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Abstract

Modern high-throughput technologies like DNA microarrays are powerful tools that are
widely used in biomedical research. They target a variety of genomics applications ranging
from gene expression profiling over DNA genotyping to gene regulation studies. However,
the recent discovery of false positives among prominent research findings indicates a lack
of awareness or understanding of the non-biological factors negatively affecting the
accuracy of data produced using these technologies. The aim of this thesis is to study the
origins, effects and potential correction methods for selected methodical biases in

microarray data.

The two-species Langmuir model serves as the basal physicochemical model of microarray
hybridization describing the fluorescence signal response of oligonucleotide probes. The
so-called hook method allows to estimate essential model parameters and to compute
summary parameters characterizing a particular microarray sample. We show that this
method can be applied successfully to various types of microarrays which share the same

basic mechanism of multiplexed nucleic acid hybridization.

Using appropriate modifications of the model we study RNA quality and sequence effects
using publicly available data from Affymetrix GeneChip expression arrays. Varying
amounts of hybridized RNA result in systematic changes of raw intensity signals and
appropriate indicator variables computed from these. Varying RNA quality strongly affects
intensity signals of probes which are located at the 3’ end of transcripts. We develop new
methods that help assessing the RNA quality of a particular microarray sample. A new
metric for determining RNA quality, the degradation index, is proposed which improves
previous RNA quality metrics. Furthermore, we present a method for the correction of the
3’ intensity bias. These functionalities have been implemented in the freely available

program package AffyRNADegradation.

We show that microarray probe signals are affected by sequence effects which are studied
systematically using positional-dependent nearest-neighbor models. Analysis of the
resulting sensitivity profiles reveals that specific sequence patterns such as runs of
guanines at the solution end of the probes have a strong impact on the probe signals. The
sequence effects differ for different chip- and target-types, probe types and hybridization
modes. Theoretical and practical solutions for the correction of the introduced sequence

bias are provided.

Assessment of RNA quality and sequence biases in a representative ensemble of over 8000

available microarray samples reveals that RNA quality issues are prevalent: about 10% of
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the samples have critically low RNA quality. Sequence effects exhibit considerable
variation within the investigated samples but have limited impact on the most common
patterns in the expression space. Variations in RNA quality and quantity in contrast have a

significant impact on the obtained expression measurements.

These hybridization biases should be considered and controlled in every microarray
experiment to ensure reliable results. Application of rigorous quality control and signal
correction methods is strongly advised to avoid erroneous findings. Also, incremental
refinement of physicochemical models is a promising way to improve signal calibration
paralleled with the opportunity to better understand the fundamental processes in

microarray hybridization.



Acknowledgments

First of all, I would like to thank my supervisor Hans Binder for giving me the opportunity
to work on this interesting research topic. For each of the many challenging theoretical and
practical problems I faced in the past years, I could always be sure he would help with his
good advice. Without his continuous and great support much this work would not be
possible. I also thank my second supervisor Peter F. Stadler for his great support and

always useful scientific advice.

I will always remember Jan Bruecker who died much too early in 2011. He was a cheerful
and inspiring character, and he contributed to this thesis by developing parts of the

software used and by providing many helpful discussions.

Of course I thank all dear colleagues and friends from the IZBI and the Chair of
Bioinformatics of the University of Leipzig. I really enjoyed the vivid discussions, the fun
events and the good advice and deep knowledge one could always rely on. I particularly
thank Corinna and Petra for their always positive attitude and their indispensable support
for all administrative activities. Jens provided great technical support and advice, as did
David, Henry and Christian with their helpful discussions about R and other technical
obstacles. Additionally, I thank the following people who in some way contributed to the
success of this work: Anne, Axel, Berni, Christian, Dom, Edith, Gero, Gunnar, Katrin,
Lydia, Konstantin, Jana, Markus, Maribel, Sven, Joerg, Stephan, Stephie, Steve, Volkan,

Wolfgang and everybody else I’ve missed. It was really a pleasure to work with you.

Finally, I thank my family and friends who indirectly contributed to this work with their
continuous love and encouragement. I particularly thank my beloved Anne, as well as my

parents for their support. I express my deep appreciation to all of you.



Related publications

This thesis is partially based on the following publications:

Binder H, Fasold M, Glomb T: Mismatch and G-stack modulated probe signals on SNP
microarrays. PloS One 2009, 4.

Fasold M, Stadler PF, Binder H: G-stack modulated probe intensities on expression
arrays - sequence corrections and signal calibration. BMC Bioinformatics 2010, 11:207.

Fasold M, Binder H: Estimating RNA-quality using GeneChip microarrays. BMC
Genomics 2012, 13:186.

Fasold M, Binder H: AffyRNADegradation: control and correction of RNA quality
effects in GeneChip expression data. Bioinformatics 2013, 29:129-131.

Fasold M, Binder H: Prevalence and impact of technical artifacts in microarray
expression data. /n preparation.



Contents

ADSEIACT ... 3
X o3 (g Lo 1T L= o Ty g =Y o L 5
Related publications ... —————— 6
1 (11 £ T 11 T3 T o 11
1.1 The role of high-throughput technologies in modern life sciences....................... 11
1.2 Physicochemical models for microarray data analysis..........ccceeeerveerieerieeneennen. 14
1.3 Objectives and OULINE. .........eeeeviieiiiieeie ettt eseree e s 15
2 Microarray technology ........ccceeeemeemmmmmmmmmiiinn e 17
2.1 Microarrays assembly and @SSAY.........cccecvieeiiieeiiieeiieeeteeeiee e 17
2.2 37 @XPIESSION ATTAYS .uvveeervrrererresirreesseeessreassseeassseeassseesssseesssseesssseesssesssssesessessnses 18
2.3 Gene ST and EXOn ST @ITaysS.......cccueeeiiieeiiieeiieeeieeeeieeeeieeesveeesveeesveeeseveeeenee s 20
2.4 Genome-wide SNP QITaYS......cc.eieiiiieeiiieeiiieeieece et eee e e e eeaae e eaaee e 21
2.5 AZIent EXPreSSION AITAYS.....ccccurreerireerrreerreeertreesreeessseesssreessseeessseeessseeesssesessseeans 23
2.6 Summary and CONCIUSIONS .......cccuviieiuiieeiiiieeiieeeiee e eeiee e e sree e b eeeseee e 23
3 A model for microarray hybridization..........ccccceeueciiiiiiiiiircccieees 25
3.1 Modeling microarray intensity signals...........cccceecieriieniieniieenienieeee e 25
3.2 The two-species Langmuir model.........cccooeeuiiiiieiiiiniiiiiieeieceeee e 26
33 The hook transformation and hybridization modes ..............ccceeveveeiieniieneennenne. 27
34 Positional-dependent sequence models............coecuieriieiieiiienienieee e 29
3.4.1  Modeling the formation of dUPIEXeS........cceevuiriiiiiiiiiierie e 29
3.4.2  Different characteristics for specific and non-specific binding............c..cccc........ 31
343  Estimation Of Profiles........cccoeiiiiiiiiiiiieiiieiece et 31
3.5 Fitting the hybridization model............cccccooiiiiiiiiiiiiii e 32
3.6 Chip summary measures characterize RNA quantity ...........ccceceevieeiieneenieennens 34
3.7 Summary and CONCIUSIONS ........oeoviieiiiriiiiieie ettt e 36
4 Hook analysis applied to different types of microarrays................... 39
4.1 Genome-wide SNP QITaYS......cc.eieiiiieeiiieeiiieeieece et eee e e e eeaae e eaaee e 39
4.2 Gene ST and EXOn ST @ITaysS.......cccueeeciieeiiieeiieeeiieeeieeeeieeesveeesaeeesveeeseveesnnee s 41
4.3 AZIent EXPreSSION AITAYS.....cccrurieeirreerrreerrreerteeesreeessseeessseessseeessseeessseeessseesssseeans 43
4.4 Summary and CONCIUSIONS ........eoruiiiiiiiiiiiieiie et 45
5 RNA quality effects ... e 47
5.1 RNA amplification and degradation in microarray eXperiments............c..cccceeuue.. 47
5.1.1  3’-biased transcript coverage of microarray probes after RNA

amplification and degradation .............cccccereriiieiiie e 49
Probing transcript abundance using GeneChip arrays.........ccccceeeeveeerieeeeveeennenn. 50



5.1.3
5.2
5.2.1
522
523
524
53
5.3.1
532
533
534
5.4
5.5
5.5.1
552
553
5.6
5.7

6.1
6.1.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.9

7.1
7.1.1

Used eXpression data.........ccveeecuiieieiieeeiie e eeieeesreeesreeesaeeesaeeesaaeessaeeessseesnsseens 54
Degradation and hybridization mode............ccceeeriiieiiieeiiieeie e 54
Intensity-based degradation MEtriCs .........cceeeiieeriieeiieeeie e 54
Degradation Hook and Tongs Plot..........cccviiriiiiiiiiiieeeeee e 57
The 3’-intensity bias depends on the hybridization mode ............cccceevvveveennnnenn. 61
Short 3’-probe sets are prone to non-specific hybridization............cccccccveeennennnee. 64
Metrics for RNA qUAlILY ......oooviiieiiiecieeeeece et 66
Positional-dependent intenSity dECAYS .....cuveerviieeiiieeiiieeiie et 66
3°/5’-controls are affected by the hybridization mode..........c..cccvveeviiieiciiennienns 70
Affy-slope is affected by absent probes..........ccveeeeeviieriieiiienieeeece e 75
Array-degradation metrics correlate with RIN .........coocoiiiiiiiininicece, 76
Degradation reduces total transcript abundance ............ccoeceevervienieneniencnnennn, 78
Correction 0f the 37°/57 DIAS ......eiieiiiiciii et 79
RNA-quality scaling of gene eXpression ........ooeeeeeerierieeieneenieeie e eee e 79
Correcting the 3°/5” bias of probe INteNSIties........ccvveerreerirerieeieerieeieereeeveeeeens 80
Index and position based COTECHION .......cccueveeriieriieieiieie et 82
An R package for the analysis and correction of RNA quality effects................. 85
Summary and CONCIUSIONS ........coruiiriiiriiiiiiiiieeeete e 87
Sequence effects.........iiiciii e ———— 89
Probe sequence affects intensities and expression values............coeceeveenieeieenen. 89
Used exXpression data..........coceeveeiirienieienieneeieee ettt 91
Positional-dependent sensitivity profiles ..........ccocceevieniieiiiniieniieiieieeeeee e 92
GUANINE ETTECTS ....eiitiiiii ettt e 94
Sequence MOotif ASSESSIMENT........ccviruiiriiriiriiiieetce et 94
Quality of fit and standard eITor ..........cocueeiiiiiiiiiiee e 95
Triple guanine motif causes large INteNSIties. ......ccoevueereeeriierieeniienie e 95
Quality of Motif-SPECific fitS.......ooviiiiiiiiiiiee e 97
Model-rank assessment with the F-test..........cccoooiiiiiiiiiiiiicee, 97
Motif-Specific differenCes.......cocuiiiiiiriieiieii e 98
Chip-type and target effectS ........coovevieriiiiriiiiicceeee e 100
Perfect match and mismatch probes ..........cccoecuieiiiiiiiiiiiiii e 104
Specific and non-specific hybridization...........ccoceveeiiriininiinienicicnecrceeeen 105
Correction of microarray data for sequence effects.........cocevevieniiiinicncnnennee. 107
The NN+GGG hybrid rank model ..........cocoeviriiniiiiniiniiiiicceeee 107
Effect 0f the COTTECION ......ooviiiiiiiieiieeie et 109
Preprocessing of microarray intensity data...........ccoeceeeeieeriiriiienieeiienie e 111
Comparison of sequence-specific intensity COrrections. .........ceververeerveeruenneene. 114
Summary and CONCIUSIONS ......ccueeuiriiriiiirieriteieetente ettt 119
Prevalence and impact of technical bias ...........ccoooomririecccciieiinnne 121
Technical artifacts can be observed in batches..........cccooeevierieiiinienineeee 121

Human expression data...........cccueeeieeiieiieeiieiie et eve e ens 121



1.1 The role of high-throughput technologies in modern life sciences 9

7.1.2  Principal component analysis for gene expression data ..........cccceeveeeveeerneennne. 122
7.2 RINA QUALTEY ..ottt ettt 123
7.3 Amount of hybridized RNA .........ccooiiioeee e 126
7.4 SEQUENCE EETECES ..viieuiiiieiiiecie et ae e e e e e e e e e sebee e 128
7.4.1 Maximum sensitivity amplitude .........cceeeeveeeriiieriieeiee e 128
7.4.2  GUANINE EETECLS ..ooueiiiiiiiiee e 129
7.5 Summary and CONCIUSIONS .......cccuvieeiuiieeiiieeiieeeie et eeree e e e e eereesaaeeens 130
8 Summary and diSCUSSION ......cc...uciiiiiiiiiriieccss e ennnanns 133
A List of data sets used.........ccceveeiriiiiiiiiiiiissss e ——— 137
List Of fIQUIres.... ..o 139
List of tables ... ———————— 142
Bibliography ... 143
CUrriculum Vitae ........cccccieeiiiii e 155

ErKIQrung.......ccoocciii s 157






1 Introduction

1.1 The role of high-throughput technologies in modern
life sciences

When a researcher in the field of molecular biology carried out an experiment in the early
1990s he would need experience, craftsmanship and a lot of time. Assume the researcher
was interested in gene expression. For example, he would like to know whether a gene that
potentially causes cancer is active in some tumor cells or not. He could employ a technique
called Northern blot and follow a long protocol of manual steps involving, amongst other
things, production of an agarose gel, RNA separation using gel electrophoresis, transfer of
RNAs to a membrane and production of labeled probes. Including proper controls the
whole procedure would usually take days up to weeks to complete successfully. At the end,
he would know whether his gene of interest is expressed in a single cell line of a single

species.

If the same researcher was interested in the same question only 10 years later in the early
2000s, the experiment would run markedly different. He could resort to several
commercially fabricated instruments and automated techniques specifically designed to aid
in his experiment. For example, he could employ a sensitive scanner device that uses lasers
to read signals out of miniaturized DNA microarrays. He would be able to simply order
some of the pre-manufactured microarrays that contain probes designed to measure the
expression of his gene of interest and many other genes at the same time. And he would be
able to buy tailor-made reagents that help him preparing his sample for the assay in a few

simple steps. The procedure would take only hours instead of weeks.

It is easy to see why high-throughput technologies like microarrays quickly replaced
previous techniques in labs all over the world. They revolutionized the way how
researchers could approach the problems they were facing in their particular domain. It
allowed them conducting experiments hypothesis-free: The researcher could not only study
the expression of one single gene he chose because he hypothesized that it relates to the
cancer, but he could instead screen thousands of genes for their expression status in the
tumor cells. Also it allowed conducting experiments that could not be done before because
of time or money restrictions of the previous techniques. Edward Southern, one of the
inventors and early adopters of these automated techniques, later commented on this
dramatic development: “Genomics, in its early days, used a range of techniques that were
developed to explore the composition and sequence organization of the nuclear DNA.
High-throughput methods changed that, and most research in genomics is now done in

factory-like laboratories, with robots doing much of the work.” [1]
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Today, many areas of life sciences rely on the methodological advances provided by a
large toolbox of available high-throughput technologies. Gene expression profiling using
microarrays is such a tool - being one of the first and more popular ones it is probably the
best known representative for the whole toolbox. These assays are now performed
routinely and in large-scale for testing the reaction of cells on different treatments and
condition changes. Consider the following numbers: More than 25.000 peer-reviewed
papers have been published using microarray technology from a single vendor
(Affymetrix) alone [2]. Each of these publications refers to one or more experiments. For
some experiments the generated data is made publicly available. Over 28.000 datasets
comprising over 850.000 microarray samples have been stored in two public data
repositories in the last 5 years alone'. The data of many more experiments is not shared in
public databases, but is kept secretly, particularly for experiments performed at companies

and private institutions.

Every experiment performed using high-throughput technologies has the property of
producing large amounts of data that must afterwards be analyzed and interpreted. The
analysis of such complex data is no simple task, even for experienced researchers. Without
a deep understanding of the limitations of the technology and knowledge about proper
statistical analysis it can easily be misinterpreted. Daniel MacArthur notes that “all high-
throughput genomic technologies come with error modes and systematic biases that, to the
unwary eye, can seem like interesting biology. As a result, researchers who are
inexperienced with a technology — and some who should know better — can jump to the
wrong conclusion” [3]. The combination of difficult-to-analyze data and the hope of
surprising results can lead to so-called ‘false positives’, erroneous research findings that
later had to be revoked after other groups have pointed out flaws in the analysis done by

the original authors.

One example about how critical it is to ensure accurateness and rigorousness in high-
throughput data analysis is given by a study published in 2007 by Spielman et al. [4]. It
was previously known that the genetic divergence, the differences in the genetic code,
between individuals of our species is drastically small. The human to human nucleotide
divergence for example was estimated to be around 0.1% [5]. The study of Spielman et al.,
which was published in Nature Genetics, sought to find the factors that contributed to the
large phenotypic differences between human populations. Their approach was to focus on
the variation of gene expression, patterns of genetic activity, rather than on the variation of
DNA sequence. Microarray technology was to be used to obtain profiles of genetic activity
in lymphoblastoid cell lines from individuals belonging to one of three population groups.

