over-
comes the bottleneck of Orientation predicates. Section 2.5 discusses the imple-
mentation, experiments, and comparison with other software. We conclude with
future work.

A preliminary version containing most of the presented results appeared in
[59]. This extended version contains a more detailed presentation of the back-
ground theory of resultants, applications and examples, a more complete account
of previous work, omitted proofs, an improved description of the approximation
algorithm, an extended version of the hashing determinants method, and more

experimental results.

2.2 Resultant polytopes and their projections

We introduce tools from combinatorial geometry [101, 140] to describe result-
ants [74, 44]. We shall denote by vol(-) € R the normalized Euclidean volume,
(R™)* the linear m-dimensional functionals, Aff(-) the affine hull, and conv(-) the
convex hull.

Let A C R% be a pointset whose convex hull is of dimension d. For any trian-

gulation T of A, define vector ¢ € RM| with coordinate

¢r(a)= > wvol(o), a€A, (2.2)
o€T:a€0
summing over all simplices ¢ of T having a as a vertex; ¥(A) is the convex hull of
¢7 for all triangulations T. Let A¥ denote pointset A lifted to R*! via a generic
lifting function w in (R|A|)*. Regular triangulations of A are obtained by projecting
the upper (or lower) hull of A% back to R9.

Vissarion Fisikopoulos 46

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Proposition 1. [[74]] The vertices of £(.A) correspond to the regular triangulations
of A, while its face lattice corresponds to the poset of regular polyhedral subdivi-
sions of A, ordered by refinement. A lifting vector produces a regular triangulation
T (resp. a regular polyhedral subdivision of A) if and only if it lies in the normal
cone of vertex ¢ (resp. of the corresponding face) of 3(A). The dimension of $(.A)
is|Al—d-1.

Let Ag,...,An be subsets of Z", Py,..., P, C R™ their convex hulls, and P =
Py + -+ + P, their Minkowski sum. A Minkowski (maximal) cell of P is any full-
dimensional convex polytope B = > , B;, where each B; is a convex polytope
with vertices in A4;. Minkowski cells B, B’ = " Bé intersect properly when B; N
Bé is a face of both and their Minkowski sum descriptions are compatible, i.e.
coincide on the common face. A mixed subdivision of P is any family of Minkowski
cells which partition P and intersect properly. A Minkowski cell is :-mixed or v;-
mixed, if it is the Minkowski sum of n one-dimensional segments from P;, j # 1,
and some vertex v; € F;. In the sequel we shall call a Minkowski cell, simply cell.

Mixed subdivisions contain faces of all dimensions between 0 and n, the max-
imum dimension corresponding to cells. Every face of a mixed subdivision of P
has a unique description as Minkowski sum of B; C P,. A mixed subdivision is
regular if it is obtained as the projection of the upper (or lower) hull of the Mink-
owski sum of lifted polytopes P;”i = {(p;, w;(p;)) | p; € B;}, for lifting w; : P, — R.
If the lifting function w := (wg ..., wy) is sufficiently generic, then the mixed sub-
division is tight, and))~ ,dim B; = dim). ; B;, for every cell. Given Ay,..., Ay
and the affine basis {eg,...,e,} of R?, we define the Cayley pointset A C Z?" as

in equation (2.1).

Proposition 2. [Cayley trick, [74]] There exist bijections between: the regular tight
mixed subdivisions of P and the regular triangulations of A; the tight mixed sub-
divisions of P and the triangulations of A; the mixed subdivisions of P and the

polyhedral subdivisions of A.

The family Aq, ..., A, C Z" is essential if they jointly affinely span Z" and every
subset of cardinality 7,1 < j < n, spans a space of dimension greater than or equal
to j. It is straightforward to check this property algorithmically and, if it does not
hold, to find an essential subset [131]. In the sequel, the input Ay, ..., A, C Z" is

Vissarion Fisikopoulos 47

High-dimensional polytopes defined by oracles: algorithms, computations and applications

supposed to be essential. Given a finite A C Z", we denote by C# the space of all
Laurent polynomials of the form) |, 4 caz%,¢cq # 0,z = (21, ..., Tn). Similarly, given

Ao, ..., An C Z™ we denote by [, C4i the space of all systems of polynomials

fo=fi=---=fn=0, (2.3)

where ¢ 4. ¢; 2% ¢; o # 0. The vector of all coefficients (..., ¢;q,...) of (2.3) de-
fines a point in]I, C4i, Let Z C [T, C4i be the set of points corresponding to
systems (2.3) which have a solution in (C*)?, and let Z be its closure. Z is an

irreducible variety defined over Q.

Definition 1. If codim(Z) = 1, then the sparse (or toric) resultant of the system
of polynomials (2.3) is the unique (up to sign) polynomial R in Z[c; , : 1 =0,...,n,
a € A;], which vanishes on Z. If codim(Z) > 2, then R = 1.

The resultant offers a solvability condition from which z has been eliminated,
hence is also known as the eliminant. For n = 1, it is named after Sylvester.
For linear systems, it equals the determinant of the (n + 1) x (n + 1) coefficient
matrix. The discriminant of a polynomial F(z1,...,zy) is given by the resultant of
F,0F/dzy,..., OF/0zy,.

The Newton polytope N(R) of the resultant is a lattice polytope called the resul-
tant polytope. The resultant has |A| = > 7 ,|A;| variables, hence N(R) lies in Rl
though it is of smaller dimension (Proposition 4). The monomials corresponding

to vertices of N(R) are the extreme resultant monomials.

Proposition 3. [[74, 131]] For a sufficiently generic lifting function w € (RM)*,
the w-extreme monomial of R, whose exponent vector maximizes the inner product
with w, equals
n
+T1T1 o), (2.4)
1=0 O
where o ranges over all v;-mixed cells of the regular tight mixed subdivision S of P

induced by w, and c; ,,. is the coefficient of the monomial z% in f;.

Let T be the regular triangulation corresponding, via the Cayley trick, to S,

and pr € NI the exponent of the w-extreme monomial. For simplicity we shall

Vissarion Fisikopoulos 48

High-dimensional polytopes defined by oracles: algorithms, computations and applications

denote by o, both a cell of S and its corresponding simplex in T'. Then,

pr(a)= > vol(o) EN, a€A, (2.5)

a—mixed

ceT:aco

where simplex o is a-mixed if and only if the corresponding cell is a-mixed in S.
Note that, pr(a) € N, since it is a sum of volumes of mixed simplices ¢ € T, and
each of these volumes is equal to the mixed volume[44] of a set of lattice polytopes,
the Minkowksi summands of the corresponding o € S. In particular, assuming
that o € S is 1-mixed, it can be written as ¢ = og+ -+ +opn, 0; C 45,57 =0,...,n,
and vol(o) = MV (oo,...,0;-1,0;+1,---,0n), where MV denotes the mixed volume
function which is integer valued for lattice polytopes [44]. Now, N(R) is the convex
hull of all pr vectors [74, 131].

Proposition 3 establishes a many-to-one surjection from regular triangulations
of A to regular tight mixed subdivisions of P, or, equivalently, from vertices of £(.A)
to those of N(R). One defines an equivalence relationship on all regular tight mixed
subdivisions, where equivalent subdivisions yield the same vertex in N(R). Thus,
equivalent vertices of %(.A) correspond to the same resultant vertex. Consider
w € (IR|A|)>< lying in the union of outer-normal cones of equivalent vertices of
Y(A). They correspond to a resultant vertex whose outer-normal cone contains
w; this defines a w-extremal resultant monomial. If w is non-generic, it specifies
a sum of extremal monomials in R, i.e. a face of N(R). The above discussion is
illustrated in Figure 2.2(a),(b).

Proposition 4. [[74]] N(R) is a Minkowski summand of £(.A), and both £(.A) and
N(R) have dimension |A| — 2n — 1.

Let us describe the 2n + 1 hyperplanes in whose intersection lies N(R). For
this, let M be the (2n + 1) x |A| matrix whose columns are the points in the A;,
where each a € A; is followed by the i-th unit vector in N**!1, Then, the inner
product of any coordinate vector of N(R) with row i of M is: constant, for ¢ =
1,...,n, and known, and depends on i, for: =n+1,...,2n + 1, see Prop. 7.1.11
of [74]. This implies that one obtains an isomorphic polytope when projecting
N(R) along 2n + 1 points in A which affinely span R?”; this is possible because
of the assumption of essential family. Having computed the projection, we obtain

N(R) by computing the missing coordinates as the solution of a linear system:

Vissarion Fisikopoulos 49

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 2.2: Example of secondary and resultant polytopes: (a) The secondary
polytope X(A) of two triangles (dark, light grey) and one segment Ay =
{(0,0),(1,2),(4,1)}, A1 = {(0,1),(1,0)}, A2 = {(0,0),(0,1),(2,0)}, where A is defined
as in Equation 2.1; vertices correspond to mixed subdivisions of the Minkowski
sum Ag + A1 + Az and edges to flips between them (b) N(R), whose vertices cor-
respond to the dashed classes of %(.A). Bold edges of %(A), called cubical flips,
map to edges of N(R) (c) 4-dimensional N(R) of 3 generic trinomials with f-vector
(22, 66, 66, 22); figure made with polymake.

we write the aforementioned inner products as M[X V]T = C, where C is a known
matrix and [X V7 is a transposed (2n + 1) x u matrix, expressing the partition of
the coordinates to unknown and known values, where u is the number of N(R)
vertices. If the first 2n + 1 columns of M correspond to specialized coefficients,
M = [Mi Ms], where submatrix M; is of dimension 2n + 1 and invertible, hence
X = M;Y(C - M3B).

We compute some orthogonal projection of N(R), denoted I7, in R™:
m:RA S R™: N(R) = T, m <|A|

By reindexing, this is the subspace of the first m coordinates, so 7(p) = (p1,. .-,

’

pm)- It is possible that none of the coefficients c;; is specialized, hence m = |A

Vissarion Fisikopoulos 50

High-dimensional polytopes defined by oracles: algorithms, computations and applications

7 is trivial, and IT = N(R). Assuming the specialized coefficients take sufficiently
generic values, IT is the Newton polytope of the corresponding specialization of

R. The following is used for preprocessing.

Lemma 5. [[86] Lemma 3.20] If a;; € A; corresponds to a specialized coefficient of
fi, and lies in the convex hull of the other points in A; corresponding to specialized
coefficients, then removing a;; from A; does not change the Newton polytope of the

specialized resultant.

We focus on three applications. First, we interpolate the resultant in all coef-

ficients, thus illustrating an alternative method for computing resultants.

Example 2. Let fo = axz?+ajz+ag, f1 = biz?+bg, with supports Ag = {2,1,0}, 4; =
{1, 0}. Their (Sylvester) resultant is a polynomial in a3, a1, ag, b1, bgp. Our algorithm
computes its Newton polytope with vertices (0,2,0,1,1), (0,0,2,2,0), (2,0,0,0,2);
it contains 4 lattice points, corresponding to 4 potential resultant monomials
a%blbo, a%b%, asagbibg, a%bg. Knowing these potential monomials, to interpolate the
resultant, we need 4 points (ag, a1, az, b, b1) for which the system fo = f; = 0 has
a solution. For computing these points we use the parameterization of resultants
in [92], which yields: ay = (2¢1 +t2)t:23t4, a1 = (—2t1 — 2t2)tsts, ag = tate, by = —t1t§t5,
bo = tits, where the t;,’s are parameters. We substitute these expressions to the
monomials, evaluate at 4 sufficiently random t;’s, and obtain a matrix whose
kernel vector (1,1,—2,1) yields R = a%blbo + a%b% — 2asa0b1bg + a%b%.

Second, consider system solving by the rational univariate representation of
roots [14]. Given fi,..., fn € C[zy,...,zn], define an overconstrained system by
adding fo = ug + u1z1 + - -+ + upzn, with symbolic u;’s. Let coefficients ¢;;,7 > 1,
take specific values, and suppose that the roots of f; = --- = f, = 0 are isolated,
denoted r; = (r;1,...,7in). Then the u-resultant is Ry = a [[,. (uo + uiryy + -+ +
un”in)™, a € C*, where m; is the multiplicity of ;. Computing R, is the bottleneck;

our method computes (a superset of) N(Ry,).

Example 3. Let f; = :I:% + :I:% —4, fo = 21 —z9+ 2, and fo = ug + u1x1 + usTs.
Our algorithm computes a polygon with vertices {(2,0, 0), (0, 2,0), (0,0, 2)}, which
contains N(R,) = conv({(2,0,0),(1,1,0),(1,0,1),(0,1,1)}). The coefficient special-

ization is not generic, hence N(R,) is strictly contained in the computed polygon.

Vissarion Fisikopoulos 51

High-dimensional polytopes defined by oracles: algorithms, computations and applications

A S A R —
* .
R C11 L
A S o
C?l :620 R
Coo * S
* e *
R3¢ TR
A“ - A“ »
4 2 4 2
CooCr1C21 Cp1C10C20

Figure 2.3: The supports Ay, A1, A; of Example 4, their Newton polytopes (seg-
ments) and the two mixed subdivisions of their Minkowski sum.

Proceeding as in Example 2, R, = 2u% + 4ugui — 4uguy — 8ujuy, which factors as
2(up + 2u1)(ug — 2u2).

The last application comes from geometric modeling, where y;, = f;(z), 1 =
0,...,m, ¢ = (z1,...,2n) € @ C R", defines a parametric hypersurface. Many ap-
plications require the equivalent implicit representation F(yi,...,yn) = 0. This
amounts to eliminating z, so it is crucial to compute the resultant when coef-
ficients are specialized except the y;’s. Our approach computes a polytope that
contains the Newton polytope of F, thus reducing implicitization to interpola-
tion [62, 61]. In particular, we compute the polytope of surface equations within
1sec, assuming < 100 terms in parametric polynomials, which includes all com-

mon instances in geometric modeling.
Example 4. Let us see how the above computation can serve in implicitization.

Consider the surface given by the polynomial parameterization

(yl: Y2, y3) - (IL'1$2, fElfL‘%, iL'%)

For polynomials fy := cog — co1Z21Z2, f1:=c10 — 611:131:1:%, fo i =co0 — 621:13% with sup-
ports Ay = {(0,0),(1,2)}, A1 = {(0,0),(1,2)} and Ay = {(0,0),(2,0)}. The resultant
polytope is a segment in R® with endpoints (4,0,0,2,0,1), (0,4,2,0,1,0) and, ac-
tually, R = —cyc3;co1 + co c3pc20- The supports and the two mixed subdivisions

Vissarion Fisikopoulos 52

High-dimensional polytopes defined by oracles: algorithms, computations and applications

corresponding to the vertices of N(R) are illustrated in Figure 2.3. Specializing

the symbolic coefficients of the polynomials as:

(co0, €01, €10, €11, €20, €21) — (Y1, — 1,92, —1,93, —1)

yields the vertices of the implicit polytope: (4,0, 0), (0, 2, 1), which our algorithm can
compute directly. The implicit equation of the surface turns out to be —y% + y%yg.

2.3 Algorithms and complexity

This section analyzes our exact and approximate algorithms for computing
orthogonal projections of polytopes whose vertices are defined by an oracle. This
oracle computes a vertex of the polytope which is extremal in a given direction w.
If there are more than one such vertices the oracle returns exactly one of these.
Moreover, we define such an oracle for the vertices of orthogonal projections IT
of N(R) which results in algorithms for computing /I while avoiding computing
N(R). Finally, we analyze the asymptotic complexity of these algorithms.

Given a pointset V, reg_subdivision(V,w) computes the regular subdivision of
its convex hull by projecting the upper hull of V lifted by w, and conv(V) computes
the H-representation of the convex hull of V. The oracle VIX(A, w, m) computes
a point in IT = 7w(N(R)), extremal in the direction w € (R™)*. First it adds to
w an infinitesimal symbolic perturbation vector, thus obtaining w,. Then calls
reg_subdivision(A, Wp), Wp = (wp,0) € (RMN* that yields a regular triangulation T
of A, since wy, is generic, and finally returns 7(pr). It is clear that the triangulation
T constructed by VTX(-) is regular and corresponds to some secondary vertex ¢
which maximizes the inner product with w,. Since the perturbation is arbitrarily
small, both ¢, pr also maximize the inner product with @ = (w, 0) € (RM)*.

We use perturbation to avoid computing non-vertex points on the boundary
of IT. The perturbation can be implemented in VTX(-), without affecting any other
parts of the algorithm, either by case analysis or by a method of symbolic pertur-
bation. In practice, our implementation does avoid computing non-vertex points
on the boundary of II by computing a refinement of the subdivision obtained
by calling reg_subdivision(A, @). This refinement is implemented in triangula-

tion by computing a placing triangulation with a random insertion order [22]

Vissarion Fisikopoulos 53

High-dimensional polytopes defined by oracles: algorithms, computations and applications

(Section 2.5).
Lemma 6. All points computed by VTX(-) are vertices of I1.

Proof. Let v = w(pr) = VIX(A, w, 7). We first prove that v lies on 8I1. The point pr
of N(R) is a Minkowski summand of the vertex ¢ of ©(.A) extremal with respect to
w, hence pr is extremal with respect to @. Since @ is perpendicular to projection
m, pr projects to a point in 0I1. The same argument implies that every vertex ¢>£_,,,
where T’ is a triangulation refining the subdivision produced by @, corresponds
to a resultant vertex pyv such that n(pr/) lies on a face of II. This is actually the
same face on which 7 (pr) lies. Hence p7 also lies on 81I1.

Now we prove that v is a vertex of I by showing that it does not lie in the
relative interior of a face of I1. Let w be such that the face f of N(R) extremal with
respect to @ contains a vertex pr which projects to relint(w(f)), where relint(-)
denotes relative interior. However, f will not be extremal with respect to w, and
since VIX(A, w, 7) uses the perturbed vector wy, it will never compute a vertex of

N(R) whose projection lies inside a face of II. O

The initialization algorithm computes an inner approximation of IT in both V-
and H-representations (denoted Q, Q¥, respectively), and triangulated. First, it
calls VIX(A, w,) forw € W C (R™)*; the set W is either random or contains, say,
vectors in the 2m coordinate directions. Then, it updates @ by adding VIX(A, w, 1)
and VTX(A, —w, 7), where w is normal to hyperplane H C R™ containing @, as long
as either of these points lies outside H. Since every new vertex lies outside the
affine hull of the current polytope @, all polytopes produced are simplices. We
stop when these points do no longer increase dim(Q).

Lemma 7. The initialization algorithm computes @ C IT such thatdim(Q) = dim(J/T).

Proof. Suppose that the initialization algorithm computes a polytope Q' C IT such
that dim(Q') < m. Then there exists vertex v € I, v ¢ Aff(Q’') and vector w € (R™)*
perpendicular to Aff(Q’), such that w belongs to the normal cone of v in I7 and
dim(Aff(Q' Uv)) > dim Q'. This is a contradiction, since such a w would have been
computed as VIX(A, w,) or VIX(A, —w,), where w is normal to the hyperplane
H containing Q’. O

Vissarion Fisikopoulos 54

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Incremental Algorithm 1 computes both V- and H-representations of IT and
a triangulation of II, given an inner approximation Q, Q% of IT computed at the
initialization. A hyperplane H is called legal if it is a supporting hyperplane to a
facet of II, otherwise it is called illegal. At every step of Algorithm 1, we compute
v = VIX(A,w,) for a supporting hyperplane H of a facet of Q with normal w.
If v ¢ H, it is a new vertex thus yielding a tighter inner approximation of II by
inserting it to @, i.e. @ C conv(Q Uwv) C II. This happens when the preimage
7~1(f) C N(R) of the facet f of Q defined by H, is not a Minkowski summand
of a face of ©(A) having normal @w. Otherwise, there are two cases: either v € H
and v € @Q, thus the algorithm simply decides hyperplane H is legal, or v € H and
v ¢ @, in which case the algorithm again decides H is legal but also inserts v to
Q.

The algorithm computes QF from Q, then iterates over the new hyperplanes
to either compute new vertices or decide they are legal, until no increment is
possible, which happens when all hyperplanes are legal. Algorithm 1 ensures
that each normal w to a hyperplane supporting a facet of @ is used only once, by
storing all used w’s in a set W. When a new normal w is created, the algorithm
checks if w ¢ W, then calls VIX(A, w,7) and updates W «+ W Uw. If w € W then
the same or a parallel hyperplane has been checked in a previous step of the
algorithm. It is straightforward that w can be safely ignored; Lemma 8 formalizes

the latter case.

Lemma 8. Let H' be a hyperplane supporting a facet constructed by Algorithm 1,
and H # H' an illegal hyperplane at a previous step. If H', H are parallel then H’

is legal.

Proof. Let w,w’ be the outer normal vectors of the facets supported by H, H' re-
spectively. If H, H' are parallel then v = VIX(A, w, 7) maximizes the inner product

with w' in @ which implies that hyperplane H' is legal. O
The next lemma formulates the termination criterion of our algorithm.

Lemma 9. Let v = VIX(A, w,), where w is normal to a supporting hyperplane H
of Q, thenv ¢ H if and only if H is not a supporting hyperplane of II.

Proof. Let v = m(pr), where T is a triangulation refining subdivision S in VTX(.).

It is clear that, since v € 8T is extremal with respect to w, if v ¢ H then H cannot

Vissarion Fisikopoulos 55

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Algorithm 1: Computell (Ay,...,An,T)

Input : essential Ag,..., A, C Z" processed by Lemma 5,
projection 7 : RMl — R™,
H-, V-repres. Q7| Q; triang. Tg of Q C II.
Output : H-, V-repres. Q¥ Q; triang. Tgof Q =1II.

A« UG(4; xe;) // Cayley trick
Hillegal < 0
foreach H € QF do Hittegal < Hitlegat Y{H}
while #;j;05, # 0 do
select H € Hillegal and Hillegal — Hillegal \ {H}
w is the outer normal vector of H
v + VIX(A, w,)
if v ¢ HNQ then
ngp + conv(Q U {v}) // convex hull computation
foreach (d - 1)-face f € Ty visible fromv do
| Tg < Tg U {faces of conv(f,v)}
foreach H' ¢ {Q7\ ngp} do
L %illegal — Hillegal \ {Hl} /! H separates @,v
foreach H' c {ngp \ @} do
L %illegal — Hillegal U {Hl} // new hyperplane

Q«+ Qu{v}

H o
Q = Qtemp

return 0, QH , TQ

be a supporting hyperplane of I7. Conversely, let v € H. By the proof of Lemma 6,
every other vertex n(pf.) on the face of N(R) is extremal with respect to w, hence

lies on H, thus H is a supporting hyperplane of II. O]

We now bound the complexity of our algorithm. Beneath-and-Beyond, given
a k-dimensional polytope with [vertices, computes its H-representation and a
triangulation in O(k®It?), where t is the number of full-dimensional faces (cells)
[87]. Let |II|, | IT"| be the number of vertices and facets of IT.

Lemma 10. Algorithm 1 executes VIX(-) at most |II| + |ITH | times.

Proof. The steps of Algorithm 1 increment Q. At every such step, and for each

Vissarion Fisikopoulos 56

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 2.4: Proof sketch for Lemma 10: each illegal hyperplane of @ with normal
w, separates the already computed vertices of I (here equal to N(R)) from new
ones, extremal with respect to w. X is a polytope such that X + N(R) = Z(A).

supporting hyperplane H of @ with normal w, the algorithm calls VITX(:) and com-
putes one vertex of I, by Lemma 6. If H is illegal, this vertex is unique because
H separates the set of (already computed) vertices of @ from the set of vertices of
IT\ @ which are extremal with respect to w, hence, an appropriate translate of H
also separates the corresponding sets of vertices of £(A) (Figure 2.4). This vertex
is never computed again because it now belongs to @. The number of VTX(-) calls
yielding vertices is thus bounded by |II|.

For a legal hyperplane of @, we compute one vertex of IT that confirms its
legality; the VTX(:) call yielding this vertex is accounted for by the legal hyper-
plane. The statement follows by observing that every normal to a hyperplane of
Q is used only once in Algorithm 1 (by the earlier discussion concerning the set

W of all used normals). O

Let the size of a triangulation be the number of its cells. Let s 4 denote the size
of the largest triangulation of A computed by VTX(.), and s that of IT computed
by Algorithm 1. In VITX(-), the computation of a regular triangulation reduces to a
convex hull, computed in O(n® |A|s?4); for p7 we compute Volume for all cells of T in
O(s4n3). The overall complexity of VIX(-) becomes O(n5|A|sf4). Algorithm 1 calls,
in every step, VIX(-) to find a point on 8IT and insert it to @, or to conclude that a

Vissarion Fisikopoulos 57

High-dimensional polytopes defined by oracles: algorithms, computations and applications

hyperplane is legal. By Lemma 10 it executes VIX(-) as many as |IT|+ |7 | times,
in O((|II]+ |HH|)n5|A|sf4), and computes the H-representation of IT in O(m5|ﬂ|s§7).

Now we have, |A| < (2n+1)s 4 and as the input |A|, m, n grows large we can assume

that |I7| > | A| and thus s;; dominates s 4. Moreover, s(m + 1) > |IT¥|. Now, let
O(-) imply that polylogarithmic factors are ignored.

Theorem 11. The time complexity of Algorithm 1 to compute IT C R™ is O(m®|II |s_%,+
(|| + |IT5 |)n3| A|s%). which becomes O(|T|s%;) when |II| > | A|.

This implies our algorithm is output sensitive. Its experimental performance
confirms this property, see Section 2.5.
We have proven that oracle VIX(-) (within our algorithm) has two important

properties:

1. Its output is a vertex of the target polytope (Lemma 6).

2. When the direction w is normal to an illegal facet, then the vertex computed

by the oracle is computed once (Lemma 10).

The algorithm can easily be generalized to incrementally compute any polytope P
if the oracle associated with the problem satisfies property (1); if it satisfies also
property (2), then the computation can be done in O(|P|+ |PH|) oracle calls, where
|P

For example, if the described oracle returns 7(¢7) instead of m(pr), it can be used

PH| denotes the number of vertices and number of facets of P, respectively.

’

to compute orthogonal projections of secondary polytopes.

The algorithm readily yields an approximate variant: for each supporting hy-
perplane H, we use its normal w to compute v =VIX(A, w, 7). Instead of com-
puting a convex hull, now simply take the hyperplane parallel to H through v.
The set of these hyperplanes defines a polytope Q, O II, i.e. an outer approxima-
tion of II. In particular, at every step of the algorithm, @ and @, are an inner
and an outer approximation of I7, respectively. Thus, we have an approximation
algorithm by stopping Algorithm 1 when vol(Q)/vol(Q,) achieves a user-defined
threshold. Then, vol(Q)/vol(IT) is bounded by the same threshold. Implementing
this algorithm yields a speedup of up to 25 times (Section 2.5). It is clear that
vol(Q) is available by our incremental convex hull algorithm. However, vol(Q,) is
the critical step; we plan to examine algorithms that update (exactly or approxi-

mately) this volume.

Vissarion Fisikopoulos 58

High-dimensional polytopes defined by oracles: algorithms, computations and applications

When all hyperplanes of @ are checked, knowledge of legal hyperplanes accel-
erates subsequent computations of Q7, although it does not affect its worst-case
complexity. Specifically, it allows us to avoid checking legal facets against new

vertices.

2.4 Hashing of Determinants

This section discusses methods to avoid duplication of computations by ex-
ploiting the nature of the determinants appearing in the inner loop of our algo-
rithm. Our algorithm computes many regular triangulations, which are typically
dominated by the computation of determinants. A similar technique, using dy-
namic determinant computations, is used to improve determinantal predicates

in incremental convex hull computations [65].

Consider the 2n x |A| matrix with the points of A as columns. Define P as
the extension of this matrix by adding lifting values @ as the last row. We use
the Laplace (or cofactor) expansion along the last row for computing the deter-
minant of the square submatrix formed by any 2n + 1 columns of P; without
loss of generality, we assume these are the first 2n + 1 columns ay,...,az,+1. Let
(1,...,2n+ 1) \ ¢ be the vector resulting from removing the :-th element from the
vector (1,...,2n + 1) and let Py 2,,1)\; be the (2n) x (2n) matrix obtained from

the 2n elements of the columns whose indices are in (1,...,2n + 1) \ <.

The Orientation predicate is the sign of the determinant of P(ﬁ??gn 4g) con-
structed by columns ay, ..., a2 and adding 1 € R?"*2 as the last row. Comput-
ing a regular subdivision is a long sequence of such predicates, varying a;’s on
each step. We expand along the next-to-last row, which contains the lifting val-
ues, and compute the determinants [Py ,49)\s| for < € {1,...,2n + 2}. Another
predicate is Volume, used by VTX(-). It equals the determinant of P{f’ﬁzn +1) €on-
structed by columns aj,...,a2,4+1 and replacing the last row of the matrix by

Example 5. Consider the polynomials fg := cop—co1Z1Z2+Cc222, f1 := c10—c11x1m§+

Vissarion Fisikopoulos 59

High-dimensional polytopes defined by oracles: algorithms, computations and applications

clza:% and fg := cog — c21a:% + coozo and the lifting vector @ yielding the matrix P.

0 00112 0O00)
} support coordinates
0 001 20121
P=010010010
} Cayley trick coordinates
0 01 001 0O0°1
wiwow3 0 0 0 0 0 O |}@W

We reduce the computations of predicates to computations of minors of the matrix
obtained from deleting the last row of P. Computing an Orientation predicate

using Laplace expansion consists of computing (2) = 15 minors. On the other

hand, if we compute |P(}i"’§?3, 156" the computation of |P?o™

(1,2,3,4,5,7
computation of only (§) — () = 10 new minors. More interestingly, when given a

) | requires the

new lifting w’/, we compute |P’ ?10’37:3 4’5’6)| without computing any new minors.

Our contribution consists in maintaining a hash table with the computed mi-
nors, which will be reused at subsequent steps of the algorithm. We store all
minors of sizes between 2 and 2n. For Orientation, they are independent of w
and once computed they are stored in the hash table. The main advantage of our
scheme is that, for a new w, the only change in P are m (nonzero) coordinates
in the last row, hence computing the new determinants can be done by reusing
hashed minors. This also saves time from matrix constructions.

Laplace expansion computation of a matrix of size n has complexity O(n) Y ; L;,
where L; is the cost of computing the :-th minor. L; equals 1 when the :-th mi-
nor was precomputed; otherwise, it is bounded by O((n — 1)!). This allows us to

formulate the following Lemma.

Lemma 12. Using hashing of determinants, the complexity of the Orientation and
Volume predicates is O(n) and O(1), respectively, if all minors have already been

computed.

Many determinant algorithms modify the input matrix; this makes necessary
to create a new matrix and introduces a constant overhead on each minor compu-
tation. Computing with Laplace expansion, while hashing the minors of smaller
size, performs better than state-of-the-art algorithms, in practice. Experiments

in Section 2.5 show that our algorithm with hashed determinants outperforms

Vissarion Fisikopoulos 60

High-dimensional polytopes defined by oracles: algorithms, computations and applications

the version without hash. For m = 3 and m = 4, we experimentally observed that
the speedup factor is between 18 and 100; Figure 2.6(b) illustrates the second
case.

The drawback of hashing determinants is the amount of storage, which is in
O(n!). The hash table can be cleared at any moment to limit memory consump-
tion, at the cost of dropping all previously computed minors. Finding a policy
to clear the hash table according to the number of times each minor was used
would decrease the memory consumption, while keeping running times low. Ex-
ploring different heuristics, such as using a LRU (least recently used) cache, to
choose which minors to drop when freeing memory will be an interesting research
subject.

It is possible to exploit the structure of the above (2n) x (2n) minor matrices.
Let M be such a matrix, with columns corresponding to points of Ay, ..., An. After
column permutations, we split M into four n x n submatrices A, B, D, I, where [
is the identity matrix and D has at most one 1 in each column. This follows from
the fact that the bottom half of every column in M has at most one 1 and the
last n rows of M contain at least one 1 each, unless det M = 0, which is easily
checked. Now, det M = +det(B — AD), with AD constructed in O(n). Hence, the
computation of (2n) x (2n) minors is asymptotically equal to computing an n x n
determinant. This only decreases the constant within the asymptotic bound. A
simple implementation of this idea is not faster than Laplace expansion in the
dimensions that we currently focus. However, this idea should be valuable in

higher dimensions.

2.5 Implementation and Experiments

We implemented Algorithm 1 in C++ to compute IT; our code can be obtained

from
http://respol.sourceforge.net.

All timings shown in this section were obtained on an Intel Core i5-2400 3.1GHz,
with 6MB L2 cache and 8GB RAM, running 64-bit Debian GNU/Linux.
Our implementation, respol, relies on CGAL, using mainly a preliminary ver-

sion of package triangulation [22], for both regular triangulations, as well as

Vissarion Fisikopoulos 61

http://respol.sourceforge.net

High-dimensional polytopes defined by oracles: algorithms, computations and applications

for the V- and H-representation of I7. As for hashing determinants, we looked for
a hashing function, that takes as input a vector of integers and returns an in-
teger, which minimizes collisions. We considered many different hash functions,
including some variations of the well-known FNV hash [66]. We obtained the best
results with the implementation of Boost Hash [85], which shows fewer collisions
than the other tested functions. We clear the hash table when it contains 10°
minors. This gives a good tradeoff between efficiency and memory consumption.
Last column of Table 2.1 shows that the memory consumption of our algorithm
is related to |A| and dim(I7).

We start our experiments by comparing four state-of-the-art exact convex hull
packages: triangulation implementing [39] and beneath-and-beyond (bb) in
polymake [72]; double description implemented in cdd [68]; and 1rs implement-
ing reverse search [6]. We compute II, actually extending the work in [7] for the
new class of polytopes II. The triangulation package was shown to be faster in
computing Delaunay triangulations in < 6 dimensions [22]. The other three pack-
ages are run through polymake, where we have ignored the time to load the data.
We test all packages in an offline version. We first compute the V-representation
of IT using our implementation and then we give this as an input to the convex
hull packages that compute the H-representation of II. Moreover, we test trian-
gulation by inserting points in the order that Algorithm 1 computes them, while
improving the point location of these points since we know by the execution of
Algorithm 1 one facet to be removed (online version). The experiments show that
triangulation and bb are faster than 1lrs, which outperforms cdd. Furthermore,
the online version of triangulation is 2.5 times faster than its offline counterpart
due to faster point location (Table 2.1, Figure 2.5).

A placing triangulation of a set of points is a triangulation produced by the
Beneath-and-Beyond convex hull algorithm for some ordering of the points. That
is, the algorithm places the points in the triangulation with respect to the order-
ing. Each point which is going to be placed, is connected to all visible faces of the
current triangulation resulting to the construction of new cells. An advantage of
triangulation is that it maintains a placing triangulation of a polytope in R? by
storing the 0,1,d — 1,d dimensional cells of the triangulation. This is useful when
the oracle VIX(A, w,) needs to refine the regular subdivision of .4 which is ob-

tained by projecting the upper hull of the lifted pointset A% (Section 2.3). In fact

Vissarion Fisikopoulos 62

High-dimensional polytopes defined by oracles: algorithms, computations and applications

" A # of IT time (seconds) respol
vertices | respol tr/on tr/off bb cdd 1rs Mb
3 2490 318 85.03 0.07 0.10 0.07 1.20 0.10 37
4 27 830 15.92 0.71 1.08 0.50 26.85 3.12 46
4 37 2852 97.82 2.85 3.91 2.29 335.23 3941 64
5 15 510 11.25 2.31 5.57 1.22 47.87 6.65 44
5 18 2584 102.46 13.31 34.25 9.58 2332.63 215.22 88
5 24 35768 | 4610.31 238.76 | 577.47 339.05 > lhr > 1lhr 360
6 15 985 102.62 20.51 61.56 28.22 610.39 146.83 2868
6 19 23066 | 6556.42 1191.80 | 2754.30 > 1lhr > lhr > 1lhr 6693
7 12 249 18.12 7.55 23.95 4.99 6.09 11.95 114
7 17 500 | 302.61 267.01 614.34 603.12 10495.14 358.79 5258

Table 2.1: Total time and memory consumption of our code (respol) and time
comparison of online version of triangulation (tr/on) and offline versions of
all convex hull packages for computing the H-representation of I7.

