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Abstract

Nowadays, the design and modeling of advanced materials calls for the understanding
that these are hierarchical in nature, i.e. their macroscopic properties and mechanical
response result from the interaction between heterogeneous structures spanning over
multiple length scales. Examples of important materials from an industrial standpoint
that benefit from this multi-scale approach are polymer blends and composite mate-
rials. In this view, the method of computational homogenization emerged as an effec-
tive way of modeling multi-scale heterogeneous materials by performing an homoge-
nization procedure over a representative volume element (RVE) of the microstructure.
However, in order to accurately capture the macroscopic behavior, it is crucial that
the RVE contains enough morphological and topological information about the mi-
crostructural heterogeneities and is representative in an average sense.

This work presents a computational robust and efficient program in Python, based
on a molecular dynamics simulation with a multi-temperature isokinetic scheme, that
is able to generate an RVE from a given set of material and geometrical input descrip-
tors. In general, these may characterize the material matrix, particles/inclusions, voids
and fibers, e.g. radius, ellipsoid axes magnitude and orientation, spatial position, and
the corresponding phase in the heterogeneous material, volume fraction and number
of particles. The geometrical parameters characterizing the inclusions may be spec-
ified by the user as fixed values or be made to vary according to different statistical
distributions. Multiple phases are also supported allowing for great flexibility in the
modeling of real materials.

The microstructures generated are evaluated using the Minkowski structure met-
rics of their Voronoi cells. These are a very versatile tool in the detection of unwanted
order or clustering, both undesirable properties in a microstructure whose purpose
is to plausibly mimic real matrix-composite materials. Using this technique, the mi-
crostructures generated through the proposed approach are validated as it pertains to
their "quality".

After the generation procedure, various RVEs are discretized in a suitable finite el-
ement mesh in order to perform microscale analyses through computational homog-
enization. The various examples considered are created keeping the volume fraction
constant and increasing the number of inclusions within the RVE. Submitting the mi-
crostructures to various loading conditions and employing different boundary condi-
tions, it is concluded that an increase in the number of particles included leads to a
more representative volume element. Isotropic responses are also achieved for mi-
crostructures containing only Disks and Spheres, as more inclusions are considered.

v



Page intentionally left blank.



Resumo

Nos dias de hoje, o projeto e modelação de materiais avançados exige a perceção
de que estes são compostos por estruturas hierárquicas, isto é, as suas propriedades
macroscópicas e a sua resposta mecânica resultam da interação entre estruturas het-
erogéneas que se apresentam a múltiplas escalas. Materiais de grande importância a
nível industrial que beneficiam deste tipo de análise a várias escalas são, por exemp-
los, as misturas de polímeros e os materiais compósitos. Nesta perspetiva, o método
da homogeneização computacional surgiu como uma técnica eficaz de modelar mate-
riais heterogéneos a múltiplas escalas, através de um procedimento de homogeneiza-
ção ao longo de um elemento de volume representativo (RVE) da microestrutura. To-
davia, de modo a capturar com precisão o seu comportamento macroscópico é cru-
cial que o RVE contenha um conjunto de informação morfológica e topológica sobre
as heterogeneidades à micro escala, sendo representativo do comportamento do ma-
terial em média.

Esta tese apresenta um programa computacionalmente robusto e eficiente, escrito
em Python, baseado em simulações de dinâmica molecular com esquema isocinético
multi temperatura, que é capaz de gerar RVEs a partir de um conjunto de descritores
materiais de geométricos de entrada. Em geral, estes podem caraterizar a matriz do
material, as sua inclusões, vazios ou fibras, especificando, por exemplo, o raio das
partículas, e a fase correspondente, através da sua fração volúmica e numero de in-
clusões. Dado que um número arbitrário de fases é permitido, obtém-se uma ferra-
menta muito flexível na modelação de materiais reais.

As microestruturas geradas são avaliadas utilizando as métricas estruturais de Min-
kowski das suas células Voronoi. Estas são uma ferramenta versátil na deteção de
estruturas ordenadas ou aglomerados indesejáveis de partículas, ambas caraterísticas
inconvenientes em microestruturas cujo propósito é imitar de forma plausível materi-
ais compósitos reais. Utilizando esta técnica, validaram-se as microestruturas geradas
através da abordagem proposta quanto à sua "qualidade".

Depois de gerados, discretizaram-se vários RVEs em malhas de elementos fini-
tos apropriadas com o objetivo de levar a cabo análises à micro escala por homo-
geneização computacional. Os vários exemplos considerados são criados mantendo
a fração volúmica constante, mas aumentando o número de inclusões dentro do RVE.
Concluí-se, submetendo as microestruturas a vários esquemas de carregamento me-
diante diferentes condições fronteira, que um aumento no número de partículas in-
cluídas leva a um volume elementar mais representativo. Verificam-se ainda respostas
isotrópicas por parte de microestruturas que contêm apenas Discos e Esferas, à me-
dida que mais inclusões são consideradas.
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Chapter 1

Introduction

1.1 Contextualization

Nowadays, the design and modeling of advanced materials calls for the understanding
that these are hierarchical in nature, i.e. their macroscopic properties and mechanical
response result from the interaction between heterogeneous structures spanning over
multiple length scales. More precisely, the microstructural features determining the
properties of a heterogeneous material are:

1. properties of the constituent(s),

2. geometry of the constituent(s): their distribution, orientation, shape and volume
fraction,

3. nature and characteristics of the interfaces between different constituents.

These are often controlled by fabrication, alloying, and processing (Bargmann et al.,
2018). The present work focus exclusively on point 2.

Highlighting the importance of this multi-scale approach to material modeling, it
must be noted that at a small enough scale, all natural and synthetic materials are
heterogeneous. For example, laminated composite materials can be analyzed from a
mechanical standpoint at three different scales, according to the task at hand (Melro,
2011):

Micro-scale The heterogeneity in the composite is present at this scale. Analyses per-
formed at this scale focus on the mechanical behavior of the constituents. These
are considered as individual homogeneous materials.

Meso-scale The scale of the ply thickness. The ply is taken as the building block of
the composite, being considered as a homogeneous material with transverse
isotropy in the case of unidirectional long fibre composites.

Macro-scale The scale corresponding to the laminate itself and to the structure. The
material is assumed homogeneous and the effects of the constituent materials
are represented only by averaged apparent properties of the composite material.

There are several materials of great practical importance from an industrial point
of view, whose modeling and design benefit from this approach. One such class of

1
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materials are the matrix-inclusion composites. These are characterized by non-over-
lapping particles embedded in topologically interconnected matrix. The presence of
inclusions is meant to improve the mechanical properties, such as specific strength
in lightweight construction, e.g. in short and long fiber reinforced materials, fracture
toughness, e.g. in polymer blends, or it originates from the manufacturing process,
e.g. injection molding or sintering (Bargmann et al., 2018).

An example of marked manufacturing importance are the polymer blends. For in-
stance, polycarbonate (PC) blends with acrylonitrile butadiene styrene (ABC) find am-
ple use in molding applications, particularly in the automotive industry (Lombardo
et al., 1994). In these blends, the size and distribution of the rubber particles have a
appreciable impact on the mechanical properties, e.g. thoughness. Moreover, the par-
ticular structure of the blend changes with the distance from the surface (Lombardo
et al., 1994; Bärwinkel et al., 2016).

Regarding the characterization of the microstructure of these materials, volume
fraction and geometry of inclusions, typically idealized as convex bodies, are critical.
Different materials are better described using diverse geometrical shapes. For exam-
ple, rubber particles in polymer blends are generally modeled using spherical or ellip-
soidal inclusions (see Figure 1.1a). Convex polyhedra are typically employed to mimic
inclusions in concrete or asphalt as well as metal matrix composites. Also, short fiber
reinforcements, approximated by cylinders and spherocylinders, are widely used in
lightweight constructions, such as boats, automobiles, water tanks, pipes or external
skins, by mixing glass fibers or carbon fibers with polymers. Long fiber reinforced
composites, in turn, are commonly approximated by cylinders, and are common in
automotive and aerospace application, where glass and carbon fiber mats are embed-
ded in polymers (see Figure 1.1b). However, due to their waviness, most natural fibers
cannot be satisfactorily approximated as cylinders (Bargmann et al., 2018). Also, in
order to closely approximate the real materials, it is important to mimic the statisti-
cal distribution of the geometrical parameters characterizing the idealized shapes that
model the inclusions, e.g. the orientation or aspect ratio of elliptical particles. Adding
support for multiple material phases, great flexibility can be provided in the modeling
of actual matrix-composite materials.

(a) (b)

Figure 1.1: (a): Polymer blend ABS with ellipsoidal shape inclusions. (b): Fiber-
reinforced composite with cylindrical shape inclusions (Adapted from Bargmann et al.
(2018)).
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Another set of materials that can be modeled in a similar way are matrix-dilute
pore systems. As the name suggests, they consist of a matrix material which contains
isolated voids. These voids are approximated using convex bodies, such as spheres or
ellipsoids, in the same way as inclusions in matrix-composite materials. The source
of dilute pores can be natural or synthetic. Examples of dilute pore systems are most
metallic alloys with casting defects in the form of micro- or macro-voids of various
sizes and shapes (see Figure 1.2). Their presence is crucial to explain material failure in
such materials, and it also tends to lead to a decrease in stiffness, strength and ductility
(Bargmann et al., 2018). Despite this, there are circumstances in which the presence
of voids is beneficial. For example, in nanoporous metallic glasses a more favorable
failure mechanism can be induced by the presence of these voids (Şopu et al., 2016).
Another instance where voids are desirable are designed materials with periodically
introduced dilute pores of various shapes and sizes. Dilute pore systems with porosity
as low as 1% can feature very desirable properties regarding wave attenuation, and
thus can be suitable for vibration control (Javid et al., 2016).

Figure 1.2: Pure gas porosity in die casting. The high concentration of gas bubbles
probably caused by too much lubricant or from water leaking into the die. (Adapted
from (Walkington and Association, 2003)).

Having understood the importance of considering the material behavior at multi-
ple scales, the method of computational homogenization emerged as an effective way
of modeling multi-scale heterogeneous materials by performing an homogenization
procedure over a representative volume element (RVE) of the microstructure. The con-
cept of RVE was introduced by Hill (1963) defining it as region of the microstructure
that is representative of the entire microstructure in an average sense. Thus, the RVE
must be

1. structurally representative of the mixture of constituents on average, and

2. contain a sufficient number of inclusions for the apparent overall moduli to be
effectively independent of the surface values of traction and displacement, as
long as these are "macroscopically uniform".

A later definition by Drugan and Willis (1996) describes the RVE as the smallest ma-
terial volume element of the composite for which the usual spatially constant "overall
modulus" macroscopic constitutive representation is a sufficiently accurate model to
represent the mean constitutive response.
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From its definition, it’s not possible to determine the size of RVE straight away.
It can not comprise too large a volume, as that would hinder the possibility of an-
alyzing it through numerical methods. On the other hand, the volume can’t be too
small either, so that it is representative of the material under analysis, as the definition
of the RVE demands (Melro, 2011). Moreover, the dimensions of the RVE depend on
the problem at hand, i.e. on the geometric features and mechanical properties of the
phases and on the type of analysis performed, being generally determined empirically
(Drugan and Willis, 1996; Trias et al., 2006).

A quick and simple solution for the generation of RVEs would be to model it as
periodic, tilling a small volume of particles, until a desired volume has been reached.
This approach, however, leads to inaccurate predictions when applied to failure/dam-
age related analysis (Pyrz, 1994; Trias et al., 2006; Hojo et al., 2009). Therefore, the
need arises to generate RVEs, whose morphology is "random", avoiding the presence
of clusters or ordered arrangements of particles, so that it properly represents the ma-
terials under analysis.

The main objective of the present work is then to implement a computational ro-
bust and efficient program in Python that is able to generate RVEs based on a given
set of material and geometrical input descriptors. In general, these may characterize
the material matrix, particles/inclusions, voids and fibers (e.g. radius, ellipsoid axes
magnitude and orientation, spatial position, etc.) and the corresponding phase in the
heterogeneous material (e.g. volume fraction, number of particles, etc.), being also
necessary to account for their deterministic or stochastic nature. After the generation
procedure, the RVE should be discretized in a suitable finite element mesh in order to
perform microscale analyses through computational homogenization.

The computational efficient generation of microstructures can be used towards
the design of advanced multi-scale heterogeneous materials in a framework for data-
driven analysis of materials under uncertainty, as proposed by Bessa et al. (2017). This
framework consists of three general steps

1. design of experiments, where the input variables describing material geometry
(microstructure), phase properties and external conditions are sampled;

2. efficient computational analysis of each design sample, leading to the creation
of a material response database;

3. machine learning applied to this database to obtain a new design or response
model.

Data-driven approaches for the design of advanced heterogeneous materials, such
as the one mentioned in the previous paragraph, attempt to improve the efficiency
and efficacy of this highly iterative process. The search for an optional design regard-
ing chosen quantities of interest can be a pain-staking process, due to the large dimen-
sion of the engineering design space. There are too many combinations of the design
variables to conduct experimental investigations for every design point. The proposed
program meets the need of generating the design samples, as dictated by the design of
experiments, for later computational analysis. In this away, a large database of mate-
rial behavior as function of the material descriptors can be created and using machine
learning techniques a complete relationship between the key descriptors of each de-
sign and the quantities of interest is approximated, enabling its used for distinct pur-
poses. For example, finding general constitutive model for materials as a function of
their microstructure and phase properties, or predicting the global optimum design
for the material within a sample space (Bessa et al., 2017).
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1.2 Objectives

The objectives of the work developed in the present MSc thesis are:

• Theoretical review of the Finite Element Method (FEM), computational homog-
enization and computational generation of microstructures;

• Design of a program to generate an RVE ranging from the specification of the
input descriptors to the finite element discretization of the spatial domain;

• Implementation of the program in an object-oriented Python framework, allow-
ing for the generation of 2D RVEs with simple geometrical features, such as cir-
cles and ellipses, as well as 3D RVEs containing spherical and ellipsoidal inclu-
sions. Further requirements are the support for multiple phases and the assur-
ance of stochasticity regarding the spatial positioning of the particles and their
geometrical descriptors;

• Validation and assessment of the efficiency of the developed program;

• Analysis of the quality of the microstructures generated using the proposed ap-
proach;

• Results compilation and analyses: critical assessment of the RVE representative-
ness based on the homogenized response.

1.3 Computational implementations and numerical sim-
ulations

The computational implementations and numerical simulations performed in the scope
of the present work are carried out in several programs described in what follows.

All the numerical simulations based on the Finite Element Method (FEM) based on
computational homogenization are held in the in-house Fortran (IBM Mathematical
Formula Translation System) program LINKS (Large Strain Implicit Non-linear Analy-
sis of Solids Linking Scales), a multi-scale finite element code for implicit infinitesimal
and finite strain analyses of hyperelastic and elastoplastic solids that is continuously
developed by the CM2S research group (Computational Multi-Scale Modeling of Solids
and Structures) at the Faculty of Engineering of University of Porto.

All the microstructure generation and analysis is done using the proposed program
developed in Python. This program is later described in a dedicated chapter of this
document.

As it relates to the generation of the nonconform meshes used for FEM analysis of
the microstructures generated, these were obtained using the free software Gmsh.

1.4 Document structure

The present document is structured as follows:
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Chapter 2

In Chapter 2 the fundamental concepts required to describe the behavior of a solid un-
dergoing large deformations are introduced along with some of the formalism relevant
to the constitutive theory based on thermodynamics with internal variables. The ap-
plication of the Finite Element Method to the solution of a mechanical initial bound-
ary value equilibrium problem is then detailed.

Chapter 3

In Chapter 3 the fundamental concepts behind a first order hierarchical multiscale
model based on computational homogenization are outlined, including the scale tran-
sition theory and the microscale boundary conditions. The microscale equilibrium
problem is then properly defined and its solution through the Finite Element Method
is briefly covered.

Chapter 4

In Chapter 4 a systematic approach for the description of random heterogeneous ma-
terials is presented. It includes a definition of such materials and a diverse array of
techniques for their characterization.

Chapter 5

In Chapter 5 an overview of computational microstructure methods is provided, in-
cluding microstructure reconstruction from experimental data, physics based microstruc-
ture generation and geometrical generation methods. It is followed by a detailed com-
parison of their appropriateness for the task at hand, providing the motivation for the
final choice made regarding the proposed program.

Chapter 6

In Chapter 6 the suggested approach, a time-driven molecular dynamics simulation, is
more fully fleshed out. It includes the algorithms used in the proposed program, from
its general structure to the computation of the interaction between the particles and
the integration of the equations of motion. A new approach for faster generation of
microstructure is put forth in the form of a multi-temperature isokinetic scheme.

Chapter 7

In Chapter 7 three sets of results are presented. The first concerns the validation of
the proposed approach and an analysis of its efficiency. The second regards the qual-
ity of the microstructures generated, using the Minkowski structure metrics. Lastly,
the third provides application examples in the form of multi-scale analyses based on
computational homogenization.

Chapter 8

In Chapter 8 the main conclusions are summed up and some further research topics
are discussed.



Chapter 2

Continuum Mechanics and Finite
Element Method

This chapter deals with the concepts needed to describe the behavior of a solid under-
going large deformation as well as the conservation principles that ensure its mechan-
ical equilibrium. A brief overview of the Finite Element Method as a tool to solve me-
chanical initial value equilibrium problem is also presented. These topics are broadly
covered in the literature and here the approach used follows de Souza Neto et al.
(2011a).

2.1 Kinematics of Deformation

2.1.1 Motion

Let a deformable body B occupy an open region Ω0 of the tridimensional Euclidean
space E with a regular boundary ∂Ω0 in its reference configuration. Its motion (see
Figure 2.1) is defined by a smooth one-to-one function

ϕ : Ω×R → E , (2.1)

mapping each material particle of coordinates X in the reference configuration to its
position x in the deformed configuration, for a given instant of time t , as

x =ϕ(X , t ). (2.2)

Thus, the displacement field is defined as

u(X , t ) =ϕ(X , t )−X , (2.3)

and, since the function that defines the motion is one-to-one, the reference configu-
ration can be recovered as

X =ϕ−1(x , t ) = x −u(ϕ−1(x , t ), t ), (2.4)

where ϕ−1 is the reference mapping function.

7
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Figure 2.1: Motion

2.1.2 Material and spatial descriptions

When dealing with finite deformations, the behavior of the body under analysis can be
described with respect to the reference configuration, using the so-called material or
Lagrangian description, or to the deformed configuration, using the so-called spatial
or Eulerian description.

In the Lagrangian description, any field defined over the body, be it scalar, vecto-
rial or tensorial, is expressed as a function of the reference configuration, X ∈Ω0. On
the other hand, the Eulerian description of the same field is done using the deformed
configuration, x ∈Ω.

Let α(x , t ) be a spatial field and β(X , t ) a material field. Their material and spatial
descriptions, αm and βs , respectively, are given by

αm(X , t ) =α(ϕ(X , t ), t ), (2.5)

βs (x , t ) =β(ϕ−1(x , t ), t ), (2.6)

noting that any field associated with a motion of B can be expressed as a function of
time and material or spatial position.

The same distinction between material and spatial descriptions applies to opera-
tors such as the divergence and the gradient. The spatial and material gradients, ∇
and ∇0, respectively, are defined as

∇α= ∂

∂x
α(x , t ), ∇0β= ∂

∂X
β(X , t ), (2.7)

where the derivatives are taken with respect to the spatial and reference configuration
accordingly.

2.1.3 Deformation gradient

The deformation gradient, a second order tensor denoted by F , is defined as
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F (X , t ) ≡∇0ϕ(X , t ) = ∂x

∂X
, (2.8)

or, taking into account that
x = X +u(X , t ), (2.9)

it can be expressed as
F (X , t ) = I +∇0u. (2.10)

The deformation gradient relates the relative position between two neighboring
material particles before and after deformation. To see this, let X be the coordinates
of some material particle in the reference configuration and X +d X the coordinates
of some material particle in its neighborhood. Their corresponding coordinates in the
deformed configuration are given, respectively, by

X = x +u(X , t ), (2.11)

X +d X = x +d x +u(X +d X , t ). (2.12)

Subtracting Equation (2.11) from Equation (2.12), it is found that

d X = d x +u(X +d X , t )−u(X , t ) (2.13)

= (I +∇0u(X , t )) d x (2.14)

= F d x . (2.15)

Due to this relation, it can be shown that the determinant of the deformation gra-
dient has a physical meaning. It is the local unit volume change, that is,

J ≡ det F = dv

dv0
, (2.16)

where dv0 is an infinitesimal volume of the body in its reference configuration and dv
the infinitesimal volume after deformation.

Isochoric/Volumetric decomposition

Any deformation can be locally decomposed in volumetric and isochoric (or distor-
tional) components. From Equation (2.16) it can be gathered that an isochoric defor-
mation is characterized by J = 1. As such, the deformation gradient can be decom-
posed as

F = F isoF vol = F volF iso, (2.17)

where the isochoric and volumetric components are defined by

F iso = (det F )−
1
3 , F vol = (det F )

1
3 I . (2.18)

Polar decomposition

The deformation gradient can also be decomposed in rotation and stretch compo-
nents, the so-called polar decomposition, defined as
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F = RU =V R , (2.19)

where R is the proper orthogonal rotation tensor and U and V are the symmetric pos-
itive right and left stretch tensors, respectively.

Equation (2.19) has a physical interpretation with the right polar decomposition
(F = RU ) corresponding to a stretch mapping followed by a rotation, and the left polar
decomposition (F = V R) corresponding to a rotation followed by a stretch mapping.
The right U and left V stretch tensors are related through the rotation matrix R as

V = RU RT , (2.20)

and can be obtained from deformation gradient by

C ≡U 2 = F T F , B ≡V 2 = F F T , (2.21)

where C and B are the right and left Cauchy-Green strain tensors.
Since U and V are symmetric tensors, they admit the spectral decomposition

U =
3∑

i=1
λi E∗

i ⊗E∗
i , V =

3∑
i=1

λi e∗
i ⊗e∗

i , (2.22)

where λi , i = 1,2,3, are the eigenvalues of both U and V and E∗
i and e∗

i are the respec-
tive eigenvectors.

The eigenvectors of left V and right U stretch tensors are related through

e∗
i = RE∗

i . (2.23)

forming two orthogonal bases. These vectors define the Lagrangian and Eulerian prin-
cipal directions, respectively, allowing for the expression of the local stretching from
a material particle, associated with any deformation, as a superposition of stretches
along the three mutual orthogonal directions.

2.2 Strain tensors

In Continuum Mechanics there are two main families of strain tensors derived from
the deformation gradient and used to describe the body deformation. The Lagrange
family strain tensors are defined as

E (m) =


1

m
(U m − I ), m 6= 0,

ln(U ), m = 0,

(2.24)

where m is a real number, and likewise, the Euler family strain tensors are defined as

ε(m) =


1

m
(V m − I ), m 6= 0,

ln(V ), m = 0,

(2.25)

where m is also real number.
In particular, choosing m = 0, one obtains the so-called material and spatial loga-

rithmic strain tensors
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E (0) ≡ ln[U ] =
3∑

i=1
lnλi E∗

i ⊗E∗
i , (2.26)

e(0) ≡ ln[V ] =
3∑

i=1
lnλi e∗

i ⊗e∗
i . (2.27)

2.3 Forces and stress measures

The deformation of a body is intrinsically related to the forces acting on it. These
forces can be divided in two classes from a purely mechanical point of view: volume
(or body) forces, proportional to the mass contained in a volume element, thus, mea-
sured in force per unit volume, and surface forces, acting on the surface of a volume
element, measured as force per unit area. Related to the latter is the concept of stress,
usually described mathematically by second order tensors with different definitions.

Cauchy stress tensor

According to Cauchy’s theorem, the relation between the so-called Cauchy stress vec-
tor, t (x ,n) and the unitary outward vector normal to the deformed surface under anal-
ysis, n, is linear, and given by

t (x ,n) ≡σ(x)n, (2.28)

where σ is the second order Cauchy stress tensor.
The Cauchy stress vector is naturally associated with the deformed configuration

and thus, expressed in a spatial description and measured in force per unit deformed
area. It must also be noted that, as a consequence of the balance of angular momen-
tum, the Cauchy stress tensor is symmetric.

First Piola-Kirchhoff stress tensor

The First Piola-Kirchhoff stress tensor, P , can be regarded as the material counterpart
of the Cauchy stress tensor, as it establishes a linear dependence between the stress
vector t 0(X ,m), measured in force per unit reference area, and the unitary outward
vector normal to the undeformed surface under analysis, m,

t 0 = P m, (2.29)

which is related to the Cauchy stress vector by

t 0 = da

da0
t = da

da0
σn, (2.30)

where da is the infinitesimal deformed area normal to the unitary vector n and da0

the corresponding undeformed area normal to m. It can be shown that the relation
between da and da0 is

d a

d a0
n = JF−T m, (2.31)

and substitution in the equation above motivates the following definition
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P ≡ JσF−T , (2.32)

where J is the determinant of the deformation gradient F and σ is the Cauchy stress
tensor. From Equation (2.32), one gathers that, in general, the First Piola-Kirchhoff
stress tensor is not symmetric.

Kirchhoff stress tensor

The Kirchhoff stress tensor, τ, is a widely used symmetric tensor, defined as

τ≡ Jσ. (2.33)

Deviatoric/Hydrostatic decomposition

The Cauchy stress tensor, σ, can be split as

σ=σd −p I , (2.34)

where p is the hydrostatic pressure defined as

p ≡−1

3
tr [σ], (2.35)

and σd is the deviatoric stress defined as

σd ≡σ−p I . (2.36)

2.4 Fundamental conservation principles

In Continuum Mechanics, there is a set of conservation principles and thermodynamic
laws that, irrespective of the quantities used to describe the mechanical behavior of a
body undergoing large deformations, must always be satisfied.

Principle of mass conservation

The principle of mass conservation can be stated as

ρ̇+ρ div u̇(x) = 0, (2.37)

where ρ is the material density measured in mass per unit deformed volume.

Principle of linear momentum conservation

The principle of linear momentum conservation can be stated in both material and
spatial description. In a spatial description it reads
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divσ(x)+b = ρü(x), ∀x ∈Ω,

t (x ,n) =σ(x)n, ∀x ∈ ∂Ω,

(2.38)

where b is the body force field measured as per unit deformed volume.
One can also write the principle of linear momentum conservation in material co-

ordinates, as 
div0 P (X )+b0 = ρ0ü(X ), ∀x ∈Ω0,

t 0(X ,m) = P (X )m, ∀x ∈ ∂Ω0,

(2.39)

where b0 is the body forces field, measured in force per unit undeformed volume, and
ρ0 is the material density, measured in mass per unit undeformed volume. Both these
quantities can be found from their spatial counterparts as

b0 = J b, ρ0 = J ρ. (2.40)

Equations (2.38) and (2.39) are the so-called strong, point-wise or local equilibrium
equations, as they enforce the mechanical equilibrium at every material particle of the
body.

First principle of thermodynamics

ρė =σ : D +ρr −div q , (2.41)

where e is the specific internal energy field, r is the density of heat production field
and q is the heat flux vector field. The second order tensor D denotes a strain rate
measure, such that the double contraction σ : D represents the stress power per unit
volume in the deformed configuration of body.

Second principle of thermodynamics

The second principle of thermodynamics postulates that changes in entropy in the
universe can never be negative, which is mathematically expressed as

ρ ṡ +div

[
q

θ

]
− ρr

θ
≥ 0, (2.42)

where θ and s are the temperature and specific entropy fields, respectively.

Clausius-Duhem inequality

Combining the first and second thermodynamic principles yields

ρ ṡ +div

[
q

θ

]
− 1

θ
(ρė −σ : D +div q) ≥ 0, (2.43)

From the definition of the specific Helmholtz free energy
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ψ≡ e −θs, (2.44)

and defining the temperature field gradient as g = ∇θ, it is possible to establish the
so-called Clausius-Duhem inequality in the spatial description as

σ : D −ρ
(
ψ̇+ sθ̇

)
− 1

θ
q ·g ≥ 0, (2.45)

where the identity

div

[
q

θ

]
= 1

θ
div q − 1

θ2 q ·∇θ. (2.46)

is used.
From a physical point of view, the Clausius-Duhem inequality states that the en-

ergy dissipation per unit deformed volume is always non-negative.
Equation (2.45) can also be written as

τ : D −ρ0

(
ψ̇+ sθ̇

)
− J

θ
q ·g ≥ 0, (2.47)

multiplying it by J and attending to the definition of the Kirchhoff stress tensor, where
the left hand side represents now the energy dissipation per unit reference volume.

2.5 Weak equilibrium equations

From a practical standpoint, finding the exact solution to the strong equilibrium equa-
tions in the context of real engineering problems is most often nearly or completely
impossible. To circumvent this problem, most numerical methods are formulated to
obtain approximate solutions to the so-called weak equilibrium equations. These re-
sult from relaxing the strong equilibrium equations, so that the solutions need only to
satisfy the equilibrium equations in an average sense, instead of satisfying the equi-
librium equations pointwise, This is as result of an integration over the body volume.
More precisely, the weak equilibrium equations can be found making use of several
energetic and weighted residual methods, such as the Virtual Work Principle used here.

Spatial description

For a quasi-static motion, such that the inertial terms can be neglected, the Virtual
Work Principle states, in a spatial description, that the body is in equilibrium if and
only if the Cauchy stress field satisfies

∫
Ω

[σ : ∇η−b ·η]dv −
∫
∂Ω

t ·ηda = 0, ∀η ∈V , (2.48)

where V is the space of virtual displacement of the body. It is defined by the space of
sufficiently regular arbitrary displacements

η : Ω→U , (2.49)

where U is the n-dimension vector associated with E .
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Spatial description

Likewise, in a material description, the Virtual Work Principle states that the body is in
equilibrium if and only if the First Piola-Kirchhoff stress field satisfies∫

Ω0

[P : ∇0η−b0 ·η]dv −
∫
∂Ω0

t 0 ·ηda = 0, ∀η ∈V , (2.50)

where V is the space of virtual displacement of the body, defined by the space of suf-
ficiently regular arbitrary displacements

η : Ω→U . (2.51)

2.6 Mechanical constitutive initial value problem

In Continuum Mechanics, a constitutive model is a set of equations, also called con-
stitutive equations, establishing the stress-strain relation for a given material. Before
going further, it is important to define a thermokinetic process of a body B as

thermokinetic process: {ϕ(X , t ),θ(X , t )}, (2.52)

and a calorodynamic process of B as

calorodynamic process: {σ(X , t ),e(X , t ), s(X , t ),r (X , t ),b(X , t ), q(X , t )}, (2.53)

which satisfies the fundamental conservation principles previously introduced.
It is also important to note that any constitutive model must satisfy a set of consti-

tutive axioms, explained in detail by de Souza Neto et al. (2011a). As these are too gen-
eral to be used directly in practice, a particular case of the general history functional-
based constitutive theory based on the thermodynamics with internal variables ap-
proach is used.

2.6.1 Thermodynamics with internal variables

In the thermodynamics with interval variables approach, the thermodynamic state at
a given material particle, i.e. σ, ψ, s and q at that material particle, at a given instant of
the calorodynamic process is assumed to be completely defined by the instantaneous
values of a finite number of state variables

{F ,θ, g ,α}. (2.54)

where
α= {αk } (2.55)

is a set of internal variables (scalar or tensorial in nature) associated with dissipative
mechanisms.

The accuracy of the constitutive model depends strongly on the appropriate choice
of the set of internal variables, as these contain the relevant information about the
material thermodynamical history.

Accordingly, the specific Helmholtz free energy is postulated to be
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ψ=ψ(F ,θ,α). (2.56)

To find the constitutive equations for the stress tensor and the entropy, one can
substitute

ψ̇= ∂ψ

∂F
: Ḟ + ∂ψ

∂θ̇
θ̇+ ∂ψ

∂αk
α̇k , (2.57)

found from the chain rule, on the Clausius-Duhem equation, Equation (2.45), obtain-
ing (

σF−T −ρ ∂ψ
∂F

)
: Ḟ −ρ

(
s + ∂ψ

∂θ

)
θ̇−ρ ∂ψ

∂αk
α̇k −

1

θ
q ·g ≥ 0, (2.58)

where the velocity gradient is adopted to set the work conjugacy as

σ : D =σ : L =σ : Ḟ F−1 =σF−T : F . (2.59)

Since the Clausius-Duhem inequality must hold for any thermokinetic process and
remain valid for any set {Ḟ (t ), θ̇(t )}, it implies the following Cauchy stress and entropy
constitutive equations

σ= ρ ∂ψ
∂F

F T , (2.60)

s =−∂ψ
∂θ

. (2.61)

It is also possible to write the constitutive equations for the Kirchhoff stress tensor
as

τ= Jρ
∂ψ

∂F
F T , (2.62)

multiplying Equation (2.60) by J , and the first Piola-Kirchhoff stress tensor as

P = ρ0
∂ψ

∂F
, (2.63)

multiplying Equation (2.58) also by J .
For each internal variable αk of the set α of internal variables, the conjugate ther-

modynamical forces are defined to be

Ak ≡ ρ0
∂ψ

∂αk
, (2.64)

so that the Clausius-Duhem equation can be written in a reduced form as

− A ∗ α̇− J

θ
q ·g ≥ 0, (2.65)

where A is the set of conjugate thermodynamical forces and ∗ denotes the appropriate
product operation.

To completely define the constitutive model, one still needs to postulate the con-
stitutive equations for the flux variables α̇ and 1

θ q . These are given by
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α̇= f (F ,θ, g ,α), (2.66)

1

θ
q = g (F ,θ, g ,α). (2.67)

A sufficient condition for the previous constitutive functions to satisfy the Clau-
sius-Duhem inequality is the hypothesis of normal dissipativity, whereby one defines
the constitutive functions for the flux variables as

α̇k =− ∂Ξ

∂Ak
,

1

θ
q =−∂Ξ

∂g
, (2.68)

where the dissipation potential is

Ξ=Ξ(A, g ;F ,θ,α), (2.69)

a convex function with respect to each Ak and g , and zero valued at the origin, {A, g } =
{0,0}. Note that in the previous definition the state variables appear only as parame-
ters.

2.6.2 Mechanical constitutive initial value problem

In the purely mechanical case, where all the quantities related to the thermal domain
may be removed, a constitutive model based on internal variables can be established
by the following set of equations

P = ρ0
∂ψ

∂F
, (2.70)

ψ=ψ(F ,α), (2.71)

α̇= f (F ,α). (2.72)

Thus, the spatial mechanical constitutive initial value problem can be stated as follows

Problem 2.1 | Spatial mechanical constitutive initial value problem.

Given the initial values of the internal variables, α(t0), and the history of the de-
formation gradient

F (t ), t ∈ [t0, tend], (2.73)

find the functions for σ(t ) and α(t ) such that the constitutive equations

σ= ρ ∂ψ
∂F

F T , (2.74)

ψ=ψ(F ,α), (2.75)

α̇= f (F ,α), (2.76)

are satisfied for every t ∈ [t0, tend].

Likewise, in a material description it can be stated as
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Problem 2.2 | Material mechanical constitutive initial value problem.

Given the initial values of the internal variables, α(t0), and the history of the de-
formation gradient

F (t ), t ∈ [t0, tend], (2.77)

find the functions for P (t ) and α(t ) such that the constitutive equations

P = ρ0
∂ψ

∂F
, (2.78)

ψ=ψ(F ,α), (2.79)

α̇= f (F ,α), (2.80)

are satisfied for every t ∈ [t0, tend].

It is now possible to pose the quasi-static mechanical constitutive initial value problem
in its weak form. To do it one assumes that a body B is made from a generic material,
characterized by a given constitutive model, whose internal variables are known at the
initial time t0 (see Figure 2.2). In addition, it is assumed that the interior of the body
is subjected to a prescribed history of body forces, b(X , t ), t ∈ [t0, tend], and to the
following boundary conditions:

• Natural (or Neumann) boundary condition: t The boundary portion Ωtraction, 0

of B is subjected to a prescribed history of traction forces, t presc(X , t ), X ∈ ∂Ωtraction,0,
t ∈ [t0, tend],

• Essential (or Dirichlet) boundary condition: The boundary portionΩmotion, 0 of
B is subjected to a prescribed displacement field history, upresc(X , t ), such that1.

ϕ(X , t ) = X +upresc(X , t ), X ∈ ∂Ωmotion, 0, t ∈ [t0, tend].

Figure 2.2: Quasi-static mechanical constitutive initial boundary value problem.

It is also convenient to define the set of kinematically admissible displacements of
B as the set of all sufficiently regular displacement functions that satisfy the essential
boundary condition (de Souza Neto et al., 2011a),

1For simplicity, it is assumed that ∂Ωtraction,0
⋂
∂Ωmotion,0 =∅



2.6. Mechanical constitutive initial value problem 19

K ≡ {u :Ω×R →U | u(X , t ) = upresc(X , t ),

X ∈ ∂Ωmotion,0, t ∈ [t0, tend]}. (2.81)

So the weak form of the quasi-static mechanical constitutive initial boundary value
problem can be stated in a spatial description as follows

Problem 2.3 | Spatial quasi-static mechanical initial BVP.

Find a kinematically admissible displacement function, u ∈ K , such that for ev-
ery t ∈ [t0, tend], the body B is in equilibrium as stated by the Virtual Work Prin-
ciple ∫

Ω
[σ : ∇η−b ·η]dv −

∫
∂Ω

t ·ηda = 0, ∀η ∈V , (2.82)

where the space of virtual displacements at time t is defined by

V ≡ {
η :Ω→U |η= 0 in ∂Ωmotion,0

}
, (2.83)

and, at each point of B, the Cauchy stress tensor is the solution of spatial me-
chanical constitutive initial value problem.

and in the material description as

Problem 2.4 | Material quasi-static mechanical initial BVP.

Find a kinematically admissible displacement function, u ∈ K , such that for ev-
ery t ∈ [t0, tend], the body B is in equilibrium as stated by the Virtual Work Prin-
ciple ∫

Ω0

[P : ∇0η−b0 ·η]dv −
∫
∂Ω0

t 0 ·ηda = 0, ∀η ∈V , (2.84)

where the space of virtual displacements at time t is defined by

V ≡ {
η :Ω0 →U |η= 0 in ∂Ωmotion,0

}
, (2.85)

and, at each point of B, the First Piola-Kirchhoff stress tensor is the solution of
material mechanical constitutive initial value problem.
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2.7 Time descretization

In a generic path-dependent model, the stress state does not depend only on the in-
stantaneous deformation state but also on the deformation history. For such a model,
the solution of the constitutive initial value problem for a given set of initial conditions
is usually not known for complex strain paths F (t ). Thus, there is a need to use an ap-
propriate numerical algorithm for the integration of the rate constitutive equations.

In general, the algorithms for the integration of rate constitutive equations are ob-
tained by adopting some kind of time (or pseudo-time) discretisation along with some
hypothesis on the deformation path between adjacent time instants.

In the present document, it is adopted an algorithm based on approximated incre-
mental constitutive functions. Attending to the mechanical constitutive initial bound-
ary value problem and considering the time increment [tn , tn+1], this approach is com-
prised by the two following requeriments:

• Cauchy and First Piola-Kirchhoff stress tensors. Considering a time increment
[tn , tn+1] and given the set αn of internal variables at tn , the deformation gradi-
ent F n+1 at time tn+1 determines the stress σn+1 uniquely through

σn+1 = σ̂(αn ,F n+1), (2.86)

where σ̂ is the incremental constitutive function for the Cauchy stress tensor.

Similarly, the First Piola-Kirchhoff stress tensor P n+1 must be uniquely deter-
mined by the prescribed deformation gradient F n+1 prescribed at tn+1 as

P n+1 = P̂ (αn ,F n+1), (2.87)

where P̂ is the incremental constitutive function for the First Piola-Kirchhoff
stress tensor.

• Set of internal variables. Assuming that the set of internal variablesαn is known
at tn , the set of internal variables must be uniquely determined by the prescribed
deformation gradient F n+1 prescribed at tn+1 as

αn+1 = α̂(αn ,F n+1), (2.88)

where α̂ is the incremental constitutive function for the set of internal variables.

Generally, the numerical constitutive laws are nonlinear and are expected to con-
verge to the exact solution as the strain increments are reduced.

Making use of the aforementioned time discretization, the weak form of the quasi-
static mechanical constitutive initial boundary value problem can then be stated in
the spatial description as

Problem 2.5 | Spatial incremental quasi-static mechanical initial BVP.

Given the set of internal variables αn at tn , the prescribed body and traction force
fields bn+1 and t n+1 at tn+1, and the prescribed deformating gradient F n+1 at
tn+1, find the kinematically admissible displacement field un+1 ∈Kn+1 such that
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the body B is in equilibrium as stated by the virtual Work Principle∫
Ωn+1

[σ̂(F n+1,αn) : ∇η−bn+1 ·η]dv −
∫
∂Ωn+1

t n+1 ·ηda = 0, ∀η ∈V , (2.89)

where the space of kinematically admissible displacement fields Kn+1 is defined
by

Kn+1 ≡ {u :Ω×R →U | un+1(X ) = upresc,n +1(X ), X ∈ ∂Ωmotion,0}. (2.90)

and in the material description as

Problem 2.6 | Material incremental quasi-static mechanical initial BVP.

