1,141 research outputs found

    G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The brightness of the probe spots on expression microarrays intends to measure the abundance of specific mRNA targets. Probes with runs of at least three guanines (G) in their sequence show abnormal high intensities which reflect rather probe effects than target concentrations. This G-bias requires correction prior to downstream expression analysis.</p> <p>Results</p> <p>Longer runs of three or more consecutive G along the probe sequence and in particular triple degenerated G at its solution end ((<it>GGG</it>)<sub>1</sub>-effect) are associated with exceptionally large probe intensities on GeneChip expression arrays. This intensity bias is related to non-specific hybridization and affects both perfect match and mismatch probes. The (<it>GGG</it>)<sub>1</sub>-effect tends to increase gradually for microarrays of later GeneChip generations. It was found for DNA/RNA as well as for DNA/DNA probe/target-hybridization chemistries. Amplification of sample RNA using T7-primers is associated with strong positive amplitudes of the G-bias whereas alternative amplification protocols using random primers give rise to much smaller and partly even negative amplitudes.</p> <p>We applied positional dependent sensitivity models to analyze the specifics of probe intensities in the context of all possible short sequence motifs of one to four adjacent nucleotides along the 25meric probe sequence. Most of the longer motifs are adequately described using a nearest-neighbor (NN) model. In contrast, runs of degenerated guanines require explicit consideration of next nearest neighbors (GGG terms). Preprocessing methods such as vsn, RMA, dChip, MAS5 and gcRMA only insufficiently remove the G-bias from data.</p> <p>Conclusions</p> <p>Positional and motif dependent sensitivity models accounts for sequence effects of oligonucleotide probe intensities. We propose a positional dependent NN+GGG hybrid model to correct the intensity bias associated with probes containing poly-G motifs. It is implemented as a single-chip based calibration algorithm for GeneChips which can be applied in a pre-correction step prior to standard preprocessing.</p

    Physico-chemical foundations underpinning microarray and next-generation sequencing experiments

    Get PDF
    Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized

    Motif effects in Affymetrix GeneChips seriously affect probe intensities

    Get PDF
    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. © 2012 The Author(s)

    Sequence specific probe signals on SNP microarrays

    Get PDF
    Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. This thesis contemplates the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates

    Hybridization biases of microarray expression data - A model-based analysis of RNA quality and sequence effects

    Get PDF
    Modern high-throughput technologies like DNA microarrays are powerful tools that are widely used in biomedical research. They target a variety of genomics applications ranging from gene expression profiling over DNA genotyping to gene regulation studies. However, the recent discovery of false positives among prominent research findings indicates a lack of awareness or understanding of the non-biological factors negatively affecting the accuracy of data produced using these technologies. The aim of this thesis is to study the origins, effects and potential correction methods for selected methodical biases in microarray data. The two-species Langmuir model serves as the basal physicochemical model of microarray hybridization describing the fluorescence signal response of oligonucleotide probes. The so-called hook method allows to estimate essential model parameters and to compute summary parameters characterizing a particular microarray sample. We show that this method can be applied successfully to various types of microarrays which share the same basic mechanism of multiplexed nucleic acid hybridization. Using appropriate modifications of the model we study RNA quality and sequence effects using publicly available data from Affymetrix GeneChip expression arrays. Varying amounts of hybridized RNA result in systematic changes of raw intensity signals and appropriate indicator variables computed from these. Varying RNA quality strongly affects intensity signals of probes which are located at the 3\'' end of transcripts. We develop new methods that help assessing the RNA quality of a particular microarray sample. A new metric for determining RNA quality, the degradation index, is proposed which improves previous RNA quality metrics. Furthermore, we present a method for the correction of the 3\'' intensity bias. These functionalities have been implemented in the freely available program package AffyRNADegradation. We show that microarray probe signals are affected by sequence effects which are studied systematically using positional-dependent nearest-neighbor models. Analysis of the resulting sensitivity profiles reveals that specific sequence patterns such as runs of guanines at the solution end of the probes have a strong impact on the probe signals. The sequence effects differ for different chip- and target-types, probe types and hybridization modes. Theoretical and practical solutions for the correction of the introduced sequence bias are provided. Assessment of RNA quality and sequence biases in a representative ensemble of over 8000 available microarray samples reveals that RNA quality issues are prevalent: about 10% of the samples have critically low RNA quality. Sequence effects exhibit considerable variation within the investigated samples but have limited impact on the most common patterns in the expression space. Variations in RNA quality and quantity in contrast have a significant impact on the obtained expression measurements. These hybridization biases should be considered and controlled in every microarray experiment to ensure reliable results. Application of rigorous quality control and signal correction methods is strongly advised to avoid erroneous findings. Also, incremental refinement of physicochemical models is a promising way to improve signal calibration paralleled with the opportunity to better understand the fundamental processes in microarray hybridization