: : : 10000
100 | o

7 @ 1000 |

time (sec)

100 Fi

time

| 7 triang_on —— | 10 ,,’

0.1 bb e

cdd -oxe

Irs o
0.01 | | | tr‘iang_off‘ 77777 1 X . . .
o 500 1000 1500 2000 2500 3000 0 5000 10000 15000 20000 25000 30000 35000 40000
Number of points Number of points
(a) 6)

Figure 2.5: Comparison of convex hull packages for 4-dimensional (a) and 5-
dimensional (b) IT. triang on/triang_off are the online/offline versions of tri-
angulation package (y-axis is in logarithmic scale).

this refinement is attained by a placing triangulation, i.e., by computing the pro-
jection of the upper hull of the placing triangulation of AP This is implemented

in two steps:

Step 1. compute the placing triangulation Tj of the last |A] — m points with a

random insertion order as described in [22] (they all have height zero),

Step 2. place the first m points of A7 in Ty with a random insertion order [22].

Vissarion Fisikopoulos 63

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Step 1 is performed only once at the beginning of the algorithm, whereas Step 2 is
performed every time we check a new w. The order of placing the points in Step 2
only matters if w is not generic; otherwise, w already produces a triangulation of
the m points, so any placing order results in this triangulation.

This is the implemented method; although different from the perturbation in
the proof of Lemma 6, it is more efficient because of the reuse of triangulation T
in Step 1 above. Moreover, our experiments show that it always validates the two
conditions in Section 2.3.

We can formulate this 2-step construction using a single lifting. Let ¢ > 0 be
a sufficiently large constant, a; € A, q¢; € R, ¢; > cq;41, for 2 = 1,...,]A|. Define
lifting » : A — R2, where h(a;) = (w;,q;), for i = 1,...,m, and h(a;) = (0,g;),
for i = m + 1,...,|A|. Then, projecting the upper hull of A" to R?" yields the
triangulation of A obtained by the 2-step construction.

Fixing the dimension of the triangulation at compile time results in < 1%
speedup. We also tested a kernel that uses the filtering technique based on inter-
val arithmetic from [26] with a similar time speedup. On the other hand, trian-
gulation is expected to implement incremental high-dimensional regular trian-
gulations with respect to a lifting, faster than the above method [46]. Moreover,
we use a modified version of triangulation in order to benefit from our hashing
scheme. Therefore, all cells of the triangulated facets of IT have the same normal
vector and we use a structure (STL set) to maintain the set of unique normal
vectors, thus computing only one regular triangulation per triangulated facet of
IT.

We perform an experimental analysis of our algorithm. We design experiments

parameterized on: the total number of input points |A|, the dimension n of pointsets

A;, and the dimension of projection m. First, we examine our algorithm on ran-
dom inputs for implicitization and u-resultants, where m = n + 1, while varying
|A|,n. We fix § € N and select random points on the §-simplex to generate dense
inputs, and points on the (§/2)-cube to generate sparse inputs. For implicitiza-
tion the projection coordinates correspond to point a;; = (0,...,0) € A;. For n =2
the problem corresponds to implicitizing surfaces: when |A| < 60, we compute
the polytopes in < 1sec (Figure 2.6(a)). When computing the u-resultant polytope,
the projection coordinates correspond to 4g = {(1,...,0),...,(0,...,1)}. For n = 2,
when |A| < 500, we compute the polytopes in < 1sec (Figure 2.6(a)).

Vissarion Fisikopoulos 64

High-dimensional polytopes defined by oracles: algorithms, computations and applications

10 : . .
impl-dense n=2 +
9r ures-dense n=2
impl-sparse n=2 * *
8r ures-sparse n=2 o x _
7r i A
= 4 - y : + ol
3 ”(" PR Oggm
* % K "++*++ DDDDDDDDDD
L o 4
2 wxE X1 ®0 2"
1t LS BN=L L by]
X+ ees0
0 mﬂtﬁﬁﬁ!ﬂh\nu I I I I L L L
0 50 100 150 200 250 300 350 400 450 500
Number of input points
(@)
10000 T T . T T T
m=3 ——— o
m=4 - "
1000 M=5 o X 4
* e B
100 ¢ ¥ ek
iy x e
§ ; X,X’WXHX
g 10 f = 1
= PR
* X
1k AV%]
0.1 1
001 ol 1 1 1 1 1 1

25 30 35
Number of input points

40 45

vy)

time (sec)

time (sec)

100000

10000

1000

Respol-hash ——

0.1 Respol-no hash - |
Gfan-TTR -~
Gfan-NFSI =
001 1 1 1 1 1 1
10 15 20 25 30 35 40 45
Number of points
6)
100 .
m=3 +
m=4 x
m=5 x
10 | x %
x Xx»(XXX ”‘Xx
P
#* < X Xx):{(*
1t ook Xk E
i
QX
01 ke ij 4
9}{1}
001 N L L L L L L L L
0 50 100 150 200 250 300 350 400 450

Number of I vertices

6)

Figure 2.6: (a) Implicitization and u-resultants for n = 2, m = 3; (b) Comparison
of respol (hashing and not hashing determinants) and Gfan (traversing tropical
resultants and computing normal fan from stable intersection) for m = 4; (c¢)
Performance of Alg. 1 for m = 3,4,5 as a function of input; (d) Performance of
Alg. 1 as a function of its output; y-axes in (b), (c), (d) are in logarithmic scale.

By using the hashing determinants scheme we gain a 18x speedup when n =

2, m = 3. For m = 4 we gain a larger speedup; we computed in < 2min an instance

where |A| = 37 and would take > 1hr to compute otherwise. Thus, when the

dimension and |A| becomes larger, this method allows our algorithm to compute

instances of the problem that would be intractable otherwise, as shown for n =

3, m=

4 (Figure 2.6(b)).

We confirm experimentally the output-sensitivity of our algorithm. First, our

algorithm always computes vertices of IT either to extend II or to legalize a facet.

Vissarion Fisikopoulos

65

High-dimensional polytopes defined by oracles: algorithms, computations and applications

cells in trlangul'atlon time (se(':) fovector of IT
u o min max u o min max

4781 154 4560 5087 | 0.35 0.01 0.34 0.38 449 1405 1438 482
16966 407 16223 17598 | 1.51 0.03 1.45 1.56 1412 4498 4705 1619
18229 935 16668 20058| 1.92 0.10 1.77 2.11 432 1974 3121 2082 505
563838 6325 548206 578873 99 1.62 93.84 103.07 9678 43569 71004 50170 13059
289847 15788 264473 318976 69 4.88 61.67 77.31| 1308 7576 16137 16324 7959 1504
400552 14424 374149 426476| 96.5 4.91 88.86 107.12| 1680974021022 21719 10890 2133

Table 2.2: Typical f-vectors of projections of resultant polytopes and the size of
their triangulations. We perform 20 runs with random insertion order of vertices
for each polytope and report the minimum, maximum, average value x and the
standard deviation o for the number of cells and the runtime.

16000 T T T T T T T T

14000 1

12000 1

10000 [1

8000 r 1

vol(Q)/vol(IT)

6000 [1

4000 b

Number of cells in triangulation of Il

2000]

m=4 ——
=0 L L L 0 L L L L L L L L
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400 1600 1800

number of random normal vectors Number I1 vertices

(a) ©)

Figure 2.7: (a) vol(Q)/vol(II) as a function of the number of random normal
vectors used to compute Q; (b) The size of the triangulation of IT as a function of
the output of Alg. 1.

We experimentally show that our algorithm has, for fixed m, a subexponential
behaviour with respect to both input and output (Figure 2.6(c), 2.6(d)) and its
output is subexponential with respect to the input.

As the complexity analysis (Theorem 11) indicates, the runtime of the algo-
rithm depends on the size of the constructed placing triangulation of II. The size
of the placing triangulation depends on the ordering of the inserted points. We
perform experiments on the effect of the inserting order to the size of the trian-
gulation as well as the running time of the computation of the triangulation (Ta-
ble 2.2). These sizes as well as the runtimes vary in a very narrow range. Thus,
the insertion order is not crucial in both the runtime and the space of our algo-

rithm. Further experiments in 4-dimensional N(R) show that the size of the in-

Vissarion Fisikopoulos 66

High-dimensional polytopes defined by oracles: algorithms, computations and applications

put bounds polynomially the size of the triangulation of the output (Figure 2.7(b))
which explains the efficiency of our algorithm in this dimension.

We explore the limits of our implementation. By bounding runtime to < 2hr,
we compute instances of 5-, 6-, 7-dimensional I7 with 35K, 23K, 500 vertices, re-
spectively (Table 2.1).

We also compare with the implementation of [86], which is based on Gfan li-
brary. They develop two algorithms to compute projections of N(R). Assuming
R defines a hypersurface, their methods compute a union of (possibly overlap-
ping) cones, along with their multiplicities, see Theorem 2.9 of [86]. From this

intermediate result they construct the normal cones to the resultant vertices.

examples in [86] | a b c d e f g h i
|A| 12 12 15 12 12 16 27 16 20
m 12 12 15 6 7 9 3 4 5
n 3 2 4 2 2 3 2 3 4
Gfan(secs*) 1.40 6 55 0.70 1.30 798 0.40 2.60 184
respol(secs) 1.40 18.41 99.90|0.26 1.24 934 0.02 0.96 292.01

Table 2.3: Comparison of our implementation with Gfan. * Timings for Gfan as
reported in [86].

We compare with the best timings of Gfan methods using the examples and
timings of [86] (Table 2.3). Our method is faster in examples (d), (e), (g), (h) where
m < 7, is competitive (up to 2 times slower) in (a) where m = |A| = 12 and (i)
where m = 5,|A| = 20 and slower in (b), (c), (f) where m > 12. The bottleneck of
our implementation, that makes it slower when the dimension of the projection
m is high, is the incremental convex hull construction in R”. Moreover, since our
implementation considers that N(R) lies in RM| instead of RM/=27~1 (see also the
discussion on the homogeneities of R in Section 2.2), it cannot take advantage
of the fact that dim(N(R)) could be less than m when |A] —2n — 1 < m < |A|.
This is the case in examples (b), (c) and (f). On the other hand, we run extensive
experiments for n = 3, considering implicitization, where m = 4 and our method,
with and without using hashing, is much faster than any of the two algorithms
based on Gfan (Figure 2.6(b)). However, for n = 4, m = 5 the beta version of Gfan
used in our experiments was not stable and always crashed when |A| > 13.

We analyze the computation of inner and outer approximations Q and Q. We
test the variant of Section 2.3 by stopping it when vol(Q)/vol(QZ) > 0.9. In the

Vissarion Fisikopoulos 67

High-dimensional polytopes defined by oracles: algorithms, computations and applications

input m 3 3 4 4 5 5
|A| 200 490 20 30 17 20

approximation # of @ vertices 15 11 63 121 > 10hr > 10hr
vol(@)/vol(II) 0.96 0.95 0.93 0.94 > 10hr > 10hr

. vol(@,)/vol(IT 1.02 1.03 1.04 1.03 > 10hr > 10hr
algorithm t(ime)/[sec()) 0.15 0.22 0.37 1.42 >10hr > 10hr
uniformly |Q| 34 45 123 207 228 257
random vectors 606 576 613 646 977 924

random vol(Q)/vol(II) 0.93 099 094 0.90 0.90 0.90
time (sec) 5.61 12.78 1.10 4.73 8.41 16.90

exact # of II vertices 98 133 416 1296 1674 5093
algorithm time (sec) 2.03 587 372 2597 51.54 239.96

Table 2.4: Results on experiments computing Q, Q¥ using the approximation al-
gorithm and the random vectors procedure; we stop the approximation algorithm
when vol(Q)/vol(Q,) > 0.9; the results with random vectors are the average values
over 10 independent experiments; “> 10hr” indicates computation of vol(Q,) was
interrupted after 10hr.

experiments, the number of @ vertices is < 15% of the IT vertices, thus there is
a speedup of up to 25 times over the exact algorithm at the largest instances.
The approximation of the volume is very satisfactory: vol(Q)/vol(IT) < 1.04 and
vol(Q)/vol(IT) > 0.93 for the tested instances (Table 2.4). The bottleneck here is
the computation of vol(QX), where QZ is given in H-representation: the runtime
explodes for m > 5. We use polymake in every step to compute vol(QX) because
we are lacking of an implementation that, given a polytope P in H-representation,
its volume and a halfspace H, computes the volume of the intersection of P and
H. Note that we do not include this computation time in the reported time. Our
current work considers ways to extend these observations to a polynomial time
approximation algorithm for the volume and the polytope itself when the latter is
given by an optimization oracle, as is the case here.

Next, we study procedures that compute only the V-representation of Q. For
this, we count how many random vectors uniformly distributed on the m-dim-
ensional sphere are needed to obtain vol(Q)/vol(II) > 0.9. This procedure runs
up to 10 times faster than the exact algorithm (Table 2.4). Figure 2.7(a) illus-
trates the convergence of vol(Q)/vol(IT) to the threshold value 0.9 in typical 3, 4, 5-
dimensional examples. The basic drawback of this method is that it does not
provide guarantees for vol(Q)/vol(II) because we do not have sufficient a priori

information on II. These experiments also illustrate the extent in which the nor-

Vissarion Fisikopoulos 68

High-dimensional polytopes defined by oracles: algorithms, computations and applications

mal vectors required to deterministically construct IT are uniformly distributed

over the sphere.

2.6 Computing discriminant polytopes

We extend ResPol to compute (reduced) discriminant polytopes following two
approaches. The first focuses on reduced discriminants. By employing the Horn-
Kapranov parameterization, the problem is reduced to implicitization. The Newton
polytope of the implicit equation of the parameterization, or implicit polytope, is
computed as the projection of a resultant polytope [61] and it contains (a translate
of) the reduced discriminant polytope. This approach is discussed below.

The second approach defines vertex oracles for the discriminant polytope and
uses Beneath-Beyond. There are several procedures to get a vertex oracle. In [122]
is given a procedure and an implementation (tropli) for such an oracle using
tropical geometry: tropli, given direction ¢ € R4l computes a vertex v € N(Ay)
s.t. ¢f'v is minimized. Respol can use this oracle to reconstruct the discriminant
polytope. One can also define a vertex oracle using the n-vectors from [74, ch.11],
Such an oracle involves the computation of (normalized) volumes of lower dimen-
sional simplices, and has not yet been implemented in ResPol.

Regarding the first approach, given A, let B = (b;;) € zn*(m=n-1) pe a matrix
whose column vectors are a basis of the integer kernel of A. Then B is of full
rank. We assume that its maximal minors have unit ged (i.e. the rows generate
Z™~"1). Since the first row of A equals (1,...,1), the columns of B add up to
0. Setd = m —n — 1. Let y1,...,yqs be homogenous parameters and set y; = 1 so
as to dehomogenize the parameterization. We denote by [,,7 = 1,...,m the inner
product of the :-th row of B and the parameter vector (1,ys2,...,yq): ; := Z?:l b Y-
The I; correspond bijectively to the coefficients c5,a € A of f and are thus the
discriminant variables. The, so called, Horn-Kapranov parametrization [74, 92],

is defined as:

m
2= [0, j=1,2...,d (2.6)
1=1

The implicit equation of (the closure of) its image is a polynomial Ag in z :=
(z1,...,z4), called the reduced discriminant, which is the dehomogenized version

of Ay; it is obtained from A 4 by specializing some n + 1 of its variables so as to

Vissarion Fisikopoulos 69

High-dimensional polytopes defined by oracles: algorithms, computations and applications

remove the n + 1 quasi-homogeneities. It follows that N(Ap) is the projection of
N(Ay,) in a space of dimension equal to its intrinsic dimension and retains the

combinatorial structure of N(Ay).

Example 6. Let A = {0,1,2,3,4} and f = cg + c1t! + cot? + c3t® + cqt* be a generic
quartic.

3 2 1

-4 -3 -2
11111

i IS
01 2 3 4

0 1 0

1 0 0

Herem =5,n=1,d=3and | = 3+2y2+y3,lo = —4—3ys—2y3,l3 = y3,la = y3,l5 = 1,

and the Horn-Kapranov parameterization is:

21— (34 2y2 + y3)* (34 2y2 +y3)%y2 ~ (3+2y2+y3)ys

= , To= y I3 = . 2.7
(—4 — 3y — 2y3)* (—4 — 3yp — 2y3)3 (—4 — 3yz — 2y3)2

We prefer to have rational parameterizations with a single monomial in the de-
nominator because this facilitates the computation of the implicit polytope. We
introduce a new parameter y, expressing the common denominator in (2.7) and

obtain the parameterization

_ (3+2y2+y3)3 (34 2y2 +y3)%ye (34 2y2+y3)y3
Yy Ya Yy

y Yo = —4-3y>—2ys,

from which we define the polynomials

Fo:=z1yi — 3+ 2y2+93)°, F1:=zoui — (3+ 22 +v3)°w2,
Fy:=a3yf — (3+2y2+93)ys, F3:=ya+ 4+ 3y2 +2u3,

whose supports are given as input to ResPol. The above procedure is demon-
strated in the Maple file horn_example2.mw available with our distribution. Then,
we prepare the input file.txt:

3

11744 10 11 18

(fo, o, 41, o, o, o1, 1, o, 01, [0, 1, O], [2, 0, O], [1, 1, O], [0, 2, O],
(s, o, o1, 2, 1, 01, (1, 2, o], (O, 3, 0], [0, O, 3], [1, O, O], [2, O, O],
(1, 1, o1, (8, o, 01, [2, 1, o], [1, 2, 0], [0, O, 2], [0, 1, O], [1, 1, O],
to, 2, o1, (o, o, 11, o, o, o1, [1, o, 0], [0, 1, OI]

Vissarion Fisikopoulos 70

High-dimensional polytopes defined by oracles: algorithms, computations and applications

The second line after ‘I’ instructs ResPol to project to the space defined by

T1,z2,z3. Executing ./res_enum_d < file.txt, we obtain the vertices (0,0, 12),
(0,8,0), (6,0,0), (0,0,0) in the standard output. They define a polytope contain-
ing a translate of N(Ap). To compute the discriminant polytope using tropli we
prepare a textfile file.txt:

1
50 |
(fol, (11, [21, [3], [4]]

where the zero after the cardinality 5 of the support in the second line is needed
because ResPol expects the number of supports to be one more than the di-
mension. Executing the command ./res_enum d -d < file.txt, we obtain
the vertices of N(A4): (1,0,4,0,1), (0,3,0,3,0), (0,4,0,0,2), (0,2,3,0,1), (0,2,2,2,0),
(2,0,0,4,0), (3,0,0,0,3), (1,0,3,2,0) in the standard output. The corresponding ver-
tices of N(Ap) may be computed as follows: By renaming the I;’s as ¢;’s we have
from (2.7) that z; = 6861_404, Ty = C%Cl_scg, T3 = c0c1_2c2, which gives the correspon-
dence: (k, A, u) — (3k + 2X + w, —4k — 3\ — 2u, u, A, k), between the vertices of Apg
and A 4. Moreover, this yields the correspondence: (a1, a2, a3, a4,as5) — (as, as,a3)
between the vertices of A, and Ag. Hence, from the set of vertices of N(A,)
above, we obtain the vertices of N(Ap): (0,2,3), (0,2,2), (1,0,3), (1,0,4), (0,3,0),
(0,4,0), (3,0,0), (2,0,0), which are all contained in the polytope defined by the set
of vertices predicted by ResPol.

2.7 Future work

One algorithm that should be experimentally evaluated is the following. We
perform a search over the vertices of X(A4), that is, we build a search tree with
flips as edges. We keep a set with the extreme vertices with respect to a given
projection. Each computed vertex that is not extreme in the above set is discarded
and no flips are executed on it, i.e. the search tree is pruned in this vertex. The
search procedure could be the algorithm of TOPCOM or the one presented in
[110] which builds a search tree in some equivalence classes of £(A). The main
advantage of this algorithm is that it does not involve a convex hull computation.
On the other hand, it is not output-sensitive with respect to the number of vertices

of the resultant polytope; its complexity depends on the number of vertices on the

Vissarion Fisikopoulos 71

High-dimensional polytopes defined by oracles: algorithms, computations and applications

silhouette of £(A), with respect to a given projection and those that are connected
by an edge with them.

As shown, polymake’s convex hull algorithm is competitive, thus one may use
it for implementing our algorithm. On the other hand, triangulation is expected
to include fast enumeration of all regular triangulations for a given (non generic)
lifting, in which case I may be extended by more than one (coplanar) vertices.

Our proposed algorithm uses an incremental convex hull algorithm and it
is known that any such algorithm has a worst-case super-polynomial total time
complexity [25] in the number of input points and output facets. The basic open
question that this chapter raises is whether there is a polynomial total time al-

gorithm for IT or even for the set of its vertices.

Vissarion Fisikopoulos 72

Chapter 3

Algorithms for the edge skeleton

3.1 Introduction

Convex polytopes in general dimension admit a number of alternative repre-
sentations. The best known, explicit representations for a polytope P are either
the set of its vertices (V-representation) or a bounded intersection of halfspaces
(H-representation). Switching between the two representations constitutes the
convex hull and vertex enumeration problems. A linear programming problem
(LP) on P consists in finding a vertex of P that maximizes the inner product with
a given objective vector c. This is very easy if P is in V-representation, but also if
P is in H-representation, LP can be solved in polynomial time.

In general dimension, there is no polynomial-time algorithm for either con-
vex hull or vertex enumeration, since the output size can be exponential in the
worst case by the upper bound theorem [108]. In addition to, generating all ver-
tices of a polyhedron is also hard [95]. We therefore want to take the output size
into account and say that an algorithm runs in total polynomial time if its time
complexity is bounded by a polynomial in the input and output size. There is no
known total polynomial-time algorithm for either convex hull or vertex enumera-
tion. In [7] they provide for each known types of convex hull algorithms, explicit
families of polytopes with which as input the algorithms run in superpolynomial
time.

However, finding the vertices of the convex hull of a given point set reduces
to LP and has thus polynomial complexity in the input (cf. [38]). The algorithm

in [8] solves, in total polynomial-time, vertex enumeration for simple polytopes

73

High-dimensional polytopes defined by oracles: algorithms, computations and applications

and convex hull for simplicial polytopes. For 0/1-polytopes a total polynomial-
time algorithm for vertex enumeration is presented in [32], where a 0/1-polytope
is one, all of whose vertices have coordinates O or 1. On the other hand, there is
no such algorithm for the more general case of 0/1-polyhedra unless P=NP [24].
In this thesis we establish another case where total polynomial-time algorithms
exist.

An important explicit representation of a polytope is the edge-skeleton (or 1-
skeleton), which is the graph of polytope vertices and edges, but none of the faces
of dimension larger than one. For simple polytopes, the edge-skeleton determines
the complete face lattice (see [88] and the references therein), but in general, this
is false. The edge-skeleton is a useful and compact representation employed in
different problems, e.g. in computing general-dimensional Delaunay triangula-
tions of a given pointset: In [22] the authors show how the edge-skeleton suffices
for point location by allowing them to recover only the needed full-dimensional
simplices of the triangulation.

In this chapter we study the case where a polytope P is given by an implicit
representation, where the only access to P is a black box subroutine (oracle) that
solves the LP problem on P for a given vector c. Then, we say that P is given
by an optimization, or LP oracle. Given such an oracle, the entire polytope can
be reconstructed, and both V- and H-representations can be found using the
Beneath-Beyond method; see e.g. [59, 82], although not in total polynomial-time.

Another important implicit representation of P is obtained through a separa-
tion oracle (Section 3.2). Celebrated results of Khachiyan [96] as well as Grotschel,
Lovasz and Schrijver [78] show that separation and optimization oracles are poly-
nomial time equivalent (Proposition 14). Many important results in combinatorial
optimization use the fact that separation implies optimization. In our study, we
also need the other direction: Given an optimization oracle, compute a separation
oracle for P.

The problem that we study is a special case of vertex enumeration. We are
given an optimization oracle for a polytope P and a set of vectors that is guaran-
teed to contain the directions of all edges of P; edge directions are given by unit
vectors. We are asked to compute the edge-skeleton of P. Since the vertices are
computed along with the skeleton, our problem subsumes vertex enumeration for

polytopes for which we know the edge directions. This resembles the fundamental

Vissarion Fisikopoulos 74

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Minkowski reconstruction problem, e.g. [75], except that, instead of information
on the facets, we have information about the 1-dimensional faces (and an oracle).
The problem of the reconstruction of a simple polytope by its edge-skeleton graph
is studied in [88].

The most relevant previous work is an algorithm for vertex enumeration of P,
given by an optimization oracle and a superset D of all edge directions, proposed
in [115] (Proposition 15). It runs in total polynomial-time in fixed dimension. The
algorithm computes the zonotope Z of D, then computes an arbitrary vector in
the normal cone of each vertex of Z and calls the oracle with this vector. It outputs
all vertices without further information. Computing the edges from n vertices can
be done by O(n?) calls to LP.

3.1.1 Applications

The problem of edge-skeleton computation given an oracle and a superset of
the polytope’s edge directions naturally appears in many applications. In Sec-
tion 3.4 we offer new efficient algorithms for the first two applications below.

One application is the signed Minkowski sum problem where, besides addition,
we also allow a restricted case of Minkowski difference. Let A — B be polytope C
such that A can be written as a sum A = B+C. In other words, a signed Minkowski
sum equality such as P—Q+ R—S = T should be interpreted as P+ R=Q+S+T.
Such sums are motivated by the fact that resultant and discriminant polytopes
(to be defined later) are written as signed sums of secondary polytopes [109],
[74, Thm 11.1.3]. Also, matroid polytopes and generalized permutahedra can be
written as signed Minkowski sums [4].

Minkowski sums have been studied extensively. Given r V-polytopes in R?,
Gritzmann et al. [76] deal with the various Minkowski sum problems that occur
if they regard none, one, or both of r and d as constants. They give polynomial
algorithms for fixed d regardless of the input representation. For varying d they
show that no polynomial-time algorithm exists except for the case of fixed r in
the binary model of computation. Fukuda [67] (extended in [69]) gives an LP-
based algorithm for the Minkowski sum of polytopes in V-representation whose
complexity, in the binary model of computation, is total polynomial, and depends

polynomially on §, which is the sum of the maximum vertex degree in each sum-

Vissarion Fisikopoulos 75

High-dimensional polytopes defined by oracles: algorithms, computations and applications

mand. However, we are not aware of any algorithm for signed Minkowski sums
and it is not obvious how the above algorithms for Minkowski sums can be ex-
tended to the signed case.

The second application is resultant, secondary as well as discriminant poly-
topes. For resultant polytopes at least, the only plausible representation today
seems to be via optimization oracles [59]. Resultants are fundamental in com-
putational algebraic geometry since they generalize determinants to nonlinear
systems [131, 74]. The Newton polytope R of the resultant, or resultant polytope,
is the convex hull of the exponent vectors corresponding to nonzero terms. A re-
sultant is defined for k£ +1 pointsets in Z*. If R lies in R%, the total number of input
points is d + 2k + 1. If n is the number of vertices in R, typically n > d > k, so k is
assumed fixed. A polynomial-time optimization oracle yields an output-sensitive
algorithm for the computation of R [59] (Lemma 25).

This approach can also be used for computing the secondary and discrimi-
nant polytopes, defined in [74]; cf [101] on secondary polytopes. The secondary
polytope of a pointset is a fundamental object since it offers a polytope realiza-
tion of the graph of regular triangulations of the pointset. A total polynomial-time
algorithm for the secondary polytope when k is fixed is given in [106]. A specific
application of discriminant polytopes is discussed in [117], where the author es-
tablishes a lower bound on the volume of the discriminant polytope of a multi-
variate polynomial, thus refuting a conjecture by E.I. Shustin on an asymptotic
upper bound for the number of real hypersurfaces.

The size of all these polytopes is typically exponential in d: the number of
vertices of R is O(d2d2) [131], and the number of j-faces (for any j) of the secondary
polytope is O(d(d_l)z), which is tight if d is fixed [19].

More applications of our methods exist. One is in convex combinatorial opti-
mization: given F C 2V with N = {1,...,n}, a vectorial weighting w : N — Q¢,
and a convex functional ¢ : Q¢ — Q, find F € F of maximum value c(w(F)). This
captures a variety of (hard) problems studied in operations research and math-
ematical programming, including quadratic assignment, scheduling, reliability,
bargaining games, and inventory management, see [114] and references therein.
The standard linear combinatorial optimization problem is the special case with
d=1,w:N—Q, and c: Q —» Q : z — z being the identity. As shown in [114], a

convex combinatorial optimization problem can be solved in polynomial-time for

Vissarion Fisikopoulos 76

High-dimensional polytopes defined by oracles: algorithms, computations and applications

fixed d, if we know the edge directions of the polytope given by the convex hull of
the incidence vectors of the sets in F.

Another application is convex integer maximization, where we maximize a con-
vex function over the integer hull of a polyhedron. In [100], the vertex enumer-
ation algorithm of [115]—based on the knowledge of edge directions—is used to
come up with polynomial algorithms for many interesting cases of convex inte-
ger maximization, such as multiway transportation, packing, vector partitioning
and clustering. A set that contains the directions of all edges is computed via
Graver bases, and the enumeration of all vertices of a projection of the integer

hull suffices to find the optimal solution.

3.1.2 Our contribution

We present the first total polynomial-time algorithm for computing the edge-
skeleton of a polytope, given an optimization oracle, and a set of directions that
contains the polytope’s edge directions. The polytope is assumed to have some
(unknown) H-representation with an arbitrary number of inequalities, but each
of known bitsize, as shall be specified below. Our algorithm also works if the poly-
tope is given by a separation oracle. All complexity bounds refer to the (oracle)
Turing machine model, thus leading to (weakly) polynomial-time algorithms when
the oracle is of polynomial-time complexity. By employing the reverse search
method of [8] we offer a space-efficient variant of our algorithm. It remains open
whether there is also a strongly polynomial-time algorithm in the real RAM model
of computation.

Our algorithm yields the first (weakly) total polynomial-time algorithms for
the edge-skeleton (and vertex enumeration) of signed Minkowski sum, and re-
sultant polytopes. For both polytope classes, optimization oracles are naturally
and efficiently constructed, whereas it is not straightforward to obtain the more
commonly employed membership or separation oracles. For resultant polytopes,
optimization oracles offer the most efficient known representation. Our results on
resultant polytopes extend to secondary polytopes, for which a different approach
in the same complexity class is known, as well as discriminant polytopes.

Regarding the problems of convex combinatorial optimization and convex inte-

ger programming the current approaches use the algorithm of [115] whose com-

Vissarion Fisikopoulos 77

High-dimensional polytopes defined by oracles: algorithms, computations and applications

plexity has an exponential dependence on the dimension (Proposition 15). The
utilization of our algorithm instead offers an alternative approach while remov-

ing the exponential dependence on the dimension.

Outline. The next section specifies our theoretical framework. Section 3.3 intro-
duces polynomial-time algorithms for the edge-skeleton. Section 3.4 applies our
results to signed Minkowski sums, as well as resultant and secondary polytopes.

We conclude with open questions.

3.2 Well-described polytopes and oracles

This section describes our theoretical framework and relates the most relevant
oracles. We start with the notation used in this chapter following by some basics
from polytope theory; for a detailed presentation we refer to [140].

We denote by d the ambient space dimension and n the number of vertices of
the output (bounded) polytope; k£ denotes dimension when it is fixed (e.g. input
space for resultant polytopes); conv(A) is the convex hull of A. Moreover, ¢ is an
upper bound for the encoding length of every inequality defining a well-described
polytope (see the next section); (X) denotes the binary encoding size of an ex-
plicitly given object X (e.g., a set of vectors). For a well-described and implicitly
given polytope P C R%, we will define (P) := d+ ¢. Let O : R — R denote a poly-
nomial such that the oracle conversion algorithms of Proposition 14 all run in
oracle polynomial-time OQ((P)) for a given well-described polytope P. The polyno-
mial LP : R — R is such that LP((A) + (b) + (c)) bounds the runtime of maximizing

T

z over the polyhedron {z | Az < b}.

A convex polytope P C RY can be represented as the convex hull of a finite
set of points, called the V-representation of P. In other words, P = conv(A),
where A = {p1,...,pn} C R%. Another, equivalent representation of P is as the
bounded intersection of a finite set of halfspaces or linear inequalities, called the
H-representation of P. That is, P = {z | Az < b}, A C R™*% z ¢ R% b € R™. Given P,
an inequality or a halfspace {aT:v < B} (where a € R%, B € R) is called supporting
if Tz < Bforall z € Pand o’z = B for some z € P. The set {z ¢ P | aTz = b} isa

face of P.

Vissarion Fisikopoulos 78

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Definition 2. The polar dual polytope of P is defined as:
p* ::{ceRd:chg 1foralleP}§Rd,

where we assume that the origin 0 € int(P), the relative interior of P, i.e. 0 is not

contained in any face of P of dimension < d.

For our results, we need to assume that the output polytope is well-describ-

ed [78, Definition 6.2.2]. This will be the case in all our applications.

Definition 3. A rational polytope P C R? is well-described (with a parameter ¢
that we need to know explicitly) if there exists an H-representation for P in which
every inequality has encoding length at most ¢. The encoding length of a well-
described polytope is (P) = d+ ¢. Similarly, the encoding length of a set of vectors
D C R%is (D) = d + v if every vector in D has encoding length at most v.

In defining P, the inequalities are not known themselves, and we make no
assumptions about their number. The following lemma connects the encoding

length of inequalities with the encoding length of vertices.

Lemma 13. [78, Lemma 6.2.4] Let P C R?. If every inequality in an H-representation
Jor P has encoding length at most ¢, then every vertex of P has encoding length at
most 4d%¢. If every vertex of P has encoding length at most v, then every inequality

of its H-representation has encoding length at most 3d%v.

The natural model of computation when P is given by an oracle is that of an
oracle Turing machine [78, Section 1.2]. This is a Turing machine that can (in one
step) replace any input to the oracle (to be prepared on a special oracle tape) by
the output resulting from calling the oracle, where we assume that the output
size is polynomially bounded in the input size. An algorithm is oracle polynomial-
time if it can be realized by a polynomial-time oracle Turing machine. Moreover
it is total polynomial-time if its time complexity is bounded by a polynomial in the
input and output size.

In this chapter, we consider three oracles for polytopes; they can more gen-
erally be defined for (not necessarily bounded) polyhedra, but we do not need
this:

Vissarion Fisikopoulos 79

High-dimensional polytopes defined by oracles: algorithms, computations and applications

* Optimization (OPTp(c)): Given vector c € RY, either find a point y € P maxi-

mizing ¢z over all z € P, or assert P = 0.

* Violation (VIOLp(c,7)): Given vector c € R? and v € R, either find point y € P
such that Ty > v, or assert that ¢Tz <« for all z € P.

* Separation (SEPp(y)): Given point y € R?, either certify that y € P, or find a
hyperplane that separates y from P; i.e. find vector c € R¢ such that Ty >
¢TIz for all z € P.

The following is a main result of [78] and the cornerstone of our method.

Proposition 14. [78, Theorem 6.4.9] For a well-described polytope, any one of
the three aforementioned oracles is sufficient to compute the other two in oracle
polynomial-time. The runtime (polynomially) depends on the ambient dimension d
and the bound ¢ for the maximum encoding length of an inequality in some H-

representation of P.

For applications in combinatorial optimization, an extremely important fea-
ture is that the runtime does not depend on the number of inequalities that are
needed to describe P. Even if this number is exponential in d, the three oracles
are polynomial-time equivalent.

Another important corollary is that linear programs can be solved in polynomial-
time. Indeed, an explicitly given (bounded coefficient) system Az < b,z € R% of
inequalities defines a well-described polytope P, for which the separation oracle
is very easy to implement in time polynomial in (P); hence, the oracle polynomial-

time algorithm for OPTp(c) becomes a (proper) polynomial-time algorithm.

3.3 Computing the edge-skeleton

This section studies total polynomial-time algorithms for the edge-skeleton.
We are given a well-described polytope P C R% via an optimization oracle OPTp(c)
of P. Moreover, we are given a superset D of all edge directions of P; to be precise,

we define

D(P) = { Y=Y .y and w are adjacent vertices of P}

lv — wl|

Vissarion Fisikopoulos 80

High-dimensional polytopes defined by oracles: algorithms, computations and applications

to be the set of (unit) edge directions, and we assume that for every e € D(P), the
set D contains some positive multiple te,? € R,¢ > 0. Slightly abusing notation,
we write D D D(P).

The goal is to efficiently compute the edge-skeleton of P, i.e. its vertices and
the edges connecting the vertices. Even if D = D(P), this set does not, in general,
provide enough information for the task, so we need additional information about
P; here we assume an optimization oracle.

Vertex enumeration with this input has been studied in the real RAM model

of computation where we count the number of arithmetic operations:

Proposition 15. [115] Let P C R? be a polytope given by OPTp(c), and let D O D(P)
be a superset of the edge directions of P. The vertices of P are computed using
O(|D|%~1) arithmetic operations and O(|D|*~1) calls to OPTp(c).