Given the set of internal variables αn at tn , the prescribed body and traction force
fields b0,n+1 and t 0,n+1 at tn+1, and the prescribed deformating gradient F n+1 at
tn+1, find the kinematically admissible displacement field un+1 ∈Kn+1 such that
the body B is in equilibrium as stated by the virtual Work Principle∫

Ωn+1

[P̂ (F n+1,αn) : ∇0η−b0,n+1 ·η]dv −
∫
∂Ωn+1

t 0,n+1 ·ηda = 0, ∀η ∈V , (2.91)

where the space of kinematically admissible displacement fields Kn+1 is defined
by

Kn+1 ≡ {u :Ω×R →U | un+1(X ) = upresc,n +1(X ), X ∈ ∂Ωmotion,0}. (2.92)

2.8 Finite Element Method

With the incremental weak form of the quasi-static mechanical constitutive initial boun-
dary value problem now established, an approximated solution can be found making
use of the Finite Elment Method.

2.8.1 Finite element concept

The first step in the Finite Element method is the discretization of the continuum do-
main Ω in a finite set of nelem mutually exclusive subdomains called finite elements
Ω(e). The discretized domain, hΩ, is therefore an approximation to the continuum do-
main expressed by

Ω≈h Ω≡
nelem⋃
e=1

Ω(e). (2.93)

The space of virtual displacements V , as well as, the space of kinematically admissible
displacement fields K , are also discretized in the same manner, with their discretized
forms denoted by hV and hK .

2.8.2 Interpolation functions

Let e be a generic finite element with nnodes nodes, where each node i of coordinates
x i is associated with an interpolation function N (e)

i . These interpolation functions are
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often called shape functions and perform the required field interpolations inside the
element domain Ω(e).

Letting a(x) be a generic field defined over Ω(e), its interpolation at any point x
inside the element is defined by the element shape functions as

a(x) ≈ ha(x) ≡
nnodes∑

i=1
a(x i )N (e)

i (x). (2.94)

If, instead, a(x) is a generic field defined over the global domain Ω, the interpolation
of a(x) at any point x is defined by the global shape functions, N g , as

a(x) ≈ ha(x) ≡
npoints∑

i=1
a(x i )N g

i (x), (2.95)

where npoints is the total number of nodes of the finite element mesh. The discretized
spaces hV and hK can now be defined as

hK ≡
{

h u(x) =
npoints∑

i=1
u(x i )N g

i (x) | u(x i ) = upresc(x i ) if x i ∈ ∂Ωmotion,0

}
, (2.96)

hV ≡
{

hη(x) =
npoints∑

i=1
η(x i )N g

i (x) |η(x i ) = 0 if x i ∈ ∂Ωmotion,0

}
. (2.97)

2.8.3 Interpolation matrix and discrete gradient operators

The global shape functions can be conveniently assembled in the so-called global in-
terpolation matrix as

Ng (x) ≡
[

diag[N g
1 (x)] diag[N g

2 (x)] · · · diag[N g
npoints

(x)]
]

, (2.98)

where diag[N g
i ] is a diagonal matrix ndim ×ndim

diag[N g
i (x)] ≡


N g

i 0 · · · 0
0 N g

i · · · 0
...

...
. . .

...
0 0 · · · N g

i

 (2.99)

where ndim is the number of degrees of freedom per node.
Defining the global vector of nodal displacements as

u =
[

u1
1, . . . ,u1

ndim
, . . . ,u

npoints

1 , . . . ,u
npoints
ndim

]T
, (2.100)

the displacement field u(x) defined over the global domain Ω, can be found from
Equation (2.95) at any point x as

hu(x) ≡ Ng (x)u, h u ∈h K . (2.101)
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2.8.4 Spatial discretization

Applying the aforementioned finite element discretization to the incremental quasi-
static mechanical constitutive initial boundary value problem, it can then be written
in the spatial description as

∫
hΩ

[
σ̂T Bgη−bn+1 ·Ngη

]
dv −

∫
∂hΩtraction

tn+1 ·Ngηda = 0, ∀η ∈ hV , (2.102)

where Bg is the discrete symmetric global gradient operator, defined for a 2D problem
in Cartesian coordinates as

Bg ≡



∂N g
1

∂x
0

∂N g
2

∂x
0 · · ·

∂N g
npoints

∂x
0

0
∂N g

1

∂y
0

∂N g
2

∂y
· · · 0

∂N g
npoints

∂y
∂N g

1

∂y

∂N g
1

∂x

∂N g
2

∂y

∂N g
2

∂x
· · ·

∂N g
npoints

∂y

∂N g
npoints

∂x


. (2.103)

Equation (2.102) can be rewritten as

{∫
hΩ

[
Bg T

σ̂(F n+1,αn)−Ng T bn+1

]
dv

−
∫
∂hΩtraction

Ng T tn+1 da

}T

η= 0, ∀η ∈ hV , (2.104)

and, since it must be satisfied for any η ∈h V , the incremental quasi-static discretized
mechanical constitutive initial boundary value problem may, thus, be stated in the
spatial description as

Problem 2.7 | Spatial incremental discretized quasi-static mechanical initial BVP.

Given the set of internal variables αn at tn , the prescribed body and traction force
fields bn+1 and tn+1, and the prescribed deformation gradient F n+1 at tn+1, find
the kinematically admissible nodal displacement field un+1 ∈ hKn+1 such that the
body B is in equilibrium as stated by the Virtual Work Principle

r (un+1) ≡ f int(un+1)− f ext
n+1 = 0, (2.105)

where f int e f ext
n+1 are the global vectors of internal and external forces defined as

f int ≡
∫

hΩ0

Bg T
σ̂(F n+1,αn)dv, (2.106)

f ext
n+1 ≡

∫
hΩ0

Ng T bn+1 dv +
∫
∂hΩtraction

Ng T tn+1 da. (2.107)



24 2. Continuum Mechanics and Finite Element Method

In a material description, Equation (2.104) is written as

{∫
hΩ

[
Gg T P̂ (αn ,F n+1)−Ng T b0,n+1

]
dv

−
∫
∂hΩtraction,0

Ng T t0,n+1 da

}T

η= 0, ∀η ∈h V , (2.108)

where Gg is the discrete global gradient operator, defined for a 2D problem in Carte-
sian coordinates as

Gg ≡



∂N g
1

∂x
0

∂N g
2

∂x
0 · · ·

∂N g
npoints

∂x
0

0
∂N g

1

∂x
0

∂N g
2

∂x
0 · · ·

∂N g
npoints

∂x
∂N g

1

∂y
0

∂N g
2

∂y
· · · 0

∂N g
npoints

∂y
0

0
∂N g

1

∂y
0

∂N g
2

∂y
· · · 0

∂N g
npoints

∂y


. (2.109)

As for the spatial description, Equation (2.108) must be satisfied for any η ∈h V , the in-
cremental quasi-static discretized mechanical constitutive initial boundary value prob-
lem may, thus, be stated in the material description as

Problem 2.8 | Material incremental discretized quasi-static mechanical initial
BVP.

Given the set of internal variables αn at tn , the prescribed body and traction force
fields b0,n+1 and t0,n+1, and the prescribed deformation gradient F n+1 at tn+1, find
the kinematically admissible nodal displacement field un+1 ∈ hKn+1 such that the
body B is in equilibrium as stated by the Virtual Work Principle

r(un+1) ≡ f int(un+1)− f ext
n+1 = 0, (2.110)

where f int e f ext
n+1 are the global vectors of internal and external forces defined as

f int ≡
∫

hΩ0

Gg T P̂ (F n+1,αn)dv, (2.111)

f ext
n+1 ≡

∫
hΩ0

Ng T b0,n+1 dv +
∫
∂hΩtraction,0

Ng T t0,n+1 da. (2.112)

The global vectors for the internal and external forces are usually obtained by as-
semblage of their elemental counterparts as

f int =
nelem

A
e=1

(
f int

)(e)
, (2.113)

f ext =
nelem

A
e=1

(
f ext

)(e)
, (2.114)

where the elemental vectors in the spatial description are defined as
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(
f int

)(e) ≡
∫

hΩ(e)
BT σ̂(F n+1,αn)dv, (2.115)(

f ext
n+1

)(e) ≡
∫

hΩ(e)
NT bn+1 dv +

∫
∂hΩ(e)

traction

NT tn+1 da, (2.116)

and in material description as(
f int

)(e) ≡
∫

hΩ(e)
0

GT P̂ (F n+1,αn)dv, (2.117)(
f ext

n+1

)(e) ≡
∫

hΩ(e)
0

NT b0,n+1 dv +
∫
∂hΩ(e)

0,traction

NT t0,n+1 da. (2.118)

The matrices N, B and G are the elemental interpolation matrix, the symmetric ele-
mental gradient operator and the discrete elemental gradient operator, respectively.

2.8.5 Newton-Raphson Method

The equilibrium equation, Equation (2.105) in a spatial description and Equation (2.110)
in a material description, is generally nonlinear due to geometrical and/or material
nonlinearities. The Newton-Raphson Method is an efficient and robust iterative scheme
with a quadratic convergence rate that is often use to solve the equilibrium equation
at each time increment, tn . Its application to this problem is detailed by de Souza Neto
et al. (2011a).

2.8.6 Numerical integration

In the Finite Element Method, the integrations over the element domain are generally
performed numerically using the Gaussian Quadrature Method. Stating it’s application
succinctly, let a(x) be a generic field, if there is a coordinate transformation from a
local (or natural) normalized domain Υ to the element domain Ω(e), x : Υ→Ω(e), the
integral of a(x) over the domain Ω(e) can be numerically determined as∫

Ω(e)
a(x)dx =

∫
Υ

a(x(ζ)) j (ζ)dζ≈
nGP∑
i=1

wi a(x(ζi )) j (ζi ), (2.119)

where ζi and wi , i = 1, . . . ,nGP are the positions and weights of the Gauss sampling
points in the domain Υ and j (ζ) is the determinant of the coordinate transformation’s
Jacobian defined as

j (ζ) = det

(
∂x

∂ζ

)
. (2.120)
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Chapter 3

First-order
Homogenization-based
Hierarchical Multi-scale Model

This chapter presents the formulation and numerical treatment of a first-order strain-
driven hierarchical multi-scale model based on computational homogenization. The
formulation adopted stems from the variational multi-scale constitutive theory es-
tablished by de Souza Neto and coworkers (de Souza Neto and Feijóo, 2006, 2008;
de Souza Neto et al., 2011b; Perić et al., 2011; Blanco et al., 2016).

3.1 The first order homogenized constitutive response

In a first-order hierarchical multi-scale model based on computational homogeniza-
tion, the microscale analysis is included in the spatial (and material) incremental dis-
cretized quasi-static mechanical initial BVP (see Section 2.8.4). This is achieved by
replacing the computation of the stress incremental constitutive function at a given
point with the solution of a microscopic equilibrium problem over the RVE (see Sec-
tion 1.1 for the definition of RVE) associated with same point. As stated in Section
2.8.6, the integrations over the element domain are generally performed numerically
by means of the Gaussian Quadrature Method, thus, the stress incremental constitu-
tive function must be computed at the Gauss integration points. Therefore, the total
number of RVEs that must be considered is equal to the the total number of integra-
tion points required to integrate the macroscopic finite element domain.

The microscopic equilibrium problem just mentioned is driven by the macroscopic
deformation gradient, F (x , t ), and its solution must satisfy the assumed microscale
boundary conditions. After the solution of the microscopic equilibrium problem is
found, the computation of the macroscopic stress tensor, P (x , t ) by computational
homogenization allows one to return to the macroscale. The macroscopic solution
procedure can then carry on in the standard way.

In order to clearly distinguish quantities associated with the two scales, the follow-
ing notation is adopted henceforth. At the macroscale, the domain and its boundary
are denoted by Ω and ∂Ω, and the coordinates of a material point are given by X and
x in the reference and deformed configurations, respectively, in accordance with the

27
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previous chapter. At the microscale, the domain and its boundary are denoted by Ωµ

and ∂Ωµ, and the coordinates of a material point are given by Y and y in the ref-
erence and deformed configurations, respectively. The subscript µ generally denotes
microscale fields.

3.2 Scale Transition Theory

The three key assumptions underlying the hierarchical multi-scale models are the Prin-
ciple of Scales Separation, associated with the RVE characteristic dimension, the kine-
matic multi-scale relations, relating the macroscopic and microscopic kinematic quan-
tities, and the Principle of Multi-Scale Virtual Power, establishing the energetic equiv-
alence between both scales.

3.2.1 Principle of Scales Separation

According to Hill (1963), the RVE must be large enough to be representative of the do-
main in an average sense. However, the RVE must also satisfy the so called Principle
of Scales Separation, that is, the characteristic dimension of the RVE, denoted by lRVE,
must be simultaneously much smaller than the macroscopic characteristic dimension,
lmacro, and much larger than the characteristic dimensions of the microstructure het-
erogeneities, lmicro. Stated symbolically as lmicro ¿ lRVE ¿ lmacro.

3.2.2 Multi-scale kinematics

In order to formulate the multi-scale hierarchical model within the Method of Multi-
Scale Virtual Power, the relation between the kinematic quantities of both scales are
found from the procedures of kinematic insertion and kinematic homogenization.

Kinematic insertion

The procedure of kinematic insertion allows the downscale of the macroscopic quan-
tities, finding their contribution to the microscale kinematics. Since the whole RVE is
associated with some point X with a deformation gradient F (X , t ), it is assumed that
all the points in the RVE are subject to the associated linear displacement field, ulin,
given by

ulin
µ = [

F (X , t )− I
]

Y , (3.1)

for some Y in Ωµ. However, this displacement field leaves, in general, the RVE in a
nonequilibrium state, thus, there is a need to consider an additional fluctuation com-
ponent, ũµ, to ensure its equilibrium. Without loss of generality the displacement in-
side the RVE, uµ, can be written as

uµ(Y , t ) = ulin
µ + ũµ(Y , t ), (3.2)

Since the linear component of the displacement is fully known from the macro-
scopic deformation gradient, the unknowns of the microscopic equilibrium problem
are the displacement fluctuations.

Accordingly, the microscopic deformation gradient can also be decomposed as

Fµ(Y , t ) = F (X , t )+∇0ũµ(Y , t ). (3.3)
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Kinematic homogenization

The kinematic homogenization is the procedure associated with the upscale of the
microscopic kinematic quantities to their macroscopic counterparts and it is based on
the volume averaging of the interest field over the RVE in its reference configuration.

Letting A(Y ) be some generic tensorial field at the microscale, its macroscopic
counterpart can be found from

A(X ) = 1

vµ,0

∫
Ωµ,0

Aµ(Y )dv, (3.4)

where vµ,0 denotes the RVE volume in the reference configuration. The macroscopic
deformation gradient, which drives the microscale deformation, can then be defined
as

F (X , t ) = 1

vµ,0

∫
Ωµ,0

Fµ(Y , t )dv, (3.5)

or directly from the displacement field as

F (X , t ) = I + 1

vµ,0

∫
Ωµ,0

∇0uµ(Y , t )dv. (3.6)

Making use of the so-called Gauss’s theorem, the macroscopic deformation gradient
can also be found from an integral along the surface of the RVE, as

F (X , t ) = I + 1

vµ,0

∫
∂Ωµ,0

uµ(Y , t )⊗n(Y )da, (3.7)

where n(Y ) is the outward unitary vector normal to the RVE boundary in its reference
configuration.

Kinematic admissibility

As consequence of the multi-scale kinematic assumptions, the kinematic insertion and
homogenization, there is a restriction on the microscopic displacement fluctuations.
This restriction can be found substituting Equation (3.2) into Equation (3.6), obtaining

F (X , t ) = F (X , t )+ 1

vµ,0

∫
Ωµ,0

∇0ũµ(Y , t )dv, (3.8)

which can be rewritten as ∫
Ωµ,0

∇0ũµ(Y , t )dv = 0. (3.9)

Furthermore, aplying Gauss’s theorem once again, one finds∫
∂Ωµ,0

∇0ũµ(Y , t )⊗n(Y )da = 0. (3.10)

Therefore, the set of kinematically admissible minimally constrained microscopic
displacement fluctuation can be defined as
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˜Kµ ≡
{

ũµ, sufficiently regular

∣∣∣∣∣
∫
∂Ωµ,0

∇0ũµ(Y , t )⊗n(Y )da = 0

}
. (3.11)

3.2.3 Principle of Multi-Scale Virtual Power

The Principle of Multi-Scale Virtual Power establishes the connection between macro
and microscales invoking power conservation between the two. It can be stated for-
mally as

P (X , t ) : δF (X , t ) = 1

vµ,0

∫
Ωµ,0

Pµ(Y , t ) : δFµ(Y , t )dv, (3.12)

where δF (X , t ) and δFµ(Y , t ) are arbitrary macroscopic and microscopic deformation
gradients, respectively. Furthermore, from the relation between the macroscopic and
the microscopic deformation gradient, it is also found that

P (X , t ) : δF (X , t ) = 1

vµ,0

∫
Ωµ,0

Pµ(Y , t ) :
[
δF (X , t )+∇0ηµ

]
dv, (3.13)

for any virtual macroscopic deformation gradient, δF (X , t ), and any admissible virtual
microscopic displacement fluctuation, ηµ.

Assuming that δF (X , t ) = 0, the PMVP renders the weak microscale equilibrium
equations in both spatial and material description as∫

Ωµ

σµ(y , t ) : ∇ηµdv = 0, ∀ηµ ∈Vµ, (3.14)

and ∫
Ωµ,0

Pµ(Y , t ) : ∇0ηµdv = 0, ∀ηµ ∈Vµ, (3.15)

respectively, where the virtual displacement fluctuations belong to the set admissible
displacement fluctuations, Vµ ⊆ ˜Kµ. The microscale equilibrium problem may, thus,
be stated in the spatial description as

Problem 3.1 | Spatial quasi-static microscale mechanical initial BVP.

For a given macroscale material particle x and the associated macroscopic de-
formation gradient F (x , t ), find a kinematically admissible microscopic displace-
ment fluctuation function, ũ ∈ K̃µ, such that, for every t ∈ [t0, tend], the RVE is in
equilibrium as stated by the Virtual Work Principle∫

Ωµ

σµ(y , t ) : ∇ηµdv = 0, ηµ ∈Vµ, (3.16)

where the space of virtual displacements fluctuations, Vµ, at time t is defined by
the set of kinematically admissible displacement fluctuations constrained by the
adopted microscale boundary condition.

and in the material description



3.3. Microscale boundary conditions 31

Problem 3.2 | Material quasi-static microscale mechanical initial BVP.

For a given macroscale material particle X and the associated macroscopic de-
formation gradient F (X , t ), find a kinematically admissible microscopic displace-
ment fluctuation function, ũ ∈ K̃µ, such that, for every t ∈ [t0, tend], the RVE is in
equilibrium as stated by the Virtual Work Principle∫

Ωµ,0

Pµ(Y , t ) : ∇0ηµdv = 0, ηµ ∈Vµ, (3.17)

where the space of virtual displacements fluctuations, Vµ, at time t is defined by
the set of kinematically admissible displacement fluctuations constrained by the
adopted microscale boundary condition.

Another consequence of the PMVP, can be found comparing it to the respective
general Virtual Work Principle equilibrium equations in the spatial or material descrip-
tions. These are written, respectively as∫

Ωµ

[
σµ(y , t ) : ∇ηµ−bµ ·ηµ

]
dv −

∫
∂Ωµ

tµ(y , t ) ·ηµda = 0, ∀ηµ ∈Vµ, (3.18)

and∫
Ωµ,0

[
Pµ(Y , t ) : ∇0ηµ−bµ,0 ·ηµ

]
dv −

∫
∂Ωµ,0

tµ,0(Y , t ) ·ηµda = 0, ∀ηµ ∈Vµ. (3.19)

Thus, it can be concluded that the microscopic body and traction forces do not pro-
duce work, i.e.∫

∂Ωµ

tµ(y , t ) · ũµ(y , t )da = 0,
∫
Ωµ

bµ(y , t ) · ũµ(y , t )dv = 0, (3.20)∫
∂Ωµ,0

tµ,0(Y , t ) · ũµ(Y , t )da = 0,
∫
Ωµ,0

bµ,0(Y , t ) · ũµ(Y , t )dv = 0, (3.21)

meaning that the microscopic body and traction forces can be seen as reaction forces
arising from the enforcement of the kinematical constraints applied to the microscopic
displacement field.

3.3 Microscale boundary conditions

The choice of a suitable microscale boundary condition is of great importance in a
multi-scale model, as the microscopic displacement field is directly dependent on the
type of constraints imposed on the RVE boundary.

The trivial solution of the microscale equilibrium problem consists in assuming
that the microscale displacement fluctuations are null over the entire domain, i.e.

ũµ(Y , t ) = 0, ∀Y ∈Ωµ,0. (3.22)

and it is the most restrictive condition that can be applied to the RVE displacement
field, the so-called Taylor hypothesis. This implies that the microscale displacement
field is thus entirely defined by the imposed linear displacements as

uµ(Y , t ) = [
F (X , t )− I

]
Y = ulin

µ , ∀Y ∈Ωµ,0. (3.23)
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Accordingly, the set of kinematically admissible microscopic displacement fluctuations
constrained by the Taylor hypothesis is defined as

˜K
Taylor
µ ≡

{
ũµ, sufficiently regular

∣∣∣∣∣ ũµ(Y , t ) = 0, ∀Y ∈Ωµ,0

}
. (3.24)

Regarding non-trivial solutions, there are three microscale boundary conditions
that are usually considered in multi-scale models, the so-called homogeneous bound-
ary conditions, linear and uniform traction, and a periodic boundary condition. These
are presented below, sorted by decreasing restriction on the microscopic displacement
fluctuations.

Linear boundary condition

The linear boundary condition imposes null microscopic displacement fluctuations in
the RVE boundary, i.e.

ũµ(Y , t ) = 0, ∀Y ∈ ∂Ωµ,0. (3.25)

Therefore, the microscopic displacement field in the RVE boundary is entirely defined
by the imposed linear displacements as

uµ(y , t ) = [
F (x , t )− I

]
Y = ulin

µ , ∀y ∈ ∂Ωµ. (3.26)

In accordance, the set of kinematically admissible microscopic displacement fluc-
tuations constrained by the linear boundary condition can be defined as

˜K Linear
µ ≡

{
ũµ, sufficiently regular

∣∣∣∣∣ ũµ(Y , t ) = 0, ∀Y ∈ ∂Ωµ,0

}
. (3.27)

Periodic boundary condition

The periodic boundary condition assumes that the material microstructure can be
represented by tiling the RVE in all directions, thus, implying displacement compat-
ibility between opposite sides of the RVE boundary.

In order to formally state the periodic boundary condition, one considers that the
RVE boundary is divided in d disjoint sets such that

∂Ωµ,0 =
d⋃

i=1
∂Ωµ,0,i . (3.28)

Each subset ∂Ωµ,0,i is defined as

∂Ωµ,0,i = (Γ−i ∪Γ+i ), (3.29)

where Γ+i and Γ−i are such that each point in the positive side, Y + ∈ Γ+i , has its pair
in the opposing negative side, Y − ∈ Γ−i . Furthermore, the unitary outward vectors n+
and n−, normal to Γ+i and Γ−i , respectively, must be antisymmetric. Accordingly, the
periodic boundary condition can now be stated as

ũµ(Y +, t ) = ũµ(Y −, t ), (3.30)



3.3. Microscale boundary conditions 33

meaning that the displacement fluctuations are equal in opposing sides of the RVE
boundary. As a consequence of the PMVP, one can derive that the constraint just stated
is only satisfied if the traction forces field is anti-periodic, i.e.

tµ,i (Y +, t ) =−tµ,i (Y −, t ). (3.31)

Hence, the set of kinematically admissible microscopic displacement fluctuation
fields constrained by the periodic boundary condition can be defined as

˜K Periodic
µ ≡

{
ũµ, sufficiently regular

∣∣∣
∀i = 1. . .d ∀{Y +,Y −} ∈ ∂Ωµ,0,i ũµ,i (Y +, t ) = ũµ,i (Y −, t )

}
(3.32)

Uniform traction boundary condition

The uniform traction boundary condition stands as the least restrictive boundary con-
dition, requiring only that the microscopic displacement fluctuations satisfy the min-
imal constraint defined by Equation (3.10). This means that the set of kinematically
admissible microscopic displacement fluctuations constrained by the uniform traction
boundary condition is coincident with the set of kinematically admissible minimally
constrained microscopic displacement fluctuations, i.e.

˜K U.Traction
µ ≡ ˜K =

{
ũµ, sufficiently regular

∣∣∣∣∣
∫
∂Ωµ,0

ũµ(Y , t )⊗n(Y )da = 0

}
.

(3.33)

Moreover, as a consequence of the PMVP it is possible to conclude that the traction
along the RVE boundary is uniform and equal to the homogenized traction, i.e.

Pµ(Y , t )n(Y , t ) = P (X , t )n(Y , t ), Y ∈ ∂Ωµ,0. (3.34)

3.3.1 Homogenized stress tensor

After solving the microscale equilibrium problem, the macroscopic stress tensor can
be determined by homogenization through the PMVP, setting δũ(Y , t ) = 0, as a volume
average of its microscopic counterpart,

P (X , t ) = 1

vµ,0

∫
Ωµ,0

Pµ(Y , t )dv. (3.35)

From the relation between the First Piola-Kirchhoff stress tensor and the Cauchy
stress tensor (see Equation (2.32)) one finds

σ= 1

J
P F T . (3.36)
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3.4 Time discretization of the microscale equilibrium pro-
blem

The time discretization of the microscale equilibrium follows the same approach pre-
sented in Section 2.7, where an algorithm based in approximated incremental consti-
tutive functions is adopted. Thus, considering the time interval [tn , tn+1], the same
requirements set in Equations (2.86)-(2.88) must be met, denoting the microscopic in-
ternal variables as β instead. Applying such time discretization scheme, it is then pos-
sible to state the incremental version of the microscale equilibrium problem in both
spatial and material descriptions as follows

Problem 3.3 | Spatial incremental quasi-static microscale mechanical initial BVP.

For a given macroscale material particle x , the associated macroscopic deforma-
tion gradient F (x , t ) at tn+1 and the set of internal variables βn at tn , find the
kinematically admissible microscopic displacement fluctuations, ũµ,n+1 ∈ K̃µ,n+1,
such that the RVE is in equilibrium as stated by the Principle of Multi-scale Virtual
Power ∫

Ωµ

σµ(y , t ) : ∇ηµdv, ηµ ∈Vµ, (3.37)

where the space of admissible displacement fluctuations, ˜Kµ,n+1, at time tn+1,
is defined by the set of kinematically admissible displacement fluctuations con-
strained by the adopted microscale boundary condition.

and in the material description

Problem 3.4 | Material incremental quasi-static microscale mechanical initial
BVP.

For a given macroscale material particle X and the associated macroscopic de-
formation gradient F (X , t ), find a kinematically admissible microscopic displace-
ment fluctuation function, ũ ∈ K̃µ, such that, for every t ∈ [t0, tend], the RVE is in
equilibrium as stated by the Virtual Work Principle∫

Ωµ,0

Pµ(Y , t ) : ∇0ηµdv, ηµ ∈Vµ, (3.38)

where the space of admissible displacement fluctuations, ˜Kµ,n+1, at time tn+1,
is defined by the set of kinematically admissible displacement fluctuations con-
strained by the adopted microscale boundary condition.

3.5 Numerical discretization of the microscale equilibrium
problem

The numerical solution of the incremental weak form of the quasi-static microscale
initial BVP can be obtained by the Finite Element Method as detailed in Section 2.8.
However, additional numerical treatment is required to enforce the microscale bound-
ary conditions as well as to obtain the homogenized consistent tangent modulus. Both
these topics are outside the scope of this document and their detailed treatment can
be found in de Souza Neto et al. (2011a).



Chapter 4

Random Heterogeneous
Materials

This chapter presents a systematic approach for the description of random hetero-
geneous materials, a class of materials which includes matrix-inclusion composites,
whose structure is to be modeled as detailed in Section 1.1. It follows closely the work
of Torquato (2013).

4.1 Definition

A material is said to be heterogeneous if it is composed of domains of different ma-
terials, so-called phases, such as a composite, or the same material in different states,
such as a polycrystal. A subset of these materials is the so-called random heteroge-
neous materials, whose microstructure can only be characterized statistically, resting
on the assumption that any sample of the medium is a realization of a specific random
or stochastic process, or random field.

Examples There are numerous examples of heterogeneous materials. In fact, all nat-
ural and synthetic materials are heterogeneous at a sufficiently reduced scale. Their
random microstructure can range from dispersions with varying degrees of clustering
to complex interpenetrating connected multiphase media, including porous media.

Torquato (2013) presents the following example list of synthetic heterogeneous ma-
terials

• aligned and chopped fiber composites

• particulate composites

• interpenetrating multiphase composites

• cellular solids

• colloids

• gels

• foams

35



36 4. Random Heterogeneous Materials

• microemulsions

• block copolymers

• fluidized beds

• concrete

and natural heterogeneous materials

• polycrystals

• soils

• sandstone

• granular media

• Earth’s crust

• sea ice

• wood

• bone

• lungs

• blood

• animal and plant tissue

• cell aggregates and tumors.

Furthermore, one can stress the wide use of composites in automotive and aerospace
applications, due to their ability to exhibit the best characteristics of the individual
constituents according to their arrangement at microstructural level (Bargmann et al.,
2018).

4.2 Impact of the microstructure on the effective proper-
ties

Estimates based only on incorporating volume-fraction information, i.e. simple mix-
ture rules, cannot capture crucial microstructural features required to estimate accu-
rately the effective properties of most composites. Thus, since the effective proper-
ties depend not only on the phase properties but are also sensitive to the details of
the microstructure, it is natural to take the broader approach of predicting the effec-
tive properties from a more detailed characterization of the microstructure. One can
then relate changes in the microstructure quantitatively to changes in the macroscopic
properties.

Furthermore, analytical approaches for the estimation of the effective properties
of heterogeneous materials use knowledge of statistical geometrical information about
the microstructure, providing improved bounds on a variety of different effective prop-
erties of composite materials. In fact, it can be shown that the effective properties are
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generally dependent on an infinite amount of statistical information about the mi-
crostructure, as a direct consequence of the complex field interactions that occur in
the heterogeneous material (see Torquato (2013)).

It has also been established that modeling composite microstructures as periodic
leads to computationally efficient models, that allow effective properties to be accu-
rately predicted. However, when applied to failure/damage related predictions, these
simple models generally do not perform well (Pyrz, 1994; Trias et al., 2006; Hojo et al.,
2009).

4.3 Systematic description

The area of mathematical research that seeks to provide models and methods to char-
acterize random patterns is called stochastic geometry and is the basis of the theory
used to describe random heterogeneous materials.

To study random heterogeneous materials in a more meaningful way there is a
need for a systematic theory able to describe the "details of the microstructure", such
as the phase volume fraction, surface areas of interfaces, orientations, sizes, shapes,
and spatial distribution of the phase domains, connectivity of the phases, and so on.

4.3.1 Preliminaries

The term random heterogeneous material implies that any sample of the medium is a
realization of a specific random process or field and an ensemble is a collection of all
such possible realizations.

To formalize these notions, let (Ω,F ,P ) be some fixed probability space, where Ω
is a sample space (set of "outcomes"), F is a σ-algebra of subsets ofΩ (set of "events"),
and P is a probability measure1. Let each point ω ∈ Ω denote a realization of the
random medium that occupies some subset V of the d-dimensional Euclidean space,
i.e. V ⊆ Rd . In general, a medium is statistically characterized by a random variable
ξ(x ;ω), called the structure function, depending on all values of the position vector
x ∈V .

For a fixed ω, the structure function may be continuously varying function of po-
sition, e.g. porosity of geologic media or orientation of crystals in a polycrystal, or it
may take on discrete values, e.g., fiber composites or colloids. For the sake of simplic-
ity, the primary focus of this Chapter will be on two-phase random media, i.e., cases
in which ξ(x ;ω) takes on two different values. However, generalizations to multiphase
are possible.

Each realization ω of the two-phase random medium occupies the region of space
V ⊆Rd of volume V that is partitioned into two disjoint random sets or phases: phase
1, a region V1(ω) of volume fraction φ1, and phase 2, a region V2(ω) of volume fraction
φ2 (see Figure 4.1). The random sets V1(ω) and V2(ω) are the complements of one
another, thus, V1(ω)

⋃V2(ω) = V and V1(ω)
⋂

V2(ω) =∅. Let ∂V (ω) denote the surface
or interface between V1(ω) and V2(ω). For a given realization ω, the structure function
ξ(x ;ω) is just the indicator function I (i )(x ;ω) for phase i , given for x ∈V by

1A probability measure is a real-valued function defined on a set of events in a probability space that
satisfies measure properties.
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Figure 4.1: A portion of a realization ω of a two-phase random medium, where phase
1 is the white region V1, phase 2 is the gray region V2.

I (i )(x ;ω) =
1, if x ∈Vi (ω),

0, otherwise,
(4.1)

for i = 1,2 with
I (i )(x ;ω)+I (i )(x ;ω) = 1. (4.2)

In what follows the probabilistic descriptions of these and other random variables
will be considered. It is assumed that the reader is familiar with the basic notion of the
probability distribution of a random variable.

4.3.2 n-Point Probability Functions

Definitions

For fixed x , the indicator function I (i )(x) has only two possible values; i.e., for some
realizations ω it will be 0 and for some others it will be 1. Thus, the random variable
I (i )(x) does not possess a probability density. The probabilistic description of I (i )(x)
is given simply by the probability that I (i )(x) is 1, which one writes as

P
{
I (i )(x) = 1

}
. (4.3)

Given this probability, it follows that

P
{
I (i )(x) = 0

}
= 1−P

{
I (i )(x) = 1

}
. (4.4)

Moreover, the expectation of any function f [I (i )(x)] can be expressed as〈
f
[
I (i )(x)

]〉
=P

{
I (i )(x) = 1

}
f (1)+P

{
I (i )(x) = 0

}
f (0), (4.5)

where 〈(·)〉 denotes an ensemble average, i.e., an average over all realizations ω of the

ensemble. In particular, f
[
I (i )(x)

]
= I (i )(x) leads to the definition of the one-point

probability function for phase i , denoted by S(i )
1 , as
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S(i )
1 (x) ≡

〈
I (i )(x)

〉
=P

{
I (i )(x) = 1

}
, (4.6)

that coincides with the probability of finding phase i at the position x . It is sometimes
also referred to as the one-point correlation function for the phase indicator function.

Likewise, the n-point probability function for phase i , denoted as S(i )
n , is defined

as

S(i )
n (x1, x2, . . . , xn) ≡

〈
I (i )(x1)I (i )(x2) · · ·I (i )(xn)

〉
, (4.7)

and is equal to the probability that n points at positions x1, x2,. . . ,xn are found in
phase i . This function can also be referred to as an n-point correlation function.

The special nature of the indicator function makes it possible to specify the general
joint distribution

P
{
I (i )(x1) = j1,I (i )(x2) = j2, . . . ,I (i )(xn) = jn

}
=

〈 ∏
k∈K

I (i )(xk )
∏
l∈L

[1−I (i )(x l )]

〉
, (4.8)

where K = {k ≤ n | jk = 1} and L = {l ≤ n | jl = 0}, in terms of the set of n-point probabil-
ity functions S(i )

1 , S(i )
2 ,. . . ,S(i )

n for phase i .

In particular, one can express the probability S(2)
n of finding n points in phase 2

in terms of the set of phase 1 probabilities S(1)
1 , S(1)

2 , . . . , S(1)
n . From the inclusion-

exclusion principle, one obtains

S(2)
n (x1, x2, . . . , xn) =

〈
n∏

j=1
[1−I (1)(x j )]

〉

= 1−
n∑

j=1
S(1)

1 (x j )+
n∑

j<k
S(1)

2 (x j , xk )

−
n∑

j<k<l
S(1]

3 (x j , xk , x l )+·· ·+ (−1)nS(1)
n (x1, x2, . . . , xn). (4.9)

Furthermore, the probability of finding any subset n1 of the n points in phase 2 and
the remaining n2 = n −n1 in phase 1 can be expressed purely in terms of the set of
phase 1 probabilities S(1)

1 , S(1)
2 ,. . . , S(1)

n . For example, the probability S(12)
2 of two "dis-

similar ends", i.e. the probability that a point at x1 is in phase 1 and a point at x2 is in
phase 2, is given by

S(12)
2 (x1, x2) =

〈
I (1)(x1)[1−I (1)(x2)]

〉
= S(1)

1 (x1)−S(1)
2 (x1, x2). (4.10)

Symmetries and Ergodicity

The n-point probability function S(i )
n may depend on the absolute positions x1, x2,. . . xn .

If that is the case, the medium is said to be statistically inhomogeneous. Figure 4.2 de-
picts two examples of statistically inhomogeneous media. Indeed, even the one-point
function S(i )

1 may depend on the local position x1 and then may be interpreted as a
position-dependent volume fraction of phase i .

The medium is strictly spatially stationary or strictly statistically homogeneous if
the joint probability distributions describing the stochastic process are translationally
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Figure 4.2: Two examples of statistically inhomogeneous media. (a): Density of the
gray phase decreases radially from the center.(b): Density of the gray phase decreseas
in the upward direction.

invariant, i.e. invariant under a translation of the space origin. Thus, the random
set Vi (ω) generated from the stochastic process {I (i )(x) |x ∈ V } is strictly statistically
homogeneous, provided that for some constant vector y ∈Rd

P
{
I (i )(x1) = j1,I (i )(x2) = j2, . . . ,I (i )(xn) = jn

}
=P

{
I (i )(x1 + y) = j1,I (i )(x2 + y) = j2, . . . ,I (i )(xn + y) = jn

}
, (4.11)

for all n ≥ 1, x1, x2, . . . , xn in Rn and j1, j2, . . . , jn in {0,1}. This statement is only mean-
ingful if V and Rn are equal, i.e. the volume V must be infinite. Equivalently, since
such probabilities can be expressed in terms of the n-point probability functions for
phase i , Vi (ω) is strictly statistically homogeneous if and only if

S(i )
n (x1, x2, . . . , xn) = S(i )

n (x1 + y , x2 + y , . . . , xn + y)

= S(i )
n (x12, . . . x1n), (4.12)

for all n ≥ 1, x1, x2, . . . , xn in Rn and y in in Rn , where x j k = xk − x j . Therefore,
for statistically homogeneous media, the n-point probability function doesn’t depend
on the absolute positions but rather on the relative displacements. In particular, the
one-point probability function is a constant everywhere and it is equal to the volume
fraction φi of phase i , i.e.,

S(i )
1 =φi . (4.13)

Further classification divides statistically homogeneous media into anisotropic if
S(i )

n depends on both the orientation and magnitudes of the vectors x12, x13, . . . , x1n

and into isotropic if S(i )
n depends only on the magnitudes of the vectors x j k = |x j k |,

1 ≤ j < k ≤ n, . . . , x1n (see Figure 4.3). For these materials, the two-point function, also
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Figure 4.3: Two examples of portions of statistically homogeneous media with two
phase. (a): The layered medium is statistically anisotropic. (b): The medium is sta-
tistically isotropic.

known as the autocorrelation function, and the three-point function have the form

S(i )
2 (x1, x2) = S(i )

2 (x12), (4.14)

S(i )
3 (x1, x2, x3) = S(i )

3 (x12, x13, x23). (4.15)

This implies that the two- and three-point functions can be extracted from cross-se-
ctions or two-dimensional images of the isotropic sample, as long as the planar rep-
resentation is sufficiently large, as S(i )

3 remains invariant under all permutations of its

arguments x12, x13, and x23. Furthermore, the autocorrelation function S(i )
2 can also

be found from a linear cut through an isotropic medium.
Roughly speaking, the property of statistical homogeneity states that all regions of

space are similar as far as the statistical properties of the stochastic process are con-
cerned. When the system is statistically homogeneous, it is meaningful to define vol-
ume averages. This suggests an ergodic hypothesis, i.e., the result of averaging over all
realizations of the ensemble is equivalent to averaging over the volume for one real-
ization in the infinite-volume limit. Thus, complete probabilistic information can be
obtained from a single realization of the infinite medium and ensemble averaging can
be replaced with volume averaging when the volume tends to infinity, i.e.,

S(i )
n (x12, . . . , x1n) = lim

V →∞
1

V

∫
V
I (i )(y)I (i )(y +x12) · · ·I (i )(y +x1n) dy. (4.16)

Such systems will be referred to as ergodic media.
In general, the n-point probability functions for n ≥ 2 cannot be expressed in terms

of lower-order q-point functions, q < n. Exceptions are the media possessing the so-
called phase-inversion symmetry, i.e. media whose morphology of phase 1 at volume
fraction φ1 is statistically identical to that of phase 2, where the volume fraction of
phase 2 is 1−φ1 and hence

S(1)
n (xn ;φ1,φ2) = S(2)

n (xn ;φ2,φ1), (4.17)
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where xn ≡ {x1, x2, . . . , xn}; at φ1 =φ2 = 1/2. From Equation (4.9) it can be seen that the
odd-order probability functions S(i )

2m+1 can be expressed in terms of all the lower-order

probability functions. However, the even-order functions S(i )
2m cannot be expressed in

terms of the lower-order functions.

Asymptotic Properties and Bounds

It is possible to establish asymptotic properties of and bounds on S(i )
n that apply to any

statistically inhomogeneous two-phase random medium.
For a given set {x1, x2, . . . , xn}, consider a general partition into L sets γ j , such that⋃L

j=1γ j = {x1, x2, . . . , xn}, each with m(γ j ) elements. Let all of the relative distances

between the m(γ j ) elements of these subsets remain bounded, and let F j
m(γ j ) be the

polyhedron with m(γ j ) vertices located at the positions associated with i th subset.