The authors found that the expression of about 25% of the tested genes differs significantly

" Queried on the ArrayExpress website http:/www.ebi.ac.uk/arrayexpress/ on January 7, 2013.
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between European and Asian populations. These numbers suggested that phenotypic
variability to a large part is reflected in expression variability which constituted an
important finding.

However, later concerns about the accuracy of these numbers were raised [6]. Akey et al.
reanalyzed the data of Spielman et al. and found 78% of the genes — a rather unrealistic
number - to be significantly differentially expressed. After closer inspection of the
microarray data, they found that samples have been processed in groups spanning a time of
more than 3 years and that European and Asian samples had been mostly processed at
different times. Akey et al. then found that 79% of the genes are differentially expressed
between processing years but within the same population. This significant variation
between the processing groups cannot be explained by biology. They concluded that the
data possesses a systematic and confounding technical bias, and that the reliability of the

obtained results is therefore at least questionable.

The publication of these spurious results of Spielman ef al. in one of the most trusted
scientific journals illustrates how difficult it can be to control the quality of high-
throughput data and to implement its analysis. Errors and biases can be introduced in many
steps and at different levels in the course of such an experiment. Differences in sample
storage and treatment, reagent composition, lab worker experience, device or program
variants and many other factors can lead to different results. These are methodological
issues, relating to technical effects of the employed tools. Note that measurement errors are
a critical but common element in scientific research methodology since its earliest days.
However, for the recent high-throughput technologies the number of ‘error modes’ is
drastically higher, and their impact on the complex data multifaceted and therefore hard to
detect.

In summary, the powerful high-throughput technologies enjoy a high popularity in research
applications, yet there are issues with the accuracy of data generation and analysis. Many
factors aside the biological variable of interest influence the measured quantities. Given the
critical impact of these technical effects as illustrated for the case of Spielman et al. it is
imperative to thoroughly study them to better understand their origins and ideally to
provide solutions for controlling them. Doing so for the important classes of RNA
quantity, RNA quality and sequence effects in the context of common high-density

microarray technologies is the main aim of this thesis.



14 1 Introduction

1.2 Physicochemical models for microarray data
analysis

An essential task in high-throughput data analysis is the obtainment of accurate estimates
of the input quantity (e.g. transcript abundances) from the measurement output (e.g.
intensity signals) which is affected by various technical disturbances. This calibration step
requires a model describing the relationship between both quantities which is subject to the
entirety of processes in the experimental system. Note that this modeling of technical
processes is complementary to the modeling of the input quantities in their complex

biological systems as for example in gene regulatory network models.

Most calibration methods for data originating from high-throughput technologies rely on
statistical approaches. A prominent example is the MASS algorithm included in the
manufacturer software that ships with each Affymetrix microarray device. As the default
solution for computing gene expression estimates for various array types it is widely used.
This simple method applies a bi-weight estimator to compute a robust mean of the probe

signals interrogating one, mostly gene-related transcript [7].

The benefit of such relatively simple approaches is that no prior knowledge of the exact
experimental processes is required. The processes involved in a typical microarray
measurement, for example, are complex: The hybridization is highly multiplexed with
thousands of competing reactions occurring in parallel. The devices are imperfect with
manufacturing errors which are hard to detect, for example the probes may vary in
length (‘polydispersity’) and sequence. There are a large number of biases and errors that
can be introduced during the multi-step assay for sample preparation. Purely statistical
approaches here provide a straightforward solution for obtaining fast and effective signal

calibrations.

On the other hand, the simplicity of those methods comes with the cost of decreasing
accuracy in the obtained results. While it is obviously not feasible to consider all relevant
factors, it is possible to incorporate existing knowledge about important processes involved
in the measurement. There are accepted physicochemical models that well describe binding
of molecules on surfaces as well as the hybridization of nucleic acids, and either of these
processes is central in microarray hybridizations. We and a number of peers believe that
building upon basal models based on these fundamental physical principles and their
incremental refinement will eventually lead to a better high-throughput data analysis.
Improving on these models will increase our understanding of these complex technologies

and, at the same time, increase our ability to control the data.
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1.3 Objectives and outline

The objective of this thesis is to rigorously assess the specifics of microarray technology
using Affymetrix GeneChip microarrays as an example. We aim to establish a deeper
understanding of the limitations of current technology and to investigate how to make the
most of available and future microarray data within these limitations. Particularly we

intend to

e objectively assess the quality of microarray experiments (quality-control) and
detect and possibly correct for confounding factors affecting the reliability of the
obtained results

e cvaluate and improve the precision and accuracy of microarray gene expression
estimates under varying experimental conditions

e improve the understanding of the basal mechanism of surface hybridization by

employing physicochemical models of duplex formation

Particularly critical methodical issues relate to variations in quality and quantity of the
RNA used for hybridization as well as to variations in sequence-dependent binding due to
changing experimental conditions. These effects lead to systematic changes in the
microarray data which are however unrelated to the biological changes under study. Using
appropriate experimental designs and newly developed methods we are able to study these
technical variations and to investigate the physicochemical principles of the processes

involved in microarray measurements.

We here focus on the widely adopted Affymetrix GeneChip type of microarrays. The
challenges and limitations are however similar for a wide range of other chip types and to a
certain degree also for other technologies that exploit the mechanisms of nucleic acid

hybridization in general.

This thesis will be laid out as follows. Chapter 2 will describe microarray technology for
gene expression analysis, genotyping and other applications. Chapter 3 will lay the
foundations for modeling of microarray signals using physicochemical principles of
competitive surface hybridization. We will describe the Hook method and its use for the
robust estimation of essential model parameters. In Chapter 4 we investigate whether this
methodology can also be applied to other microarray technologies besides Affymetrix
GeneChip expression arrays. Chapter 5 focuses on RNA quality as a technical bias in
microarray experiments and how it can be determined and corrected within the resulting
data. Chapter 6 deals with sequence effects largely referring to changes in the observed
probe signals due to molecular interactions of complementary nucleotide strands. We will

investigate which models are both adequate and practical for modeling the signal
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contribution due to sequence variation. Chapter 7 addresses the important and more
general question of the impact and prevalence of technical bias in gene expression
experiments. We will use the methodology developed in the previous chapters to study the
effect of known sources of batch effects in a meta-study comprising thousands of

microarray samples. The final Chapter 8 will discuss and conclude the results of this thesis.



2 Microarray technology

2.1 Microarrays assembly and assay

Microarrays are a powerful technology for the targeted analysis of thousands of DNA or
RNA molecules in parallel. The basic principle is the hybridization of a mixture of
unknown, but marked, nucleotide strands to a set of known nucleotide strands called
probes. During the reversible chemical reaction of hybridization, complementary
nucleotide strands build up a duplex structure. Quantification of bound nucleotide strands

allows then to infer the contents of the mixture.

Microarrays are today available in a wide variety in terms of available instruments and
assays, as well as its applications. Possible applications of microarrays include, but are not
limited to, gene expression analysis, DNA genotyping, copy-number analysis, isoform
expression, microRNA profiling and discovery of novel transcripts or protein/DNA
interaction sites. We will here focus on microarrays of the manufacturer Affymetrix with
application to gene expression analysis. Other applications and manufacturers differ in the
employed protocols, reagents and instruments, but the overall principle is similar for all
microarray types. Consider the following four basic elements of a microarray experiment:
the microarray with surface-attached probes, the preparation of the target mixture, the

scanner device and computational image/data analysis.

The microarray itself refers to a solid surface with attached oligonucleotide probes. Figure
2.1a shows how the surface is separated into thousands of spots or features. The size of a
spot ranges between 5 by 5 square microns (HuExon) and 20 by 20 square microns (HG-
U95) [8]. Each spot comprises more than one million oligonucleotides that are, separated
by a linker molecule, covalently attached to the surface [9]. The oligonlucleotides are built
up one base at a time during fabrication using photolotographic masks [10]. In an ideal
production, all oligonucleotides attached to one spot have the same length and identical

nucleotide composition termed probe sequence.

The mixture sample containing unknown nucleotide strands must be prepared to be
suitable for being hybridized to the microarray. Let us consider a target preparation assay
for gene expression studies (Affymetrix 3' IVT Express Kit [11]) where one is interested in
profiling cellular mRNAs. These assays follow a protocol developed by Van Gelder et al.
called the ‘Eberwine method’ [12]. After extraction of the total RNA from the cells or
tissue of interest, mRNA is reverse-transcribed into complementary DNA (cDNA). The
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Figure 2.1: Microarray assembly and hybridization. Panel a shows how the microarray is made up of
thousands of different features with oligonucleotides of identical sequence attached to the surface of each
spot. On panel b marked target nucleotide strands bind to probes with complementary sequence. Image taken
from the Affymetrix Image Library [13].

amounts of RNA or DNA required for hybridization to a microarray are typically much
higher than the amounts that can be extracted from the cells. Therefore they are amplified
using in-vitro transcription (IVT) resulting in amplified RNAs (aRNAs or cRNAs).
Importantly, the aRNAs are labeled by attaching the marker molecule biotin to a fraction
of the nucleotides. The aRNA are then purified and fragmented into shorter nucleotide

strands with a typical length between 30 and 200 nt.

The labeled aRNA fragments are then hybridized to the surface-attached probes within a
microarray scanner device. This process is allowed to take several hours aiming at reaching
an equilibrium state. After that the exceeding sample solution is washed away and the
bound aRNAs are stained, that is, large fluorescent molecules (phycoerythein) are attached
to the biotin label. A camera then records how laser excites light from the fluorescent
molecules. If the target RNA molecules with sequences complementary to a given probe
sequence were abundant in the mixture, many aRNAs bind to the respective spot and the
fluorescent will shine bright. The light intensity captured by the camera thus relates to the
abundance of the targeted RNA.

2.2 3’ expression arrays

Affymetrix GeneChip 3’ expression arrays are among the most widely used microarray
types to date - thousands of studies have been carried out on these popular arrays. They are
available for over 30 different organisms including human, mouse, rat, zebrafish, yeast,

E.coli, tomato, sugar cane and soybean. They are, for example, being used to understand
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I\ "\ S\ £\
~ ~ ~ ~ . probe set with
perfect-match and
mismatch probes
. { I . 3‘ end of
I target mRNA
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Figure 2.2: Probe design in Affymetrix 3’IVT expression microarrays. Paired perfect-match (blue) and
mismatch probes (red) query sequences located towards the 3’ end of the target mRNA (green). Together,
these probes form a probe set.

basic mechanisms of molecular biology, to characterize disease states and to classify tumor

types, and to assess the transcriptional variation of whole populations.

The length of the spotted oligonucleotides is 25 bases for all types of Affymetrix
expression microarrays. These short probes have a relatively low sensitivity for the
detection of gene expression changes in complex mixtures [14]. To cope with this
shortcoming Affymetrix uses not only a single probe, but instead a probe set comprising of
11-16 probes to interrogate each target sequence. The probe set is selected to be “unique to
a single transcript or common among a small set of similar transcript variants” [15].
Having multiple intensity measurements for each transcript has several advantages. For
example it is hard to predict whether each probe is always fully functioning or if it suffers
from deficiencies like strong cross-hybridization to other sequences in the mixture or intra-
probe folding. Those errors can be compensated, improving the accuracy of the
summarized signal. Furthermore, multiple measurements allow calculating statistics for

assessing the confidence in each expression estimate.

The probe sets in 3’ expression arrays are primarily designed to target the 3’ end of the
transcripts. Figure 2.2 illustrates how the probes of a probe set interrogate sequences in the
3’ untranslated region (3’ UTR) as well as in the adjacent first exon of a longer transcript.
As a result, gene expression estimates from these arrays are necessarily an extrapolation
from the 3’UTR abundance of the genes.

Another ‘specialty’ of Affymetrix microarrays is that probes come in pairs: each perfect-
match (PM) probe has an accompanying mismatch (MM) probe which has identical
sequence except the center base. With the short 25meric oligonucleotides such a single
mismatch destabilizes duplex formation between probe and specific target. The ratio
behind using mismatch probes is to quantify the sequence-dependent amount of cross-
hybridization, which can later be subtracted from the specific signal to improve specificity

and sensitivity of the obtained signal [16].
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Figure 2.3: Comparison of how probes align to a target gene for various types of Affymetrix microarrays.
Whereas probes are located towards the 3’ end of the target mRNA (the respective genomic region with
exons, introns and UTRs is shown in black and green) in 3’ based expression arrays, other array types query
sequences in the entire gene. For tiling arrays, probe sets (light blue boxes) are not defined.

2.3 Gene ST and Exon ST arrays

About 40-60% of human genes are not transcribed solely into a single form of mature
mRNA [17]. Instead the primary transcripts of these genes are transformed into a number
of different isoforms by alternative splicing. Since each splicing isoform can encode for a
different, potentially functional protein one is highly interested in their identification and
quantification. Affymetrix 3’ expression arrays are however by design unable to
discriminate splice variants. Gene ST and Exon ST microarrays are designed to overcome

these drawbacks.

For one, these whole transcript expression arrays employ a different target preparation
protocol, typically using the Ambion WT Expression Kit [18]. Synthesis of cDNA strands
here is not done using poly-T primers starting at the 3’ end of the transcript, but rather
using a pool of reverse transcription primers. These bind at various loci in non-ribosomal
RNAs to initiate the polymerase reaction. In-vitro transcription is then used to amplify
these fragments which span various regions of the available transcripts. Biotinylated sense-
strand cDNA, opposed to the cRNA used in 3’ IVT expression arrays, is then fragmented
and end-labeled for hybridization to the array. The resulting DNA-DNA duplexes between
probes and targets have been found to be more specific than DNA-RNA duplexes [19].
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The probes of whole transcript arrays interrogate sequences spread across the entire gene
with the aim of getting a more complete picture of gene expression. As shown in Figure
2.3, the probe set of a 3’ IVT array contains a fixed number of perfect-match and mismatch
probes which concentrate at the 3° end of the transcript. A transcript is queried by typically
one probe set. For the Exon ST arrays, each exon or non-coding region is interrogated by
about four probes. Using these exon-level probe sets allows distinguishing between
different splicing isoforms. The probes of multiple exons can be combined, giving about
40 probes per gene and allowing a complementary gene-level expression analysis. The
Gene ST arrays are designed as a less expensive alternative to the Exon ST arrays
containing only a subset of the probes mainly designed for gene-level analysis. A high
concordance has been found between the gene-level estimates of Gene ST, Exon ST and
3’ IVT expression arrays [20, 21].

It should be noted that Gene ST arrays are less popular than Affymetrix’ 3’ expression
arrays. McCall et al. found that “between 1 June 2010 and 1 June 2011, over 13000
Affymetrix Human Genome U133 Plus 2.0 samples were added to the Gene Expression
Omnibus (GEO)” but “during the same time period, less than 2000 Human Gene 1.0 ST
samples were added” [22].

24 Genome-wide SNP arrays

Another important application of microarrays is the analysis of genetic variants. In diploid
human cells the genetic information is spread on two homologous sets of 23 chromosomes.
Alleles are alternative forms of a certain position or region of a chromosome (a locus) that
occur between members of a species or within the chromosome set. In the case of the most
common type of variation, the single nucleotide polymorphism (SNP), only a single base
of DNA is altered. Since there are four possible nucleotides a SNP can have at most four
alleles. Most SNPs have however only two alleles [23]. These bi-allelic loci result in three
possible states a SNP can take in a diploid chromosome set: either homozygous allele AA
with allele A on both chromosomes, homozygous allele BB, or heterozygous AB with two
different alleles on both chromosomes. Genotype calling or genotyping aims at inferring
these states.

Another form of variation measured by microarrays is copy-number variants. These are
alterations of chromosome structure in which large segments (> 1 kb) of the DNA are
present in variable copy number compared to a reference genome [24]. A duplication of
certain segment of the chromosome, for example, would have the effect that all previously

unique genes in that section are now present in two copies. About 12% of the human
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Figure 2.4: Probe design of Affymetrix SNP Arrays. All probes (blue PM probes and red MM probes)
interrogate a single SNP located in genomic DNA. The SNP has the two alleles C and T each being
interrogated by an allele set of probes.

genome has been found to be covered by copy number variations [25] rendering them an
significant source of genome heterogeneity and a potential factor contributing to

phenotypic variation and disease states/susceptibility.

Specific target preparation assays and microarray designs are employed to allow detection
of genetic variants with high sensitivity. Compared to gene expression experiments, these
assays do not target (m)RNA molecules but instead genomic DNA. Total genomic DNA is
digested with restriction enzymes (see Genome-Wide Human SNP Nsp/Sty Assay Kit 6.0
documentation [26]). Adapters are ligated to the resulting fragments which are then used
for a PCR procedure that has been optimized to amplify fragments of certain size range to
reduce complexity of the genomic DNA. The amplified DNA is further fragmented, end-
labeled and finally hybridized to the array [27].