If P has n vertices, then |D(P)| < (%), and this is tight for neighborly poly-
topes in general position [140]. This means that the bound of Proposition 15 is
0 (n2d—2), assuming that |D| = ©(|D(P))).

We show below that the edge-skeleton can be computed in oracle total polyno-
mial-time for a well-described polytope, which possesses an (unknown) H-re-
presentation with encoding size ¢. Thus, we show that the exponential depen-
dence on d in Proposition 15 can be removed in the Turing machine model of
computation, leading to a (weakly) total polynomial-time algorithm. It remains
open whether there is also a strongly total polynomial-time algorithm with a total
polynomial runtime bound in the real RAM model of computation.

The algorithm (Algorithm 2) is as follows. Using OPTp(c), we find some vertex
vp of P (this can be done even if OPTp(c) does not directly return a vertex [78,
Lemma 6.51], [53, pp. 255-256]).

We maintain sets Vp, Ep of vertices and their incident edges, along with a
queue W C Vp of the vertices for which we have not found all incident edges yet.
Initially, W = {v},Vp = Ep = 0. When we process the next vertex v from the
queue, it remains to find its incident edges: equivalently, the neighbors of v. To
find the neighbors, we first build a set V e of candidate vertices. We know that
for every neighbor w of v, there must be an edge direction e such that w = v + te
for suitable ¢ > 0. More precisely, w is the point corresponding to maximum ¢ in
the 1-dimensional polytope Q(e) :== PN {z | ¢ = v + te,t > 0}, where the latter

Vissarion Fisikopoulos 81

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Algorithm 2: Edge_Skeleton (OPTp, D)

Input : Optim. oracle OPTp(c), superset D of edge directions D(P)
Output: The edge-skeleton (and vertices) of P

Compute some vertex vg € P;
Vp + 0; W + {v}; Ep + 0;
while W +# (do
Choose the next element v € W and remove it from W;
Vp + Vp U{’U};
Veone < 0;
foreach e € F do

w < argmax{v + te € P,t > 0};

if w # v then

L Veone < Veone U{w}:

Remove non-vertices of P from V pne;
foreach w ¢ V ., do

if w ¢ Vp then W « W | J{w};
L if {v,w} ¢ Ep then Ep «+ Ep U{’U,’LU};

return Vp, Ep;

equals the intersection of P with the ray in direction e and apex at v. Hence, by
solving |D| linear programs, one for every e € D, we can build a set Ve that is
guaranteed to contain all neighbors of v. To solve these linear programs, we need
to construct optimization oracles for Q(e). To do this, we first construct SEPp(y)
from OPTp(c) in oracle polynomial-time according to Proposition 14. Thus, the
construction of SEPg()(y) is elementary, and since also Q(e) is well-described,
we can obtain OPT,)(c) in oracle polynomial-time.

In a final step, we remove the candidates that do not yield neighboring vertices.
For this, we first solve a linear program to compute a hyperplane h separating
v from the candidates in Vione; since Veone is a finite subset of P \ {v}, such a
hyperplane exists, and w.l.o.g. v = 0 and h = {z | z4 = 1}. Let C be the cone
generated by the set V;one. We compute the extreme points of Cn{zy = 1}, giving
us the extremal rays of C. Finally, we remove every point from V., that is not
on an extremal ray.

The correctness of the algorithm relies on the following Lemma.

Vissarion Fisikopoulos 82

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Lemma 16. Let v be a vertex of P processed during Algorithm 2, where we as-
sume w.l.o.g. that v = 0 and the set Vo of candidates is separated from v by the
hyperplane {z | z4 = 1}.

A point w € R? is a neighbor of v if and only if w is on some extremal ray of the
cone C generated by V..ne. Here, an extremal ray is a ray whose intersection with

the hyperplane {z; = 1} is an extreme point of the polytope C N {z | z5 = 1}.

Proof. Suppose that w is a neighbor of v. By construction, w € V.yne. Moreover,
since {v,w} is an edge, there is a supporting hyperplane h = {aTz = 0} (recall
that v = 0) such that Tz = 0 for all z € conv({v,w}) and aTz > 0 for all p ¢
P\ conv({v,w}). For each g € Vgope, let ¢(q) = éq eCn{z|zg=1}. We have g5 >0
by construction. Furthermore, a”c(w) = 0 while aTc(q) > 0 for ¢ € Veone, unless
g € conv({v,w}). In the latter case, ¢(q) = ¢(w). Hence, c(w) is the only point y in
C N {z4 = 1} such that a”y = 0, and this implies that c(w) is an extreme point of
CnN{z4=1}. So w is on some extremal ray of C.

For the other direction, suppose that w € V;one is on the extremal ray {te | t €
R}. So c(w) is an extreme point of C N {z | z4 = 1}. This means, there exists
a vertical hyperplane » = {aTz = g} with ay; = 0 such that aTc(w) = B, and
aTc(q) > B, for all ¢ € Vepne satisfying c(q) # c(w). Now define the hyperplane
h= {ET:c =0} witha = (ay,...,a4_1, —B). It follows that alqg>o0forall g € Veppe, SO
the positive halfspace of h contains C and thus also P since P C C. We claim that
hN P = conv({v,w}), which proves that conv({v,w}) is an edge of P and hence w
is a neighbor of v.

To see this, we first observe that aZw = 0 and aZq > 0 for all ¢ € Vyone that are
not multiples of p, so hrNP C hNC = {te | t € R}. On the other hand, we know from
the construction of V.., that w is the highest point of P (the one with maximum
t) on the ray {te | t € R}, so we indeed get h N P = conv({v, w}). O]

We now bound the time complexity of Algorithm 2.

Theorem 17. Given OPTp and a superset of edge directions D of a well-described
polytope P C R? with n vertices, and m edges Algorithm 2 computes the edge-

skeleton of P in oracle total polynomial-time

O (n|D| (O((P) + (D)) + LB(d|D| ((P) + (D)) +dlogn)),

Vissarion Fisikopoulos 83

High-dimensional polytopes defined by oracles: algorithms, computations and applications

where (D) is the binary encoding length of the vector set D.

Proof. We call OPTp(z) to find the first vertex of P. Then, there are O(n) iterations.
In each one, we construct O(|D|) oracles for polytopes Q(e) of encoding length at
most (P) + (D). We also compute the (at most n) extreme points from a set of
at most |D| candidate points. This can be done by solving |D| linear programs
whose inequalities have coefficients that are in turn coordinates of vertices of
the Q(e)’s. By Lemma 13, these coordinates have encoding lengths bounded by
4d?((P)+ (D)), and the number of coefficients in each linear program is O(|D|d). At
each vertex we have to test whether the computed vertices and edges are new. In

the course of the algorithm these tests are at most O(m) = O(n|D

), where m the
number of P edges. We can test whether a vertex (or an edge) is new in O(dlogn)

by using a binary search tree. O

3.3.1 Reverse search for edge-skeleton.

We define a reverse search procedure based on [8] to optimize the space used
by Algorithm 2. Given a vertex of P, the set of adjacent edges can be constructed
as described above. Then we need to define a total order over the vertices of the
polytope. Any generic vector ¢ € R? induces such an order on the vertices, i.e. the
order of a vertex u is that of ¢Iu. In other words, we can define a reverse search

Ty over all the vertices of P,

tree on P with root the vertex v that maximizes c
where c is the vector given to OPTp for initializing P. Technically, the genericity
assumption on ¢ can be avoided by sorting the vertices w.r.t. the lexicographical
ordering of their coordinates.

Reverse search also needs an adjacency procedure which, given a vertex v
and an integer j, returns the j-th adjacent vertex of v, as well as a local search
procedure allowing us to move from any vertex to its optimal neighbor w.r.t. the
objective function. Both procedures can be implemented by computing all the
adjacent vertices of a given vertex of P as described above, and then returning
the best (or the j-th) w.r.t. the ordering induced by c.

The above procedures can be used by a reverse search variant of Algorithm 2
that traverses (forward and backward) the reverse search tree while keeping in
memory only a constant number of P vertices and edges. On the contrary, both

the original Algorithm 2 and the algorithm of Proposition 15 need to store all

Vissarion Fisikopoulos 84

High-dimensional polytopes defined by oracles: algorithms, computations and applications

vertices of P whose number is exponential in d in the worst case. Note that any
algorithm should use space at least O(d|D|) to store the input set of edge di-
rections. The above discussion yields the following result (encoding length of P

vertices comes from Lemma 13).

Corollary 18. Given OPTp and a superset of edge directions D, a variant of Algo-
rithm 2 that uses reverse search runs in additional to the input space O(4d?(P) +

(D)) while keeping the same asymptotic time complexity.

3.4 Applications

We examine two important classes of polytopes and provide new, total polynomial-
time algorithms for their representation by an edge-skeleton: signed Minkowski
sums, and resultant and secondary polytopes. These polytopes are well-described
and naturally defined by optimization oracles, which provide a compact represen-

tation.

3.4.1 Signed Minkowski sums

Recall that the Minkowski sum of (convex) polytopes A, B C R% is defined as
A+B:={a+b|acAbc B}
Following [125] the Minkowski difference is defined as
A-B:={zecR?| B+z C A}

Here we consider a special case of Minkowski difference where B is a summand
of A. Equivalently, if A— B = C then A = B+C. A signed Minkowski sum combines

Minkowski sums and differences, namely
P=51Pi+5P+- -+ s:P, s; € {—1,1},

where all P; are convex polytopes and so is P.
We also define the sum (or difference) of two optimization oracles as the Mink-

owski sum (or difference) of the resulting vertices. In particular, if OPTp(c) = v and

Vissarion Fisikopoulos 85

High-dimensional polytopes defined by oracles: algorithms, computations and applications

P,

N A

P—=P, — P+ P . P TC

Figure 3.1: Signed Minkowski sum oracles.

OPTpi(c') = ' for v, v’ vertices of P, P’ respectively, then OPTp(c)+OPTpi(c) = v+’
and OPTp(c) — OPTpi(c) = v — v'. An optimization oracle for the signed Minkowski

sum is given by the signed sum of the optimization oracles of the summands.

Lemma 19. If P;,..., P, C R? are given by optimization oracles, then we compute

an optimization oracle for signed Minkowski sum P =Y., s;P; in O(r).

Proof. Assume w.l.o.g. that s; =+ =5 =1# s;,1 =+ = s, = —1. Then, given
P=3%" s;Pbwehave P+ [; | P = Zf;l P, = P'. Let OPTp/(c) = v for some
vertex v of P/ and vector ¢ € R?. It suffices to show that
k
OPTpi(c)=v=v1+ -+ v = ZOPTR;’
1=1
which follows from Minkowski sum properties: v = v1 + - - - + v, for vertices v; of
P; and normp(v) C normp,(v;), for < = 1...k. Here normp(v) denotes the normal
cone of vertex v of P, i.e. the set of all vectors ¢ such that ¢cfz < ¢Tv for all z € P.
Therefore, we can compute OPTp with r oracle calls to OPTp, for: = 1,...,r. This
yields a complexity of O(r) for OPT p since, by definition of oracle polynomial-time,

the oracle calls in every summand are of unit cost. O

Example 7. Here we illustrate the above definitions and constructions as well as

the standard reductions from [78]. Consider the polytopes Pi, P», Ps, their signed

Vissarion Fisikopoulos 86

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Minkowski sum P = P; — P, + P3, and its polar P* as shown in Figure 3.1. Ob-
serve that P, = P, + S, where S is a square. Assume that Py, P,, P3 are given by
OPTp,,OPTp,, OPTp, oracles.

Then, OPTp(c) = OPTp (c) — OPTpR,(c) + OPTp,(c) for some vector ¢ € Re. If
P satisfies the requirements of Proposition 14 then, having access to OPTp(c),
we compute SEPp(p) in oracle polynomial-time for point p € R%. In particular,
asking if p € P is equivalent to asking if H := {z | pz < 1} is a valid inequality
for P*. The latter can be solved by computing the point ¢! in P* that maximizes
the inner product with the outer normal vector of H and test if it validates H. If
this happens then SEPp(p) returns that p € P, otherwise it returns p ¢ P with
separating hyperplane {z | cz = 1}.

Let n denote the number of vertices of P. An oracle for P is provided by
Lemma 19. Then, the entire polytope can be reconstructed, and both V- and

H-representations can be found by Proposition 20.

Proposition 20. [59] Given OPTp for P C R?, its V- and H-representations as well

as a triangulation T of P can be computed in
O(d°ns?) arithmetic operations, and O(n + f) calls to OPTp,

where n and f are the number of vertices and facets of P, respectively, and s the

number of d-dimensional simplices of T'.

Corollary 21. Given optimization oracles for Py,...,P, C R?, we construct the V-
and H-representations, and a triangulation T of signed Minkowski sum P = P; +
s9Py+ -+ s, Py, s; € {—1,1} in output sensitive complexity, namely O(d°ns? + (n +
f)r), where n, f are the number of vertices and facets in P and s the number of

Jfull-dimensional simplices of T'.

The output representation of the above algorithm can be exponential in n,
thus we focus on total polynomial-time algorithms for the edge-skeleton of P.
Note that it is not assumed that the polytopes are well-described. We assume the
input contains a superset of all edges for each P;. If, instead, we are given the
vertices of all summands P;, then we can compute all edges in each P, by solving
a linear program for each pair of vertices. Each such pair defines a candidate

edge. Hence, the overall computation of P; edges is polynomial.

Vissarion Fisikopoulos 87

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Corollary 22. Given optimization oracles for well-described P, ...,P, C R%, and
supersets of their edge directions D», ..., D,, the edge-skeleton of the signed Mink-
owski sum P can be computed in oracle total polynomial-time by Algorithm 2.

Proof. To be able to apply Algorithm 2, first we should show that P is well-
described. Let (Ppqz) be the maximum encoding length of summands Py, ..., Pr.
Then by Lemma 13, the encoding length of the coordinates of summand vertices is
4d?(Pmaz). Thus, 4d%(Ppee) + (r) is the encoding length of the coordinates of P ver-
tices. Finally, (P) = d + 12d*(Pmaz) + 3d*(r) by Lemma 13. Now OPTp is computed
by Lemma 19 in O(r). The superset of the edge directions of P is D = (J,.+q D;.
because D(P; — P,) C D(P;) since P, — P, = P3 & P, = Py + Ps. O

Our algorithm assumes that, in the Minkowski difference A — B, B is a sum-

mand of A and does not verify this assumption.

3.4.2 Secondary and resultant polytopes

The secondary polytope & of a set of d points A = {p1,...,ps} C ZF is a fun-
damental object since it expresses the triangulations of conv(A) via a polytope
representation. For any triangulation T of conv(A), define vector ¢ € R¢ with
1-coordinate

¢7(i) = > vol(o), (3.1)

o€T | pevtx(a)

summing over all simplices o of T having p; as a vertex, where vtx(c) is the vertex
set of simplex o, and ¢ € {1,...,d}. Now the secondary polytope £(.A), or just L,
is defined as the convex hull of ¢ for all triangulations 7. A famous theorem
of [74], which is also the central result in [101], states that there is a bijection
between the vertices of ¥ and the regular triangulations of conv(A). This extends
to a bijection between the face poset of ¥ and the poset of regular subdivisions
of conv(A4). Moreover, ¥, although in ambient space R?, has actual dimension
dim(Z)=d -k — 1.

Let us now consider the Newton polytope of resultants, or resultant polytopes,
for which optimization oracles provide today the only plausible approach for their

computation [59].

Vissarion Fisikopoulos 88

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Let us consider sets Ay,...,A; C ZF. In the algebraic setting, these are the
supports of k£ + 1 polynomials in k variables. Let the Cayley set be defined by

k
A= U (4; x {e;}) C 72k,
7=0

where e, ..., e form an affine basis of Z*. Clearly, each point in A corresponds
to a unique point in some A;. The (regular) triangulations of A are in bijective
correspondance with the (regular) fine mixed subdivisions of the Minkowski sum
Ag + --- + Ag [74]. Mixed subdivisions are those where all cells are Minkowski
sums of convex hulls of subsets of the A;. A mixed subdivision is fine if, for every
cell, the sum of its summands’ dimensions equals the dimension of the cell.

Let d:= 3%_; |4,

with z-coordinate

, then given triangulation T' of conv(A4), define vector pr € R%

pr(i):= > vol(o), (3.2)

t-mixed o€T
where : € {1,...,d}. A simplex o is called i-mixed if it contains p; € A, for some £ €
{1,...,k} and exactly 2 points from each A;, where j ranges over {0, 1,...,k} —{£}.
The resultant polytope R is defined as the convex hull of pp for all triangulations
T. Similarly with the secondary polytope, it is in ambient space R¢ but has di-
mension dim(R) = d — 2k — 1 [74]. There is a surjection, i.e. many to one relation,

from the regular triangulations of conv(A) to the vertices of R.

Example 8. Let 4y = {{0},{2}}, A1 = {{0},{1},{2}}. then the Cayley set will be
A = {{0,0},{2,0},{0,1},{1,1},{2,1}}. The 5 vertices of the secondary polytope %(A)

are computed using equation (3.1):

¢(T1) = (2,4,2,0,4),
$(T2) = (4,2,4,0,2),
$(T3) = (4,2,3,2,1),
$(Ts) = (3,3,1,4,1),
¢(Ts) = (2,4,1,2,3),

and the 3 vertices of the resultant polytope N(R) are computed using equa-

Vissarion Fisikopoulos 89

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Al ° [L]

AO) °

Figure 3.2: Secondary and resultant polytopes.

tion (3.2):
p(T1) = (0,2,0,0,2),
p(T2) = (2,0,2,0,0),
=(2,0,2,0,0),

)
)
p(T3)
o(Ty) = (1,1,0,2,0),
p(Ts) = (0,2,0,0,2).
Note that there are two pairs of triangulations that yield one resultant vertex

each. Figure 3.2 illustrates this example.

We consider k fixed because in practice it holds k£ < d < n, where n stands for
the number of polytope vertices. Note that R is computed as a full-dimensional
polytope in a space of its intrinsic dimension [59] and this approach extends to
x.

Computing the V-representation of ¥ and R by the algorithm in [59] is not total
polynomial. In fact, the complexity depends on the number of polytope vertices
and facets, but also the number of simplices in a triangulation of the polytope
(see Proposition 20). However, we show that Algorithm 2 computes ¥ and R in
oracle total polynomial-time. Our results readily extend to the Newton polytope

of discriminants, or discriminant polytopes, discussed in [74].

Lemma 23. Both ¥ and R are well-described polytopes.

Vissarion Fisikopoulos 90

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Proof. For the case of %, given A € ZF, let (A) be its encoding length and o :=
vol(conv(4)). It is clear that o = O((A)*) and thus (a) = O(k(A)). For each trian-
gulation T each coordinate of ¢ is upper bounded by «, since the sum of the
volumes of its adjacent simplices cannot exceed vol(conv(A4)). This bound is tight
for the points a € A of a regular triangulation T' where the simplices containing a
partition conv(A). It follows that the encoding length of & vertices is (a) and thus
(Z) = 4n?(a) + d = O(dn?(A)) by Lemma 13. Similarly, we bound the encoding
length of pr which yields that R is also a well-described polytope. [

In the sequel, we characterize the set of edge directions of ¥ and R. The edge
directions of both %, R can be computed by enumerating circuits of A. More specif-
ically, circuit enumeration suffices to compute the edge vectors, i.e. both direc-
tions and lengths of the edges.

We first give some fundamental definitions from combinatorial geometry. For
a detailed presentation we recommend [101]. A circuit C C A is a minimum
affinely dependent subset of A. It holds that conv(C) has exactly two triangu-
lations C,C_. The operation of switching from one triangulation to another is
called flip. Triangulation T of A, which equals C; when restricted on circuit C, is
supported on C if, by flipping C; to C_, we obtain another triangulation T’ of A.
The dimension of a circuit is the dimension of its convex hull. If A is in generic
position, then all circuits C are full dimensional. Then all the edges of & corre-
spond to full dimensional circuits. If A is not in generic position, some edges may
correspond to lower-dimensional circuits.

In the case of R, where A = U;‘-’ZO A;, a circuit C is called cubical if and only if
|ICNA;| €{0,2}, 7 =0,...,k. If Ais in generic position, all the edges of R correspond

to full dimensional cubical circuits [131].

Lemma 24. Given A € Z* in generic position, we compute the set of edge directions
of L in O(dk+2). Given A € Z2k in generic position the set of edge directions of R is
computed in O(d2k+2). In both cases, genericity of A is checked within the respective
time complexity.

|4l
k+2

edge vectors. Genericity of 4 is established by checking whether all (
k€ {1,...,k+ 1}, are independent. This is in O(d**1) for k = O(1).

) circuits in O(d**2), obtaining the set of all
Iz;ll

Proof. For £, we enumerate all (

) subsets,

Vissarion Fisikopoulos 91

High-dimensional polytopes defined by oracles: algorithms, computations and applications

In the case of R, where A = U?’ZO Aj;, aflip on T is cubical iff it is supported on

a cubical circuit C.In generic position,

C| = 2k + 2. For those supporting cubical
flips,

CNAj|=2,75=0,...,k. Every edge dc of R is supported on cubical flip C,
where d¢(a) equals pc, (a) — pc_(a), if a € C, and 0 otherwise [131]. Given A, all
such circuits are enumerated in (2/|,ﬁ2) = O(d?*2); a better bound is O(t?*+2?) if ¢
bounds [4;|, 7 =0,...,k.]
Lemma 25. [59] For k + 1 pointsets in Z* of total cardinality d, optimization over R

takes polynomial-time, when k is _fixed.

Corollary 26. In total polynomial-time, we compute the edge-skeleton of & C RY,
given A € ZF in generic position, and the edge-skeleton of R, given A € Z* in

generic position.

Proof. Since by Lemma 23 %, R are well-bounded, optimization oracles are avail-
able by Lemma 25 and the set of edge directions by Lemma 24, the edge-skeletons
of ¥, R can be computed by Algorithm 2 in oracle total polynomial-time. More-
over, since the optimization oracle is polynomial-time this yields a (proper) total

polynomial-time algorithm for 2, R. O]

Follwoing Lemma 24, for ¥, R we also obtain their edge lengths. This can lead

to a more efficient edge-skeleton algorithm on the real RAM.

3.5 Concluding remarks

We have presented the first total polynomial-time algorithm for computing
the edge-skeleton of a polytope, given an optimization oracle, and a set of di-
rections that contains the polytope’s edge directions. Our algorithm yields the
first (weakly) total polynomial-time algorithms for the edge-skeleton (and vertex
enumeration) of signed Minkowski sum, and resultant polytopes.

An open question is a strongly total polynomial-time algorithm for the edge-
skeleton problem. Another is to solve the edge-skeleton problem without edge
directions; characterizations of edge directions for polytopes in H-representation
are studied in [116]. It is also interesting to investigate new classes of convex
combinatorial optimization problems where our algorithm offers a polynomial-

time algorithm.

Vissarion Fisikopoulos 92

Chapter 4

Algorithms for polytope volume
approximation

4.1 Introduction

A fundamental problem in discrete and computational geometry is to com-
pute the volume of a convex body in general dimension or, more particularly, of
a polytope. In the past 15 years, randomized algorithms for this problem have
witnessed a remarkable progress. Starting with the breakthrough poly-time algo-
rithm of [50], subsequent results brought down the exponent on the dimension
from 27 to 4 [104]. However, the question of an efficient implementation had
remained open.

Notation. Convex bodies are typically given by a membership oracle. A poly-
tope P C R? can also be represented as the convex hull of vertices (V-polytope)

or, as is the case here, as the (bounded) intersection
P:={zeR%| Az < b}

of m halfspaces given by A € R™*¢, p ¢ R™ (H-polytope); &P is its boundary, and
O*(-) hides polylog factors in the argument. The input includes approximation
factor € > 0; W denotes the most important runtime parameter, namely random
walk length.

Previous work. Volume computation is #-P hard for V- and for H-polytopes [51].
Several exact algorithms are surveyed in [30] and implemented in VINCI [29],

which however cannot handle general polytopes for dimension d > 15. An inter-

93

High-dimensional polytopes defined by oracles: algorithms, computations and applications

esting challenge is the volume of the n-Birkhoff polytope, computed only for n < 10
using highly specialized software (Sect. 4.4). Regarding deterministic approxima-
tion, no poly-time algorithm can compute the volume with less than exponential
relative error [54]. The algorithm of [18] has error < d!.

The landmark randomized poly-time algorithm in [50] approximates the vol-
ume of a convex body with high probability and arbitrarily small relative error.
The best complexity, as a function of d, given a membership oracle, is O*(d*) ora-
cle calls [104]. All approaches except [104] define a sequence of co-centric balls,
and produce uniform point samples in their intersections with P to approximate
the volume of P.

Concerning existing software (cf Sect. 4.5), [43] presented recently Matlab code
based on [104] and [42]. The latter offers a randomized algorithm for Gaussian
volume (which has no direct reduction to or from volume) in O*(d3), as a function
of d. In [102] they implement [104], focusing on variance-decreasing techniques,
and an empirical estimation of mixing time. In [99], they use a straightforward
acceptance-rejection method, which is not expected to work in high dimension;
it was tested only for d < 4. An approach using thermodynamic integration [84]
offers only experimental guarantees on runtime and accuracy.

The key ingredient of all approaches is random walks that produce an almost
uniform point sample. Such samples is a fundamental problem of independent in-
terest with important applications in, e.g., global optimization, statistics, machine
learning, Monte Carlo (MC) integration, and non-redundant constraint identifica-
tion. Several questions of sampling combinatorial structures such as contingency
tables and more generally lattice points in polytopes may be reduced to sampling
a polytope.

No simple sampling method exists unless the body has standard shape, e.g.,
simplex, cube or ellipsoid. Acceptance-rejection techniques are inefficient in high
dimensions. E.g., the number of uniform points one needs to generate in a bound-
ing box before finding one in P is exponential in d. A Markov chain is the only
known method, and it may use geometric random walks such as the grid walk,
the ball walk (or variants such as the Dikin walk), and Hit-and-run [129]. The
Markov chain has to make a (large) number of steps, before the generated point
becomes distributed approximately uniformly (which is the stationary limit distri-

bution of the chain). We focus on Hit-and-run which yields the fastest algorithms

Vissarion Fisikopoulos 94

High-dimensional polytopes defined by oracles: algorithms, computations and applications

today.

In contrast to other walks, Hit-and-run is implemented by computing the in-
tersection of a line with 0P. In general, this reduces to binary search on the line,
calling membership at every step. For H-polytopes, the intersection is obtained
by a boundary oracle; for this, we employ ray-shooting with respect to the m facet
hyperplanes (Sect. 4.2). In exact form, it is possible to avoid linear-time queries by

4/2]), achieving queries in O(logm) [121]. Duality reduces or-

using space in o(m!
acles to (approximate) e-nearest neighbour queries, which take O(dm(1+5)_2+0(1))
using O(dm + m1+(1+5)_2+0(1)) space by locality sensitive hashing [3]. Moreover,
space-time tradeoffs from O(1/&(#-9(1))/8) time and O(1/£(4—0(1))/2) space to O(1)
time and O(1/e(4-9(1)) space are available by [5]. Approximate oracles are also
connected to polytope approximation. Classic results, such as Dudley’s, show
that O((1/¢)(4~1)/2) facets suffice to approximate a convex body of unit diameter
within a Hausdorff distance of e. This is optimized to O(,/vol(8P)/e(¢~1)/2) [5]. The
boundary oracle is dual to finding the extreme point in a given direction among a
known pointset. This is e-approximated through e-coresets for measuring extent,
in particular (directional) width, but requires a subset of O((1/¢)(@-1)/2) points
[2]. The exponential dependence on d or the linear dependence on m make all
aforementioned methods of little practical use. Ray shooting has been studied in
practice only in low dimensions, e.g., in 6-dimensional V-polytopes [139].
Contribution. We implement and experimentally study efficient algorithms for
approximating the volume of polytopes. Point sampling, which is the bottleneck of
these algorithms, is key in achieving poly-time complexity and high accuracy. To
this end, we study variants of Hit-and-run. It is widely believed that the theoret-
ical bound on W is quite loose, and this is confirmed by our experiments, where
we set W = O(d) and obtain a < 2% error in up to 100 dimensions (Sect. 4.4).
Our emphasis is to exploit the underlying geometry. Our algorithm uses the
recursive technique of co-centric balls (cf. Sect. 4.3) introduced in [50] and used
in a series of papers, with the most recent to be [91]. This technique forms a
sequence of diminishing radii which, unlike previous papers, allowing us to only
sample partial generations of points in each intersection with P, instead of sam-
pling N points for each. In fact, the algorithm starts with computing the largest
interior ball by an LP. Unlike most theoretical approaches, that use an involved

rounding procedure, we sample a set of points in P and compute the minimum

Vissarion Fisikopoulos 95

High-dimensional polytopes defined by oracles: algorithms, computations and applications

enclosing ellipsoid of this set, which is then linearly transformed to a ball. This
procedure is repeated until the ratio of the minimum over the maximum ellipsoid
axes reaches some user-defined threshold. This iterative rounding allows us to
handle skinny polytopes efficiently.

We study various oracles (Sect. 4.2). Line search using membership requires
O(md + log E"—s) arithmetic operations. This is improved to a boundary oracle in
O(md) by avoiding membership. Using Coordinate Direction Hit-and-run, we fur-
ther improve the oracle to O(m) amortized complexity. We also exploit duality to
reduce the oracle to e-nearest neighbour search: although the asymptotic com-
plexity is not improved, for certain instances such as cross-polytopes in d = 16,
kd-trees achieve a 40x speed-up.

Our C++ code is open-source (sourceforge) and uses the CGAL library. A series
of experiments establishes that it handles dimensions substantially larger than
existing exact approaches, e.g., cubes and products of simplices within an error
of 2% for d < 100, in about 20 min. Compared to approximate approaches, it
computes significantly more accurate results. It computes in few hours volume
estimations within an error of 2% for Birkhoff polytopes Bo, ..., Big; vol(Bjg) has
been exactly computed by specialized parallel software in a sequential time of
years. More interestingly, it provides volume estimations for vol(B11),...,vol(Bis),
whose exact values are unknown, within 9 hours. In conclusion, we claim that
the volume of general H-polytopes in high dimensions (e.g. one hundred) can be
efficiently and accurately approximated on standard computers.

Paper organization. The next section discusses walks and oracles. Sect. 4.3
presents the overall volume algorithm. Sect. 4.4 discusses our experiments, and

we conclude with open questions in Sect. 4.5.

4.2 Random walks and Oracles

This section introduces the paradigm of Hit-and-run walks and focuses on
their implementation, with particular emphasis on exploiting the geometry of H-

polytopes. The methods presented here are analysed experimentally in Sect. 4.4.

Hit-and-run random walks. The main method to randomly sample a polytope

is by (geometric) random walks. We shall focus on variants of Hit-and-run, which

Vissarion Fisikopoulos 96

High-dimensional polytopes defined by oracles: algorithms, computations and applications

generate a uniform distribution of points [130]. Assume we possess procedure
Line(p), which returns line ¢ through point p € P C R%; ¢ will be specified below.
The main procedure of Hit-and-run is Walk(p, P, W), which reads in point p € P
and repeats W times: (i) run Line(p), (ii) move p to a random point uniformly
distributed on P N £. We shall consider two variants of Hit-and-run.

In Random Directions Hit-and-run (RDHR), Line(p) returns £ defined by a ran-
dom vector uniformly distributed on the unit sphere centered at p. The vector
coordinates are drawn from the standard normal distribution. RDHR generates

a uniformly distributed point in

O*(d?r?), or O*(d3r?) oracle calls, (4.1)

with hidden constants 10%°, or 10!! respectively,

starting at an arbitrary, or at a uniformly distributed point (also known as warm
start), respectively, where r is the ratio of the radius of the smallest enclosing ball
over that of the largest enclosed ball in P [103].

In Coordinate Directions Hit-and-run (CDHR), Line(p) returns ¢ defined by
a random vector uniformly distributed on the set {ei,...,eq}, where e; =
(,...,0,1,0,...,0), ¢ = 1,...,d. This is a continuous variant of the Grid walk.
As far as the authors know, the mixing time has not been analyzed. We offer ex-
perimental evidence that CDHR is faster than RDHR and sufficiently accurate.
An intermediate variant is Artificially Centering Hit-and-run [93], where first a
set S of sample points is generated as with RDHR, then Line(p) returns £ through
p and a randomly selected point from S. This however is not a Markov chain,
unlike CDHR and RDHR.

Procedure Walk(p, P, W) requires at every step an access to a boundary oracle
which computes the intersection of line £ with 0P. In the sequel we discuss various

implementations of this oracle.

Boundary oracle by membership. For general convex bodies, a boundary
oracle can be implemented using a membership oracle which, given vector y € R¢,
decides whether y € P. The intersection of £ with 0P is computed by binary search
on the segment defined by any point on £ lying in the body and the intersection of
¢ with a bounding ball. Each step calls membership to test whether the current

point is internal, and stops when some accuracy ¢; is certified. Checking the

Vissarion Fisikopoulos 97

High-dimensional polytopes defined by oracles: algorithms, computations and applications

point against a hyperplane takes O(d) operations, thus obtaining the intersection
of £ with the hyperplane. We store this intersection so that subsequent tests
against this hyperplane take O(1). The total complexity is O(md+log é) arithmetic

operations, where r is the ball radius.

Boundary oracle by facet intersection. Given an H-polytope P the direct
method to compute the intersection of line £ with 6P is to examine all m hyper-
planes. Let us consider Walk(pg, P, W) and line £ = {z € RE: z = Av+po}, where py €
R¢ lies on ¢, and v is the direction of £. We compute the intersection of ¢ with the i-
th hyperplane a;z = b;, a; € R, b; € R, namely p; := pg + bi;%v, 1€{1,...,m}. We
seek points p*,p~ at which £ intersects P, namely pTv = min; <;<,, {p;v | p;v > 0}
and p~v = maxj<;<m{p;v | p;v < 0}. This is computed in O(md) arithmetic opera-

tions. In practice, only the A* are computed, where p* = pg + A*w.

In the context of the volume algorithm (Sect.4.3), the intersection points of £
with 0P are compared to the intersections of £ with the current sphere. Assuming
the sphere is centered at the origin with radius R, its intersections with ¢ are
p = po + Av such that A2 + 2Apgv + |po|2 — RZ =0.If AT, A~ give a negative sign
when substituted to the aforementioned equation then p*,p~ are the endpoints
of the segment of £ lying in the intersection of P and the current ball. Otherwise,
we have to compute one or two roots of the aforementioned equation since the

segment has one or two endpoints on the sphere.

However, in CDHR, where £ and v are vertical, after the computation of the first
pair p™, p~, all other pairs can be computed in O(m) arithmetic operations. This is
because two sequential points produced by the walk differ only in one coordinate.
Let j, k be the walk coordinate of the previous and the current step respectively.
Then, assuming P = {z € R?: Az < b}, where A € R™*%, A* = max{\ | A(po+ Av) <
b}. This becomes +AAv = £AA; < —Apg + b, where A; is the j-th column of A. The
two maximizations are solved in O(md) ops. Let vector t = —Apy + b € R™. At the
next step, given point pj, = pg + ce;, where e; is the j-th standard basis vector, we

perform two maximizations A : +AAg <t —cA; in O(m).

Boundary oracle by duality. Duality reduces the problem to nearest neigh-
bour (NN) search and its variants. Given a pointset B C R? and query point g,
NN search returns a point p € B s.t. dist(q,p) < dist(q,p’) for all p’ € B, where
dist(g,p) is the Euclidean distance between points g, p. Let us consider, w.l.o.g.,

Vissarion Fisikopoulos 98

High-dimensional polytopes defined by oracles: algorithms, computations and applications

boundary intersection for line ¢ parallel to the z4-axis: £ = {z : 2 = Av +p, A >
0}, v = (0,...,0,—1). It reduces to two ray-shooting questions; it suffices to de-
scribe one, namely with the upward vertical ray, defined by A < 0. We seek the
first facet hyperplane hit which, equivalently, has the maximum negative signed
vertical distance from p to any hyperplane H of the upper hull, for fixed v. This
distance is denoted by sv(p, H). Let us consider the standard (aka functional)
duality transform between points p and non-vertical hyperplanes H:

p=(p1,...,pd) = P* : Ta=P1T1 + -+ Pa—1Td—1 — Pd,

. _ [
H:zg=ciz1+ - +¢c4-1Tg—1+co— H* = (c1,...,¢c4-1, —Co)-

This transformation is self-dual, preserves point-hyperplane incidences, and
negates vertical distance, hence sv*(p*, H*) = —sv(p, H), where sv*(;,-) is the
signed vertical distance from hyperplane p* to point H* in dual space. Hence,
our problem is equivalent to minimizing sv*(p*, H*) > 0. Equivalently, we seek
point H* minimizing absolute vertical distance to hyperplane p* on its side of

positive distances. In dual space, consider

point t = (%1,...,t4), and hyperplane
P'=¢:zg=qT1+ - +da-1Zd-1+ 0" (4.2)

sv¥(q,t) = tqg — (qut1 +--- + dq—1ta—1 + 90)
— _(QO)Q].) -+ 4d—1, _1) ’ (17t17 .- 'Jtd—litd))

where the latter operation is inner product in Euclidean space R¥t1 of “lifted”

datapoint ¢’ = (1,%1,...,t4_1,tq) with “lifted” query point ¢’ = (qo,4q1,---,94-1,—1).