Denoting the centroid of F j
m(γ j ) by R j , let R j k be the relative distance between the

centroids of F j
m(γ j ) and F k

m(γk ), where j and k are all possible values such that 1 ≤ j <
k ≤ L. A system is said to possess no long-range order if as R j k →∞ for all j and k,
the m(γ j )-point functions corresponding to each γ j become statistically independent,
i.e., the n-point function factorizes into L products as follows

lim
all R j k→∞

S(i )
n (x1, x2, . . . , xn) =

L∏
p=1

S(i )
m(γp )(x1, x2, . . . , xm(γp )), (4.18)

An example of a system with long-range order, and thus one that does not obey the
asymptotic result, is an infinitely large crystalline (periodic) array of identical spheres.

As an example, the aforementioned general asymptotic results are presented for
the cases n = 2 and n = 3 for statistically homogeneous media without long-range or-
der. For n = 2, one has

lim
x12→0

S(i )
2 (x12) =φi , lim

x12→∞S(i )
2 (x12) =φ2

i , (4.19)

and for n = 3, under permutations of the distances x12, x13, and x23,

lim
x12→0,x13→∞S(i )

3 (x12, x13) =φi , lim
x12→∞S(i )

3 (x12, x13) = S(i )
2 (x12), (4.20)

lim
x13→∞

x12 fixed

S(i )
3 (x12, x13) =φi S(i )

2 (x12), lim
all xi j →∞

S(i )
3 (x12, x13) =φ3

i . (4.21)

As for the bounds, since 0 ≤ I (i )(x) ≤ 1 for all x in V , we have the elementary
bounds

0 ≤ S(i )
n (xn) ≤ S(i )

n−1(xn−1), for all xn and n ≥ 2, (4.22)

0 ≤ S(i )
1 (x1) ≤ 1, for all x1. (4.23)

The one-point function S(i )
1 (x1) is an upper bound on S(i )

n (xn) for all xn and n.

Geometrical Probability Interpretation

The geometrical-probabilistic significance of the n-point probability function is easily
seen for any microstructure. Let F (i )

n be a polyhedron with n vertices located at posi-
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tions x1, x2, . . . , xn . Then, for statistically inhomogeneous media, S(i )
n is the probabil-

ity that all n vertices of F (i )
n with fixed positions x1,x2, . . . ,xn lie in Vi . For statistically

homogeneous, but anisotropic media, S(i )
n is the probability that all n vertices of F (i )

n
lie in Vi when the polyhedron is randomly placed in the volume at fixed orientation
i.e., over all translations of the polyhedron. For statistically isotropic media, S(i )

n can be
interpreted as the probability that all n vertices of F (i )

n lie in Vi when the polyhedron
is randomly placed in the volume, i.e., over all translations and rigid-body rotations of
the polyhedron.

4.3.3 Lineal-Path Function

For statistically isotropic media, the lineal-path function, denoted by L(i ), gives the
probability that a line segment of length z lies wholly in phase i when randomly thrown
into the sample. The function L(i )(z) contains a coarse level of connectedness infor-
mation about phase i , although only along a lineal path of length z in phase i . It is a
lower-order microstructural function, more precisely a lower-order case of the canon-
ical n-point correlation functions.

The lineal-path function is a monotonically decreasing function of z, since the
space available in phase i for a line segment of length z decreases with increasing
z. Accordingly, the extreme values of L(i )(z) are

L(i )(0) =φi , L(i )(∞) = 0, (4.24)

where φi is the volume fraction of phase i .
For statistically homogeneous, but anisotropic media, L(i )(z) will depend not only

on the magnitude of vector z but also on its orientation. For statistically inhomoge-
neous media, L(i )(x1, x2) will depend on the absolute positions x1 and x2 of the end
points of the vector z = x2 −x1.

4.3.4 Two-Point Cluster Function

The formation of very large, on the order of the system’s size, clusters2 of a phase in a
heterogeneous material can have a strong influence on its macroscopic properties.

In this context, the definition of the two-point cluster function, denoted as C2, for
general statistically inhomogeneous media, is given through the decomposition of the
standard two-point probability function for the phase of interest, say phase 2, into a
"connected" part and a "disconnected" part as

S2(x1, x2) =C2(x1, x2)+E2(x1, x2), (4.25)

where C2(x1, x2) is the probability of finding two points at positions x1 and x2 in the
same cluster of phase 2 and E2(x1, x2) is the probability of finding two points at posi-
tions x1 and x2 that are not in the same cluster of phase 2. Accordingly, the quantity
E2 is called the two-point blocking function.

It can be seen from its definition, that C2 generally contains nontrivial connected-
ness information and therefore is a better signature of the microstructure than S2.

2A cluster of phase i is defined as the part of phase i that can be reached from a point in phase i without
passing through phase j 6= i .
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4.3.5 Nearest Neighbor Function

The aforementioned statistical descriptors are defined for random media of arbitrary
microstructure. On the other hand, the following statistical descriptors are used to
characterize statistically isotropic media composed of identical spherical particles of
diameter, D , at number density3, ρ, distributed throughout another phase.

One such example is the nearest neighbor function, denoted as HP . Despite mul-
tiple definitions, the one adopted here states that HP (r )dr is the probability that, at
an arbitrary particle center in the system, the center of the nearest particle lies at a
distance between r and r + dr . Another similar function, used by Pathan et al. (2017),
here denoted as H∗

P , is defined such that H∗
P (θ)dθ is the probability that, at an arbi-

trary point particle center in the system, the center of the nearest particle lies at an
angle between θ and θ+ dθ. Both HP (r ) and H∗

P (θ) are probability density functions,
they are nonnegative for all r and normalize to unity. Furthermore, for statistically in-
homogeneous media both functions will also depend upon the location of the central
particle.

4.3.6 Voronoi metrics and Minkowski structure metrics

The Voronoi diagram divides the domain into regions, each associated with a seed.
A given point of the domain belongs to region Rk , corresponding to seed xk , if xk is
the closest seed to that point. Figure 4.4 presents 2D and 3D examples of Voronoi
diagrams.

(a) (b)

Figure 4.4: Voronoi diagrams of 100 points obtained through a Poisson point process.
(a): 2D and (b): 3D.

Its construction in three-dimensional systems has become a common element of
structural analyses of particulate assemblies, including packing problems and granular
matter (Schaller et al., 2013).

3The number density ρ is defined as the number of particle centers per unit volume.
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The Voronoi diagram provides a notion of neighborhood, where neighbors of a
given particle are identified as all particles whose corresponding cell has a common
edge, or equivalently, that is connected to the particle by a Delaunay edge. For a set of
nonoverlapping spheres or circles of the same radius, letting the centers of each par-
ticle be the seeds of the Voronoi diagram, the cells will be convex polygons, that do
not intersect the particles. However, for a general particle, if the seed is taken to be its
center of mass, the cells of the Voronoi diagram may intersect the particles (Schaller
et al., 2013).

One way to circumvent this problem is to define the so-called set Voronoi diagram,
where the distances used for its construction are not taken relative to the seeds, but
instead relative to the surface of the particles. This leads to cells that do not inter-
sect the particles. However, the cells may no longer be convex, or even polyhedra,
i.e. the Voronoi facets may be curved, existing even the possibility that at a point not
on a Voronoi edge, the Voronoi facet is not smooth. Schaller et al. (2013) presents an
algorithm to obtain the set Voronoi of 2D and 3D convex particles based on the trian-
gulation of the particles’ bounding surfaces. Figures 4.5 and 4.6 present examples of
set Voronoi diagrams. It can be shown that for circles of different sizes or ellipses the
edges of the Voronoi cells are no longer straight lines, and these may in some cases
be non-convex (see Figures 4.5a and 4.5b). The same applies in 3D for sets of spheres
with different sizes and ellipsoids (see Figures 4.6a and 4.6b).

(a) (b)

Figure 4.5: 2D set Voronoi diagrams for (a) disks with different radii, (b) ellipses.
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(a) (b)

Figure 4.6: 3D set Voronoi diagrams for (a) spheres with different radii and (b) ellip-
soids.

After generating the Voronoi diagram, there is a need to characterize its cells. A set
of metrics is their area/volume, perimeter/surface area, and the number of neighbors.
Lovrić et al. (2019) presents a detailed analysis of the distribution of such properties of
the set Voronoi diagram of 2D packings of ellipses.

A very interesting approach is the use of Minkowski structure metrics, as presented
by Mickel et al. (2013), generalizing the bond orientational order parameters intro-
duced by Steinhardt et al. (1983).

For the sake of clarity, they are first presented for two-dimensional convex shapes
following Kapfer et al. (2020). Let K be a given convex polygon in the plane, Lk the
lengths of the kth edge, and nk the outer normal vector to the kth edge (see Figure
4.7). Moreover, define the vectors

Lk = Lk nk , (4.26)

coinciding with the edges of the polygon rotated by 90º. For a convex polygon, the set
of vectors {Lk } defines it uniquely. If the vectors Lk are sorted by the angle they span
with the x axis, their concatenation retrieves a copy of the original polygon, rotated by
90º.

The normal density function, which characterizes the shape K , denoted by ρK , is
defined as

ρK (ϕ) =∑
k

Lkδ(ϕ−ϕk ), with 0 ≤ϕ≤ 2π, (4.27)

where δ is Dirac’s delta function and ϕk is the angle that the outer normal of the kth
edge makes with the positive x semi-axis (see Figure 4.7). The function ρK charac-
terizes the interface of the shape K , specifying the radius of curvature for each of its
points parametrized by ϕ. Accordingly, the radius of curvature is infinite at the angles
corresponding with the edges of the polygon, since they are straight lines, and zero for
all remaining angles.

To decompose the normal density into the irreducible representations of the rota-
tion group, i.e. to express it using sines and cosines or imaginary exponentials, one ob-
tains its Fourier series, defining ρK has a periodic function with period 2π. The Fourier
coefficients ψs (K ) define the Irreducible Minkowski Tensors and are given by
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Figure 4.7: Convex polygon K with sides Lk and corresponding outer normals nk , k =
0, . . . ,6.

ψs (K ) =
∫ 2π

0
exp(i sϕ)ρK (ϕ)dϕ=

∞∑
k=−∞

Lk exp(i sϕk ). (4.28)

Knowing all ψs , one can reconstruct the function ρK (ϕ), and thus, the original con-
vex shape K . The zeroth coefficient is precisely the perimeter of the shape, ψ0(K ) =
P (K ). For any closed contour, the vectors Lk sum to zero, hence, ψ±1 = 0. Any higher
Irreducible Minkowski Tensors contain shape information about the anisotropic na-
ture of the contour. Roughly speaking, the ψs tensor describes the component of the
interface with s-fold, but not higher, symmetry. Its magnitude quantifies how strong
this symmetry is and its argument the orientation at which the symmetry is detected.
This information about the shape is disjoint between the coefficients, i.e. they are in-
dependent. Figure 4.8 contains the basic shapes retrieved assuming that only one of
the coefficients ψs , s ≥ 2 is different from zero, i.e. the density function is given by
ρKs = 1+ cos(sϕ) for s ≥ 2. These are obtained through integration of the Fourier se-
ries, given the relation between the arc length and the radius of curvature (Apostol,
1969).

The mapping between convex shapes K and their set of Irreducible Minkowski
Tensors {ψs (K )} is bijective.

To obtain a set of parameters independent of the orientation and size of an object,
a metric must be defined that is invariant under rotation, scaling, and translation. One
such set of metrics are the so-called Minkowski Structure Metrics, qs , defined as

qs (K ) ≡ |ψs (K )|
ψ0(K )

. (4.29)

The qs are fingerprints of a particular class of shapes and are indifferent to rotation
and scaling. Thus, they may be used to classify shapes, ignoring their size and ori-
entation. They are an alternative representation of the cartesian Minkowski tensors
W 0,s

1 .



48 4. Random Heterogeneous Materials

(a) s = 0 (b) s = 2 (c) s = 3

(d) s = 4 (e) s = 5 (f) s = 6

Figure 4.8: Shapes containing s-fold, but not higher, symmetry, obtained from the den-
sity function ρKs (ϕ) = 1+cos(sϕ), s = 0, 2, 3,4, 5, 6, 0 ≤ϕ< 2π.

In 3D, the normal density function of a polyhedron K is given by

ρK (n) =∑
k

Akδ(nk −n), (4.30)

where Ak and nk are the face areas and the outer normals of K , respectively. The
density function in 3D corresponds to the product of the principal radii of curvature
at a given point of the polyhedron, whose position is parametrized by the outer normal
at that point. As in 2D for polygons, for ns coinciding with the outer normals of faces
of the polyhedron, the function is infinite, being equal to zero otherwise.

To decompose the normal density into the irreducible representations of the ro-
tation group, one expresses the normal density function using spherical harmonics,
Y m

s (n) (see Figure 4.9), a generalization of the Fourier series in 2D. The corresponding
coefficients, ψs,m are

ψs,m(K ) =∑
k

Ak Y m
s (nk ). (4.31)

As in 2D, the coefficients ψs,m provide information about the shape of K . More
precisely, the s-fold symmetry is marked by nonzero coefficients ψs,m , i.e. coefficients
related to spherical harmonics of degree s. The order m of the spherical harmonic is
tied to the orientation at which the symmetry is detected in space. Figure 4.10 displays
the basic shapes retrieved using the algorithm proposed by Lamberg and Kaasalainen
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Figure 4.9: Spherical harmonics Y m
s (n), s = 0, 1, 2, 3, 4, 5, 6, −s ≤ m ≤ s, with n ∈ S2,

where S2 is the unit sphere. Red represents positive values and blue negative values.

(2001) to solve the Minkowski problem4, with only one coefficient ψs,m , s ≥ 2, different
from zero.

The three-dimensional irreducible Minkowski tensors are defined as

qs (K ) =
√

4π

2s +1

1

A2

s∑
m=−s

|ψs,m(K )|2, (4.32)

using the quadratic invariants of the spherical harmonics, so that it is invariant under
translation, rotation and scaling and so a fingerprint of the body’s shape.

Klatt et al. (2017) studies the average values and distribution of theses metrics ap-
plied to the Voronoi diagram of points in a plane generated from diverse procedures,
such as the Poisson point process, RSA (see Section 5.3.2) and hard-sphere equilib-
rium arrangements, concluding that they are enough to characterize the generation
method. This shows their great sensibility to any order within the system, in this case,
related to the generation method. Kapfer et al. (2012) claims that Minkowski’s fourth-
order tensors, whose information about the shape of the Voronoi cells is the same as
the Irreducible Minkowski tensors, are good metrics to detect local crystallinity and
hence order in the system.

4The Minkowski problem asks for the reconstruction of a convex shape given its curvature.
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Figure 4.10: Shapes containing s-fold, but not higher, symmetry, obtained from the
density function ρKs,m (n) = 1+Y m

s (n), s = 0, 2, 3,4, 5, 6 and −s ≤ m ≤ s, with n ∈ S2,
where S2 is the unit sphere. Red marks points with higher curvature and blue points
with lower curvature.

4.3.7 n-Particle Probability Densities

Classically, any ensemble of many-particle systems may be completely spatially char-
acterized by the probability density function associated with finding a particular con-
figuration of particles. The following applies to systems of identical spheres, spheres
with polydispersivity in size as well as oriented, nonspherical particles. Let r i de-
note the center-of-mass coordinate, and eventually the orientation of the particle i ,
0 < i ≤ N , and r N = {r 1,r 2, . . . ,r N } the configuration of a system with N particles.

The configuration of the particles is statistically characterized by the specific N -
particle probability density function PN (r N ) defined such that PN (r N )dr N is the prob-
ability of finding the center of particle 1 in volume element dr 1 about r 1, the center of
particle 2 in volume dr 2 about r 2, . . . , and the center of particle N in volume element
dr N about r N , where dr N ≡ dr 1 dr 2 · · · dr N .

For ensembles consisting of indistinguishable particles, it is convenient to intro-
duce the generic n-particle probability density function ρn(r n), defined as

ρn(r n) = N !

(N −n)!

∫
PN (r N )dr N−n , (4.33)

where dr N−n ≡ dr n+1 dr n+2 · · · dr N . This means that ρn(r n)dr n is proportional to the
probability of finding any subset of n particles with configuration r n in the volume
element dr n . For statistically homogeneous media, the one-particle function ρ1 is
just equal to the constant number density of particles, ρ, i.e.,

ρ1(r 1) = ρ ≡ lim
N ,V →∞

N

V
. (4.34)

For statistically homogeneous media, it is convenient to define the so-called n-
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particle correlation function as

gn(r n) = ρn(r n)

ρn . (4.35)

In systems without long-range order and in which the particles are mutually far from
one another, ρn(r n) → ρn and, thus, gn(r n) → 1. Hence, the deviation of gn from
unity provides a measure of the degree of spatial correlation between the particles,
with unity corresponding to a null spatial correlation.

The important two-particle quantity

g2(r 12) = ρ2(r 12)

ρ2 , (4.36)

is usually referred to as the pair correlation function. In the statistically isotropic case
it only depends on the radial distance r12, i.e.,

g2(r 12) = g2(r12), (4.37)

and is referred to as the radial distribution function. Hence, ρg2(r )dr may be inter-
preted as the average number of particles at a radial distance between r and r + dr
from a reference particle, since ρg2(r )dr = ρs1(r )g2(r )dr , where s1(r ) is the surface
area of of a d-dimensional sphere of radius r .

4.3.8 Ripley’s K function

Another widely used function in describing point distributions is Ripley’s K function,
also known as the second-order intensity function, K (r ) (Buryachenko et al., 2003;
Melro, 2011; Pathan et al., 2017). It is a tool used to analyze completely mapped spatial
point process data. For this particular application, the points are the center-of-mass
coordinate of the particles.

According to Dixon (2002), Ripley’s K function is defined as the number of points
expected to be located within a distance r of an arbitrary point divided by the number
of points per unit area, and is obtained from the following expression

K (r ) = ρ−1E , (4.38)

where ρ is the density of points, r is the distance, and E is the number of extra points
within distance r of randomly chosen point.

Given the locations of all events within a defined study area, the density of points
can be estimated as ρ̂ = N /A, where N is the observed number of points and A is the
area of the study region. Accordingly, an estimator for K (r ) is given by

K̂ (r ) = A

N 2

∑
i

∑
j 6=i

I (di j ≤ r )

w(li , l j )
(4.39)

where A is the area of the study region, N is the total number of particles, di j is the
distance between points i and j , and I (x) is an indicator function having the value 1 if
x is true and 0 otherwise. The weight function, w(li , l j ), provides an edge correction,
needed because points outside the boundary are not counted in the numerator, even
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if they are within a distance r of a point in the study area. It has the value 1 when the
circle is centered at li and passing through the point l j , i.e. it has a radius equal to
di j and is completely inside the study region. If part of the circle falls outside the area
under analysis, then w(li , l j ) is the proportion of the circumference of that circle that
falls in the study area. The effects of edge corrections are more important for large r
because large circles are more likely to be outside the region under examination. Thus,
it is common practice to consider only r less than one-half the shortest dimension of
the study area.

The information it provides about the medium is different from the one given by
the nearest neighbor functions. The latter analyzes short-range interaction between
the fibers, while the Ripley’s K function also provides some insight about the mi-
crostructure at other distances. It is also independent of the direction analyzed since
it is a function only of the distance to the origin point.

For a homogeneous Poisson process, also known as complete spatial randomness,
it can be shown that

K (r ) =πr 2. (4.40)

If the spatial distribution under analysis provides a plot of K̂ (r ) below the Poisson
curve, it is an indication that exhibits some degree of regularity. On the contrary, if
K̂ (r ) is above the Poisson curve, the distribution is likely to present clustering. A stair-
like pattern for K̂ (r ) points to a regular pattern.

The difference between a Poisson distribution and the spatial distribution in the
results can be studied using the L̂(r ) function defined as

L̂(r ) =
√

K̂ (r )

π
− r. (4.41)

According to the last paragraph, peaks of positive values in a plot of L̂(r ) would indi-
cate clustering while negative troughs indicate regularity at distance r .

The radial distribution function g2 is related to Ripley’s K function as follows (Melro,
2011)

g2(r ) = 1

2πr

dK (r )

dr
. (4.42)



Chapter 5

Computational Microstructure
Generation

This chapter presents an overview of the computational generation schemes used to
generate RVEs of matrix-inclusion composites. Its classification scheme is inspired by
Bargmann et al. (2018), dividing the methods into three classes: microstructure recon-
struction from experimental data, physics-based microstructure generation, and geo-
metrical methods. The last two sections present a brief discussion about the concept
of randomness in the context of RVEs and a comparison of the different algorithms
from the standpoint of the objectives presented in Section 1.1.

5.1 Microstructure reconstruction from experimental data

The inverse problem to the statistical characterization of a microstructure is its re-
construction from limited microstructural information, typically, lower-order correla-
tion functions. Such reconstructions are nonunique, and thus, this is a distinct prob-
lem from data decompression algorithms that restore complete information, e.g. the
grayscale of every pixel in an image (Torquato, 2013).

Stereology Stereology is a related area that seeks to investigate 3D spatial structures
making use of planar sections (Torquato, 2013), such as the ones obtained by Louis
and Gokhale (1995) for a mixture of hollow spherical carbon particles in a polymer,
using optical microscopy. Microstructures such as these can be used as 2D RVEs, how-
ever in addition to being time-consuming and resource-intensive to obtain. they are
not periodic, precluding some types of numerical analysis (Pathan et al., 2017).

In general, some important spatial characteristics cannot be estimated stereolog-
ically, and methods based on three-dimensional measurement techniques have been
proposed, e.g. confocal microscopy, that dispense the need for physical sections (Bury-
achenko et al., 2003).

Reconstruction techniques

As reported by Torquato (2013), the first reconstruction procedures were based on
thresholding Gaussian random fields. Roberts (1997) presents such a method generat-
ing random Gaussian fields using two different methods, a Fourier summation and a

53
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"random-wave". The microstructures are then obtained from level cuts of these fields,
chosen so that the two-point probability function of the model coincides with real
micrographs. He found that materials with practically identical two-point correlation
functions can have very different morphologies and macroscopic properties, showing
that reconstructions based on the two-point probability function do not necessarily
provide a useful model of the original material. Moreover, this method failed to sat-
isfactorily reproduce a microstructure made up of identical overlapping spheres and,
according to Torquato (2013), it is not suitable for extension to non-Gaussian statistics.

Another technique, developed by Torquato et al. (2000), consists of a stochastic
optimization technique, based on simulated annealing, to reconstruct random media.
The method is highly flexible in that one can include any set of different types of cor-
relation functions as microstructural information. It is, according to Torquato (2013),
both a generalization and simplification of the aforementioned Gaussian random field
method. Jiao and Chawla (2014) presented a framework to model heterogeneous in-
clusions of secondary phases based on the directional correlation functions of the in-
clusions, including the directional two-point cluster functions, using this method.

Fullwood et al. (2008) extended and applied phase-recovery algorithms from the
field of signal processing to the problem of reconstructing microstructures from their
2-point statistics. They also present a framework for the fast computation of 2-point
statistics of the microstructure using discrete fast Fourier transforms and claim that
for so-called eigen microstructures, i.e. two-phase discretized microstructures, their
reconstruction is unique, up to translation and inversion.

Tahmasebi and Sahimi (2013) developed a new reconstruction method based on a
cross-correlation function and a one-dimensional raster path, providing an accurate
description of a wide variety of materials and media. The reconstruction uses a single
2D slice of data to reconstruct an entire 3D medium.

5.2 Physics based microstructure generation

Simulating the manufacturing process is, in most cases, inefficient for matrix inclusion
microstructures. Bulk or mixing simulations are far too complex and their simulation
times are usually not worth the gained findings on particle distribution (Bargmann
et al., 2018).

An approximation to some aspects of the manufacturing process of fiber-reinforced
composites can be done with reduced computational effort using rheological models
(Bargmann et al., 2018), such as the one presented by Folgar and Tucker III (1984),
obtaining a prediction for the fiber orientation in short fiber composites.

5.3 Geometrical methods

Before devising a geometrical generation method for the RVEs, a geometrical defini-
tion of the inclusions’ shapes is needed, since matrix-inclusion composites are more
easily characterized describing the inclusions as simple geometric shapes than using
statistical probability functions. Given the parametrization of the geometric bodies,
stochastic distributions can be considered for any of the parameters to mimic experi-
mental findings (Bargmann et al., 2018).

The organizational scheme used in this section is inspired by the one used by Bury-
achenko et al. (2003) and divides the geometrical methods for RVE generation into



5.3. Geometrical methods 55

methods based on molecular dynamics, methods based on Monte Carlo techniques
and methods based on close random packing.

5.3.1 Molecular Dynamics

Molecular dynamics is a widely used computational approach in which the classical
equations of motion are solved numerically and the trajectories thus generated are
used to extract macroscopic observables (Tuckerman, 2010).

There are at least two types of molecular dynamics simulations: time-driven and
event-driven. In a time-driven simulation, one discretizes time and updates the po-
sition of each particle after every time interval, checking for overlaps. If there is an
overlap, the simulation is rolled back to the time of the collision, the velocities of the
colliding particles are updated and the simulation continues (Sedgewick and Wayne,
2011). According to Sedgewick and Wayne (2011), despite their simplicity, time-driven
simulations suffer from two major drawbacks, the number of overlap checks, that if
done naively is proportional to the square of the number of particles, and the risk of
not detecting a collision, if a time interval that is too large is used, as the particles may
not overlap when one checks.

Salnikov et al. (2015) present such an algorithm. It starts with a random illegal con-
figuration, i.e. overlapping geometries, and achieves a legal configuration postulating
repulsive forces between intersecting particles proportional to the depth of the over-
lapping domain. The ODEs describing the dynamics of the system governed by these
forces are solved numerically to achieve the relaxed configuration. Damping forces
are also included to slow the system down and make it stay in the relaxed configura-
tion. They produced RVEs composed of spheres and cylinders at high fractions, in an
efficient way and achieving residual intersections between the particles that decrease
exponentially with the simulation’s time length.

On the other hand, in an event-driven simulation, one focuses only on those times
at which noteworthy events occur, e.g. collisions between particles. For example, for a
system of hard disks, the particle paths are analytically calculated, as they are straight
lines and the particles are non-interacting apart from the collisions. Therefore, the
times and places where they collide can be readily found. Ordering these events as a
function of the time instant at which they will occur, one considers the time instant
corresponding to the first collision. The simulation is advanced up to that moment,
moving each particle accordingly and assigning new velocities to the colliding parti-
cles. Next, the future collisions are once again computed and ordered according to
the time instant at which they will occur, repeating the process. It is also important
to note that in event-driven molecular dynamics simulations the configurations of the
RVE are always legal, i.e. there are no intersections.

Lubachevsky and Stillinger (1990); Lubachevsky et al. (1991) used an algorithm
based on event-driven molecular dynamics able to achieve high volume fractions of
disks and spheres. Particles begin as moving points, grow in size at a uniform rate, un-
dergo nonconserving collisions, and eventually jam up. The organization of the parti-
cles in the final RVE, more precisely their arrangement into crystals, is highly depen-
dent on the compression rate, i.e. rate of growth, with faster compression leading to
more crystallization.

Later, Donev et al. (2005a) generalized the same event-driven molecular dynam-
ics algorithm to ellipsoids, using a partial-update near-neighbor list algorithm, and
bounding sphere complexes for very aspherical particles. Ghossein and Lévesque (2013)



56 5. Computational Microstructure Generation

also present a similar scheme to produce packings of ellipsoids, computing binary col-
lision times by finding the roots of a non-linear function.

To implement event-driven molecular dynamics simulations one needs to imple-
ment contact or approximate contact algorithms to circumvent overlap. For systems
of spheres or capsules, the binary collision times can be computed analytically. On
the other hand, for systems of with other shapes, e.g. ellipsoids, the collision times
are, in general, computed numerically (Bargmann et al., 2018). Ghossein and Lévesque
(2013) use an algebraic criterion based on the work of Wang et al. (2001), which implies
finding the roots of a non-linear function to determine the relative configuration of
two ellipsoids, as separate, tangent or overlapping. Donev et al. (2005b) considers the
aforementioned approach, but favors a criterion developed by Perram and Wertheim
(1985), declaring that it is both numerically and theoretically superior.

Regarding both types of molecular dynamics simulations, to avoid computing un-
necessary collision times or overlap checks, there are methods such as the cell list
method and the near-neighbor list method capable of improving significantly the CPU
simulation times (Ghossein and Lévesque, 2013; Donev et al., 2005a).

5.3.2 Monte Carlo techniques

The random sequential adsorption (RSA) method, also known as the hardcore model,
is the most common method to generate matrix-inclusion RVEs and works by adding
filler particles sequentially and randomly in the prescribed RVE domain. If a parti-
cle does not intersect previously placed particles, its position is accepted, otherwise
it is discarded. The process is repeated until the desired volume fraction is reached
(Bargmann et al., 2018). This algorithm, despite being simple and very fast for slow
volume fractions, becomes slow at high volume fractions, even presenting a satura-
tion limit, e.g. for cylindrical fibers it is as low as 0.54 (Pathan et al., 2017).

Buryachenko et al. (2003) reports modifications to the RSA method for spheres,
where a virtual shaking of the particles through random displacements is employed
to better mix the system and allow the placement of more particles, with a saturation
limit as high as 0.65.

Melro (2011) developed a more complex RSA-based algorithm, perturbing the par-
ticles in order to cause a closer packing of the existing particles, by encouraging fiber
attraction, using several arbitrary parameters that make the algorithm hard to imple-
ment.

Another variation on the RSA method was presented by Segurado and Llorca (2002).
Firstly, they generated a unit cell having a volume fraction lower than the desired value
using RSA. The cell was then compressed in several steps and the particle positions
and volumes are updated at each compression stage. The eventual intersections be-
tween each stage are dealt with using a Markov-chain approach, where intersecting
particles are moved randomly until there are no overlaps.

There is also a rejection-free RSA method for disks, described by Krauth (2006) as
"faster than the clock". It works by keeping track of the area where disks may still
be legally placed using a grid system and sampling the position for the new particle
only from this area. This speeds up the algorithm immensely, as the biggest problem
for the RSA method at high volume fractions is the high rejection rate. Miranda (2015)
implemented a similar algorithm, stating that the algorithm is of linear complexity and
that the time taken to place any disk is constant during the process.

Beyond RSA, Vaughan and McCarthy (2010) presented another Monte Carlo scheme
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based on a Markov-chain sampling for disks. The first particle is placed randomly in
the RVE and then, the position of the next particles is given relative to the last particle
placed. The magnitude of the position vector relative to the last particle is sampled
from the nearest neighbor function and the angle is sampled from a uniform distribu-
tion. The particle is accepted if there is no overlap. The author claims that this scheme
better approximates the experimental findings since it tries to mimic statistical distri-
butions found experimentally.

Another approach related to Markov-chain sampling presented by various authors
(Bargmann et al., 2018) samples the configuration space starting from a periodic ini-
tial configuration of particles by perturbing their positions. One of these authors is
Catalanotti (2016) that presents an approach that can produce RVEs of spheres with a
volume fraction as high as the theoretical maximum, 0.74, starting from periodic ar-
rangements of spheres derived from the face-centered cubic unit cell.

Other Monte Carlo schemes are used to explore the configuration space, starting
from a legal configuration, which allow for moves of an independent particle even if it
generates overlaps, the so-called cluster algorithms described by Krauth (2006).

In the avalanche cluster algorithm, an independent particle is randomly moved. If
after the move it overlaps another particle, the other particle is then simply moved out
of place. This leads to an avalanche, where the particles tip-off each other until a legal
configuration is found. The use of this algorithm in statistical mechanics, where the
detailed balance1 must be maintained, implies that there be only one terminal parti-
cle, the last particle to be tipped off, before a legal configuration is found. However,
this is not a limitation in the case of RVE generation.

Lastly, Bernard et al. (2009) present an event-chain Monte Carlo algorithm capable
of exploring the configuration space of systems containing 10242 disks at high volume
fractions. This allowed them to show that the melting in hard disks proceeds in two
steps with a liquid phase, a hexatic phase, and a solid, solving a long standing prob-
lem in statistical mechanics (Bernard and Krauth, 2011). This algorithm is rejection-
free, allowing for the displacement of arbitrary long chains of particles, and long-range
coherent movement to be induced. Each move consists of a deterministic chain of
"events": a disk advances until it strikes another one, which is then in turn displaced.
The Monte Carlo move starts with a randomly chosen disk and stops when the lengths
of all displacements add up to a total displacement parameter. This parameter allows
the move to be reversible without rejections. In comparison to a molecular-dynamics
algorithm for the same system, the authors showed that it is more efficient, exploring
faster the configuration space.

5.3.3 Dense random packing

As the name implies, the goal of these methods is the creation of a random arrange-
ment of particles, whose volume fraction is as high as possible (Torquato et al., 2000).
However, according to Torquato et al. (2000), this statement of the problem is ill-defi-
ned, as shown by the ample evidence in the literature, in the form of actual and com-
puter experiments. Increasing the degree of coordination, and thus, the bulk system
density comes at the expense of disorder. The precise proportion of these compet-
ing effects is arbitrary and therein lies the problem. A precise mathematical definition
that supplants the inadequate random close packing state is the maximally random

1The detailed balance is maintained in a system, if a given Monte Carlo move has the same probability
as its reverse.



58 5. Computational Microstructure Generation

jammed state, suggested by Torquato et al. (2000). It is defined for systems of disks
as the state that minimizes some chosen order metric among all statistically homo-
geneous and isotropic jammed structures, where a jammed particle is a particle that
cannot be translated while fixing the positions of all the other particles in the system.

Notwithstanding this state of affairs, the designation "dense random packing" will
still be used to denote the methods presented in the remainder of this section.

Before introducing the methods for dense random packing, it may be of interest
to introduce the related problem of cutting and packing. Cutting and packing prob-
lems consist of packing a set of geometric objects/items of fixed dimensions and shape
into a region of predetermined shape without allowing for intersections and keeping
in mind any technological constraints that cannot be reduced to purely geometric
constraints (Hifi and M’hallah, 2009). They are NP-hard combinatorial optimization
problems, i.e. no procedure can exactly solve them in deterministic polynomial time
(Fowler et al., 1981). There are relatively few analytical results relating to the packing
of even the simplest geometrical objects. Packing densities for close lattice packing
are π/

p
12 ≈ 0.9069, corresponding to a triangular arrangement of disks in the plane,

and π/
p

18 ≈ 0.7405, corresponding to the face-centered cubic unit cell in the case of
spheres packed into R3 (Buryachenko et al., 2003).

Buryachenko et al. (2003) divides the dense random packing methods into two
types: the sequential generation models and the collective rearrangement models. The
present exposition will be based on that classification.

Sequential generation models

There are several sequential generation models for random dense packings, among
which the cluster growth method and the advancing front algorithm. None of the
works mentioned here presented focus on the generation of RVEs with periodic bound-
aries.

In the sequential model by Bennett (1972), so-called cluster growth model, aggre-
gates of several thousand hard spheres of equal size were constructed by depositing
additional spheres, one at a time, at surface sites on a small seed cluster, placing each
new sphere in contact with three already present and not moving it afterward. De-
spite the author claiming that there is no evidence of crystallinity and that the pair
correlation function is similar to that of the dense random packings which have been
prepared from ball bearings, and to the pair correlation functions calculated from x-
ray diffraction work on amorphous alloys, other reports maintain that the algorithm
produces inhomogeneous and anisotropic inclusion fields, whose radial distribution
function does not display the characteristic split-second peak observed in experimen-
tal packing.

Feng et al. (2002, 2003) presents an advancing front-based algorithm to generate a
random packing for disks with different radii within a 2D domain. The same author
also extends this approach to ellipses, convex polygons, and spheres.

Ilin and Bernacki (2016) presents a constructive ellipse packing algorithm, so-called
advancing layer algorithm, where each ellipse is approximated by a set of circles and
placed on the particle that is at the smallest "height" in the domain, checking if there
are no intersections with the remaining neighboring particles.

There is also another kind of sequential generation model, called the model of
"rigid sphere free fall into a virtual box". It consists in the sequential vertical drop
of particles from random points onto the surface of an existing particle cluster grow-
ing upwards. The movement of the particles after being dropped is controlled and
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influences the density obtained (Buryachenko et al., 2003).
Constructive algorithms from cutting and packing are also presented by Oliveira

et al. (2000) and Júnior et al. (2014). The former suggests building the system of non-
overlapping geometric shapes by successively adding a new piece to a partial solution,
i.e. to the set of pieces previously nested. Every time a new piece is placed, the no-
fit-polygon is used to determine the feasible placement points of the layout. This is
followed by a local search and/or the use of heuristic algorithms to choose, in each
step, the best piece to place, its orientation and the best placement point. Júnior et al.
(2014) address the irregular strip packing problem, a particular two-dimensional cut-
ting and packing problem, in which convex or concave shapes have to be packed onto
a single rectangular object. They propose an approach that prescribes the use of a
metaheuristic engine, a genetic algorithm, and a greedy bottom-left placement rule.

Collective rearrangement models

Collective rearrangement algorithms are typically utilized in combination with ran-
dom sequential adsorption, which generates an initial configuration with possibly over-
lapping particles. In a second step, a denser packing with an overlap free configuration
is achieved repositioning and shrinking some or all particles (Bargmann et al., 2018).

Jodrey and Tory (1985) present a numerical scheme to realize homogeneous and
isotropic packing of spheres by assuming hypothetical spheres having a dual structure
whose inner diameter defines the true density and the outer one a nominal density.
The algorithm eliminates overlaps among outer spheres using a heuristic, while slowly
shrinking the outer diameter. The two diameters approach each other, and the even-
tual coincidence of true and nominal densities terminates the procedure. A variation
of this method is presented by Mościński et al. (1989), where instead of using a heuris-
tic, the displacement of the particles was proportional to the overlap of the particles.
Gaiselmann et al. (2013) used this method to obtain their RVEs of non-woven materi-
als.

He and Ekere (2001) also present a method that uses heuristics to decrease the
overlap area between randomly generated spheres in cubic space. The relaxation it-
eration step is repeated a given number of times and then the packing space is ex-
panded, where the scale factor is greater than one and is proportional to the present
mean overlap rate. The relaxation and expansion steps are repeated, and the random
packing is obtained as the mean overlap rate drops below a preset tolerance.

Another approach to the repositioning of overlapping particles to achieve a legal
configuration are optimization schemes that try to minimize the overlap area directly.
Pathan et al. (2017) presents a method for generating cylinders and spheres based on
a constrained optimization formulation, involving the simultaneous generation of all
filler particles using a Poisson point process, followed by an iterative procedure to op-
timize the location of filler particles subject to certain constraints. The algorithm can
be applied to any particle shape whose condition of separation can be defined alge-
braically such as ellipses and ellipsoids. The volume fractions achieved for cylinders
of equal size were 80%; for spheres only up to 40%.

Smirnov and Voloshinov (2018) suggest treating problems of discrete geometry as
global optimization problems, to be solved by one of the general-purpose solver im-
plementing branch-and-bound algorithms. The authors apply this scheme to find so-
lutions to the problem of the densest packing of equal circles in a flat torus.

Balzani et al. (2014) proposed a least-square functional including an arbitrary num-
ber of statistical measures. By minimization of this functional, the artificially gen-
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erated RVE is statistically similar to the included statistical information. They used
ellipsoids which are repositioned during the optimization procedure and which may
overlap.

The discrete element method is a numerical approach that uses an explicit calcula-
tion scheme considering multi-body dynamics to describe the motion and interaction
of a large number of small particles (Bargmann et al., 2018). This method generates an
RVE through densification under influence of gravity. One could either first randomly
generate particles in a container and, then, apply gravity, the so-called mechanical
contraction, or let particles of random horizontal direction drop one by one over a
set of already equilibrated ones, the so-called drop-and-roll method (Bargmann et al.,
2018). Zinchenko (1994) also presents a discrete element method, where the particles
are allowed to swell by the numerical solution of the so-called differential equations of
densification. As their radius increases the algorithm tries to retain contacts through-
out the densification, as far as possible. The algorithm has a well-defined termination
point resulting in a perfect contact network. In general, the DEM related methods con-
sume substantial computation time, when a large number of particles interact (Pathan
et al., 2017).

Another approach is presented by Wang et al. (2019) to randomly generate 2D
packings of a particle assembly for discrete element simulation of convex granules.
The proposed approach consists of discretizing the domain using a weighted Voronoi
tesselation, that after a few iterations, produces an arrangement of polygonal cells,
whose area distribution is as specified. The nonoverlapping particle outlines are gen-
erated via cubic-polynomial-curve fitting to polygonal cells.

5.4 Randomness

This section will deal with a common criticism in microstructure generation of mate-
rials, such as matrix-inclusion composites: the underlying randomness.

First, there is a need to understand what does "random" mean in this context. It
is assumed, as a starting point, that there is an innate sense that allows anyone who
looks at a microstructure to say with more or less certainty that it is "random", i.e., mi-
crostructures are perceived as "random" or not. But how does this perceived "random-
ness" tie back to the "quality" of a generated microstructure is an open problem. The
ultimate goal of the computer generation of microstructures is to generate microstruc-
tures that could plausibly come from the manufacturing process of matrix-inclusion
composites. It is a commonly held belief, and a reasonable one, that microstructures
perceived as more random are more probable to come from a real manufacturing pro-
cess.

Looking at the very definition of the materials under analysis (see Section 4.1), they
are designated as random heterogeneous materials, as each microstructure is a real-
ization of a random variable ξ(x ;ω). However, this in itself does not give away what
characteristics of a given microstructure lead to its perception as "random" or not.