    Spectral contents readout of birefringent sensor

    Get PDF
    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations

    Revealing Hidden Vibration Polariton Interactions by 2D IR Spectroscopy

    Full text link
    We report the first experimental two-dimensional infrared (2D IR) spectra of novel molecular photonic excitations - vibrational-polaritons. The application of advanced 2D IR spectroscopy onto novel vibrational-polariton challenges and advances our understanding in both fields. From spectroscopy aspect, 2D IR spectra of polaritons differ drastically from free uncoupled molecules; from vibrational-polariton aspects, 2D IR uniquely resolves hybrid light-matter polariton excitations and unexpected dark states in a state-selective manner and revealed hidden interactions between them. Moreover, 2D IR signals highlight the role of vibrational anharmonicities in generating non-linear signals. To further advance our knowledge on 2D IR of vibrational polaritons, we develop a new quantum-mechanical model incorporating the effects of both nuclear and electrical anharmonicities on vibrational-polaritons and their 2D IR signals. This work reveals polariton physics that is difficult or impossible to probe with traditional linear spectroscopy and lays the foundation for investigating new non-linear optics and chemistry of molecular vibrational-polaritons

    NANOSCALE INVESTIGATION OF NUCLEAR STRUCTURES BY TIME-RESOLVED MICROSCOPY

    Get PDF
    The eukaryotic cell nucleus is composed by heterogeneous biological structures, such as the nuclear envelope (NE) and chromatin. At a morphological level, chromatin organization and its interactions with nuclear structures, such as nuclear lamina (NL) and nuclear pore complex (NPC), are suggested to play an essential role in the regulation of gene activity, which involves the packaging of the genome into transcriptionally active and inactive sites, bound to healthy cell proliferation and maintenance. However, the processes governing the relation between nuclear structures and gene regulation are still unclear. For this reason, the advanced microscopy methods represent a powerful tool for imaging nuclear structures at the nanometer level, which is essential to understand the effect of nuclear interactions on genome function. The nanometer information may be achieved either through the advanced imaging techniques in combination with fluorescence spectroscopy or with the help of super-resolution methods, increasing the spatial resolution of the conventional optical microscopy. In this thesis, I implemented a double strategy based on a novel FLIM-FRET assay and super resolution SPLIT-STED method for the investigation of the chromatin organization and nuclear envelope components (lamins and NPC) at the nanoscale, in combination with the phasor analysis. The phasor approach can be applied to several fluorescence microscopy techniques abled to provide an image with an additional information in a third channel. Phasor plot is a graphical representation, which decodes the fluorescence dynamics encoded in the image, revealing a powerful tool for the data analysis in time-resolved imaging. The Chapter 1 of the thesis is characterized by an Introduction, which provides an overview on the chromatin organization at the nanoscale and the description of the several advanced fluorescence microscopy techniques used for its investigation. They are broadly divided into two main categories: the advanced imaging techniques, such as Fluorescence Correlation Spectroscopy (FCS), single particle tracking (SPT) and Fluorescence Recovery After Photobleaching (FRAP), Forster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM) and the super-resolution techniques, which include Stimulated Emission Depletion (STED), Structured Illumination Microscopy (SIM) and single molecule localization microscopy (SMLM). Following, Chapter 2 focus on the capabilities of the phasor approach in time-resolved microscopy, as a powerful tool for the analysis of the experimental data. After a description of the principles of time-domain and frequency-domain measurements, in this section are explained the rules of the phasor analysis and its applications in different fluorescence microscopy techniques. In Chapter 3, I present a FRET assay, based on the staining of the nuclei with two DNA-binding dyes (e.g. Hoechst 33342 and Syto Green 13) by using frequency-domain detection of FLIM and the phasor analysis in live interphase nuclei. I show that the FRET level strongly depends on the relative concentration of the two fluorophores. I describe a method to correct the values of FRET efficiency and demonstrate that, with this correction, the FLIM-FRET assay can be used to quantify variations of nanoscale chromatin compaction in live cells. In Chapter 4, the phasor analysis is employed to the improvement of the resolving power of the super-resolution STED microscopy. I describe a novel method to investigate nuclear structures at the nanometer level, known as SPLIT (Separation of Photons by Lifetime Tuning), developed by my group in last years. By using the phasor approach, the SPLIT technique decodes the variations of spectroscopic parameters of fluorophores, such as lifetime and fluorescence intensity, due to the effect of the modulated depletion power of the STED technique, increasing the resolving power. In this chapter, I develop the concept of the SPLIT method modulating the excitation pattern during the image acquisition to overcome its limitation linked to the photobleaching effect and the signal-to-noise ratio

    QUANTITATIVE METHODS AND DETECTION TECHNIQUES IN HYPERSPECTRAL IMAGING INVOLVING MEDICAL AND OTHER APPLICATIONS

    Get PDF
    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold- target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this thesis is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the de-oxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while β-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease
    corecore