Let
¢ =(¢,0), t' =,/ M —||t'||3), for M > mtaX{l + 181133,

following an idea of [13]. By the cosine rule,
distd, 5(g", ") = lld'lI3 + M +2sv*(g,),

where distg (-, -) stands for Euclidean distance in R%+2. Since the ¢ lie on hy-

perplane z; = 1, optimizing disty,»(g”,t") over a set of points ¢’ is equivalent to

Vissarion Fisikopoulos 99

High-dimensional polytopes defined by oracles: algorithms, computations and applications

optimizing distg, 1(4,?), 4 = (q1,-..,94_1, —1,0), over points £ = (t,1/M — 1 — |t[|2).
Hence, point ¢ minimizing sv*(q,t) > 0 corresponds to # minimizing dist?z 104, £).
Thus the problem is reduced to (exact) nearest neighbor in R%t!, Ray shooting
to the lower hull with same v reduces to farthest neighbor. Unfortunately, an
approximate solution to these problems incurs an additive error to the corre-
sponding original problem.

Alternatively, we shall consider hyperplane queries. Let us concentrate on hy-
perplanes supporting facets on the lower hull of P. Their dual points lie in con-
vex position. Given that point p is interior in P, the dual points of the lower hull
facets lie on the upper halfspace of p*. In dual space, consider point ¢ and hy-
perplane g as in expression (4.2). Let sd*(gq,t¢) be the signed Euclidean distance
from ¢ to ¢, i.e. the minimum Euclidean distance of any point on ¢ to ¢. Then
sv*(g,t) = sd*(q,?)/|(q1,---,94—1,1)||2, where the normal is (g1,...,94_1,1). Our
question, therefore, becomes equivalent to minimizing sd*(g, t) over all datapoints
¢t € R? for which sd*(g,t) > 0; i.e., we seek the NN above ¢. Starting with facets on
the upper hull, the problem becomes that of maximizing sd*(g,t) <0, i.e. finding
the NN below gq.

The above approaches motivate us to use NN software for exact point and

hyperplane queries (Sect. 4.4).

4.3 The volume algorithm

This section details our poly-time methods for approximating the volume of P.
Algorithms in this family are the current state-of-the-art with respect to asymp-
totic complexity bounds. Moreover, they can achieve any approximation ratio
given by the user, i.e., they form a fully polynomial randomized approximation
scheme (FPRAS). Given polytope P C RY, they execute sandwiching and Multi-
phase Monte Carlo (MMC) [129].

We consider that P is a full-dimensional H-polytope. However, we can also
consider P to be lower dimensional and be given in form {z € R%| Az = b, z > 0},
where A ¢ R™*4, £ € R, b € R™, A’ € R™*™m=d+1 g/ ¢ R™~4+1, Using Gauss-
Jordan elimination the linear system Az = b can be transformed to its unique

reduced row echelon form [I|A']z = b, where I is the identity matrix. Then P can

Vissarion Fisikopoulos 100

High-dimensional polytopes defined by oracles: algorithms, computations and applications

be written as {z’ € R™~%+1 | 4’2’ > ¥/,z’ > 0}, i.e. a full-dimensional H-polytope
in Rm—d-i—l.

Rounding and sandwiching. This stage involves first rounding P to reach a
near isotropic position, second sandwiching, i.e. to compute ball B and scalar
p such that B C P C pB. There is an abundance of methods in literature for
rounding and sandwiching (cf. [129] and references therein). However, here we
develop a simple, efficient method that succeed significantly accurate results in
practice (cf. Sect. 4.4 and Table 4.5). The method doesn’t compute a ball that
covers P but a ball B’ such that B’ n P contains almost all the volume of P.

For rounding, we sample a set S of O(n) random points in P. Then we approx-
imate the minimum volume ellipsoid £ that covers S, and satisfies the inclusions
mé‘ C conv(S) C &, in time O(nd?(e~! +Ind + Inlnn)) [97]. Let us write

E={zcR¥(z—ce)l BE(z—ce) <1}
={z e RY| LT (z — ¢g) < 1}, (4.3)

where E C R%*? is a positive semi-definite (p.s.d.) matrix and LT L its Cholesky de-
composition. By substituting z = (LT)~1y+c¢ we map the ellipsoid to the ball {y ¢
R¢|yTy < 1}. Applying this transformation to P we have P/ = {y ¢ R*|A(LT)"1 <
b — Acg} which is the rounded polytope, where vol(P) = det(LT)~lvol(P’). We it-
erate this procedure until the ratio of the minimum over the maximum ellipsoid

axes reaches some user defined threshold.

For sandwiching P we first compute the Chebychev ball B(c,r) of
P, ie. the largest inscribed ball in P. It suffices to solve the LP:
{maximize R, subject to: A;z + R||4;|]2 < b;,¢ = 1,...,m, R > 0}, where A, is
the i-th row of A, and the optimal values of R and z € R? yield, respectively, the
radius r and the center c of the Chebychev ball.

Then we may compute a uniform random point in B(c,r) and use it as a start
to perform a random walk in P, eventually generating N random points. Now,
compute the largest distance between each of the N points and c; this defines a
(approximate) bounding ball. Finally, define the sequence of balls B(c,2"/%), ¢ =
a,a+1,...,0, where a = |dlogr| and B = [dlog p].

Multiphase Monte Carlo (MMC). MMC constructs a sequence of bodies P, :=

Vissarion Fisikopoulos 101

High-dimensional polytopes defined by oracles: algorithms, computations and applications

P N B(c, 2i/d), t=a,a+1,...,8, where P, = B(c, 2O‘/d) C B(c,r) and P (almost)

contains P. Then it approximates vol(P) by the telescopic product

2ﬂ.d/2(2 [log |)d
dT(d/2)

vol(P;
vol(Py) H Vol(P,)1 , where vol(Py) =
i=a+1 v

This reduces to estimating the ratios vol(P;)/vol(P;_1), which is achieved by gen-
erating N uniformly distributed points in P; and by counting how many of them
fallin P;_;.

For point generation we use random walks as in Sect. 4.2. We set the walk
length W = |10 + d/10] = O(d), which is of the same order as in [102] but signifi-
cantly lower than theoretical bounds. This choice is corroborated experimentally
(Sect. 4.4).

Unlike typical approaches, which generate points in P, for : = o, + 1,..., 8,
here we proceed inversely. First, let us describe initialization. We generate an
(almost) uniformly distributed random point p € P,, which is easy since P, =
B(e, 2a/d) C B(c,r). Then we use p to start a random walk in Py, Py+1, Py4+2 and
so on, until we obtain a uniformly distributed point in Pz. We perform N random
walks starting from this point to generate N (almost) uniformly distributed points
in Pz and then count how many of them fall into Pz_;. This yields an estimate of
vol(Pg)/vol(Pg_1). Next we keep the points that lie in Ps_;, and use them to start
walks so as to gather a total of N (almost) uniformly distributed points in Pg_;.

We repeat until we compute the last ratio vol(P,1)/vol(Py).

The implementation is based on a data structure S that stores the random
points. In step 7 > o, we wish to compute vol(Pg_;)/vol(Pg_;_1) and S contains
N random points in Pg_;, from the previous step. The computation in this step
consists in removing from S the points not in Pg_;, then sampling N — size(S) new
points in Pg_; and, finally, counting how many lie in Pg_;_;. Testing whether such

a point lies in some P; reduces to testing whether p € B(2i/ 4) because p € P.

One main advantage of our method is that it creates partial generations of
random points for every new body P;, as opposed to having always to generate N
points. This has a significant effect on runtime since it reduces it by a constant
raised to B. Partial generations of points have been used in convex optimiza-
tion [17].

Vissarion Fisikopoulos 102

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Algorithm 3: VolEsti (P, ¢, t;)

Input : H-polytope P, objective approximation ¢, rounding threshold ¢,
Output : approximation of vol(P)

N « 400e2dlogd; W « |10+d/10];

// rounding and sandwiching
compute the Chebychev ball B(c,r);
generate a random point p in B(c,7);
repeat
S« 0;
for:=1toN do

p < Walk(p, P,W);
L add p in S;

compute min encl. ellipsoid £ of S, with p.s.d. E;
set as Emin, Emaz the min and max £ axes;
compute the Cholesky decomposition LT L of E;
transform P and p w.r.t. L;

until Emaz/Emin < t,;

set p the largest distance from c to any point in S;

// MMC
set a < |logr|; B« [logpl;
P; ePﬂB(c,?/d) fori=o0,a+1,...,06;
vol(Py) + 27%/2(2ller])d/d1(d/2);
14 B
while : > a do
Barge < Pis 1< 1—1; Pgman < Fi;
count_prev < size(S); remove from S the points not in Py .11
count « size(S);
Set p to be an arbitrary point from S;
for j — 1 to N — count_prev do

p < Walk(p, Parge: w);

if p € B(c,2"/9) then

count < count + 1;
L add pin S;

| wol « vol - (N/count);

return vol/ det(L7) ;

Vissarion Fisikopoulos 103

High-dimensional polytopes defined by oracles: algorithms, computations and applications

We use threads, also in [102], to ensure independence of the points. A thread
is a sequence of points each generated from the previous point in the sequence
by a random walk. The first point in the sequence is uniformly distributed in the

ball inscribed in P. Alg. 3 describes our algorithm using a single thread.

Complexity. The first O*(d®) algorithm was in [91], using a sequence of sub-
sets defined as the intersection of the given body with a ball. It uses isotropic
sandwiching to bound the number of balls by O*(d), it samples N = 400¢ ~?dlogd =
O*(d) points per ball, and follows a ball walk to generate each point in O*(d3) or-
acle calls. Interestingly, both sandwiching and MMC each require O*(d®) oracle
calls. Later the same complexity was obtained by Hit-and-run under the assump-

tion the convex body is well sandwiched.

Proposition 27. [91] Assuming B(0,1) C P C B(0, p), the volume algorithm of [91]
returns an estimation of vol(P), which lies between (1 — €)vol(P) and (1 + €)vol(P),
with probability > 3/4, by

4 2
o (d—glndlnp In? g) — O*(d*p?)
€

oracle calls with probability > 9/10, where we have assumed ¢ is fixed. Sandwich-
ing yields p = /d/log(1/¢), implying a total of O*(d°) calls.

In [104], they construct a sequence of log-concave functions and estimate ra-
tios of integrals, instead of ratios of balls, using simulated annealing. The com-
plexity reduces to O*(d*) by decreasing both number of phases and number of
samples per phase to O*(+/d). Using Hit-and-run, O*(d3) still bounds the time to
sample each point. Moreover, they improve isoperimetric sandwiching to O*(d%).

The following Lemma states the runtime of Alg. 3, which is in fact a variant of
the algorithm analysed in [91] (see also Prop. 27). Although there is no theoretical
bound on the approximation error of Alg. 3, our experimental analysis in Sect. 4.4
shows that in practice the achieved error is always better than the one proved

in Prop. 27.

Lemma 28. Given H-polytope P, Alg. 3 performs k phases of rounding in O* (d3mk),
and approximates vol(P) in O(md3logdlog(p/r)) arithmetic operations, assuming
€ > 0 is _fixed, where r and p denote the radii of the largest inscribed ball and of the

co-centric ball covering P.

Vissarion Fisikopoulos 104

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Proof. Our approach generates dlog(p/r) balls and uses Hit-and-run. Assuming
P contains the unit ball, an upper bound on p/r is diameter §. In each ball in-
tersected with P, we generate < N = 400¢ 2dlogd random points. Each point is
computed after W = O(d) steps of CDHR.

The boundary oracle of CDHR is implemented in Sect. 4.2. In particular, &
CDHR steps require O(dm+ (k— 1)m+ kd) arithmetic operations. It holds d = O(m)
and k£ = Q(d). Thus, the amortized complexity of a CDHR step is O(m). Overall,
the algorithm needs O(e~2md®log dlog(p/r)) operations.

Each rounding iteration decreases 6 and runs in O(nd?(e ! + Ind + InlIn(n))),
where n stands for the number of sampled points, and ¢ is the approximation of
the minimum volume ellipsoid of Eq. (4.3). We generate n = O(d) points, each in
O(m) arithmetic operations. Hence, rounding runs in O*(d®mk), where ¢ is fixed.
Moreover, k is typically constant since £ = 1 is enough to handle, e.g., polytopes

with p/r = 100 in dimension up to 20. O

Let us check this bound with the experimental data for cubes, products of
simplices, and Birkhoff polytopes, with d < 100 and ¢ = 1, where m = 2d, d + 2
and d+ 1+ 2+/d, respectively, for the 3 classes, and for cubes log(p/r) < log(v/d) =
O(logd). Fig. 4.1 shows that the 3 classes behave similarly. Performing a fit of
ad? log? d, runtime follows 10~2d3-98 log? d which shows a smaller dependence on d

than our bounds, at this range of experiments.

4.4 Experiments

We implement and experimentally test the above algorithms and methods in
the software package VolEsti. The code currently consists of around 2.5K lines
in C++ and is open—sourcel. It relies on the CGAL library [35] for its d-dimensional
kernel to represent objects such as points and vectors, for its LP solver [64], for the
approximate minimum ellipsoid [63], and for generating random points in balls.
We use Eigen [79] for linear algebra. The memory consumption is dominated by
the list of random points which needs O(dN) space during the entire execution
of the algorithm (Sect. 4.3). Arithmetic uses the double data type of C++, except
from the LP solver, which uses the GNU Multiple Precision arithmetic library to

'http://sourceforge.net/projects/randgeom

Vissarion Fisikopoulos 105

High-dimensional polytopes defined by oracles: algorithms, computations and applications

P d m vol(P) N n [min, max] std-dev vol(P)—pu VolEsti Exact
vol(P) (sec) (sec)
cube-10 10 20 1.024E+003 9210 1.027E+003 [0.950E+003,1.107E+003] 3.16E+001 0.0030 0.42 0.01
cube-15 15 30 3.277E+004 16248 3.24E+004 [8.087E+004,3.436E+004] 9.41E+002 0.0088 1.44 0.40
cube-20 20 40 1.048E+006 23965 1.046E+006 [0.974E+006,1.116E+006] 3.15E+004 0.0028 4.62 swap
cube-50 50 100 1.126E+015 78240 1.125E+015 [1.003E+015,1.253E+015] 4.39E+013 0.0007 117.51 swap
cube-100 100 200 1.268E+030 184206 1.278E+030 [1.165E+030,1.402E+030] 4.82E+028 0.0081 1285.08 swap
A-10 10 11 2.756E-007 9210 2.76E-007 [2.50E-007,3.08E-007] 1.08E-008 0.0021 0.56 0.01
A-50 60 61 1.202E-082 98264 1.21E-082 [1.07E-082,1.38E-082] 6.44E-084 0.0068 183.12 0.01
A-100 100 101 1.072E-158 184206 1.07E-158 [9.95E-159,1.21E-158] 4.24E-160 0.0032 907.52 0.02
A-20-20 40 42 1.689E-037 59022 1.70E-037 [1.54E-037,1.87E-037] 7.33E-039 0.0088 53.13 0.01
A-40-40 80 82 1.502E-096 140224 1.50E-096 [1.32E-096,1.70E-096] 7.70E-098 0.0015 452.05 0.01
A-50-50 100 102 1.081E-129 184206 1.10E-129 [1.01E-129,1.19E-129] 4.65E-131 0.0154 919.01 0.02
cross-10 10 1024 2.822E-004 9210 2.821E-004 [2.693E+004,2.944E+004] 5.15E-006 0.0003 1.58 388.50
cross-11 11 2048 5.131E-005 10550 5.126E-005 [4.888E-005,5.437E-005] 1.15E-006 0.0010 5.19 6141.40
cross-12 12 4096 8.551E-006 11927 8.557E-006 [8.130E-006,9.020E-006] 1.69E-007 0.0007 12.21 —
cross-15 15 32768 2.506E-008 16248 2.505E-008 [2.332E-008,2.622E-008] 5.15E-010 0.0004 541.22 —
cross-18 18 262144 4.09E-011 20810 4.027E-011 [3.97E-011,4.08E-011] 5.58E-013 0.0165 5791.06
rh-8-25 8 25 7.859E+002 6654 7.826E+002 [7.47E+002,8.15E+002] 1.93E+001 0.0042 0.30 1.14
rh-8-30 8 30 2.473E+002 6654 2.449E+002 [2.28E+002,2.68E+002] 1.06E+001 0.0099 0.27 5.56
rh-10-25 10 25 5.729E+003 9210 5.806E+003 [5.55E+003,6.06E+003] 1.85E+002 0.0134 0.66 6.88
rh-10-30 10 30 2.015E+003 9210 2.042E+003 [1.96E+003,2.21E+003] 7.06E+001 0.0132 0.67 swap
v-8-10 8 24 1.409E+019 6654 1.418E+019 [1.3839E+019,1.497E+019] 5.24E+017 0.0107 0.37 0.01
v-8-11 8 54 3.047E+018 6654 3.056E+018 [2.562E+018,3.741E+018] 3.98E+017 0.0028 0.76 0.54
rv-8-12 8 94 4.385E+019 6654 4.426E+019 [4.105E+019,4.632E+019] 2.07E+018 0.0093 0.59 261.37
rv-8-20 8 1191 2.691E+021 6654 2.724E+021 [2.517E+021,2.871E+021] 1.05E+020 0.0123 3.69 swap
1v-8-30 8 4482 7.350E+021 6654 7.402E+021 [7.126E+021,7.997E+021] 2.19E+020 0.0072 12.73 swap
rv-10-12 10 35 2.136E+022 9210 2.155E+022 [1.952E+022,2.430E+022] 1.53E+021 0.0093 1.00 0.01
rv-10-13 10 89 1.632E+023 9210 1.618E+023 [1.514E+023,1.714E+023] 6.23E+021 0.0088 1.24 59.50
rv-10-14 10 177 2.931E+023 9210 2.962E+023 [2.729E+023,3.195E+023] 1.71E+022 0.0135 2.08 swap
cc-8-10 8 70 1.568E+005 26616 1.589E+005 [1.52E+005,1.64E+005] 3.50E+003 0.0138 1.95 0.05
cc-8-11 8 88 1.391E+006 26616 1.387E+006 [1.35E+006,1.43E+006] 2.65E+004 0.0034 2.10 0.08
Fm-4 6 7 8.640E+001 4300 8.593E+001 [7.18E+001,1.12E+002] 8.38E+000 0.0055 0.19 0.01
Fm-5 10 25 7.110E+003 9210 7.116E+003 [6.35E+003,8.10E+003] 3.01E+002 0.0009 0.69 0.02
Fm-6 15 59 2.861E+005 16248 2.850E+005 [2.42E+005,3.22E+005] 1.55E+004 0.0038 3.24 swap
ccp-5 10 56 2.312E+000 9210 2.326E+000 [2.16E+000,2.52E+000] 7.43E-002 0.0064 0.49 38.00
ccp-6 15 368 1.346E+000 16248 1.346E+000 [1.26E+000,1.45E+000] 3.81E-002 0.0002 6.14 swap
Bg 49 64 4.42E-023 76279 4.46E-023 [4.05E-023, 7.32E-024] 1.93E+004 0.0092 192.97 1920.00
Bo 64 81 2.60E-033 106467 2.58E-033 [2.28E-033, 3.07E-033] 2.13E-034 0.0069 499.56 8 days
Bio 81 100 8.78E-046 142380 8.92E-046 [7.97E-046, 9.96E-046] 4.99E-047 0.0152 1034.74 6160 days
Bi1 100 121 ??? 184206 1.40E-060 [1.06E-060, 1.67E-060] 1.10E-061 ?97? 2398.17 —
Bia 121 144 ?9? 232116 7.85E-078 [6.50E-078,9.31E-078] 5.69E-079 ?97? 4946.42 —
Bi3 144 169 ??? 286261 1.33E-097 [1.13E-097, 1.62E-097] 1.09E-098 ??? 9802.73 —
Bia 169 196 ??? 346781 5.96E-120 [5.30E-120, 6.96E-120] 3.82E-121 ??? 17257.61 —
Bis 196 225 ??? 413804 5.70E-145 [5.07E-145, 6.52E-145] 1.55E-145 ??? 31812.67 —

Table 4.1: Overall results; € = 1, “swap” indicates it ran out of memory and started
swapping. “???” indicates that the exact volume is unknown; “—” indicates it
didn’t terminate after at least 10h. VINCI is used for exact volume computation
except Birkhoff polytopes where birkhoff is used instead.

avoid double exponent overflow. We experimented with several pseudo-random
number generators in Boost [107] and chose the fastest, namely mersenne twister
generator mt19937. All timings are on an Intel Core i5-2400 3.1GHz, 6MB L2 cache,
8GB RAM, 64-bit Debian GNU/Linux.

Data. The following polytopes are tested (the first 7 are from the VINCI web-
page):
* cube-d: {z = (z1,...,2q9)|z; <l,z; > —l,z; e Rforall: =1,...,d},
* cross-d: cross polytope, the dual of cube, i.e. conv({—e;,e;, 1 =1,...,d}),
* rh-d-m: polytopes constructed by randomly choosing m hyperplanes tangent
to the sphere,
* 1v-d-n: dual to rh-d-m, i.e. polytopes with n vertices randomly distributed on

the sphere,

Vissarion Fisikopoulos 106

High-dimensional polytopes defined by oracles: algorithms, computations and applications

RDHR CDHR

P d e w [min, max] (vol(P) — p) VolEsti n [min, max] (vol(P) — u) VolEsti
/vol(P) (sec) /vol(P) (sec)
Bs 16 1 2.27E-07 [1.66E-07,2.85E-07] 0.0072 22.90 2.25E-07 [1.87E-07,2.80E-07] 0.0003 4.06
Be 25 1 8.53E-13 [8.72E-13,1.22E-12] 0.0982 105.96 9.53E-13 [7.30E-13,1.15E-12] 0.0083 17.26
Br 36 1 2.75E-20 [1.78E-21,6.71E-20] 0.4259 479.40 4.82E-20 [3.86E-20,6.18E-20] 0.0056 56.64
cube-10 10 1 1022.8 [944.3951,1103.968] 0.0012 2.03 1026.83 [970.3117,1096.469] 0.0027 0.34
cube-10 10 0.4 - - - - 1022.88 [993.0782,1060.409] 0.0011 2.02
cube-20 20 1 1.04E+6 [9.38E+5,1.14E+6] 0.0033 25.44 1.04E+6 [9.74E+5,1.12E+6] 0.0028 4.62

Table 4.2: Experiments with CDHR vs RDHR; W = 10.
d m vol(P) N I [min, max] std-dev (vol(P) — u) VolEsti mem. VolEsti* mem.
/vol(P) (sec) MB (sec) MB
10 1024 2.82E-04 9210 2.82E-04 [2.67E-04,3.00E-04] 5.74E-06 0.0001 1.58 35 0.51 42
12 4096 8.55E-06 11927 8.54E-06 [8.04E-06,8.89E-06] 1.72E-07 0.0010 12.21 35 1.62 72
14 16384 1.88E-07 14778 1.88E-07 [1.80E-07,1.99E-07] 4.09E-09 0.0006 237.22 36 6.49 230
16 65536 3.13E-09 17744 3.13E-09 [2.97E-09,3.33E-09] 6.44E-11 0.0004 1430.93 37 32.87 992
18 262144 4.09E-11 20810 4.09E-11 [3.99E-11,4.29E-11] 7.19E-13 0.0013 5791.06 38 188.43 4781

Table 4.3: Experiments with NN for boundary oracle on cross-polytopes; VolEsti*
uses flann; e = 1.

* cc-8-n: the 8-dimensional product of two 4-dimensional cyclic polyhedra
with n vertices,

* ccp-n: complete cut polytopes on n vertices,

* Fm-d: one facet of the metric polytope in dimension d,

* A-d: the d-dimensional simplex conv({e;, for: =0,1,...,d}),

* A-d-d: product of two simplices, i.e {(p,p') € R%|p € A-d,p' € A-d},

* skinny-cube-d: {z = (z1,...,24) |21 < 100,27 > —100,z; < 1,z; > —1,z;, E R1 =
2,...,d}, rotated by 30° in the plane defined by the first two coordinate axes,

* B,: the n-Birkhoff polytope (defined below).

Each experiment is repeated 100 times with € = 1 unless otherwise stated. The
reported timing for each experiment is the mean of 100 timings. We keep track of
and report the min and the max computed values, the mean y, and the standard
deviation. We measure the accuracy of our method by (vol(P) — u)/vol(P) and
(max—min)/u; unless otherwise stated mean error of approximation refers to the
first quantity. The reader should not confuse these quantities which refer to the
approximation error that computed in practice with € which refers to the objective
approximation error. Comparing the practical and objective approximation error,
our method is in practice more accurate than indicated by the theoretical bounds.
In particular, in all experiments all computed values are contained in the interval
((1 —e¢)vol(P), (1 +¢€)vol(P)), while theoretical results in [91] guarantee only 75% of
them. Actually, the above interval is larger than [min, max]. In general our exper-

imental results show that our software can approximate the volume of general

Vissarion Fisikopoulos 107

High-dimensional polytopes defined by oracles: algorithms, computations and applications

polytopes up to dimension 100 in less than 2 hours with mean approximation
error at most 2% (cf. Table 4.1).

Random walks and oracles. First, we compare the implementations of bound-
ary oracles using membership oracles versus using facet intersection. By per-
forming experiments with RDHR our algorithm approximate the volume of a 10-

cube in 42.58 sec using the former, whereas it runs in 2.03 sec using the latter.

We compare RDHR to CDHR. The latter take advantage of more efficient
boundary oracle implementations as described in Sect. 4.2. Table 4.2 shows that
our algorithm using CDHR becomes faster and more accurate than using RDHR
by means of smaller [min,max] interval. Additionally, since CDHR is faster we can
increase the accuracy (decrease €) and obtain even more accurate results than
RDHR, including smaller error (vol(P) — u)/vol(P).

Finally, we evaluate our implementations of boundary oracles using duality
and NN search (Sect. 4.2). The motivation comes from the fact that the bound-
ary oracle becomes slow when the number of facets is large, e.g., for cross-d,
m = 2%, We consider state-of-the-art NN software: CGAL’s dD Spatial Searching
implements kd-trees [133], ANN [111] implements kd- and BBD-trees, LSH imple-
ments Locality Sensitive Hashing [3], and FLANN [112] implements randomized
kd-trees. We compare them against our oracle running in O(m), on cross-17, Big
and cpp-7. We build two kd-trees per coordinate, i.e. one per direction, each tree

storing the dual of the corresponding lower and upper hulls.

Consider point queries. FLANN, is very fast in high dimensions (typically > 100),
but lacks theoretical guarantees. It turns out that KDTreeSingleIndexParams on
cross-d returns exact results for all € and d tested, since the tree stores vertices
of a cube. Compared to the O(m) oracle, for ¢ = 0 it is 10x slower, for ¢ = 2 it is
competitive, and for € = 5 it lets us approximate vol(cross-18) with a 40x speed-
up, but with extra memory usage (Table 4.3). On other datasets, FLANN does not
always compute the exact NN even for € = 0. ANN, is very fast up to dimension
20 and offers theoretical guarantees. For ¢ = 0, it guarantees the exact NN, but
is > 103x slower than our O(m) oracle, though it becomes significantly faster for
e > 1.In[113], LSH is reported to be 10x slower than FLANN and competitive with
ANN, thus we do test it here.

CGAL for point queries is slower than ANN, but can be parametrized to handle

Vissarion Fisikopoulos 108

High-dimensional polytopes defined by oracles: algorithms, computations and applications

10000

" 107-5) dB.08}log2(d) ——
product of simplices —x<—

1000

100

Time (sec)

10

0.1

0 10 20 30 40 50 60 70 80 90 100
Dimenslon d

Figure 4.1: Runtime of VolEsti w.r.t. dimension; ¢ = 1, y-axis in logscale; fitting
on cube-d results.

hyperplane queries with theoretical guarantees. Given hyperplane H, we set as
query point the projection of the origin on H and as distance-function the inner
product between points. With the S1iding midpoint rule and ¢ = 0, this is a bit
(while ANN is 1000x) slower than our boundary oracle for cross-17. It is important
to design methods for which ¢ > 0 accelerates computation so as to use them
with approximate boundary oracles.

The above study provides motivation for the design of algorithms that can use
approximate boundary queries and hence take advantage of NN software to han-
dle more general polytopes with large number of facets. Of particular relevance
is the development of efficient methods and data-structures for approximate hy-

perplane queries.

Choice of parameters and rounding. We consider two crucial parameters,
the length of a random walk, denoted by W, and approximation ¢, which deter-
mines the number N of random points. We set W = |10+ d/10|. Our experiments
indicate that, with this choice, either (vol(P)-u)/vol(P) or (min,maz)/u is < 1% up
to d = 100 (Table 4.4). Moreover, for higher W the improvement in accuracy is not
significant, which supports the claim that asymptotic bounds are unrealistically
high. Fig. 4.2 correlates runtime (expressed by NW) and accuracy (expressed by
(mwn, maz)/p which actually measures some “deviation”) to W and e (expressed

by N). A positive observation is that accuracy tightly correlates with runtime: e.g.,

Vissarion Fisikopoulos 109

High-dimensional polytopes defined by oracles: algorithms, computations and applications

50 T — - T T T T T
AN . 100K ———
N 300K -
\ " 600K -7 -
AN . 900K
N 1200K —— =~
[\ . N —|
40 N . . 1800K -~~~
s S \ AN N
+ 0287 . + 0279 .+ 0.189 $.0.172 300
S ‘\. \\
= N " \‘ “ .
8 + 0262 + 0.252 420215 + 0.140 + 0114
o 30 N . T
= N . . .
9 . AN .
M .+ 0300+ 0305+ 0.243 N+ 0156 ~._ + 0.085
) N . . -
= . . . AN .
S RN \‘\ \\ ™ N
g + 0397 + 0308 +.0.196 .+ 0.:85 +70.111
g " N .
P + 0.364 90301 + 0262 + 077 S Th0.142
+ 0426 1+ 0434 T 0.246 +70.208 el Thg0a74

10000 100000

Num berofrandom points N

Figure 4.2: Experiments with Bs on the effect of W and ¢ (or N) on accuracy,
measured by (min, max)/u (crosses), and runtime, measured by levels of N-W = c,
for ¢ = 10°,...,2.5 - 106.

accuracy values close to or beyond 1 lie under the curve NW = 10°, and those
rounded to < 0.3 lie roughly above NW = 3-10°. It also shows that, increasing W
converges faster than increasing N to a value beyond which the improvement in

accuracy is not significant.

To experimentally test the effect of rounding we construct skinny hypercubes
skinny-cube-d. We rotate them to avoid CDHR taking unfair advantage of the de-
generate situation where the long edge is parallel to an axis. Table 4.5 on these
and other polytopes shows that rounding reduces approximation error by 2 or-
ders of magnitude. Without rounding, for polytope rv-8-11 one needs to multiply
N (thus runtime) by 100 in order to achieve approximation error same as with

rounding.

Other software. Exact volume computation concerns software computing
the exact value of the volume, up to round-off errors in case it uses floating
point arithmetic. We mainly test against VINCI 1.0.5 [29], which implements
state-of-the art algorithms, cf. Table 4.1. For H-polytopes, the method based on

Vissarion Fisikopoulos 110

High-dimensional polytopes defined by oracles: algorithms, computations and applications

P d m W m [min,max] std-dev (vol(P)-u) (min, max)

/vol(P) /p

(*) cube-10 10 20 10 1026.953 [925.296,1147.101] 33.91331 0.0029 0.2160
cube-10 10 20 15 1024.157 [928.667,1131.928] 31.34121 0.0002 0.1985
cube-10 10 20 20 1026.910 [932.118,1144.601] 30.97023 0.0028 0.2069
cube-50 50 100 10 1.123E+15 [1.019E+15,1.257E+15] 4.135E+13 0.0022 0.2125

(*) cube-50 50 100 15 1.131E+15 [1.039E+15,1.237E+15] 3.882E+13 0.0044 0.1744
cube-50 50 100 20 1.127E+15 [1.033E+15,1.216E+15] 3.893E+13 0.0007 0.1629
cube-100 100 200 10 1.278E+30 [1.165E+30,1.402E+30] 4.819E+28 0.0081 0.1856
cube-100 100 200 15 1.250E+30 [1.243E+30,1.253E+30] 4.075E+27 0.0140 0.0083
(*) cube-100 100 200 20 1.263E+30 [1.190E+30,1.321E+30] 3.987E+28 0.0038 0.1038
A-20-20 40 42 10 1.699E-37 [1.527E-37,1.881E-37] 7.670E-39 0.0056 0.2083

() A-20-20 40 42 14 1.694E-37 [1.526E-37,1.892E-37] 7.096E-39 0.0025 0.2166
A-20-20 40 42 20 1.694E-37 [1.433E-37,1.836E-37] 7.006E-39 0.0024 0.2382
A-50-50 100 102 10 1.098E-129 [1.012E-129,1.189E-129] 4.652E-131 0.0154 0.1612
A-50-50 100 102 15 1.111E-129 [1.090E-129,1.139E-129] 1.610E-131 0.0281 0.0437

(*) A-50-50 100 102 20 1.079E-129 [1.011E-129,1.148E-129] 3.685E-131 0.0015 0.1266
Big 81 100 10 7.951E-55 [6.291E-55,9.077E-55] 8.533E-56 0.0946 0.3504

Big 81 100 15 8.124E-55 [7.451E-55,8.774E-55] 5.015E-56 0.0750 0.1629

(*) B1io 81 100 20 7.489E-55 [7.398E-55,7.552E-55] 6.615E-57 0.1472 0.0106

Table 4.4: Experiments with varying W; e = 1. (*) indicate minimum W where
either (vol(P)-u)/vol(P) or (min, max)/u is < 1%.

P vol(P) N 7 [min,max] w‘)llo(l% VolEsti(sec)

v-8-11 3.047E+18 6654 1.595E+18 [6.038E+17,3.467E+18] 0.4766 1.48

v-8-11 3.047E+18 665421 3.134E+18 [3.134E+18,3.134E+18] 0.0283 157.46

(*) rv-8-11 3.047E+18 6654 3.052E+18 [2.755E+18,3.383E+18] 0.0013 1.34
skinny-cube-10 1.024E+05 9210 5.175E+04 [2.147E+04,1.228E+05] 0.4946 0.69

(*) skinny-cube-10 1.024E+05 9210 1.029E+05 [8.445E+04,1.149E+05] 0.0050 0.71
skinny-cube-20 1.049E+08 23965 4,193E+07 [2.497E+07,7.259E+07] 0.6001 5.59

(*) skinny-cube-20 1.049E+08 23965 1.040E+08 [8.458E+07,1.163E+08] 0.0084 6.70

Table 4.5: Experiments with rounding; (*): means that we use rounding.

Lawrence’s general formula is numerically unstable resulting in wrong results in
many examples [30], and thus was excluded. Therefore, we focused on Lasserre’s
method. For all polytopes there is a threshold dimension for which VINCI cannot
compute the volume: it takes a lot of time (e.g. > 4 hrs for cube-20) and consumes
all system memory, thus starts swapping.