Randomness is usually connected to the concept of entropy. The definition of en-
tropy for the discrete random variable X , H(X ), is

H(X ) =−
n∑

i=1
P (xi ) logb P (xi ) (5.1)

where P (X ) is the corresponding probability mass function and xi are possible values
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taken by X . It can be interpreted as the average number of bits needed to describe a
realization of the random variable (Cover and Thomas, 2012).

There are at least two obstacles to its use in this context. The first is that it depends
on the probability distribution of the random variable. However, one doesn’t have ac-
cess to it, neither analytically nor numerically through the computational generation
method, as the way it samples the configuration space may be different from the real
process. The second difficulty is tied to the fact that entropy is a characteristic of the
method generating the microstructures. Meanwhile, the goal is to classify specific in-
stances of the random variable, i.e. the microstructures generated, as "random" or not,
and not the system as a whole.

From another point of view, according to Uspensky (2009) there are four faces of
algorithmic randomness:

1. stability and stochasticness;

2. chaoticness;

3. typicalness;

4. unpredictability.

They are defined for infinite sequences of binary strings and thus are not directly ap-
plicable to the case at hand. However, they provide a solid basis for a discussion about
randomness. It must also be stressed that they are conditional on the assumed distri-
bution.

Stability and stochasticness are defined as the existence of a limit frequency. For
the simplest case of a fair coin, this means that the fraction of zeros in the n-bit prefix
of the sequence should converge to 1/2 as n goes to infinity, for every reasonably cho-
sen subsequence. By chaoticness, it is meant that the string has a complex structure
and cannot have a reasonable description, i.e. it is irregular. Typicalness relates to the
fact that a random sequence would belong to a reasonable majority. Unpredictability
means that betting against this sequence, trying to guess its terms, one cannot sys-
tematically win and no clever strategy can help. Trying to apply these concepts to
microstructures, the most interesting seem to be chaoticness and typicalness.

As for typicalness, it seems intuitive that most microstructures will belong to a rea-
sonable majority that is perceived as "random". This may be the case for the real man-
ufacturing process and the particular way it samples the configuration space, but it
may not be the case for the computational algorithm used to generate the microstruc-
ture. i.e. a microstructure with crystallinity at high volume fractions may be more
probable than a microstructure perceived as "random". Hence, this may not be an
interesting point of view.

Turning to chaoticness, that is, complexity or disorder, it seems reasonable that real
microstructures perceived as "random" will be disorderly. Moreover, the probability
distribution of the random variable is not needed to define this concept, as the com-
plexity can in theory be gathered from the individual realization of the microstructure.
A quantity often associated with complexity is the so-called Komolgorov complexity,
defined as the shortest program that would produce the string under analysis (Cover
and Thomas, 2012). At first glance this would be the metric one is looking for, however,
it is hard to define for microstructures and so has no practical use. Therefore, it ap-
pears that no bona fide measure for disorder that could be readily applied exists. Still,
it seems like the chaoticness of the microstructure is the most fruitful interpretation of
the term "random" as it is used in this context.
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From a practical standpoint, despite this state of affairs, order metrics such as
bond-orientation metric (Steinhardt et al., 1983) and the Minkowski structure metrics
(Mickel et al., 2013) (see Section 4.3.6) can be used to detected unwanted order, be it
from their average values or their distributions across the particles of the microstruc-
ture.

Kansal et al. (2002) gives a list of desirable characteristics for order metrics. It is
advised that the order metrics be sensitive to any type of ordering in a system and not
be biased toward any reference system. It should also reflect the hierarchy of ordering
between prototypical systems given by common physical intuition, as well as, being
capable of detecting order at any length. Finally, both the variety of local coordination
patterns and the spatial distribution of such patterns should affect the amount of order
measured in a system.

Another approach that can be taken to ensure perceived "randomness" is to pro-
duce microstructures using as a template real microstructures. For example, if the
generated microstructure and the real microstructure have, for example, the same 2-
point probability function and the same Ripley’s K function, then it is conceivable that
the generated microstructure also mimics the perceived randomness of the real mate-
rial. This approach may be harder to use for some types of microstructures, such as
cases where the phases can’t be approximated very well by the geometric shapes used
to parametrize the RVE. Pathan et al. (2017) used it for distributions of disks achieving
good results.

5.5 Comparison

This section presents an attempt to compare the several methods presented previ-
ously, in light of the objectives set forth in Section 1.1.

Beginning with the methods based on microstructure reconstruction from experi-
mental data (see Section 5.1), there are a few incompatibilities with the goals already
stated. The algorithms of this kind reconstruct the microstructure based on statis-
tical function such as the 2-point probability function and the 2-point cluster func-
tion. That information is not available as input and so precludes the use of these ap-
proaches in this context. As a general criticism, one might also add that the generated
microstructures are not periodic and the source images of the microstructure can be
time-consuming to obtain and hard to analyze. It is also true that the easiest statistical
metrics of the microstructure to obtain, such as the 2-point probability function, may
not characterize the microstructure well enough to be useful for the accurate determi-
nation of its effective properties (Roberts, 1997).

Physics-based microstructure generation (see Section 5.2) also seems unsuitable
for the purposes at hand, as it requires too much effort for marginal improvements in
the quality of the generated RVE (Bargmann et al., 2018). Since the goal here is the
efficient generation of RVE for their use in a data-driven framework, it is unacceptable
that their generation requires too much effort.

In the context of the geometrical methods presented (see Section 5.3), methods
based on Molecular Dynamics, Monte Carlo techniques, and close random packing are
examined. Looking at the methods based on event-driven Molecular dynamics, their
implementation can be complex, and more so for aspherical particles. Despite their
increased accuracy regarding the dynamics of the system, preventing particles from
fully travel across each other, this is not a feature highly valued in the present context.
Since the final goal is just to find a legal configuration and not an equilibrated system
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whose observables, such as temperature or pressure, coincide with real systems, there
is no need for such accuracy. It is also the case that all the methods of this kind pre-
sented are compression algorithms, that is, the particles start as points and grow. This
extra kinematic parameter is strongly tied to the final order of the system, i.e. crystal-
lization, as pointed out by Zinchenko (1994).

On the other hand, time-driven Molecular dynamic simulations may lead to a less
accurate prediction of the trajectory of the particles, but as previously stated this is
not important for the goals at hand. They are also simpler to implement, but since
they start from an overlapping configuration it may be impossible to guarantee zero
volume overlap.

Turning now to the Monte Carlo techniques presented, and starting with the RSA,
it is widely reported that it has a saturation limit depending on the specific shape of
particles and that, for volume fraction close to but below the saturation limit, it is very
slow. On the other hand for a small volume fraction, it is extremely fast (Salnikov et al.,
2015). The "faster than the clock" improvement reported by Krauth (2006) and Mi-
randa (2015) solves the issue with the slowness of the algorithm near the saturation
limit, but still presents a saturation limit and it seems complex to implement in 2D for
particles other than disks and particles of any shape in 3D. The other improvements
for the RSA, such as the one reported by Melro (2011), make use of arbitrary parame-
ters that are hard to implement with no clear upside for their use.

The perturbation methods presented, such as the one reported by Catalanotti (2016),
seem very efficient, but it can be hard to determine if the microstructure has decou-
pled from its initial configuration. It also needs an initial legal configuration, that for
arbitrary shapes at high volume fractions may not be readily available. For spheres
and disks, such packings are known up to the maximum volume fraction.

The Monte Carlo event-chain algorithm reported by Bernard et al. (2009) needs an
initial legal configuration, but it seems to explore the configuration space very effi-
ciently as can be inferred from the results obtained by Bernard and Krauth (2011) for
systems of 106 disks.

As for the Random Close Packing approaches, the sequential generation methods,
despite being constructive and hence very fast, produce microstructures that are too
orderly for them to plausibly represent a real microstructure (Pathan et al., 2017). It is
also the case that in 3D, the placing strategies are harder to devise and implement, e.g.,
the method presented by Feng et al. (2002) for sphere excludes by definition a whole
subset of legal configurations. Lastly, the RVEs created in this manner do not present
periodic boundary conditions, which is not acceptable for this use case.

Regarding collective rearrangement methods, where the overlaps in the initial con-
figuration are resolved using heuristics, their definition is done through rules that are
largely arbitrary. Furthermore, there is no readily available universal rule, be it for all
kinds of overlaps between the same shape or accounting for different shapes.

Using optimization schemes to minimize the overlap of the particles in the ini-
tial configuration seems at first a very interesting approach. Nevertheless, it may be
complex to implement, the optimization problems to be solved are hard, possessing
many local minimums not corresponding to legal configurations (Hifi and M’hallah,
2009) and the results obtained may not warrant it. Pathan et al. (2017) using an ap-
proach of this type was only able to obtain volume fractions of 40% for spheres, a far
cry from the accepted volume fraction for the maximally random jammed state of 64%
(Torquato et al., 2000) and the maximum achievable volume fraction of 74%.

Finally, the discrete element methods presented are too complex and effort-intensive
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for the final RVEs obtained, as the forces between all the particles have to be modeled,
including friction between particles. The approaches using gravity as the driver for
densification also exhibit unwanted vertical anisotropy (Bargmann et al., 2018).

With all this in mind, the approach taken will be a time-driven molecular dynamics
algorithm, to be detailed in the next chapter, as it fulfills the requirements put forth
without unneeded conceptual or practical complexity.



Chapter 6

Molecular Dynamics Algorithm

This chapter fleshes out the proposed approach for microstructure generation based
on a time-driven molecular dynamics algorithm, inspired by Salnikov et al. (2015). In
what follows, the presentation regarding molecular dynamics simulations in general is
based on Frenkel and Smit (2001).

6.1 Introduction

As previously stated the approach used to produce the desired microstructures is a
time-driven molecular simulation. It follows, for the most part, the scheme proposed
by Salnikov et al. (2015).

As outlined by Frenkel and Smit (2001), the general structure of a time-driven molec-
ular dynamics simulation starts with generating an initial configuration, followed by
the computation of the forces between the particles in the system. In this case, the
forces are proportional to the overlap area/volume of each particle pair. The differen-
tial equations of motion are then integrated using these forces as well as the positions
and velocities of the particles. The two last steps are then repeated, one after the other,
for the remainder of the simulation.

An algorithm such as the one described in the previous paragraph will produce
a simulation of a microcanonical ensemble, which is a system containing a constant
number of particles, at constant volume and energy (Frenkel and Smit, 2001). For this
work, the most convenient ensemble is the so-called canonical ensemble, where the
volume and number of particles are also constant, but now instead of the energy be-
ing constant it is the temperature that stays the same (Frenkel and Smit, 2001). This
implies the use of a thermostat that will affect the speed of the particles, so that the
temperature is constant (see Section 6.7.1). The option to use this ensemble is further
discussed later on.

An outline of a general molecular dynamics scheme for a microcanonical ensem-
ble can be seen in Box 6.1. In the following sections, each of these stages are detailed,
providing the necessary specifics. First, the types of particles admissible are defined
geometrically, followed by the generation of an initial configuration. The concept of le-
gal configuration is introduced and the particulars of the force computation, including
the algorithms for the computation of the overlaps between particles and the speed-up
schemes, are detailed. Finally, the algorithm used to integrate the equations of motion
is explained as well as the developed approach based on thermostats.

65
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Box 6.1: Algorithm for a general molecular dynamics simulation of a microcanonical
ensemble.

(i) Generate an initial configuration

(ii) Initialize the increment counter i , i = 0

(iii) Compute the interactions between particles

(iv) Integrate the equations of motion for all particles

(v) Check if the simulation has run until the end.
If (i = imax) then

• Exit and report that the maximum number of iterations has been
reached

else

• Update the increment counter, i ← i +1 and go to step (iii)

6.2 Geometrical definition of the particles

The developed program for the generation of RVEs based on a molecular dynamics
simulation requires the use of computational geometry to describe the shape of the in-
clusions admissible in the microstructure. This section details the parameters needed
for the full characterization of the particles representing the inclusions, beyond the
number of particles and the volume fraction. The precise geometrical definitions are
given as needed in the section about force computation from the overlap area/volume
(Section 6.5).

6.2.1 Disks

The particles called "Disks" in this program are circles, whose shape is completely de-
fined by their radius, r , or their area, ADisk and are only defined for two-dimensional
microstructures (see Figure 6.1). Their position in space is completely defined by the
position of their center. The acceptable descriptors for a phase containing Disks are
a subset of the radius, r , the area of the Disks, ADisk, the number of particles and the
volume fraction of the phase. Different combinations of these parameters can be spec-
ified, being related through the formula for the area of a circle

ADisk =πr 2. (6.1)

6.2.2 Ellipses

The particles called "Ellipses" are elliptical particles, whose shape is fully specified
by their major semi-axis, a and minor semi-axis, b, and are only defined for two-
dimensional microstructures. Their position in space is defined by their center point
and the angle that the major axis makes with the positive semi-axis x, denoted by θ
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(see Figure 6.1). The user can specify, for a given phase containing these particles, a
subset of the major-semi axis, a, the minor semi-axis, b, their ratio, a/b, the number
of particles, and the volume fraction of the phase. The equation for the area of the
ellipse establishes the relation between the sets of parameters,

AEllipse =πab. (6.2)

6.2.3 Spheres

The particles called "Spheres" are spherical particles, whose shape is fully specified
by their radius, r , and are only defined for three-dimensional microstructures. Their
position in space is completely defined by the position of their center (see Figure 6.1).
The acceptable descriptors for a phase containing Spheres are a subset of the radius, r ,
the volume of the Spheres, VSphere, the number of particles and the volume fraction of
the phase. Different combinations of these parameters can be specified, being related
through the formula for the volume of a sphere

VSphere =
4

3
πr 3. (6.3)

6.2.4 Ellipsoids

The particles called "Ellipsoids" are ellipsoidal particles, whose shape is fully specified
by their principal semi-axis, a, b, and c, and are only defined for three-dimensional
microstructures. Their orientation in space is defined by a Euler axis, e, an angle, θ,
and the position of their center. The aforementioned axis e corresponds to the unit
vector, unique except for the sign, which remains unchanged by the rotation. The
angle θ specifies the rotation angle around the Euler axis e. It is also unique and has
its sign determined by the sense of the rotation axis using the right-hand rule. The
rotation is applied to the ellipsoid with the a, b, and c axis parallel with the x, y , and
z coordinate axis, respectively (see Figure 6.1).

The user can specify, for a given phase containing these particles, a subset of the
semi-axis, a, b and c, their ratios, a/b, a/c, the number of particles and the volume
fraction of the phase. The equation for the volume of the ellipsoid establishes the
relation between the sets of parameters,

VEllipsoid = 4

3
πabc. (6.4)
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Figure 6.1: Diagram containing the parameters defining geometrically the particles ad-
missible in the microstructures: (a) Disk, (b) Ellipse, (c) Sphere and (d) Ellipsoid.

6.3 Generation of an initial configuration

The initial configuration is generated using a Poisson point process to place the center
points of the particles inside the simulation box. Each component of the position vec-
tor defining the center of the particles is sampled from a uniform distribution between
0 and the length of the RVE side in the corresponding direction (Bargmann et al., 2018).

As for the geometrical characterization of the particles, all parameters specified,
except for the number of particles and the volume fraction, can be supplied as a single
value, equal for all the particles in a given phase, or can be made to vary according to
a statistical distribution. The supported statistical distributions are the uniform distri-
bution, the Gaussian distribution and the discrete distribution. For the uniform distri-
bution the user must specify its upper and lower bounds. For the Gaussian distribu-
tion, its mean and standard deviation must be supplied and for the discrete distribu-
tion each value must be provided along with its probability. Allowing also for multiple
phases, there is a lot of flexibility in the definition of the inclusions and the ability to
closely mimic real matrix-inclusion composites.

6.4 Legal configurations

The legal configurations are determined according to a maximum average area/vol-
ume overlap specified by the user. This average area/volume overlap is defined as the
total overlap area/volume divided by the number of particles. A successful run of the
program will produce a microstructure with an overlap smaller or equal to the speci-
fied threshold.

It is also possible to define a minimum distance between particles. The geometri-
cal parameters characterizing the particles’ size are increased by half this quantity and
the simulation is run as if the particles were bigger. At the end of the simulation, the
particles are shrunk, producing a microstructure with the correct volume fraction and
respecting the minimum distance specified.

This feature may be useful in some applications as, for example, microstructure
generation to perform FEM analyses. The minimum distance between particles con-
tributes to the proper finite element meshing by preventing excessively deformed ele-
ments in between particles.
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6.5 Force computation

Following Salnikov et al. (2015), the forces applied to each particle are proportional
to the overlap area/volume of the interacting particles. It bears to mention that the
angular motion of the particles is not included in the simulation, as their orientation
may be one of the descriptors specified by the user. As such all forces are applied at
the center of mass of the particles. Their direction is along the line defined by the
center of the two particles and the sense is opposite to the other particle, as the goal
is to eliminate any existing overlap.

Thus, there is a needed to determine the overlap area/volume of two particles.
However, if these interactions are computed between every two pairs of particles, the
number of computations grows proportional to the square of the number of particles,
and this is not desirable for large systems of particles. Therefore, in what follows, it is
also presented a set of strategies to avoid the computation of overlap between particles
that can be shown a priori not to interact with each other.

6.5.1 Periodic boundary conditions

To account for the periodic boundary conditions, the force computation is always con-
sidered between the nearest periodic images of two given particles, as it is the only
interaction that needs to be accounted for between a pair of particles. This is the case
because particles with one of their characteristic lengths larger than half the smallest
length of the RVE are not allowed, as they may interact with themselves.

Thereby, the distance between two particles, d , denoted with 1 and 2, for the force
computation is obtained as

di = x(1)
i −x(2)

i −`RVEi round

 x(1)
i −x(2)

i

`RVEi

 , i = 1, . . . ,ndim, (6.5)

where x (1) and x (2) are the position vectors of the centers of the particles and `RVEi is
the length of the RVE in the i direction.

6.5.2 Overlap area/volume

This section presents the approaches used to detect and compute the overlap area/vol-
ume between two Disks, two Ellipses, two Spheres and two Ellipsoids. The overlap
area between a Disk and an Ellipse and the overlap volume between a Sphere and an
Ellipsoid is computed as if the Disk and the Sphere were an Ellipse and an Ellipsoid,
respectively. Specific approaches for two Disks and two Spheres are used, as they are
much faster and simpler than the general approach used to determine the overlap be-
tween two Ellipses or two Ellipsoids.

Overlap Disk-Disk

The detection of the overlap between two Disks is achieved computing the distance
between the two centers, denoted by O1 and O2, and comparing it to the sum of the
radii of the two Disks, denoted by r1 and r2. Henceforth, it is assumed that r1 ≥ r2. If
O1O2 < r1 + r2, then there is overlap between the two Disks (see Figure 6.2). Moreover,
if O1O2 ≤ r1 − r2, then Disk 2 is entirely contained within Disk 1 and the overlap area
is the area of Disk 2.
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Figure 6.2: Diagram depicting the approach taken to compute the overlap area be-
tween two disk of different radii.

On the other hand, if r1 − r2 < O1O2 < r1 + r2, the overlap area is the sum of the
segments of Disk 1 and 2 defined by the chord I1I2 and can be obtained analytically.
To compute the area of the segments, for example, the sector coming from Disk 1,
one considers the circular sector O1I1I2 and the corresponding triangle, 4O1I1I2, and
subtracts the areas.

The area of the triangle 4O1I1I2 can be found from

A4O1 I1 I2 =
1

2
d12

√
r 2

1 −d 2
1 , (6.6)

where the length of its base is found using Pythagoras theorem, with the height of
4O1I1I2, d1, obtained from

d1 =
r 2

1 − r 2
2 +d 2

2d
. (6.7)

In turn, Equation 6.7 can be found from

r 2
1 −d 2

1 = r 2
2 −d 2

2 , (6.8)

coming from the application of Pythagoras theorem, noting that triangles. 4O1I1I2,
and 4O2I1I2, share a side. The signed height of the triangle 4O2I1I2, d2 can be ob-
tained from d = d1+d2, and it is negative, only when Disk 2 is smaller than Disk 1 and
its center is between the intersection points and the center of Disk 1 (see Figure 6.2).

The area of the sector O1I1I2 is found from

ASector O1 I1 I2 =
1

2
r 2

1 2arccos

(
d1

r1

)
, (6.9)

using the regular formula for the circular sector, with the angle arccos(d1/r1) defining
the half arc between I1 and I2 computed between 0 and π.

The argument for the segment belonging to Disk 2 is analogous, being the total
overlap are given by

ATotal Overlap = ASector O1 I1 I2 − A4O1 I1 I2 + ASector O2 I1 I2 − A4O2 I1 I2 . (6.10)
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Figure 6.3: Different types of circular segments: (a) less than π radians and (b) more
than π radians.

Box 6.2: Algorithm for the computation of the overlap area between two disks.

(i) Denote the larger disk as Disk 1 with radius r1 and center at O1 and the
smaller disk as Disk 2 with radius r2 and center at O2

(ii) Compute the distance between the center of the disks, d

(iii) Check if there is overlap.
If d > r1 + r2

• There is no overlap, thus, AOverlap = 0

else if d ≤ r1 − r2

• Disk 2 is entirely contained within Disk 1, thus, AOverlap =πr 2
2

else if r1 − r2 < d < r1 + r2

• Compute the height of the triangles 4O1I1I2 and 4O2I1I2, where
I1 and I2 are the two intersection points

d1 =
r 2

1 − r 2
2 +d 2

2d
, d2 = d −d1

• Compute the area of the triangles 4O1I1I2 and 4O2I1I2

A4O1 I1 I2 =
1

2
d12

√
r 2

1 −d 2
1 A4O2 I1 I2 =

1

2
d22

√
r 2

2 −d 2
2

• Compute the area of the sectors O1I1I2 and O2I1I2

ASector O1 I1 I2 =
1

2
r 2

1 2arccos

(
d1

r1

)
, ASector O2 I1 I2 =

1

2
r 2

2 2arccos

(
d2

r2

)

• The overlap area is the sum of the area of the two segments, thus,

ATotal Overlap = ASector O1 I1 I2 − A4O1 I1 I2 + ASector O2 I1 I2 − A4O2 I1 I2
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Overlap Ellipse-Ellipse

The detection of overlap and computation of the overlap area between two Ellipses
is done following the work of Hughes and Chraibi (2012) and is achieved analytically.
Broadly, the approach is similar to the scheme presented in the previous section for
Disks. The overlap is detected computing the intersection points of the two ellipses,
using their polynomial representation in Cartesian coordinates. After the intersection
points are found, as for the case of the Disks, the segments that make up the overlap
area are computed considering the areas of the corresponding triangles and sectors.
Before addressing the main goal of this section, the detection, and computation of
the overlap between two Ellipses, it is shown how to obtain the segment of an ellipse
created by an arbitrary chord, defined by points I1 and I2.

Area of an Ellipse segment For an arbitrary ellipse with major semi-axis a and minor
semi-axis b, centered at the origin, O, whose principal axis are parallel to the coordi-
nate axis of the reference system, the so-called standard parametrization is

(x, y) = (a cos t , b sin t ), 0 ≤ t < 2π, (6.11)

it is remarked that the parameter t is not the angle that the position vector of point
(x, y) makes with the positive x semi-axis, i.e. the "visual" angle. Its geometrical inter-
pretation can be found in Figure 6.4.

Figure 6.4: Diagram of the standard parametric representation of an ellipse using in-
scribed and circumscribed circles.

From this parametrization, using the Green-Gauss theorem, the area of the sector
is found to be (Hughes and Chraibi, 2012)

ASector = ab

2

∫ θ2

θ1

d t =
(
θ2 −θ1

)
ab

2
, (6.12)

where θ1 and θ2 are the values of the parameter t corresponding to the points I1 and
I2, respectively. They are found from the standard parametrization (Equation (6.11)),
taking care to notice the quadrant where the point is located,

θ =


arccos

(
x

a

)
, y ≥ 0,

2π−arccos

(
x

a

)
, y < 0,

. (6.13)
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The area of the corresponding triangle can be found directly from the coordinates
of its points as

A4OI1 I2 =
1

2

∣∣∣∣∣∣∣∣det

 x1 x2 x3

y1 y2 y3

1 1 1


∣∣∣∣∣∣∣∣ ,

= 1

2

∣∣∣x1
(
y2 − y3

)−x2
(
y1 − y3

)+x3
(
y1 − y2

)∣∣∣ ,

(6.14)

where (x1, y1) ≡ I1, (x2, y2) ≡ I2 and (x3, y3) ≡ O. Since the origin is taken to coincide
with O, it is found

A4OI1 I2 =
1

2
|x1 y2 −x2 y1|. (6.15)

Considering the cases presented in Figure 6.5, in the first, the area of the triangle
must be added to the sector to obtain the area of the segment and in the second its
area must be subtracted. Thus, the area of the segment is given by

ASegment I1 I2 =
(
θ2 − θ̂1

)
a1 b1

2
+

sign
(
θ2 − θ̂1 −π

)
2

∣∣x1 y2 −x2 y1
∣∣ (6.16)

where (x1, y1) ≡ I1 and (x2, y2) ≡ I2. To accommodate both cases presented in Figure
6.5, the sign of the term relating to the area of the triangle is computed according to
the size of the sector, being negative if it encompasses an angle smaller than π and
positive otherwise. Also, the angles of the intersection point are ordered such that

θ̂1 =
{
θ1, θ1 < θ2

θ1 −2π, θ1 > θ2
, (6.17)

to ensure that their difference θ2 − θ̂1 is positive.

Figure 6.5: Different types of ellipse segments: (a) less than π radians and (b) more
than π radians.

Computation of the intersection points In order to obtain the intersection points
and detect a possible overlap, the equation describing an ellipse with major semi-axis
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Figure 6.6: Absolute coordinate system an coordinate systems corresponding to Ellipse
1 and Ellipse 2.

a and minor semi-axis b, centered at the origin and whose principal axis coincide with
the coordinate axis in Cartesian coordinates, is given as

x2

a2 + y2

b2 = 1. (6.18)

Assume that there are two ellipses, Ellipse 1, with major semi-axis a1 and minor
semi-axis b1 and angle θ1 between the major semi-axis and the positive x semi-axis,
center located at (h1,k1), and Ellipse 2, with major semi-axis a2 and minor semi-axis
b2 and angle θ2 between the major semi-axis and the positive x semi-axis, center lo-
cated at (h2,k2), relative to an arbitrary absolute referential (see Figure 6.6). Using the
reference system corresponding to Ellipse 1, i.e. the reference system defined by its
principal axis, its points (x, y) satisfy

x2

a2
1

+ y2

b2
1

= 1. (6.19)

Likewise, the polynomial corresponding to Ellipse 2 in its reference system, denoted
by a prime, is

x ′2

a2
2

+ y ′2

b2
2

= 1. (6.20)

To obtain the coordinates of the points satisfying both Equation (6.19) and (6.20),
i.e. the intersection points of the two Ellipses, Equation (6.20) must first be written in
the coordinates corresponding to Ellipse 1, so that it can be substituted in Equation
(6.19). The relation between the two coordinate system is given by[

x ′
y ′

]
=

[
cos(θ2 −θ1) −sin(θ2 −θ1)
sin(θ2 −θ1) cos(θ2 −θ1)

][
x − (h1 −h2)
y − (k1 −k2)

]
. (6.21)

This transformation can be interpreted as a translation to the center of the Ellipse 2
and subsequent rotation through the angle difference between the two systems of ref-
erence relative to the absolute referential considered. Substitution in Equation (6.20)
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yields

(
cos

(
θ2 −θ1

) (
x − (

h1 −h2
))− sin

(
θ2 −θ1

) (
y − (

k1 −k2
)))2

a2
2

+

(
sin

(
θ2 −θ1

) (
x − (

h1 −h2
))+cos

(
θ2 −θ1

) (
y − (

k1 −k2
)))2

b2
2

= 1.

Hence, the polynomial characterizing Ellipse 2 written in the coordinate system
corresponding to Ellipse 1 is given by

A A x2 +BB x y +CC y2 +DD x +EE y +F F = 0, (6.22)

where the coefficients of the polynomial, after factoring and regrouping, are found to
be

A A = a2
2 sin2(θ2 −θ1)+b2

2 cos2(θ2 −θ1), (6.23)

BB = 2(b2
2 −a2

2)sin(θ2 −θ1)cos(θ2 −θ1), (6.24)

CC = a2
2 cos2(θ2 −θ1)+b2

2 sin2(θ2 −θ1), (6.25)

DD =−2A A(h1 −h2)−BB(k1 −k2), (6.26)

EE =−BB(h1 −h2)−2CC (k1 −k2), (6.27)

F F = A A(h1 −h2)2 +BB(h1 −h2)(k1 −k2)+CC (k1 −k2)2 −a2
2 b2

2. (6.28)

It is now possible to substitute

x =±
√√√√a2

1

(
1− y2

b2
1

)
, (6.29)

found from rewriting Equation (6.19), in Equation (6.22), and obtain the quartic poly-
nomial in y , whose solutions are the ordinates of the intersection points. It reads

c y[4] y4 + c y[3] y3 + c y[2] y2 + c y[1] y + c y[0] = 0, (6.30)

where the coefficients are

c y[0] =−CC 2 b4
1 +2(A A CC −BB 2/2) a2

1 b2
1 −a4

1 A A2, (6.31)

c y[1] =−(
(−a1 BB +EE)CC +CC (a1 BB +EE)

)
b4

1

+2(A A EE −BB DD) a2
1 b2

1, (6.32)

c y[2] =−
(
(a2

1 A A−a1 DD +F F )CC + (−a1 BB +EE) (a1 BB +EE)

+CC (a2
1 A A+a1 DD +F F )

)
b4

1

+2(A A2 a2
1 + A A F F −1/2DD2) a2

1 b2
1, (6.33)

c y[3] =−
(
(a2

1 A A−a1 DD +F F ) (a1 BB +EE)

+(−a1 BB +EE) (a2
1 A A+a1 DD +F F )

)
b4

1, (6.34)

c y[4] =−(a2
1 A A−a1 DD +F F ) (a2

1 A A+a1 DD +F F )b4
1. (6.35)
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These coefficients are obtained by the author, as the ones supplied by Hughes and
Chraibi (2012) were not producing the correct results.

First, there is a need to obtain the intersection points of the ellipses. Each distinct
real root of the polynomial represents a y-value where the two ellipses intersect and
may correspond to either one or two potential points of intersection. The first case
corresponds to the case when y = b1 or y =−b1, and so the y-value produces a single
intersection point at (0,b1) or (0,−b1), respectively. In the second case, if the y-value
is in in the open interval (−b1,b1), there are two potential intersection pointsa1

√
1− y2

b2
1

, y

 and

−a1

√
1− y2

b2
1

, y

 , (6.36)

corresponding to the points in Ellipse 1 with the corresponding y-value. To determine
if these points are in fact intersection points, they are substituted in Equation (6.22),
and if the equality is satisfied, then the point is an intersection point.

Box 6.3 presents the pseudo-code for the computation of the intersection points
between two ellipses.

Box 6.3: Algorithm for the computation of the intersection points between two ellipses.

(i) Compute the roots of the polynomial

c y[4] y4 + c y[3] y3 + c y[2] y2 + c y[1] y + c y[0] = 0

(ii) For each real root y∗, check how many intersection points correspond to
it.
If y∗ = b1 or y∗ = b1

• there is only one intersection point corresponding to y∗, i.e. (0,b1)
and (0,−b1), respectively.

else

• Compute the tentative intersection points corresponding to y∗, as
the two points from Ellipse 1a1

√√√√1− y∗2

b2
1

, y∗

 and

−a1

√√√√1− y∗2

b2
1

, y∗


• For each tentative intersection point, check if it also belongs to El-

lipse 2, using its definition in Cartesian coordinates

A A x2 +BB x y +CC y2 +DD x +EE y +F F = 0.

If it does, then it is an intersection point.
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Computing the overlap area The following steps regarding the computation of the
overlap area depend on the number of intersection points found from the polynomial
in Equation (6.30). Being a quartic polynomial it may have

1. no real roots (two complex-conjugate pairs), which means that the ellipse curves
do not intersect;

2. two real roots (distinct or not) and one complex-conjugate pair, so the ellipse
curves intersect;

3. four real roots (distinct or not), meaning that the ellipse curves intersect.

Case (1) represents two possibilities, either the ellipses do not intersect, or one is
contained in the other (see Figure 6.7). To understand which of the two cases is being
handled, it is checked if the center of the Ellipse with the smaller area, Ellipse 2, is
inside the larger Ellipse, Ellipse 1. If so, the overlap area is equal to the area of the
Ellipse 2. Otherwise, there is no intersection and the overlap area is zero.

Figure 6.7: Possible cases for the intersection of two ellipses, when the number of in-
tersection points is 0: (a) Ellipse 2 is entirely inside Ellipse 1 and (b) the two Ellipses
do not intersect.

Case (2) also represents two possibilities, either the ellipses intersect each other at
one point, i.e. the two real roots are equal, or they intersect at two points, i.e. the two
real roots are different. Regarding the former case, the argument is the same as in case
(1), and either the overlap area is zero or it corresponds to the area of the Ellipse with
the smaller area (see Figure 6.8).
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Figure 6.8: Possible cases for the intersection of two ellipses, when the number of in-
tersection points is 1: (a) Ellipse 2 is entirely inside Ellipse 1 and (b) the two Ellipses
do not intersect.

On the other hand, when the two real roots are different, the situation is very simi-
lar to the one presented in the previous section regarding the overlap area of two disks.
The general argument is much the same, and the overlap area is composed of the two
segments I1I2 corresponding to each Ellipse (see Figure 6.9).

Figure 6.9: Possible cases for the intersection of two ellipses, when the number of in-
tersection points is 2.

Since the approach to compute the area of an ellipse segment is presented at the
beginning of this section, it remains to show what are the segments that need to be
computed. Assuming that the two intersection points, I1 and I2, are ordered clockwise
according to their parametric angles, θ1 and θ2, computed from Equation (6.13), a
point in Ellipse 1 is found, such that it is a midpoint between I1 and I2, as it relates to
its parametric angle

xmid = a1 cos

(
θ1 +θ2

2

)
, (6.37)

ymid = b1 sin

(
θ1 +θ2

2

)
. (6.38)

If the point is also inside Ellipse 2, then the segment to be computed belongs to El-
lipse 1 and is computed according to Equation (6.16). Otherwise, the segment to be
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computed belongs to Ellipse 2.
The other segment is computed plugging the angles in reverse order in Equation

(6.16), as it assumes that the points must be given in counter-clockwise order. The
decision to compute it relative to Ellipse 1 or 2 is taken using the same rule as the first
segment, with the parametric angle of the midpoint given by (θ1+θ2)/2+π. Thus, both
cases presented in Figure 6.9 are covered.

Case (3) also encapsulates two further cases, that is, three different intersection
points and four intersection points (see Figure 6.10). For the former case, there are
two possible sub-cases. One of the three intersection points must be a tangent point
in both cases. After detecting which of the three points is the tangent point, the over-
lap area can be computed as in the case of two intersection points, considering the
tangent intersection point as the midpoint used to decide which segments to com-
pute.

Figure 6.10: Possible cases for the intersection of two ellipses, when the number of
intersection points is 3, (a), or 4, (b).

When the ellipses intersect at four different points there is only one case to con-
sider (see Figure 6.10). The points are once again assumed to be sorted counter-
clockwise according to their parametric angle, and hence the area of the quadrilateral
I1I2I3I4 is given by

AQuadrilateral I1 I2 I3 I4 =
1

2

∣∣∣(x3 −x1, y3 − y1
)× (

x4 −x2, y4 − y2
)∣∣∣ ,

= 1

2

∣∣∣(x3 −x1
) (

y4 − y2
)− (

x4 −x2
) (

x3 −x1
)∣∣∣ ,

(6.39)

as half the cross-product of the two diagonals.
The point order also simplifies the search for the appropriate segments of each el-

lipse that contribute to the overlap area. This is done in the same way as in the case
of only two intersection points. A midpoint is defined in Ellipse 1 as it relates to the
parametric angle between I1 and I2, checking if it is inside Ellipse 2. The correspond-
ing segment is computed relative to Ellipse 1 if this the case and relative to Ellipse 2,
otherwise. The segment I2I3 is computed in the same way as described above, plug-
ging the points in reverse order in Equation (6.16) and relative to the other Ellipse.
Segments I3I4 and I4I1 are computed relative to the same Ellipses that I1I2 and I2I3

were computed, respectively. This algorithm is validated using Monte Carlo integra-
tion (see Section 6.5.2).

Box 6.4 presents the full pseudo-code for the computation of the overlap area be-
tween two ellipses is given the intersection points.
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Box 6.4: Algorithm for the computation of the overlap area between two ellipses.

If there are no intersection points or just one intersection point

(i) Denote the ellipse with larger area as Ellipse 1 and the ellipse with
smaller area as Ellipse 2

(ii) Check if Ellipse 2 is entirely inside Ellipse 1
If the center of Ellipse 2 is inside Ellipse 1

• Ellipse 2 is entirely contained inside Ellipse 1, thus

ATotal Overlap =πa2b2

else

• Ellipse 2 is entirely outside Ellipse 1, thus

AOverlap = 0

else if there are two or three intersection points

(i) Obtain the point (xmid, ymid), according to the number of intersection
points.
If there are two intersection points, (x1, y1) ≡ I1 and (x2, y2) ≡ I2

• Compute their respective parametric angles, θ1 and θ2 relative to
Ellipse 1

θi =


arccos

(
xi

a1

)
, yi ≥ 0,

2π−arccos

(
xi

a1

)
, yi < 0,

for i = 1,2

• Compute (xmid, ymid) as

xmid = a1 cos

(
θ1 +θ2

2

)
, ymid = b1 sin

(
θ1 +θ2

2

)

else if there are three intersection points, I1, I2 and I3,

• Determine which of the three intersection points is the tangent
point. Assume it is I3, and make (xmid, ymid) ≡ I3.

(ii) Compute the relevant segments that constitute the overlap area.
If (xmid, ymid) is in Ellipse 2

• Compute the area of segment I1I2 from Ellipse 1, ASegment I1 I2 , and
the area of segment I2I1 from Ellipse 2, ASegment I2 I2

else

• Compute the area of segment I1I2 from Ellipse 2, ASegment I1 I2 , and
the area of segment I2I1 from Ellipse 1, ASegment I2 I2

(iii) The overlap area is

ATotal Overlap = ASegment I1 I2 + ASegment I2 I1
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Box 6.4: (continuation)

else if there are four intersection points

(i) Order the intersection points in counter-clockwise fashion according to
their parametric angle, such that I1 has the smallest parametric angle,
θ1, and I4 the largest parametric angle, θ4.

(ii) Compute the area of the quadrilateral defined by the four intersection
points I1 ≡ (x1, y1), I2 ≡ (x2, y2), I3 ≡ (x3, y3) and I4 ≡ (x4, y4)

AQuadrilateral I1 I2 I3 I4 =
1

2

∣∣∣(x3 −x1
) (

y4 − y2
)− (

x4 −x2
) (

x3 −x1
)∣∣∣

(iii) Compute the midpoint-point between I1 and I2 relative to their para-
metric angles,

xmid = a1 cos

(
θ1 +θ2

2

)
, ymid = b1 sin

(
θ1 +θ2

2

)

(iv) Compute the relevant segments that constitute the overlap area
If (xmid, ymid) is in Ellipse 2

• Compute the area of segment I1I2, ASegment I1 I2 , and segment
I3I4, ASegment I3 I4 from Ellipse 1 and the area of segment I2I1,
ASegment I1 I2 , and segment I4I1, ASegment I4 I1 from Ellipse 2

else

• Compute the area of segment I1I2, ASegment I1 I2 , and segment
I3I4, ASegment I3 I4 from Ellipse 2 and the area of segment I2I1,
ASegment I1 I2 , and segment I4I1, ASegment I4 I1 from Ellipse 1

(v) The overlap area is

ATotal Overlap = AQuadrilateral I1 I2 I3 I4

+ ASegment I1 I2 + ASegment I2 I3 + ASegment I3 I4 + ASegment I1 I4

Overlap Sphere-Sphere

The detection of the overlap between two Spheres is achieved computing the distance
between the two centers, denoted by O1 and O2, and comparing it to the sum of the
radii of the two Spheres, denoted by r1 and r2. Henceforth, it is assumed that r1 ≥ r2,
as in the case regarding the overlap of two Disks. If O1O2 < r1 + r2, then there is an
overlap between the two Spheres (see Figure 6.11). Moreover, if O1O2 ≤ r1 − r2 then
Sphere 2 is entirely contained within Sphere 1 and the overlap volume is the volume
of Sphere 2.

On the other hand, if r1 − r2 <O1O2 < r1 + r2, the overlap volume is the sum of the
caps of Sphere 1 and 2 defined by the plane containing the intersection points and



82 6. Molecular Dynamics Algorithm

can be obtained analytically. To compute the volume of the caps, for example, the cap
coming from Sphere 1, one considers the corresponding spherical sector as well as the
corresponding cone and subtracts the volumes.

The volume of the cone can be found from

VCone = 1

3
d1π

√
r 2

1 −d 2
1 , (6.40)

where the radius of its base is found using Pythagoras theorem. The height of cone,
d1, is obtained from

d1 =
r 2

1 − r 2
2 +d 2

2d
. (6.41)

This result can be found from

r 2
1 −d 2

1 = r 2
2 −d 2

2 , (6.42)

where d2 is the signed height of the cone corresponding to the cap from Sphere 2.
Equation 6.42 comes from the application of Pythagoras theorem to the triangles formed
by the height of each triangle, their respective radii and generatrices. The signed height
of the cone corresponding to the cap from Sphere 2, can be obtained from d = d1+d2.
It is negative, only when Sphere 2 is smaller than Sphere 1 and its center is between
the intersection points and the center of Sphere 1 (see Figure 6.11).