The probes are designed to tile around each SNP with slight variations in perfect matches,
mismatches, and flanking sequence [28] as shown in Figure 2.4. The Affymetrix GeneChip
Human Mapping 100k Array Set, for example, uses 40 different 25meric probes for each
SNP. For each of the two interrogated alleles there is an allele set consisting of 10 probe
pairs: 10 PM probes and 10 corresponding MM probes with a mismatch at the center base,
depicted separately in Figure 2.4. The probes include the SNP at the center base or are
slightly shifted by some offsets 6 = -4,..0,..4. Of the 10 PM probes 3 to 7 target the sense
strand whereas the remaining ones target the antisense strand. This design with a large
number of probed sequence combinations can be used to study the impact of mismatches
and other duplex interactions on probe signals [29]. Some arrays such as the Genome-Wide
Human SNP Array 6.0 omit the mismatch probes which makes it possible to capture 1.8

million genetic variants with about 6 million probes.
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2.5 Agilent expression arrays

Agilent’s manufacturing technology differs from that of the other two major producers of
high-density microarrays namely Affymetrix (which use photolithographic masking [10])
and Illumina (which use self-assembling silica beads [30]). Agilent prints its arrays similar
to how an inkjet printer prints a document - instead of ink on paper, nucleic acids are
printed base by base onto the glass surface [31]. A major advance of this technology is that
the features can easily be customized for each microarray: probes are designed to
interrogate the targets of interest and then added or removed as desired. This flexibility is
not given for Affymetrix technology, where only standardized expression microarrays are

available.

The most recent Agilent SurePrint G3 Gene Expression Microarrays comprise more than
one million features. The printed oligonucleotides have a length of 60 bp. These 60mer
probes were shown to be significantly more sensitive to expression changes in complex
mixtures compared to 25mer oligonucleotides [14], according to Agilent between five and
eight times [32]. Longer probes are however less specific — 25mers are about 20 times
more specific for differentiating a single mismatch [14]. This tolerance with respect to
sequence mismatches can however also be an advantage when probing highly polymorphic
regions. Agilent arrays support different target preparation assays including two-color and

one-color preparations.

2.6 Summary and conclusions

Microarrays come in a diverse set of flavors aiming at different genomics applications
ranging from gene expression analysis and profiling over DNA analysis and genotyping to
gene regulation analysis. The great utility of microarrays in these fields of applications has
driven - and vice versa has been driven by - many developments in the private and in the
academic sector resulting in the rapid advancement of the technology since its appearance
in the 90s. These improvements in terms of accuracy, coverage, reproducibility,
standardization and cost have made microarrays an established tool widely used in research

and even in clinical settings [33].

The variety in the set of possible applications is enabled by differences in microarray
designs and protocols. Specifically, Affymetrix 3° expression arrays target sequences that
reside within the 3’ UTR and act as a proxy for the expression of the respective gene; exon
arrays interrogate sequences from exons of known splice isoforms, and tiling arrays have
their probes distributed uniformly across large fractions of the genome. Additional to these

application-specific differences, each microarray manufacturer has its own ways of
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production and supports its own instruments and reagents. Affymetrix provides an
unparalleled coverage and feature density, as well as a high standardization. Agilent in turn

provides highly customizable microarray designs.



3 A model for microarray hybridization

3.1 Modeling microarray intensity signals

The presented technologies share the common mechanism of multiplexed hybridization of
fluorescently labeled target molecules against known oligonucleotide probes. The input
quantity that one wishes to infer in a microarray experiment is the abundance, or
concentration, [S] of specific nucleic acid targets. The measured output quantity is
fluorescence signal intensities I for the surface-attached probes. Modeling microarray
hybridization with the aim of obtaining accurate signal calibration consequently seeks to
identify an adequate functional relationship I° =f([S,]) between a probe p and the

respective target (gene) g.

Several effects in the microarray measurement prevent an accurate description of the input
and output quantity via the simple proportional relationshipIe<[S]. Firstly, there are
technical limitations in the optical recording of the intensity signals using the scanner.
Even when no specific transcripts are bound to the probes the scanner reports positive
intensity values I > 0. An additive optical background term O, i.e. in the form I = [S] + O,

should therefore be considered in microarray calibration methods [34, 35].

Secondly, several fundamental binding and folding processes can occur at or near the
microarray surface as shown in Figure 3.1a. The yield of the interaction between free
probes and specific targets is reduced by bulk-dimerization, non-specific hybridization and
intra-molecular folding reactions. During non-specific hybridization additional to the fully
complementary specific targets other, only partly complementary, DNA or RNA fragments
bind to the probes. Due to the large diversity and quantity of target molecules in the
complex mixture solution this type of binding typically is considerable [36]. A practicable
solution for incorporating non-specific binding in the hybridization model is to summarize
the diversity of non-specific transcripts into a single probe-specific term,
r.e. [ =[S] + [N] (see also [35, 37]).

Thirdly, the kinetics of the reversible binding reactions of targets in excess to limited,
surface-attached oligonucleotides can result in a non-linear response of the probe intensity.
The binding reactions can be regarded as a Langmuir adsorption process as exemplified in

Figure 3.1b. Accordingly, the amount of adsorbed molecules ® on a surface in dependence
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Figure 3.1: Interaction processes and dynamics of surface adsorption on microarrays. Panel a shows
possible binding and folding processes of probes and targets (image taken from [37]). Panel b visualizes the
Langmuir adsorption model describing the occupancy O of surface sites (e.g. probes P) with particles (e.g.
specific transcripts S).

of the molecule concentration [S] can be described with the Langmuir isotherm

K-[8]
TTHK[S] -1

where K is the rate constant. In the case of microarray hybridization, ® represents the
fractional coverage of oligonucleotides of a given probe and [S] the concentration of
relevant target molecules in the solution. The Langmuir adsorption model has been shown
to describe well microarray signals based on experiments with known target

concentrations [38—41].

The three described effects relate either to basic technical limitations of the instruments or
to physicochemical principles of the hybridization processes and strongly influence the
obtained intensity signals of a microarray experiment. One or more of these factors are
considered in virtually any calibration method. Importantly, the shown relevance of
physicochemical models for describing the basic processes of microarray hybridization
suggests that building upon these models and refining them using additional knowledge

about relevant mechanisms is a promising strategy for signal calibration and beyond.

3.2 The two-species Langmuir model

We will now introduce the two-species Langmuir model which applies well to microarray
expression data [36, 42]. Accordingly, the intensity of a probe p of type Pe {PM, MM}

measured in a microarray experiment is given to a good approximation by
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. XE’N +X§’S o
P 1+(X§’N +X§’S)

(3.2)

where M is the maximum intensity upon saturation and O is the optical background
intensity. We here assume that the term O can be corrected in a separate step, for example
using the Affymetrix zone algorithm [7], and will rely on background-corrected probe
intensities if not stated otherwise. The numerator L’ =M - (X[ +X*) is also denoted the
linearized signal and decomposes into contributions due to non-specific and specific
binding (see next section) scaled by M. The binding strengths X"" linearly scale with the
respective concentration of specific and non-specific targets, X" o< [h] with he {N,S}.
Only considering the factors described in the previous section, the binding strengths are

given as

XP* =[S, [’ K} and XPN=[N]  -K}™ (3.3)

chip p

where Ki’h are the equilibrium constants for the formation of probe/target duplexes.

Two factors not considered in this thesis are washing and target depletion. The washing
step that follows hybridization in the microarray assay has been shown to remove probe-
bound targets and inversely scales with the respective binding constants [43]. Target
depletion in the solution can lead to an underestimation of the concentrations of specific

transcripts [44].

3.3 The hook transformation and hybridization modes

The parameters of the Langmuir-type model are not directly accessible given only the
intensity signals of the particular microarray hybridization. The target concentrations are
unknown in typical applications and the specifics of the hybridization reaction can differ
for each microarray experiment. The hook method elegantly solves this challenging
problem by using information inherent in the coupled signals of perfect-match (PM) and
mismatch (MM) probe pairs [45]. These paired probe signals are transformed in a special

mean-difference plot:

AhOOk = ng_an(ApSet) and Apset - <Ap >pset

yhook _ T = <Ep >pset (3.4)

. 1
with A = (log ™ —loglﬁ’[M) and X = 5(log I'}:M +log I?M )
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The A and X transformations are based on the PM/MM difference and average,
respectively, of logged probe intensity values (log = logjp is the decadic
logarithm). <...>,. denotes averaging over all probes within a probe set (typically 11 to 16
probes targeting the same transcript) to obtain robust Ay and X values. The operator
mvg_avg applies a moving average to the Ay values with a window size of about 100
probe sets for smoothing. Plotting the microarray data into A-versus-X coordinates
provides the hook curve which enables decomposition of the probe signals into

contributions due to different modes of hybridization by simple visual inspection.

Particularly, we differentiate between two modes: non-specific (N-) and specific
(S-) hybridization. In the S-hybridization mode the probes bind the aRNA fragments of
complementary sequence transcribed from mRNA transcripts which they intend to detect.
In the N-hybridization mode the probes bind aRNA fragments of partly complementary
sequence originating however from mRNA transcripts not referring to the interrogated
gene. Probe binding of this type is termed (ubiquitous) cross-hybridization (e.g. [46]), non-
specific binding (e.g. [47]) or non-specific hybridization (e.g. [36]).

Figure 3.2a shows the resulting hook plot for a typical GeneChip expression array. Its
visual inspection allows the simple and straightforward detection of five hybridization
regimes with increasing X, namely the N- (virtually only non-specific hybridization
contributes to the signals), mix- (combination of non-specific and specific hybridizations),
S- (predominantly specific hybridization), sat- (saturation range; the relation between
intensity and transcript concentration becomes progressively non-linear) and as- (the

intensity reaches its asymptotic saturation level) regime.

Consider the N-regime referring to probe sets with the smallest £ values. How can the at

most weakly increasing A values that scatter around 0 be explained? A = 0 refers to an
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equal intensity level of PM and MM probes for probe sets in this Z-interval. Targets with
exact complementary sequence are however expected to have a significantly higher
binding strength compared to those with a single mismatch in the middle of the probe-
target duplex. The probes consequently do not bind to the interrogated target but to
fragments of partly complementary sequence — they bind non-specifically. Probes or probe
sets with virtually only non-specific hybridization are called absent whereas others are

called present.

Figure 3.2a also indicates a X threshold characterized by a significant increase of the A
values referring to the onset of specific binding. This threshold =™ separates the N and
mix-regime and consequently separates absent and present probe sets. The ability for this

separation allows the estimation of essential parameters of the hybridization model [42].

Estimation of X”** should be both accurate and robust. The following heuristic method has
been shown to improve over previously proposed approaches and delivers reliable results

over a large variety of chip-types [42, 48, 49]:

1. Compute the empirical first derivation of the hook plot (by fitting a straight line to
7 subsequent data points of (£, A) sorted by X)

2. Find the point of maximum deviation X5 4

3. Use linear regression to find the best joint fit of two straight lines (y = mx + n) to
all data points between the smallest ¥ of the hook plot and X4 (see [49] for
details about the formulation of the least squares error).

4. The intersection point between the two lines defines (Z™*, A"

Figure 3.2b illustrates this approach of estimating . The green line is the empirical
first derivation computed from the hook curve (shown in blue). The maximum derivation is
located in the mix regime. The best fitting two straight lines (shown in orange) intersect at
the threshold =™ = 2.6.

3.4 Positional-dependent sequence models

3.4.1 Modeling the formation of duplexes

In our model, the binding constants from Eq. (3.3) decompose into

Ko =Kg" -exp(8A™ (§,)) (3.5)
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Figure 3.3: Typical sensitivity profiles of rank r =2 for an Affymetrix HG-Ul33a microarray. Points
indicating positional-dependent sensitivity terms for four selected base tuples (A4,CC, GC, GG) are shown
in black, whereas the points and connecting lines of the remaining 12 base tuples are shown in gray.

where Kg’h is a probe independent contribution and §=§1’25 is the probe sequence string of
length 25. We further use the convention ék’kﬂ_l to assign the subsequence of r adjacent
nucleotides starting at position k in &. The sequence effect dA is modeled using the sum of

sensitivity terms over all sequence positions [42, 50, 51]

25-r+1

A" (&)= 2 o' (& (3.6)

The sensitivity profiles ©,"(b.) depend on base tuples (b)), =(B,...B), (with
B, e {A,T,G,C}, 1<i<r) of length r with its first base at position k of the probe
sequence. For example, (GGG), denotes a sequence motif containing three adjacent
guanines beginning at sequence position 1. The parameter r specifies the rank of the model.
Thus, r=1...4 refers to the single nucleotide (N), nearest neighbor (NN), next nearest
neighbor (NNN) and quadruple (NNNN) models, respectively.

Figure 3.3 shows sensitivity profiles of rank r =2 estimated from the intensities of non-
specific, perfect-match probes (P =PM, h=N) of an Affymetrix HG-U133a microarray
sample taken from an experiment by Su ef al. [52]. The positional-dependent contributions
are roughly symmetrical around the middle of the probe sequence, except for GC and GG
base tuples where the sensitivities decrease monotonically with increasing sequence index.
The sensitivities of all profiles converge towards the surface-attached side at k =24 but
differ at the solution end at k= 1. The base tuples AA and CC exhibit the maximum

sensitivity amplitudes.

Integral sensitivities o, (b,) are calculated by summing up the positional dependent

values either over all sequence positions or over a positional range that was selected, for
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example, to exclude the region of the (GGQG), effect

ko
Gil’l},lko (br) = Z G][(”h (br ) (3 7)

k=ku

3.4.2 Different characteristics for specific and non-specific
binding

Binding characteristics are known to be different between specific and non-specific
. g0 . . . . TN .
hybridization modes [36]. Eq. (3.2) simplifies into M- (I, —O) =L for the special case of
predominantly non-specific binding far below saturation, Lﬁ < Lsp < M. Restricting our
basic analysis to this regime, we ensure linearity of the intensity response and
homogeneous probe-target interactions. The latter are mainly governed by canonical

Watson-Crick pairings [53].

We select the subensemble of probes meeting these conditions using the hook method [42].
Typically more than 40% of all probe sets are called ‘absent’ in a particular microarray
hybridization, providing a sufficient number of probe intensities to adequately fit the
model (see also Table 6.1 in Chapter 6).

The ensemble of present (i.e. not-absent) probes refers to signals which partly or
completely originate from specific hybridization. We apply the hook method to filter out
probe sets which hybridize predominantly with specific transcripts, (p€S), and to correct

their intensities for the effect of saturation (see [42] for details).

3.4.3 Estimation of profiles

We define the experimental sensitivity of each probe as the deviation of the logged

linearized signal of its average over all probes of the respective probe set [54]
Y =log X"" —(log X"") ... (3.8)

After insertion of Egs.(3.5) and (3.6) into (3.8) and making wuse of
log(K¢[h]) = (log(K{[h])) s We obtain the theoretical sensitivity of each probe

25-1+1

Ytheo — Z Z o, (br )(S(br , &k,k+r—1) _ f]i)set (br)) (39)

k=l  br
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with the Kroenecker function 8(x,y)=1 for x =y and 8(x,y)=0 otherwise. f**(b,) is
the probability to find motif b, at sequence position k among the probes of the considered
probe set. Note that the transcript concentration (specific and non-specific) is assumed to
be constant for each probe set because each probe within the set targets the same transcript.
This condition cancels the term log(L,) in Eq. (3.5).

The sensitivity profiles are estimated using multiple linear regression. It minimizes the sum

of squared residuals [42]
1
SSR(r) = %ZRESZ = (RES?) (3.10)
p

with RES=(Y*® —Y"™®) by optimizing 6, (b,) for all 4(25—r+1) base tuples (b,),.
The sum runs over all relevant probes pe N or pe S and #p defines the respective number
of probes. The obtained sensitivity terms meet the center condition z 6,(b,)=0 for each

.. allb,
sequence position k.

3.5 Fitting the hybridization model

Application of sequence correction leads to a less noisy and more consistent hook curve.
Figure 3.4 shows two versions of the hook curve: before (panel a) and after
correction (panel b) of the signal intensities used for the computation of the A-Z-
transformation given in Eq.(3.4) with the positional-dependent nearest neighbor
model (r = 2) from the previous section. The sequence correction improves the precision of
the probe signals: the within-probe set variability is reduced as well as the scattering of
probe set averages around the hook curve. Basic features of the hook curve such as the
relative positioning of the binding regimes are essentially the same in both versions. The
N-regime however differs significantly in its width and slope. In summary, these effects
result in an improved hook curve which is sufficiently robust to allow fitting the theoretical

hybridization model as described below.

Let us now give a formulation of the two-species Langmuir model that predicts the A and
¥ coordinates of the hook curve. We define the relative hybridization degree, or S/N ratio
R as

_ KPPM,S [Sg]
p KPPM,N [N]

: (3.11)

chip
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Figure 3.4: A and X transformations calculated from raw (panel a) and sequence corrected (panel b) probe
intensities of a GeneChip Rat Expression Array 230A. Sequence correction leads to an improved hook curve
to which we fit the hybridization model.

R is an expression measure that directly relates to the concentration of specific transcripts.
We further define pairwise PM/MM ratios of the binding constants

— p d _ KP
Sp - KII;/[M,S an np - KiM,N : (3-12)

Inserting Egs. (3.11) and (3.12) in the basic model given in Eq. (3.2) and afterwards in the

hook transformations A, and X, given in Eq. (3.4) we obtain

A(R) = A" +10g[(R+1)/(R-10_‘X +1)]—1og[B"M(R)/BMM(R)]
and

(3.13)
E(R)=Z*" +1log| (R+1)-(R 107 +1) | ~Slog[ B™(R)- B (R)]

where  B™(R)=1+ 107747 (R+1) and B™(R)=1+ 107

saturation terms.