LRS is not useful for H-polytopes as stated on its webpage: “If the volume
option is applied to an H-representation, the results are not predictable.” Latte
implements the same decomposition methods as VINCI; it is less prone to round-
off error but slower [45]. Normaliz applies triangulation: it handles cubes for
d < 10, in < 1 min, but for d = 15, it did not terminate after 5 hours. Qhull

handles V-polytopes but does not terminate for cube-10 nor random polytope rv-

Vissarion Fisikopoulos 111

High-dimensional polytopes defined by oracles: algorithms, computations and applications

rv-15- rv-10- cube-
30 40 50 60 | 100 150 200 250 | 7 8 9 10
time (sec) | 7.7 82.8 473.3 swap | 37.3 107.8 2825 449.0 | 0.1 22 1195 >5h

P:

Table 4.6: Experiments with ghull; “swap” indicates it ran out of memory and
started swapping; “>5h” indicates it did not terminate after 5 hours.

software of [42] Volesti

P [min, max] std-dev vol(P)—p # total time(sec) [min, max] std-dev vol(P)—p # total time(sec)
vol(P) steps vol(P) steps

cube-20 [5.11E+05, 1.55E+06] 1.67E+05 0.0198 7.96E+04 21.48 [9.74E+05, 1.12E+06] 3.15E+04 0.0028 3.61E+06 4.62

cube-30 [6.75E+08, 1.45E+09] 1.72E+08 0.0440 2.22E+05 49.24 [9.91E+08, 1.16E+09] 3.89E+07 0.0039 1.21E+07 17.96

cube-40 [7.90E+11, 1.38E+12] 1.67E+11 0.0731 4.30E+05 88.09 [1.01E+12,1.23E+12] 4.46E+10 0.0039 2.84E+07 50.72

cube-50 [8.75E+14, 1.45E+15] 1.43E+14 0.0327 7.16E+05 148.06 [1.00E+15, 1.25E+15] 4.39E+13 0.0007 5.49E+07 117.51
cube-60 [8.89E+17,1.43E+18] 1.64E+17 0.0473 1.15E+06 229.33 [1.06E+18, 1.27E+18] 4.00E+16 0.0051 9.42E+07 222.10
cube-70 [9.01E+20, 1.36E+21] 1.49E+20 0.0707 1.66E+06 427.82 [1.02E+21, 1.32E+21] 5.42E+19 0.0013 1.49E+08 358.93

cube-80 [9.30E+23, 1.36E+24] 1.46E+23 0.1145 2.30E+06 531.46 [1.13E+24, 1.30E+24] 4.42E+22 0.0009 2.21E+08 582.19
cube-90 [1.07E+27,1.88E+27] 2.20E+26 0.0394 3.30E+06 701.54 [1.09E+27, 1.44E+27] 5.18E+25 0.0019 3.15E+08 875.69
cube-100 [9.53E+29, 1.64E+30] 1.93E+29 0.0357 4.19E+06 884.43 [1.17E+30, 1.40E+30] 4.82E+28 0.0081 4.33E+08 1285.08
Bg [2.12E-23,2.45E-22] 6.25E-23 0.3970 9.31E+05 221.30 [4.05E-23,7.32E-24] 1.93E+04 0.0092 1.01E+08 192.97

Bog [1.54E-33,2.77E-33] 3.71E-34 0.1830 2.05E+06 420.07 [2.23E-33,3.07E-33] 2.13E-34 0.0069 2.27E+08 499.56

Bio [3.39E-46, 1.92E-45] 4.75E-46 0.1207 3.69E+06 691.97 [7.97E-46,9.96E-46] 4.99E-47 0.0152 4.62E+08 1034.74

Table 4.7: Comparison of the software [42] vs VolEsti; each experiment is run
10 times, total steps refer to the mean of the total number of Hit-and-run steps
in each execution.

n | 3 4 5 6 7 8 9 10

estimate [33] | 1.25408 1.22556 1.19608 1.17258 1.15403 1.13910 1.12684 1.11627
actual VolEsti | 0.99485 1.09315 1.00029 1.00830 1.00564 0.99440 0.99313 1.01525

Table 4.8: Comparison between asymptotic and experimental approximation of
the volume of B,.

15-60 (Table 4.6). This should be juxtaposed to the duals, namely our software
approximates the volume of cross-10 in 2 sec with < 1% error and rh-15-60 in
3.44 sec. A general conclusion for exact software is that it cannot handle d > 15.

We compare with the most relevant approximation method, namely the Matlab
implementation of [43] for bodies represented as the intersection of an H-polytope
and an ellipsoid. They report that the code is optimized to achieve about 75%
success rate for bodies of dimension < 100 and € € [0.1,0.2] (not to be confused
with the e of our method). Testing [43] with default options and ¢ = 0.1, our
implementation with ¢ = 1 runs faster for d < 80, performs roughly 100 times
more total Hit-and-run steps and returns significantly more accurate results,
e.g. from 4 to 100 times smaller error on cube-d when d > 70, and from 5 to 80
times on Birkhoff polytopes (Table 4.7).

Birkhoff polytopes are well studied in combinatorial geometry and offer an
important benchmark. The n-th Birkhoff polytope B, = {z ¢ R™" | z;; >
0, >.izy; = 1, Zj z;; = 1, 1 < 1 < n}, also described as the polytope of the

Vissarion Fisikopoulos 112

High-dimensional polytopes defined by oracles: algorithms, computations and applications

perfect matchings of the complete bipartite graph K n,, the polytope of the n x n
doubly stochastic matrices, and the Newton polytope of the determinant. In [15],
they present a complex-analytic method for this volume, implemented in package
birkhoff, which has managed to compute vol(B;p) in parallel execution, which
corresponds to a single processor running at 1 GHz for almost 17 years.

First, dim B, = n% — 2n + 1: we project B, to a subspace of this dimension. Our
software, with € = 1, computes the volume of polytopes up to Bjp in < 1 hour with
mean error of < 2% (Table 4.1). The computed approximation values improves
upon the best known upper bounds on vol(B;,), obtained through the asymptotic
formula of [33], cf. Table 4.8. By setting ¢ = .5 we obtain an error of 0.7% for
vol(B1g), in 6 hours. The computed approximation of the volume has two correct
digits, i.e. its first two digits equal to the ones of the exact volume. More inter-
estingly, using ¢ = 1 we compute, in < 9 hours, an approximation as well as
an interval of values for vol(Bi1),..., vol(Bis), whose exact values are unknown
(Table 4.1).

4.5 Further work

NN search seems promising and could accelerate our code, especially if it were
performed approximately with hyperplane queries. Producing (almost) uniform
point samples is of independent interest in machine learning, including sam-
pling contingency tables and learning the p-value. We plan to exploit such appli-
cations of our software. We may also study sampling for special polytopes such as
Birkhoff. It is straightforward to parallelize certain aspects of the algorithm, such
as random walks assigning each thread to a processor, though other aspects,
such as the algorithm’s phases, require more sophisticated parallelization. Our
original motivation and ultimate goal is to extend these methods to V-polytopes

represented by an optimization oracle.

Vissarion Fisikopoulos 113

Chapter 5

Combinatorics of 4-dimensional
resultant polytopes

5.1 Introduction

Let A = (Aq, ..., An) be a family of subsets of Z™ and let fy, ..., fn € Cl[z1,...,zn]
be polynomials with this family of sets as supports, and symbolic coefficients
Cij #0,1=0,...,n, 7 =1,...,|4

if these sets jointly affinely span Z", and every subfamily of A;’s of cardinality

le. fi =3 4ca, cijz%. The family A is essential

7, 1 < 7 < n, spans an affine space of dimension > j. In this chapter we assume
that A is essential. The sparse (or toric) resultant R = R4 of fo,..., fn is then a
|, defined
up to sign, which vanishes if fo = f; = --- = f, = 0 has a solution in (C*)7,
C* = C\ {0}. The Newton polytope N(R) of the resultant, that is, the convex hull
of the exponents occurring in R with non-zero coefficient, is a lattice polytope

non-constant irreducible polynomial in Z[c;; : ¢ = 0,...,n,7 = 1,...,|4;

called resultant polytope. A famous example is the Birkhoff polytope of a linear

system, cf Example 9.

The resultant has .
m="> |4
1=0

variables, hence N(R) lies in R™. However, for essential families, R satisfies
n+ (n+ 1) natural homogeneities [74], so its dimension is dim(N(R)) = m —2n — 1.
If A is not essential, but contains a single essential subfamily, the resultant de-

pends only on the coefficients of the polynomials in this subfamily. Otherwise, the

115

High-dimensional polytopes defined by oracles: algorithms, computations and applications

resultant locus has codimension bigger than one, and then the sparse resultant

is defined to be the constant 1.

Previous work. In [60] an algorithm is described for computing the vertex and
facet representations of N(R); the algorithm also produces a triangulation of the
polytope’s interior into simplices. The input to this algorithm is an oracle for
computing the extreme resultant vertex given a direction. The software imple-
mentation is called respol (available at http://respol.sourceforge.net) and
is the one used in our experiments. This method is readily generalized to compute
the discriminant and secondary polytopes, although for the latter there exists a
faster method to enumerate the vertices, when only these are needed [120]. An
alternative way for computing resultant polytopes exploits tropical geometry [86]
and is implemented based on the software library Gfan.

The combinatorics of resultant polytopes is known only in small cases, namely
for linear systems (Example 9), in the Sylvester case (n = 1), and when dim N(R) =
3. The univariate case is fully described in [73]: N(R) is combinatorially isomor-
phic to a polytope denoted by Ny, ,, of dimension kg + k1 — 1, where the A; may be
multisets with cardinality k;. They may lead to polytopes in any dimension if one
picks the A; accordingly. In [74] they show that Ny, 5, has (ko];; kl) vertices and,
when both k; > 2, it has kgk; + 3 facets. Sturmfels [131] classifies all resultant
polytopes up to dimension 3. In his notation, the 3-dimensional polytope N111,111.
denoted by Ng’z in [73], depicted in Figure 5.8 (resultant), has maximal f-vector.

Proposition 29. [131, Section 6] Assume A is an essential family. Then, N(R) is 1-
dimensional if and only if | A;| = 2, for alli. The only planar resultant polytope is the
triangle. The only 3-dimensional N(R) are, combinatorially: (a) the tetrahedron, (b)

the square-based pyramid, and (c) the polytope N3 o, first in Figure 5.8 (resultant).

In [86] the authors raise explicitly the open question of describing 4-

dimensional resultant polytopes, which we undertake here.

Our contribution. We study the combinatorial characterization of 4-dimensional
resultant polytopes. To bound the maximum number of faces, we prove that it
suffices to focus on one case, which corresponds to 3 Newton polygons with sup-
port cardinalities |4;| = 3, thus m = 9 and n = 2. We further show it is enough

to consider sufficiently generic polygons, namely where they all have non-zero

Vissarion Fisikopoulos 116

High-dimensional polytopes defined by oracles: algorithms, computations and applications

area, and no parallel edges exist among them. Our experiments, based on re-
spol [60], establish lower bounds on the maximal number of faces (Table 5.1).
By studying mixed subdivisions, we obtain tight upper bounds on the maximal
number of facets and ridges, thus raising new conjectures, the most important
of which is that the maximal f-vector is (22,66, 66,22) for 4-dimensional N(R).
These results are summarized in Theorem 63. Our (loose) upper bound on the
number of vertices, namely 28, significantly improves the known bound of 6608
[131, Corollary 6.2]. Certain general features emerge, such as the symmetry of
the maximal f-vector, which are intriguing but still under investigation. However,
the Newton polytopes are not self~dual. Our main result is Theorem 64, where we
offer a characterization of all possible 4-dimensional resultant polytopes.

The rest of the chapter is organized as follows. The next section introduces 4-
dimensional resultant polytopes. Section 5.3 focuses on three 2d-triangles with
non-parallel edges, which maximizes the number of faces, and upper bounds the
number of facets and ridges in N(R) by combinatorial arguments. Section 5.5
classifies all 4-dimensional resultant polytopes, and proves we can ignore parallel
edges when maximizing the number of faces. We conclude with open questions

and generalizations.

5.2 Resultant polytopes

This section defines resultant polytopes and recalls the concepts needed for
their study, including some previous results from [131, 74].

The polar (dual) polytope of a polytope P C R? is defined as:
P*:={ceR?: Tz <1forall z € P} CRY,

where we assume that the origin 0 € relint(P), the relative interior of P, i.e. 0 is
not contained in any face of P of dimension < d. Two polytopes are combinatorially
equivalent if and only if their face lattices are isomorphic.

The main tool for computing sparse resultants are the regular mixed subdivi-
sions of the convex hull of Minkowski sum P =). A;. By abuse of notation, we
may also refer to this sum as), P;, where P; denotes the convex hull of A; and it

is understood that the information from the A4,’s is preserved. A subdivision of P

Vissarion Fisikopoulos 117

High-dimensional polytopes defined by oracles: algorithms, computations and applications

is a collection of subsets of P, the cells of the subdivision, such that the union of
the cells’ convex hulls equals the convex hull of P and every pair of convex hulls
of cells intersect at a common face. Maximal cells are those with dimension equal
to the dimension of the subdivision. Fine (or tight) are those whose dimension

equals the sum of its summands’ dimensions.

Definition 4. A subdivision is regular if it can be obtained as the projection of the
lower hull of the Minkowski sum), Zi of the lifted point sets A}, Jor some lifting
to R**1. A subdivision is mixed when its cells are expressed (or, can be written)
as Minkowski sums of convex hulls of point subsets in the A;’s; these expressions
are unique. The subdivision is fine (or tight) if all its cells are fine, otherwise, it is

coarse.

In the sequel, we typically refer to mixed subdivisions simply as subdivisions.
Usually they are regular; if not, we explicitly mention it. However, no subdivision
is necessarily fine and often we work with coarse subdivisions.

Maximal cells are mixed if the dimension of every summand, except possibly
one, equals one. In the sequel, we focus only on regular subdivisions, thus we
occasionally omit the word “regular” in general.

Given a family A, the associated Cayley configuration C is the lattice configu-
ration in zZ"*! x Z" = z°**! defined by

{eO}XAOU"'U{en}XAn,

where e, ..., e, denotes the canonical basis in Z"*1. We denote by Q its convex
hull. Regular fine mixed subdivisions of P are in bijection with regular triangula-
tions of Q. Indeed, there is a bijection of maximal cells given as follows: any max-
imal cell (simplex) o in a given regular triangulation T' = T, of @ (with vertices in
C) has 2n vertices; the corresponding maximal cell in the associated regular fine
subdivision S = Sy, of P has vertices of the form ag + - - - + o, with (e;, a;) a vertex
of or. Note that for o7 to be of maximal dimension, at least one of its vertices
lies in e; x A;, for all :. For more details about the translation between regular
subdivisions of @ and regular mixed subdivisions of P, see [101, Section 9.2].
Let C be the (2n + 1) x m associated Cayley matrix, i.e., the matrix whose

columns are the points in the Cayley configuration C. The inner product of any

Vissarion Fisikopoulos 118

High-dimensional polytopes defined by oracles: algorithms, computations and applications

point in N(R) with any vector in the rowspan of the Cayley matrix C is constant,
and so N(R) lies in a parallel translate to the null-space of C. This explains why
dim(N(R)) =m —2n — 1.

The faces (resp. vertices) of N(R) can be obtained, by a many-to-one mapping,
from the set of all regular (resp. fine) mixed subdivisions of P [131]. Given a

mixed subdivision of P, every cell ¢ defines a subsystem of the f;|,, where each

polynomial is a restriction of f; on the face of A; appearing as a summand in o. If
the subdivision is the projection of the lower hull under a lifting w, then the face

of N(R) whose outer normal is w is
HR(f0|O'J"'7f’I’L|O')da; (51)
g

where d, € N is specified in [131, Theorem 4.1]. We shall call o essential if the
corresponding f;|, define an essential subsystem. Hence, all faces of N(R) are
Minkowski sums of lower-dimensional resultant polytopes, corresponding to es-
sential subsystems. These lower-dimensional resultant polytopes correspond to
subsets of the cells of the subdivision defining the face of N(R). In particular,
resultant vertices are obtained when all resultants in (5.1) are monomials, hence
all ¢ are mixed. In general, d, is the normalized volume of o.

We call flip the transformation of a fine mixed subdivision of P to another
fine mixed subdivision of P. Following [131], if these subdivisions correspond to
different vertices of N(R) we call this flip cubical. In other words, a cubical flip
corresponds to a resultant edge.

In short, a mixed subdivision S is specified by a lifting function w. A face of
N(R) corresponds to the initial form of R specified by w. In [131, Theorem 4.1]
under the assumption that {Ag, A1, A2} is essential, which we have also assumed,
it is shown that the initial form of R w.r.t. w is the product of resultant polytopes
corresponding to the cells o C S, each raised to the power d,. The above discus-
sion yields the following, which will be our basic tool for counting the faces of

N(R), and is direct consequence of [131, Theorem 4.1].
Proposition 30. A mixed subdivision S of P corresponds to a face of N(R), which

is the Minkowski sum of the resultant polytopes of the cells o of S, each scaled by
dg.

Vissarion Fisikopoulos 119

High-dimensional polytopes defined by oracles: algorithms, computations and applications

5.2.1 4-dimensional resultant polytopes.

In this case, m = 2n + 5, where m = >_1* ;|4;|, and |4;| > 2. So, there are only

3 cases, up to reordering:
(i) All |A;| = 2, except for one with cardinality 5.
(i) All |A4;| =2, except for two with cardinalities 3 and 4.
(iii) All |4;] = 2, except for three with cardinality 3.

Cases (i) and (ii) are similar to the study of 3d-resultant polytopes in [131], cf
Theorem 64. So, we concentrate on the new case (iii) and, more precisely, on the
main case n = 2 and each |4;| = 3, which we term the case (3, 3,3). This is done

without loss of generality, by the following:

Theorem 31. [131, Theorem 6.2] Every resultant polytope of an essential family is
affinely isomorphic to a resultant polytope of an essential family (Ao, ..., An) with
|A;| > 3, foralli =0,...,n.

Let us focus on case (iii). The proof is an algorithm to produce this reduction:
up to an affine change of variables and reordering, we can assume that A4; =
{0,v;e;11},2 = 0,...,n — 3, so we can solve (with rational powers) the first n — 2
variables and replace them in the last 3 polynomials. Then, N(R) has the same
combinatorial type as an essential (3,3,3) configuration, where we could have
repeated points or parallel edges, even if they were not present in A, _», A,_; and
A, (and some coefficients could be equal to the sum of Laurent monomials in the
original coefficients).

Our study shows the richness of possible polytopes, in contrast to the case of

resultant polytopes with dimension < 3.

5.3 The case (3,3,3) in general

In this section, we start with some examples and computational experiments
for a family with n = 3, m = 9, where each A; has cardinality 3. This is a (3,3, 3)
configuration A = (Ag, 41, 42). Then, we focus on the case of non-parallel edges
and study the combinatorics of the corresponding resultant polytope, denoted by
N(R).

Vissarion Fisikopoulos 120

High-dimensional polytopes defined by oracles: algorithms, computations and applications

(6, 15, 18, 9) (13, 37, 37, 13) (16, 43, 40, 13) (18, 52, 50, 16)
(8, 20, 21, 9) (14, 35, 32, 11) (16, 43, 41, 14) (18, 52, 51, 17)
9, 22, 21, 8) (14, 36, 33, 11) (16, 44, 41, 13) (18, 53, 51, 16)
(9, 24, 25, 10) (14, 36, 34, 12) (16, 44, 42, 14) (18, 53, 53, 18)
(10, 24, 23, 9) (14, 37, 34, 11) (16, 45, 43, 14
(10, 25, 24, 9) (14, 37, 35, 12) (16, 45, 44, 15) (19, 54, 52, 17)
(10, 25, 25, 10) (14, 37, 36, 13) (16, 46, 45, 15) (19, 55, 51, 15)
(10, 26, 25, 9) (14, 38, 36, 12) (16, 46, 46, 16
(11, 28, 27, 10) (14, 38, 37, 13) (17, 46, 43, 14) (19, 55, 54, 18)
(11, 29, 28, 10) (14, 38, 38, 14) (17, 47, 43, 13
(11, 29, 29, 11) (14, 40, 40, 14) (17, 47, 44, 14) (19, 56, 56, 19)
(12, 29, 26, 9) (15, 39, 36, 12) (17, 47, 45, 15
(12, 30, 27, 9) (15, 40, 36, 11) (17, 48, 45, 14) (20, 58, 54, 16)
(12, 30, 28, 10) (15, 40, 37, 12) (17, 48, 46, 15
(12, 32, 31, 11) (15, 40, 38, 13) (17, 48, 47, 16
(12, 33, 33, 12) (15, 41, 39, 13) (17, 49, 47, 15
(13, 32, 29, 10) (15, 41, 40, 14) (17, 49, 48, 16
(13, 33, 30, 10) (15, 42, 41, 14) (17, 49, 49, 17
(13, 33, 31, 11) (15, 42, 42, 15) (17, 50, 50, 17)
(13, 34, 32, 11) (16, 42, 39, 13) (18, 51, 48, 15)
(13, 34, 33, 12) (16, 43, 39, 12) (18, 51, 49, 16)

Table 5.1: The largest f-vectors of 4d N(R) computed: 9 highlighted f-vectors
correspond case (3, 3, 3) without parallel edges.

We write the f-vectors as (fo, f1, f2, f3), omitting the f; = 1 corresponding to
the unique 4-face, where f; stands for the cardinality of :-dimensional faces. We
define the minimum and maximum f-vector to be the one with minimum and
maximum number of facets, i.e., with minimum or maximum value of f3.

A complete list of f-vectors when Ay = {(0,0),(0,1),(1,0)} and A; = {(5,5),a11,
a2}, A2 = {(5,5),a21, agz} where a;; take all the possible values from the set
{(,B) | @&, € N A a,B < 10} is presented in Table 5.1. There is a unique f-
vector, (22, 66,66, 22), which is maximal, and corresponds to more than one input
family of supports. Highlighted f-vectors correspond to triangles that share no
parallel edges between any of them. Table 5.2 shows one example for each of these
cases and the types of facets for each resultant polytope. The computations have
been performed using respol and last several days. The minimum f-vector is
(6,15,18,9) and is attained by Example 9.

Example 9 (Birkhoff polytope). Let Ag = A; = Ay = {(0,0), (1,0),(0,1)}. Then N(R)

Vissarion Fisikopoulos 121

High-dimensional polytopes defined by oracles: algorithms, computations and applications

a1l a1 as1 a9 f-vector facets of N(R)
0,0 1,77 (1,0 (2,6) (19,55,52,16) 9R,5P,2P;

0,0 (1,2) (0,1 (2,6) (19,56,54,17) 9R,7PFs, 1Py
0,00 (1,2) (0,1) (2,00 (18,54,54,18) 9R,95;

0,00 (1,20 (2,1 (4,7 (20,59,57,18) 9R,7Ps, 1Py, 1275
0,0 (1,2 (0,1 (1,4) (19,57,57,19) 9R, 9P, 127,
0,1 9,20 (1,8 (2,7 (21,62,60,19) 9R,9PF, 12,

0,0 (1,2) (0,2 (2,3 (20,60,60,20) 9R,9P5, 2273

0,00 (1,2) (1,0 (3,8 (21,63,63,21) 9R,9P5, 3273

0,1 (83 (0,6 (1,7 (22,66,66,22) 9R,9P5, 427

Table 5.2: f-vectors correspond to case (3,3,3) without parallel edges. Generic
resultant, prism, and zonotope facets are denoted R, Ps, Z3 respectively. They de-
picted in Figure 5.8. The degenerate zonotope and two different prism facets are
denoted Z4, Pg, Pjy respectively. They depicted in Figure 5.9.

is the 4-dimensional Birkhoff polytope [140] which has f-vector (6,15,18,9).
A particular extremal case follows:

Example 10. Let Ay = {(0,0),(1,0),(0,1)}, 4 = {(0,0), (5,4),(9,1)}. A2 =
{(5,0),(0,1),(1,2)}. Then, N(R) has f-vector (22,66, 66,22); the vertex and facet
graphs are in Figure 5.1. A non-regular subdivision of P =). P; is depicted in

Figure 5.7 (see also Rem. 3).
A particular non-extremal case follows:

Example 11. Let 49 = {(0,0),(2,0),(1,3)}. A1 = {(0,0), (3,1),(2,3)}. 42 —
{(0,1),(3,0),(1,3)}. Then, N(R) has f-vector (21,62,60,19). A regular subdivision
of P =), P; is depicted in Figure 5.7 (see also Rem. 3).

On the other hand, the following example concerns the case of three 1-

dimensional configurations, excluded from the above list.

Example 12. Let 4 = {(0,0),(0,1),(0,2)}, A1 = {(0,0), (1,0),(2,0)}, Ay =
{(0,0),(1,1),(2,2)}. Then, N(R) has f-vector (20,57,51, 14).

If we replace the configuration (Ag, A1, A2) in Example 12 by the configuration
(Ao, A1, {(0,0),(1,1), (2,3)}), where two parallelisms are broken without introduc-
ing any new one, the f-vector becomes (20,58,54,16). Note that we get higher

values for the different f;.

Vissarion Fisikopoulos 122

High-dimensional polytopes defined by oracles: algorithms, computations and applications

» \"72“\"!‘!5\4
AR TS

< —
D (/\\

Figure 5.1: Vertex graph and facet graph (courtesy of M. Joswig) of the resultant
polytope in Example 10.

An interesting observation regarding Table 5.1 is the existence of symmetric
f-vectors. It is known that self-dual (or self-polar) polytopes enjoy this property. A
polytope is self-dual if it is combinatorially equivalent to its polar-dual polytope.
However, this is not the case of resultant polytopes. The polytope of Example 10
has 36 triangular and 30 parallelogram ridges while its polar-dual has 42, 19 and
5 triangular, parallelogram and pentagonal ridges respectively. Additionally, note
that in the case without parallel edges symmetric f-vectors appear when the
facets are generic (cf. Table 5.2). Generic facets are described in detail in the next
sections. Here we observe that polytopes with symmetric f-vectors have facets

that are either resultant or prism or cube depicted in Figure 5.8.

5.3.1 Input genericity maximizes complexity

In this section we prove a stronger version of the following result for the special

case where the Minkowski summands are triangles.

Proposition 32. [71, Theorem 1] Let P = P; + - - - + P, be a Minkowski sum. There
is a Minkowski sum P = P; + - - - + P, of polytopes relatively in general position so
that fy(P!) = fx(B;) for alli and k, and so that f(P") > fi(P) for all k.

Given a polytope @ C R3 and a direction u € R3, its lower hull along u, denoted

LH,Q, is the union of all facets whose outer normal has negative or zero inner

Vissarion Fisikopoulos 123

High-dimensional polytopes defined by oracles: algorithms, computations and applications

product with u. In the case of zero inner product, the facet is called degenerate
and its projection is not a maximal cell. We assume that the triangles A; = {p;;,7 =
0,1,2},¢:=0,1,2, have 2d convex hulls P,. Let S be a regular subdivision of P, and
A;, P be the lifted Newton polytopes and their Minkowski sum; LHeSﬁ, where e3
is the unit vector on the z3-axis, is in bijection with S. Consider edges Ey, F1 with

the same outer normal v:

Eg = (poo,po1) C Po, E1 = (p10,p11) C P1.

For some vertex py, € Az, E1+ E2+ poi is an edge of P with outer normal v. Thus,
their lifting E; + B + By, has outer normal (v,0) and yields one or two facets of
P, yielding one or two degenerate facets on LHesﬁ, i.e. segments, depending on
whether the lifting leads, resp., to a coarse or fine subdivision. In the latter case,
the two segments are collinear but their union has been subdivided into one of

two possible mixed subdivisions, each with two cells. W.l.o.g., these are:

{poo + E1 + p2k, Eo + p11 + p2r}, {Eo + p1o + P2k, po1 + E1 + pox} (5.2)

We consider a perturbation in the direction of v

Dho = Poo + €V, (5.3)

with indeterminate ¢ — 07. Since we are considering a finite process that
branches on signs of algebraic expressions, namely Cayley minors, ¢ can take
sufficiently small positive rational values, as is the case in standard symbolic

perturbation methods.

Lemma 33. With the above hypotheses and notation, let

A* = ({pdo, po1, po2}, A1, A2),

and P* := A} + A1 + Az be the family and Minkowski sum associated with a per-
turbation (5.3). Let S be a (regular fine) mixed subdivision of P associated with
a generic weight vector w, and S* the regular subdivision of P* associated to the
same vector w. Then, S* is mixed and contains at most one more cell ¢ than does

S. There is a bijection between all cells of S* (except o, if it exists) and the cells of

Vissarion Fisikopoulos 124

High-dimensional polytopes defined by oracles: algorithms, computations and applications

S, which associates combinatorially equivalent cells.
We expect this lemma to extend to any dimension.

Proof. Eq. (5.3) defines pj, € Q?. As in the proof of Theorem 64, by an appropriate
dilation we define a family of supports in Z2. By abuse of notation, we denote the
latter by A*. To prove the lemma for any S, we consider two cases according to the
subdivisions of Fy+ E1 + po in (5.2). In the first case, pgg + p11 + pog is not a vertex
of P but pj, + p11 + po, is a vertex of P*: the perturbation has moved outward the
middle point of Eg + E1 + pog. LHe3I5 is combinatorially equivalent to LH63+€UI5,
where the latter is defined by shifting our viewpoint by an infinitesimal amount:
the two degenerate facets whose union is Ey + E1 + Py, appear in both lower
hulls (the subdivision to two facets occurs because S is fine). The non-degenerate
facets are clearly combinatorially equivalent in both lower hulls. Formally, non-
degenerate facets on LH,, P, i.e. with positive area, have outer normal (w, —1) and
we claim that
(w,—1) - (e3 +€(v,0)) = —1+ew-v <O,

for sufficiently small ¢ > 0. Thus, these facets also lie on LH63+6vﬁ. Non-
degenerate facets of P but not on LH,, P have outer normal (w,1) and we claim
that

(w,1) - (e3 + €(v,0)) =1+ ew-v > 0,

for sufficiently small € > 0. So, these facets do not lie on LH63+EUJ3. We now show
LHe, P* is combinatorially equivalent to LH63+61,13. Any facet except the degener-
ate ones in LHe3+6vﬁ clearly corresponds to a combinatorially equivalent facet
in LHe, P*. The degenerate facets give rise to two edges in P*, which proves that
S* is fine, hence a mixed subdivision; moreover, these edges are combinatorially
equivalent to those on LHeB+6vﬁ. Thus the lemma is proved in the case no new
cell is created.

In the second subdivision of Ey + E1 + py, the middle point is pg1 + p1o + Por;
this point is perturbed to the relative interior of P*. The perturbation creates an
extra (mixed) cell E§ + E1 + pg; which intersects 9P*. For all other cells in S* the

discussion for the above case holds. This settles the case a new cell is created. [

Theorem 34. For any family A whose triangles have one or more pairs of par-

allel edges, there exists a family of triangles A* without any parallel edges as in

Vissarion Fisikopoulos 125

High-dimensional polytopes defined by oracles: algorithms, computations and applications

section 5.4, whose resultant polytope N(R*) has at least as many faces of any

dimension as those in the polytope N(R) of A.

Proof. We first assume all P;’s have non-zero area. Given A with strongly parallel
edges Ey C Py, E1 C Py, perturbation (5.3) defines A4*, where the corresponding
edges are not parallel. In the case of other strongly parallel edges, we apply the
same procedure sufficiently many times. For every mixed subdivision S of A the
same lifting defines a mixed subdivision S*, as in Lemma 33. This shows that the
vertices of N(R) can be mapped in a 1-1 fashion to, possibly a subset of, vertices
of N(R*). Hence the number of vertices in N(R*) is at least as large as that of
N(R).

To prove the statement for k-faces, k > 1, we extend Lemma 33 to an arbitrary
(coarse) regular subdivision S and its perturbed counterpart S*. The only differ-
ence is that S may contain a single 1d cell Ey + E; + po; and cells of the form
o = Ey + E1 + Fy, for a face F, C P,. Each ¢ is subdivided to 3 or 2 cells in S*,
depending on whether a new cell is created or not. The subdivision follows one
of the subdivisions of Ey + E; + py; discussed in the proof of Lemma 33. Now ¢ is
not essential hence contributes a point summand to the N(R) face correspond-
ing to S. The N(R*) face corresponding to S* is an edge if o* is a hexagon, thus

establishing the lemma for k-faces.

If parallel edges Ey, E; have anti-parallel outer normals, no regular subdivision
(even coarse) may contain a cell of the form Ey + E; + Fp, though there may be
adjacent cells By + py; + F2,po; + E1 + F2. Any infinitesimal perturbation, such

as (5.3), yields S* combinatorially equivalent to S.

When some P;’s have zero area, the result still holds in a similar way after a
detailed study of each possible case (including repeated points), which we omit
due to space restrictions. The key case is the following: A satisfies |Ag| = |41| =
|Az| = 3, dim Py = 1, dim P; = dim P, = 2, then let A* = (Af, A1, A2) such that the
middle point of Ay is infinitesimally perturbed to yield dim Pj = 2. Then there is an
injection of regular subdivisions of A to those of A*, such that if S maps to S* then
S* contains one more cell equal to Aj+p; +pay. for vertices py; € Ay, pop, € Az, and

all other cells are combinatorially equivalent to the corresponding cells in S. [

Vissarion Fisikopoulos 126

High-dimensional polytopes defined by oracles: algorithms, computations and applications

5.4 The case (3,3,3) with non-parallel edges

In this section, we assume that we have an essential family with n =3, m =9
and each A; has cardinality 3, i.e., dim(FP;) = 2, for all 2. Moreover no edges coming
from two different P; are parallel, i.e. any pair of edgese € P;, e’ € P; where 1 # j for

all ¢, j are non-parallel. This is an essential (3, 3, 3) configuration A = (Ay, 41, 42).

5.4.1 Polar mixed subdivisions

Recall that a regular mixed subdivision of 3, A; C R? can be obtained as the
projection of the lower hull P, of the Minkowski sum P = > A; of the lifted point
sets A;, for some lifting to R3.

Given a vector w € R and polytope P C R<, denote
facew(P)={ze€P|z-w>y -wVy e P}

the extremal face of P w.r.t. w. Then w is an outer normal to the face. The normal

cone of P at face F is
NC(F) = {w € R? | facey(P) = F}.

The normal fan of P is the collection of all normal cones of P i.e.
NF(P)={NC(F) | F a face of P}.

Given a regular mixed subdivision S of P, we define the polar (dual) mixed
subdivision or configuration S* to be the intersection of a generic hyperplane h
in the dual space (R%)* with the normal fan NF(F,). Given 4; C Z2? for some
i € {0,1,2} we call AY the dual triangle. The dual of an edge of 4; is called a ray
and the dual of a vertex of A; is called a cone.

There is a bijection from vertices, edges and facets of), A; to cells, edges and
vertices of S* respectively, which induce a bijection from vertices, edges and cells
of S to cells, edges and vertices of S* respectively. Moreover, there is a bijection of
boundary vertices and edges of S to cones and rays of S*. The above construction

is similar to the construction of the polar (dual) polytope defined in Section 5.5.

Vissarion Fisikopoulos 127

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Lemma 35. Given an edge e from some A;, consider all edges in S that have e as

Minkowski summand. Then, the union of their polar edges in S* is a ray.

Proof. Consider the set of edges of P, whose summand is the lifted e. The union of
the normal cones of the edges in that set is two dimensional. To see this observe
that all the edges have the same edge as summand (and the other summands
are vertices) and thus they are translations of the same edge. The intersection of

that union with A is a ray. [

Observe that rays in S* are in bijection with edges of A4;’s. Figure 5.2 provides
an illustration. We call mixed the points that are defined as an intersection of
three rays from different A;’s. We define a 4, to be the apex of the dual triangle A,
that is the common apex of its rays, and define a, to be the apex of a ray r. Let
n, denotes the normal vector parallel to .

Given Ay, A1, ..., An C Z™ we define int(Ay, A1, ..., Ay) to be the maximum num-
ber of intersection points among Af, A7, ..., A},. Given a ray r € A7, let int.(C) be
the maximum number of intersection points of a ray r with A;f when a, € C C A;f
and 7 # j.

Consider the 3 rays of A7 and count the intersection points with some A;
when 1 # 7. We call signature of A; the multiset of intersection cardinalities of the
3 rays of AY with respect to some A; when ¢ # j. Note that the each element of
the signature that correspond to a ray r is less than int,(C), where C is the cone
such that ay, € C. The signature vector of A; is the vector whose ¢-th coordinate

is the intersection cardinality of the ¢-th ray of A}.

Lemma 36. Givenrayr ¢ A7 and cone C C A;f such that i # j then

0: l:fn’l‘ € C:
lntr(C) = 2, l;f — nr E C,
1, otherwise.

)

Proof. Define H, to be the halfplane defined by the supporting line of r for which
there exist a unique cone C’ € Af such that CNH, = C. Leta, € Hy. If n, € C then
r does not intersect any cone. If —n, € C then r does intersect C’ and int,(C) = 2.
Otherwise, n, € C' and int,(C) = 1. O

If we sum over all cones of A; of Lemma 36 then we have the following.