The volume of the spherical sector related to the cap coming from Sphere 1 is
found from

VSector = r 3
1

2

3
π

(
1− d1

r1

)
, (6.43)

where d1/r1 = cosϕ is half the respective cone angle.

The argument for the cap belonging to Sphere 2 is analogous being the total over-
lap volume given by

VTotal Overlap =V Sector
Sphere 1

−V Cone
Sphere 1

+V Sector
Sphere 2

−V Cone
Sphere 2

. (6.44)

Figure 6.11: Diagram depicting the approach taken to compute the overlap volume
between two Spheres of different radii.
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Box 6.5: Algorithm for the computation of the overlap area between two spheres.

(i) Denote the larger sphere as Sphere 1 with radius r1 and center at O1 and
the smaller sphere as Sphere 2 with radius r2 and center at O2

(ii) Compute the distance between the center of the spheres, d

(iii) Check if there is overlap.
If d > r1 + r2

• There is no overlap, thus, VOverlap = 0.

else if d ≤ r1 − r2

• Disk 2 is entirely contained within Disk 1, thus, VOverlap = 4
3πr 3

2

else if r1 − r2 < d < r1 + r2

• Compute the height of the cones defined by the plane containing
the intersection points and the spherical sector

d1 =
r 2

1 − r 2
2 +d 2

2d
, d2 = d −d1

• Compute the volume of the cones

VCone 1 = 1

3
d1π

√
r 2

1 −d 2
1 VCone 2 = 1

3
d2π

√
r 2

2 −d 2
2

• Compute the area of the spherical sectors

VSector 1 = r 3
1

2

3
π

(
1− d1

r1

)
, ASector O2 I1 I2 = r 3

2
2

3
π

(
1− d2

r2

)

• The overlap volume is the sum of the area of the two segments,
thus,

VTotal Overlap =V Sector
Sphere 1

−V Cone
Sphere 1

+V Sector
Sphere 2

−V Cone
Sphere 2

Overlap Ellipsoid-Ellipsoid

In the developed program the detection of the overlap between two Ellipsoids is done
analytically following Wang et al. (2001) and Ghossein and Lévesque (2013) using an
algebraic criterion related to the coefficients of the characteristic equation, and the
computation of the overlap volume is done using a Monte Carlo integration scheme.

Detection of overlap Following Ghossein and Lévesque (2013), the representation in
Cartesian coordinates of a generic ellipsoid with principal semi-axis a, b and c is given
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by
x2

a2 + y2

b2 + z2

c2 = 1, (6.45)

where the axis of the coordinate system are parallel to its principal axis.
Making use of homogeneous coordinates, such that the point (x, y, z, w) corresponds

to (x/w, y/w, z/w) in Cartesian coordinates, Equation (6.45) can be written as

xT Ax = 0, (6.46)

with x = (x, y, z,1)T and

A =


1/a2 0 0 0

0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1

 . (6.47)

The orientation of a given ellipsoid is defined by a rotation angle θ around an axis
oriented along a unit vector e, and its position in space by the position vector of its
center point, r . Thus, the representation of an ellipsoid in the global coordinate sys-
tem in homogeneous coordinates, denoted by a prime, can be found combining rota-
tion and translation from

x ′ = Mx , (6.48)

where

M =
[

R r
0> 1

]
, (6.49)

with R the rotation matrix corresponding to the unit vector e and the angle θ.
To assist in the computation of the rotation matrix, normalized quaternions are

introduced. The quaternion of the Ellipsoid under analysis, q , consists of a scalar α
and a vector ψ and is written as follows

q = [
α,ψ

]= [
cos

θ

2
,e sin

θ

2

]
. (6.50)

The rotation matrix can be obtained from the quaternion in the following manner

R =
[

2α2 −1
]

I+2ψψT +2αS, (6.51)

where I is the identity matrix and S is given by

S =

 0 −ψ3 ψ2

ψ3 0 −ψ1

−ψ2 ψ1 0

 , (6.52)

where ψk denotes the kth term of vector ψ.
Consider now two Ellipsoids, Ellipsoid 1, with principal semi-axis a1, b1 and c1,

position of the center point r 1 and associated rotation matrix R1, and Ellipsoid 2, with
principal semi-axis a2, b2 and c2, position of the center point r 2 and associated ro-
tation matrix R2. Accordingly, these Ellipsoids can be expressed in their respective
coordinate systems as

xT Ai x = 0, i = 1,2, (6.53)
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and in the global coordinate system as

x ′T A′
i x = 0, i = 1,2, (6.54)

with A′
i = (M i )−T Ai (M i )−1 for i = 1,2.

The algebraic criterion presented by Wang et al. (2001) makes use of the so-called
characteristic polynomial of the two Ellipsoids, which is defined as

f (λ) = det(λA′
1 + A′

2). (6.55)

According to the roots of Equation 6.55, one can conclude that

1. Ellipsoid 1 and 2 are separate if Equation (6.55) admits two negative and two
positive roots,

2. Ellipsoid 1 and 2 are externally tangent if Equation (6.55) admits two negative
roots and a double positive root,

3. Ellipsoid 1 and 2 overlap in all other cases.

Equation (6.55) can be rewritten as

det
(
λA′

1 + A′
2

)= p1λ
4 +p2λ

3 +p3λ
2 +p4λ+p5 = 0, (6.56)

where the coefficients pi , i = 1,2,3,4,5 can be obtained from

p1 =−δ1δ2δ3, (6.57)

p2 =−(
δ2δ3C11 +δ1δ3C22 +δ1δ2C33 −δ1δ2δ3C44

)
, (6.58)

p3 = δ1δ2
(
C33C44 −C34C43

)+δ2δ3
(
C11C44 −C14C41

)
+δ1δ3

(
C22C44 −C24C42

)+δ1
(
C23C32 −C22C33

)+δ2
(
C13C31 −C11C33

)
+δ3

(
C12C21 −C11C22

)
, (6.59)

p4 =
δ1

(
C22C33C44 −C22C34C43 −C33C42C24 −C44C32C23 +C32C24C43 +C42C23C34

)
+δ2

(
C11C33C44 −C11C34C43 −C33C14C41 −C44C13C31 +C31C14C43 +C41C13C34

)
+δ3

(
C11C22C44 −C11C24C42 −C22C14C41 −C44C12C21 +C21C14C42 +C41C12C24

)
+C11C23C32 +C22C13C31 +C33C12C21 −C11C22C33 −C21C13C32 −C31C12C23, (6.60)

p5 = det
(

A2
)

, (6.61)

with
C = (

M1
)> A2

(
M1

)
(6.62)

and auxiliary variables δi , i = 1,2,3 defined as

δ1 =
(
1/a1

)2 , δ2 =
(
1/b1

)2 , δ3 =
(
1/c1

)2 . (6.63)

Following Ghossein and Lévesque (2013), instead of solving Equation (6.55) directly
it suffices to compute five coefficients, denoted by ηi , i = 1,2,3,4,5, from the coeffi-
cients pk , k = 1,2,3,4,5 such that their values determine the relative position of the
two Ellipsoids. This is the case as the exact value of the roots are of no importance.
The technique is based on the Sylvester-Habicht matrix of the characteristic equation
and its first derivative (Ghossein and Lévesque, 2013).



86 6. Molecular Dynamics Algorithm

To compute the coefficients ηi , i = 1,2,3,4,5, define the auxiliary variables p̄k , k =
1,2,3,4 as

p̄1 =− p2

4p1
, p̄2 = p3

6p1
, p̄3 =− p4

4p1
, p̄4 = p5

p1
. (6.64)

From these compute βk , k = 1,2

β1 =
(
p̄4 − p̄1p̄3

)+3
(
p̄2

2 − p̄1p̄3

)
, (6.65)

β2 =−p̄3
(
p̄3 − p̄1p̄2

)− p̄4

(
p̄2

1 − p̄2

)
− p̄2

(
p̄2

2 − p̄1p̄3

)
. (6.66)

Finally, the coefficients ηi , i = 1,2,3,4,5 are computed as

η1 =β3
1 −27β2

2, (6.67)

η2 =−9
(
p̄3 − p̄1p̄2

)2 +27
(
p̄2

1 − p̄2

)(
p̄2

2 − p̄1p̄3

)
−3

(
p̄4 − p̄1p̄3

)(
p̄2

1 − p̄2

)
, (6.68)

η3 =β1
(
p̄3 − p̄1p̄2

)−3p̄1β2, (6.69)

η4 =β1
(
p̄3 − p̄1p̄2

)−3p̄1β2, (6.70)

η5 =
(
p̄2

1 − p̄2

)
. (6.71)

The relative position of the Ellipsoids can be found from the value of the coeffi-
cients ηi , i = 1,2,3,4,5 according to Table 6.1.

Table 6.1: Correspondence between the values of the coefficients ηi , i = 1, . . . ,5, found
from the coefficients of the characteristic equation of the two Ellipsoid, pk , k = 1, . . .5,
and the relative configuration of the two Ellipsoids.

Cases η1 η2 η3 η4 η5 Ellipsoids configuration
1 = 0 > 0 > 0 > 0 separate
2 > 0 > 0 > 0 separate
3 = 0 > 0 < 0 > 0 externally tangent
4 = 0 = 0 < 0 > 0 externally tangent
5 For all other cases overlap

Box 6.6 summarizes in pseudo-code the necessary steps to detect overlap between
two Ellipsoids.
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Box 6.6: Algorithm for the detection of overlap between two ellipsoid.

(i) Compute the matrices relating the global coordinate system and the co-
ordinate system corresponding to Ellipse 1 and Ellipse 2

Mi =
[

Ri r i

0> 1

]
, i = 1,2

(ii) Compute the matrix A′
2, defining Ellipsoid 2 in global homogeneous co-

ordinates.
A′

2 = (M 2)−T A2(M 2)−1

where A2 = diag(1/(a2)2,1/(b2)2,1/(b2)2,1).

(iii) Compute the matrix C
C = (

M1
)> A2

(
M1

)
(iv) Compute the δi , i = 1,2,3

δ1 =
(
1/a1

)2 , δ2 =
(
1/b1

)2 , δ3 =
(
1/c1

)2

(v) Compute the coefficients pi , i = 1,2,3,4,5

p1 =−δ1δ2δ3

p2 =−(
δ2δ3C11 +δ1δ3C22 +δ1δ2C33 −δ1δ2δ3C44

)
p3 = δ1δ2

(
C33C44 −C34C43

)+δ2δ3
(
C11C44 −C14C41

)
+δ1δ3

(
C22C44 −C24C42

)+δ1
(
C23C32 −C22C33

)+δ2
(
C13C31 −C11C33

)
+δ3

(
C12C21 −C11C22

)
p4 =
δ1

(
C22C33C44 −C22C34C43 −C33C42C24 −C44C32C23 +C32C24C43 +C42C23C34

)
+δ2

(
C11C33C44 −C11C34C43 −C33C14C41 −C44C13C31 +C31C14C43 +C41C13C34

)
+δ3

(
C11C22C44 −C11C24C42 −C22C14C41 −C44C12C21 +C21C14C42 +C41C12C24

)
+C11C23C32 +C22C13C31 +C33C12C21 −C11C22C33 −C21C13C32 −C31C12C23

p5 = det
(

A′
2

)
(vi) Compute p̄i , i = 1,2,3,4

p̄1 =− p2

4p1
, p̄2 = p3

6p1
, p̄3 =− p4

4p1
, p̄4 = p5

p1

(vii) Compute β1 and β2

β1 =
(
p̄4 − p̄1p̄3

)+3
(
p̄2

2 − p̄1p̄3

)
β2 =−p̄3

(
p̄3 − p̄1p̄2

)− p̄4

(
p̄2

1 − p̄2

)
− p̄2

(
p̄2

2 − p̄1p̄3

)
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Box 6.6: (continuation)

(viii) Compute the coefficients ηi , i = 1,2,3,4,5 are computed as

η1 =β3
1 −27β2

2

η2 =−9
(
p̄3 − p̄1p̄2

)2 +27
(
p̄2

1 − p̄2

)(
p̄2

2 − p̄1p̄3

)
−3

(
p̄4 − p̄1p̄3

)(
p̄2

1 − p̄2

)
η3 =β1

(
p̄3 − p̄1p̄2

)−3p̄1β2

η3 =β1
(
p̄3 − p̄1p̄2

)−3p̄1β2

η5 =
(
p̄2

1 − p̄2

)
(ix) Determine the relative position of the Ellipsoids form ηi , i = 1,2,3,4,5.

If η1 = 0, η2 > 0, η3 > 0 and η5 > 0

• The Ellipsoids are separate

else, if η1 > 0, η2 > 0 and η5 > 0

• The Ellipsoids are separate

else if η1 = 0, η2 > 0, η3 < 0 and η5 > 0

• The Ellipsoids are externally tangent

If η1 = 0, η2 = 0, η4 < 0 and η5 > 0

• The Ellipsoids are externally tangent

else

• The Ellipsoids overlap

Computation of the overlap volume This section presents how to compute the over-
lap volume between two ellipsoids using a Monte Carlo integration scheme without
rejection. The approach is based on generating uniform random points inside one of
the Ellipsoids, say Ellipsoid 1, and counting how many of these points are also inside
Ellipsoid 2. The overlap area is the fraction of generated points that is inside both
Ellipsoid 1 and 2 multiplied by the volume of Ellipsoid 1.

A given integral
∫ 1
−1

∫ 1
−1 O (x, y)π(x, y)dx dy can be estimated using Monte Carlo in-

tegration through (Krauth, 2006)

〈O〉 =
∫ 1
−1

∫ 1
−1 O (x, y)π(x, y)dx dy∫ 1
−1

∫ 1
−1π(x, y)dx dy

' 1

N

N∑
i=1

Oi , (6.72)

where O (x, y) is the observable, Oi is the value of the observable at the point corre-
sponding to sample i , π(x, y) is the probability distribution sampled and N the num-
ber of samples.

Assuming that the central limit theorem is valid, which is reasonable for large N ,
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the value of the integration with 95% confidence is given by

〈O〉 = 1

N

N∑
i=1

Oi ± 2σp
N

, (6.73)

with σ the standard deviation estimated from the sample.
Using modified spherical coordinates related to Ellipsoid 1, defined as

x = a1 r sinθcosϕ, (6.74)

y = b1 r sinθ sinϕ, (6.75)

z = c1 r cosθ, (6.76)

r = x2

a2
1

+ y2

b2
1

+ z2

c2
1

, (6.77)

with the radius r ∈ [0,1], the inclination θ ∈ [0,π] and the azimuth ϕ ∈ [0,2π), the over-
lap volume between two Ellipsoids can be expressed as

VOverlap = a1b1c1

∫ 1

0

∫
S2

O (r,Ω)r 2 dΩdr, (6.78)

where S2 is the surface of the unit sphere, with the solid angle Ω related to the incli-
nation θ and the azimuth ϕ by dΩ= sinθdθdϕ . The function O (r,Ω) is defined as

O (r,Ω) =
1, if (r,Ω) is in Ellipsoid 2

0, if (r,Ω) is not in Ellipsoid 2
. (6.79)

Applying Equation (6.72) to the problem at hand, one finds∫ 1
0

∫
S2 O (r,Ω)r 2 dΩdr∫ 1

0

∫
S2 r 2 dΩdr

' 1

N

N∑
i=1

Oi , (6.80)

which can be rewritten as

VOverlap = Nin

N
VEllipse 1, (6.81)

since

a1b1c1

∫ 1

0

∫
S2

r 2 dΩdr = 4

3
πa1b1c1 =VEllipsoid 1, (6.82)

where N is the number of samples and Nin is the number of samples inside both Ellip-
soid 1 and Ellipsoid 2. Figure 6.12 depicts this approach. Thus, to evaluate the overlap
volume one needs to sample the integral in the left-hand side of Equation (6.82), i.e.
to uniformly sample Ellipsoid 1.

Following Krauth (2006), to generate uniform random points inside a sphere one
raises the error integral of a standard Gaussian, written as∫ ∞

−∞
1p
2π

e−x2/2 dx = 1, (6.83)

to the third power. Using polar coordinates, with r the radial coordinate and the Ω the
solid angle, one obtains(

1p
2π

)3 ∫ ∞

0

∫
S2

r 2 exp
(
−r 2/2

)
dΩdr = 1, (6.84)
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which is sampled by 3 independent Gaussians. It can also be asserted that these 3
independent Gaussians sample the solid angle uniformly, as the integrand does not
depend on the solid angle.

Comparing Equation (6.84) with the integral for the volume of the unit sphere

V2(1) =
∫ 1

0

∫
S2

r 2d,Ωdr (6.85)

also expressed in polar coordinates, one can can conclude that to sample the integral
in Equation (6.85), i.e. to uniformly sample the unit sphere, the solid angle must also
be uniformly sampled. Thus, the direction of the sample vector (x, y, z) can be found
from the direction of the vector (w1, w2, w3), where each wi , i = 1,2,3 is an indepen-
dent sample from a standard Gaussian. To sample the magnitude of (x, y, z) appropri-
ately, i.e. to sample the integral

∫ 1
0 r 2dr , one obtains the value of r for a given sam-

ple from ran(0,1)1/3, where ran(0,1) denotes a uniform distribution between 0 and 1.
Therefore, the random uniform sample inside the unit sphere (x, y, z) can be obtain
from

(x, y, z) = r

‖w‖ (w1, w2, w3). (6.86)

To sample a uniform random point inside Ellipsoid 1 one applies an affine trans-
formation, rescaling the axis in each direction by a1, b1 and c1. Hence

(x, y, z) = r

‖w‖
(
a1 w1,b1 w2,c1 w3

)
. (6.87)

Figure 6.12: Monte Carlo integration of the overlap between two Ellipsoids. The over-
lap volume is the product of the volume of the Ellipsoid where the random points are
generated and the fraction of random points inside both Ellipsoids.

This approach is validated with Ellipsoid 2 completely inside Ellipsoid 1 recovering
its volume, as expected. Also, using standard numerical quadrature from the Python
library scipy, to compute the overlap volume between Ellipsoids in arbitrary relative
positions, the same results are obtained, producing results much faster for the same
number of points. Lastly, a similar approach was employed to validate the computa-
tion of the overlap area between Ellipses.

Box 6.7 summarizes in pseudo-code the approach described to evaluate the over-
lap volume of two Ellipsoids using Monte Carlo integration.
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Box 6.7: Pseudo-code for the evaluation of the overlap volume of two Ellipsoids using
Monte Carlo integration.

(i) Initialize the required tolerance tol, the maximum number of iterations,
nmax and the counter, i , i ← 0

(ii) Sample the direction of the position vector of the sample point, gener-
ating three independent samples from a standard Gaussian distribution,
denoting them with w1, w2 and w3

w = (w1, w2, w3) ← (
gauss(1),gauss(1),gauss(1)

)
(iii) Sample the radius of the position vector of the sample point

r ← ran(0,1)1/3

(iv) Obtain the coordinates of the sample point as

(x, y, z) = r

‖w‖
(
a1 w1,b1 w2,c1 w3

)
,

with ‖w‖ =
√

w2
1 +w2

2 +w2
3

(v) Check if (x, y, z) is Ellipsoid 2
If (x, y, z) is in Ellipsoid 2

• Oi = 1

else

• Oi = 0

(vi) If i > 1, compute the standard deviation of the samples Ok , k = 0, . . . , i

(vii) Check if the stopping criteria have been reached
If (2σ/

p
i +1)VEllipsoid 1 < tol

• End the integration procedure with the estimate for the overlap vol-
ume being

VOverlap =
∑i

k=0 Ok

i +1
VEllipsoid 1

else if i = nmax

• Exit the integration procedure and signal that the required toler-
ance was not achieved

else

• Update the sample counter, i ← i +1 and go to step (iii)
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6.5.3 Speed-up schemes

This section deals with the speed-up schemes used to avoid the computation of over-
lap between particles that can be shown a priori not to interact with each other.

A naive approach to computing the forces between all particles is to consider all
particle pairs without repetition, which leads to the computation of n(n −1)/2 forces.
This is undesirable, as it becomes burdensome when the system contains a large amount
of particles, and unnecessary, as the force between the majority of the particle pairs is
null. To mitigate this problem a few schemes have been proposed. In the remainder
of this section the cell list and the Verlet list computed from a cell list are presented.

Cell list

The cell list method is based on the partition of the simulation box using a cell grid
such that each particle can only interact with particles in its own or immediately neigh-
boring cells. This is achieved by setting the size of the cells equal or slightly larger
than the diameter of the circumscribed circle of the particle (Frenkel and Smit, 2001;
Krauth, 2006). Hence the cell list method is most efficient for disks and spheres, pro-
viding less and less benefits for ellipses and ellipsoids with large ratios between their
principal axis (Donev et al., 2005a).

Since the allocation of a particle to a cell is an operation that scales with the num-
ber of particles and the total number of cells that needs to be considered for the calcu-
lation of the interaction is independent of the system size, the cell list method scales
linearly with the number of particles (Frenkel and Smit, 2001; Krauth, 2006).

Figure 6.13 illustrates this scheme and Box 6.8 presents the pseudo-code for its
implementation.

Figure 6.13: Diagram illustrating the cell list method. The Disks with radius r whose
center is in the cell i (dark gray) interact only with particles whose center is in the cell
i or in the neighboring cells (light gray).

Box 6.8: Pseudo-code for the computation of interactions between particles using cell
lists.

(i) Compute a new cell list, saving for each cell the particles whose center is
inside them

(ii) For each particle i , in the simulation box

(1) For each cell k in the neighborhood of the cell containing particle i

(a) For each particle j in the neighbor cell k, such that j > i

• Compute the force between particle i and particle j
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Verlet list computed from a cell list

The Verlet list or neighbor list approach makes use of a list, the so-called Verlet list,
computed using a neighborhood with the same shape as the particle, but larger (see
Figure 6.14a). All the particles whose neighborhoods intersect are included in each
others Verlet lists. In the subsequent calculation of the interactions, only those parti-
cles in the list have to be considered. The neighborhood remains fixed in space as the
particles move, until a new Verlet list is computed (Frenkel and Smit, 2001).

In the first iteration after the computation of the list no time is saved. However, if
the maximum displacement of the particles is such that none of them exits its neigh-
borhood, one only needs to consider the particles in the Verlet list of each particle
for the force computation (see Figure 6.14b). This calculation is of the order of the
number of particles in the system. As soon as one of the particles moves outside the
neighborhood, the Verlet lists must be updated (see Figure 6.14c). This last operation
if done according to the naive scheme described in the beginning of this section is
proportional to the square of the number of particles, but if it is obtained using a cell
list it scales linearly with the number of particles. Although this step is not performed
at each iteration, it will dominate for a very large number of particles if the Verlet lists
are computed naively (Frenkel and Smit, 2001).

The difference in efficiency between the Verlet list computed from a cell list and
the cell list by itself depends on the the specifics of the system and the size of the
neighborhood (Frenkel and Smit, 2001). To estimate the difference in efficiency for a
system of spheres, consider that, using the cell list, the number of particles for which
the distance needs to be calculated is given by

nCell = 27ρr 3, (6.88)

where ρ is also the particle density and r is the radius of the spheres. For the Verlet list
the corresponding number is

nVerlet =
4

3
πρr 3

Verlet, (6.89)

where ρ is the particle density and rVerlet is the radius of the neighborhood, such that
rVerlet > r . Assuming that rVerlet = 1.1r , nVerlet is a fifth of nCell and if rVerlet = 1.5r , nVerlet

is half nCell. It is also worth noting that smaller rVerlet lead to a shorter Verlet list, but
also imply its computation more frequently, so its precise value must be chosen as a
compromise between these two constraints (Frenkel and Smit, 2001).

What is shown in the previous paragraph is compounded if the particles are not
circular or spherical, leading to a starker difference in favor of the Verlet list computed
from the cell list (Donev et al., 2005a). For this reason, the developed program uses a
Verlet list computed from a cell list, with an empirical value for the size of the neigh-
borhood equal to one and half times the geometrical parameters defining the particle.
Box 6.9 presents the pseudo-code for its implementation.
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Figure 6.14: Diagram illustrating the Verlet list method: (a) The Verlet list is calculated.
(b) Disk i interacts only with the Disks whose neighborhood intersect its own. (c) Disk
i exited its neighborhood, so a new Verlet list must be computed.

Box 6.9: Pseudo-code for the computation of interactions between particles using Ver-
let lists computed from cell lists.

(i) Check if there is a need to compute a new Verlet list
If any of the particles has move outside of its corresponding neighbor-
hood when the current Verlet list was computed

• Compute a new cell list, saving for each cell the particles whose
center is inside them

• Compute a new Verlet list using the cell list computed

(ii) For each particle i , in the simulation box

(1) For each particle j in the Verlet list of particle i , such that j > i

• Compute the force between particle i and particle j

6.6 Integration schemes for the equations of motion

There are many integration schemes for the equations of motion used in molecular
dynamics, such as the Verlet, the leap-frog and the velocity Verlet integration schemes
(Frenkel and Smit, 2001). For this application in particular, the integration scheme
for the equations of motion that seems more appropriate due to its simplicity, speed
and the ability to provide velocities synchronous with position is the Verlet integration
scheme.

6.6.1 Verlet integration scheme

The Verlet integration scheme is an explicit integration scheme for the equations of
motion that estimates the new position with an error that is of order ∆t 4, where ∆t is
the time step used.

To derive the Verlet integration scheme, one starts with a Taylor expansion of the
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particle’s position around t obtaining

x(t +∆t ) = x(t )+v (x)∆t + f (t )

2m
∆t 2 + ...

x (t )
∆t 3

3!
+O (∆t 4), (6.90)

and similarly

x(t −∆t ) = x(t )−v (x)∆t + f (t )

2m
∆t 2 − ...

x (t )
∆t 3

3!
+O (∆t 4), (6.91)

where x is the position of the particle, v its velocity, m its mass, in this case corre-
sponding to the area/volume of the particle, and f the force applied.

Summing the last two equations, the result is

x(t +∆t ) = 2x(t )−x(t −∆t )+ f (t )

m
∆t 2 +O (∆t 4). (6.92)

Thus, the update formula for the Verlet integration scheme is

x(t +∆t ) = 2x(t )−x(t −∆t )+ f (t )

m
∆t 2. (6.93)

Usually the velocity is computed from a centered finite difference as

v (t ) = x(t +∆t )−x(t −∆t )

2∆t
, (6.94)

which has an error of order ∆t 2. Nonetheless, since an isokinetic thermostat is used in
the final simulation scheme, it is more desirable to compute the velocity synchronously
with the position. Therefore, despite having an error of order ∆t , the velocity is com-
puted as

v (t ) = x(t )−x(t −∆t )

∆t
. (6.95)

Lastly, to enforce the periodic boundary conditions, the position of the particle
inside the simulation box is found from

xi (∆t ) = x ′
i (∆t )−`RVEi floor(x ′

i (∆t )/`RVEi ), i = 1, . . . ,ndim, (6.96)

where x ′ are the positions obtained from Equation (6.93) and `RVEi is the length of the
RVE in direction i .
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Box 6.10: Pseudo-code for one iteration of the Verlet integration scheme with the com-
putation of the velocity synchronous with the position.

(i) Obtain a virtual position for −∆t from the initial position, velocity and
force,

x(−∆t ) = x(0)−v (0)∆t − f (0)

m
∆t 2

(ii) For each particle iparticle

• Compute the new position for particle iparticle

x(∆t ) = 2x(0)−x(−∆t )+ f (0)

m
∆t 2

• Compute the current velocity for particle iparticle

v (∆t ) = x(∆t )−x(0)

∆t

• Enforce the periodic boundary conditions

xi (∆t ) = xi (∆t )−`RVEi floor(xi (∆t )/`RVEi ), i = 1, . . . ,ndim,

where `RVEi is the length of the RVE in direction i .

6.7 Thermostats

This section introduces the concept of temperature in Molecular Dynamics, followed
by the isokinetic scheme, ending with the multi-temperature approach based on the
isokinetic scheme developed in the present work.

6.7.1 Concept of temperature in molecular dynamics

According to the equipartition theorem (Frenkel and Smit, 2001; Krauth, 2006), the
temperature of a classical n-body system is defined as

kbT =
∑Np

i=1 mi‖vi‖2

NDOF Np
, (6.97)

where kb is the Boltzmann constant, T is the absolute temperature, mi and vi are the
mass and velocity of particle i , Np the number of particles in the system and NDOF the
number of degrees of freedom for each particle.

Equation (6.97) can also be rewritten as a function of the kinetic energy of the sys-
tem in the following way

1

2
kbT = Ekin

NDOF Np
, (6.98)

where Ekin/(Np NDOF) is the mean kinetic energy per degree of freedom of the system.
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The root mean square of the speed is a good upper estimate of the mean speed
and is given by

‖v‖RMS =
√

NDOFkbT

m
, (6.99)

for a system of particles all with the same mass m. Thus, in the discussion that follows,
it is assumed that for the most part the temperature is proportional to the square of
the mean speed.

Another useful concept for the discussion that will follow is the concept of mean
free-path. It is defined as the mean distance traveled by a particle between two con-
secutive collisions (Boltzmann, 1995). For disks or spheres it can be found from

`= 1p
2Npσ

, (6.100)

where the effective cross-sectional length for disks of radius r is

σDisk = 4r, (6.101)

and the effective cross-sectional area for spheres of radius r is

σSphere =π(2r )2. (6.102)

6.7.2 Isokinetic scheme

The isokinetic scheme is one of the simplest thermostats that can be devised, keeping
the average kinetic energy per particle strictly constant. However, it does not simu-
late the true constant-temperature ensemble, as in the latter the temperature suffers
small fluctuations around the constant temperature value. In practice, the difference
between isokinetic and canonical schemes is often negligible (Frenkel and Smit, 2001).
In the present case, this is even less relevant, as the goal here is to use the molecular
dynamics simulation to find a legal configuration and not to simulate a real system.

As previously mentioned, the temperature is kept rigorously constant in this scheme,
say at a reference temperature, denoted as Tref. This is accomplished by rescaling the
velocities of all the particles in the system by a factor λ. This factor can be deter-
mined from the equipartition theorem (Equation (6.97)), finding the factor λ that leads
the mean kinetic energy per degree of freedom to be equal to 1/2kbTref. Accordingly,
rewriting Equation (6.97), one finds

1

2
Np NDOFkbTref =

1

2

Np∑
i=1

mi‖λv i‖2, (6.103)

and applying the definition of kinetic energy, it follows

1

2
Np NDOFkbTref =λ2Ekin. (6.104)

Therefore, λ is given by

λ=
√

Np NDOFkbTref

2Ekin
. (6.105)

Box 6.11 presents the pseudo-code for a molecular dynamics simulation with con-
stant temperature according to an isokinetic scheme.
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Box 6.11: The isokinetic scheme in a molecular dynamics simulation.

(i) Generate an initial configuration

(ii) Initialize the increment counter i , i = 0

(iii) Compute the interactions between particles

(iv) Check if the particle configuration is legal.
If a legal configuration has been reached

• Exit with the current configuration being the microstructure sought
after

else if (i = imax) then

• Exit and report that the maximum number of iterations has been
reached

else

• Update the increment counter, i ← i +1

(v) Compute the kinetic energy of the system

Ekin = 1

2

Np∑
i=0

mi‖v i‖2

(vi) Compute the rescaling factor λ

λ=
√

Np NDOFkbTref

2Ekin

(vii) Rescale all the velocities by λ

(viii) Integrate the equations of motion for all particles using the resclaed ve-
locities

(ix) Go to step (iii)

Relevant remarks

Two remarks about the behavior of the system under the isokinetic scheme as it re-
lates to the total overlap area/volume in the system are presented shortly. These lend
support to the developed strategy, to be described in the next section.

The first remark concerns the existence of a mean overlap area, that decreases with
temperature. As the particles move around in the simulation box, they collide with
each other. Given that the potential originating the repulsive forces between the par-
ticles is soft, they penetrate each other at each collision increasing momentarily the
total overlap area. Concurrently with these collisions, overlapping particles are being
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driven apart by the repulsive forces between them, contributing to the decrease of the
total overlap. As the system reaches equilibrium, the number of collisions oscillates
around some constant value, as overlaps are removed and new ones are created. This
leads to an oscillating total overlap area around some value with a "period" related to
the mean free path and the mean speed of the particles (see Figure 6.15).

0

Figure 6.15: Diagram for the prediction related to the behavior of a system of particles
applying the isokinetic scheme, as it relates to the elimination of the initial overlap
area and the mean overlap area at different temperatures.

This heuristic argument helps establish that the expected behavior of the system
regarding the total overlap is oscillatory. To show that the mean overlap area/volume
decreases with the reference temperature enforced by the isokinetic scheme, one ar-
gues as follows. Consider two disks colliding at the mean speed ‖v ref‖ corresponding
to some reference temperature Tref (see Figure 6.16).

Figure 6.16: Two disks colliding at a velocity ‖v ref‖ corresponding to the mean velocity
at temperature Tref.

Since the isokinetic scheme artificially keeps the speeds constant during the inter-
action, it is not possible to analyze the differential equations of motion directly, thus
the update formulas for the Verlet integration scheme are used. At each iteration of
the Verlet integration scheme, the next position of Disk 1 is determined from

x1(t +∆t ) = 2x1(t )−x1(t −∆t )− f (t )

m
∆t 2. (6.106)
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Equation (6.106) can be rewritten as

x1(t +∆t )−x1(t ) = x1(t )−x1(t −∆t )− f (t )

m
∆t 2, (6.107)

and since the velocity is always the same, v ref, when applying the isokinetic scheme
just to two particles, except for the sense, one finds

x1(t +∆t )−x1(t ) = v ref(t )∆t − f (t )

m
∆t 2. (6.108)

Thus, the inversion of the velocity will only happen when

v ref(t ) = f (t )

m
∆t (6.109)

keeping in mind that both vectors have the same orientation in space, i.e. a straight
line between the centers of the particles. This means that the maximum overlap achie-
ved and as a consequence the mean overlap at equilibrium is positively correlated with
the velocity of the particles, and hence with the temperature of the system. Note that
the argument just presented is only approximate for systems of particles, as there are
interactions between more than two particles. Also, the velocities vary slightly, as the
factor λ depends on the velocities of all particles.

The second remark concerns the evolution of the total overlap area/volume in the
system starting from an initial random configuration. From the update equation of
the Verlet scheme, it can be deduced that the same overlap takes longer to remove at
a smaller speed, corresponding to a lower temperature, than at high temperature (see
Figure 6.15).

6.7.3 Multi-temperature isokinetic scheme

Firstly, it is explained the need to develop this multi-temperature approach based on
the isokinetic scheme. Due to its constant energy, the microcanonical ensemble leads
to a conservative system, such that the particles are always colliding with each other.
These constant collisions imply a very low probability of finding a legal configuration
in a reasonable time.

One possible approach is to introduce a drag force proportional to the speed of the
particles, as suggested by Salnikov et al. (2015). This approach solves the problem of
perpetual motion as the energy is now dissipated. Despite that, it does not present
a natural way to speed up the generation of a legal configuration during the simula-
tion, as the viscous coefficient is set at the beginning of the simulation. One could
try to vary the coefficient as the simulation progresses, but it is not readily clear how
to devise a fruitful scheme for this variation from physical intuition or by some other
means.

As for the approximation to the canonical ensemble using the isokinetic scheme
only, there are major roadblocks to its use. On the one side, the choice of a tempera-
ture that is too high will lead to a situation similar to the one just mentioned for the
microcanonical ensemble. High temperatures entail high particle speeds, and thus
lead to a high mean total overlap area/volume, as argued at the end of the last sec-
tion (see Section 6.7.2) and shown in Section 7.1.1 through experimental results. Con-
versely, excessively low temperatures result in a very slow removal of the initial overlap.
However, they also lead to an equilibrium state at a lower mean overlap area and hence
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imply a higher probability of finding a legal configuration as the mean time between
collisions decreases (see Equation (6.100)).

To understand the major drawback related to the use of very low temperatures, it is
important to define, at least qualitatively, desirable and undesirable microstructures.
Given the constraints already presented (see Section 1.1), a desirable microstructure
will not present any clear ordering or clustering, with an undesirable one presenting
one or the other (see Figure 6.17 for examples of desirable and undesirable microstruc-
tures with the same descriptors).

(a) Desirable configuration (b) Partially ordered configura-
tion

(c) Clustered configuration

Figure 6.17: Examples of desirable and undesirable, both clustered and partially or-
dered, configurations.

It can be readily seen that very low temperatures, and hence very low speeds, lead
to very clustered microstructures, where even at small volume fractions the particles
tend to stay very close, even touch each other, which is undesirable.

The developed approach consists in an isokinetic scheme with stages at progres-
sively lower temperatures until a legal configuration is found. As can be seen in the
schematic representation of Figure 6.18, the scheme is characterized, firstly, by an ini-
tial temperature, i.e. the temperature at which the simulation starts. One must also
specify a temperature lowering scheme, detailing how the temperature is lowered from
one stage to the next. The number of iterations spent at each temperature, referred to
as the "equilibration time", teq, is also a parameter that needs to be supplied, such
that after the specified number of iterations the temperature is lowered according to
the scheme chosen. Lastly, the number of extra iterations allowed after a legal config-
uration is achieved, referred to as the "relaxation time", trelax, must also be given to
fully specify the proposed approach.

Broadly, running the simulation first at higher temperatures seems to be a good
way to quickly eliminate the initial overlap. Later running it at lower temperatures ap-
pears to be a sound way to remove the remaining overlaps between particles without
allowing for the appearance of new overlaps from an excessive number of collisions.
This scheme is developed for an arbitrary particle, and it is shown in Section 7.1.2 that
the behavior of disks and spheres is identical. Any specificity inherent to ellipses and
ellipsoids is disregarded, which is probably not very consequential for small ratios be-
tween the principal axis. Further details are provided in what follows.
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Figure 6.18: Diagram of the evolution of the total overlap area AOverlap using the pro-
posed multi-temperature isokinetic scheme. The system spends teq1

and teq2
at tem-

peratures T1 and T2, achieving the mean overlap area ĀT1 and ĀT2 , respectively. After
reaching the maximum total overlap allowed, AMax, the simulation is still run for more
trelax and then terminated.

Initial temperature

Firstly, one must choose an initial temperature. The goal at this stage is to remove the
large initial overlap (see Figure 6.19) as quickly as possible. This large overlap comes
from the way the initial configuration is generated, i.e. through a Poisson point pro-
cess, making sure that the initial positions of the particles’ centers are disordered. Fail-
ing to achieve equilibrium, i.e. total overlap oscillating with time, is shown to be very
prejudicial in later paragraphs.

With this in mind, a higher temperature appears more desirable, as can be ascer-
tained from Figure 6.15, where the lower temperatures take a much longer time to
remove the initial overlap. On the other hand, lower temperatures lead, after removing
the initial overlap, to a smaller average overlap and to a higher probability of achiev-
ing a legal configuration. Despite this apparent benefit, it produces microstructures
with undesirable characteristics. Expanding on this point, the initial configuration has
many clusters (see Figure 6.19). A high temperature quickly removes most of the over-
lap, and the system achieves "equilibrium" with some given mean overlap area/vol-
ume. The configuration of the system is now much different from the initial config-
uration, with some particles overlapping and others free, but for the most part with-
out clusters and large overlaps between anyone pair of particles. A lower temperature
would take longer to remove the initial overlap, and due to the low speed of the parti-
cles, it will also take a long time for the initial clusters to dissolve, due to its high mean
time between collisions (see Equation 6.100).

Having concluded that higher temperatures are in general beneficial in this con-
text, the initial temperature should not be, however, arbitrarily high. This is a poor
choice as the particles go through each other and not much is achieved. The aver-
age overlap can even be larger than the initial overlap if the temperature is excessively
high. In order to avoid that two particles penetrate more than halfway through each
other in one iteration, consider the equations of motion of the system and the fact that
they are solved numerically using a given time step, ∆t . Thus, it must be ensured at
least that

‖v‖∆t < r. (6.110)
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Figure 6.19: Initial configuration generated through a Poisson point process for a sys-
tem of Disks with the same radius.

With the previous paragraphs in mind, a favorable initial temperature is one that
removes the initial overlap in a reasonable number of iterations and whose average
collision time is also only a few iterations. It is not straightforward to determine the
ideal initial temperature, as described, for all volume fractions and numbers of parti-
cles. The last paragraphs of this section show how this problem is dealt with.

Temperature lowering scheme and equilibration time

Regarding the temperature lowering scheme and the equilibration time, they go hand
in hand and constrain each other. thus, they are discussed in tandem.

Concerning the equilibration time, i.e. the time spent at some given temperature,
it can be seen as composed of two moments. The first, where the overlaps correspond-
ing to the previous temperature are removed and, the second, where the space of con-
figurations is explored at that given temperature and the corresponding mean overlap
is achieved.

As already stated in the previous section, determining the time needed to remove
a given overlap is not straightforward, but some useful conclusions about the time it
takes to remove overlaps at different temperatures can be reached. It is argued below
that the equilibration times for two temperature lowering steps are the same, as long
as the temperatures are related by a negative exponential law.