PN R0 41)  are

Plotting the A and X trajectories in dependence of the relative expression degree R gives
the theoretical hook curve shown in Figure 3.5. The parameters A*™", =% o and B
characterizing the position and the geometrical dimensions of the theoretical hook curve

are given as

s
oczlog; and Bzélogn'@og(KpM’N'[N])>chip (3.14)

A" =logn and X =logM-J3
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Figure 3.5: Theoretical hook curve and its geometrical dimensions. The start coordinates (=", 4™")
characterize the non-specific background level in intensity units and the N-PM/MM-gain, respectively. (a, 5)
characterize the width of the hook and its height in the absence of saturation, respectively. Image taken
from [55].

where n = <np> ~and s= <s p> . are the PM/MM ratios from Eq. (3.12) averaged for all

chip chip
probes on the array. A detailed description of derivation of the model is given in [42].

The alternative formulation of the two-species Langmuir model given in Eq. (3.13) can
now be fitted to the experimental A-X-trajectories as explained in [42, 49]. The respective
optimization problem has only a single local maximum and can be solved using a gradient
descent algorithm. Figure 3.4b shows that the theoretical hook curve predicted by the
hybridization model fits well to A and X transformations of the sequence-corrected
intensity data of a typical GeneChip expression array. The fitting provides chip-specific
parameters which can be used to compute estimates of the transcript concentration [S]
based on the model Eq. (3.2). The hook-method for signal calibration based on this fitting

and reversal of the two-species Langmuir model is described in detail in [42].

3.6 Chip summary measures characterize RNA quantity

Additional to their utility for the calibration of microarray signals, the basic hook
parameters from the previous section (A", X" o and PB) characterize a particular
microarray hybridization and can be used to compare samples, or groups of samples, of an
experiment, for example to identify laboratory effects. These parameters are important
indicators for sources of technical variability which are difficult to detect by other means.
This section shows how selected chip-specific summary measures that can be obtained
alone from the microarray signals relate to the non-biological variable of the amount of
hybridized RNA.
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Figure 3.6: Chip-specific parameters <A> and [ in dependence of the amount of hybridized RNA. We
computed both parameters for the samples of Gene Logic’s dilution data set where two types of RNA (liver
and SNB-19) have been hybridized at varying concentrations with 5 replicate samples for each
concentration. In Panel a <)> increases roughly linear with increasing RNA mass between 1 and
10ug (Pearson correlations of r> 0.7), but saturates at 20ug. Panel b shows how B decreases with
increasing RNA mass. An amount of 10ug aRNA is recommended for the employed HG-U95A platform.

The S/N ratio, R, from Eq. (3.11) characterizes the specific hybridization level of a
transcript relative to the baseline of non-specific binding. Averaging these R values over
all probe sets of a microarray exceeding a given expression threshold provides the relative

specific transcript level, or mean log S/N ratio,

(A)=(logR+1)) s - (3.15)

This chip-specific measure is typically in the range of 0.2 < <7»> < 1.5 and also describes
the R-range over which the density of expression values decays by one order of
magnitude [45].

We computed B and <7»> summary measures for all samples of a dilution experiment
conducted by Gene Logic Inc. [56]. In this experiment two distinct types of RNA samples,
liver tissue and CNS Cell Line SNB-19, have been hybridized to Affymetrix Human
Genome U95A arrays at varying concentrations’. Multiple samples have been prepared
from total RNA according to the manufacturers’ protocol and the resulting aRNA has been
collected into one master solution for each of the two RNA types. The master solutions,
whose RNA concentrations have been determined using an electropherometer (at 260nm),
were then diluted to generate solutions with nominal aRNA masses between 1.25 and
20ug. Additional dilutions containing mixed RNA of both liver and SNB-19 are available

but have been omitted here. Five technical replicates were processed for each

2 A detailed description of the study design is given in the white paper accompanied by the data which can be
ordered from Gene Logic Inc.



36 3 A model for microarray hybridization

concentration, leaving a total of 50 samples. This study design enables an assessment of

the effect of technical variation within the replicates and between the dilutions.

Panel a of Figure 3.6 displays the obtained <7»> parameters in dependence of RNA mass
for the 50 microarray samples. <7»> increases with increasing RNA mass between 1 and
10ug with Pearson correlation coefficients of r=0.71 for liver tissue and r=10.78 for
SNB-19. However, <7»> does not increase further for a RNA mass of 20ug which can be
explained by the up-down effect: increasing RNA concentrations result in a larger non-
specific background accompanied by a smaller effective specific binding constant due to
bulk dimerization [57]. The <7»> summary measure which averages the ratio S/N of
specific and non-specific binding (see Egs. (3.15) and (3.11)) is therefore not collinear with
RNA mass as the effect of bulk dimerization is not considered in the hybridization
model (Eq. (3.2)). In summary, <7»> describes the amounts of aRNA in a particular

microarray hybridization in a non-linear, yet for typical RNA ranges sensitive fashion.

The B parameter from Eq. (3.14) characterizes the width of the theoretic hook and typically
is in the range 2.0 < < 3.2. Since B =logM —X**" (Eq. (3.14)), the width is limited by the
saturation level M and the start of the theoretic hook X**" at the onset of specific binding,
and thus describes the measuring range of specific signals [45]. As shown in Figure 3.6b
the parameter B decreases with increasing RNA mass in the dilution experiment. The
increasing concentration of RNA in the hybridization solution here results in an increased
signal contribution due to non-specific binding and thus in a non-linear, negative effect on

the measuring range .

3.7 Summary and conclusions

Multiplexed hybridization reactions between nucleic acids on a surface can be well
described using the two-species Langmuir model. This model is based on fundamental
physical principals of surface adsorption and can be easily refined to incorporate additional
factors such as sequence-dependent affinities, washing and degradation. Critical is the
fitting of the model to the intensity data which should ideally be performed separately for
each microarray hybridization due to a significant variation in the described biological and
technical factors. The A-Z-transformations provide a practical way to fit the model without

prior knowledge of target concentrations.

The A-Z-transformations of probe signals result in the typical hook curve which allows
identification of different hybridization regimes. We distinguish between N-, mix-, S- and
sat regime depending on the effect of non-specific binding, specific binding and of

saturation. The threshold ™ separating N- and mix- regime is of particular importance
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as it allows independent characterization of specific and non-specific binding. A robust and

Zbreak

accurate method to estimate is presented.

Additional to their utility for signal calibration, the hybridization model and the hook
approach allow studying the technical factors and physicochemical processes involved in
microarray hybridization. Fitting an alternative formulation of the two-species Langmuir
model provides summary parameters which are of great utility for the assessment of the
non-biological variation among the samples of an experiment. Examples are the <7»> and B

parameters which relate to the abundance of hybridized RNA.






4 Hook analysis applied to different types of
microarrays

In the previous chapter we presented a model for microarray hybridization and showed that
it adequately predicts microarray data based on the X—A-transformations of intensity
signals. We showed this exemplary for Affymetrix GeneChip 3’ IVT expression arrays and
it remains an open question whether the same approach can also be applied to other
microarray types: those that interrogate DNA instead of RNA targets, those that employ
different protocols or different designs, and those produced by other manufactures relying
on their own proprietary technologies. The ability to obtain suited X-A-transformations
provides the basis for successful application of the methods described in this thesis to these

microarray types.

4.1 Genome-wide SNP arrays

In Section 2.4 we defined so-called allele sets for SNP arrays in analogy to the probe set in
expression arrays. All probes within an allele set interrogate a unique variant of a target
nucleotide strand, here however referring to fragments of genomic DNA containing a
particular SNP. We calculated A and X transformations according to Eq. (3.4) for a 50K
Array Xba 240 from the Human Mapping 100k Array Set as shown in Figure 4.1a. Note
that these arrays contain both perfect-match and mismatch probes. Basic features of the
obtained SNP hook curve are strikingly similar to those of expression arrays (compare
Figure 3.2a): at ¥ =2.3 the curve starts with small values of A=0 which, due to an
increasing contribution of specific binding, increases monotonously to A = 0.6. The onset
of saturation then results in a decrease of the A values with increasing £ up to the highest

probe signals at ¥ =4.1.

A noteworthy difference between both array types is that expression arrays have a distinct
N-regime containing a substantial amount of probe sets with A = 0. A significant change of
the slope of the hook curve at ™ separates this region from the subsequent mix-regime.
In the SNP arrays no change of slope can be observed. The distribution of probe sets in A-
X-coordinates (orange circles in Figure 3.2 and Figure 4.1) shows that a large fraction of
probe sets are in the N-regime in expression arrays, whereas in SNP arrays only few probe
sets are in this regime of predominant non-specific binding. This is not surprising because
by design each allele set should contain probes exactly complementary to the present

genomic DNA variant.
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Figure 4.1: Hook plots for a Mapping50K_Xba SNP microarray. In panel a all allele sets of the SNP array
have been used to compute A and X values. In panel b allele-sets have been separated for the three different
binding modes: allele, cross and hetero.

In summary, A and X transformations of SNP array data show the same basic hybridization
characteristics as in expression data and the differences can be well explained by the
different targets and by the different probe design. The characteristic shape, the hook
curve, is predicted by the two-species Langmuir model. Oligonucleotide probes on SNP
arrays are therefore subject to essentially the same model of competitive surface
hybridization. Consequently, the intensities of the PM and MM probes are governed by

several hybridization regimes.

For a more fine-grained view of hybridization on SNP arrays let us now address allele sets
with different binding modes. Affymetrix SNP arrays consider only bi-allelic SNPs, hence
the genotype call for a SNP can be either homozygous allele A, homozygous allele B or
heterozygous AB. Therefore each allele set can take three possible binding modes: it may
bind the SNP variant which is present in the genotyped individual (allele binding mode), or
the targeted variant is not present but instead the other variant cross-binds to the allele
set (cross). In the third option both alleles are heterozygously present in the diploid

genome (hetero).

Figure 4.1b shows the obtained hook plots for the same array as in Figure 4.1a. The SNPs
have been called using the genotyping algorithm GTYPE implemented in the manufacturer
software [58], allowing us to classify the allele-sets into one of the three binding modes.
The hook curve of the ‘allele’ binding mode starts at high values A > 0.5 confirming the
expected substantial specific binding for the ‘present’ SNP variant. A increases to the
maximum value A = 0.7 which agrees well with the typical A values for perfect matched
probe-target binding observed in expression arrays [42]. The probe intensities are more
affected by saturation than in the other binding modes: a substantial number of probes are

in the saturation range X > 3.4.
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In the ‘cross’ binding mode the hook curve starts closely to A =0 and is characterized by
smaller £ and A values compared to the ‘allele’ binding mode. The perfectly
complementary binding of PM probes to the allele is replaced by a mismatch at the SNP
locus. Consequently, the PM probes in ‘cross’ allele sets exhibit a single mismatch and
MM probes exhibit either two (in the case of 6 # 0, see Figure 2.4) or one (& = 0) mismatch
with respect to their genomic target. Differences in the hook curves of both binding modes

thus characterize the effect of incremental total mismatches in the probe-target binding.

In the ‘hetero’ binding mode both alleles are present. The hook curve is a superposition of
‘allele’ and ‘cross’ binding modes, but more resembles the latter one due to the logarithmic
signal transformations in the A and X values. Only few probes are affected by saturation in

the “allele’ and ‘hetero’ binding modes.

In conclusion, intensity values of probes referring to the ‘allele’ and ‘cross’ binding modes
give rise to different hook curves because of the different mismatch configurations.
Conversely, the effect of incremental mismatches can be studied using the specific design
of the SNP arrays. The hook curve of the heterozygous binding mode can be understood as

a superposition of ‘allele’ and ‘cross’ binding modes.

4.2 Gene ST and Exon ST arrays

Gene ST and Exon ST microarrays by design do not include mismatch probes and will thus
subsequently be termed PM-only arrays. The key question, therefore, is how the A and X
values of the hook transformation be computed for these arrays. As the average intensity of
all probes in a probe set, including perfect matches and mismatches, the X values represent
a measure of the overall expression level of the target transcript. The use of all perfect-
match probes of a probe set should provide a similar measure of the expression level. The
A values, on the other hand, represent the spread between target abundance measurements
of high sensitivity and of lower sensitivity targeting the same transcript. The MM probes
with their mismatch position at the center base are expected to have an about one order of
magnitude decreased sensitivity compared to the PM probes. While such well-defined
sensitivity differences are not given within the PM probes, significant intensity differences

between probes of the same probe set nonetheless exist, for example due to variations in
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Figure 4.2: Panel a) Hook plot for a Gene ST microarray obtained by Eq. (4.1). The curve starts with the
highest slope in the non-specific binding mode to the far left, then increases to its maximum at X = 3.0 where
it decreases with the onset of saturation. Panel b) Comparison of PM-only hook (in green/orange) and
PM/MM hook (in blue/magenta) for a HG-UI33 Plus? array (GSM175849). Probe sets classified as
‘absent’ (using hook intensity corrected signals) have been colored orange and magenta, respectively, in
each curve. Both curves change their slope with the onset of specific binding and both curves decrease at
2 = 2.9 due to saturation.

duplex stability of probes with different sequences. We consequently define the following

>—A-transformation for PM-only arrays

Ahook — ng_an(Apset) and Apset = <Ap>

pset—high < P >pset—low

yhook _ g _ <10g I >pset

pset

*
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where A values are based on the difference between the highest third,<<Ap> , and the

pset—high

lowest third, <Ap> , of the perfect-match probe intensities of each probe set.

pset—low

The resulting curve shown in Figure 4.2a has characteristics that can be interpreted in
analogy to the PM/MM hook. It starts with a steep slope in the interval 1.3 <X < 1.6 and
thereafter continues with a slower rise. After X = 3.0 the A values decrease which can be
attributed to the onset of saturation where competitive binding of transcripts reduces the

impact of sensitivity differences on the probe intensity.

We suspect that the change of slope at £ = 1.6 relates to the onset of specific binding. To
test this hypothesis we compare the PM-only hook curve to the PM/MM variant in Figure
4.2b. Both curves have been computed for a GeneChip expression array of type HG-
U133 Plus2 using the PM/MM hook as defined in Eq. (3.4) and the PM-only hook as
defined in Eq. (4.1). We highlighted all ‘absent’ probe sets as classified by the hook
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method in different colors. Interestingly, both hook variants show a similar change point at
¥ ~ 1.9 separating probe sets mainly governed by the N-regime (X < 1.9) and the onset

of specific binding in the mix-regime (£ > 1.9).

The sensitivity differences captured in the A values vary in the N- and S-regime, in total
spanning a range of 0 <A <1.0 in Gene ST arrays which agrees well to 3’ expression
arrays. While the sensitivity differences between PM and MM probes of 3’ expression
arrays are relatively small in the N-regime, they nonetheless increase to A =1.0 with
increasing average expression indicated by X. The sensitivity differences within PM probes
increase up to A=0.6 in the N-regime. In the S-regime, where X increments are
accompanied by increments of target abundance, A values remain on a flat plateau (as in
3’ expression arrays, Figure 4.2a) or increase only weakly (as in GeneST arrays, Figure
4.2b). The flat plateau is observed also for other PM-only microarray types as for example

the Human Exon ST (data not shown).

In summary, the A and ¥ transformations of the probe signals of PM-only arrays provide a
suited approach for characterizing microarray hybridizations. Although of different shape,
visual inspection allows detection of the different hybridization regimes in analogy to the
PM/MM hook curve analysis. Gene ST and Exon ST show essentially the same

hybridization characteristics as 3° expression arrays.

4.3 Agilent expression arrays

As discussed in Section 2.5 Agilents inking technology allows for full customization of the
probe design of ordered microarrays. Predesigned arrays with typically one probe per gene
(e.g. SurePrint Human Gene Expression Microarray) or one probe per exon (e.g. SurePrint
Human Exon Microarray) are available. However, appropriate X—A-transformation of

probe signals require multiple signals per transcript.

We here employ a custom microarray designed to quantify the expression of splice
isoforms. It is the aim of the respective study to assess and compare the technical
performance of microarray and high-throughput sequencing data by independently
measuring the same RNA samples by both technologies. The microarray probes target 877
different genes which are known to be present in the RNA samples studied and which have
a total of 5797 known splice isoforms. Also included are probes targeting 96 external RNA
control transcripts from the ERCC initiative [59]. The RNA controls here refer to prepared
mixes containing polyadenylated transcripts from the ERCC plasmid reference library.
Each target is interrogated by several probes following a tiling design where probes query

sequences at regular genomic intervals (compare Figure 2.2).
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Figure 4.3: Hook plot for a custom Agilent expression microarray. A-X transformations are computed using
Eq. (4.1) with ‘equivalence regions’ as probe sets. Note the similarity to the hook curve of SNP microarrays
shown in Figure 4.1.

An appropriate definition of a probe set is required to compute X—A-transformations using
the same PM-only signal transformations as for Exon ST and Gene ST arrays given in
Eq. (4.1). Ideally, this probe set should include a sufficiently large number of probes of
different affinity, which however target a unique set of transcripts with identical total
concentration. Collecting all probes of a gene into a probe set would not be optimal: the
probes spanning the entire length of gene would only give valid signals if the gene is
transcribed into a single isoform. A different approach is used here where a probe set
collects subsequent probes spanning DNA sections (‘equivalence regions’) intersected
neither by known splice junctions nor known intro/exon boundaries. Only probe sets

containing at least four probes are considered.