Vissarion Fisikopoulos 128

High-dimensional polytopes defined by oracles: algorithms, computations and applications

= h

-

/

Figure 5.2: A subdivision S and its polar dual S*.

Vissarion Fisikopoulos 129

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.3: Arrangements of two polar triangles with > 3 intersection points.

Corollary 37. For any A; C 72 it holds > cea* 1ntr(C) = 3, where the sum is over
J

all cones C ofA;‘. and r is aray of AY for some 1 # j.

5.4.2 Bounds on the number of cells in a subdivision

We study upper bounds on the number of cells of a subdivision. This can be
derived from the upper bound on the number of facets of the Minkowski sum of
the lifted A;’s for any lifting function.

Given polytopes Py, ..., Py in R¢, Gritzmann and Sturmfels [77] prove that

)5

§=0

where k denote the number of non-parallel edges of P, .. ., Py, and here f; denotes
the cardinality of .-dimensional faces of P; +- - -+ P,. The equality holds if Py, ..., P,
are zonotopes. For our case where £k = 9, « = 2, d = 3, r = 3 the above formula
gives 2(8) = 72. Thus, the best upper bound that can be implied for the cells of
the lower hull and therefore for the cells of a subdivision is 36.

In the sequel we introduce a tool that allow as to derive an better upper bound,
namely 15. Similar constructions have been used in tropical geometry [134].

We first prove a technical lemma.
Lemma 38. For fixed (Ag, A1, A3) there is no subdivision S with cells a + s + s’ and
o' + s+ s forany points a € A;, o’ € Aj, segments s € Py, s' € P, 1,7, k,1 € {0,1,2}.

Proof. If there exist a subdivision S with cells a + s + s’ and a/ + s + s/, then there
is a lifting on A;’s such that the lower hull of the Minkowski sum of the lifted P;’s
contains the facets a* + s* + s'* and a’* + s* + s’*. Where * denotes the lifted faces.

Note that the normal vectors of these facets are equal, a contradiction. O

Vissarion Fisikopoulos 130

High-dimensional polytopes defined by oracles: algorithms, computations and applications

A basic property of polar mixed subdivisions follows.
Corollary 39. Two rays in S* have at most one common intersection point.
Lemma 40. For any Ag, A1 C Z?, int(Ag, A1) < 4.

Proof. Fix Ag and assume there is an A; such that int(Ap, A1) = 5. Observe that
there should exists a signature (2,2, 1), since there are 5 intersection points and
each ray can intersect a dual triangle at most twice by Corollary 37. By Lemma 36,
the signature (2,2, 1) forces the inverse of 2 normals to be in C and forbids the
third from being in C. Note that there is no triangle A; with such a property; a

contradiction.]

Lemma 41. For any configuration S* of Af, A}, ..., A}, where |Ag| = |A1] = --- =
|An| = 3 it holds int(Ag, A1, ..., An) < 4(5).

Proof. By Lemma 40 a configuration of two dual triangles has at most 4 inter-
sections. In any configuration of n triangles each of the (%) pairs of triangles will
contribute at most 4 intersections in the total intersections and thus at most
4(%). O

By duality the following result holds for the special case of n = 3 triangles.

Corollary 42. For fixed (Ag, A1, A2) where |Ag| = |A1| = |Az| = 3 there is no subdi-

vision with more than 15 cells.

Lemma 43. For fixed (Ag, A1, A2) there is no subdivision with more than 10 and
6 cells when w.lo.g. (|4g| = |A1| = 3,|A2] = 2) and (|4g| = 3,|A1] = |A2| = 2)

respectively.

Proof. The polar of 4; is a line when |A4;| = 2. Hence, for the case |[Ay| = 3, |A1| =
|A2| = 2 we have at most 2 intersections between a line and a polar triangle (i.e.
the polar of Ap) and at most 1 intersection between two lines. Therefore, there are
in total at most 5 intersection points plus the point of the polar triangle that yield
a bound of at most 10 cells in any subdivision.

For the case |4p| = |41| = 3,|42| = 2, we have at most 4 intersection points
between the two polar triangles by Lemma 40. Moreover, the line that corresponds
to A; can have at most 2 intersection points with each of the polar triangles. In
total there are at most 8 intersection points and two points of the polar triangles

yielding a bound of at most 10 cells in any subdivision. O

Vissarion Fisikopoulos 131

High-dimensional polytopes defined by oracles: algorithms, computations and applications

5.4.3 Bounds on the number of types of subdivisions

First we study the case of intersection of two dual triangles, Aj, A}. We restrict
to the cases with at least 3 intersections. By Corollary 37 each coordinate of the
signature vectors is at most 3. Then we have the following cases of signatures:
{1,1,1},{2,1,0}, {2,2,0}, {2, 1, 1} that denote intersection cardinalities in the 3 rays
of Aj with A}. By Lemma 40 the sum of coordinates is at most 4. Then we have

the following corollary.

Corollary 44. The only possible cases in the intersections of two dual triangles
with at least 3 intersection points are the {1, 1,1}, {2,1,0}, {2,2,0}, {2,1, 1} depicted
in Figure 5.3.

The cases {1,1,1} and {2, 1,0} are symmetric. A dual triangle has exactly one
intersection point at each ray. They depicted in Figure 5.3 (a), {2, 2,0} is depicted
in Figure 5.3 (b) and {2,1,1} in Figure 5.3 (c).

Lemma 45. Given a fixed set Ay, A1 either {2,2,0} or {2,1,1} will occur in the set

of all subdivisions.

Proof. Assume that Ay, A are fixed and there exist two subdivisions of Ay + A;
with signatures {2,2,0} and {2,1, 1} respectively. First note that a4, is forced to
belong in different cones of Aj in each of the two subdivisions. By Corollary 37 the
per coordinate sum of the signature vectors is a vector where every coordinate is
< 3. Thus, the two signature vectors in our case are (2,1, 1) and (0, 2,2). Hence the
signature vector for placing the apex of A; in the third cone has two 0 coordinates
and the third coordinate should be < 1. The contradiction comes from the fact
that it is always possible to place any dual triangle in the cone of another in order

to have at least two intersection points. O]

Consider the normal fan NF(P) of P = Ag+A1+A>. A cone A; for some ¢ is called
empty if it contains no ray in NF(P). We call a cone of AY full if it contains one
non-empty cone of A; and one non-empty cone of A; in NF(P), where i # j # k.

Consider all configurations with at least 3 mixed points. We categorize them
by the number of apexes of the dual triangles that are in the convex hull T of the
3 mixed points. Clearly, the only possible cases are 3,2, 1,0 denoted (a), (b), (¢), (d)

Vissarion Fisikopoulos 132

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.4: Arrangements of three polar triangles with 3 mixed points.

respectively. They are depicted in Figure 5.4. Observe that a dual triangle has
either its apex in T or out with one of its rays passes through two mixed points.

Observe that configurations of type (a) have signatures {2, 1, 1}, since all the
dual triangles are in T and therefore they have no intersection in each ray and
there is one more intersection point between each pair of dual triangles that lays
inside T'. Configurations of type (b) have 1 empty cone that belongs to the dual
triangle whose apex is outside T'. Moreover, the dual triangles which apexes are
inside T have {2, 1, 1} signatures. Configurations of type (c) are of two kinds. The
first case (c1), are those with signature {2,1,0} in the two dual triangles, which
apexes are outside T' (Cf. Figure 5.4 (c;)). The second case (c3), are those with
signature {2, 2,0} in the two dual triangles, which apexes are outside T' (Cf. Fig-
ure 5.4 (c2)). Observe that (¢1) has 1 full cone that belongs to the dual triangle
whose apex is inside T. Observe that (cz) has 2 empty cones, one that belongs
to each dual triangle that lay outside T'. Configurations of type (d) have at least
one empty cone and signature {2,2,0} (that belongs to the blue dual triangle in
Figure 5.4 (d)).

Lemma 46. The configuration of type (a) can appear at most once.

Proof. Observe that the sequence of rays in a mixed point is uniquely defined by

the normal fan of P. This implies a unique configuration of type (a). N

Lemma 47. Given a fixed set Ay, A1, Ay the sum of the number of empty and the
number of full cones is at most 3. In particular, the possible cases are 3,2,1,0, 0 _full

and 0,0, 1, 2,3 empty cones respectively.

Proof. Observe that every dual triangle has at most one full and one empty cone.
By the definition of full if there exist one in A; then there is no empty in 4;, Ag,
where 1 # 7 # k. This yields possible cases of one full and two empty and two full

Vissarion Fisikopoulos 133

High-dimensional polytopes defined by oracles: algorithms, computations and applications

and zero empty. This completes the proof since in all the possible cases the sum

of the number of empty and the number of full cones is at most 3. O

Lemma 48. Given a fixed set Ay, A1, Az, a configuration of type (d) can occur at
most once. It has two pairs of dual triangles with signature {2, 2,0} and implies the

existence of at least one empty cone.

Proof. We consider the 3 lines that support the edges of T and take cases of
the apices of the dual triangles on these lines. Let a, b, c the three mixed points
and £,p, £y, Loc the three lines index by the points that they intersect. W.l.o.g. let
ag, a1, az lay on £,p, £ac, £y, TESPECtively. Moreover, w.l.o.g. ag lay on the side of a.
First, if a; lay on the other side of a then this implies a {2,2,0} signature. Then
placing a9 on the one side of bc implies a {2,2,0} signature with the one dual
triangle and placing to the other side implies a {2, 2,0} signature with the other
dual triangle. Second, if a; lay on the same side of a as ag any placement of as
implies a {2, 2,0} signature with both dual triangles. This proves the existence of
at least two pairs with {2, 2,0} signatures.

Since there are two pairs of dual triangles with {2, 2,0} signature there is one
dual triangle, say Aj, that belongs to both pairs. Now observe that a {2, 2,0} sig-
nature implies one empty cone to each participant dual triangle. Thus, Aj has an
empty cone. This completes the proof of the existence of at least one empty cone.

To show that there is only one occurrence of (d), observe (similar to the proof
of Lemma 46) that the sequence of rays in a mixed point is uniquely defined by

the normal fan of P. This implies a unique configuration of type (d).]

Proposition 49. Given a fixed set Ay, A1, Ay there are at most 4 distinct triplets of
mixed points that appear in the set of all subdivisions.

Proof. Since in case (a) the three pairs of dual triangles all have a {2, 1, 1} signa-
ture, we know (a) cannot occur together with (cz) nor with (d) in the set of all
configurations for a fixed input. On the other hand, (a) may occur together with
(b) and (c1). By Lemma 47, there are at most 3 triplets of mixed points of type (b)
or (c1), and by Lemma 46 there is at most one triplet of mixed points of type (a).
In total, there are at most 4 triplets of mixed points.

We consider two cases where (a) does not appear and (d) appears. The ap-

pearance of (d) implies there is at most one pair with {2,1, 1} since (d) has two

Vissarion Fisikopoulos 134

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.5: The normal fan of the Example 10.

pairs with {2,2,0} by Lemma 48. This implies the appearance of at most one (b).
Now the two cases depend on whether (c1) or (¢c2) may occur. The appearance
of (d) implies there is at least one empty cone by Lemma 48, hence at most one
full cone by Lemma 47, which implies that there is at most one occurrence of
(c1). Thus, in total, there are at most 3 triplets of mixed points. In the other case,
the maximum number of the occurrences of (cz) and (b) is 3, since there are 3
pairs of dual triangles that have either {2, 2,0} or {2,1, 1} signature and imply the
occurrence of either (cp) or (b), respectively. Since (d) occur only once, in total,
there are at most 4 triplets of mixed points.

We then consider the case where none of (a) and (d) appear. Then the two pos-
sible cases of (b), (c1) and of (b), (c2) yield at most 3 mixed triplets, by Lemmas 47
and 45 respectively.

Therefore, 4 is the total maximum number of triplets of mixed points. O

The above bound is tight as shown in Example 10, which corresponds to the
first case, namely (a) and three (c3) occurrences. Figure 5.5 illustrates this case.
Observe the existence of the 3 full cones, the absence of an empty cone and the
existence of the (a). We do not have an example with 4 triplets of mixed points in

the case of (b), (¢2), (d), which would have made the corresponding analysis tight.

5.4.4 Subsystems and cells of subdivisions

Let us now describe the subsets A; C A;, which form subsystems, that define
cells of a subdivision S of P, and their connection to the faces of N(R). Clearly,

the possible cells of S are a point, a segment, or an :-gon for : in {3,...,9}. Non-

Vissarion Fisikopoulos 135

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.6: The dual points of a hexagon, a heptagon and an octagon cell (from
left to right).

trivial subsystems are those that correspond to a face of N(R) of dimension 1, 2,

or 3.

Lemma 50. The only non-trivial subsystems in the (3,3,3) case of non-parallel

edges are the 6, 7,8-gons or the hexagon, heptagon and octagon respectively.

Proof. The triangular cells and parallelogram cells (Minkowski sums of two seg-
ments) correspond to zero dimensional faces of N(R) (Proposition 4.1 in [131]). A
pentagonal cell (Minkowski sum of a triangle, a segment and a point) also corre-
sponds to a zero dimensional face of N(R) because it corresponds to a non-cubical
flip (see also Theorem 5.2 in [131]). A 9-gon (Minkowski sum of three triangles) is
P and thus corresponds to the whole 4-dimensional N(R). N

Hexagon. The simplest non-trivial subsystem includes 2-element subsets A} in
each A; (namely edges). Such a subsystem is essential when no two of the convex
hulls of the A] are parallel. In this case, the cell in S is a Minkowski sum of 3 edges
from the different A;’s which we call a hexagon. Every hexagon can be refined in
two possible ways to a regular mixed decomposition and corresponds to an edge

of N(R) (see the cubical flips discussed above).

Remark 1. In the regular subdivision of an essential family, the existence of two
hexagons implies a parallelogram resultant face for a (3, 3, 3) family, or resultant
facet for a (2, 3, 3) family.

Fact: Each hexagon corresponds to a full-dimensional circuit hence (Sturm-
fels) it can be refined without affecting the rest of the subdivision. Thus, refining
the two hexagons defines 4 points in N(R).

These points are vertices iff the subdivision is regular because, if the overall
subdivision is regular before refinement, the new subdivision is again regular (we

have such a Lemma).

Vissarion Fisikopoulos 136

High-dimensional polytopes defined by oracles: algorithms, computations and applications

We now show that it is NOT possible for the 4 points to be collinear (Irrespective
of whether the hexagons are contained in a regular subdivision or not). Assume

X1 N Xy is an edge of Py and, by convexity, this is the unique common edge. Let

X1 = (poo, po1) + (P10, P11) + (P20, P21), X2 = (P00, Po1) + (P10, P12) + (P20, P22)-

Refining X1, X» each in two ways corresponds to two segments (possibly resultant

edges) with directions
a,—a,Y,0,—0,4,c¢, —C, y \@,—a,yv,0,U,—-0,Cc,U,—C ora,o,ca,b,cC > 0.
0,b,—b,0 0), (a’,—a’,0,¥',0,-t",c,0, ') f b,c,a’, b, >0

The zero pattern in each vector implies that the two segments cannot be parallel.

Two hexagons in S give rise to the Minkowski sum of two segments that form
a parallelogram 2-face of N(R) in the general case. Similarly, three hexagons in
S give rise to the Minkowski sum of three segments that form a 2-face of N(R)
which is a hexagon (cf Figure 5.9a) or a facet of N(R) which is a 3-cube (cf last
polytope in Figure 5.8). In general, k¥ hexagons in S give rise to the Minkowski
sum of k£ segments, also known as a zonotope, that form a face of N(R) of proper

dimension (cf. proof of Lemma 57).

Heptagon. A heptagon cell is a Minkowski sum of an A4;, w.l.o.g. Ag, and 2 edges
Al, Al from Ay, Aj respectively, which form an essential subfamily A’ = (A4p, 4], A})
provided the A, A} are not parallel. The heptagon contains a hexagon cell which
is the sum of one edge of Ag and A} + A5, where the former is not parallel to any
of A.

Remark 2. If it lies in a regular subdivision, then the heptagon has up to 3 refine-
ments, each preserving regularity. To see this, observe that all fine subdivisions
contain mixed cell vy, + A} + A5, for some vertex py; € Ap; clearly, this cell refines

the hexagon. The fine subdivisions correspond to up to 3 choices for py;.

In this general case, a heptagon corresponds to a triangular 2-face of N(R).
Octagon. An octagon cell is a Minkowski sum of two A;, w.l.o.g. Ap, A1, and an

edge A} of Aj. If it lies in a regular subdivision it give rise to a facet of N(R), in

particular, the first polytope in Figure 5.9.

Vissarion Fisikopoulos 137

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Lemma 51 (Technical). Assume that we have, for: € {0, 1,2}, the subsets A; C 4;.
Consider a regular subdivision of Ag + A1 + Ay defined by lifting w containing cells
B; = Bjo + Bj1 + Bja, for j ranging in a finite set J, where Bj; C A;. Then, it is
possible to construct a regular subdivision of Ay + A} + A, containing all cells B;,

by restricting w to the A].

Proof. By assumption, Ejo +§j1 +§j2 is a facet, for every j € J, on the lower hull of
Ag+ A1 + Ay, obtained by lifting according to w. Then w, restricted to the A}, yields
a regular subdivision of A} + A} + A}. Moreover, the hyperplane of Bjo + Bj; + B,
supports the lower hull of Ay + A} + A5, hence Bjq + B;; + Bjs is a facet of this
lower hull for every j € J. N

Lemma 52 (Technical). Given a regular coarse subdivision S with a coarse cell C,
it is possible to define a new regular subdivision S’ that contains a fine subdivision
of C and, for every other cell of S, it contains either the same cell or a refinement of
it.

In this setting, if H C S is heptagon Ag + s1 + s2 and a € Ag is a specific vertex,

it is possible to create in S’ a hexagon X = sg + s1 + s3, where sy = conv(A4p \ {a}).

Proof. Let w be the lifting defining S. Let C = Cy + C1 + C», C; C A;, and consider
a sufficiently generic lifting ¢ which is nonzero only for the C;. Now consider
lifting w + eo, for sufficiently small ¢ > 0. This is different from w therefore, by
construction of o, it yields a fine subdivision of C. The new lifting does not affect
any fine cell of S but may refine coarse cells of S whose expression includes at
least one point in the C;’s for which ¢ is nonzero.

For the second part, let C = H and let ¢ be zero for every support point except
a. Then S’ is regular, X is created by refining H, and all other cells of S are either
maintained or refined. Those that are refined contain a in their summand from
Ap. [

5.4.5 Types of N(R) facets

We describe resultant polytopes corresponding to maximum facet cardinality.
We start with several lemmata that serve as tools later.

First we consider the case (3, 3,2).

Vissarion Fisikopoulos 138

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.7: Left: A non-regular subdivision of P of Example 10. A regular subdi-
vision of P of Example 11. Each subdivision has 4 hexagons X1, X2, X3, X4.

Lemma 53. Given is an essential (3,3,3) configuration A = (Ag, A1, A2). When
ALl =
2, their corresponding resultant polytope N(R 4) gives a facet of N(R), which is

there are no parallel edges in the subfamily A’ = (Ag, A1, A}), A, C A,

combinatorially equivalent to the first polytope of Fig 5.8 (resultant).

Proof. 1f all edges in A’ are non-parallel, then every set of subsets of two points
from each Ay, A1, together with A, define a hexagon within a regular subdivision
of A'. For this, it suffices to lift only the third vertex of Ay and of A;; moreover,
the hexagon can be refined independently of the rest of the subdivision because
it forms a full-dimensional circuit. This gives a different resultant edge direction
of N(R 4). Thus, the number of edge directions of N(R 4/) is 9.

The dimension of N(R 4) is 3 hence, by [131, Cor.6.3(b)], there are three types
of 3-dimensional resultant polytopes, see also Prop. 29. Two of these, namely the
tetrahedron and square-based pyramid, have 6 and 8 edges, respectively. Hence

the claim follows. O
Assume we have
hexagon X = sq + s1 + s2, and heptagon H = Ag + s| + sh, (5.4)

where s;,s; C A; are all of cardinality 2, for ¢ € {1,2}, with the corresponding
support sets for X and for H being essential. The next lemma proves that edges

s;, s; are distinct, ¢ € {1, 2}.

Vissarion Fisikopoulos 139

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Lemma 54. Given any regular subdivision of Ag + A1 + As which includes a hep-
tagon H and a hexagon X, there is exactly one edge from A;, for some 1 € {0,1, 2},
which appears in the expression of both H and X.

Proof. Observe that X, H always share one edge since the latter has a triangle as
a summand: w.l.o.g., this edge is sy C Ap, using the notation of expression (5.4).
Thus, if they have one more common edge, this should be from A; or A;. W.l.o.g.
itis edge s; = sg C A;. By lemma 51, we can construct a subdivision of Ag+s1 + Az
that contains X, H. This yields a 3d (prism) or 2d (trapezoid or pentagon) resultant
polytope which is the Minkowski sum of a segment and the polytope or polygon
corresponding to H. Neither of these exists in the list of Proposition 29. N

Lemma 55. If we fix an edge so C Ay, there is at most one way to construct a reg-
ular subdivision which contains a hexagon and a heptagon sharing sg (i.e., where

their intersection equals a copy of sg).

Proof. Assume there are two such subdivisions: one with X, H, following the no-
tation of expression (5.4), and one with X* C sq 4+ Ay + Ag, H* = Ag + s] + s3,
sy C A, for i € {1,2}. H can be refined just enough so as to create a hexagon with-
out destroying overall regularity, by Lemma 52 and Remark 2, namely hexagon
so + s} + s, which is different from X. The two hexagons define a parallelogram
facet, by remark 1, in the resultant polytope of {sg, A1, A2}.

Analogously, we can subdivide H* s.t. it contains so + s + s3 as a cell, which is
different from X*, defining a parallelogram facet in the same resultant polytope.
Thus, we have defined two parallelogram facets which are distinct, because the
subdivisions containing X, H and X*, H* are distinct, since they were so at the
beginning and remain so after refinement. But it is impossible to have two such
facets in the 3d resultant polytope of sp + A; + Ag, by examining the possible 3d
polytopes. O]

Corollary 56. There is no regular subdivision with an octagon and a hexagon cell,

nor with two heptagon cells.

Proof. Assume that there is a subdivision with an octagon cell and a hexagon cell
X. Then we can subdivide the octagon cell in (at least) two ways such that there
is a heptagon cell in the octagons subdivision. This yields two subdivisions of P

with a different heptagon cell each and X, which contradicts Lemma 55.

Vissarion Fisikopoulos 140

High-dimensional polytopes defined by oracles: algorithms, computations and applications

S LD LD &2

resultant prism zonotope

Figure 5.8: The 3 types of generic facets of 4d resultant polytopes in the (3,3, 3)
case with non-parallel edges. The black, red, blue colors indicate the 3, 2, 1 di-
mensional resultant polytopes respectively.

Assume now there is a subdivision with two heptagon cells H, H' written,
w.lo.g., H = Ag+ 51 + sp and H' = sy + A; + s5. We apply the second part of
lemma 52, by using function ¢ that lifts vertex Ag \ sg. This creates a new reg-
ular subdivision containing hexagon X = sy + s1 + so C H, which contradicts
Lemma 54, since X shares two edges with H'.]

Alternative proof. Let, 1 # 7 # k have values {0, 1, 2}. The dual point of an octagon
cell is two apexes of the dual triangles A;‘,A’; intersected by a ray from A7. If
we have a hexagon cell with an octagon cell in a configuration this implies that
a ray from A and a ray from A;‘. should intersect at some point different than
the apexes of the dual triangles. This is not possible since the apexes of A, A;*-
coincide and the rays are non parallel. Given a configuration the dual point of a
heptagon cell is the apex of a dual triangle A} intersected by a ray from A}'f and
one from Aj. If there exist another heptagon cells in this configuration then the
apex of either A;‘f or A} should be intersected by a ray from A} which is impossible

since there are no parallel rays. See also Figure 5.6 for an illustration. O

We are now ready to describe all the possible types of facets. We call resultant
facets the facets that correspond to a 3-dimensional resultant polytope; prism
facets the facets that correspond to Minkowski sums of a 2-dimensional resultant
polytope and 1-dimensional resultant polytopes; and zonotope facets the facets

that correspond to Minkowski sums of 1-dimensional resultant polytopes.

Lemma 57. If the 3 triangles A; share no parallel edges, then the only possible

Jacet types are resultant, prism and zonotope.

Vissarion Fisikopoulos 141

High-dimensional polytopes defined by oracles: algorithms, computations and applications

SR,

(a) (b)
prism zonotope

Figure 5.9: Types of degenerate facets of 4d resultant polytopes in the (3, 3, 3) case
with non-parallel edges. The red and blue colors indicate the 2 and 1 dimensional
resultant polytopes respectively.

Proof. Considering that the facets are Minkowski sums of lower-dimensional re-
sultant polytopes [131]. Let S a subdivision of P. By Corollary 42 the number
of mixed cells of S is at most 12. The possible non-trivial cells by Lemma 50 are
the hexagon, the heptagon and the octagon, that can be subdivided in at most
3,5, 8 mixed cells respectively by Lemma 43. Using these cardinalities we perform

a case analysis over all these possible Minkowski sums and hence N(R) facets.

If S contains an octagon, then the only other non-trivial cell is hexagon. This
is impossible by Corollary 56. Then the sum has a 3-dimensional summand and
the facet is the resultant facet of Figure 5.8 with f-vector (6,11, 7).

If S contains a heptagon, then the only possible cases for the other non-
trivial cells are a heptagon (which is impossible by Corollary 56 and one or two
hexagons. The case of a heptagon and a hexagon yields generically a N(R) facet
which is a Minkowski sum of a segment and a triangle, called prism (cf. Fig-
ure 5.8). The case of a heptagon and two hexagons yields a face which is a Mi-
nkowski sum of two segments and a triangle. If all the summands are relatively
in general position the sum is a 4 dimensional polytope that contains two prism

facets. Otherwise, we encounter the degenerate cases depicted in Figure 5.9.

The last possible case is to have k£ hexagons in S. These yield facets that are
Minkowski sums of segments, i.e. zonotope facets. By the discussion above it

follows k < 4. If the summands are relatively in general position and & is 3 or 4 then

Vissarion Fisikopoulos 142

High-dimensional polytopes defined by oracles: algorithms, computations and applications

the sum yields a polytope of dimension 4 with 4 cube facets (cf. Figure 5.10) or a
3-dimensional cube facet depicted in Figure 5.8, respectively. A degenerate case

is the 3-dimensional Minkowski sum of 4 segments depicted in Figure 5.9. O

5.4.6 The number of N(R) facets

Now we bound the number of the facet types described above.

Resultant facets: counting octagons

We start by bounding the number of resultant facets, see Figure 5.8 (resultant).
They contain 6 vertices, 11 edges, and 7 ridges: 6 triangular and one parallelo-

gram.

Lemma 58. A 4-dimensional resultant polytope can have at most 9 resultant facets
in the (3,3, 3) case, and this is tight.

Proof. The resultant facet is a 3d resultant polytope, corresponding to a sub-
system with no parallel edges and support cardinalities (3, 3,2). This subsystem,
comprised of two triangles and an edge, defines a Minkowski sum equal to an
octagon. Consider a coarse mixed subdivision S of Ag, A, Ay, containing this oc-
tagon as a cell. All the other cells of S correspond to non-essential subsystems,
hence their resultant is a monomial. There are 9 different subsystems with sup-
port cardinalities 3, 3,2, because there are 3 ways to choose the A; contributing an
edge, and 3 ways to specify this edge. This bound is tight because it is achieved
in Example 10. O

Prism facets: counting heptagon-hexagon pairs

A prism facet is the Minkowski sum of a triangular ridge 7" and an edge E of
N(R), see Figure 5.8 (prism), where T, E are resultant polytopes of subsystems
with cardinalities (3,2,2) and (2,2,2) resp. This type of facet has 6 vertices. The
ridges are two translates of T, and 3 Minkowski sums of F with every edge of T
Each prism facet has 9 edges: 3 translates of E, and two translates of each edge
of T'. The subdivision of P which corresponds to a prism facet should contain a

hexagon X and a heptagon H, where X corresponds to E and H to T.

Vissarion Fisikopoulos 143

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 5.10: The complex of 4 zonotope (cube) facets: a Minkowski sum of 4
affinely independent segments, each associated to a hexagon in the subdivision;
each subfigure highlights a cube.

Lemma 59. There are at most 9 different hexagon-heptagon pairs in the set of all
subdivisions of a fixed family (Ag, A1, A2) in the (3,3, 3) case, and this is tight.

Proof. For fixed Ay, A1, Ag, consider hexagon X = sg + s; + s2, where s; C A4;, and
heptagon H, which is the Minkowski sum of 4y and segments s} # s1,s5 # so,
where s, C A;, for i € {1,2}. By Lemma 54, X and H have common edge so C Ay.
By Lemma 55, if we fix sy C Ap, there is a unique way to construct a regular mixed
subdivision with X and H. Hence, there are at most 9 possible different hexagon-

heptagon pairs. This bound is tight because it is achieved in Example 10. O]

Corollary 60. A 4-dimensional resultant polytope can have at most 9 prism facets
in the (3,3, 3) case, and this is tight.

Proof. The maximal number of prism facets occur when the 9 different hexagon-
heptagon pairs appear in different subdivisions. Degenerate cases occur when a
subdivision with a heptagon and two hexagons yields a facet of N(R). This is a
degenerate prism facet (cf. Figure 5.9). These cases decrease the total number of
prism facets since two different hexagon-heptagon pairs yield only one facet. This

bound is tight because it is achieved in Example 10. O

Zonotope facets: counting tuples of hexagons

The zonotope facet is a Minkowski sum of N(R) edges, each corresponding to
a hexagon, see the zonotope facet types in Figures 5.8, 5.9. We study tuples of
hexagons that appear in subdivisions to prove lemmas that bound the number

of zonotope facets.

Vissarion Fisikopoulos 144

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Since mixed points in dual subdivisions correspond to hexagon cells in sub-
divisions, we use counting of triplets of mixed points to count zonotope facets.

Therefore, by Proposition 49 we get the following result.

Corollary 61. A 4-dimensional resultant polytope can have at most 4 zonotope
Jacets in the (3, 3,3) case, and this is tight.

A note on regularity

Remark 3. We describe here when a subdivision that contain 4 hexagons is regular
or when is not. For a fixed family Ag, A1, As, let X1, X», X3, X4 be the hexagons and
So > S1 > --- > S4 be a chain in the refinement poset of all subdivisions where Sy is
the most coarse subdivision among them and every element differs from the next
by a refinement in one hexagon. Since the length of this chain is 5 the refinement
poset has a chain of length 6, by considering the maximal element (the coarsest
subdivision). Thus one of these subdivisions should be non regular and not corre-
spond to any face because the corresponding resultant polytope has dimension 4
and its face poset cannot have a chain longer than 5. When the hexagons corre-
spond to 4 affinely independent segments then Sy should be non regular because
the Minkowski sum is 4-dimensional and the subdivision neither corresponds to
the whole 4-dimensional polytope nor to any of its faces. In the case of 4 affinely
dependent segments Sy corresponds to a facet and S; should be non regular be-
cause the Minkowski sum is 3-dimensional and it neither corresponds to a facet
nor to a ridge.

We indicate now the topology of the zonotope facets correspond to refinements
of this subdivision. Let (a,b,c,d) € {0,1}* stand for the two possible flips in the 4
hexagons. There are 16 fine subdivisions of S: those which are regular correspond

to resultant vertices. Let us denote, w.l.o.g., by
(0bed), (a0cd), (ab0d), (abc0) C {0,1}4,

the subsets of regular fine subdivisions defining zonotope facets, each with cardi-
nality 8. The flip graph corresponds to 4 zonotope facets, each defined by all possi-
ble flips in 3 of the hexagons. Hence, each is a neighbour of the other 3, as shown in

Figure 5.10, with a parallelogram in comumon. The facet graph is a 4-clique. Over-

Vissarion Fisikopoulos 145

High-dimensional polytopes defined by oracles: algorithms, computations and applications

all, 15 fine subdivisions are involved, hence regular, while one fine subdivision,
namely (1111), is non-regular and not contained in any of the 4 facets. Of course,
each zonotope (cube) has another 3 parallelograms in comunon with prism or resul-

tant facets.

5.4.7 The number of N(R) faces

We denote by f; the maximum number of faces of dimension 7 of any (3,3, 3)
resultant polytope. It follows from Theorem 34 that it is enough to bound the
maximal number of faces in the generic case with no parallel edges, considered
in Section 5.4.

We will make use of a powerful result extending Barnette’s Lower bound to

non-simplicial polytopes:

Proposition 62. [89, thm.1.4] For d-dimensional polytopes:

fr+) (i —3)f5 > dfo— (dgl),

i>4
where f% is the number of 2-faces which are i-gons.

The following theorem summarizes our results on the maximum numbers f;.

Theorem 63. . The maximal number of ridges of a (3,3, 3) resultant polytope is
fo = 66 and the maximal number of facets is f3 = 22. Moreover, fi = fo + 44,
22 < fo < 28, and 66 < f; < 72. The lower bounds are tight.

Proof. Assume that we have a non parallel (3, 3, 3) configuration and let us relate
fo and f3. Let ¢1, ¢2, 3 be the number of resultant, prism and cube facets resp.;
i.e. ¢; is the number of facets with : summands. By Lemma 57, the total num-
ber of facets is f3 = ¢1 + ¢2 + ¢3. We observe that there are only triangular and

parallelogram ridges, whose cardinalities are at most 36 and 30, resp.:

%(6¢1 + 2¢2) = 3¢1 + ¢2 < 36,

%(¢1 + 3¢2 + 6¢3) = %(9251 + 3¢2) + 3¢3 < 30.

Vissarion Fisikopoulos 146

High-dimensional polytopes defined by oracles: algorithms, computations and applications

The total number of ridges is then
1
f2 = 5(7¢1 + 5¢2) + 3¢3 < 66. (5.5)

Thus, f, < 66 and our maximal instance establishes the lower bound.

With respect to the number of facets, there are at most 9 resultant, 9 prism,
and 4 cubical facets by Lemmata 58, 59, and 61. Thus f3 < 22 and again, our
maximal instance in Example 10 establishes the lower bound.

By Euler’s equality, for any resultant polytope we have fo+ fo = f1+ f3 < fi+fa,
therefore fo+ fo < f1 + fs. By symmetry, we get fo+ fa = f1 + fs. Then,

fi-fo=fo—fs=44 (5.6)

With respect to the two last inequalities in the statement, the lower bounds are
given by our maximal instance and by equality (5.6), it is enough to prove fj < 28.
Again, assume we are in the non parallel case. In the resultant polytope with
maximal number of facets, the 2-faces are either triangles or parallelograms and

there are fél = 30 parallelograms. Proposition 62 becomes f; + 30 > 4f5 — 10. Then,
fi+40 = fo+84>4fo,

and the desired bound follows. O

5.5 Classification

Let us summarize the characterization of 4d resultant polytopes. We need
to consider 3 special instances, corresponding to 3 possible cardinalities of sup-
ports in Section 5.2.1. As mentioned before, the cases n = 0,1 are similar to those
in [131], so we concentrate on (3,3, 3). We fixn = 2 and m = 9 = 3+ 3+ 3 and con-
sider such families. The associated mixed Grassmannian G(2;3,3,3;Q), defined
in [34], is the linear subvariety of the Grassmanian of 5-dimensional subspaces
in Q% which contain the vectors ej + es + e3,e4 + e5 + eg, and e7 + eg + eg. Given a
(3,3,3) family A, its associated Cayley matrix C represents (via its rowspan) an el-
ement in G(2; 3, 3,3; Q). All 5 x 9 matrices representing an element in G(2; 3, 3, 3; Q)

are affinely equivalent to an integer Cayley matrix of an integer (3, 3, 3) family and

Vissarion Fisikopoulos 147

High-dimensional polytopes defined by oracles: algorithms, computations and applications

have some structural vanishing minors. In the case of Cayley matrices of essen-
tial configurations, not too many minors can be 0, but there could be parallel
vectors and repeated points. In Sturmfels’ notation [131], the Newton polytope
N12,111 corresponds to two univariate configurations of multisets of 3 points, but
in the first, two of the points coincide: this is a square-based pyramid. Thus, this
is a degeneration of N111 111, which is the Newton polytope for two univariate con-
figurations with 3 different points each, cf. the first polytope in Figure 5.8. Note
that from the point of view of the Cayley matrix C, having a configuration with
a repeated point is just an occurrence of the fact that some minors of C vanish,
similarly to the existence of parallel edges in A, which is the new feature that we

have encountered in the study of 4-d resultant polytopes.