To illustrate this point, consider three temperatures T1, T2 and T3, such that T1 =
k2T2 = k4T3, with k some arbitrary factor larger than one. Related to each of these
three temperatures there is a mean velocity denoted by v 1, v 2, and v 3, and thus re-
lated to each other by ‖v 1‖ = k‖v 2‖ = k2‖v 3‖ (see Equation (6.99)). Assume that after
reaching equilibrium at a temperature of T1, the temperature is lowered to T2. The
case of two particles already overlapping, at the moment when the velocity inverts, i.e.
maximum overlap for the particle pair, is analyzed (see Figure 6.20). In this situation,
the overlap corresponding to T1 has to be removed at a lower temperature of T2. Due
to the isokinetic scheme, the velocity is assumed constant while the particles overlap.
This is not strictly true as the force also contributes to the computation of the next
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Figure 6.20: Two particles overlapping at the moment of maximum overlap with the
coordinate system origin at the center of mass of the particle pair.

position (see Equation (6.9)), and appreciably so when the overlap is at its maximum
and the velocity changes direction. Assume that it took n∆t to completely remove the
overlap.

Suppose that the system has reached equilibrium at temperature T2 and is now
quenched to temperature T3. One analyzes again the case of two particles already
overlapping at the moment when the velocity inverts, i.e. maximum overlap for the
particle pair. Now, the overlap corresponding to T2 has to be removed at a lower tem-
perature of T3. Due to the isokinetic scheme the velocity is again assumed to be con-
stant while the particles overlap.

Since the maximum force is proportional to the mean velocity (Equation 6.109), the
maximum forces between the two cases will also be related by the factor k. From Fig-
ure 6.21, detailing the relation between the normalized force ‖ f ‖/m and the distance
between particle center d for Disks (Equation (6.9)) and Spheres (Equation (6.44)), it
is possible to assert that

1− xT2
0

r
= k

1− xT1
0

r

 , (6.111)

where xT1
0 and xT2

0 are the positions at the moment when the repulsive forces are at
their maximum, taken relative to the center of mass of the system (see Figure 6.20),
and r is the radius of the particles. So the distance to cover until the overlap disappears
is decreased by the factor k. Since the velocities are assumed constant and also related
by k, it takes the same number of iterations to remove the overlap, n∆t .

For a system of particles, these results are not completely accurate, as there are in-
teractions between more than two particles. The higher the volume fraction and the
number of particles, the less accurate they will be. Nonetheless, it provides a justifi-
cation for the use of the same number of iterations for each temperature stage, if the
volume fraction and number of particles are not too high. At the end of this section, it
is be shown how to deal with those sets of more demanding descriptors.

Regarding the temperature lowering scheme, if the temperature at which legal con-
figurations start to be reasonably probable was known, it could be used as a lower
bound for the lowering scheme, but that result is not easy to come by.

To reinforce the importance of spending enough time at a given temperature to
achieve equilibrium, it is stressed that if the algorithm fails to spend enough time at
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Figure 6.21: Force between two disks and two spheres, where ‖f‖ is the area/vol-
ume overlap and m is the total area/volume, as a function of the distance between
them d/r , where d is the distance between the centers and r is the radius of the
Spheres/Disks.

this temperature to dissolve the clusters, lowering the temperature will only aggravate
this problem. This is so because the mean speed of the particles will be lower still
and even less conducive to the removal of the particle clusters, possibly leading to an
overlap are that converges to some known negative value.

Now, for the second moment, as explained before relating to the initial tempera-
ture, the temperatures that explore the space of configurations more efficiently are the
higher temperatures, so much so that their average collision times are but a few iter-
ations. As one moves to lower temperatures, it becomes untenable to try to explore
more fully the space of configurations at that temperature. However, it turns out that
this is not needed to achieve good results, the lower temperatures can be used just to
remove the residual overlaps, leaving the general layout of the configuration unaltered.
Since care is taken to first visit higher temperatures, this is not a problem as any possi-
ble clusters are long gone and a disordered microstructure has already been achieved,
remaining only minor overlaps.

Relaxation time

The usefulness of allowing for a relaxation time can be seen from the following exam-
ple. Assume there is only one pair of particles overlapping. As soon as they are driven
apart, assuming that no other collision occurred in the meantime, a legal configura-
tion is found, since the total overlap is now zero. Stopping the simulation immediately
after reaching a legal configuration may lead to those particles being too close together
in the final microstructure. Hence, it seems fruitful to allow the system to "relax" and
the particles to move away from each other for a few iterations after reaching a legal
configuration.

The suitable number of iterations should be chosen according to the mean free
path and the final temperature. This implies a small number of iterations for systems
with many particles at high volume fraction and a larger number of iterations for sys-
tems with few particles at low volume fractions.
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Calibration of the parameters

Since the results presented until here break down for higher volume fractions and
number of particles, the approach taken is to obtain reasonable values for the parame-
ters defining the proposed scheme for one combination of descriptors and to develop
a "self-calibrating" scheme around that point.

It is found that a reasonable initial temperature for 50 disks with r = 0.045 is T kb =
2.5×10−5. As for the lowering scheme and the equilibration time, it is found by nu-
merical experience that for Tn+1/Tn = 1/4, n = 1, . . . , 25 iterations produce satisfac-
tory results. A relaxation time of `/‖v‖RMS,Tfinal , where ` is the mean free path, and
‖v‖RMS,Tfinal is the root mean square velocity corresponding to the final temperature of
the system, is also found to be beneficial. These proposed values are justified empiri-
cally in Section 7.1.2.

To avoid having to calibrate the algorithm for all combinations of descriptors, and
to deal with the breaking down of the assumptions at higher volume fraction and
larger number of particles, a "self-calibrating" scheme is developed. The initial tem-
perature, the temperature lowering scheme and the relaxation time remain the same,
but the equilibration time, teq, for each temperature stage changes during the simula-
tion. It starts at 25 iterations and is updated in the following manner. After lowering
the temperature, the total overlap is monitored, such that the temperature can only be
lowered again if the simulation has spent more time at the current temperature stage
than the current equilibration time and if the total overlap area has increased in the
last teq/(2∆t ) iterations. This increase in the total overlap area is used as a proxy to
detect if the system has reached equilibrium at that temperature. It is a heuristic rule
based on experience that is supported by the fact that immediately after lowering the
temperature, the overlap tends to fall monotonically. As the equilibrium is reached,
due to its oscillatory nature, there will be eventually an uptick in the total overlap area.
In future work, a more robust and physically motivated scheme can be developed.

Box 6.12 presents the algorithm for the developed multi-temperature approach
based on the isokinetic scheme.
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Box 6.12: Multi-temperature molecular dynamics simulation base on the isokinetic
scheme.

(i) Generate an initial configuration

(ii) Initialize the increment counter i , i ← 0

(iii) Initialize the relaxation counter irelax, irelax ← 0

(iv) Initialize the reference temperature Tref, the minimum number of iter-
ations spent at the current temperature stage, neq and the iteration at
which the temperature was last altered, nlast alt ← 0

(v) Compute the interactions between particles from their overlap area/vol-
ume and save the total overlap volume/area, ATotal Overlap

(vi) Integrate the equations of motion for all particles

(vii) Compute the interactions between particles from their overlap area/vol-
ume and save the total overlap volume/area, ATotal Overlap

(viii) Check if the system has reached equilibrium at temperature Tref.
If i > nlast alt+neq, ATotal Overlap ≤ Amax and the overlap area has increased
in the last neq iterations

• Lower the temperature, Tref = (1/k)Tref

• Update the number of iterations needed to achieve equilibrium,
neq ← i −nlast alt

• Save the iteration at which the temperature was lowered,
nlast alt ← i

(ix) Compute the rescaling factor λ

λ=
√

Np NDOFkbTref

2Ekin

and multiply all the velocities by λ

(x) Check if the particle configuration is legal.
If ATotal Overlap ≤ Amax

• Increment the relaxation counter, irelax ← irelax +1

else

• Reset the relaxation counter, irelax ← 0

(xi) Check if the required number of relaxation iterations has been reached
or the maximum number of iterations, nrelax.
If irelax = nrelax or nmax = i

• Exit with the current configuration being the microstructure pro-
duced

else

• Update the increment counter, i ← i +1 and go to step (vi)
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Chapter 7

Results

7.1 Microstructure generation

The first set of results presented concerns the generation of microstructures itself. It
includes the study of systems of particles under the isokinetic scheme, the validation
of the proposed multi-temperature isokinetic scheme and an analysis of its efficiency.

7.1.1 Results regarding the isokinetic scheme

In this section, the results concerning the isokinetic scheme and the behavior of a sys-
tem of particles subject to this scheme, more specifically, as it pertains to the total
overlap area, are presented.

Results

To understand how the total overlap area/volume of a generic system of particles evol-
ves under the isokinetic scheme at several different temperatures, various molecular
dynamics simulations are run at different temperatures.

Figure 7.1 presents the total overlap area for a system containing 100 Disks at a

volume fraction 0.65, with the temperatures varying as Trefkb = 2.5×10−5/
p

2
−k

, k = 5,
0, -5, -10, -15, -20, -25, -30, enforced through the isokinetic scheme. A similar study is
presented in Figure 7.2 using the same temperatures, but for a system of 50 Spheres at
a volume fraction of 0.3.

Figure 7.3 presents the total overlap area for a system containing 100 Disks at dif-
ferent volume fractions (0.1, 0.25, 0.5, 0.65, 0.8 and 0.95), with the temperature kept
at Trefkb = 2.5×10−5, enforced through the isokinetic scheme. A similar study is pre-
sented in Figure 7.4 using the same temperature but for systems containing 50 Spheres
at different volume fractions (0.1, 0.2, 0.3, 0.4, 0.5 and 0.65).

Figure 7.5 presents the total overlap area for systems containing 10, 15, 30, 50,
100 and 200 Disks at a volume fraction of 0.65. The temperature is kept at Trefkb =
2.5×10−5 and enforced through the isokinetic scheme. A similar study is presented in
Figure 7.6 using the same temperature, but for systems containing 10, 15, 30, 50, 100
and 200 Spheres at a volume fraction of 0.3.
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Figure 7.1: Total overlap area for a system of 100 Disks with the volume fraction of 0.65

at different reference temperatures given by Trefkb = 2.5×10−5/
p

2
−k

with k = 5, 0, -5,
-10, -15, -20, -25, -30 as a function of the number of iterations.
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Figure 7.2: Total overlap volume for a system of 50 Spheres with the volume fraction

of 0.3 at different reference temperatures given by Trefkb = 2.5×10−5/
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with k = 5,
0, -5, -10, -15, -20, -25, -30 as a function of the number of iterations.
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Figure 7.3: Total overlap area for a system of 100 Disks at temperature Trefkb =
2.5×10−5 with different volume fractions as a function of the number of iterations.
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Figure 7.4: Total overlap volume for a system of 50 Spheres at temperature Trefkb =
2.5×10−5 with different volume fractions, as a function of the number of iterations.
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Figure 7.5: Total overlap area for systems of Disks with a volume fraction of 0.65 at
temperature Trefkb = 2.5×10−5 and a different number of particles as a function of the
number of iterations.
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Figure 7.6: Total overlap volume for systems of Spheres with a volume fraction of 0.3
at temperature Trefkb = 2.5×10−5 and a different number of particles as a function of
the number of iterations.
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Discussion

From Figures 7.1 and 7.2 it is possible to confirm what is concluded in Section 6.7.2 re-
garding the oscillatory nature of the total overlap after equilibrium has been reached.
Furthermore, the relation between the mean overlap area/volume at a given reference
temperature and the reference temperature is also confirmed, with higher tempera-
tures leading to plateaus with a higher mean overlap area/volume and lower temper-
atures to plateaus with a lower mean overlap/area volume. It is also possible to con-
clude that lower temperatures take an increasingly longer time to remove the initial
overlap as they become lower.

Figures 7.3-7.6 depict how the total overlap area/volume varies as a function of the
volume fraction and the number of particles for the same temperature. These results
can be interpreted using the concept of the mean free path (Equation (6.100)) and
its relation with the two variables just mentioned, the number of particles and the
volume fraction. Since the mean free path decreases with the increase in the number
of particles and the volume fraction, it is to be expected that from the larger amount
of collisions arises a higher mean overlap area/volume. It can also be seen that the
"period" of the total overlap area/volume follows an inverse tendency, being lower at
higher volume fractions, but higher at larger numbers of particles. Thus, it can be
concluded that the interaction between the particles at different volume fractions and
the number of particles have a strong impact on the behavior of the system as it relates
to the total overlap area/volume.

Lastly, comparing the corresponding examples of systems of Spheres and Disks,
one can infer that the behavior of the two types of systems is very similar.

7.1.2 Validation of the multi-temperature approach

With the goal of validating the proposed multi-temperature isokinetic scheme, vari-
ous microstructures are generated, showing that it produces microstructures with legal
configurations.

Results

Firstly, Figure 7.7 and Figure 7.8 show the impact that the number of equilibration it-
erations allowed has on the total overlap area and the final microstructures. Figure 7.7
presents the evolution of the total overlap area for a system of 100 Disks at a volume
fraction of 0.65, with an initial temperature of Trefkb = 2.5×10−5 and different number
of equilibration iterations allowed, k = 10, 15, 20, 15, 30 and 35. Figure 7.8 contains the
final microstructures obtained, either after finding a legal configuration corresponding
to no overlap or after 1000 iterations.

To establish that an initial temperature of Trefkb = 2.5×10−5 and a number of equi-
libration iterations equal to 25 in the multi-temperature isokinetic scheme produces
acceptable results for a system of 100 Disks at a volume fraction of 0.65, four different
random samples are generated. Figure 7.9 presents the evolution of the total over-
lap area of the system and Figure 7.10 contains the final microstructures obtained, all
with no overlap. Thus, all the following simulations begin with an initial temperature
of Trefkb = 2.5×10−5 and a minimum number of equilibration iterations of 25.

To show that allowing only 25 iterations for the system of particles to reach equi-
librium at all temperatures, volume fractions and number of particles, is not a robust
strategy, a set of microstructures is generated containing 10, 15, 30, 50, 100 and 200
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Disks at a volume fraction of 0.65, using the multi-temperature isokinetic scheme al-
lowing only 25 iteration for the equilibration of the system. The simulations are run
until a configuration with no overlaps is found or 650 iterations have elapsed. Figures
7.11 and 7.12 illustrate the evolution of the total overlap area and the final microstruc-
tures for this set of simulations. With the same purpose, a set of microstructures is
generated containing 100 Disks at volume fractions of 0.1, 0.25, 0.5, 0.65, 0.8 and 0.9,
using the multi-temperature isokinetic scheme allowing only 25 iteration for the equi-
libration of the system. The simulations are run until a configuration with no overlaps
is found or 1000 iterations have elapsed. Figures 7.13 and 7.14 depict the evolution of
the total overlap area and the final microstructures for this set of simulations.

The following two sets of microstructures are generated with the objective of val-
idating the "self-calibrating" multi-temperature isokinetic scheme for Disks. The first
set of microstructures, documented in Figures 7.15 and 7.16, is composed of microstruc-
tures containing 10, 15, 30, 50, 100 and 200 Disks at a volume fraction of 0.65. The
simulations are run until a configuration with no overlaps is found. The second set
of microstructures, documented in Figures 7.17 and 7.18, is composed of microstruc-
tures containing 100 Disks at high volume fractions (0.7, 0.75, 0.8, 0.85 and 0.9) The
simulations are run until a configuration with no overlaps is found or 5000 iterations
have elapsed.

So as to also validate the "self-calibrating" multi-temperature isokinetic scheme for
Spheres, two more sets of microstructures are generated. The first set of microstruc-
tures, documented in Figures 7.19 and 7.20, is composed of microstructures contain-
ing 10, 15, 30, 50, 100 and 200 Spheres at a volume fraction of 0.3. The simulations are
run until a configuration with a total overlap volume smaller than 1×10−10 is found.
The second set of microstructures, documented in Figures 7.21 and 7.22, is composed
of microstructures containing 100 Spheres at volume fractions of 0.1, 0.2, 0.3, 0.4, 0.5
and 0.6. The simulations are run until a configuration with a total overlap volume
smaller than 1×10−10 is found or 25000 iterations have elapsed.

Lastly, Figures 7.23 and 7.24 show the evolution of the total overlap area and the fi-
nal microstructures for systems of particles containing 20 Ellipses with different ratios
between the major and the minor axis (1, 1.5, 2, 2.5 and 3).
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Figure 7.7: Total overlap area for a system of 100 Disks with volume fraction equal to
0.65 as function of the number of iterations, allowing a different number of iterations,
k, for the equilibration time in the multi-temperature isokinetic scheme. A configura-
tion is accepted as legal if there are no overlaps.

(a) k = 10 (b) k = 15 (c) k = 20

(d) k = 25 (e) k = 30 (f) k = 35

Figure 7.8: Final microstructures containing 100 Disks with a volume fraction equal
to 0.65, allowing a different number of iterations, k, for the equilibration time in the
multi-temperature isokinetic scheme. A configuration is accepted as legal if there are
no overlaps.
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Figure 7.9: Total overlap area for four different random samples of a system containing
100 Disks with volume fraction equal to 0.65 as a function of the number of iterations,
allowing 25 iterations for the equilibration time in the multi-temperature isokinetic
scheme. A configuration is accepted as legal if there are no overlaps.

(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 7.10: Final microstructures corresponding to four different random samples of
a system containing 100 Disks with a volume fraction equal to 0.65, allowing 25 itera-
tions for the equilibration time in the multi-temperature isokinetic scheme. A config-
uration is accepted as legal if there are no overlaps.
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Figure 7.11: Total overlap area for systems containing a different numbers of Disks,
n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.65 as a function of
the number of iterations, allowing 25 iterations for the equilibration time in the multi-
temperature isokinetic scheme. A configuration is accepted as legal if there are no
overlaps.

(a) n = 10 (b) n = 15 (c) n = 30

(d) n = 50 (e) n = 100 (f) n = 200

Figure 7.12: Final microstructures for systems containing a different numbers of Disks,
n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.65 allowing 25 iterations
for the equilibration time in the multi-temperature isokinetic scheme. A configuration
is accepted as legal if there are no overlaps.
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Figure 7.13: Total overlap area for systems containing 100 Disks, with different vol-
ume fractions, vf = 0.1, 0.25, 0.50, 0.65, 0.80 and 0.9, as a function of the number of
iterations, allowing 25 iterations for the equilibration time in the multi-temperature
isokinetic scheme. A configuration is accepted as legal if there are no overlaps.

(a) vf = 0.1 (b) vf = 0.25 (c) vf = 0.5

(d) vf = 0.65 (e) vf = 0.8 (f) vf = 0.9

Figure 7.14: Final microstructures for systems containing 100 Disks, with different vol-
ume fractions, vf = 0.1, 0.25, 0.50, 0.65, 0.80 and 0.9, allowing 25 iterations for the equi-
libration time in the multi-temperature isokinetic scheme. A configuration is accepted
as legal if there are no overlaps.
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Figure 7.15: Total overlap area for systems containing a different numbers of Disks,
n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.65 as a function
of the number of iterations, "self-calibrating" the equilibration time in the multi-
temperature isokinetic scheme. A configuration is accepted as legal if there are no
overlaps.

(a) n = 10 (b) n = 15 (c) n = 30

(d) n = 50 (e) n = 100 (f) n = 200

Figure 7.16: Final microstructures for systems containing a different numbers of Disks,
n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.65, "self-calibrating"
the equilibration time in the multi-temperature isokinetic scheme. A configuration is
accepted as legal if there are no overlaps.
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Figure 7.17: Total overlap area for systems containing 100 Disks, with different volume
fractions, vf = 0.7, 0.75, 0.80, 0.85 and 0.9, as a function of the number of iterations,
"self-calibrating" the equilibration time in the multi-temperature isokinetic scheme. A
configuration is accepted as legal if there are no overlaps.

(a) vf = 0.7 (b) vf = 0.75 (c) vf = 0.8

(d) vf = 0.85 (e) vf = 0.9

Figure 7.18: Final microstructures for systems containing 100 Disks, with different vol-
ume fractions, vf = 0.7, 0.75, 0.80, 0.85 and 0.9, as a function of the number of it-
erations, "self-calibrating" the equilibration time in the multi-temperature isokinetic
scheme. A configuration is accepted as legal if there are no overlaps.
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Figure 7.19: Total overlap area for systems containing a different numbers of Spheres,
n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.3 as a function
of the number of iterations, "self-calibrating" the equilibration time in the multi-
temperature isokinetic scheme. A configuration is accepted as legal if the total overlap
volume is smaller than 1×10−10.

(a) n = 10 (b) n = 15 (c) n = 30
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Figure 7.20: Final microstructures for systems containing a different numbers of
Spheres, n = 10, 15, 30, 50, 100 and 200, with volume fraction equal to 0.3 as a func-
tion of the number of iterations, "self-calibrating" the equilibration time in the multi-
temperature isokinetic scheme. A configuration is accepted as legal if the total overlap
volume is smaller than 1×10−10.
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Figure 7.21: Total overlap area for systems containing 100 Spheres, with different vol-
ume fractions, vf = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, as a function of the number of it-
erations, "self-calibrating" the equilibration time in the multi-temperature isokinetic
scheme. A configuration is accepted as legal if the total overlap volume is smaller than
1×10−10.

(a) vf = 0.1 (b) vf = 0.2 (c) vf = 0.3

(d) vf = 0.4 (e) vf = 0.5 (f) vf = 0.6

Figure 7.22: Final microstructures for systems containing 100 Spheres, with different
volume fractions, vf = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, as a function of the number of
iterations, "self-calibrating" the equilibration time in the multi-temperature isokinetic
scheme. A configuration is accepted as legal if the total overlap volume is smaller than
1×10−10.
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Figure 7.23: Total overlap area for systems containing 20 Ellipses with different ratios
between the principal axis, a/b = 1, 1.5, 2, 2.5 and 3, at volume fraction of 0.5, as a
function of the number of iterations, "self-calibrating" the equilibration time in the
multi-temperature isokinetic scheme. A configuration is accepted as legal if there are
no overlaps.

(a) a/b = 1 (b) a/b = 1.5 (c) a/b = 2

(d) a/b = 2.5 (e) a/b = 3

Figure 7.24: Total overlap area for systems containing 20 Ellipses with different ratios
between the principal axis, a/b = 1, 1.5, 2, 2.5 and 3, at volume fraction of 0.5, as a
function of the number of iterations, "self-calibrating" the equilibration time in the
multi-temperature isokinetic scheme. A configuration is accepted as legal if there are
no overlaps.
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Discussion

From Figure 7.7 it is possible to conclude that for a system of 100 Disks at a volume
fraction of 0.65, 10 and 15 iterations to reach equilibrium are not enough. Moreover,
for these values the temperature is lowered at such a rate that the particles get stuck
together and the total overlap area converges to a nonzero value, which is very unde-
sirable. Allowing only for 20 iterations, the simulation produces a legal configuration,
but the total overlap area decreases almost monotonically, which may indicate that
equilibrium is not reached at each temperature. Thus, so as to not waste iterations af-
ter the system reaches equilibrium at a given temperature, the value of 25 iterations is
chosen. Looking at the final microstructures, there are no marked differences, even for
the microstructures that are not legal, i.e. where there is overlap, since the overlap area
is almost imperceptible. This is probably due to the high volume fraction, that masks,
for the most part, any clustering, and the disordered nature of the initial configura-
tion, generated through a Poisson point process. Hence, the strategy used to generate
the initial configuration seems to be appropriate, contributing to the robustness of the
method. Lastly, it is to be noted that only the microstructure generated allowing for 35
equilibration iterations is adversely affected by the presence of the relaxation time, as
can be seen in Figure 7.7.

As already stated, Figures 7.9 and 7.10 document the set of four samples gener-
ated to establish that an initial temperature of Trefkb = 2.5×10−5 and a number of
equilibration iterations equal to 25 in the multi-temperature isokinetic scheme pro-
duces acceptable results for a system of 100 Disks at a volume fraction of 0.65. This
is confirmed with the total number of iterations being approximately the same, as can
be seen in Figure 7.9 and the final microstructures obtained not showing any glaring
flaws.

However, it can be concluded that allowing for only 25 equilibrium iterations is
not a robust strategy, and fails for larger particles, as can be seen in Figure 7.11 for 10
and 15 Disks and for higher volume fractions, as can be seen in Figure 7.13 for vol-
ume fractions equal to 0.8 and 0.9. Looking at the final microstructures for systems
containing 10 and 15 Disks with volume fraction 0.65, Figure 7.12a and 7.12a, respec-
tively, it can be gathered that the particles stuck together preventing the achievement
of a legal configuration due to the insufficient number of iterations allowed to reach
equilibrium at the different temperature stages. As for the system of particles contain-
ing 100 Disks at volume fractions 0.8, from Figure 7.11 it can be posited that due to
its slight oscillation, if given more time a legal configuration could be found. Its final
configuration (see Figure 7.14e) supports this assertion, as it seems that the particles
are fairly close to a legal configuration. On the other hand, the system of particles
containing 100 Disks at a volume fraction equal to 0.9 appears to have plateaued (see
Figure 7.13). From its final microstructure (see Figure 7.14f), it can be understood why.
Despite 0.9 being a volume fraction below the maximum volume fraction possible for
a system of Disks (≈ 0.9069), this approach cannot eliminate the point defects present
and so its success depends strongly on the initial configuration.

The data presented in Figures 7.15 and 7.17 validates the "self-calibrating" multi-
temperature isokinetic scheme, where the equilibration time is updated as the simu-
lation progresses, as it is able to obtain legal configurations for the cases where the
use of only 25 iterations for the equilibration time failed. Figures 7.16 and 7.18 present
the corresponding final microstructures, whose characteristics seem to be in line with
the requirements established for the generation of the microstructures. Regarding the
highest volume fractions, this method is not able to produce a legal configuration, as
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can be seen in Figure 7.17. This is potentially due to the strong influence of the ini-
tial configuration on the defects that will show up in the final microstructure, which at
these volume fractions is largely crystallized.

As for the validation of the "self-calibrating" multi-temperature isokinetic scheme
for systems of Spheres, the results are presented in Figures 7.19 and 7.21. For systems
of Spheres a legal configuration is defined allowing for a residual total overlap volume
of 1×10−10, since for these systems achieving zero overlap takes a very long time. This
is explained in greater detail in the next section dealing with efficiency, and a solution
is proposed when there is a need for no overlap. Regarding the efficacy of the "self-
calibrating" multi-temperature isokinetic scheme, a legal configuration is found for all
the combinations of descriptors supplied, with Figures 7.20 and 7.22 presenting the
final microstructures. The quality of the microstructures generated is addressed in
Section 7.22.

Lastly, Figures 7.23 and 7.24 contain the results for systems of Ellipses with differ-
ent ratios, showing that, as expected, larger ratios lead to longer time to find a legal
configuration. It can also be noted, that from Figure 7.23 one cannot detect any obvi-
ous difference between the evolution of the total overlap area for ellipses and for disks,
except of course for the number of iterations taken to find a legal configuration.

7.1.3 Efficiency

This section seeks to present a set of results related to the efficiency of the proposed
method for microstructure generation.

Results

To understand the efficiency in the generation of microstructures containing Disks,
the CPU time and number of iterations taken is studied. Figure 7.25 presents the CPU
time and the number of iterations averaged over five samples for systems containing
5, 10, 20, 50, 100, 200 and 500 Disks at volume fractions equal to 0.1, 0.2, 0.3, 0.4, 0.5,
0.6 and 0.7. In turn, Table 7.1 presents, in addition to the average CPU time over the
five samples, the corresponding standard deviation.

With the same goal but regarding systems of Spheres, another set of simulations is
performed. Figure 7.26 presents the CPU time and the number of iterations averaged
over five samples for systems containing 10, 20, 50, 100, 200 and 500 Spheres at volume
fractions equal to 0.1, 0.2, 0.3, 0.4 and 0.5. In turn, Table 7.2 presents in addition to the
average CPU time over the five samples, the corresponding standard deviation. Table
7.3 presents the same results but for systems of Spheres with volume fraction of 0.6.
These are excluded from Figure 7.26 and Table 7.2 since it is not possible to reliably
generate 5 samples for all numbers of particles.

Lastly, Figure 7.27 and Table 7.4 present the same efficiency related information for
systems of 20 Ellipses with the orientation angle varying uniformly between 0 and 2π
at a volume fraction of 0.5, and ratio between the major and minor axis equal to 1, 1.5,
2, 2.5 and 3.
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Figure 7.25: (a) Average CPU time and (b) average number of iterations averaged over
five samples, for the generation of microstructures containing different numbers of
Disks, n = 5, 10, 20, 50 , 100, 200 and 500, at various volume fractions, vf = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6 and 0.7, using the "self-calibrating" multi-temperature isokinetic scheme.
A configuration is accepted as legal if there are no overlaps.

Table 7.1: Average CPU time and corresponding standard deviation from five samples,
for the generation of microstructures containing different numbers of Disks, n = 5, 10,
20, 50 , 100, 200 and 500, at various volume fractions, vf = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and
0.7, using the "self-calibrating" multi-temperature isokinetic scheme. A configuration
is accepted as legal if there are no overlaps.

Number of
particles

Time /s
Volume Fraction /%

10 20 30 40 50 60 70

5
Mean 0.06 0.09 0.20 0.41 0.90 1.66 1.38

Std Dev 0.03 0.06 0.03 0.18 0.50 1.64 0.50

10
Mean 0.13 0.28 0.58 0.97 1.26 2.00 3.86

Std Dev 0.09 0.15 0.24 0.26 0.33 0.83 0.81

20
Mean 0.93 0.91 1.23 2.29 2.09 4.61 8.20

Std Dev 0.31 0.24 0.25 0.41 0.82 0.80 4.24

50
Mean 3.54 3.65 5.29 7.34 9.69 13.13 19.48

Std Dev 0.67 0.79 0.47 0.89 1.57 1.52 5.28

100
Mean 9.43 11.55 16.31 14.58 21.78 30.19 35.54

Std Dev 0.87 2.21 2.11 3.94 3.38 2.99 3.40

200
Mean 23.23 32.12 43.09 41.06 53.13 59.20 80.17

Std Dev 2.29 5.00 2.68 7.61 5.79 16.34 25.32

500
Mean 100.93 117.57 121.46 147.31 164.38 206.98 164.19

Std Dev 7.19 4.86 13.26 10.58 21.65 20.23 16.59
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Figure 7.26: (a) Average CPU time and (b) average number of iterations averaged over
five samples, for the generation of microstructures containing different numbers of
Spheres, n = 10, 20, 50, 100, 200 and 500, at various volume fractions, vf = 0.1, 0.2,
0.3, 0.4, and 0.5, using the "self-calibrating" multi-temperature isokinetic scheme. A
configuration is accepted as legal if the average total overlap area per particle is smaller
than 1×10−12.

Table 7.2: Average CPU time and corresponding standard deviation from five samples,
for the generation of microstructures containing different numbers of Spheres, n = 10,
20, 50, 100, 200 and 500, at various volume fractions, vf = 0.1, 0.2, 0.3, 0.4, and 0.5,
using the "self-calibrating" multi-temperature isokinetic scheme.A configuration is ac-
cepted as legal if the average total overlap area per particle is smaller than 1×10−12.

Number of
particles

Time /s
Volume Fraction /%

10 20 30 40 50

10
Mean 0.92 2.06 3.84 6.69 29.33

Std Dev 0.29 0.68 2.11 3.37 8.47

20
Mean 3.01 3.28 17.33 15.22 34.59

Std Dev 0.72 0.86 3.26 6.11 10.37

50
Mean 6.75 16.10 33.91 32.82 111.88

Std Dev 1.09 9.00 8.57 13.08 29.34

100
Mean 26.18 44.32 80.75 88.83 173.18

Std Dev 7.04 14.19 40.14 31.20 37.84

200
Mean 55.79 99.70 152.86 175.06 289.23

Std Dev 9.68 28.14 22.30 15.90 26.70

500
Mean 198.71 330.94 441.64 439.53 729.60

Std Dev 46.22 67.27 78.70 13.65 56.52
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Table 7.3: Average CPU time, corresponding standard deviation and average final over-
lap volume and corresponding standard deviation for systems containing 10, 20, 50,
100, 200 and 500 Spheres at a volume fraction of 0.6.

Number of
Spheres

Successful
Samples

Final Overlap Volume Time /s

Mean Std Dev Mean Std Dev

10 0 7.27×10−3 6.07×10−3 831.98 378.41

20 1 1.84×10−5 3.69×10−5 521.44 18.46
50 4 1.20×10−9 2.24×10−9 836.89 151.32

100 4 1.03×10−8 2.03×10−8 1187.51 363.65
200 5 2.09×10−10 1.86×10−11 2005.73 939.98
500 5 4.99×10−10 3.39×10−13 2209.93 370.55
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Figure 7.27: (a) Average CPU time and (b) average number of iterations averaged over
five samples, for the generation of microstructures containing 20 Ellipses at a volume
fraction of 0.5, with different ratios between the principal axis, a/b = 1, 1.5, 2, 2.5 and
3, using the "self-calibrating" multi-temperature isokinetic scheme. A configuration is
accepted as legal if there are no overlaps.

Table 7.4: Average CPU time and corresponding standard deviation from five samples,
for the generation of microstructures containing 20 Ellipses at a volume fraction of
0.5, with different ratios between the principal axis, a/b = 1, 1.5, 2, 2.5 and 3, using the
"self-calibrating" multi-temperature isokinetic scheme. A configuration is accepted as
legal if there are no overlaps.

Time /s
Ratio a/b

1 1.5 2 2.5 3

Mean 7.43 6.62 8.29 15.05 21.51
Std Dev 0.59 1.07 1.34 2.18 4.95



7.1. Microstructure generation 129

Discussion

From Figure 7.25, it can be concluded that the proposed scheme is reasonably effi-
cient, being capable of generating a microstructure containing 500 Disks at a volume
fraction of 0.7 in around 165 seconds (≈ 3 mins). As expected, a larger number of Disks
at a higher volume fraction implies a larger CPU time to obtain a legal configuration
with zero overlap. Table 7.1 hints that the standard variation of the CPU time follows
the same tendency, being larger for higher volume fractions and numbers of particles.

For systems of Spheres the same approach, is also shown to be reasonably effi-
cient, being able to produce microstructures containing 500 Spheres at a volume frac-
tion of 0.5 in around 12 mins, with the caveat that the final configuration allows for
an average total overlap per particle of 1×10−12. This option, as stated previously, is
taken because for systems of Spheres finding a configuration without overlap takes a
prohibitive time. A reason for this state of affairs can be deduced from Figure 6.21,
depicting the repulsive force as a function of the distance between the centers of two
Spheres with the same size. It can be noted that when compared to the repulsive force
between two Disks, for distances very close to the diameter of the particle, i.e. no over-
lap, the force for Spheres decreases more abruptly leading to very small forces when
compared to Disks at very small overlaps. Hence, the difference in the ability of the
two systems to reach zero overlap.

To mitigate this problem, when a microstructure with Spheres is desired with no
overlap, one can simulate the system with larger particles, and hence larger volume
fraction, shrinking the particles at the end. For example, if for a system of 500 Spheres
at a volume fraction of 0.4, the system is simulated with an increased radius of 0.0001,
it implies a virtual volume fraction of 0.402. Assuming that the overlap volume is only
due to two particles, the overlap of the virtual particles corresponding to nonoverlap-
ping real particles is 6.3×10−7, and can be found from Equation (6.44). Thus, the in-
crease in volume fraction of just 0.02, carries a negligible increase in CPU time and
allows the use of very loose convergence criteria of 6.3×10−7 for the total overlap vol-
ume.

When it comes to systems of Spheres at a volume fraction of 0.6, Table 7.3 shows
that a legal configuration could not be found for all numbers of particles, more pre-
cisely, systems with less particles and hence larger particles failed to produce the de-
sired average overlap per particle. At the moment, this behavior cannot be explained,
however, it must be noted that for smaller particles corresponding to systems of 200
and 500 Spheres it was always possible to generate microstructures with legal config-
urations.

Lastly, Figure 7.27 and Table 7.4 confirm, that as expected, systems containing El-
lipses with higher ratios between the major and minor axis imply longer simulation
times to produce a legal configuration.
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7.2 Microstructure Analysis

In this section, it is shown that the Minkowski structure metrics are robust descriptors
of the microstructure. Several numerical examples are presented where these metrics
are employed to suitably characterize the generated microstructures.

7.2.1 Reconstruction of polygons and detection of s-fold symmetry

This section has the goal of showing that the Minkowski structure metrics and the as-
sociated concepts are able to provide a robust description of the shape of convex and
non-convex polygons. This is of great importance in the analysis of microstructures,
as it allows for the characterization of the Voronoi cells of the Voronoi diagrams, be
it standard Voronoi diagrams, obtained from microstructures containing only Disks
of the sames size, or set Voronoi diagrams, obtained from microstructures containing
Disks of different sizes and/or Ellipses.

Results

In order to fulfill the objectives of this section four convex polygons and four non-
convex polygons are created. They are shown in Figures 7.28a, 7.29a, 7.30a, 7.31a,
7.32a, 7.33a, 7.34a and 7.35a, and are obtained by distorting and adding extra vertices
to a triangle, a square, a thin rectangle and a hexagon, respectively. The reconstruction
of the convex polygons using the first six terms of a Fourier series to approximate the
curvature is presented in Figures 7.28b, 7.30b, 7.32b and 7.34b, respectively. The cor-
responding Minkowski structure metrics for each polygon are shown in Figures 7.28c,
7.29b, 7.30c and 7.31b, 7.32c, 7.33b, 7.34c and 7.35b.
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(c)

Figure 7.28: (a): Convex polygon obtained distorting and adding vertices to an equi-
lateral triangle. (b): Reconstruction using the first 6 terms of the Fourier series to ap-
proximate the polygon’s curvature (c): Minkowski structure metrics of the polygon.
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Figure 7.29: (a): Non-convex polygon obtained distorting and adding vertices to an
equilateral triangle. (b): Minkowski structure metrics of the polygon.
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Figure 7.30: (a): Convex polygon obtained distorting and adding vertices to a square.
(b): Reconstruction using the first 6 terms of the Fourier series to approximate the
polygon’s curvature. (c): Minkowski structure metrics of the polygon.
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Figure 7.31: (a): Non-convex polygon obtained distorting and adding vertices to a
square. (b): Minkowski structure metrics of the polygon.
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Figure 7.32: (a): Convex polygon obtained distorting and adding vertices to a thin rect-
angle. (b): Reconstruction using the first 6 terms of the Fourier series to approximate
the polygon’s curvature (c): Minkowski structure metrics of the polygon.
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Figure 7.33: (a): Non-convex polygon obtained distorting and adding vertices to a thin
rectangle. (b): Minkowski structure metrics of the polygon.
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Figure 7.34: (a): Convex polygon obtained distorting and adding vertices to an equi-
lateral triangle. (b): Reconstruction using the first 6 terms of the Fourier series to ap-
proximate the polygon’s curvature (c): Minkowski structure metrics of the polygon.
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Figure 7.35: (a): Non-convex polygon obtained distorting and adding vertices to a reg-
ular hexagon. (b): Minkowski structure metrics of the polygon.
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Discussion

From Figures 7.28b, 7.30b, 7.32b and 7.34b it can be seen that the shapes of the con-
vex polygons are mostly recovered. It must be kept in mind that only 6 terms of the
Fourier series are used to produce these shapes. Accordingly, the Minkowski struc-
ture metrics presented in Figures 7.28a, 7.30a, 7.32a and 7.34a signal strongly the pres-
ence of 3-fold, 4-fold, 2-fold and 6-fold, respectively. The same can be said about the
Minkowski structure metrics obtained for the non-convex polygons (see Figures 7.29a,
7.31a, 7.33a and 7.35a). This is expected, as the original polygons are produced from a
triangle, a square, a thin rectangle and a hexagon. Therefore, it can be inferred that the
Minkowski structures metrics are able to represent robustly the shapes of the Voronoi
cells of microstructures containing all the types of particles considered.

7.2.2 Quality analysis of microstructures containing Disks of the same
size using Minkowski structure metrics

The results in this section have two goals. Firstly, to show the capability of the Minkow-
ski structure metrics to characterize the Voronoi cells of microstructures containing
only Disks of the same size. Secondly, to validate the microstructures generated using
the approach introduced as it pertains to their quality.

Results

Figures 7.36-7.41 present typical results obtained from an analysis to a microstruc-
ture using Minkowski structure metrics, i.e. the Voronoi diagram with the cells colored
according to the value of the corresponding Minkowski structure metric and the re-
spective histogram of the Minkowski structure metrics. The microstructure contains
50 Disks at a volume fraction equal to 0.5. Examples of pathological microstructures
with excess order can be found in Figure 7.42.

To understand the typical distribution of the Minkowski structure metrics, q2, q3,
q4, q5 and q6, for microstructures containing Disks of the same size, five random sam-
ples of microstructures containing 100 Disks at volume fractions equal to 0.3, 0.5 and
0.7 are produced. The histograms of the perimeter and Minkowski structures met-
rics of their Voronoi cells is presented in Figures 7.43-7.45. In the same spirit, Ta-
ble 7.5 presents the p-values for Anderson-Darling tests probing if the perimeter and
Minkowski structure metrics, q2, q3, q4, q5 and q6, of the Voronoi cells of five random
samples all containing 50, 100, 200 or 500 Disks at volume fractions equal to 0.2, 0.3,
0.4, 0.5, 0.6 or 0.7 come from the same underlying distribution.