We computed the respective hook curve which is shown in Figure 4.3. It is eminent that
there is only a small N-regime at the far left of the hook curve starting at £ = 2. This can be
explained by the particular design of the array and the experiment: probes have been
primarily designed against genes which are expected to be present in the mixture. The
curve exhibits the typical peak characteristic for the S- and sat-regime similar is other
microarray types, showing that saturation is present in these Agilent expression arrays as
well. The onset of saturation is around ¥ =3.5 referring to intensity values of 10°~.
Between 2 and 5 percent of the probes are affected by saturation in the 16 array samples of
this experiment. This suggests that a correction of saturation effects is strongly advised to

obtain unbiased expression estimates from these data.

Note that the height of the hook curve with A = 1.0 is comparable with the height of the
one derived from (uncorrected) probe intensities of Gene ST arrays in the previous section.
These arrays use spotted oligunucleotides of different lengths: Agilent uses 60meric probes
compared to the 25mers on Affymetrix arrays. The effect of sequence variations on duplex
stability, and thus on intensity variability, is expected to decrease with increasing sequence

length. The comparable levels of A values in Agilent expression data suggest that
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nonetheless strong probe effects with a significant intensity variation are present here.
Such high variations are however not uncommon for microarrays with a tiling design since

the probes have not been previously optimized.

4.4 Summary and conclusions

We showed that appropriate Z—A-transformations of probe signals can be found for other
types of microarrays as well. The necessary modifications to cope with the specifics of
each microarray type relate mainly to different definitions of probe sets and the lack of
mismatch probes. Genome-wide SNP arrays require substitution of the ‘probe set’ concept,
referring to a set of probes with a common mRNA transcript, with the so-called allele-set,
referring to a set of probes targeting a common allele at a particular genomic location. The
allele sets can be further split up to allele sets with particular binding modes, resulting in a
fine-grained view of hybridization on SNP arrays. The lack of mismatch probes in
Gene ST and Exon ST arrays is coped with by using existing affinity variations among the
probes of each probe set. No probe sets are given by design for the presented Agilent

expression array but we showed here how appropriate ones can be defined.

Using the modified X—A-transformations of probe signals we obtain characteristically
shaped hook curves that can be analyzed in a similar fashion to 3° expression arrays. The
differences can be well explained by the specifics of the particular microarray type and the
probed targets. For example, there is essentially no N- hybridization regime in SNP chips
which can be explained by the expected specific binding of at least one of the two SNP
variants in the genomic DNA fragment captured by the allele set. The PM-only hook has a
slightly different shape, for example in Gene ST arrays where the slope in the N-regime is
higher than that of the mix regime. However, we could show that the change point between

these slopes again separates the N- and mix hybridization regimes.

In summary, we showed that it is possible to apply the hook analysis to Affymetrix SNP
arrays, Gene ST and Exon ST arrays and a custom Agilent expression array. This creates
the possibility to study the characteristics of the different microarray technologies using the

methodology presented in this thesis.






5 RNA quality effects

5.1 RNA amplification and degradation in microarray
experiments

In this chapter we investigate the effect of varying RNA quality as an ‘unwanted’ covariate
inducing potential artifacts in microarray data. Measurement of gene expression is based
on the assumption that an analyzed RNA sample closely represents the amount of
transcripts in vivo. Several effects can distort the abundance of RNA transcripts during
extraction and preparation before RNA analytics using, e.g., microarrays. The first problem
concerns the degradation of the RNA in vitro [60-63]: The quality of purified RNA is
variable and after the extraction during storage rather unstable (see [64] and the references
cited therein). Especially long mRNA fragments up to 10 kb are very sensitive to
degradation through cleavage of RNAses introduced by handling with RNA samples.
Moreover, transcripts show stability differences of up to two orders of magnitude in vivo,
raising the possibility that partial degradation during cell lysis could cause a variable extent
of bias in quantification of different transcripts [65]. The second problem concerns
amplification of RNA in samples analyzed on microarrays giving rise to the decrease in the
length of products that are reverse transcribed and amplified using T7 polymerase [66, 67].
The multiple rounds of in vitro transcription that are used to generate samples from small

amounts of RNA thus induce a decrease in transcript yield and length.

The screening of nearly three thousand publicly available GeneChip array data suggests
that there are noticeable degradation effects in the majority of the data files and that 2% of
the files were even so severely degraded that their worth was questionable [68]. Working
with low-quality RNA may strongly compromise the experimental results and lead to
erroneous biological conclusions. It is therefore recommended that the highest quality
RNA be used for genomic analyses. However, in some cases, such as human autopsy
samples or paraffin embedded tissues, high quality RNA samples may not be
available [69—71]. It is therefore important to understand how RNA quality affects
microarray results and also how reliable current quality measures are at indicating RNA
quality issues. The assessment of RNA integrity is a critical first step in obtaining
meaningful gene expression data. A second step comprises developing methods to quantify
degradation and, most importantly, to correct the induced degradation bias in the data and

thereby provide more coherent expression measures.

Several RNA quality measures are established based on conventional wet lab techniques

such as gel optical density measurement or denaturating agarose gel-
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electrophoresis (see [61, 64] for a review). More novel lab-on-chip gel electrophoresis
techniques like Agilents Bioanalyzer are now state of the art. In combination with
sophisticated analysis algorithms processing the shape of the electropherogram (and,
particularly, the 28S/18S rRNA ratio) they provide accepted integrity measures such as the
DegFac-RQS (degradation factor RNA quality scale) [65] or the RIN (RNA integrity
number) [72] which have been validated independently using qRT-PCR [64].

Importantly, microarray intensity data itself contains information about the RNA quality
used for hybridization due to the 3°/5’-gradient of transcript abundance [73]. On
microarrays of the GeneChip-type this gradient is typically measured using either
specially-designed control probes or exploiting the specifics of the Affymetrix probe
design. Both options estimate transcript abundance at close and more distant positions
towards the 3’-end based on the hybridization signal [74, 75].

Although proven in many applications, these measures are based on probe intensities
which, in general, are non-linear functions of transcript abundance [37, 38, 40, 54]. The
signals can be strongly distorted by effects not related to transcript concentration such as
saturation and non-specific background hybridization. Intensity-based RNA quality
measures are therefore potentially prone to systematic errors which, in worst case, can
provide diametrically opposed information in assessing apparently good RNA quality in
samples with largely degraded RNA (see below). Moreover, the important task of
correcting microarray signals for RNA degradation effects remained unsolved at least in
single chip applications. A linear correction model requiring both expression and RNA

quality data from a series of arrays has recently been published [63].

This section addresses the following tasks to overcome these problems: Firstly, we adapt
non-linear hybridization theory described in Chapter 3 to the special case of truncated
transcripts due to RNA degradation. We will show that our approach consistently explains
previous observations such as the effect of RNA quality on transcript intensity level [63]
and correlations between probe intensity and probe position along the transcripts and their
effect on expression measures [76]. Analysis of the probe signals in terms of this model
enables us to define unbiased (in the frame of the hybridization model used) measures of
RNA integrity. Secondly, we compare these new measures with established ones. We
demonstrate that methods such as affyslope or the RNA-integrity control probes can
provide systematically false information on RNA quality. Thirdly, we propose a simple
correction method which aims at removing the degradation bias from the probe intensities

and which can be integrated into standard preprocessing pipelines.
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Figure 5.1: The 3’-bias of transcript abundance can be caused by in vitro transcription (left part) and
degradation (right part) of source mRNA. Left part: Specific targets hybridize to the probes along the
interrogated transcript with decreasing frequency due to incomplete amplification starting at the primers
attached to the 3’-poly-A motif of source mRNA. In contrast, cross-hybridization of non-specific targets is not
associated with the 3’-end of the transcripts giving rise to uniform coverage. Right part: Degradation of
source mRNA due to RNases from both ends (a and b) and/or fragmentation at randomly chosen positions (c)
also result in a 3’-enriched length distribution of amplified RNA giving rise to a similar coverage of the
probes as shown in the left part. aRNA fragments are shown in 3'—5’ direction (from left to right) in
contrast to convention to agree with probe numbering used (k = 1, 2...) and the intensity decays introduced
below.

5.1.1 3’-biased transcript coverage of microarray probes after
RNA amplification and degradation

Affymetrix expression microarrays typically use a 3’-biased probe location which is
motivated by the specifics of target preparation prior to hybridization (compare also
Section 2.1 and 2.2). The preparation step applies IVT protocols according to the Eberwine
method [12]. It starts with first-strand cDNA synthesis from source mRNA using T7
oligo(dA) primers followed by second strand cDNA synthesis [66, 67]. The double-
stranded cDNA fragments are subsequently transcribed into amplified antisense RNA
(aRNA) which, after labeling, is hybridized on the arrays.

First-strand cDNA polymerization is primed at the 3’-end of mRNA and proceeds towards
the 5’-end (see Figure 5.1). Due to incomplete polymerization this method produces
truncated transcripts of variable length which are however characterized by a common 3’-

start site with respect to the respective fragment of source mRNA [73] (to avoid confusion
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we will strictly refer to the 3’- and 5’-ends of the source mRNA and not to that of the
product aRNA). In consequence, the resulting distribution of transcript lengths gives rise to
a 3’-enriched, decaying towards the 5’-end coverage of the probes of the probe sets
interrogating the respective transcript with increasing probe index (for convenience we will
count the probes in direction towards the 5’-end in contrast to Affymetrix counting the
probes in the opposite direction). Subsequent fragmentation of these aRNA targets into
pieces of typically between 30 and 200 nt in length before hybridization leaves the 3°-bias

of probe coverage unaffected.

Importantly, the decaying coverage of the probes is expected to apply to specific but not to
non-specific hybridization. In the N-hybridization mode the probes bind aRNA fragments
of partly complementary sequence originating however from mRNA transcripts not
referring to the interrogated gene. Trivially, these non-specific transcripts lack a common
start position with respect to the intended target and, as a consequence, they, on the
average, uniformly cover the probes of each probe set (see Figure 5.1a). Specific
hybridization competes with non-specific one and both hybridization modes contribute to
the measured probe intensities. The consequences of different probe coverages for the

measured signal will be discussed below.

Also degradation of mRNA, e.g. upon storage, can produce 3’-biased probe coverages of
fragmented aRNA by endonuclease activity that cuts RNA internally, or by means of
exonucleases [77]. In the first case, the poly(A) tail is removed by a deadenylase activity,
followed by two mechanisms that degrade the mRNA: either decapping followed by a 5°-
to-3’ decay or a 3’-to-5° decay. Once the mRNA poly(A) tail is removed, reverse
transcription reaction will not proceed, resulting in low concentrations of truncated
transcripts (see Figure 5.1b). Several studies have identified RNA degradation to be a

major cause of microarray expression measure variability [63, 65, 68—71].

5.1.2 Probing transcript abundance using GeneChip arrays

In this section we investigate the details of design and annotation of the probes of 3’
expression arrays. Affymetrix constructs their probe sets by selecting the probes from a
longer target sequence according to various optimization criteria. The original sequences
used at design time are of one of three types: consensus, exemplar and control sequences.
According to Affymetrix, "A consensus sequence results from base-calling algorithms that
align and combine sequence data into groups. An exemplar sequence is a representative
cDNA sequence for each gene" [78]. Each probe set refers to one and only one of these

sequences. For each 3’ expression array, we have downloaded the consensus, exemplar and
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Figure 5.2: Probe and probe set characteristics of the RAE230 GeneChip array: Panel a correlates the
position of the 11" (nearest the 5° end of the transcripts) and of the I (nearest the 3’ end) probe of each
probe set and shows the respective number distributions. Most probe sets accumulate in the LH (low L,
high L;;) and LL ranges whereas only a few sets are found in the HH range. Panel b shows the coverage size
of the probe sets (AL = L;;- L;) as a function of the position of the 11" probe set together with the respective
number distributions. The mean AL value nearly linearly increases until k;; =600 and then it remains
virtually constant with <AL> =460. The most probe sets cover a transcript range of 400 — 550 nucleotides.
The open circles refer to the 3’- and 5 -control probe sets. The boxplot in panel c correlates the probe
index k with the probe position L. The median position per index (see the horizontal bar in each box) nearly
linearly increases with k. The slope provides the AL-value of the array (~ 50 nucleotide positions per index
increment).
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control sequences together with the probe sequences as provided by Affymetrix (see

www.affymetrix.com). Probe distances to the intended 3’-end of the transcript, L,, were
computed by aligning the probe sequences to the respective transcript sequences. The
position of each probe L, (p =1, 2...) is then defined as the number of nucleotides counted
between the 3’-end of the transcript and the first (i.e. nearest) base of the 25meric probe
sequence’. The ordering of probes according to increasing distances L, defines the probe

index k within each probe set.

The probes of each probe set cover transcript lengths which largely exceed the length of
the individual probes. This design is well suited to study length-dependent alterations of
transcript abundance due to RNA degradation and imperfect amplification. Figure 5.2a
shows that the majority of probe sets start (first probe with index k = 1) within the first
L; =100 - 200 nucleotides nearest to their 3’-end and end at position L;; =250 - 600 for
the last probe (index k = 11). Only about 5% of all probe sets are located beyond the range
of 600 nucleotides. Within this range, the sets can be roughly classified into ‘low (i.e.,
more 3’) L; and low L;;” (LL), ‘low L; and high (i.e., more 5’) L;;” (LH) and ‘high L, and
high L;;” (HH) sets where low refers to distances close to the 3’ end and high refers to
distances farther towards the 5° end (see Figure 5.2a). The mean length of the covered

transcript range (AL = L, — L;) nearly linearly increases with the position of the 11"

probe
up to Li; = 600, and then it remains virtually constant AL = 460 (Figure 5.2b). Hence, short
probe sets with AL <300 accumulate near the 3’ end of the transcripts whereas more

distant probe sets typically cover a wider length range of the transcripts (350 < AL < 600).

The mean position of all probes on the array with a given index k=1...11 linearly
correlates with k to a good approximation (Figure 5.2c). The obtained slope characterizes
the mean distance between two neighbored probes. It can be interpreted as the probe

sensitivity per index increment and depends on the probe design of the particular array

type,

L)y L)y (L)
K1 (K, (5.1)

(o) =

<...>amay denotes averaging over all probes of the array. The approximation in the right part

assumes a vanishing intercept in good agreement with the data (see Figure 5.2¢).

> Precomputed probe distances for most GeneChip microarrays are available on our website
http://www.izbi.uni-leipzig.de/downloads links/programs/rna_integrity.php
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Figure 5.3: Probe and probe set characteristics for different GeneChip microarrays: the mean positions of
the 1™ (nearest to the 3’ end of the transcript), 5™ and 11™ (nearest to the 5" end) probe averaged over all
probe sets; the slope of the linear regression of the mean probe position L versus the respective probe index
for all probes (<AL>); the average transcript range covered by the probe sets (average span) and the
fraction of probe sets from the LH, LL and HH ranges and the residual fraction not contained in one of the
three ranges (see the main paper for definitions).

Figure 5.3 provides an overview over selected probe design characteristics of different
GeneChip types. It shows that the mean position of the first and of the last probe in the
probe sets can strongly vary between the different chip types giving rise to a wide range of
<AL>-values which can change between about 25 and about 60 nucleotides per index
increment. These differences refer in first instance to arrays of older and newer generations
(e.g., the human genome HGU95a and HG133a arrays and the mouse genome MG74a and
MOEA430a arrays, respectively). On the other hand, the average span covered by the probe

sets is relatively constant for all chip types considered.

Affymetrix GeneChip arrays include a small number of control probe sets designed to
estimate the RNA quality in terms of the 3'/5' bias. They target the 3' end, the 5'-end and
the middle (m) of relatively long transcripts coding, e.g., beta-actin and glyceraldehyde-3-
phosphate dehydrogenase (GADPH) using 20 probes per set. Figure 5.2a and b shows that
the 3’- and the 5’ probe sets of the controls together cover the range of about 700
nucleotides between Lyo=281 and L,y=378 for the 3’-probe sets and Lp=942 and
L,o= 1104 for 5’-probe sets of GADPD and beta-actin, respectively.
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5.1.3 Used expression data

Affymetrix microarray raw intensity data (CEL-file format) were downloaded from the
public repositories Gene expression omnibus [79] or Array Express [80]. In this section we

study the following data sets.

The Human tissue dataset (GSE7307, see supplementary text for the detailed list of
samples used) comprises 677 samples taken from over 90 distinct tissue types hybridized
to Affymetrix HG-U133 plus 2.0 arrays.

The RatQC (rat quality control) dataset (E-MEXP-1069) from [69] was generated to
systemically explore how RNA quality affects microarray results. It consists of 36 rat liver
RNA samples hybridized to Affymetrix RAE230A expression arrays. The progressive
change in RNA quality was generated either by thawing frozen tissue or by ex vivo
incubation of fresh tissue. Each sample was characterized by the RNA integrity

number (RIN) and mean transcript length in [69].

The RNeasy data set consists of five pairs of HG-U133A GeneChips which were
hybridized with RNA extracted from ovarian cancer samples and processed in two
different ways namely with and without a cleanup step using RNeasy reagents [62]. The
RNeasy cleanup should lead to good-quality RNA whereas lack of the cleanup step should
yield poorer-quality RNA. The RNeasy data set was used in previous work aiming at

judging RNA-quality from microarray data [81, 82].