Theorem 64. Assume we have an essential family A of n + 1 (finite) lattice point
configurations in R™ with N(R) of dimension 4. Then, up to reordering, we are in
one of the situations (i), (ii) or (iii) in Section 5.2.1. These resultant polytopes are,

resp., a degeneration of the following:

1. n =0, |4p| = 5, which is a 4-simplex with f-vector (5, 10, 10, 5),
2. n =1, |Ap| = 3,|41| = 4, which is a Sylvester case, with f-vector (10, 26,25, 9),
3. n =2, |Ag| = |A1| = |A2| = 3, which are the polytopes described in Section 5.3.

In particular, no resultant polytope of dimension 4 can have more than 22 facets

and 66 ridges.

Proof. By Theorem 31, we restrict our attention to cases 1 to 3. We discuss case 3
because cases 1 and 2 are settled, resp., in [131] and [74, ch.12], cf also the 8th
instance in Table 5.1.

We can perturb (with values in Q), e.g. a point p € Ap to a nearby rational
point px. We get a perturbed matrix C(’@ € G(2;3,3,3;Q) of the Cayley matrix C.
The resultant is an affine invariant of a configuration or its Cayley matrix, so we
can left multiply C@ by an invertible matrix M in block form with a 3 x 3 identity
matrix in the upper left corner and an integer 2 x 2 integer matrix M’ with non-
zero determinant in the lower right corner, to get an integer matrix ¢/ = M C(’@,
which corresponds to the same point in the mixed Grassmanian. Then, C’ is

the Cayley matrix of an essential integer family .A’. We can say that A is then a

Vissarion Fisikopoulos 148

High-dimensional polytopes defined by oracles: algorithms, computations and applications

degeneration of this new integer family A/, which is the image of the family Af, =
(Ao — {p} U {p*}, A1, A2) by M.

Given a regular mixed subdivision S of A associated to a generic lifting vector
w (i.e., w is generic among the vectors that produce the same regular subdivi-
sion), we consider the regular subdivision S(’@ that w induces on the perturbed
configuration Ag. We then translate S(’@ via multiplication by M’ to a combinato-
rially equivalent regular subdivision S’ of A’. It follows from Theorem 34 that the
number of facets of N(R) cannot exceed the number of facets of N(R’), and we

conclude by Theorem 63. N

Example 13. Let us consider degeneracy when n = 1, i.e. points are repeated:
Ag = {0,1}, A1 = {0,1,1,2}. We perturb A; and get A] = {0,1, 101/100, 2}. We
dilate by 100 (multiply a row of the Cayley matrix) and get By = {0,100}, B; =
{0, 100, 101, 200}, which span Z. The resultant polytopes for A, B are combinatori-
ally equivalent, although the former resultant has total degree 2 + 1 = 3, and the
latter 200 + 100 = 300.

5.6 Open problems and Extensions
Open problem 1. Prove that either fy < 22 or f; < 66. That is, we conjecture that
the maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

Open problem 2. [s it true that, for maximal f-vectors, it holds fy = f3? Is it
always true that f; > fo, if fo > 10?

The proof of Theorem 34 should extend to high dimensions. Lemma 65 gener-
alizes Lemma 58 in any dimension and is proven analogously. It motivates us to

raise Conj. 1.
Lemma 65. A d-dimensional resultant polytope has at most m resultant facets.
Conjecture 1. The number of vertices of a d-dimensional resultant polytope is

3- > [[h®

IS||=d—1 €S

bounded above by

where S is any multiset with elements in {1,...,d — 1}, ||S|| := > _;cs %, and fo(3) is

the maximum number of vertices of a :-dimensional N(R).

Vissarion Fisikopoulos 149

High-dimensional polytopes defined by oracles: algorithms, computations and applications

The only bound in terms of d is (3d — 3)2‘7l2 [131], yielding fy(5) < 12°0 whereas
our conjecture yields fy(5) < 231.

Vissarion Fisikopoulos 150

Chapter 6

Geometric predicates: algorithms
and software

6.1 Introduction

Computing the sign of a determinant, or in other words evaluating a determi-
nantal predicate, is in the core of many important geometric algorithms. Convex
hull and regular triangulation algorithms use orientation predicates, the Delau-
nay triangulation algorithms also involve the in-sphere predicate. Furthermore,
the computation of the value of a determinant, or in other words a determinantal
construction, is also important in some geometric algorithms. For example, the
exact volume computation of a convex polytope using either of triangulation or a
sign decomposition method relies on the computation of the volume of simplices,
which reduces to a determinant computation [30].

In general dimension d, the orientation predicate of d+1 points is the sign of the
determinant of a matrix containing the homogeneous coordinates of the points
as columns. In a similar way we can define the volume determinant formula of
a simplex defined by d + 1 points in general position as wells as the in-sphere
predicate of d+ 2 points. In practice, as the dimension grows, a higher percentage
of the computation time is consumed by these core procedures. In this thesis, we
study effective algorithms and implementations for the computation of the deter-
minantal predicates and constructions that appear in geometric computations.

We follow the exact computation paradigm presented in [138] and advocated
by the Computation Geometry Algorithms Library (CGAL) [35], a state-of-the-

151

High-dimensional polytopes defined by oracles: algorithms, computations and applications

art library for geometric computations. Note that in geometric algorithms the
naive use of floating point arithmetic may lead to incorrect results [94]. In this
thesis we study two scenarios regarding exactness. In the first, we provide exact
predicates but not necessarily exact constructions while in the second we provide
both exact predicates and exact constructions. We give a particular emphasis to
exact division and division-free algorithms. Avoiding divisions is crucial when

working on a ring that is not a field, e.g., integers or polynomials.

Contribution. The observation is that, in a sequence of computations of de-
terminants or signs of determinants that appear in geometric algorithms, a sin-
gle computation can be accelerated by using the information from the previous
computations in the sequence. A special case is the sequence of computations
of the orientation predicates that appear in convex hull algorithms. The convex
hull problem is probably the most fundamental problem in discrete and com-
putational geometry. In fact, the problems of regular, Delaunay triangulations
and Voronoi diagrams reduce to it by computing a convex hull in one dimension
higher.

First, we propose algorithms with quadratic complexity for the determinants
involved in incremental or gift wrapping convex hull algorithms and linear com-
plexity for those involved in point location algorithms. Additionally, we nominate
a variant of these algorithms that can perform computations over the integers.
Second, we implement our proposed algorithms along with division-free deter-
minant algorithms from the literature. We perform an experimental analysis of
the current state-of-the-art packages for exact determinant computations along
with our implementations. Without taking the dynamic algorithms into account,
our experiments present a result of independent interest: they serve as a study
of state-of-the art determinant algorithms and implementations.

Experiments also show that dynamic algorithms outperform all the other
tested determinant implementations in almost all the cases. Moreover, we adapt
our implementations to work with the convex hull package triangulation [22].
We carry out experiments with random and real data in medium dimensions (i.e.,
ranging from 6 to 11 depending on the problem). We show that our implementa-
tion attains a speed-up up to 3.5 times and results in a convex hull package faster

than the package triangulation in tested scenarios, and is a competitive imple-

Vissarion Fisikopoulos 152

High-dimensional polytopes defined by oracles: algorithms, computations and applications

mentation for exact volume computation. More interestingly, when used in point

location problems in triangulations, it attains a speed-up of up to 78 times.

Previous work. There is a variety of algorithms and implementations for com-
puting the determinant of a d x d matrix. Let us denote by O(d¥) the complexity
of matrix multiplication. First, we consider the case where the matrix has values
from a field. For w > 2, an algorithm for matrix multiplication imply an algo-
rithm for determinant computation with the same w [31]. The best current w is
2.3727 [137]. Another category of algorithms is ones that apply exact divisions i.e.
with no remainder. An application is the computation of the determinant of a
matrix with integer entries using only integer arithmetic. A typical algorithm in
this category is [10].

A different category is division-free algorithms that use no divisions at all, e.g.
when the matrix values are from an abstract commutative ring. The best current
w in this category is 2.697263 [90]. Here, it is worth mentioning a family of deter-
minant algorithms that use combinatorial approaches. They were introduced by
Mahajan and Vinay [105], and are based on clow (closed ordered walk) sequences.
Several similar methods with complexity O(d*) are surveyed in [123]. Based on
the idea of clow sequences Bird introduced a simpler algorithm that uses ma-
trix operations [20]. Its complexity is O(dM(d)), where M (d) is the complexity of
matrix multiplication. Urbanska conceived a method that uses fast matrix mul-
tiplication [41] to obtain a complexity O(d39%) [135]. When d is small, however,
Bird’s algorithm behaves better than other division-free algorithms, as it will be
discussed later in the text; see Section 6.4.2.

Determinants of matrices over a ring arise in combinatorial problems [98], in
algorithms for lattice polyhedra [12] and secondary polytopes [120] or in compu-
tational algebraic geometry problems [44]. A special case of the latter is resultant
polytopes that have applications in polynomial system solving [14] and geometric
modeling [61].

However, good asymptotic complexity does not imply good behaviour in prac-
tice for small and medium dimensions. For instance, LinBox [48], which imple-
ments algorithms with state-of-the-art asymptotic complexity, introduces a sig-
nificant overhead in medium dimensions, and seems most suitable in very high

dimensions (see Section 6.4.2 for details). Eigen [80] implements LU decomposi-

Vissarion Fisikopoulos 153

High-dimensional polytopes defined by oracles: algorithms, computations and applications

tion, of complexity O(d%), and seems to be suitable for low to medium dimensions.
In addition, there exists a variety of algorithms for determinant sign computa-
tion [27, 1].

The problem of computation of sequences of determinants has also been stud-
ied. TOPCOM [120] is the reference software for enumerating all regular triangu-
lations of a set of points in high dimensions. It efficiently pre-computes all orien-
tation determinants that will be needed in the computation and stores their signs.
In [60], a similar problem is studied in the context of computational algebraic ge-
ometry. The computation of orientation predicates is accelerated by maintaining
a hash table of computed minors of the determinants. These minors appear many
times in the computation. However, the above methods study sequences of deter-
minants that appear in the computation of several triangulations (or equivalently
convex hulls) and cannot be efficiently applied to the case of a single convex hull
computation.

Our main tools are the Sherman-Morrison formulas [128, 11]. They relate the
inverse of a matrix after a small-rank perturbation to the inverse of the original
matrix. Other applications of these formulas include solving the dynamic tran-
sitive closure problem in graphs [124] and studying the effect of new links on
Google Page Rank [9].

Overview of the chapter. The chapter is organized as follows. Section 6.2 in-
troduces the dynamic determinant algorithms and the following section presents
their application to the convex hull and point location problems. Section 6.4 dis-
cusses the implementation, experiments, and comparison with other software.

We end up with conclusions and future work.

6.2 Dynamic Determinant Computations

In the dynamic determinant problem, a d x d matrix A is given. Allowing some
preprocessing, we should be able to handle updates of elements of A and re-
turn the current value of the determinant. We consider here only non-singular

updates, that is, updates that do not make A singular.

Vissarion Fisikopoulos 154

High-dimensional polytopes defined by oracles: algorithms, computations and applications

The Sherman-Morrison formula [128, 11] states that

-1 (A_lw)('UTA_l)
™l o1
(a+wT) =24 P e 6.1)

where A a d x d matrix and v, w vectors of dimension d. Let A’ be the matrix
resulting from replacing the ¢-th column of A by a vector u. Also let (A); denotes
the ¢-th column of A, and e; the vector with 1 in its ¢-th place and 0 everywhere else.
An :-th column update of A is performed by substituting v = e¢; and w = u — (4);

in Equation 6.1. Then, we can write A'~! as follows.

A - (4)) (FAY

2
1+ el A=1(u - (A),) (62

A= (A (u- (A)i)eZT>_1 _ar

If A=l is computed, we compute A1 using Equation 6.2. The computation is

performed as follows:

hi= A" (u— (A)) 6.3)
ho = hi/(1+ (R1)") (6.4)
H3 = hy (A71)! (6.5)
Al =4a"1_ H, (6.6)

where (A)*, (h1)* denote the i-th row of A and the i-th element h; respectively.
The intermediate results are the d-dimensional vectors k1, hy and the d x d matrix
H3. Hence, the equations 6.3, 6.4, 6.5, 6.6 are computed in d? +d, d+ O(1), d2, d?
arithmetic operations respectively and thus 3d? + 2d + O(1) in total.

The matrix determinant lemma [81] states that
det(A 4+ wv?) = (1 +vT A7 w) det(A) (6.7)
which yields the following equation
det(A') = det (A + (u— (A);)el) - (1 +ela(u- (A)i)> det(4) (6.8)

Using Equation 6.8 we compute det(4’) in 2d+0O(1) arithmetic operations, if det(A)

is known. Equations 6.2 and 6.8 lead to the following result.

Vissarion Fisikopoulos 155

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Proposition 66. [128] The dynamic determinant problem can be solved using
O(d¥) arithmetic operations for preprocessing and O(d2) for non-singular one col-

umn updates. The preprocessing consist in the computation of A~! and det(A).

Then we show how this computation can be performed over a ring. To this
end, we use the adjoint of 4, denoted by A2d, rather than the inverse. It holds
that A2 = det(A)A~1, thus we obtain the following two equations.

ARdl - —detl(3 (42 de(4) — (4% (u - (4);)) (e]429)) (6.9)
det(A') = det(A) + ef A2 (y — (4),) (6.10)

The only division in Equation 6.9 is known to be exact, i.e., its remainder is zero. If
the computation follows the order of operations as determined by the parenthesis
in Equations 6.9, 6.10 then the computation can be performed in 5d° + d + O(1)
arithmetic operations for Equation 6.9 and in 2d + O(1) for Equation 6.10. In
the sequel, we will call dyn_inv the dynamic determinant algorithm that uses
Equations 6.2 and 6.8, and dyn_adj the one that uses Equations 6.9 and 6.10.

6.3 Geometric Algorithms

We introduce in this section our methods for optimizing the computation of
sequences of determinants that appear in geometric algorithms. First, we utilize
dynamic determinants in incremental convex hull algorithms, which is one of the
basic classes of convex hull algorithms. Then, we show how this solution can be

extended to point location in triangulations.

6.3.1 Definitions

Let us start with some basic definitions from discrete geometry. Let A C R% be
a pointset. We define the convex hull of a pointset A, denoted by conv(A), as the
smallest convex set containing .A. A hyperplane supports conv(.A) if conv(.A) is en-
tirely contained in one of the two closed half-spaces determined by the hyperplane
and has at least one point on the hyperplane. A face of conv(.A) is the intersection
of conv(.A) with a supporting hyperplane that does not contain conv(A). Faces of

dimension 0 and d — 1 are called vertices and facets respectively. We call a face f

Vissarion Fisikopoulos 156

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Figure 6.1: The course of an incremental convex hull algorithm in 3 dimensions.

of conv(A) visible from a € R? if there is a supporting hyperplane that contains f
such that conv(.A) is contained in one of the two closed half-spaces determined
by the hyperplane and a in the other. A k-simplex of A is the convex hull of an
affinely independent subset S of A, where dim(conv(S)) = k. A triangulation of A
is a collection of simplices of A, called the cells of the triangulation, such that the
union of the simplices equals conv(.A) and every pair of simplices intersect at a
common face or have an empty intersection. We define the orientation matrix Ac
of a set C of points {a;...a4.1} C R? to be the (d + 1) x (d 4+ 1) matrix such that
for every a;, the column 7 of Ax contains @;’s coordinates as entries, where a; is

the homogeneous vector (a;, 1).

6.3.2 Incremental convex hull

For simplicity, we assume general position of A and present our method for the
Beneath-and-Beyond (BB) algorithm [127]. However, our method can be extended
to handle degenerate inputs as in [52, §8.4], as well as to be applied to more
efficient incremental convex hull algorithms (e.g. [40]) by utilizing the dynamic
determinant computations to answer the predicates appearing in point location
(Corollary 69). A clarification of this claim is our implementation in Section 6.4
which first handles degenerate inputs in practice and second is faster compared
to other software. In what follows, we use the dynamic determinant algorithm
dyn_adj, which can be replaced by dyn_inv yielding a variant of the presented
convex hull algorithm.

The BB algorithm is initialized by computing a d-simplex of A. At every subse-

Vissarion Fisikopoulos 157

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Algorithm 4: Incremental Convex Hull (A)

Input : pointset A C R%
Output: convex hull of A

sort A by increasing lexicographic order of coordinates, i.e., A = {a1,...,an};
T« {a1,...,a411};
Q « facets of conv(ai,...,a4:1);
foreach a € {a4,0,...,ar} do
Q'+ Q;
foreach F € @ do
C <+ the unique d-face s.t. C € T and F € C;
u < the unique vertex s.t. u € C and u ¢ F;
C' + F U{a};
// det(Ac) and A2Y were computed in a previous step
det(Agr) < (det(Ag) after updating u with a using Equations 6.9,
6.10);
if det(Aqr)det(Ac) < 0 then
T « T U {d-face of conv(C’)};
Q' «+ Q o {(d—1)-faces of C'}; // symmetric difference

Q@

return Q;

quent step, a new point from A is inserted, while keeping a triangulated convex
hull of the inserted points. Let ¢t be the number of cells of this triangulation. As-
sume that, at some step, a new point a € A is inserted and T is the triangulation
of the convex hull of the points of A inserted up to now. To determine if a facet F
is visible from a, an orientation predicate involving a and the vertices of F' has to
be computed (Figure 6.1). That is, we have to compute the sign of the determinant
of the matrix A, where C is the set of vertices of F union with a. If we know the
adjoint and the determinant of the orientation matrix of a cell of T that contains
F', this can be done by applying Equation 6.10. If F' is on the boundary, this cell
is unique (e.g. (F,u) in Figure 6.1) otherwise we arbitrarily select one of the two

cells that contain F'.

Algorithm 4, as initialization, computes from scratch the adjoint matrix and

Vissarion Fisikopoulos 158

High-dimensional polytopes defined by oracles: algorithms, computations and applications

the determinant of the orientation matrix Ax, where C contains the vertices of
the initial d-simplex. At every incremental step, it first computes the orientation
predicates using the adjoint matrices and determinants computed in previous
steps utilizing Equation 6.10. Second, it computes the adjoint and determinant
of the orientation matrices of the new cells using Equation 6.9. By Proposition 66,
this method leads to the following result.

Lemma 67. Given a d-dimensional pointset the first orientation predicate of in-
cremental convex hull algorithms is computed in O(d¥) time, and all the others in
O(d?) time in total O(d?t) space, where t is the number of cells of the constructed

triangulation.

Essentially, this result improves the computational complexity of the deter-
minants involved in incremental convex hull algorithms from O(d¥) to O(d?) by
using more space and dynamic determinant updates. Recall that O(d¥) is the
current best complexity (Section 6.1). To analyze the complexity of Algorithm 4,
we bound the number of facets of @ in every step of the outer loop of Algorithm 4
with the number of (d—1)-faces of the constructed triangulation of conv(.A), which
is bounded by (d + 1)t. Thus, using Lemma 67, we have the following complexity
bound for Algorithm 4, where we assume that n > d to hide the preprocessing
complexity O(d").

Corollary 68. Given n d-dimensional points, the complexity of BB algorithm is
O(nlogn + d3nt), where n > d and t is the number of cells of the constructed trian-

gulation.

Note that the complexity of BB, without using the method of dynamic determi-
nants, is bounded by O(n log n+d“*1nt). Recall that ¢ is bounded by O(n4/2]) [140,
§8.4], which shows that Algorithm 4, and convex hull algorithms in general, do
not have polynomial complexity in n and d. The schematic description of Algo-
rithm 4 and its coarse analysis is good enough for our purpose: to elucidate the
application of dynamic determinants to incremental convex hull computation and
to quantify the improvements using this method. See Section 6.4 for a practi-
cal approach to incremental convex hull algorithms using dynamic determinant
computations.

In Section 6.2 we have addressed only non-singular updates. Here we show

that this will not limit our method to handle degenerate cases. In a degenerate

Vissarion Fisikopoulos 159

High-dimensional polytopes defined by oracles: algorithms, computations and applications

case, the determinant of an orientation matrix will be zero if the points in the
orientation test span a space of dimension less than d. However, in this case, we
do not have to update the adjoint or the determinant of the orientation matrix
(which would be equivalent to a singular update operation) since no new cell is

going to be created.

6.3.3 Point location and other geometric algorithms

The above results can be used to improve the efficiency of geometric algorithms
that use convex hull computations. For Delaunay triangulations in R? and their
dual Voronoi diagrams one way is to be computed as the convex hull of the points
lifted on the paraboloid in R%!. For generic liftings the above construction leads
to regular triangulations.

Another important geometric problem where our method could be applied is
exact volume computation, since one of the two major classes of volume computa-
tion algorithms is based on triangulation methods [30]. To elucidate this, observe
that in Algorithm 4 we can compute the volume of the polytope by summing up the
volumes of all full dimensional simplices in the resulting triangulation. Indeed,
the volume of a simplex is the absolute value of the determinant of its orientation
matrix. The difference of an incremental convex hull and a volume computation
algorithm using a triangulation method is that the former needs to evaluate de-
terminantal predicates while the latter needs determinantal constructions.

As mentioned above, more efficient incremental convex hull algorithms
(e.g. [40]) are not sorting the input points and are using point location methods to
find the position of the point that is going to be inserted into the convex hull. It is
straightforward to apply our scheme in orientation predicates appearing in point
location algorithms, that perform orientation tests w.r.t. the facets of the trian-
gulation. The orientation predicates queried by a point location algorithm can be
computed using Equation 6.10, if the adjoint and determinant of the orientation
matrices of the cells of the triangulation have been precomputed. That yields the

following result.

Corollary 69. Given a triangulation of a d-dimensional pointset computed by an
incremental convex hull algorithm like Algorithm 4, the orientation predicates in-

volved in point location algorithms that perform orientation tests w.r.t. the facets

Vissarion Fisikopoulos 160

High-dimensional polytopes defined by oracles: algorithms, computations and applications

of the triangulation can be computed in O(d) time and O(d*t) space, where't is the

number of cells of the triangulation.

6.3.4 Data structures

In this section we present how we store and retrieve the determinants and the
matrices computed in the course of the geometric algorithms that we study. We
will use a hash table as a data structure.

Assume that the input points are indexed as {ay,...,an}. We use as hash keys
the tuples of indices of the (d — 1)-faces of the triangulation. Each (d — 1)-face is
mapped to one of the two cells (i.e. d-faces) of the triangulation that it belongs to.
The selection between the two cells is arbitrary and does not affect the efficiency
of the method. For every cell we also store the adjoint and the determinant of the
matrix that corresponds to its vertices’ coordinates.

In the course of geometric algorithms a given point b should be tested for
orientation with respect to a hyperplane defined by points that are locally indexed
asaji,...,aq. Querying the hash table for the tuple (a1, ..., ay) we obtain the adjoint
and the determinant of the matrix with entries the coordinates of a1,...,a; and
one more point c¢. Thus, the requested orientation determinant is computed by
updating ¢ with b applying Equations 6.9 and 6.10.

The following 2-dimensional example illustrates our approach.

Example 14. Let A = {a; = (0,1), a2 = (1,2), a3 = (2,1), as = (1,0), a5 = (2,2)}
where every point a; has an index : from 1 to 5. Assume we are in some step of an
incremental convex hull or point location algorithm and let T = {{1, 2, 4}, {2, 3, 4}}
be the 2-dimensional triangulation of conv(4) computed so far. The cells of T' are
indexed using the indices of the points in \A. For each cell, the hash table will
store as keys the set of indices of the 2-faces of the cell, e.g. for the cells {{1, 2,4}
the keys are {{1,2}, {2,4}, {1,4}} mapping to the adjoint and the determinant of
the matrix constructed by the points a1, as, as4. Similarly, {{2, 3}, {3, 4}, {2,4}} are
mapped to the adjoint matrix and determinant of a», a3, as. To insert a5 in T one
should compute the orientation determinant of as, a3, as to determine whether the
facet {2, 3} is visible from a5 and hence should be connected to construct a new
cell {2, 3,5}. Similar computations are performed for the other facets. By querying

the hash table for {2, 3} the adjoint and the determinant of the matrix of as, a3, a4

Vissarion Fisikopoulos 161

High-dimensional polytopes defined by oracles: algorithms, computations and applications

are returned. Then, we perform an update of the column corresponding to point
a4, replacing it by a5 and apply Equations 6.9 and 6.10 to compute the adjoint
and the determinant of the new cell. Finally, the two new keys {2,5},{3,5} are
added to the hash table and are mapped to the new cell {2, 3,5}.

6.4 Implementation and Experimental Analysis

We propose the hashed dynamic determinants scheme and implement it in
C++. The scheme consists of efficient implementations of algorithms dyn_inv and
dyn_adj (Section 6.2) and a hash table, which stores intermediate results (matri-
ces and determinants) based on the method presented in Section 6.3. The design
of our implementation is modular, that is, it can be used by either an algebraic
software providing dynamic determinant algorithm implementations or by a ge-
ometric software providing fast geometric predicates and constructions (e.g. ori-
entation, volume).

The geometric software builds the hashed dynamic determinants scheme on
top of CGAL (experimental) package triangulation, presented in [22]. We will
call this hdch. Hdch uses Eigen for initial determinant and adjoint or inverse ma-
trix computation and Laplace determinant algorithm for dimensions lower than
6. Note that triangulation and [22] propose two implementations: one called
New DT and a memory efficient variant called Del graph. Here, we use New DT,
hence any reference to triangulation or [22] will refer to New DT. The pack-
age triangulation works on top of a CGAL-compliant d-dimensional kernel. We
used a faster version of CGAL d-dimensional kernel, hacked by the authors of
triangulation and provided as a part of the experimental package.

The triangulation package implements an incremental convex hull algo-
rithm, like Algorithm 4 in Section 6.3. Their main difference is that triangu-
lation does not sort the points along one coordinate but along a d-dimensional
Hilbert curve and performs a fast point location at every insertion. Thus, we can
take advantage of our scheme in two places: in the orientation predicates appear-
ing in the point location procedure and in the ones that appear in the construc-
tion of the convex hull. Our implementation is independent of the data-structures

used by triangulation and this is one feature of hdch. In practice, hash tables

Vissarion Fisikopoulos 162

High-dimensional polytopes defined by oracles: algorithms, computations and applications

have constant insertion and retrieval times, and thus our approach does not in-
troduce a significant overhead in computing time while remains modular. The
only drawback is the overhead in space.

The hash table has been implemented using the Boost libraries [23]. To reduce
memory consumption and speed-up look-up time, we sort the lists of indices that
form the hash keys. We also use the GNU Multiple Precision arithmetic library
(GMP), the current standard for multiple-precision arithmetic, which provides
integer and rational types mpz_t and mpq_t, respectively.

The code is publicly available from
http://hdch.sourceforge.net.

We design and perform experiments with both algebraic and geometric software
to quantify the efficiency of our method. The data used in the experiments are
also available in the above web-page and thus all the experimental results can

be reproduced.

6.4.1 Experimental setup

All experiments ran on an Intel Core i5-2400 3.1GHz, with 6MB L2 cache and
8GB RAM, running 64-bit Debian GNU/Linux. We divide our tests in four sce-

narios, according to the number type involved in computations:
a rationals where the bit-size of both numerator and denominator is 10000,

b rationals converted from doubles, that is, numbers of the form m x 2P, where

m and p are integers of bit-size 53 and 11 respectively,
c integers with bit-size 10000, and
d integers with bit-size 32.

However, it is rare to find in practice input coefficients of scenarios (a) and (c).
Inputs are usually given as 32 or 64-bit numbers. These inputs correspond to the
coefficients of scenario (b). Scenario (d) is also very important, since points with
integer coefficients are encountered in many combinatorial applications (Sec-
tion 6.1).

Vissarion Fisikopoulos 163

High-dimensional polytopes defined by oracles: algorithms, computations and applications

6.4.2 Determinant computation experiments

We compare state-of-the-art software for exact computation of the determinant
of a matrix. We consider LU decomposition in Eigen [80], LinBox determinant [48],
applied to integers, and Maple 14 LinearAlgebra[Determinant]. LinBox imple-
ments state-of-the-art algorithms with the best known complexity bounds. How-
ever, their implementation usually has a big computational overhead and LinBox
shows the best results only when working in high dimensions (the results of the
tests of this section will corroborate this claim). LinBox provides a myriad of algo-
rithms for computing determinants: many known dense and sparse elimination
methods, the block Wiedemann algorithm [136] and an algorithm using a hybrid
method mixing Chinese remaindering and last invariant factor [49]. We tested
them and used for our tests the faster algorithm for our scenarios, the hybrid
elimination algorithm (which is also the default in LinBox). Maple implementa-
tion chooses between Bareiss algorithm [10], Gaussian elimination [118, §2.2]
and Berkowitz algorithm [16], based on the properties of the underlying alge-
braic structure. To test the behaviour of the class of division-free combinatorial
algorithms, we choose to implement Bird’s algorithm [20]. This choice may seem
odd, because there are combinatorial algorithms with better complexity bounds.
However, good complexity bounds are based here on fast matrix multiplication,
which carries big constants in the complexity. In small to medium dimensions,
which we are focusing in the present work, algorithms using fast matrix mul-
tiplication will show thus worse timings than naive multiplication algorithms.
Bird’s algorithm, on the other hand, leaves the choice of the matrix multiplica-
tion algorithm to the implementer. We choose to implement high-school matrix
multiplication [118, §3.1] and, since Bird’s algorithm operates with some rows
of upper-triangular matrices, few multiplications are actually done (that is, the
constant hidden in the complexity bound is very small). We also implemented
another division-free algorithm, the Laplace expansion [118, §4.2]. Finally, we

consider our implementations of dyn_inv and dyn_ad,j.

We do not consider in our tests the exact LU decomposition implemented in
CGAL d-dimensional kernel [126] for two reasons. On one hand, Eigen is always
around two times faster than CGAL. On the other hand, future versions of CGAL

d-dimensional kernel will rely on Eigen for determinant computations. Let us

Vissarion Fisikopoulos 164

High-dimensional polytopes defined by oracles: algorithms, computations and applications

mention, finally, that triangulation uses a hacked version of CGAL determi-
nant. Since they compute with cartesian coordinates, the last row of the matri-
ces is always full of ones. Thus, to compute the determinant of a matrix of size d,
they create a new matrix of size d — 1 by eliminating the last row and subtracting
the last column of the original matrix to the d — 1 first columns. Then, they com-
pute the determinant of the new matrix, which is the same as the determinant
of the original one. This method reduces the constant of the complexity of the
determinant computation, but it is never faster than Eigen.

We test the above implementations in the four coefficient scenarios described
above. When coefficients are integers, we can use integer exact division algo-
rithms, which are faster than quotient-remainder division algorithms. In this
case, Bird, Laplace and dyn_adj enjoy the advantage of using the number type
mpz_t while the others are using mpq_t. The input matrices are constructed start-
ing from a random d x d matrix, replacing a randomly selected column with a
random d vector. We present experimental results of the four input scenarios in
Tables 6.1-6.4. We tested a fifth coefficient scenario (rationals of bit-size 32), but
do not show results here because timings are quite proportional to those shown
in Table 6.1. We stop testing an implementation when it is slow and far from
being the fastest (denoted by “-” in the Tables).

On one hand, without considering the dynamic algorithms, the experiments
show the most efficient determinant algorithm implementation in the different
scenarios described. This is a result of independent interest, and shows the ef-
ficiency of division-free algorithms in some settings. The simplest determinant
algorithm, Laplace expansion, proved to be the best in all scenarios, until di-
mension 4 to 6, depending on the scenario. It has exponential complexity, thus
it is slow in dimensions higher than 6 but it behaves very well in low dimensions
because of the small constant of its complexity and the fact that it performs no
divisions. Bird is the fastest in scenario (c), starting from dimension 7, and in
scenario (d), in dimensions 7 and 8. It has also a small complexity constant, and
performing no divisions makes it competitive with decomposition methods (which
have better complexity) when working with integers. Eigen is the fastest imple-
mentation in scenarios (a) and (b), starting from dimension 5 and 6 respectively,
as well as in scenario (d) in dimensions between 9 and 12. It should be stressed

that decomposition methods are the current standard to implement determinant

Vissarion Fisikopoulos 165

High-dimensional polytopes defined by oracles: algorithms, computations and applications

Bird CGAL Eigen
16.61 17.05 15.02
143.11 98.15 71.35
801.26 371.85
3199.79 1086.80
10331.30 2959.80

Laplace Maple dyn_inv dyn_adj

16.234 195.38 191.95

115.782 746.32 896.58

273.27 570.582 | 2065.08 2795.53

1060.10 1576.592 | 4845.38 7171.81
7682.24 4222.563 - -

N O Ok Wl

Table 6.1: Determinant tests, inputs of scenario (a): rationals of bit-size 10000.
Times in milliseconds, averaged over 1000 tests. We highlight the best non-
dynamic algorithm and the dynamic algorithm if it is the fastest over all.

computation. Maple is the fastest only in scenario (d), starting from dimension
13. In our tests, LinBox is never the best, due to the fact that it focuses on higher
dimensions. Finally, we report results of inexact computation for scenarios (b)
and (d), that is, CGAL d-dimensional kernel using double-precision floating-point
arithmetic (denoted by inexact in Tables 6.2 and 6.4). Though not comparable
with the timings of exact computations, this approach does not compute the cor-
rect value of the determinant and serve as an experimental lower bound on the
running time of all the above implementations. Furthermore, this experiments
provide an insight of the timings one would obtain using double-precision fil-
tered computations. Typically, these take at least twice the computing time of

the shown values.

On the other hand, when dynamic determinant algorithm enter the competi-
tion, experiments show that dyn_adj defeats all the other algorithms in scenarios
(b), (c), and (d). On each of these scenarios, there is a threshold dimension, start-
ing from which dyn_adj is the most efficient, which happens because of its better
asymptotic complexity. In scenarios (c) and (d), with integer coefficients, division-
free performs much better, as expected, because integer arithmetic is faster than
rational. In general, the sizes of the coefficients of the adjoint matrix are bounded.
That is, the sizes of the operands of the arithmetic operations are bounded. This
explains the better performance of dyn_adj over the dyn_inv, despite its worse

arithmetic complexity.

Vissarion Fisikopoulos 166

High-dimensional polytopes defined by oracles: algorithms, computations and applications

d Bird CGAL Eigen Laplace Maple dyn_inv dyn_adj | inexact
3 .013 .021 .014 .058 .046 .023 .001
4 .046 .050 .033 .105 .108 .042 .002
5 122 .110 .072 .288 .213 .067 .002
6 .268 .225 597 376 .002
7 .522 412 .824 .613 .003
8 .930 .710 1.176 .920 .003
9 1.520 1.140 1.732 1.330 .004
10 | 2.380 1.740 2.380 1.830 .004
11 - 2.510 3.172 2.480 .005
12 - 3.570 4.298 3.260 .005
13 - 4.960 5.673 4.190 .006
14 - 6.870 7.424 5.290 .007
15 - 9.060 9.312 6.740 .008

Table 6.2: Determinant tests, inputs of scenario (b): rationals converted from
double. Each timing (in milliseconds) corresponds to the average of computing
10000 (for d < 7) or 1000 (for d > 7) determinants. Highlighting as in Table 6.1.
The last column of the table shows the time spent in inexact computations with
double-precision floating point arithmetic, by performing an LU decomposition
using the CGAL d-dimensional kernel.

a Bird CGAL Eigen
3 .23 3.24 2.58
4 1.04 14.51 10.08
5 3.40 45.52 28.77
6 8.91 114.05 67.85
7 243.54 138.80
8 476.74 257.24
9 815.70 440.30
10 1358.50 714.40
11 - -
12 - -
13 - -
14 - -
15 - -
16 - -
17 - -

Table 6.3: Determinant tests, inputs

Laplace LinBox Maple dyn_inv dyn_adj
132.64 .28 27.37 2.17

164.80 1.36 76.76 6.59

367.58 4.52 176.60 14.70

- 423.08 325.65 27.97

- - 569.74 48.49

- - - 904.21 81.44
- - - 1359.80 155.70
- - - 1965.30 224.10
- - - - 328.50
- - - - 465.00
- - - - 623.80
- - - - 830.80
- - - - 1092.30

of scenario (c): integers of bit-size 10000.

Times in milliseconds, averaged over 1000 tests for d < 9 and 100 tests for d > 9.
Highlighting as in Table 6.1.