Lastly, it is presented a set of results aiming to distinguish between microstructures
generated using the "self-calibrating" multi-temperature isokinetic scheme (Method 1)
(see Figures 7.46a, 7.46c and 7.46e for examples) and the multi-temperature isokinetic
scheme, allowing only a small number of equilibration iterations (Method 2) (see Fig-
ures 7.46b, 7.46d and 7.46f for examples). To this effect, Figures 7.47-7.49 present the
histograms of the perimeter and Minkowski structures metrics of the Voronoi cells of
three samples generated with each method. The microstructures contain 100 Disks at
volume fractions equal to 0.3, 0.5 an 0.7, respectively. To check if there are marked dif-
ferences between the distributions, the mean, standard deviation, skewness and kur-
tosis of the perimeter and Minkowski structure metrics for each sample are computed
an the results are presented in the form of boxplots on Figures 7.50-7.52.
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Figure 7.36: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their perimeter. (b) Histogram
containing the perimeter of the Voronoi cells.
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Figure 7.37: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their q2 Minkowski structure
metric. (b) Histogram containing the q2 Minkowski structure metric of the Voronoi
cells, where the dashed line represents the average.
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Figure 7.38: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their q3 Minkowski structure
metric. (b) Histogram containing the q3 Minkowski structure metric of the Voronoi
cells, where the dashed line represents the average.
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Figure 7.39: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their q4 Minkowski structure
metric. (b) Histogram containing the q4 Minkowski structure metric of the Voronoi
cells, where the dashed line represents the average.
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Figure 7.40: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their q5 Minkowski structure
metric. (b) Histogram containing the q5 Minkowski structure metric of the Voronoi
cells, where the dashed line represents the average.
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Figure 7.41: (a) Voronoi diagram of a microstructure containing 50 Disks at a volume
fraction equal to 0.5, with the cells colored according to their q6 Minkowski structure
metric. (b) Histogram containing the q6 Minkowski structure metric of the Voronoi
cells, where the dashed line represents the average.
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Figure 7.42: Microstructures containing excessive order, signaled by the concentration
of cells with high q2, (a), q3, (b), q4, (c) and q6, (d) Minkowski structure metrics.
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Figure 7.43: Histograms of the perimeter and Minkowski structure metrics, q2, q3, q4,
q5 and q6, for five random samples containing 100 Disks at a volume fraction of 0.3.
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Figure 7.44: Histograms of the perimeter and Minkowski structure metrics, q2, q3, q4,
q5 and q6, for five random samples containing 100 Disks at a volume fraction of 0.5.
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Figure 7.45: Histograms of the perimeter and Minkowski structure metrics, q2, q3, q4,
q5 and q6, for five random samples containing 100 Disks at a volume fraction of 0.7.
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Table 7.5: Anderson-Darling test probing if the perimeter and Minkowski structure
metrics, q2, q3, q4, q5 and q6 of the Voronoi cells of five samples all containing 50,
100, 200 or 500 Disks at volume fractions equal to 0.2, 0.3, 0.4, 0.5, 0.6 or 0.7 come
from the same underlying distribution. The test is also perform including all the mi-
crostructures containing different numbers of particles with the same volume fraction
under "All". The p-value is floored at 25% and capped at 0.1%.

Volume
Fraction /%

Number
p-value / %

P q2 q3 q4 q5 q6

20

50 25.00 25.00 25.00 25.00 25.00 25.00
100 25.00 19.10 23.58 9.81 13.20 14.34
200 25.00 25.00 13.93 20.88 25.00 25.00
500 25.00 25.00 0.71 13.54 23.65 25.00
All 0.10 25.00 0.69 12.34 25.00 25.00

30

50 25.00 25.00 25.00 25.00 8.93 25.00
100 25.00 25.00 15.18 25.00 12.22 5.89
200 25.00 25.00 10.99 25.00 25.00 25.00
500 13.73 4.31 25.00 25.00 25.00 21.40
All 0.10 3.70 7.71 25.00 25.00 25.00

40

50 25.00 25.00 25.00 25.00 25.00 25.00
100 22.16 0.10 4.36 25.00 25.00 25.00
200 25.00 3.56 25.00 25.00 25.00 25.00
500 25.00 25.00 25.00 20.79 25.00 25.00
All 0.10 0.10 25.00 25.00 25.00 25.00

50

50 25.00 25.00 2.65 25.00 25.00 25.00
100 25.00 0.41 5.57 23.54 25.00 25.00
200 25.00 1.12 16.37 25.00 25.00 1.77
500 25.00 25.00 25.00 25.00 25.00 25.00
All 0.10 0.10 0.14 25.00 25.00 8.54

60

50 8.00 8.53 25.00 1.36 25.00 23.16
100 25.00 25.00 25.00 25.00 25.00 17.10
200 24.70 0.33 0.10 25.00 22.42 1.95
500 25.00 25.00 25.00 25.00 25.00 25.00
All 0.10 0.10 0.10 2.66 25.00 3.03

70

50 25.00 2.38 25.00 21.26 25.00 5.80
100 25.00 25.00 5.12 10.17 17.17 0.10
200 22.10 0.81 25.00 25.00 25.00 25.00
500 17.15 25.00 10.52 25.00 25.00 10.83
All 0.10 0.10 0.69 0.35 25.00 0.10
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(a) Method 1 at vf = 0.3 (b) Method 2 at vf = 0.3

(c) Method 1 at vf = 0.5 (d) Method 2 at vf = 0.5

(e) Method 1 at vf = 0.7 (f) Method 2 at vf = 0.7

Figure 7.46: Final microstructures for random samples generated with the "self-
calibrating" multi-temperature isokinetic scheme (Method 1) and three samples gen-
erated using the multi-temperature isokinetic scheme with a low fixed number of equi-
libration iterations (Method 2), all containing 100 Disks at a volume fractions of 0.3, 0.5
and 0.7.
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Figure 7.47: Histograms of the perimeter and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for three random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.3.
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Figure 7.48: Histograms of the perimeter and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for three random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.5.
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Figure 7.49: Histograms of the perimeter and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for three random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.7.
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Figure 7.50: Boxplots of the mean, standard deviation, skewness and kurtosis of
the perimeter, P , and Minkowski structure metrics, q2, q3, q4, q5 and q6 of the
Voronoi cells, for five random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.3.
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Figure 7.51: Boxplots of the mean, standard deviation, skewness and kurtosis of
the perimeter, P , and Minkowski structure metrics, q2, q3, q4, q5 and q6 of the
Voronoi cells, for five random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.5.
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Figure 7.52: Boxplots of the mean, standard deviation, skewness and kurtosis of
the perimeter, P , and Minkowski structure metrics, q2, q3, q4, q5 and q6 of the
Voronoi cells, for five random samples generated with the "self-calibrating" multi-
temperature isokinetic scheme (Method 1) and three samples generated using the
multi-temperature isokinetic scheme with a low fixed number of equilibration itera-
tions (Method 2), all containing 100 Disks at a volume fraction of 0.7.
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Discussion

Figures 7.36-7.41 present the typical results obtained from an analysis to a microstruc-
ture using Minkowski structure metrics. There are no clusters of Voronoi cells with
high values of any Minkowski structure metric, which would indicate excess order in
that region. In contrast, the microstructures presented in Figure 7.42 display a region
where there is an excess of Voronoi cells with high values for a given Minkowski struc-
ture metric. In Figure 7.42a there are isolated strings of particles leading to elongated
cells with higher q2 than expected. The microstructure in Figure 7.42b shows a high
concentration of Voronoi cells with high q3 in its top right region, due to the arrange-
ment of the Disks in an hexagonal pattern with the center particle missing. As for the
microstructure depicted in Figure 7.42c, a quadrangular grid of particles is detected
in the top right due to the high values of the q4 Minkowski structure metric. Lastly,
Figure 7.42d exhibits a microstructure with possibly the most common type of order
at high volume fractions, crystallization in a hexagonal pattern, detected due to the
high q6 Minkowski structure metric. Thus, it is shown that a larger number of Voronoi
cells with larger values of any Minkowski structure metric signals undesirable order
and that a typical microstructure will not display this behavior.

To better understand the typical distribution of the Minkowski structure metrics,
q2, q3, q4, q5 and q6, for microstructures containing Disks of the same size, five ran-
dom samples of microstructures containing 100 Disks at volume fractions equal to 0.3,
0.5 and 0.7 are produced. From the histograms of the perimeter and Minkowski struc-
tures metrics of the Voronoi cells for microstructures containing 100 Disks at a volume
fraction of 0.3, presented in Figure 7.43, it can be ascertained that there are no glar-
ing cases of an excessive number of cells with a high value for any Minkowski struc-
ture metric. The same can be said for the microstructures containing 100 Disks at
a volume fraction of 0.5 (see Figure 7.44). However, for a volume fraction equal to
0.7, a volume fraction reasonably high, a marked difference in the histogram contain-
ing the q6 Minkowski structure metric can be observed (see Figure 7.45). This signals
that the microstructure presents crystallization in an hexagonal pattern, which is to
be expected as the volume fraction is quite elevated. Also, one can observe that the
q2 Minkowski structure metric gets progressively shifted to the the left as the volume
fraction increases from 0.3 to 0.5 and to 0.7. This is probably due to the fact that at
higher volume fractions the distance between the particles is more uniform, i.e. the
distance between the particles is mostly the same, leading to Voronoi cells that are
less elongated and thus have a smaller q2 Minkowski structure metric. Still, it must
be highlighted that for the remaining Minkowski structure metrics a marked differ-
ence is not observable, suggesting that the corresponding particle arrangements are
not prevalent at any of the volume fractions studied.

Looking a the histograms in Figures 7.43-7.45, it is plausible that they are generated
sampling the same distribution, as they don’t look too dissimilar. To test this hypoth-
esis k-sample Anderson-Darling tests are performed. Looking at Table 7.5 it can be
understood that for many volume fraction, number of particles, Minkowski structure
metric combinations, the null hypothesis could not be rejected. Notwithstanding, for
a sizable amount of the cases considered at least one of the tests succeeds in rejecting
the null hypothesis. Moreover, when the samples of different sizes at the same volume
fractions are all considered in the same test, there seems to be a tendency to reject the
null hypothesis at higher rates, e.g. at the volume fraction of 0.7 the null hypothesis
is rejected with a p-value smaller than 1% for all Minkowski structure metrics, except
for q5. These results do not support the conclusion that the Minkowski structure met-
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rics for microstructures containing only Disks described by the same descriptors come
from the same underlying distribution. Despite this, it could still be that while they do
not come from the same underlying distribution, they are generated from the same
family of distributions, explaining somewhat the similarity between the histograms in
Figures 7.43-7.45.

Lastly, it is presented a set of results aiming to distinguish between microstructures
generated using the "self-calibrating" multi-temperature isokinetic scheme (Method 1)
and the multi-temperature isokinetic scheme, allowing only a small number of equili-
bration iterations (Method 2). Comparing Figures 7.46a, 7.46c and 7.46e with Figures
7.46b, 7.46d and 7.46f, respectively, a marked visual difference can be detected. The
latter microstructures, generated through Method 2, all present clustering and, at vol-
ume fractions equal to 0.5 and 0.7, also ordered arrangements of particles. For the
purpose of showing that the Minkowski structure metrics are useful tools in distin-
guishing between the results produced by the two methods, Figures 7.47-7.49 are gen-
erated, presenting the histograms of the perimeter and Minkowski structures metrics
of the Voronoi cells of three samples generated with each method The microstructures
contain 100 Disks at volume fractions equal to 0.3, 0.5 and 0.7, respectively. To bet-
ter quantify the differences between the distributions, the mean, standard deviation,
skewness and kurtosis of the perimeter and Minkowski structure metrics for each sam-
ple are computed and the results are presented in the form of boxplots on Figures 7.50,
7.51 and 7.52.

For the microstructures at a volume fraction equal to 0.3, the biggest difference
that can be detected regarding the means of the perimeter and the Minkowski struc-
ture metrics of the Voronoi cells is in the q2 Minkowski structure metric, which is larger
for all samples generated through Method 2. This is probably a consequence of the
clustering in strings of particles (see Figure 7.46b) that leads to elongated Voronoi cells
with higher q2. For the means of the other Minkowski structure metrics there is over-
lap between the values coming from microstructures generated using the two different
methods. Regarding the standard deviations, for the perimeter and Minkowski struc-
ture metrics q2 and q3, the distributions of these parameters seem to be larger for the
microstructures generated using Method 2. Concerning the skewness and the kurto-
sis, there is for the most part a big overlap for all the parameters. In general, it can be
concluded that the distributions are asymmetric and skewed to the right, possessing
"light-tails" when compared to a normal distribution. Thus, it can be concluded that
the strongest differences between the two methods found at the volume fraction of 0.3
are in q2 Minkowski structure metric, both in its mean and in its standard deviation,
both higher for Method 2. It can also be asserted that the standard deviation of the
perimeter is larger for microstructures generated with Method 2.

With respect to microstructures at a volume fraction equal to 0.5, the most marked
differences are again in the mean and standard deviation of the q2 Minkowski struc-
ture metric and the standard deviation of the perimeter of the Voronoi cells. The
explanation is much the same as the one given above for microstructures at a vol-
ume fraction equal to 0.3. In addition, one can also observe that the mean for the q6

Minkowski structure metric is distinctly higher for the microstructures generated using
the Method 2. This is again due to the clustering, that because of the higher volume
fraction leads now also to the formation of stronger hexagonal patterns increasing the
mean of the Minkowski structure metric q6. In general, the distributions are again
skewed to the right, and more heavily so, but now the kurtosis is not as negative, im-
plying tails comparable to a normal distribution. Therefore, one can conclude that the
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strongest differences between the two methods found at the volume fraction of 0.5 are
in the q2 and q6 Minkowski structure metrics, both in their mean and in their standard
deviation, both higher for Method 2. It can also be asserted the standard deviation of
the perimeter is larger for microstructures generated with Method 2.

Finally, for microstructures at a volume fraction equal to 0.7, the conclusions are
the same as the ones found for volume fractions equal to 0.5, in the previous para-
graph. Apart from minor differences, the only clear change to be noticed is the kur-
tosis of the data, that is for this case for the most part positive implying heavier tails.
Despite not being clear from the statistical measures computed, it can be seen from
Figure 7.49 that for the q6 Minkowski metric the Method 2 leads to a higher number
of cells containing values close to 1, strongly suggesting the presence of large arrange-
ment of particles in undesirable hexagonal patterns.

7.2.3 Detection of anisotropy in microstructures containing Ellipses
using Minkowski structure metrics

This section has the goal of providing an example where the Minkowski structure met-
rics and associated concepts are used to detect and characterize anisotropy.

Results

Two microstructures are generated containing 30 particles at a volume fraction equal
to 0.6. The first containing Ellipses with a ratio between the major and minor axis
equal to 2.5 and oriented along π/4. The second containing Disks, all of the same
size. Figures 7.53a and 7.53b present the corresponding Voronoi diagrams with their
cells colored according to the Minkowski structure metric q2. Figure 7.53c presents the
histogram of the Minkowski structure metric q2 of both microstructures, and Figure
7.53d shows the histogram of the argument of the irreducible Minkowski tensor ψ2 for
both microstructures.

Discussion

From Figures 7.53a and 7.53b it is clear that the microstructure containing Ellipses
presents Voronoi cells with a higher Minkowski structure metric q2. This is confirmed
by Figure 7.53c, thus affirming the ability of the Minkowski structure metric q2 to de-
tect anisotropy. Moreover, the argument of the corresponding irreducible Minkowski
tensor ψ2 provides a way to identify the direction of the anisotropy. From Figure 7.53d,
it can be gathered that the Voronoi cells from the microstructure containing Ellipses
have for the most part ψ2s with the same argument, i.e. −π/2. From the definition of
the irreducible Minkowski tensor ψ2, in Equation (4.28), and the corresponding funda-
mental shape, depicted in Figure 4.8b, it can be concluded that the normal direction to
the orientation of the particles is −π/4, which is the correct result. On the other hand,
the arguments of the ψ2s of the Voronoi cells from the microstructure containing Disks
do not present a particular value, implying that the microstructure is isotropic. There-
fore, it has been shown that the Minkowski structure metric q2 and the corresponding
irreducible Minkowski tensor ψ2 may be useful tools in detecting and characterizing
anisotropy in microstructures.
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Figure 7.53: (a): Set Voronoi diagram for a microstructure containing 30 Ellipses with
ratio a/b equal to 2.5 oriented along π/4 at a volume fraction of 0.6, with the Voronoi
cells colored according to their Minkowski structure metric q2. (b): Voronoi diagram
for a microstructure containing 30 Disks at a volume fraction of 0.6, with the Voronoi
cells colored according to their Minkowski structure metric q2. (c): Histogram of the
Minkowski structure metric q2 of both microstructures. (d) Histogram of the argument
of the irreducible Minkowski tensor ψ2 of both microstructures.

7.2.4 Reconstruction of polyhedra and detection of s-fold symmetry

This section has the goal of showing that the Minkowski structure metrics and the as-
sociated concepts are able to provide a robust description of the shape of convex poly-
hedra. As stated before, this is of great importance in the analysis of microstructures,
as it allows for the characterization of the Voronoi cells of the Voronoi diagrams ob-
tained from microstructures containing only Spheres of the same size.

Results

In order to fulfill the objectives of this section, four convex polyhedra are created. They
are shown in Figures 7.54a, 7.55a, 7.56a and 7.57a, and are a hexagonal prism, a tetra-
hedron, a cube and a thin parallelepiped, respectively. The reconstruction of the con-
vex polyhedra approximating the curvature through spherical harmonics of degree 6
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at most is presented in Figures 7.54b, 7.55b, 7.56b and 7.57b, respectively. The cor-
responding Minkowski structure metrics for each polygon are shown in Figures 7.54c,
7.55c, 7.56c and 7.57c.
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Figure 7.54: (a): Hexagonal prism. (b): Reconstruction found approximating the cur-
vature through a series of spherical harmonics, where points in red represent high
curvature and points in blue low curvature. (c) Minkowski structure metrics of the
hexagonal prism.
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Figure 7.55: (a): Tetrahedron. (b): Reconstruction found approximating the curvature
through a series of spherical harmonics, where points in red represent high curvature
and points in blue low curvature. (c) Minkowski structure metrics of the tetrahedron.
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Figure 7.56: (a): Cube. (b): Reconstruction found approximating the curvature through
a series of spherical harmonics, where points in red represent high curvature and
points in blue low curvature. (c) Minkowski structure metrics of the cube.
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Figure 7.57: (a): Thin parallelepiped. (b): Reconstruction found approximating the
curvature through a series of spherical harmonics, where points in red represent high
curvature and points in blue low curvature. (c) Minkowski structure metrics of the thin
parallelepiped.

Discussion

From Figures 7.54b, 7.55b, 7.56b and 7.57b it can be seen that the shapes of the convex
polyhedra are mostly recovered. It must be kept in mind that only spherical harmonics
of degree 6 at most are used to produce these shapes.

The Minkowski structure metrics presented in Figure 7.54c, corresponding to the
hexagonal prism, signal the presence of 4-fold and 6-fold symmetry, as expected. As
for the tetrahedron, the highest Minkowski structure metric is q3, as shown in Figure
7.55c, which is also expected. Likewise, Figure 7.56c signals strongly the presence of
4-fold symmetry for the cube. Comparing the Minkowski structure metrics computed
for the thin paralleliped, presented in Figure 7.57c, with the ones just mentioned com-
puted for the cube, one can observe a strong increase in the q2 due to the elongated
form of the polyhedron. For the q2 to signal more strongly 2-fold symmetry, the par-
allelipiped would have to be even thinner. Nonetheless, a marked difference between
its Minkowski structure metrics and the ones obtained for the cube can be detected.

Therefore, it can be inferred that the Minkowski structures metrics are able to rep-
resent robustly the shapes of the Voronoi cells of microstructures containing only Sphe-
res of the same size.
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7.2.5 Quality analysis of microstructures containing Spheres of the
same size using Minkowski structure metrics

The results in this section have as a goal to show the capability of the Minkowski
structure metrics to characterize the Voronoi cells of microstructures containing only
Spheres of the same size and validate the microstructures generated using the pro-
posed approach as it pertains to their quality.

Results

Figures 7.58-7.63 present typical results obtained from an analysis to a microstructure
using Minkowski structure metrics, i.e. the Voronoi diagram with the cells colored ac-
cording to the value of the corresponding Minkowski structure metric and the respec-
tive histogram of the Minkowski structure metrics. The microstructure contains 100
Spheres at a volume fraction equal to 0.4. Examples of pathological microstructures
with excess order can be found in Figure 7.64.

To understand the typical distribution of the Minkowski structure metrics, q2, q3,
q4, q5 and q6, for microstructures containing Spheres of the same size and to vali-
date the generation method concerning the quality of the microstructures, five ran-
dom samples of microstructures containing 100 Spheres at volume fractions equal to
0.1, 0.3 and 0.5 are produced. The histograms of the surface area and Minkowski struc-
tures metrics of their Voronoi cells is presented in Figure 7.65-7.67.
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Figure 7.58: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their surface area. (b)
Histogram containing the surface area of the Voronoi cells.
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Figure 7.59: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their q2 Minkowski met-
ric. (b) Histogram containing the q2 Minkowski metric of the Voronoi cells, where the
dashed line represents the average.
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Figure 7.60: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their q3 Minkowski met-
ric. (b) Histogram containing the q3 Minkowski metric of the Voronoi cells, where the
dashed line represents the average.
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Figure 7.61: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their q4 Minkowski met-
ric. (b) Histogram containing the q4 Minkowski metric of the Voronoi cells, where the
dashed line represents the average.
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Figure 7.62: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their q5 Minkowski met-
ric. (b) Histogram containing the q5 Minkowski metric of the Voronoi cells, where the
dashed line represents the average.
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Figure 7.63: (a) Voronoi diagram of a microstructure containing 100 Spheres at a vol-
ume fraction equal to 0.4, with the cells colored according to their q6 Minkowski met-
ric. (b) Histogram containing the q6 Minkowski metric of the Voronoi cells, where the
dashed line represents the average.
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Figure 7.64: (a): Voronoi diagram of a microstructure containing Spheres arranged in a
cubic grid with random vertices missing. Only the cells with Minkowski structure met-
ric q4 higher than 0.7 are shown. (b): Voronoi diagram of a microstructure containing
Spheres at a volume fraction of 0.7. Only the cells with Minkowski structure metric q6

higher than are 0.5 shown.
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Figure 7.65: Histograms of the surface area and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for five random samples containing 100 Spheres at a volume fraction of
0.1.
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Figure 7.66: Histograms of the surface area and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for five random samples containing 100 Spheres at a volume fraction of
0.3.
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Figure 7.67: Histograms of the surface area and Minkowski structure metrics, q2, q3,
q4, q5 and q6, for five random samples containing 100 Spheres at a volume fraction of
0.5.
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Discussion

Figures 7.58-7.63 present the typical results obtained from an analysis to a microstruc-
ture using Minkowski structure metrics. There are no clusters of Voronoi cells with
high values of any Minkowski structure metric, which would indicate excess order
in that region. Contrast this with the microstructures presented in Figure 7.64. Fig-
ure 7.64a presents a clearly undesirable microstructure obtained by removing random
points from a cubic grid. As expected, the Minkowski structure metric q4 flags very
strongly this arrangement. As for the microstructure presented in Figure 7.64b con-
taining 20 Spheres at the high volume fraction of 0.7, it would be expected that crys-
tallization with 6-fold symmetry would occur. The Minkowski structure metric q6 is
higher than 0.5 for 6 particles, that is more than 25% of all the particles in the mi-
crostructure. Still these values of q6 do not go over 0.6. In fact, from all the microstruc-
tures generated during this work, it was never registered a Voronoi cell with a q6 higher
than 0.6. Looking at the results of the previous section, none of the polyhedra analyzed
produces results over 0.6 for q6, except for the tetrahedron, with a value slightly higher.
Thus, it may be that a value q6 equal to 0.6 should be considered high for the purpose
of interpreting the results, as it pertains to the detection of undesirable 6-fold order in
the microstructure. This is the approach taken in the next paragraphs.

To better understand the typical distribution of the Minkowski structure metrics,
q2, q3, q4, q5 and q6, for microstructures containing Spheres of the same size and to
validate the microstructure generation method, as it relates to the quality of the mi-
crostructures produced, five random samples of microstructures containing 100 Disks
at volume fractions equal to 0.1, 0.3 and 0.5 are produced. From the histograms of
the surface area and Minkowski structures metrics of the Voronoi cells for all sets of
microstructures considered, it can be ascertained there is are no glaring cases of an
excessive number of cells with a high value for any Minkowski structure metric.

Comparing the results for the different volume fractions, one can observe that the
q2 Minkowski structure metric gets progressively shifted to the the left as the volume
fraction increases from 0.1 to 0.3 and to 0.5. This is probably due to the fact that at
higher volume fractions the distance between the particles is more uniform, i.e. the
distance between the particles is mostly the same, leading to Voronoi cells that are
less elongated and thus have a smaller q2 Minkowski structure metric. Still, it must be
highlighted that for the remaining Minkowski structure metrics a marked difference is
not observable, suggesting that the difference between these volume fractions regard-
ing the relative position of the particles is not pronounced.
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7.3 Multi-scale analyses based on computational homog-
enization

This section presents a set of results concerning multi-scale analyses based on compu-
tational homogenization. Its goal is to understand the relation between the number of
particles included in the RVE and its representativity. The number of particles needed
to achieve isotropy is also considered in the following sections.

For an RVE to be representative, the response of the material must be indepen-
dent of the choice of boundary conditions imposed (Saeb et al., 2016). According to
Hill (1963), an RVE is well defined when it contains a sufficient number of inclusions
and the responses under linear displacement and constant traction boundary condi-
tions coincide. It has also been shown that in pure mechanical linear problems, the
effective behavior derived under periodic boundary conditions is bounded by linear
displacement boundary conditions from above and constant traction boundary con-
ditions from below for a finite size of the RVE (Saeb et al., 2016). Despite the results
obtained under periodic boundary conditions not always being the closest ones to the
exact solutions, they provide reasonable estimates for the mechanical behavior, in the
sense that they are always bounded by the other boundary conditions (Saeb et al.,
2016). Thus, they are used to gauge what is the influence of the number of particles
included in the RVE, as it relates to isotropy.

With this in view, microstructures with different number of phases and types of
particles are generated containing an increasing number of particles at the same vol-
ume fraction. These are submitted to various loading schemes and the first Piola-
Kirchhoff stress tensor is obtained, using linear, periodic and uniform traction bound-
ary conditions. All materials are considered elastic and follow the so-called Henky con-
stitutive model.
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7.3.1 One phase containing Disks with same radius

This section presents the results concerning microstructures containing only Disks of
the same size belonging to a single phase. The sides of the RVE are unitary, the volume
fraction is fixed at 0.3 and samples with n, particles are created, with n given by

n = round(10k ) for k = 0.5,0.75,1, . . . ,3. (7.1)

To perform the multi-scale analyses based on computational homogenization simu-
lations, the microstructure is discretized in a nonconform TRI6 mesh. The materials
considered are for Phase 1, corresponding to the matrix, E = 100MPa and ν= 0.3, and
for Phase 2, the phase containing the Disks, E = 500MPa and ν= 0.3. Assuming a plain
strain condition, three different deformation gradients are imposed, characterizing an
uniaxial loading along xx, an uniaxial loading along y y and a simple shear across x y
defined as

Uniaxial along xx : F =
[

1.1 0
0 1.0

]
, (7.2)

Uniaxial along y y : F =
[

1.0 0
0 1.1

]
, (7.3)

Simple shear across x y : F =
[

1.0 0.3
0 1.0

]
, (7.4)

respectively.

Results

Figure 7.68 presents examples of the RVEs considered, including in Figures 7.68a and
7.68b the TRI6 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.69. The results for uniaxial trac-
tion along xx are shown in Figure 7.69a, for uniaxial traction along y y in Figure 7.69b
and for simple shear across x y in Figure 7.69c. To ease the interpretation of these re-
sults as it relates to the representativity of the RVE, they are presented in Tables 7.6-7.8,
including the relative variation between the boundary conditions considered. In the
same vein, Table 7.9 presents the same results only for the periodic boundary condi-
tion and the uniaxial loading conditions with the goal of helping to reach conclusions
about the isotropy of the RVEs.
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(a) n = 3 (b) n = 32

(c) n = 178 (d) n = 1000

Figure 7.68: Microstructures containing (a): 3, (b): 32, (c):178 and (d):1000 Disks of the
same size belonging to the same phase at a volume fraction equal to 0.3. The TRI6
nonconform mesh is only represented for (a) and (b) (only the vertex nodes shown).



166 7. Results

101 102 103

Number of particles

15.6

15.8

16.0

16.2

16.4

16.6

16.8

17.0

P
x
x
/M

P
a

Periodic condition

Linear condition

Uniform traction condition

(a) Uniaxial traction along xx

101 102 103

Number of particles

15.6

15.8

16.0

16.2

16.4

16.6

16.8

17.0

P
y
y
/M

P
a

Periodic condition

Linear condition

Uniform traction condition

(b) Uniaxial traction along y y

101 102 103

Number of particles

16.5

17.0

17.5

18.0

18.5

P
x
y
/M

P
a

Periodic condition

Linear condition

Uniform traction condition

(c) Simple shear across x y

Figure 7.69: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): simple shear
across x y - Px y ) as a function of the number of particles, for microstructures contain-
ing only Disks of the same size at a volume fraction equal to 0.3 belonging to the same
phase.
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Table 7.6: Homogenized first Piola-Kirchhoff component Pxx under uniaxial loading
condition along xx for linear, periodic, and uniform traction boundary conditions as
a function of the number of particles, for microstructures containing only Disks of the
same size at a volume fraction equal to 0.3 belonging to the same phase. The relative
variation with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 16.71 4.92 15.92 15.61 −1.97
6 16.57 1.72 16.29 15.76 −3.26

10 16.38 2.37 16.00 15.88 −0.78
18 16.27 2.31 15.90 15.77 −0.82
32 16.30 2.38 15.92 15.82 −0.61
56 16.11 1.13 15.94 15.87 −0.41

100 16.11 1.14 15.93 15.88 −0.32
178 16.10 0.80 15.98 15.93 −0.30
316 16.06 0.68 15.96 15.92 −0.23
562 16.00 0.30 15.95 15.93 −0.15

1000 16.01 0.34 15.96 15.94 −0.11

Table 7.7: Homogenized first Piola-Kirchhoff component Py y under uniaxial loading
condition along y y for linear, periodic, and uniform traction boundary conditions as
a function of the number of particles, for microstructures containing only Disks of the
same size at a volume fraction equal to 0.3 belonging to the same phase. The relative
variation with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Py y /MPa εPeriodic /% Py y /MPa Py y /MPa εPeriodic /%

3 17.17 8.74 15.79 15.61 −1.13
6 16.55 4.00 15.91 15.75 −1.02

10 16.10 0.74 15.98 15.88 −0.60
18 16.53 2.65 16.10 15.97 −0.81
32 16.23 1.61 15.97 15.84 −0.83
56 16.20 1.26 16.00 15.92 −0.50

100 16.12 1.19 15.93 15.89 −0.29
178 16.08 0.75 15.96 15.91 −0.30
316 16.05 0.56 15.96 15.93 −0.22
562 16.01 0.32 15.96 15.94 −0.14

1000 16.00 0.34 15.94 15.92 −0.12
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Table 7.8: Homogenized first Piola-Kirchhoff component Px y under simple shear
across x y for linear, periodic, and uniform traction boundary conditions as a function
of the number of particles, for microstructures containing only Disks of the same size
at a volume fraction equal to 0.3 belonging to the same phase. The relative variation
with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Px y /MPa εPeriodic /% Px y /MPa Px y /MPa εPeriodic /%

3 18.67 6.34 17.55 16.63 −5.26
6 17.80 5.61 16.85 16.53 −1.94

10 17.41 2.38 17.00 16.57 −2.54
18 17.57 3.13 17.03 16.64 −2.29
32 17.75 3.52 17.15 16.97 −1.06
56 17.44 1.60 17.16 16.92 −1.44

100 17.52 1.32 17.29 17.10 −1.10
178 17.34 0.97 17.17 17.05 −0.69
316 17.26 0.76 17.13 17.03 −0.59
562 17.28 0.49 17.19 17.13 −0.37

1000 17.28 0.43 17.21 17.15 −0.32

Table 7.9: Homogenized first Piola-Kirchhoff component Pxx and Py y under uniaxial
loading condition along xx and y y , respectively, for periodic boundary conditions as
a function of the number of particles, for microstructures containing only Disks of
the same size at a volume fraction equal to 0.3 belonging to the same phase. The
relative variation with reference to the homogenized first Piola-Kirchhoff component
Pxx under uniaxial loading condition along xx is also presented as εxx.

Number of
Particles

Uniaxial traction along y Uniaxial traction along x

Py y /MPa εxx /% Pxx /MPa
3 15.79 0.84 15.92
6 15.91 2.36 16.29

10 15.98 0.17 16.00
18 16.10 −1.24 15.90
32 15.97 −0.34 15.92
56 16.00 −0.41 15.94

100 15.93 −0.04 15.93
178 15.96 0.10 15.98
316 15.96 −0.05 15.96
562 15.96 −0.08 15.95

1000 15.94 0.10 15.96
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Discussion

The results presented in Figure 7.69 regarding the stiffness of the response as a func-
tion of the boundary condition used are as expected, with the linear boundary con-
dition leading to a stiffer behavior, the uniform boundary traction leading to a more
flexible behavior and the periodic boundary condition corresponding to an interme-
diate response. This can be confirmed from the sign of the relative variations in Tables
7.6, 7.7 and 7.8.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components. For the two
uniaxial loading schemes considered, the RVE containing a 1000 particles leads to rel-
ative differences between the boundary conditions of well below half a percent. The
results are slightly higher for the simple shear across x y , but of the same magnitude.

Concerning isotropy, it can be gathered from Table 7.9 that for all numbers of parti-
cles considered the relative variation between the homogenized Piola-Kirchhoff Pxx in
the uniaxial traction along xx and the homogenized Piola-Kirchhoff Py y in the uniax-
ial traction along y y is below 2.5% with a sligth tendency to decrease with an increase
in the number of particles included in the RVE.
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7.3.2 Three phases containing Disks with different radii

This section presents the results concerning microstructures containing three different
particle phases. Each phase contains n Disks of the same size, with n given by

n = round(10k /3) for k = 0.5,0.75,1, . . . ,3. (7.5)

Considering a unitary RVE, for Phase 2 the volume fraction is fixed at 0.1, for Phase 3
at 0.05 and for Phase 4 at 0.15. To perform the multi-scale analyses based on computa-
tional homogenization simulations, the microstructure is discretized in a nonconform
TRI6 mesh. The materials considered are for Phase 1, corresponding to the matrix,
E = 100MPa and ν= 0.3, for Phase 2, E = 700MPa and ν= 0.3, for Phase 3, E = 500MPa
and ν = 0.3 and for Phase 4, E = 300MPa and ν = 0.3. Assuming a plain strain con-
dition, three different deformation gradients are imposed, characterizing an uniaxial
loading along xx, an uniaxial loading along y y and a simple shear across x y defined
as

Uniaxial along xx : F =
[

1.1 0
0 1.0

]
, (7.6)

Uniaxial along y y : F =
[

1.0 0
0 1.1

]
, (7.7)

Simple shear across x y : F =
[

1.0 0.3
0 1.0

]
, (7.8)

respectively.

Results

Figure 7.70 presents examples of the RVEs considered, including in Figures 7.70a and
7.70b the TRI6 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.71. The results for uniaxial
traction along xx are shown in Figure 7.71a, for uniaxial traction along y y in Figure
7.71b and for simple shear across x y in Figure 7.71c. To ease the interpretation of
these results as it relates to the representativity of the RVE, they are presented in Ta-
bles 7.10-7.12, including the relative variation between the boundary conditions con-
sidered. In the same vein, Table 7.13 presents the same results only for the periodic
boundary condition and the uniaxial loading conditions with the goal of helping to
reach conclusions about the isotropy of the RVEs.
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(a) n = 3 (b) n = 32

(c) n = 178 (d) n = 1000

Figure 7.70: Microstructures containing (a): 3, (b): 32, (c):178 and (d):1000 Disks of the
same size belonging to the three different phases (Phase 2: vf = 0.1, Phase 3: vf = 0.05,
Phase 4: vf = 0.15). The TRI6 nonconform mesh is only represented for (a) and (b)
(only the vertex nodes shown).
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Figure 7.71: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): simple shear
across x y - Px y ) as a function of the number of particles, for microstructures contain-
ing Disks of the same size belonging to the three different phases (Phase 2: vf = 0.1,
Phase 3: vf = 0.05, Phase 4: vf = 0.15).
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Table 7.10: Homogenized first Piola-Kirchhoff component Pxx under uniaxial loading
condition along xx for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures containing Disks of the same
size belonging to the three different phases (Phase 2: vf = 0.1, Phase 3: vf = 0.05, Phase
4: vf = 0.15). The relative variation with reference to the periodic boundary is also
presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 16.91 1.28 16.70 15.87 −4.95
6 17.06 6.69 15.99 15.82 −1.10

10 16.67 4.41 15.97 15.77 −1.24
18 16.12 0.90 15.97 15.86 −0.72
32 16.11 1.09 15.93 15.84 −0.57
56 16.24 1.99 15.92 15.81 −0.72

100 16.20 1.38 15.98 15.91 −0.42
178 16.13 0.95 15.98 15.95 −0.17
316 16.12 0.72 16.01 15.96 −0.28
562 16.09 0.61 15.99 15.97 −0.15

1000 16.07 0.42 16.01 15.99 −0.10

Table 7.11: Homogenized first Piola-Kirchhoff component Py y under uniaxial loading
condition along y y for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures containing Disks of the same
size belonging to the three different phases (Phase 2: vf = 0.1, Phase 3: vf = 0.05, Phase
4: vf = 0.15). The relative variation with reference to the periodic boundary is also
presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Py y /MPa εPeriodic /% Py y /MPa Py y /MPa εPeriodic /%

3 18.04 13.94 15.83 15.67 −1.06
6 16.63 4.64 15.89 15.70 −1.22

10 16.71 3.05 16.22 15.82 −2.50
18 16.41 1.94 16.10 15.96 −0.85
32 16.37 1.98 16.05 15.96 −0.55
56 16.41 1.41 16.18 16.03 −0.94

100 16.25 1.44 16.02 15.95 −0.41
178 16.11 0.49 16.03 15.98 −0.30
316 16.12 0.67 16.01 15.98 −0.23
562 16.09 0.44 16.02 16.00 −0.17

1000 16.06 0.37 16.00 15.98 −0.14
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Table 7.12: Homogenized first Piola-Kirchhoff component Px y under simple shear
across x y for linear, periodic, and uniform traction boundary conditions as a func-
tion of the number of particles, for microstructures containing Disks of the same size
belonging to the three different phases (Phase 2: vf = 0.1, Phase 3: vf = 0.05, Phase 4:
vf = 0.15). The relative variation with reference to the periodic boundary is also pre-
sented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Px y /MPa εPeriodic /% Px y /MPa Px y /MPa εPeriodic /%

3 18.86 14.87 16.42 16.20 −1.37
6 18.90 4.67 18.06 16.74 −7.31

10 18.35 5.52 17.39 16.68 −4.05
18 17.69 3.37 17.11 16.85 −1.52
32 18.04 2.65 17.57 17.21 −2.07
56 17.69 2.23 17.31 17.05 −1.50

100 17.70 1.90 17.37 17.22 −0.87
178 17.52 1.06 17.33 17.18 −0.89
316 17.50 0.91 17.34 17.20 −0.82
562 17.44 0.59 17.34 17.24 −0.54

1000 17.39 0.42 17.31 17.24 −0.43

Table 7.13: Homogenized first Piola-Kirchhoff component Pxx and Py y under uniax-
ial loading condition along xx and y y , respectively, for periodic boundary conditions
as a function of the number of particles, for microstructures containing Disks of the
same size belonging to the three different phases (Phase 2: vf = 0.1, Phase 3: vf = 0.05,
Phase 4: vf = 0.15). The relative variation with reference to the homogenized first Piola-
Kirchhoff component Pxx under uniaxial loading condition along xx is also presented
as εxx.

Number of
Particles

Uniaxial traction along y Uniaxial traction along x

Py y /MPa εxx /% Pxx /MPa
3 15.83 5.18 16.70
6 15.89 0.63 15.99

10 16.22 −1.59 15.97
18 16.10 −0.80 15.97
32 16.05 −0.74 15.93
56 16.18 −1.63 15.92

100 16.02 −0.25 15.98
178 16.03 −0.30 15.98
316 16.01 −0.02 16.01
562 16.02 −0.21 15.99

1000 16.00 0.04 16.01
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Discussion

The results presented in Figure 7.71 regarding the stiffness of the response as a func-
tion of the boundary condition used are as expected, with the linear boundary con-
dition leading to a stiffer behavior, the uniform boundary traction leading to a more
flexible behavior and the periodic boundary condition corresponding to an interme-
diate response. This can be confirmed from the sign of the relative variations in Tables
7.10, 7.11 and 7.12.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components. For the two
uniaxial loading schemes considered, the RVE containing a 1000 particles leads to rel-
ative differences between the boundary conditions of below half a percent. The results
are slightly higher for the simple shear across x y , but of the same magnitude. A com-
parison with the results of the previous section regarding the number of particles to
achieve a representative RVE are presented in the next section.