5.2 Degradation and hybridization mode

5.2.1 Intensity-based degradation metrics

In this section we discuss the consequences of the 3’-enriched probe coverage on the
observed probe intensities. In the following we will subsume the 3’-bias of probe coverage
as ‘degradation effect’” independent of its origin (IVT amplification or degradation) for the
sake of convenience. Let us first define the probe-specific and the mean degradation ratio

averaged over all probes of the array,

[S,.]

e s M T &2

g Jdtarget
respectively, which characterize the decrease of the transcript concentration due to the
degradation effect. [S,]irget 15 the (true) expression degree of a selected gene g given as the

total concentration of the target transcripts in the hybridization solution independent of
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their length. It refers to the target concentration in the absence of degradation and
presumes that RNA processing proceeds without 3°/5° bias. Contrarily, [S]yx denotes the
apparent expression degree reported by probe with index k=1,...,Ng designed to
interrogate target g. It is given as the concentration of the RNA fragments which
specifically bind to this probe. It consequently refers to the probe coverage which decays
with increasing distance of the probe to the 3’-end of the target. Angular
brackets <...>aiprobes denote averaging over all probes of the array. One expects
[S]gx < [Seltarget and thus dgx < 1 owing to the 3’-enrichment after incomplete amplification
and degradation of the fragments. The probe specific degradation index, dgk, thus
characterizes the loss of mRNA material at a given probe position along the transcribed
region of the gene. The mean degradation index d averages the single probe effects over all
probes. It estimates the total loss of RNA probed by the microarray in a given preparation

prior to hybridization.

The probe intensities measured in the microarray experiment are described by the
Langmuir model in Eq. (3.2) where the probe index p = g,k subsumes the gene and probe
index explicitly used in Eq. (5.2). We here consider the reduction of the concentrations
[Seltarget and [N]enip after incomplete amplification and/or degradation as an effect of the

binding strengths due to specific and non-specific hybridization (compare Eq. (3.3))

X" =[5, ] K=, 8, ], K" and XON=dN],, KO (53)

chip p

respectively. Non-specific hybridization is related to the total amount of RNA used for
hybridization [57]. [N]eip is consequently reduced by a factor given by the mean

degradation factor d.

The probe-specific degradation index d, defines the decrease of transcript concentration
after amplification and degradation (Eq. (5.2)). In the next step we define the apparent
degradation index as the intensity ratio of probes located at different positions along the

target sequence, for example near its 5’- and 3’-end of one selected target,

I

w = (5.4)

where the intensities are given by Eqgs. (3.2) and (5.3) with the respective degradation

ratios ds> and ds-, respectively.

Let us consider two special cases if the probes hybridize either far from saturation in the
linear range (x'$,Xx"¥<<1) or in the range of saturation of specific

hybridization ( x"* >1> x"). The apparent degradation index becomes
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xS xN t PS __PS PS __PS S N :
- _(dS' X5 +d Xs') ={ Ly - (KS-wo” /K -wy) for x° >>x7 (specific)
(

PN PN P,N PN S N .
Ko™ -wom /K -wy ) for X7 <<x (non —specific)

b (5.5)
Wi :
and ¥ =—- (saturation)
W,/

respectively. The lower case x defines the hybridization strengths at ‘ideal’ transcript
concentrations  (see  Eq. (5.3) with d=dy=1: x;=[§]  -K*w?® and

p

x; =[N, KpY-wi™ ) and % =d,/d, denotes the ‘true’ relative degradation index

between 5’ and 3’ probes, respectively. Eq. (5.5) shows that the apparent degradation index
is proportional to the true one (™ 1) in the special situation of dominating specific
hybridization (x° > x") far from saturation only. It however scales with the ratio of the
specific binding and washing constants of the 3’- and 5’-probes, which might be larger or
smaller than unity depending on the sequences of the particular probes (see [43] for
details). At dominating non-specific binding or saturation one gets apparent degradation
indices which are completely independent of the true one. Their values again depend on
the probe sequences and can be larger or smaller than unity. Hence, the use of intensity-
based degradation metrics raises problems because they reflect the degradation bias of

transcript abundance in special situations only.

On the other hand, two intensity-based degradation measures are well established for
quality control of GeneChip arrays: (i) The slope of a linear function fitted to the so-called
‘RNA degradation plot’, rs,3"'°P°. This RNA degradation plot displays the mean logged
intensity averaged over all probes with the same index k, taken from one array, as a
function of k [75]. (ii) The intensity ratio rs,3“™™" of special control probe sets targeting
the 5'- and the 3'-end of relatively long transcripts such as beta-actin and GADPH. A
threshold of the 3°/5’-signal intensity ratio of the GADPH controls less than 3 (in
logarithmic scale logjo 3 = 0.48) is recommended for good quality RNA [83, 84].

In view of the discussed problems of intensity-based degradation measures we will revise
theses estimates and judge their suitability for determining RNA quality. Large values of

1 trol
I'5’/3’S ope and/or I,5’/3’con 1O

near unity are generally thought to indicate small degradation bias
and thus good RNA quality. Note that reciprocal values of these measures are often used in
practice estimating the respective 3°/5’-ratios. Here we consequently use 5°/3’-ratios to

ensure direct comparability between the various measures.

In summary, probes located nearer to the 3’-end of the interrogated transcripts potentially
shine brighter than more distant probes due to the 3’-enrichment of probe coverage giving
rise to expected ‘true’ intensity ratios rs,3-<1. However, this rule applies only to

conditions of specific hybridization far from saturation. RNA quality measures based on
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the 5°/3’-intensity ratio consequently require consideration and evaluation of the
hybridization mode of the chosen probes. Moreover, the potential dependence of the probe
intensities on the degree of degradation gives rise to systematic errors of the estimated

expression degree of the transcripts which requires appropriate correction.

5.2.2 Degradation Hook and Tongs Plot

In analogy to the A and X transformations given in Eq. (3.4) we define the following

modified hook representations

X syes = <Zp >S3 <Zp >SS, (degradation hook)

z =(z,) (%) . (tongs plot) (5.6)

i+2

with <Zp>ss ZE and EkE%(IOgIPM-HogIMM)

where the subscript s =s3’, s5’ denotes a subset of three consecutive probes within the
probe set of size N nearest to (s3’, 1= 1) or most distant from (s5°, 1 = Ny - 2) the 3°-
end of the transcript, or centered around its middle probe (s = m). The so-called tongs-plot
shows the three positional-dependent values AXs,, A¥s- and optionally AX,, as a function of
2 whereas the ‘degradation hook’ plots AX3/s-versus- X. These plots use the same abscissa
as the hook curve and they also smooth the noisy data using a running window of 500 -
1000 probes. Both the ‘degradation hook’ and the ‘tongs plot’ estimate the 3’-enrichment
of the probes and thus their degradation level in dependence on the hybridization mode.
Examples for both plots are shown in Figure 5.5 in the next section.

The two-species Langmuir hybridization isotherm predicts the theoretical hook-curve
which was previously used to fit the experimental curves and to extract characteristic chip-
related parameters. Here we modify the hook formalism to take into account the effect of
incomplete transcript amplification and degradation in terms of the degradation ratios
defined in Eq. (5.2). We thus define the probe-specific S/N ratio similar to Eq. (3.11) under
consideration of the subset s of probes

O D G L U s

T o, T,

(5.7)

It scales with <dp> /d, the probe specific 3’-bias of the actual transcript abundance
averaged over the subset s and divided by the mean degradation index of the selected chip,
d. Similarly to Eq. (3.13), the theoretical expressions for the hook coordinates for the
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subset s of probes are obtained by inserting Egs. (3.2) and (5.3) with P = PM and MM into
Eq. (5.6)

(A,) =ARy) =log{(Ry+1)/ (Rg-107 + 1)} -log{B™ (R)/ B (Ry)]

and
(Z,), =ZRy) (5.8)

start 1 - !
_ +Elog{(Rs+1)/(Rs'10 —|—1)}—Elog{BpM(Rs)/BMM(RS)}

with the saturation terms

1
EAstan )

B™MR)=1410 2" (R, +1) and
S S

1
7Astarl )

B™ (R )=1+10 " 2™ (R, -107* +1)
S S

The vertical and horizontal dimensions of the hook curve and its start coordinates are given
as

azlog% ﬁz—(logd+<logXPM’N> ) and
(K™ ot (5.9)

start __ PM,N
z —logM+<logXp > Ap+logd

chi

respectively. Note that the width and the start coordinate of the hook curve, B and Xy,
change with the mean degradation index d whereas the height of the hook o doesn’t
depend on degradation.

The mean expression index characterizes the mean expression level of present probes of
the chip,

o= (log(d™ 'XgM’S)>Cm~p ~(log(R)+log X} +logd’™*) (5.10)

chip

The ordinate values of the degradation plots are obtained by inserting Eq. (5.8) into
Eq. (5.6),

AX(R)=2R)-2R) and AX,(R)=XR)-2R,) (5.11)

One gets after explicit consideration of Eq. (5.8)
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(Ry+1)-(Ry 107 +1) B™R,)-B™R,)
A%, ,(R)="1lo —3lo ’ - >12
wa(R)=3 g(R52+1)-(RS2-10‘“ +1) ° gBPM(Rsz)-BfM(Rsz) 612

where AY(R) refers to the special case ry; = 1. The parameters

(Is]),

Y, =logr, =log <[S]> with s=3"5'"m and
chip

(Is]),

AYyys =Yy — Vs =log <[S]>
5

(5.13)

define the 3’-bias of transcript abundance (see also Egs. (5.5) and (5.7)). Particularly,
AY,,s provides the logged fold change of the probe specific transcript concentrations
between probes located nearer the 3’- and 5’-ends of the transcript. The mean transcript
concentration averaged over all probes can be estimated as the geometric mean over the 3’

and 5’ transcript concentrations,

() = ([81),107 = [8],.- 12 ~ 53, TSI, (5.14)

if one assumes uniformly distributed probes along the relevant transcript regions. With
[S]target = <[S]>3v and Eq' (5'2) one gets

logd=—0.5- Ay, (5.15)

Hence, the mean amount of RNA (Eq. (5.2)) is directly related to the 3°/5’-difference of

transcript abundance.
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Figure 5.4: Theoretical hook curve (Eq. (5.8), thick curves), degradation hook (thin curves) and tongs
plot (panel above; Egs. (5.11) and (5.12)) for different degradation levels log d. With increasing degradation
the positive and negative amplitudes of the tongs plot (the tongs opening AY;s:) and the height of the
degradation hook increase, accompanied by the shift of its increasing branch towardls the left which widens
the curves (parameter f5). The curves are calculated with ¥ =-%, = 0.1, 0.3 and 0.5, respectively. The
dotted curves in the part above are calculated neglecting the saturation term in Eq. (5.12). The geometrical
meaning of selected parameters is indicated by arrows (see text).

Typical examples of the hook curve (A-versus-X, Eq. (5.8), thick curves), the degradation
hook (AXs/s-versus-X, Eq. (5.12), thin curves) and the tongs-plot ((AX-versus-X,,
Eq. (5.12), panel above) as predicted by theory are shown in Figure 5.4 for different
degradation levels. Increasing degradation increases the opening of the tongs and widens
the hook. Both changes are governed by the degradation ratio d and ry and their logarithmic
transformations (see Egs. (5.2), (5.9), (5.13) and (5.15)). The widening of the hook by
log d reflects the decrease of the mean transcript concentration due to incomplete
amplification and degradation. This trend is equivalent with the decrease of the mean level
of non-specific background hybridization which in turn increases the mean binding
constant of specific binding [57]. The consequences of this so-called up-down effect are

discussed above.
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Figure 5.5: Hook- and degradation hook (above) and tongs-plot (below) of two selected chip hybridization
taken form the human body index data set (muscle, GEO accession numbers GSM176301 in panel a and skin,
GSM175967 in panel b) referring to large and smaller degradation effects, respectively. Note that all plots
use the same abscissa scaling (X, see Eq.(5.6)) which is related to the expression degree of the respective
probes. The hook curve reveals the changing hybridization mode with increasing sigma: non-specific (N),
mixed N and S (mix), specific (S), saturation (sat) and asymptotic (as) ranges. The degradation hook and the
tongs-plot reveal the mean 3°/5 -intensity bias of the probes. The three branches of the tongs plot refer to
three probes nearest to the 3’-end (upper branch), nearest to the 5’-end (lower bramch) and located in the
middle in-between (middle branch). Note that the different branches split maximally in the S-range of
hybridization whereas no bias is observed in the N-range as predicted by theory (lines, see Egs. (5.8)
and (5.12) for the hook and tongs plot, respectively). The theoretical curves are calculated using the
formulae given in the previous section using the parameters given in the figure. The hook dimensions (a,
‘height’ of the hook, see Eq. (5.9); B, ‘width’ of the hook; 2(0), ‘start’ point; M, ‘end’-point) are very similar
for both arrays whereas the logarithmic 3’- and 5’-degradation levels (Eq. (5.15)) are markedly different.
The size of the moving window is decreased towards the right end of the tongs plot to compensate the
reduced number of probe sets in saturation range. As a consequence, the part of the curves beyond of the
maximum is prone to increasing error.

5.2.3 The 3’-intensity bias depends on the hybridization mode

Figure 5.5 shows the hook curves for two selected microarray hybridizations of differently
degraded RNA together with the respective degradation hook (panel above) and tongs
plot (panel below). The degradation hook shows essentially the same shape as the standard
hook. The curves reflect however different effects: The standard hook plots the mean
logged intensity difference between paired PM and MM probes. It consequently estimates
the intensity penalty of one mismatched base pairing in the respective probe/target-

duplexes. Contrarily, the degradation hook judges the logged mean intensity difference
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between probes located nearer and farther to the 3’end of the transcripts, and thus the 3°/5’-

bias of the probe intensities in the probe sets due to the degradation effect.

Interestingly, the different hybridization modes analogously affect the intensity differences
in the standard and the degradation hook as well. For example, upon non-specific
hybridization both, the PM/MM difference and the 3’-bias essentially disappear because
both effects, the MM-penalty and the 3°/5’-bias, require duplexing of the probes with the
intended targets. Non-specific binding doesn’t meet this criterion because the binding of
non-specific transcripts is indifferent with respect to the mismatched pairing of the middle
base of the MM probes and with respect to the degradation bias as well. Vice versa, both
hook-versions show their maximum in the S-range because specific binding is associated
with the intended intensity penalty of the MM-probes and of probes located more distant

from the 3’-end, respectively.

Note that the two standard hook plots shown in panel a and b of Figure 5.5 are of virtually
equal height owing to the similar MM-penalty (o0 = 0.83 — 0.85) whereas the respective
degradation hooks markedly differ in this respect (Aysys = 0.57 and 0.29, respectively)
revealing marked differences in the degradation level between both samples. Comparison
of the heights of both hook-types shows that strong degradation can affect the probe

intensities nearly by the same order of magnitude as one mismatched base pairing.

The tongs plots explicitly estimate the intensity bias at three positions of the probe sets and
thus it illustrates the progression of degradation with increasing probe index. The AX
curves of all three subsets (s =3, 5° and m) degenerate in the N-hybridzation range
indicating the absence of the 3’-bias for non-specific binding as discussed above (see also
Eq. (5.5) for x° « x). In the mix-range the A¥-curves split into three branches which
progressively diverge with increasing sigma and thus with increasing contribution of
specific hybridization. The ‘opening of the tongs’, i.e. the split between the 3’- and 5°-
branches, reaches its maximum in the S-range of hybridization in parallel with the
maximum of the hook curve and of the degradation hook. Subsequently, the different
branches start to converge as predicted for the range of saturation (see Eq. (5.5)). Both, the
experimental degradation hook and the tongs plot are well described by theoretical curves
based on the Langmuir-model of array hybridization in Eq. (5.12). The split parameter
Avyss characterizes the height of the degradation hook, or equivalently, the ‘tongs opening’
serving as a measure of the maximum vertical difference between the 5°- and the 3’-
branches of the tongs, respectively. Ay s> estimates the 5’-depletion of probe coverage in
terms of the logged concentration increment between the targets covering the 5’- and 3’-
probes (Eq. (5.15)). The examples shown in Figure 5.5 a and b refer to relatively strong

and weak depletion of targets with 5°/3’-concentration ratios of diongs= 10°7=0.27 and
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Figure 5.6: Collection of tongs plots taken from the ratQC data set. The RNA was extracted from liver
samples either after ex vivo incubation of fresh tissue (panel a, incubation time 0, 210 and 300 min) or after
thawing frozen tissue (b, incubation time 0, 40 and 60 min). The plots in panel ¢ and d show the tongs-
opening and the d* parameter of both series as a function of the incubation time, respectively. RNA prepared
from frozen samples degrades much faster than RNA from fresh samples. The insert in part b correlates the
d* and tongs opening parameters. Their relation follows a logarithmic function.

10%%°=0.51, respectively (see Eq.(5.15)). This analysis shows that degradation can

reduce the transcript concentration to less than one third of the initial transcript abundance.

Figure 5.6 shows a collection of tongs plots taken from the RatQC dataset [69]
characterizing the level of degradation of rat liver RNA under two conditions, namely after
incubation of fresh tissue (panel a) or after thawing frozen tissue (b). With incubation time
the opening of the tongs increases indicating progressive degradation of the RNA. The
time dependence reveals that RNA degradation in thawed tissue proceeds much faster:
Particularly, its degradation level after 50 min exceeds that of incubated fresh tissue after
300 min in units of the tongs opening parameter, Ays;s- (Figure 5.6¢). It has been argued

that freezing disrupts tissue structure, rendering the tissue highly sensitive to RNA
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degradation whereas autolysis of fresh liver tissue appeared to be a much slower

process [69].