Vissarion Fisikopoulos

167

High-dimensional polytopes defined by oracles: algorithms, computations and applications

a Bird CGAL Eigen Laplace LinBox Maple | dyn_ inv dyn_adj | inex.
3 .002 .021 .013 872 .045 .030 .008 | .001
4 .012 .041 .028 1.010 .094 .058 .015 | .002
5 .032 .080 .048 1.103 214 119 .023 | .002
6 .072 .155 .092 1.232 .602 197 .002
7 .253 .149 277 1.435 716 322 .003
8 - 439 .247 - 1.626 791 .486 .003
9 .408 .689 - 1.862 .906 .700 .004
10 .646 1.031 - 2.160 1.014 .982 .004
11 956 1.485 - 10.127 1.113 1.291 .005
12 | 1.379 2.091 - 13.101 1.280 1.731 .005
13 | 1.957 2.779 1.485 - - 2.078 .006
14 | 2.603 3.722 1.968 - - 2.676 .007
15 | 3.485 4.989 2.565 - - 3.318 .008
16 | 4.682 6.517 3.391 - - 4.136 .010

Table 6.4: Determinant tests, inputs of scenario (d): integers of bit-size 32. Times
in milliseconds, averaged over 10000 tests. Highlighting as in Table 6.1. The last
column shows the timings using inexact arithmetic, as in Table 6.2.

6.4.3 Convex hull experiments

For the experimental analysis of the behaviour of dynamic determinants used
in convex hull algorithms (Section 6.3), we experiment with four state-of-the-
art exact convex hull packages. Two of them implement incremental convex hull
algorithms: triangulation [22] implements [39] and beneath-and-beyond (bb)
implements the Beneath-and-Beyond algorithm in polymake [72]. The package
cdd [70] implements the double description method, and lrs implements the
gift-wrapping algorithm using reverse search [6].

We design the input of our experiments parametrized on the number type of
the coefficients and on the distribution of the points. The number type is either
rational or integer. From now on, when we refer to rational and integer we mean

scenario (b) and (d), respectively. We test three uniform point distributions:
i in the d-cube [-100, 100]¢,

ii in the origin-centered d-ball of radius 100, and

ili on the surface of that ball.

We perform an experimental comparison of the four above packages and hdch,

Vissarion Fisikopoulos 168

High-dimensional polytopes defined by oracles: algorithms, computations and applications

with input points from distributions (i)-(iii) with either rational or integer coeffi-
cients. In the case of integer coefficients, we test hdch using mpq_t (hdch_q) or
mpz_t (hdch_z). In this case hdch_z is the most efficient with input from distri-
bution (ii) (Figure 6.2(); distribution (i) is similar to this) while in distribution
(iii) both hdch_z and hdch_q perform better than all the other packages (see Fig-
ure 6.2()). In the rational coefficients case, hdch_q is competitive to the fastest
package (Figure 6.3). Note that the rest of the packages cannot perform arithmetic
computations using mpz_t because they are lacking division-free determinant al-
gorithms. It should be noted that hdch is always faster than triangulation. The
sole modification of the determinant algorithm made it faster than all other im-

plementations in the tested scenarios.

At this point, it may arise the question about filtering: will our method be
faster if using arithmetic filters to compute the signs of determinants? This ques-
tion is answered in [22]: in the dimensions we are focusing, the truth is that
simple filtering is not efficient, since it reverts too often to exact computations.
[28] study this problem and propose a more complicated filtering scheme for de-
terminant computations in higher dimensions; but it must be implemented in
a layer lower than the triangulation algorithm, in this case, the d-dimensional
kernel. CGAL does not, and does not plan in the near future to, implement such
an algorithm.Preliminary tests with triangulation using filtered computations
corroborated the need of better algorithms for computing signs of determinants

in high dimensions.

triangulation would greatly benefit from this high-dimensional filtering tech-
niques. On the other hand, implementing filtering is very difficult with our

scheme.

We test the improvements of hashed dynamic determinants scheme on tri-
angulation and their memory consumption. For input points from distribution
(iii) with integer coefficients, when dimension ranges from 3 to 8, hdch_q is up to

1.7 times faster than triangulation and hdch_z up to 3.5 times faster (Table 6.5).

We carry out experiments using as input the vertices of resultant polytopes
which have integral coefficients (Section 6.1). The results in Table 6.6 emphasize
the utilization of the hashed dynamic determinants scheme when working with

real data.

Vissarion Fisikopoulos 169

High-dimensional polytopes defined by oracles: algorithms, computations and applications

hdch_q hdch =z triangulation
| Al d time memory time memory time memory

(sec) (MB) (sec) (MB) (sec) (MB)
260 2 0.02 35.02 0.01 33.48 0.05 35.04
500 2 0.04 35.07 0.02 33.53 0.12 35.08
260 3 0.07 35.20 0.04 33.64 0.20 35.23
500 3 0.19 35.54 0.11 33.96 0.50 35.54
260 4 0.39 35.87 0.21 34.33 0.82 35.46
500 4 0.90 37.07 0.47 35.48 1.92 37.17
260 5 2.22 39.68 1.08 38.13 3.74 39.56
500 5 5.10 45.21 2.51 43.51 8.43 45.34
260 6 14.77 1531.76 8.42 1132.72 20.01 55.15
500 6 37.77 3834.19 21.49 2826.77 51.13 83.98
220 7 56.19 6007.08 32.25 4494.04 90.06 102.34
320 7 swap swap 62.01 8175.21 164.83 185.87
120 8 86.59 8487.80 45.12 6318.14 151.81 132.70
140 8 swap swap 72.81 8749.04 213.59 186.19

Table 6.5: Comparison of hdch_q, hdch_z and triangulation using points from
distribution (iii) with integer coefficients; swap means that the machine used swap
memory.

6.4.4 Volume computation experiments

The aforementioned packages compute the volume of the polytope, defined
by the input points, as part of the convex hull computation (Section 6.3). It is
important to remark that volume computation does not benefit from filtering, as
algorithms using the Orientation predicate do. Due to this fact, our algorithm

outperforms competitors in exact volume computation.

The last column of Table 6.6 shows the volume of resultant polytopes com-
puted using hdch. Therefore, hdch also yields a competitive implementation (Fig-
ure 6.2) for the exact computation of the volume of a polytope given by its vertices.
Computing only signs of determinants would not give, as output of the algorithm
computing resultant polytopes, the volume. Table 6.7 shows the gain of using
hdch over 1lrs, a state-of-the-art software to compute polytope volumes in low

dimensions, when computing volumes of 6-dimensional polytopes.

Vissarion Fisikopoulos 170

High-dimensional polytopes defined by oracles: algorithms, computations and applications

|A| d time(sec) volume
hdch_q hdch_z triang

80 6 0.54 0.27 0.66 368986.7
100 6 0.69 0.33 0.87 108096.3
110 6 1.20 0.52 1.40 1456226058.5
125 6 1.28 0.61 1.66 66137.3
376 7 17.07 7.80 24.41 1713149926.2
414 7 23.02 10.91 32.54 82132445.9
500 7 29.40 13.05 41.22 2593047991.6
528 7 38.22 17.96 54.91 33727790.7

Table 6.6: Comparison of hdch_q, hdch_z and triangulation computing resul-
tant polytopes.

|A|] 1lrs (sec) hdch (sec)

100 3.87 1.41
200 20.33 3.36
300 43.08 6.44
400 85.61 8.60
500 135.44 10.76
600 172.34 13.65
700 226.47 15.04
800 297.48 18.59
900 408.19 21.84

Table 6.7: Volume computation experiments; input is random points in a cube of
dimension 6

6.4.5 Point location experiments

We test the efficiency of hashed dynamic determinants scheme on the point lo-
cation problem in a triangulation. Given a pointset, triangulation constructs a
triangulation of the convex hull of the pointset and a data structure that can per-
form point locations of new points. In addition to that, hdch constructs the hash
table with matrices and determinants used for faster orientation computations.
We perform tests with triangulation and hdch using input points uniformly
distributed on the surface of a ball (distribution (iii)) as a preprocessing to build
the data structures. Then, we perform point locations using points uniformly dis-

tributed inside a cube (distribution (i)). Experiments show that our method yields

Vissarion Fisikopoulos 171

High-dimensional polytopes defined by oracles: algorithms, computations and applications

70

e hdch q ——
L d
hdch_z -~
60 / triang ~x 1
; Irs e
/ bb --&--
50 ¢ . cdd e a]
—~ el —
® 40 | e _a’ 3
2 ‘ - @
© . * o
E 30t 2 oo E
= o - — =
20+
,' o8 8
10 }. .) /*,_,&N,,N‘——Q”‘g""xﬁ
. IR e e
o EEEE g ‘ ‘ ‘ ‘ ‘ == ‘ ‘ ‘ ‘ ‘
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Number of input points Number of input points
(@) ©)

Figure 6.2: Comparison of convex hull packages for 6-dimensional inputs with
integer coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) on
its surface.

a speed-up in query time by a factor of 35 to 78 when dimension ranges from 8 to

11 using points with integer coefficients (scenario (d)) (Table 6.8).

6.4.6 Memory consumption

The main disadvantage of hdch is the amount of memory consumed, which
allows us to compute up to dimension 8 (Table 6.5). One can think at this point
that an intelligent memory allocation scheme could improve the performance of
our algorithms. However, tests with an implementation of hdch using the Boehm-
DeMers-Weiser conservative garbage collector [21] did not show improvements in
computing time. This can be due to the fact that the complexity of the operations
performed on the allocated numbers surpasses the complexity of the allocated
space. Thus, changing the allocation scheme would not reduce significantly the
computation time. This drawback can be seen as the price to pay for the obtained
speed-up.

The large memory consumption of our method can be overhauled by exploiting
hybrid techniques. That is, to use the dynamic determinant hashing scheme as
long as there is enough memory and subsequently use the best available deter-
minant algorithm (Section 6.4). Alternative options are to clean periodically the

hash table or to use a Least Recently Used (LRU) cache to avoid storing for long

Vissarion Fisikopoulos 172

High-dimensional polytopes defined by oracles: algorithms, computations and applications

250

200 | b o

150 ¢

Time (sec)
Time (sec)
]

100 | R

50

100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

Number of input points Number of input points
(@) ©)

Figure 6.3: Comparison of convex hull packages for 6-dimensional inputs with
rational coefficients. Points are uniformly distributed (a) inside a 6-ball and (b)
on its surface.

time unused determinants and matrices. For the latter, techniques for efficiently
computing determinants of matrices with more than one update, as described
in [124], could be utilized.

6.5 Concluding remarks

We provide efficient determinantal predicates by utilizing the well known
Sherman-Morrison formulas and describe how they can be used by algorithms
that make heavy use of similar determinant computations. We also presented ex-
perimental evidences about the supremacy of these methods over state-of-the-art
methods in determinant, convex hull and point location computations.

A future improvement in the memory consumption of our method could be
the exploitation of hybrid memory management techniques as discussed in Sec-
tion 6.4. One extension of the proposed method of this work would be the ap-
plication of dynamic determinants to the gift wrapping (GfR) convex hull algo-
rithms [36, 6]. Such an extension would certainly improve the memory consump-
tion of our method.

Finally, studying the behaviour of our scheme using filtered computations,
could lead to even more efficient implementations. Moreover, implementing mod-

ern algorithms for filtered computation of determinants would improve our im-

Vissarion Fisikopoulos 173

High-dimensional polytopes defined by oracles: algorithms, computations and applications

preproc. data # of query time
d | A time structs. cells in (sec)
(sec) (MB) triangul. 1K 1000K
hdch_z 8 120 45.20 6913 319438 0.41 392.55
triang 8 120 156.55 134 319438 14.42 14012.60
hdch_z 9 70 45.69 6826 265874 0.28 276.90
triang 9 70 176.62 143 265874 13.80 13520.43
hdch_z 10 50 43.45 6355 207190 0.27 217.45
triang 10 50 188.68 127 207190 14.40 14453.46
hdch_z 11 39 38.82 5964 148846 0.18 189.56
triang 11 39 181.35 122 148846 14.41 14828.67

Table 6.8: Point location time of 1K and 1000K (1K=1000) query points for hdch_z
and triangulation (triang), using distribution (iii) for preprocessing and distri-
bution (i) for queries and integer coefficients.

plementation, as well as its competitors.

Vissarion Fisikopoulos 174

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation
of determinants of dense matrices. In Proc. ACM Intern. Symp. on Symbolic
and Algebraic Computation, pages 197-203, 1999.

P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approxima-
tion via coresets. In Combinatorial and Computational Geometry, MSRI,
pages 1-30. University Press, 2005.

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51:117-122, 2008.

F. Ardila, C. Benedetti, and J. Doker. Matroid polytopes and their volumes.
Discrete & Computational Geometry, 43(4):841-854, 2010.

S. Arya, G. Dias da Fonseca, and D.M. Mount. Optimal area-sensitive
bounds for polytope approximation. In ACM Symp. on Comp. Geometry,
pages 363-372, 2012.

D. Avis. Irs: Arevised implementation of the reverse search vertex enumer-
ation algorithm. In Polytopes - Combinatorics and Computation, volume 29
of Oberwolfach Seminars, pages 177-198. Birkhauser-Verlag, 2000.

D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?
Comp. Geom.: Theory & Applic., 7:265-301, 1997.

D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete & Comput. Geome-
try, 8:295-313, 1992.

K. Avrachenkov and N. Litvak. The effect of new links on Google PageRank.
Stoch. Models, 22:319-331, 2006.

175

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[10] E.H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaus-
sian Elimination. Mathematics of Computation, 22:565-565, 1968.

[11] M.S. Bartlett. An inverse matrix adjustment arising in discriminant anal-
ysis. The Annals of Mathematical Statistics, 22(1):107-111, 1951.

[12] A. Barvinok and J.E. Pommersheim. An algorithmic theory of lattice points
in polyhedra. New Perspectives in Algebraic Combinatorics, pages 91-147,
1999.

[13] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace
search. IEEE Trans. Pattern Analysis & Machine Intelligence, 33(2):266-278,
2011.

[14] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry.
Springer-Verlag, Berlin, 2003.

[15] M. Beck and D. Pixton. The Ehrhart polynomial of the Birkhoff polytope.
Discrete & Computational Geometry, 30(4):623-637, 2003.

[16] S.J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Inf. Process. Lett., 18(3):147-150, March
1984.

[17] D. Bertsimas and S. Vempala. Solving convex programs by random walks.
J. ACM, 51(4):540-556, 2004.

[18] U. Betke and M. Henk. Approximating the volume of convex bodies. Discrete
& Computational Geometry, 10(1):15-21, 1993.

[19] L.J. Billera, P. Filliman, and B. Sturmfels. Constructions and complexity
of secondary polytopes. Advances in Math., 83(2):155-179, 1990.

[20] R.S. Bird. A simple division-free algorithm for computing determinants.
Inf. Process. Lett., 111:1072-1074, November 2011.

[21] H.-J. Boehm. Space efficient conservative garbage collection. In Program-
ming Language Design and Implementation, pages 197-206. ACM, June
1993.

Vissarion Fisikopoulos 176

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[22] J.-D. Boissonnat, O. Devillers, and S. Hornus. Incremental construction of
the Delaunay triangulation and the Delaunay graph in medium dimension.

In Proc. Annual Symp. Computational Geometry, pages 208-216, 2009.
[23] Boost: peer reviewed C++ libraries. http://www.boost.org.

[24] E. Boros, K.M. Elbassioni, V. Gurvich, and H.R. Tiwary. The negative cycles
polyhedron and hardness of checking some polyhedral properties. Annals
OR, 188(1):63-76, 2011.

[25] D. Bremner. Incremental convex hull algorithms are not output sensitive.
In Proc. 7th Intern. Symp. Algorithms and Comput., pages 26-35, London,
UK, 1996. Springer.

[26] H. Bronnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. In Proc. Annual ACM Symp. on
Computational Geometry, pages 165-174, New York, 1998. ACM.

[27] H. Brénnimann, 1.Z. Emiris, V. Pan, and S. Pion. Sign determination in
Residue Number Systems. Theor. Comp. Science, Spec. Issue on Real Num-
bers & Computers, 210(1):173-197, 1999.

[28] Hervé Bronnimann, Christoph Burnikel, and Sylvain Pion. Interval arith-
metic yields efficient dynamic filters for computational geometry. Discrete
Applied Mathematics, 109(1-2):25 - 47, 2001. 14th European Workshop

on Computational Geometry.

[29] B. Btieler and A. Enge. VINCI. http://www.math.u-bordeauxl.fr/

~aenge/index.php?category=software&page=vinci.

[30] B. Btieler, A. Enge, and K. Fukuda. Exact volume computation for poly-
topes: A practical study. In Polytopes: Combinatorics and Computation, vol-
ume 29 of Oberwolfach Seminars, pages 131-154. Birkhauser, 2000.

[31] J.R. Bunch and J.E. Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Mathematics of Computation, 28(125):231-236,
1974.

Vissarion Fisikopoulos 177

http://www.math.u-bordeaux1.fr/~aenge/index.php?category=software&page=vinci
http://www.math.u-bordeaux1.fr/~aenge/index.php?category=software&page=vinci

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[32] M. Bussieck and M. Luebbecke. The vertex set of a 0/ 1-polytope is strongly
P-enumerable. Comput. Geom.: Theory & Appl., 11:103-109, 1998.

[33] E. Canfield and B. McKay. The asymptotic volume of the birkhoff polytope.
Online Journal of Analytic Combinatorics, 4(0), 2009.

[34] E. Cattani, M. A. Cueto, A. Dickenstein, S. Di Rocco, and B. Sturmfels.
Mixed discriminants. Math. Z., 2013. to appear; also in ArXiv 2011.

[35] CGAL: Computational geometry algorithms library. http://www.cgal.org.

[36] D.R. Chand and S.S. Kapur. An algorithm for convex polytopes. J. ACM,
17(1):78-86, January 1970.

[37] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Dis-
crete & Computational Geometry, 10:377-409, 1993.

[38] K.L. Clarkson. More output-sensitive geometric algorithms. In Proc. IEEE
FOCS, pages 695-702, 1994.

[39] K.L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized
incremental constructions. Comput. Geom.: Theory & Appl., 3:185-121,
1993.

[40] K.L. Clarkson and P.W. Shor. Applications of random sampling in com-
putational geometry, ii. Discrete & Computational Geometry, 4(1):387-421,
1989.

[41] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proceedings of the nineteenth annual ACM symposium on The-
ory of computing, STOC ’87, pages 1-6, New York, NY, USA, 1987. ACM.

[42] B. Cousins and S. Vempala. A cubic algorithm for computing gaussian
volume. In SODA, pages 1215-1228, 2014.

[43] B. Cousins and S. Vempala. A Matlab implementation for volume approx-
imation of convex bodies, 2014. http://www.cc.gatech.edu/~bcousins/
Volume.html.

Vissarion Fisikopoulos 178

http://www.cc.gatech.edu/~bcousins/Volume.html
http://www.cc.gatech.edu/~bcousins/Volume.html

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[44] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in
GTM. Springer, New York, 2nd edition, 2005.

[45] J.A. De Loera, B. Dutra, M. Képpe, S. Moreinis, G. Pinto, and J. Wu. Soft-
ware for exact integration of polynomials over polyhedra. Comput. Geom.:
Theory Appl., 46(3):232-252, April 2013.

[46] O. Devillers, 2011. Personal communication.

[47] A. Dickenstein, 1.Z. Emiris, and V. Fisikopoulos. Combinatorics of 4-
dimensional resultant polytopes. In Proceedings of the 38th International
Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pages 173~
180, New York, NY, USA, 2013. ACM.

[48] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen,
B. D. Saunders, W. J. Turner, and G. Villard. Linbox: A generic library for
exact linear algebra. In Proc. Intern. Congress Math. Software, pages 40-50,
Beijing, 2002.

[49] Jean-Guillaume Dumas and Anna Urbanska. An introspective algorithm
for the integer determinant. In Jean-Guillaume Dumas, editor, Transgres-
sive Computing 2006, pages 185-202, Granada, Spain, 2006. Copias CoCa,
Madrid.

[50] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1-17, 1991.

[51] M.E. Dyer and A.M. Frieze. On the complexity of computing the volume of
a polyhedron. SIAM J. Comput., 17(5):967-974, 1988.

[52] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag
New York, Inc., New York, NY, USA, 1987.

[53] J. Edmonds, W.R. Pulleyblank, and L. Lovasz. Brick decompositions and
the matching rank of graphs. Combinatorica, 2(3):247-274, 1982.

[54] G. Elekes. A geometric inequality and the complexity of computing volume.
Discrete & Computational Geometry, 1:289-292, 1986.

Vissarion Fisikopoulos 179

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[55] I.Z. Emiris and V. Fisikopoulos. Efficient random walk methods for approx-

imating polytope volume. In Proc. Symp. Comp. Geometry. ACM, 2014.

[56] 1.Z. Emiris, V. Fisikopoulos, and B. Gartner. Efficient volume and edge-
skeleton computation for polytopes defined by oracles. In Proc. EuroCG
2013, Braunschweig, Germany, March 2013.

[57] I.Z. Emiris, V. Fisikopoulos, and B. Gartner. Efficient edge-skeleton com-
putation for polytopes defined by oracles, 2014. Submitted to journal.

[58] I.Z. Emiris, V. Fisikopoulos, and C. Konaxis. A software framework for
computing newton polytopes of resultants and (reduced) discriminants. In
12th Intern. Symp. Effective Methods in Algebraic Geometry, MEGA, Frank-

furt, Germany, 2013. Poster presentation.

[59] 1.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Penaranda. An output-
sensitive algorithm for computing projections of resultant polytopes. In

Proc. Symp. on Comp. Geom., pages 179-188, 2012.

[60] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Penaranda. An oracle-
based, output-sensitive algorithm for projections of resultant polytopes.
Intern. J. Comp. Geom. Appl., Special Issue, 23:397-423, 2013.

[61] I.Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba. Implicitization of curves
and (hyper)surfaces using predicted support. Theor. Comp. Science, Special
Issue on Symbolic & Numeric Computing, 479(0):81-98, 2013.

[62] 1.Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba. Sparse implicitization by
interpolation: Characterizing non-exactness and an application to comput-
ing discriminants. J. Computer Aided Design, 45:252-261, 2013. Special
Issue on Symposium Solid & Phys. Modeling 2012 (Dijon, France).

[63] K. Fischer, B. Gartner, T. Herrmann, M. Hoffmann, and S. Schoénherr.
Bounding volumes. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.3 edition, 2013.

[64] K. Fischer, B. Gartner, S. Schénherr, and F. Wessendorp. Linear and
quadratic programming solver. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.3 edition, 2013.

Vissarion Fisikopoulos 180

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[65] V. Fisikopoulos and L. Penaranda. Faster geometric algorithms via dynamic
determinant computation. In Leah Epstein and Paolo Ferragina, editors,
ESA 2012, volume 7501 of Lecture Notes in Computer Science, pages 443-
454. Springer Berlin Heidelberg, 2012.

[66] G. Fowler, L.C. Noll, and P. Vo. FNV hash.
www.isthe.com/chongo/tech/comp/fnv/, 1991.

[67] K. Fukuda. From the zonotope construction to the Minkowski addition of
convex polytopes. J. Symbolic Computation, 38(4):1261 - 1272, 2004.

[68] K. Fukuda. cdd and cdd+ Home Page. ETH Zurich.
www.ifor.math.ethz.ch/~fukuda/cdd_home/, 2008.

[69] K. Fukuda and C. Weibel. Computing all faces of the Minkowski sum of
V-polytopes. In Canad. Conf. Comp. Geom., pages 253-256, 2005.

[70] Komei Fukuda. cddlib, version 0.94f, 2008.

[71] Komei Fukuda and Christophe Weibel. A linear equation for minkowski
sums of polytopes relatively in general position. Eur. J. Comb., 31(2):565-
573, February 2010.

[72] Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyz-
ing convex polytopes. In G. Kalai and G.M. Ziegler, editors, Polytopes —
Combinatorics and Computation, pages 43-74. Birkhauser, 2000.

[73] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Newton polytopes of
the classical resultant and discriminant. Advances in Math., 84:237-254,
1990.

[74] .M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Result-

ants and Multidimensional Determinants. Birkhauser, Boston, 1994.

[75] P. Gritzmann and A. Hufnagel. On the algorithmic complexity of Minkow-
ski’s reconstruction problem. J. London Math. Soc., 2:5-9, 1999.

[76] P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: computa-
tional complexity and applications to Grobner bases. SIAM J. Discr. Math.,
6(2):246-269, 1993.

Vissarion Fisikopoulos 181

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[77] Peter Gritzmann and Bernd Sturmfels. Minkowski addition of polytopes:
Computational complexity and applications to gro¨bner bases. SIAM
J. Discret. Math., 6(2):246-269, 1993.

[78] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Com-

binatorial Optimization. Springer, Berlin, 2nd edition, 1993.

[79] G. Guennebaud, B. Jacob, et al. Eigen v3, 2010. http://eigen.

tuxfamily.org.
[80] Gaél Guennebaud, Benoit Jacob, et al. Eigen v3, 2010.

[81] D.A. Harville. Matrix algebra from a statistician’s perspective. Springer-
Verlag, New York, 1997.

[82] P. Huggins. ib4e: A software framework for parametrizing specialized lp
problems. In A. Iglesias and N. Takayama, editors, Mathematical Software
(ICMS 2006), volume 4151 of Lecture Notes in Computer Science, pages 245-
247. Springer, Berlin, 2006.

[83] H. Imai, T. Masada, F. Takeuchi, and K. Imai. Enumerating triangula-
tions in general dimensions. Intern. J. Comput. Geom. Appl., 12(6):455-480,
2002.

[84] U. Jaekel. A Monte Carlo method for high-dimensional volume estimation
and application to polytopes. Procedia Computer Science, 4:1403-1411,
2011.

[85] D. James. Boost functional library. www.boost.org/ libs/functional/hash,
2008.

[86] A. Jensen and J. Yu. Computing tropical resultants. Journal of Algebra,
387(0):287-319, 2013.

[87] M. Joswig. Beneath-and-beyond revisited. In M. Joswig and N. Takayama,
editors, Algebra, Geometry, and Software Systems, Mathematics and Visu-

alization. Springer, Berlin, 2003.

[88] M. Joswig, V. Kaibel, and F. Kérner. On the k-systems of a simple polytope.
Israel J. Math., 129(1):109-117, 2002.

Vissarion Fisikopoulos 182

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[89] G. Kalai. Rigidity and the lower bound theorem 1. Inventiones Mathemati-
cae, 88:125-151, 1987.

[90] E. Kaltofen and G. Villard. On the complexity of computing determinants.
Computational Complexity, 13:91-130, 2005.

[91] R. Kannan, L. Lovasz, and M. Simonovits. Random walks and an O*(n5)
volume algorithm for convex bodies. Rand. Struct. Algor., 11:1-50, 1997.

[92] M.M. Kapranov. Characterization of A-discriminantal hypersurfaces in
terms of logarithmic Gauss map. Math. Annalen, 290:277-285, 1991.

[93] D.E. Kaufman and R.L. Smith. Direction choice for accelerated convergence

in hit-and-run sampling. Operations Research, 46:84-95, 1998.

[94] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C.K. Yap. Classroom ex-
amples of robustness problems in geometric computations. Comput. Geom.,
40(1):61-78, 2008.

[95] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating
all vertices of a polyhedron is hard. Discrete & Computational Geometry,
39:174-190, 2008.

[96] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet
Math. Doklady, 20(1):191-194, 1979. (Translated from) Doklady Akademii
Nauk SSSR.

[97] L.G. Khachiyan. Rounding of polytopes in the real number model of com-
putation. Math. Oper. Res., 21(2):307-320, 1996.

[98] C. Krattenthaler. Advanced determinant calculus: A complement. Linear
Algebra Appl., 411:68, 2005.

[99] S. Liu, J. Zhang, and B. Zhu. Volume computation using a direct Monte
Carlo method. In G. Lin, editor, Computing and Combinatorics, volume 4598
of LNCS, pages 198-209. Springer, 2007.

[100] J.A. De Loera, R. Hemmecke, S. Onn, U.G. Rothblum, and R. Weismantel.
Convex integer maximization via Graver bases. J. Pure & Applied Algebra,
213(8):1569-1577, 2009.

Vissarion Fisikopoulos 183

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[101] J.A. De Loera, J.A. Rambau, and F. Santos. Triangulations: Structures for
Algorithms and Applications, vol. 25. Springer-Verlag, 2010.

[102] L. Lovasz and I. Deak. Computational results of an O(n*) volume algorithm.
European J. Operational Research, 216(1):152-161, 2012.

[103] L. Lovasz and S. Vempala. Hit-and-run from a corner. SIAM J. Comput.,
35(4):985-1005, 2006.

[104] L. Lovasz and S. Vempala. Simulated annealing in convex bodies and an
O*(n4) volume algorithm. J. Comp. Syst. Sci., 72(2):392-417, 2006.

[105] M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant.
In Proceedings of the eighth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’97, pages 730-738, Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics.

[106] T. Masada, H. Imai, and K. Imai. Enumeration of regular triangulations.
In Symp. on Comp. Geometry, SoCG ’96, pages 224-233, 1996.

[107] J. Maurer. Boost: C++ Libraries. Chapter 23. Boost Random. www.boost.
org/doc/1libs/1_54_0/doc/html/boost$_$random.html.

[108] P. McMullen. The maximum numbers of faces of a convex polytope. Math-
ematika, 17:179-184, 1971.

[109] T. Michiels and R. Cools. Decomposing the secondary cayley polytope.
Discr. Comput. Geometry, 23:367-380, 2000.

[110] T. Michiels and J. Verschelde. Enumerating regular mixed-cell configura-
tions. Discr. Comput. Geometry, 21(4):569-579, 1999.

[111] D.M. Mount and S. Arya. ANN: A library for approximate nearest neighbor
searching, 1997.

[112] M. Muja. Flann: Fast library for approximate nearest neighbors, 2011.
http://mloss.org/software/view/143/.

Vissarion Fisikopoulos 184

www.boost.org/doc/libs/1_54_0/doc/html/ boost$_$random.html
www.boost.org/doc/libs/1_54_0/doc/html/ boost$_$random.html
http://mloss.org/software/view/143/

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[113] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with au-
tomatic algorithm configuration. In International Conference on Computer
Vision Theory and Application VISSAPP’09), pages 331-340. INSTICC Press,
20009.

[114] S. Onn and U.G. Rothblum. Convex combinatorial optimization. Discrete
& Computat. Geometry, 32(4):549-566, 2004.

[115] S. Onn and U.G. Rothblum. The use of edge-directions and linear program-
ming to enumerate vertices. J. Combin. Optim., 14:153-164, 2007.

[116] S. Onn, U.G. Rothblum, and Y. Tangir. Edge-directions of standard polyhe-
dra with applications to network flows. J. of Global Optimization, 33(1):109-
122, September 2005.

[117] S.Yu. Orevkov. The volume of the Newton polytope of a discriminant. Russ.
Math. Surv., 54(5):1033-1034, 1999.

[118] D. Poole. Linear Algebra: A Modern Introduction. Cengage Learning, 2006.

[119] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math.
Res. Not., 2009(6):1026-1106, 2009.

[120] J. Rambau. TOPCOM: Triangulations of point configurations and oriented
matroids. In Proc. Intern. Congress Math. Software, pages 330-340, 2002.

[121] E.A. Ramos. On range reporting, ray shooting and k-level construction. In

Proc. Symposium on Computational Geometry, pages 390-399. ACM, 1999.

[122] F. Rincon. Computing tropical linear spaces. In J. Symbolic Computation,
volume 51, pages 86-98, 2013.

[123] G. Rote. Division-free algorithms for the determinant and the Pfaffian: alge-
braic and combinatorial approaches. In Comp. Disc. Math., pages 119-135,
2001.

[124] P. Sankowski. Dynamic transitive closure via dynamic matrix inverse. In
Proc. IEEE FOCS, pages 509-517, 2004.

Vissarion Fisikopoulos 185

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[125] R. Schneider. Convex bodies: the Brunn-Minkowski theory. Cambridge:
Cambridge University Press, 1993.

[126] M. Seel. dD geometry kernel. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.3 edition, 2013.

[127] R. Seidel. A convex hull algorithm optimal for point sets in even dimen-
sions. Master’s thesis, Dept. Comp. Sci., Univ. British Columbia, Vancou-
ver, 1981.

[128] J. Sherman and W.J. Morrison. Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. The Annals of
Mathematical Statistics, 21(1):124-127, 1950.

[129] M. Simonovits. How to compute the volume in high dimension? Math.
Program., pages 337-374, 2003.

[130] R.L. Smith. Efficient Monte Carlo procedures for generating points uni-
formly distributed over bounded regions. Operations Research, 32(6):1296-
1308, 1984.

[131] B. Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin.,
3:207-236, 1994.

[132] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes.
In Software for Algebraic Geometry, volume 148 of IMA Volumes in Math. &
its Applic., pages 111-131. Springer, New York, 2008.

[133] H. Tangelder and A. Fabri. dD spatial searching. In CGAL User and Refer-
ence Manual. CGAL Editorial Board, 4.3 edition, 2013.

[134] Thorsten Theobald. On the frontiers of polynomial computations in tropical
geometry. Journal of Symbolic Computation, 41(12):1360 - 1375, 2006.

[135] A. Urbanska. Faster combinatorial algorithms for determinant and Pfaffian.
Algorithmica, 56:35-50, 2010.

[136] Gilles Villard. A study of coppersmith’s block wiedemann algorithm using
matrix polynomials. Technical report, LMC-IMAG, REPORT # 975 IM, 1997.

Vissarion Fisikopoulos 186

High-dimensional polytopes defined by oracles: algorithms, computations and applications

[137] V.V. Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Com-
puting, STOC ’12, pages 887-898, New York, NY, USA, 2012. ACM.

[138] C.K. Yap and Thomas Dubé. The exact computation paradigm. In D.-Z. Du
and F.K. Hwang, editors, Computing In Euclidean Geometry, chapter 11,
pages 452-492. World Scientific, Singapore, 1995.

[139] Y. Zheng and K. Yamane. Ray-shooting algorithms for robotics. IEEE Trans.
Automation Science & Engineering, 10:862-874, 2013.

[140] G.M. Ziegler. Lectures on Polytopes. Springer, 1995.

Vissarion Fisikopoulos 187

	List of Figures
	List of Tables
	Συνοπτική Παρουσίαση
	Εισαγωγή
	Αλγόριθμοι για τον υπολογισμό του πολύτοπου της απαλείφουσας
	Υπολογισμός πολυτοπικών σκελετών από ακμές
	Προσεγγιστικός υπολογισμός όγκου
	Συνδυαστική των πολυτόπων της απαλείφουσας
	Γεωμετρικά κατηγορήματα
	Επεκτάσεις και ανοικτά προβλήματα

	Polytopes, Algorithms and Applications
	Introduction
	Algorithms for resultant polytopes
	Edge-skeleton computation
	Approximate volume computation
	Combinatorics of resultant polytopes
	Geometric predicates
	Extensions and open problems

	Algorithms for resultant polytopes
	Introduction
	Resultant polytopes and their projections
	Algorithms and complexity
	Hashing of Determinants
	Implementation and Experiments
	Computing discriminant polytopes
	Future work

	Algorithms for the edge skeleton
	Introduction
	Applications
	Our contribution

	Well-described polytopes and oracles
	Computing the edge-skeleton
	Reverse search for edge-skeleton.

	Applications
	Signed Minkowski sums
	Secondary and resultant polytopes

	Concluding remarks

	Algorithms for polytope volume approximation
	Introduction
	Random walks and Oracles
	The volume algorithm
	Experiments
	Further work

	Combinatorics of 4-dimensional resultant polytopes
	Introduction
	Resultant polytopes
	4-dimensional resultant polytopes.

	The case (3,3,3) in general
	Input genericity maximizes complexity

	The case (3,3,3) with non-parallel edges
	Polar mixed subdivisions
	Bounds on the number of cells in a subdivision
	Bounds on the number of types of subdivisions
	Subsystems and cells of subdivisions
	Types of N(R) facets
	The number of N(R) facets
	The number of N(R) faces

	Classification
	Open problems and Extensions

	Geometric predicates: algorithms and software
	Introduction
	Dynamic Determinant Computations
	Geometric Algorithms
	Definitions
	Incremental convex hull
	Point location and other geometric algorithms
	Data structures

	Implementation and Experimental Analysis
	Experimental setup
	Determinant computation experiments
	Convex hull experiments
	Volume computation experiments
	Point location experiments
	Memory consumption

	Concluding remarks

	Bibliography