Concerning isotropy, it can be gathered from Table 7.13 that for all numbers of
particles considered the relative variation between the homogenized Piola-Kirchhoff
Pxx in the uniaxial traction along xx and the homogenized Piola-Kirchhoff Py y in the
uniaxial traction along y y is below 2% with a slight tendency to decrease with an in-
crease in the number of particles included in the RVE, except for the microstructure
containing only 3 particles.
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7.3.3 One phase containing Disks and one phase containing Ellipses

This section presents the results concerning microstructures containing two different
particle phases. Each phase contains n particles, with n given by

n = round(10k /2) for k = 0.5,0.75,1, . . . ,3. (7.9)

Considering an unitary RVE, Phase 2 contains Disks of the same size at a volume frac-
tion of 0.1, and Phase 3 contains Ellipses at volume fraction of 0.2. The ratio between
the major and minor axis varies uniformly between 1 and 2.5. As for the orientation,
the angle between the major axis and the positive semi-axis x varies according to a
Gaussian of mean 0 and standard deviation π/10. To perform the multi-scale anal-
yses based on computational homogenization simulations, the microstructure is dis-
cretized in a nonconform TRI6 mesh. the materials considered are for Phase 1, corre-
sponding to the matrix, E = 100MPa and ν= 0.3, for Phase 2, E = 500MPa and ν= 0.3
and for Phase 3, E = 300MPa. Assuming a plain strain condition, three different defor-
mation gradients are imposed, characterizing an uniaxial loading along xx, an uniaxial
loading along y y and a simple shear across x y defined as

Uniaxial along xx : F =
[

1.1 0
0 1.0

]
, (7.10)

Uniaxial along y y : F =
[

1.0 0
0 1.1

]
, (7.11)

Simple shear across x y : F =
[

1.0 0.3
0 1.0

]
, (7.12)

respectively.

Results

Figure 7.72 presents examples of the RVEs considered, including in Figures 7.72a and
7.72b the TRI6 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.73. The results for uniaxial
traction along xx are shown in Figure 7.73a, for uniaxial traction along y y in Figure
7.73b and for simple shear across x y in Figure 7.73c. To ease the interpretation of
these results as it relates to the representativity of the RVE, they are presented in Ta-
bles 7.14-7.16, including the relative variation between the boundary conditions con-
sidered. Figure 7.74 aggregates these results for all the 2-D microstructures consid-
ered under uniaxial loading along xx. In the same vein as Tables 7.14-7.16, Table 7.17
present the same results only for the periodic boundary condition and the uniaxial
loading conditions with the goal of helping to reach conclusions about the isotropy of
the RVEs.
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(a) n = 3 (b) n = 32

(c) n = 178 (d) n = 1000

Figure 7.72: Microstructures containing (a): 4, (b): 32, (c):178 and (d):1000 particles
including two particle phases, Phase 2 containing Disks of the same size at vf = 0.1
and Phase 3 containing Ellipses oriented along xx at vf = 0.2. The TRI6 nonconform
mesh is only represented for (a) and (b) (only the vertex nodes shown).
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Figure 7.73: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): simple shear
across x y - Px y ) as a function of the number of particles, for microstructures contain-
ing two particle phases, Phase 2 containing Disks of the same size at vf = 0.1 and Phase
3 containing Ellipses oriented along xx at vf = 0.2.
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Table 7.14: Homogenized first Piola-Kirchhoff component Pxx under uniaxial load-
ing condition along xx for linear, periodic, and uniform traction boundary conditions
as a function of the number of particles, for microstructures containing two particle
phases, Phase 2 containing Disks of the same size at vf = 0.1 and Phase 3 containing
Ellipses oriented along xx at vf = 0.2. The relative variation with reference to the peri-
odic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 16.13 4.08 15.49 15.17 −2.09
6 16.05 3.05 15.57 15.19 −2.43

10 15.58 1.55 15.34 15.19 −0.98
18 15.79 2.10 15.46 15.38 −0.53
32 15.70 1.36 15.48 15.36 −0.83
56 15.66 1.18 15.48 15.40 −0.52

100 15.60 0.32 15.55 15.49 −0.40
178 15.60 0.42 15.53 15.46 −0.48
316 15.59 0.33 15.54 15.51 −0.20
562 15.56 0.23 15.52 15.49 −0.19

1000 15.54 0.22 15.50 15.48 −0.12

Table 7.15: Homogenized first Piola-Kirchhoff component Py y under uniaxial load-
ing condition along y y for linear, periodic, and uniform traction boundary conditions
as a function of the number of particles, for microstructures containing two particle
phases, Phase 2 containing Disks of the same size at vf = 0.1 and Phase 3 containing
Ellipses oriented along xx at vf = 0.2. The relative variation with reference to the peri-
odic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Py y /MPa εPeriodic /% Py y /MPa Py y /MPa εPeriodic /%

4 15.58 3.52 15.05 14.89 −1.09
6 15.53 3.26 15.04 14.94 −0.70

10 15.69 3.08 15.22 15.13 −0.58
18 15.39 1.10 15.23 15.10 −0.84
32 15.31 0.89 15.17 15.10 −0.47
56 15.29 0.64 15.19 15.14 −0.33

100 15.21 0.55 15.12 15.11 −0.11
178 15.24 0.69 15.14 15.11 −0.21
316 15.17 0.28 15.13 15.10 −0.15
562 15.18 0.29 15.14 15.13 −0.10

1000 15.18 0.20 15.15 15.14 −0.08
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Table 7.16: Homogenized first Piola-Kirchhoff component Px y under simple shear
across x y for linear, periodic, and uniform traction boundary conditions as a function
of the number of particles, for microstructures containing two particle phases, Phase
2 containing Disks of the same size at vf = 0.1 and Phase 3 containing Ellipses oriented
along xx at vf = 0.2. The relative variation with reference to the periodic boundary is
also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Px y /MPa εPeriodic /% Px y /MPa Px y /MPa εPeriodic /%

4 17.30 3.56 16.71 16.05 −3.93
6 16.97 5.49 16.09 15.80 −1.82

10 16.63 2.41 16.23 15.84 −2.45
18 16.51 2.89 16.05 15.89 −0.97
32 16.42 1.91 16.12 15.98 −0.86
56 16.42 1.48 16.18 16.03 −0.95

100 16.27 0.71 16.16 16.07 −0.54
178 16.31 0.86 16.17 16.10 −0.45
316 16.22 0.45 16.15 16.08 −0.39
562 16.21 0.39 16.15 16.10 −0.32

1000 16.24 0.27 16.20 16.16 −0.23

Table 7.17: Homogenized first Piola-Kirchhoff component Pxx and Py y under uniax-
ial loading condition along xx and y y , respectively, for periodic boundary conditions
as a function of the number of particles, for microstructures containing two particle
phases, Phase 2 containing Disks of the same size at vf = 0.1 and Phase 3 contain-
ing Ellipses oriented along xx at vf = 0.2. The relative variation with reference to the
homogenized first Piola-Kirchhoff component Pxx under uniaxial loading condition
along xx is also presented as εxx.

Number of
Particles

Uniaxial traction along y Uniaxial traction along x

Py y /MPa εxx /% Pxx /MPa
4 15.05 2.84 15.49
6 15.04 3.40 15.57

10 15.22 0.77 15.34
18 15.23 1.52 15.46
32 15.17 2.00 15.48
56 15.19 1.88 15.48

100 15.12 2.74 15.55
178 15.14 2.54 15.53
316 15.13 2.65 15.54
562 15.39 3.95 16.02

1000 15.41 3.63 15.99
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Figure 7.74: Relative variation of the homogenized first Piola-Kirchhoff Pxx under uni-
axial loading along xx between the linear and uniform traction boundary conditions
and the periodic boundary condition as a function of the number of particles. Mi-
crostructure 1 includes one particle phase containing Disks of the same size at a vol-
ume fraction equal to 0.3. Microstructure 2 includes three particle phases containing
Disks of the same size, Phase 2 at a volume fraction of 0.1, Phase 3 at a volume fraction
of 0.05 and Phase 4 at a volume fraction 0.15. Microstructure 3 comprises two particle
phase. Phase 2 containing Disks of the same size at a volume fraction equal to 0.1 and
Phase 3 containing Ellipses at a volume fraction equal to 0.2 oriented along xx.
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Discussion

The results presented in Figure 7.73 regarding the stiffness of the response as a func-
tion of the boundary condition used are as expected, with the linear boundary con-
dition leading to a stiffer behavior, the uniform boundary traction leading to a more
flexible behavior and the periodic boundary condition corresponding to an interme-
diate response. This can be confirmed from the sign of the relative variations in Tables
7.14-7.16.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components. For the two
uniaxial loading schemes considered, the RVE containing a 1000 particles leads to rel-
ative differences between the boundary conditions of below half a percent. The results
are slightly higher for the simple shear across x y , but of the same magnitude. A cur-
sory look at Tables 7.6-7.8, 7.10-7.12 and 7.14-7.16 suggests that there isn’t a strong
difference in the number of particles needed for the RVE to be representative between
all the 2D microstructures considered. Figure 7.74 confirms visually this assertion for
uniaxial loading along xx.

Concerning isotropy, it can be gathered from Table 7.17 that for all numbers of
particles considered the relative variation between the homogenized Piola-Kirchhoff
Pxx in the uniaxial traction along xx and the homogenized Piola-Kirchhoff Py y in the
uniaxial traction along y y is always below 4% but never smaller than 1.5%, except for
the microstructure containing 10 particles. This is to be expected given the orientation
of the Ellipses, which leads to the anisotropy detected.
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7.3.4 One phase containing Spheres with same radius

This section presents the results concerning microstructures containing only Spheres
of the same size belonging to a single phase. Assuming that the RVE is unitary, the
volume fraction is fixed at 0.2 and samples with n particles are created, with n given
by

n = round(10k ) for k = 0.5,0.75,1, . . . ,2.75. (7.13)

To perform the multi-scale analyses based on computational homogenization simula-
tions, the microstructure is discretized in a nonconform TETRA10 mesh. The materials
considered are for Phase 1, corresponding to the matrix, E = 100MPa and ν= 0.3, and
for Phase 2, E = 500MPa and ν = 0.3. Four different deformation gradients are im-
posed, characterizing an uniaxial loading along xx, an uniaxial loading along y y , an
uniaxial loading along zz and a simple shear across x y defined as

Uniaxial along xx : F =

 1.1 0 0
0 1.0 0
0 0 1.0

 , (7.14)

Uniaxial along y y : F =

 1.0 0 0
0 1.1 0
0 0 1.0

 , (7.15)

Uniaxial along zz : F =

 1.0 0 0
0 1.0 0
0 0 1.1

 , (7.16)

Simple shear across x y : F =

 1.0 0.3 0
0 1.0 0
0 0 1.0

 , (7.17)

respectively.

Results

Figure 7.75 presents examples of the RVEs considered, including in Figures 7.75a and
7.75b the TETRA10 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.76. The results for uniaxial trac-
tion along xx are shown in Figure 7.76a, for uniaxial traction along y y in Figure 7.76b,
for uniaxial traction along zz in Figure 7.76c and for simple shear across x y in Figure
7.76d. To ease the interpretation of these results as it relates to the representativity
of the RVE, they are presented in Tables 7.18-7.20, including the relative variation be-
tween the boundary conditions considered. In the same vein, Table 7.21 presents the
same results only for the periodic boundary condition and the uniaxial loading condi-
tions with the goal of helping to reach conclusions about the isotropy of the RVEs.
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(a) n = 3 (b) n = 32

(c) n = 178 (d) n = 562

Figure 7.75: Microstructures containing (a): 3, (b): 32, (c):178 and (d):562 Spheres of
the same size belonging to the same phase at a volume fraction equal to 0.2. The
TETRA10 nonconform mesh is only represented for (a) and (b) (only the vertex nodes
shown).
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Figure 7.76: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): uniaxial
traction along zz - Pzz , (d): simple shear across x y - Px y ) as a function of the number
of particles, for microstructures containing only Spheres of the same size at a volume
fraction equal to 0.2 belonging to the same phase.
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Table 7.18: Homogenized first Piola-Kirchhoff component Pxx under uniaxial loading
condition along xx for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures containing only Spheres of the
same size at a volume fraction equal to 0.2 belonging to the same phase. The relative
variation with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 16.15 9.32 14.77 14.27 −3.36
6 16.60 11.93 14.83 14.47 −2.44

10 15.82 6.48 14.86 14.59 −1.79
18 15.66 5.48 14.85 14.64 −1.38
32 15.44 3.72 14.89 14.64 −1.65
56 15.47 4.41 14.82 14.66 −1.05

100 15.34 3.35 14.84 14.71 −0.91
178 15.28 3.02 14.84 14.73 −0.71
316 15.16 2.08 14.85 14.76 −0.64
562 15.13 1.87 14.85 14.78 −0.49

Table 7.19: Homogenized first Piola-Kirchhoff component Py y under uniaxial loading
condition along y y for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures containing only Spheres of the
same size at a volume fraction equal to 0.2 belonging to the same phase. The relative
variation with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 17.11 14.67 14.92 14.44 −3.25
6 16.98 13.55 14.95 14.57 −2.52

10 15.85 7.30 14.78 14.56 −1.46
18 15.70 5.70 14.85 14.65 −1.35
32 15.61 5.46 14.80 14.65 −1.07
56 15.52 4.79 14.81 14.67 −0.92

100 15.32 3.12 14.85 14.70 −1.02
178 15.26 2.83 14.84 14.73 −0.76
316 15.18 2.23 14.85 14.76 −0.58
562 15.12 1.84 14.85 14.78 −0.50
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Table 7.20: Homogenized first Piola-Kirchhoff component Pzz under uniaxial loading
condition along zz for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles,for microstructures containing only Spheres of the
same size at a volume fraction equal to 0.2 belonging to the same phase. The relative
variation with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 17.25 15.76 14.91 14.45 −3.03
6 16.40 10.52 14.84 14.46 −2.53

10 16.07 8.17 14.86 14.63 −1.51
18 15.58 5.24 14.81 14.61 −1.35
32 15.66 5.85 14.80 14.65 −1.01
56 15.41 3.77 14.85 14.68 −1.16

100 15.37 3.57 14.84 14.71 −0.90
178 15.26 2.75 14.85 14.73 −0.78
316 15.13 1.92 14.84 14.75 −0.65
562 15.11 1.85 14.84 14.76 −0.54

Table 7.21: Homogenized first Piola-Kirchhoff component Pxx , Py y and Pzz under uni-
axial loading condition along xx, y y and zz, respectively, for periodic boundary con-
ditions as a function of the number of particles, for microstructures containing only
Spheres of the same size at a volume fraction equal to 0.2 belonging to the same phase.
The relative variation with reference to the homogenized first Piola-Kirchhoff compo-
nent Pxx under uniaxial loading condition along xx is also presented as εxx.

Number of
Particles

Uniaxial traction
along x

Uniaxial traction
along y

Uniaxial traction
along z

Pxx /MPa Py y /MPa εxx /% Pzz /MPa εxx /%
3 14.770 14.920 −1.015 14.905 −0.916
6 14.829 14.951 −0.822 14.836 −0.049

10 14.778 14.836 −0.390 14.857 −0.530
18 14.849 14.854 −0.029 14.808 0.276
32 14.887 14.804 0.561 14.798 0.603
56 14.819 14.808 0.076 14.849 −0.199

100 14.840 14.853 −0.086 14.840 −0.002
178 14.837 14.840 −0.020 14.850 −0.086
316 14.850 14.846 0.033 14.842 0.059
562 14.851 14.851 −0.002 14.840 0.070
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Discussion

The results presented in Figure 7.76 regarding the stiffness of the response as a func-
tion of the boundary condition used are as expected, with the linear boundary con-
dition leading to a stiffer behavior, the uniform boundary traction leading to a more
flexible behavior and the periodic boundary condition corresponding to an interme-
diate response. This can be confirmed from the sign of the relative variations in Tables
7.18-7.20.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components in Figure 7.76.
For the three uniaxial loading schemes considered, the RVE containing a 562 particles
leads to a relative differences between the periodic and the linear boundary condition
of around 2% and between the periodic and the uniform traction boundary condition
of about 0.5%.

Concerning isotropy, it can be gathered from Table 7.21 that for all numbers of par-
ticles considered the relative variation between the homogenized Piola-Kirchhoff Pxx

in the uniaxial traction along xx, the homogenized Piola-Kirchhoff Py y in the uniaxial
traction along y y , and the homogenized Piola-Kirchhoff Py y in the uniaxial traction
along zz is below 1% with a strong tendency to decrease with an increase in the num-
ber of particles included in the RVE.
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7.3.5 Three phases containing Spheres with different radii

This section presents the results concerning microstructures containing three different
particle phases. Each phase contains n Spheres of the same size, with n given by

n = round(10k /3) for k = 0.5,0.75,1, . . . ,2.75. (7.18)

Assuming an unitary RVE, for Phase 2 the volume fraction is fixed at 0.075, for Phase 3
at 0.025, and for Phase 4 at 0.1. To perform the multi-scale analyses based on com-
putational homogenization simulations, the microstructure is discretized in a non-
conform TETRA10 mesh. The materials considered are for Phase 1, corresponding
to the matrix, E = 100MPa and ν = 0.3, and for Phase 2, the phase containing the
Disks, E = 500MPa and ν= 0.3, for Phase 3, E = 700MPa and ν= 0.3, and for Phase 4,
E = 1000MPa and ν = 0.3. Four different deformation gradients are imposed, charac-
terizing an uniaxial loading along xx, an uniaxial loading along y y , an uniaxial loading
along zz and a simple shear across x y defined as

Uniaxial along xx : F =

 1.1 0 0
0 1.0 0
0 0 1.0

 , (7.19)

Uniaxial along y y : F =

 1.0 0 0
0 1.1 0
0 0 1.0

 , (7.20)

Uniaxial along zz : F =

 1.0 0 0
0 1.0 0
0 0 1.1

 , (7.21)

Simple shear across x y : F =

 1.0 0.3 0
0 1.0 0
0 0 1.0

 , (7.22)

respectively.

Results

Figure 7.77 presents examples of the RVEs considered, including in Figures 7.77a and
7.77b the TETRA10 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.78. The results for uniaxial trac-
tion along xx are shown in Figure 7.78a, for uniaxial traction along y y in Figure 7.78b,
for uniaxial traction along zz in Figure 7.78c and for simple shear across x y in Figure
7.78d. To ease the interpretation of these results as it relates to the representativity
of the RVE, they are presented in Tables 7.22-7.24, including the relative variation be-
tween the boundary conditions considered. In the same vein, Table 7.25 presents the
same results only for the periodic boundary condition and the uniaxial loading condi-
tions with the goal of helping to reach conclusions about the isotropy of the RVEs.
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(a) n = 3 (b) n = 32

(c) n = 178 (d) n = 562

Figure 7.77: Microstructures containing (a): 3, (b): 32, (c):178 and (d):562 Spheres of
the same size belonging to three different phases (Phase 2: vf = 0.075, Phase 3: vf =
0.025, Phase 4: vf = 0.1). The TETRA10 nonconform mesh is only represented for (a)
and (b) (only the vertex nodes shown).
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Figure 7.78: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): uniaxial
traction along zz - Pzz , (d): simple shear across x y - Px y ) as a function of the number
of particles, for microstructures containing Spheres of the same size belonging to three
different phases (Phase 2: vf = 0.075, Phase 3: vf = 0.025, Phase 4: vf = 0.1).
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Table 7.22: Homogenized first Piola-Kirchhoff component Pxx under uniaxial loading
condition along xx for linear, periodic, and uniform traction boundary conditions as
a function of the number of particles, for microstructures containing Spheres of the
same size belonging to three different phases (Phase 2: vf = 0.075, Phase 3: vf = 0.025,
Phase 4: vf = 0.1). The relative variation with reference to the periodic boundary is also
presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 18.65 26.42 14.75 14.27 −3.26
6 17.37 17.40 14.79 14.51 −1.90

10 16.36 9.45 14.94 14.61 −2.27
18 16.56 8.79 15.22 14.91 −2.03
32 16.54 9.19 15.15 14.97 −1.18
56 16.36 7.58 15.21 15.02 −1.20

100 15.97 5.15 15.19 15.05 −0.94
178 15.96 5.11 15.18 15.06 −0.77
316 15.84 4.27 15.19 15.08 −0.74
562 15.75 3.23 15.26 15.16 −0.62

Table 7.23: Homogenized first Piola-Kirchhoff component Py y under uniaxial loading
condition along y y for linear, periodic, and uniform traction boundary conditions as
a function of the number of particles, for microstructures containing Spheres of the
same size belonging to three different phases (Phase 2: vf = 0.075, Phase 3: vf = 0.025,
Phase 4: vf = 0.1). The relative variation with reference to the periodic boundary is also
presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 19.78 32.53 14.92 14.62 −2.02
6 17.88 20.28 14.87 14.60 −1.81

10 16.99 14.43 14.84 14.63 −1.43
18 17.16 12.56 15.24 14.96 −1.87
32 16.37 7.61 15.21 14.95 −1.71
56 16.53 8.74 15.21 15.02 −1.20

100 16.02 5.51 15.19 15.05 −0.88
178 15.89 4.58 15.19 15.06 −0.89
316 15.86 4.29 15.21 15.10 −0.70
562 15.77 3.50 15.24 15.15 −0.57
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Table 7.24: Homogenized first Piola-Kirchhoff component Pzz under uniaxial loading
condition along zz for linear, periodic, and uniform traction boundary conditions as
a function of the number of particles, for microstructures containing Spheres of the
same size belonging to three different phases (Phase 2: vf = 0.075, Phase 3: vf = 0.025,
Phase 4: vf = 0.1). The relative variation with reference to the periodic boundary is also
presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

3 18.58 23.67 15.02 14.46 −3.74
6 16.75 12.71 14.86 14.50 −2.41

10 16.88 13.42 14.88 14.61 −1.82
18 17.04 12.41 15.16 14.62 −3.57
32 16.42 7.81 15.23 14.99 −1.59
56 16.36 7.99 15.15 14.98 −1.07

100 15.95 5.01 15.19 15.05 −0.97
178 15.91 4.75 15.19 15.05 −0.94
316 15.77 3.73 15.20 15.09 −0.73
562 15.81 3.53 15.27 15.17 −0.62

Table 7.25: Homogenized first Piola-Kirchhoff component Pxx , Py y and Pzz under uni-
axial loading condition along xx, y y and zz, respectively, for periodic boundary condi-
tions as a function of the number of particles, for microstructures containing Spheres
of the same size belonging to three different phases (Phase 2: vf = 0.075, Phase 3:
vf = 0.025, Phase 4: vf = 0.1). The relative variation with reference to the homoge-
nized first Piola-Kirchhoff component Pxx under uniaxial loading condition along xx
is also presented as εxx.

Number of
Particles

Uniaxial traction
along x

Uniaxial traction
along y

Uniaxial traction
along z

Pxx /MPa Py y /MPa εxx /% Pzz /MPa εxx /%
3 14.750 14.925 −1.183 15.025 −1.859
6 14.794 14.869 −0.507 14.860 −0.449

10 14.945 14.845 0.668 14.882 0.418
18 15.219 15.243 −0.157 15.160 0.386
32 15.151 15.207 −0.369 15.233 −0.542
56 15.206 15.205 0.007 15.145 0.401

100 15.189 15.186 0.020 15.192 −0.023
178 15.181 15.191 −0.064 15.192 −0.067
316 15.193 15.207 −0.094 15.200 −0.047
562 15.260 15.236 0.157 15.267 −0.049
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Discussion

The results presented in Figure 7.78 regarding the stiffness of the response as a func-
tion of the boundary condition used are not always as expected, with the linear bound-
ary condition leading to a stiffer behavior, the uniform boundary traction leading to a
more flexible behavior and the periodic boundary condition corresponding to an in-
termediate response. This can be confirmed from the sign of the relative variations in
Tables 7.22-7.24.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components. For the three
uniaxial loading schemes considered, the RVE containing a 562 particles leads to a rel-
ative differences between the periodic and the linear boundary condition of around
3.5% and between the periodic and the uniform traction boundary condition of about
0.6%. Compared with the results from the previous section regarding Spheres of the
same size, the results hint at the need to add more particles to achieve an equally
representative RVE. This is possibly the cases due to the more varied nature of the
particles included in the current microstructure.

Concerning isotropy, it can be gathered from Table 7.25 that for all numbers of par-
ticles considered the relative variation between the homogenized Piola-Kirchhoff Pxx

in the uniaxial traction along xx, the homogenized Piola-Kirchhoff Py y in the uniaxial
traction along y y , and the homogenized Piola-Kirchhoff Py y in the uniaxial traction
along zz is below 1% with a slight tendency to decrease with an increase in the num-
ber of particles included in the RVE.
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7.3.6 One phase containing Spheres and one phase containing Ellip-
soids

This section presents the results concerning microstructures containing two different
phases. Each phase contains n particles, with n given by

n = round(10k /2) for k = 0.5,0.75,1, . . . ,2.75. (7.23)

Assuming an unitary RVE, Phase 2 contains Spheres of the same size at a volume frac-
tion of 0.1, and Phase 3 contains Ellipsoids at volume fraction of 0.1. The semi-axis a
of the Ellipsoids are aligned along the xx axis, with the ratio a/b equal to 2 and the
ratio a/c varying uniformly between 2 and 3. The ratio between the major and minor
axis varies uniformly between 1 and 2.5. To perform the multi-scale analyses based
on computational homogenization simulations, the microstructure is discretized in a
nonconform TETRA10 mesh The materials considered are for Phase 1, corresponding
to the matrix, E = 100MPa and ν = 0.3, for Phase 2 E = 500MPa and ν = 0.3 and for
Phase 3 E = 700MPa. Four different deformation gradients are imposed, character-
izing an uniaxial loading along xx, an uniaxial loading along y y and a simple shear
across x y defined as

Uniaxial along xx : F =

 1.1 0 0
0 1.0 0
0 0 1.0

 , (7.24)

Uniaxial along y y : F =

 1.0 0 0
0 1.1 0
0 0 1.0

 , (7.25)

Uniaxial along zz : F =

 1.0 0 0
0 1.0 0
0 0 1.1

 , (7.26)

Simple shear across x y : F =

 1.0 0.3 0
0 1.0 0
0 0 1.0

 , (7.27)

respectively.

Results

Figure 7.79 presents examples of the RVEs considered, including in Figures 7.79a and
7.79b the TETRA10 nonconform mesh.

The homogenized first Piola-Kirchhoff stress for various loading schemes as a func-
tion of the number of particles is presented in Figure 7.80. The results for uniaxial trac-
tion along xx are shown in Figure 7.80a, for uniaxial traction along y y in Figure 7.80b
and for simple shear across x y in Figure 7.80d. To ease the interpretation of these re-
sults as it relates to the representativity of the RVE, they are presented in Tables 7.26-
7.28, including the relative variation between the boundary conditions considered.
Some data points are missing due to difficulties in generating nonconform meshes.
Also, it was not possible to generate periodic nonconform meshes, so this boundary
condition is enforced using Mortar’s condition. In the same vein of Tables 7.26-7.28,
Table 7.29 presents the same results only for the linear boundary condition and the
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uniaxial loading conditions with the goal of helping to reach conclusions about the
isotropy of the RVEs. In this study the linear boundary condition is used instead of the
periodic boundary condition, because it is the one with most data points available.

(a) n = 4 (b) n = 32

(c) n = 178 (d) n = 562

Figure 7.79: Microstructures containing (a): 4, (b): 32, (c):178 and (d):562 particles
including two particle phases, Phase 2 containing Spheres of the same size at vf = 0.1
and Phase 3 containing Ellipsoids with the largest principal axis oriented along xx at
vf = 0.1. The TETRA10 nonconform mesh is only represented for (a) and (b) (only the
vertex nodes shown).
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Figure 7.80: Homogenized first Piola-Kirchhoff stress for various loading schemes ((a):
uniaxial traction along xx - Pxx , (b): uniaxial traction along y y - Py y , (c): uniaxial
traction along zz - Pzz , (d): simple shear across x y - Px y ) as a function of the num-
ber of particles, for microstructures including two particle phases, Phase 2 containing
Spheres of the same size at vf = 0.1 and Phase 3 containing Ellipsoids with the largest
principal axis oriented along xx at vf = 0.1.
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Table 7.26: Homogenized first Piola-Kirchhoff component Pxx under uniaxial loading
condition along xx for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures including two particle phases,
Phase 2 containing Spheres of the same size at vf = 0.1 and Phase 3 containing Ellip-
soids with the largest principal axis oriented along xx at vf = 0.1. The relative variation
with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

4 16.22 3.22 15.71 14.78 −5.92
6 17.90 13.05 15.83 15.06 −4.87

10 16.94 7.39 15.77 15.22 −3.53
18 16.22 3.19 15.71 15.20 −3.24
32 16.58 - - 15.25 -
56 16.39 - - 15.34 -

100 16.10 - - 15.37 -
178 16.15 - - 15.49 -
316 16.13 - - 15.48 -
562 16.02 - - - -

Table 7.27: Homogenized first Piola-Kirchhoff component Py y under uniaxial loading
condition along y y for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures including two particle phases,
Phase 2 containing Spheres of the same size at vf = 0.1 and Phase 3 containing Ellip-
soids with the largest principal axis oriented along xx at vf = 0.1. The relative variation
with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

4 16.58 10.23 15.04 14.63 −2.71
6 16.82 10.56 15.21 14.67 −3.58

10 16.50 9.53 15.06 14.66 −2.68
18 15.73 5.03 14.97 14.69 −1.88
32 15.73 - - 14.73 -
56 15.56 - - 14.83 -

100 15.52 - - 14.81 -
178 15.40 - - 14.86 -
316 15.33 - - 14.87 -
562 15.23 - - - -
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Table 7.28: Homogenized first Piola-Kirchhoff component Pzz under uniaxial loading
condition along zz for linear, periodic, and uniform traction boundary conditions as a
function of the number of particles, for microstructures including two particle phases,
Phase 2 containing Spheres of the same size at vf = 0.1 and Phase 3 containing Ellip-
soids with the largest principal axis oriented along xx at vf = 0.1. The relative variation
with reference to the periodic boundary is also presented as εPeriodic.

Number of
Particles

Linear condition Periodic condition U. Traction condition

Pxx /MPa εPeriodic /% Pxx /MPa Pxx /MPa εPeriodic /%

4 16.11 7.51 14.98 14.55 −2.93
6 16.21 9.30 14.83 14.41 −2.81

10 15.89 6.50 14.92 14.51 −2.75
18 15.70 5.41 14.90 14.67 −1.54
32 15.75 - - 14.67 -
56 15.51 4.38 14.86 14.65 −1.41

100 15.36 - - 14.69 -
178 15.21 - - 14.72 -
316 15.18 - - 14.71 -
562 15.07 - - - -

Table 7.29: Homogenized first Piola-Kirchhoff component Pxx , Py y and Pzz under uni-
axial loading condition along xx, y y and zz, respectively, for linear boundary con-
ditions as a function of the number of particles, for microstructures including two
particle phases, Phase 2 containing Spheres of the same size at vf = 0.1 and Phase 3
containing Ellipsoids with the largest principal axis oriented along xx at vf = 0.1. The
relative variation with reference to the homogenized first Piola-Kirchhoff component
Pxx under uniaxial loading condition along xx is also presented as εxx.

Number of
Particles

Uniaxial traction
along x

Uniaxial traction
along y

Uniaxial traction
along z

Pxx /MPa Py y /MPa εxx /% Pzz /MPa εxx /%
4 16.221 16.579 −2.207 16.110 0.682
6 17.896 16.818 6.023 16.208 9.433

10 16.937 16.496 2.604 15.889 6.190
18 16.216 15.727 3.015 15.703 3.164
32 16.581 15.727 5.153 15.755 4.984
56 16.389 15.563 5.038 15.508 5.372

100 16.105 15.519 3.640 15.356 4.650
178 16.147 15.396 4.650 15.211 5.794
316 16.125 15.334 4.903 15.182 5.847
562 16.019 15.231 4.918 15.068 5.933
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Figure 7.81: Relative variation of the homogenized first Piola-Kirchhoff Pxx under uni-
axial loading along xx between the linear and uniform traction boundary conditions,
with reference to the latter, as a function of the number of particles. Microstructure
1 includes one particle phase containing Spheres of the same size at a volume frac-
tion equal to 0.2. Microstructure 2 includes three particle phases containing Spheres
of the same size, Phase 2 at a volume fraction of 0.075, Phase 3 at a volume fraction
of 0.025 and Phase 4 at a volume fraction 0.1. Microstructure 3 comprises two particle
phase. Phase 2 containing Spheres of the same size at a volume fraction equal to 0.1
and Phase 3 containing Ellipsoids at a volume fraction equal to 0.1 oriented along xx.
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Discussion

The results presented in Figure 7.80 regarding the stiffness of the response as a func-
tion of the boundary condition used are as expected, with the linear boundary con-
dition leading to a stiffer behavior, the uniform boundary traction leading to a more
flexible behavior and the periodic boundary condition corresponding to an interme-
diate response. This can be confirmed from the sign of the relative variations in Tables
7.26-7.28.

Regarding the representativity of the RVE, an increasing number of particles leads
to a more representative RVE, as can be inferred from the decreasing difference be-
tween the corresponding homogenized first Piola-Kirchhoff components in Figure 7.80.
A cursory look at Tables 7.18-7.20, 7.22-7.24 and 7.26-7.28 suggests that there is a
marked difference in the number of particles needed for the RVE to be representative
between all the 3D microstructures considered. Figure 7.81 confirms this and one can
conclude that the single particle phase with Spheres of the same size needs less parti-
cles for the RVE to be representative. On the other hand, from all the 3D microstruc-
tures considered, the three particle phase comprised of Spheres of different radii needs
the most particles. Such a result is not unexpected, as it contains four different phases
while the other microstructures analyzed only contain two and three. The microstruc-
ture containing Spheres and Ellipsoids presents intermediate results between the other
two.

Concerning isotropy, it can be gathered from Table 7.29 that for all numbers of par-
ticles considered the relative variation between the homogenized Piola-Kirchhoff Pxx

in the uniaxial traction along xx and the homogenized Piola-Kirchhoff Py y in the uni-
axial traction along y y hovers around 5%. This is to be expected given the orientation
of the Ellipsoids along xx, which leads to the anisotropy detected.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

Microstructure generation

The main goal of the present work is the design of a program to generate RVEs ranging
from the specification of the input descriptors to the finite element discretization of
the spatial domain. The program is implemented in an object-oriented Python frame-
work and it allows for the generation of 2D and 3D RVEs with simple geometrical fea-
tures, such as Disks, Ellipses, Spheres and Ellipsoids. It also provides the ability to
specify the parameters characterizing these geometrical features as fixed values or ac-
cording to statistical distributions, such as uniform, Gaussian or discrete distributions.
An arbitrary number of phases is supported, allowing great flexibility in the modeling
of real materials, such as polymer blends.

The proposed approach is based in a molecular dynamics simulation where the
initial configuration is created using a Poisson point process for the center of the parti-
cles and the repulsive forces between particles are proportional to the overlap area/vol-
ume of the particles. The algorithms for the computation of the overlap have been val-
idated providing the correct results. A "self-calibrating" multi-temperature isokinetic
scheme is proposed, based on results regarding the behavior of a system of particles
under an isokinetic scheme. It is concluded that for a given reference temperature,
the system of particles, after some time, achieves equilibrium. This equilibrium is
characterized by an oscillatory behavior of the total overlap area/volume of the sys-
tem around a given mean total overlap area/volume positively correlated with the ref-
erence temperature. A higher volume fraction and number of particles also leads to
larger mean total overlap areas/volumes. Using a multi-temperature isokinetic scheme
allowing always the same number of iterations to achieve equilibrium at each tem-
perature stage, very satisfactory results are found for moderate volume fractions and
number of particles. However, this approach fails for higher volume fractions and
smaller numbers of particles. The "self-calibrating" multi-temperature scheme is in-
troduced as solution to this problem. It updates the number of iterations that a system
is allowed to spend at a given temperature stage, using an uptick in the total overlap
area/volume as a sign that the system as reached equilibrium. It is an heuristic rule,
based on the fact that after lowering the temperature the total overlap area/volume of
the system tends to decrease monotonically, and after reaching equilibrium the total
overlap area/volume exhibits an oscillatory behavior.

203
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This proposed scheme is validated generating microstructures with the desired de-
scriptors in a very reasonable time frame. Microstructures containing from 10 to 1000
Disks at volume fractions from 0.1 to 0.8 are created with no overlaps and contain-
ing from 10 to 500 Spheres at volume fractions from 0.1 to 0.5 with a maximum total
overlap of 1×10−10. Microstructures containing 200 and 500 Spheres at a volume frac-
tion of 0.6 are also generated reliably. For smaller numbers of particles at this volume
fraction it is not always possible to find a legal configuration. Regarding the CPU time
spent, it is able to generate microstructures containing 500 Disks of the same size at
a volume fraction of 0.7 with no overlap in less than 3 mins. Regarding Spheres, it is
able to produce microstructures containing 500 Spheres of the same size at a volume
fraction of 0.5 with a total overlap smaller than 1×10−10 in around 12 mins. Gener-
ating microstructures containing Spheres with zero overlap takes unreasonably long,
so if microstructures with no overlap containing Spheres are required, it is possible
to run the simulation at a slightly higher volume fraction, shrinking the particles at
the end. The increase in volume fraction can be negligible, even allowing for a higher
maximum total overlap volume than 1×10−10, leading to very small differences in the
CPU time spent to generate the microstructure.

In conclusion, the developed program is able to generate microstructures accord-
ing to the specifications of the user in reasonable time frames.

Microstructure quality

The microstructures generated using the approach put forth are analyzed using the
so-called Minkowski structure metrics of their Voronoi cells.

The Minkowski structure metrics are first validated for convex and non-convex
polygons, and convex polyhedra, detecting the expected symmetries that characterize
the shapes under analysis. Thus, they are able to identify clearly the original shape and
are useful in characterizing the Voronoi cells obtained from the generated microstruc-
tures.

The typical microstructures containing only Disks and Spheres of the same size at
different volume fractions generated by the proposed approach are shown to possess
no clustering or ordered arrangement of the particles. This is in contrast to examples
provided of pathological microstructures with excess order, that are strongly flagged
by the corresponding Minkowski structure metric. Comparing the Minkowski struc-
ture metrics for microstructures at different volume fractions, higher volume fractions
tend to lead to lower Minkowski structure metrics q2 and larger Minkowski structure
metrics q6. Despite the histograms of the Minkowski structure metrics for different
samples with the same descriptors not looking to dissimilar it is not possible to reach a
conclusion regarding a common underlying distribution from the k-sample Anderson-
Darling tests performed.

It is also possible to conclude that the Minkowski structure metric q2 and the corre-
sponding irreducible Minkowski tensor ψ2 may be useful tools in detecting and char-
acterizing anisotropy, including its direction. This is done analyzing two microstruc-
tures with the same volume fraction and number of particles, with one containing only
Disks and the other Ellipses aligned according to a specified direction.

In summary, it is shown that the Minkowski structure metrics are a very versatile
tool to judge the degree of disorder, colloquially referred to as "randomness", provid-
ing reassurance that the RVEs produced mimic the disorderliness observed in real ma-
terials.
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Microscale analyses based on computational homogenization

Multi-scale analyses based on computational homogenization are performed in three
different types of 2D and 3D microstructures, fixing the volume fractions of each phase
and increasing the number of inclusions. Each phase is assumed linear and follows
the so-called Henky constitutive model. The 2D microstructures considered are a mi-
crostructure containing a single particle phase of Disks at a volume fraction of 0.3, a
microstructure containing three particle phases of Disks with the same size at volume
fractions of 0.1, 0.05 and 0.15, and a microstructure containing two particle phases,
one composed of Disks at a volume fraction of 0.1 and another composed of aligned
Ellipses at a volume fraction of 0.2. The 3D microstructures analyzed are similar: a
microstructure containing a single particle phase of Spheres at a volume fraction of
0.2, a microstructure containing three particle phases of Spheres with the same size at
volume fractions of 0.025, 0.075 and 0.1, and a microstructure containing two particle
phases, one composed of Spheres at a volume fraction of 0.1 and another composed
of aligned Ellipsoids at a volume fraction of 0.1.

The microscale analyses based on computational homogenization performed show
the expected behavior as it relates to the representativeness of the RVE, highlighting
the need to include a sufficient number of particles in the microstructure so that the
RVE represents the behavior of the material in an average sense. It is also possible
to conclude that for the 2D microstructures examined the same number of particles
is needed to achieve a representative RVE. However, for the 3D microstructures stud-
ied, the microstructure containing only a single particle phase is shown to need less
particles and the microstructure with three different particle phases is shown to need
more.

The results regarding isotropy are also in line with what was expected, so that mi-
crostructures containing Disks or Spheres when submitted to uniaxial loading along
different axis behave in the same manner, as the microstructure comprises more and
more particles. The microstructures containing Ellipses and Ellipsoids also perform as
expected displaying different responses according to the preferred orientation of the
particles.

8.2 Future Research

Despite the objectives set forth in the present MSc thesis being accomplished, some
further avenues of research remain that can be addressed in future works. These are
listed below along with some brief comments:

Microstructure morphology diversity Under the framework of the proposed program
more diverse convex geometrical shapes can be easily added in the future. It
also may be of interest to develop approaches allowing for the generation of
microstructures with more amorphous structures, that are hard to model using
particles with a very precise geometrical definition.

Microstructure generation efficiency Regarding the efficiency of the program put forth
there still remain means to improve it, such as more efficient methods for the de-
tection and computation of the interaction between particles. The use of reshuf-
fling techniques can also be an interesting approach to generate efficiently mul-
tiple samples with the same descriptors from a first microstructure generated by
the proposed program.
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Experimental validation Although the present work is purely numerical, it is of great
importance to perform experimental validation of the generated microstructures,
comparing them to real samples through tools such as the Minkwoski structure
metrics.

Microstructure quality analysis Regarding the quality analysis of the generated mi-
crostructures using Minkowski structure metrics, it remains to establish a clear
set of criteria allowing one to make a distinction between disorderly, and so de-
sirable, microstructures and clustered and overly orderly microstructures, and to
link this to the representativeness or lack thereof of such RVEs.
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