In summary, the 3°/5’-bias of probe intensities essentially disappears for probes which
hybridize predominantly non-specifically and it markedly decreases for probes which are
strongly saturated with specific transcripts. The 3°/5’-bias consequently provides a suited
metrics for RNA-quality only in the linear range of specific hybridization in agreement

with the theoretical predictions made in Section 5.2.1.

5.2.4 Short 3’-probe sets are prone to non-specific hybridization

In the next step we selected the probe sets from the non-specific and specific hybridization
ranges of the hook curve and calculated their frequency histograms as a function of L; and
Lmax, the position of the nearest and of the most distant probe from the 3’-end in each

probe set.

Figure 5.7 shows the distribution of the fraction of probe sets of either hybridization range
normalized with respect to the total number of probe sets in the respective group. Probe
sets which cover the range near the 3’-end with L; < 100 and L;,.x < 500 are more prone to
non-specific hybridization than probe sets located at larger distances from the 3’-end with
L;> 100 and L;,.x > 500 which are more affected by specific hybridization on the average.
The relative difference of the fractions in both groups is large: For example, the fraction of
N-hybridized probe sets exceeds that of S-hybridized ones by about 50% at small
Lmax < 300. Vice versa, at large L.x > 700, the S-hybridized fraction considerably exceeds
the N-fraction. The observed distributions are very similar for the different arrays of the
Rat-QC data set showing that the positional-dependent variation of the hybridization mode

1s virtually insensitive to the degree of RNA-degradation.

We suspect that the increased fraction of non-specific hybridization towards the 3” end of
the transcripts is caused by inaccurate assignment of the 3’-transcript end upon probe
design and/or by variations of the 3’-end of the transcripts, e.g. due to effects such as
alternative polyadenylation as discussed previously [85, 86]. Alternative polyadenylation
leads to transcript isoforms with differences in the 3> UTR length. In these situations the
‘true’ 3’-end of the transcript can be located at L3> 0 and all probes at positions closer to
the apparent transcript end, L3’ > L > 1, will hybridize exclusively non-specifically owing
to the absence of specific transcripts. In consequence, the mean fraction of non-specific
hybridization of probes at small L will exceed that of specific hybridization on relative
scale, as observed. A very similar plot as shown in Figure 5.7 for the rat genome array
RG230A was obtained for alternative array types such the human genome HGU133A
plus2 (see Additional File of [87]).
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Figure 5.7: Distribution of probe sets hybridized predominantly with specific and non-specific transcripts as
a function of the position of the first (left part) and last (right part) probe of each probe set. The graphs show
that ‘short’ probe sets located nearer to the 3’-end of the transcript are more prone to bind non-specific
transcripts at (L; < 100 and L, < 500) than specific ones. The part in the middle shows the difference
between the respective fractions of probe sets whereas the part above normalizes this difference with respect
to the mean fraction of probe sets in both, S- and N-groups. Accordingly, the differential binding refers to
about 50% of all probe sets. The distributions are calculated using the ratQC data set.

An alternative option that potentially explains the increase of the relative contribution of
N-hybridization near the 3’-end can be sought in depletion of the respective targets in
solution due to the high number of probes with partly overlapping probe sequences in this
L-range. In consequence, a larger number of probes can be thought to compete for each
transcript-fragment than at larger distances L. This competition for the same target can
deplete its concentration in solution. Such target depletion effectively reduces the binding
affinity of the respective probes for specific binding [44]. In consequence this change can
increase the relative contribution of non-specific hybridization as observed in this L-range.
On the other hand, it has been shown that depletion is clearly governed by the binding
affinity of the probes which exponentially affects the abundance of targets whereas the
accumulation of partly overlapping probes near the 3’-end can be assumed to affect target
concentrations in a linear and thus much weaker fashion. We therefore suspect that target
depletion is, if at all, of secondary importance for explaining the high relative contribution

of non-specific hybridization at small L.

In summary, we found a biased distribution of specific and non-specific hybridization

along the targeted transcripts: Non-specific binding is more heavily weighted near the
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3’-end, presumably owing to its inaccurate assignment and to transcript isoforms with
variable 3° UTR lengths.

5.3 Metrics for RNA quality

5.3.1 Positional-dependent intensity decays

The degradation hook and the tongs plot shown in Figure 5.5 highly resolve the 3’-bias of
probe intensities in dependence on the hybridization mode. These plots allow classifying
each probe set into one of five different hybridization regimes within a microarray
experiment. However, this approach only coarsely resolves the positional bias along the
transcripts by collecting together three probe intensity values at two or three selected

positions only (3°, 5’ and m).

In this subsection we describe an orthogonal method which uses a more coarse graduation
of the hybridization mode while highly resolving the 3’-bias with respect to the probe
position. Particularly, we select two groups of probe sets taken either from the N- or the S-
hybridization range of the hook curve. We then calculated the logged mean intensities of
the selected PM-probes as a function of two alternative arguments, namely their probe
index k in the probe set or their probe distance L relative to the 3’-end given in units of the

number of nucleotides,

logI"(k) = <log I >‘ )

p=

h _ h I =
and logI'(L)= <10g L >‘LP=L18L with h=5N (5.16)

respectively. The angular brackets denote averaging either over all probes with the same
index k or over all probes with the same absolute position within a moving window L-
0L <L,<L+0L.

Figure 5.8a shows the obtained intensity profiles for the example shown in Figure 5.5a.
The mean intensity due to specific hybridization markedly decays with increasing distance
of the probes from the 3’-end of the transcripts whereas the intensity due to non-specific
binding is much smaller and remains virtually constant, as expected. The decay due to
specific hybridization can be approximated with a distant-dependent degradation index,
df;’s =d®(L) which is given by an ‘exponential plus constant’ decay law in analogy with
Eq. (5.17) (see below). The obtained curves well describe the intensity decay in the
intermediate L-range and its flattening at small and large L-values (see dotted curve b in

Figure 5.8a).
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Figure 5.8: Positional dependent intensity decays in relative and absolute scale. Panel a) Mean intensity
decays of specifically and non-specifically hybridized probes (Eq. (5.16)) referring to the data shown in
Figure 5.5a. The circles denote index-based averages which are plotted as a function of the mean position
per index (left part). The decays are normalized according to Eq. (5.17) (right part of the figure). The dotted
curves in part a show fits using different functions: Exponential plus constant (a) and exponential (b)
intensity decays which consider saturation without initial shift (Eq. (5.18)); exponential plus constant (c) and
exponential (d) decays with initial shifts (Eq. (5.18)). Panel b and c) Representative decays are taken from
the Rat-QC (b) and the RNeasy cleanup (c) data sets. The index-scaled decays in the left part and the L-
scaled decay in the right part of panel c are fit using simple exponential decays (d., = 0) whereas the L-
scaled decays in part b in addition use a constant d,> 0.
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This approach attributes the flattening of the decay near the 3’-end to the saturation of the
probes with bound transcripts. However this effect becomes relevant usually at large
intensity values only (log I~ log M >4; see Figure 5.5). The observed mean initial
intensity values of the decays are however much smaller (log I(3”) ~ 3). We conclude that
another effect and not saturation causes the flattening of the decays at small L-values. The
decrease of the relative contribution of specific hybridization near the 3’-end discussed in
the previous subsection well explains the observed trend: Non-specific hybridization still
adds a small residual contribution to the specific decays due to imperfect decomposition of
the different hybridization modes. The decrease of the contribution of specific binding
presumably due to inaccurate assignment and transcript isoforms then effectively increases
the relative weight of non-specific binding and adds a constant component to the decays at

small distances from the 3’end which in consequence flattens the initial decay.

To account for this effect we pursue a simple approach which neglects saturation and
normalizes the decays with respect to their maximum intensity level near the 3 end of the

transcripts,
d"(x)=1"(x)/I"3") with x=k,L and h=N,S (5.17)

The obtained degradation index due to non-specific hybridization is given by a constant,
d(x) = 1, to a good approximation (Figure 5.8). The degradation decays due to specific
hybridization are well described using a ‘shifted exponential plus constant’ functions of the

form,

X—X, .
d
- J+ . (5.18)

X

d(x)zds(x):(l—di)-exp(—

as illustrated by the dotted curves in Figure 5.8. The obtained decay length A characterizes
the mean slope of the 3’-bias in units of the number of probes (Ax) or nucleotides (Ar) after
which the variable contribution of the intensity decays to 1/e of its initial value. The
constant d*.. defines the residual constant intensity level at large distances from the 3’-end.
The shift-parameters xo = ko, Lo account for the potential flattening of the decay at small

arguments discussed above. Both decay constants are linked via the <AL>-value, i.e.
A =, -(AL) (5.19)
Panel b and ¢ of Figure 5.8 show selected examples taken from the rat-QC and the RNeasy

cleanup data sets which refer to different array types (RAE 230A and HG-U133A,
respectively). With decreasing RNA quality the decays become steeper paralleled by
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increasing absolute values of the limiting intensity levels but almost constant initial shift
parameters Lo = 150 — 200 and ko =1 - 2. Index- and nucleotide-based length scales give
rise to similar trends (compare the right and the left parts in Figure 5.8b and c). The L-
scale in units of nucleotides is associated with a slightly more flat and smaller asymptotic
level than the relative k-scale using the probe indices as argument. Note that about 95% of
the probes of the arrays are positioned with similar frequencies in the range 100 <L < 600
whereas only less than 5% of them are found at larger distances, however with a broad
distribution over the range 600 <L <2800 (Figure 5.2). Most of the more distant probes
refer to the probe indices k=10, 11. This assignment effectively compresses the
asymptotic region to the last two probes with indices k =10 and 11. As a consequence the
decays in relative k-scale can be described with sufficient accuracy using a ‘single
exponential’ decays (Eq. (5.18) with d..*=0) where the values d(10) and d(11) roughly

refer to the limiting decay level obtained in the fits using the L-scale, d..".

The L-decays of specifically hybridized probes obviously behave differently for L > 600
showing a less pronounced loss of intensity than for L < 600. The origin of this difference
1s unknown. The standard error of the experimental decays roughly agrees with the symbol
size (k-dependencies, left part of Figure 5.8b and c¢) or it slightly exceeds line
thickness (L-dependencies, right part of Figure 5.8b and c¢). The small oscillations in the
decays and the relative increase at L > 600 thus reflect systematic effects presumably due
to differences of the probe properties in the different subensembles of probes referring to
each data point such as their binding affinity and also their degradation degree. Recall that
the number of probes drastically decreases at L > 600 which makes this range less relevant
for correcting purposes of the majority of probes. We exclude this range therefore from

curve fitting.

Our fits show that the values of the decay parameters systematically depend on the chosen
decay function and strongly correlate each with another. To illustrate this correlation we
show fits with variable d..- but constant A, = 150 in Figure 5.8b (right part) and fits with
constant d.." =0 but variable A, in Figure 5.8c (right part). The values of the variable
parameters d..” and A, systematically decrease with progressive degradation. Both options
equally well describe the decaying part of d(L) in the range 100 <L < 600.

To obtain a robust decay characteristics we substitute the exponential fit functions in

Eq.(5.18) by a simple two-point estimate

logd* = <10g IS>k=10J1 —<10g I >k=l’2 (5.20)

This logged degradation ratio characterizes the intensity decay in the index-range

Kstart - Kenda =2-10, or equivalently, in the positional range Lt - Lena=<L>12 -
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<L>10,11~ 150 - 550 which comprises the majority of more than 95% of all probes. The
degradation ratio can be transformed into estimates of the decay length of the exponential
decays: A, =8/Ind" and A, = 8-<AL>/ln d“.

Please note that the decay function defined in Eq. (5.17) estimates the fold change of

transcript abundance at position x and Xy, to a good approximation, i.e.

d(x)=[S], /[S],, (5.21)

The degradation ratio (Eq.(5.20)) consequently estimates the mean fold change of
transcript abundance reported by the probes positioned near the 5°- and 3’-ends of the
probed range. It represents an alternative estimate of the tongs opening parameter
=10 (Eq. (5.13)). Figure 5.6¢c shows the time course of
RNA degradation in the Rat QC experiment using the tongs opening (panel ¢) and the

introduced above, d“ e d,, .
d~ (panel d) parameters. Both measures strongly correlate (see insertion in Figure 5.6d) and

essentially reflect the same degradation behavior of the samples studied.

In summary, the effect of degradation can be described as a function of the probe position
in terms of a ‘shifted exponential decay plus constant’-function using either the probe
index or the ‘absolute’ probe position as argument. This information can be further
condensed into a single degradation ratio parameter characterizing the fold change of

transcript abundance over the length of the DNA region interrogated by the probes.

5.3.2 3’/5’-controls are affected by the hybridization mode

It was previously shown that the 3'/5' intensity ratios of special control probe sets
interrogating long transcripts such as GADPH and beta-actin might not represent a
sufficient measure of the degradation bias at small expression degrees because non-specific
binding leads to an underestimation of the 3°/5’-bias [45]. Here we show that the controls
are often prone to saturation which also leads to the systematic underestimation of the
3°/5’-bias (see also Eq.(5.5)).

The threshold hook represents a modified version of the degradation hook described in
Section 5.2.2. It defines a threshold of the 3’/5-intensity ratio of the probe sets used to
assess RNA-quality such a GADPH or beta-actin. The threshold hook accounts for the fact
that the probe signals are affected by non-specific binding and by saturation. Both effects
give rise to an intensity-dependent threshold for estimating good RNA-quality.



5.3 Metrics for RNA quality 71

a hybridization mode: b
oo N mix S sat as )
A 08
5 (apparent) threshold A,
o 4
DR 2 FN=0
K threshold hook —g-,"
:: good RNAquality v 04
w 02 n
Q.m qf 0. A73'/5‘=0 6
00 00
i / 2 3 \ e 2 3 4
non-specific - saturation
background | z:3-/5- = 0.5<logl, +logl > level ):3.,5. = 0.5<logl, +logl >
evel logM

Figure 5.9: Threshold hook for estimating good RNA quality using control probe sets: (a) Constant
(apparent) and variable (threshold hook) RNA quality threshold. The true threshold depends on the
hybridization regime and vanished upon non-specific hybridization and upon saturation. (b) Error estimates
of GADPH-controls taken from the tissue data set (see text).

In the first step one transforms the intensity values of the control probes into hook

coordinates

+ <10g IPM>

3'probeset

zg = 4((1ogI™)

log s = A = (logI™)

5'probeset )

g™ (5.22)

3'probeset 5'probeset

In contrast to the standard hook (Eq. (3.4)) we here use only the intensities of PM-probes.

In the second step, one calculates the threshold hook as a Ajzvs-vs-Z3-s-plot under the
condition that both the 5’- and 3’-probes hybridize according to the hyperbolic Langmuir
isotherm (see Eq. (3.2)), however using different specific binding activities due to the
different degradation indices of the respective transcripts, ds> < ds(Eq. (5.3)). The delta-
value is expressed as a function of sigma using the degradation hook-formalism described
in the previous subsection after neglecting the MM-probes (use Eq. (5.12) with o = -).
The start and end point of the threshold hook are taken from the standard hook analysis

which provides these data with relatively high accuracy.

The obtained hook curve thus describes the ‘trajectory’ of a pairing of 3’/5-probe sets upon
changing expression degree of the respective transcript (see Figure 5.9a for illustration).
Note that the delta-coordinate directly provides the apparent logged degradation ratio
(Aszs = -log(rs3*™), see Eq. (5.4)) whereas the ‘true’ degradation index is given by the
height parameter used in the fits (Aysys = log(rss™), see Eq. (5.13)). The latter true
degradation index is adjusted in such a way that the maximum value of the apparent
degradation ratio agrees with the empirical RNA-quality threshold of the chosen control
probe. Hence, the threshold hook transforms the constant RNA-quality threshold into a

variable one which depends on the hybridization mode of the controls. In consequence,
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different data points residing along one hook curve refer to identical true degradation
levels irrespective of their different delta coordinates characterizing their apparent

degradation level.

The application of a constant threshold instead of the variable one will cause false quality
estimates. We estimated the error of the 3°/5’-intensity ratio of the GADPH-control taken
from the tissue data set as example: Figure 5.9b shows the hook-coordinates of the
GADPH control probe sets of the 677 samples of the human tissue data set (see
Eq. (5.22)). The threshold hook and the horizontal line provide the true and the apparent
(false) thresholds for good RNA quality in terms of the logged 3’/5’-intensity ratios,
Az s> < Amreshold- The constant threshold is assumed to agree with that of the hook curve in
the range of specific hybridization. It consequently forms the tangent of the hook-curve at
its maximum referring to the S-range of hybridization. The hook curve describes Ahreshold
under the realistic assumption of saturation whereas the constant threshold neglects this
effect. As a consequence, data located between both thresholds (colored in blue) define
false positives (FP) with respect to the constant threshold whereas data below the hook and
above the line are true positives (TP, red) and true negatives (TN, orange), respectively.
The number of false negatives (FN) is zero because the hook threshold remains below the
constant one. The positive predictive value (PPV =TP/(TP+FP)) and the specificity
(Sp =TN/(FP+TN)) are 0.48 and 0.79, respectively, meaning that less than 50% of the
3°/5’ controls properly estimate the quality of RNA in terms of good and degraded one.
This particular example assumes that the 3'/5' signal ratio for GADPH for good RNA is of

no more than 3, or in our notation Aj-s> <log(3) = 0.5.

To assess the effect of the hybridization mode on the 3°/5° controls we first estimated the
hybridization regime of the GADPH and beta-actin controls of the rat-QC and the human
tissue data sets using modified hook plots (Figure 5.10). They depict the logged PM-
intensity ratio of the 3’- and 5°-probe sets of the controls (A“"™5.s,, Eq. (5.22)) along the
horizontal coordinate and either the sigma coordinate of each probe set (2, Eq. (3.4)) or the

mean sigma of both probe sets (Z°""

315, Eq. (5.22)) along the vertical coordinate axis.
In the former plots, each control (GADPH and beta-actin) thus provides two data points
per array referring to the 3’- and 5’-probe sets, respectively (see green and blue dots in
Figure 5.10). In the latter plots both data points are merged together to illustrate the mean

intensity trend of the controls as a function of the degradation index.

To judge the hybridization mode we also depict the sigma coordinates of the non-specific
background intensity (N, red dots) and of the asymptotic saturation level (as, black dots)
obtained from the standard hook analysis of each of the arrays. Recall, that the sigma-

values of the N- and the as-mode limit the range of possible probe intensities. They
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Figure 5.10: Hybridization and RNA-quality characteristics of the GADPH and beta-actin control probe sets
in the tissue (left) and rat-QC (right) data sets. Each data point refers to one array of the respective series.
The abscissa provides the degradation level in units of the logged 3'/5'- mean intensity ratio of the respective
control data sets. The vertical axes plot either sigma coordinates of the 3'- (green dots) and 5'- (blue dots)
probe sets of the controls, or their mean (dark blue circles). The red and black dots mark the respective
sigma-levels of non-specific binding and of saturation, respectively. The vertical orange lines indicate the
constant quality threshold separating good and poor apparent RNA quality. The ‘threshold’ hooks (orange)
refer to the same quality threshold. They however explicitly consider its decrease in the N- and sat-ranges of
hybridization. Application of the constant threshold thus produces false positives together with true positives
and true negatives.

consequently constitute an intrinsic metrics allowing to assign the probes to one of the five
possible hybridization modes as indicated in the figure (see also Figure 5.5). It turns out
that small values of the degradation index (A™".5.< 0.2) are often associated with
sigma-values near the asymptotic saturation limit of the intensities especially in the tissue
data set. We argued before that intensity-based degradation measures are not suited to
exactly estimate the degradation level in the saturation limit of the probes. In best case they
underestimate the true degradation level; in worst case the intensity ratios become

meaningless.

It has been recommended that good-quality samples should have a 3'/5' signal ratio for
GADPH and beta-actin of no more than three, or in our notation of
AL, 5 < log(3) = 0.47 [83]. We display this threshold as the vertical orange line in both
parts of Figure 5.10. It consequently divides the data points of each data set
into (apparently) bad and good ones for Al > threshold and A®™™.. 5. < threshold,

respectively.
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The 3°/5’-intensity ratio of the probe sets is however not constant for a given RNA-quality
level. Instead it depends on the hybridization mode (see above and Eq. (5.5)). Particularly,
the 3°/5’-intensity ratio referring to a constant RNA-quality level follows the degradation
hook shown in Figure 5.5: It is maximal in the S-hybridization range and vanishes near the
N- and as-ranges of hybridization. We plot representative degradation hook curves in
Figure 5.10 (see the orange curves; note that the x- and y-axes are exchanged in
comparison with Figure 5.5) which are calculated using the threshold value of good RNA-
quality (Ays s> = 0.47) the mean sigma-levels in the N- and as-ranges of the respective data
sets. Hence, the degradation hook illustrates that the threshold value of the 3°/5’-intensity
ratio strongly decreases in the mix- and sat-ranges due to the progressive effects of non-
specific hybridization and of saturation, respectively. It consequently defines a variable,
sigma-dependent threshold-curve which allows differentiating between bad and good RNA
quality data independent of the particular hybridization mode of the respective probes. In
other words, it is more appropriate to apply this variable 3°/5’-‘threshold hook’ for quality
assessment beyond the linear hybridization range instead of using a constant threshold

value of the 3°/5’-intensity ratio.

For example, a large fraction of the GADPH- and beta-actin intensity ratios of the tissue
data set meet the constant quality criterion, AL, o < threshold = 0.47, indicating
apparently good RNA quality (Figure 5.10, right part). Consideration of the hybridization-
dependent ‘threshold hook’ divides this region further into true positive estimates
(A®"L./5- < hooKreshoid) and false positives (hooKreshola < A°™™5s-< threshold), where
the latter data are located between the curved and linear thresholds as shown in Figure
5.10. We estimated a positive predictive value for GADPH controls of about 0.48 which
reflects overestimation of RNA-quality for about 50% of all 677 arrays of the tissue data
set. Note also that strong saturation of the probes can completely prevent detection of poor

RNA-quality samples because the respective intensity ratio levels off to A“™™5./5. = 0.

The mean sigma coordinates (Z°"™.5) of the Rat-QC data set are found approximately
halfway between the respective N- and as- levels indicating that the controls are
predominantly hybridized in the S-range (Figure 5.10, left part). Application of a constant
quality threshold seems appropriate for this data.

The sigma values of both data sets studied clearly indicate the decrease of the mean
intensity of the controls with decreasing RNA quality due to the loss of material assumed,
e.g. in Eq. (5.21). In consequence, the hybridization regime of the controls can shift with
changing RNA-quality. Note also that GADPH is associated with slightly larger probe
signals than beta-actin in both data sets. Beta-actin controls are consequently less prone to
saturation than GADPH controls.
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In summary, control probes can overestimate RNA-quality if one uses a constant threshold
criterion because the true threshold level strongly decays for saturated probes. The problem
can be fixed either by using an intensity dependent ‘threshold’ hook or by using alternative

RNA-quality estimates such as the degradation ratio d.

5.3.3 Affy-slope is affected by absent probes

A widely applied metric for RNA quality is the ‘RNA degradation plot’ provided with the
R package affy [15-16]. The RNA degradation plot displays the mean log intensity
averaged over all probes with the same index k of one microarray as a function of the
probe index, k =1,...Np:. The slope of the regression line then provides a summary
measure to characterize the mean degree of RNA-degradation in a chip-specific fashion.
Note that the affy-slope parameter originally does not intend to serve as an absolute RNA
quality measure per se but instead, represents a relative measure for comparing RNA

quality between different chips in a particular series of measurements.

However, the affy-slope degradation plot is virtually identical with the reciprocal
positional dependent degradation index introduced above in Eq. (5.17) (dh(k)'l) except the
fact that it considers all probes of the array whereas our approach separately averages over
the N- and S-subensembles referring either to the S- or N-hybridization regimes,
respectively. The affy-slope estimates are expected to underestimate the degradation level
owing to the inclusion of predominantly non-specifically hybridized probes (so-called
absent probes) which do not respond to RNA quality as shown above. More importantly,
the chip-to-chip variability of the fraction of absent probes (%N; as determined by methods
such as MASS or hook) is expected to affect the affy-slope measures by factors which are
not or only weakly related to RNA quality.

To illustrate this effect, a series of affy-slope curves referring to different degradation
levels are shown in Figure 5.11a. Panel b of the figure plots our degradation profiles d*(k)
of the specifically hybridized probes for the same arrays. Both presentations provide
similar trends for the microarrays with similar %N-values. However, affy-slope and our
degradation plot provide different results for arrays with marked differences of %N, as
expected. Particularly, affy-slope tends to underestimate the slope for large %N values and

thus to overestimate RNA quality.

Hence, the apparent degradation ratio derived from the simple affy-slope intensity
measures 1s strongly modulated by the fraction of non-specifically hybridized ‘absent’
probes leading potentially to the systematic overestimation of RNA quality. Contrarily, the

proposed use of specifically hybridized probes largely removes this bias from the data and
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Figure 5.11: RNA degradation plot of all probes (panel a) and degradation profile of specifically hybridized
probes (b) for microarrays selected from the human tissue data set. Panel a shows the plots obtained using
the affy package [75] whereas the curves in panel b are given by the inverse of the degradation function
k)" (see Eq. (5.17)). The slopes of most of the curves rank in the same order in both panels, except the two
curves of steepest slope which reverse order in both parts of the figure owing to the different percentage of
absent probes. The percentage of absent probes are %N = 40% (GSM175845), 69% (GSM176301),
50% (GSM175850) and 53% (GSM176120) as determined by the hook method.

provides a reliable measure of the degradation degree which can be consistently compared
between different arrays.

5.3.4 Array-degradation metrics correlate with RIN

The RNA Integrity Number (RIN) provides a numerical value for the assessment of RNA
quality based on the electropherogram trace of a RNA sample captured with the Agilent
Bioanalyzer [72]. The RIN is widely used and its scale ranges from 1 to 10 (most to least
degraded). A RIN-cutoff of RIN = 7 is recommended for obtaining good-quality RNA for
microarray analysis [84]. Figure 5.12a compares our d degradation measure with the RIN
reference values obtained in the ratQC experiment. Both measures correlate strongly,
however, the two samples and incubation conditions result in different slopes of the
regression lines. In other words, each microarray degradation parameter does not
unambiguously transform into one RIN-value especially at larger degradation levels.
Instead, the two different samples and incubation conditions reflect a bimodal relation
between the two types of measures: each RIN value splits into two d options and vice
versa. Note also that correlation coefficient between RIN and our improved d*-degradation
measure exceeds that between RIN and affyslope (r = 0.95 vs 0.92, RatQC fresh) owing to

the reasons discussed in the previous subsection.

In panel b of Figure 5.12 we re-plot the d degradation parameter as a function of the mean
transcript length measured independently using the Bioanalyzer [69]. The two branches of

the d* -vs-RIN plot merge into one within the error limits. This result confirms that our
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Figure 5.12: Comparison of microarray degradation measures (d*and 57/3 -ratio of the hybridization
controls) with the RNA integrity number (RIN, panel a and c) and with the mean length of the
transcripts (panel b) obtained in the ratQC experiment [69]. The d* parameter split into two branches for the
two sample treatments when plotted as a function of RIN whereas the d* data virtually merge into one
branch if plotted as a function of transcript length. Panel d correlates the d* and the 5°/3 - intensity ratio of
the control probes in logarithmic scale. The vertical and horizontal orange lines indicate the respective
quality thresholds. Good RNA-quality probes are found in direction of the arrows.

microarray-based degradation measure more directly relates to the mean transcript length
and thus to the state of the mRNAs that the microarray experiment intends to quantify. The
RIN however represents an alternative integrity measure capturing a series of
electropherogram features that are indicative also for additional properties of the RNA
solution such as the ratio of larger to smaller molecules and how far the degradation
process has proceeded [69]. The correlation of the 5°/3” ratios of the degradation controls
with the RIN-numbers reveals subtle differences compared with the behavior of the d~
parameter (Figure 5.12c). Particularly, the hybridization control-measures taken from the
‘fresh’ samples are virtually independent of degradation at RIN<7 whereas for RIN>7 both
treatments give rise to similar behavior of the controls. Recall that the GADPH and beta-
actin controls cover a slightly wider range of the transcripts (from about 200 to about
1000 nt, see Figure 5.2b) than the d degradation ratio which probes the range from about
100 to about 550, on the average (see Figure 5.2c). This difference presumably explains
the smaller values of the control ratios at larger expression degrees. More importantly, the

d parameter is calculated as the average over a large number of probes. Presumably both
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types of parameters respond differently to changes of the length distribution of the

transcripts due to degradation. Below we address this issue more in detail.

The regression line between the d* parameter and the 5°/3’-intensity ratio of the controls
allows to transform the quality threshold of the latter ratio into a d* threshold (Figure
5.12d, see orange lines). We replot these thresholds into panel a and ¢ of Figure 5.12: The
RIN threshold is clearly more restrictive assigning more samples to bad RNA-quality than

the threshold of the microarray-based control probes.

5.4 Degradation reduces total transcript abundance

We so far estimated RNA quality in relative units using suited 5°/3’-intensity metrics
which reflect the decrease of transcript abundance with increasing distance from the
3’-end. Trivially, this effect is expected to reduce the total amount of mRNA used for
hybridization. The decrease of the mean intensity of the control probe sets with increasing
degradation ratio as shown in Figure 5.10 confirms the decrease of the total amount of the
respective specific transcripts with progressive degradation. Figure 5.10 also shows the
non-specific intensity level of each of the arrays studied (red dots), which tends to decrease

with increasing degradation.

The hook method enables the independent estimation of the mean levels of non-specific
‘background’ hybridization and that of specific expression using the simple summary
measures B (see Eq. (3.14)) and ¢ (Eq. (5.10) ) which are based on large ensembles of
probe sets on each array. Particularly, the width of the hook curve 3 has been shown to
relate to the total amount of RNA material [45, 57]. Figure 5.13a shows how [ decreases
with progressive degradation. The observed decrement indicates that the amount of RNA

material decreases by about 40% in the Rat-QC experiment.

The degree of specific binding drops upon degradation, however to a considerable smaller
degree than the amount of non-specific binding (Figure 5.13b). This discrepancy surprises
because naively one expects that the loss of material similarly affects specific and non-
specific binding on the average, i.e. d" = d°. The mean hybridization levels of specific and
non-specific binding are however directly related also to the respective mean binding
constants, <K"5> and <K™>, respectively (Eq. (5.3)). We have previously shown, that the
decrease of RNA-material used for hybridization increases the specific binding constant
due to weaker bulk hybridization and vice versa [57]. In consequence, this so-called up-
down effect will partly compensate the decrease of the concentration of specific transcripts
giving rise to the smaller decrease of the specific hybridization strength upon RNA

degradation.
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Figure 5.13: Hook-hybridization characteristics of the arrays of the ratQC data set. (a) The width of the
hook curves fincreases with progressive degradation indicating the decrease of the non-specific background
due to the loss of material (see Eq. (3.14)). Log d is the mean degradation index (Eq. (5.2)) and K the slope
of the regression line. The mean level of specific hybridization changes only weakly with degradation (b).
The fraction of absent probes is virtually unaffected by degradation (c).

Part ¢ of Figure 5.13 depicts the percentage of absent probes detected on each of the arrays.
It remains essentially unaffected by RNA degradation. This result shows that the loss of
material does not affect the detection threshold of the array experiment for specific

binding.

5.5 Correction of the 3’/5’ bias

5.5.1 RNA-quality scaling of gene expression

It has been previously found that, although moderate levels of RNA degradation are
tolerated by differential expression analysis, beyond a threshold especially long targets
provide erroneous expression results [69, 88]. Systematic large-scale microarray analyses
reveal that the expression values of up to 30% of all probed genes significantly correlate
with degradation quality measures such as the 3°/5’-ratios of control genes [63, 76]. The
observed correlations can be well explained on the basis of the results presented here: For

example, it is found that the expression values of weakly expressed genes negatively
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correlate with the quality of their transcripts [63]. The authors explain this “...the worse the
quality the stronger the signal...’-effect by either the enrichment of low quality RNA in the
low signal range due to nonspecific hybridization or by compensating effects due to chip-
to-chip normalization. The former interpretation disagrees with our results presented in the
Section 5.4. We found that progressive degradation dilutes the sample and by this way
decreases the amount of nonspecific hybridization. On the other hand, the observed

[3

negative correlations also mean °...the better the (apparent) quality the weaker the

b

signal...” in agreement with our results: For low intensity signals the 3’/5’-ratio indeed
improves with decreasing intensity suggesting better RNA-quality. We demonstrated that
this trend is however caused by the increasing amount of nonspecific hybridization and not

by improved RNA-integrity.

Considering also correlations between 3°/5’-quality measures and signal values (called
LEV, ‘labeling extension values’), Lee et al. [76] found that LEV are typically small at low
expression values but step-wisely increase beyond a certain expression threshold. The
authors hypothesized that the positional 3°/5’-bias is less notable for low abundant
transcripts due to inefficient reverse transcription. However, according to our results, the
observed trend can be explained by the dominance of non-specific hybridization lacking
positional 3’-bias at small expression levels. These two examples demonstrate advantages
of model-based expression analysis using physicochemical hybridization theory compared

with simple correlation analysis.

The aim is therefore to use the degradation model for correcting the 3’-probe intensity bias
to provide (largely) unbiased probe signals for downstream analysis. One expects that the
loss of RNA material in general and particularly, RNA-fragments probed far away from
the 3’-end, systematically decreases the apparent expression degree extracted from

microarray probe intensities.

5.5.2 Correcting the 3’/5’ bias of probe intensities

Two main factors related to RNA quality potentially affect the intensities of the probes : (1)
the distance of a probe relative to the 3’-end of the transcript, L (or, alternatively, the probe
index in the probe set, k, which counts the probes in direction away from the 3’-end of the
transcript) and (ii), the hybridization mode [87]. The specific hybridization regime below
saturation 1is particularly prone to biased intensities as opposed to non-specific

hybridization and specific hybridization in the asymptotic saturation range.

Under consideration of these factors, the raw probe intensities of each sample are corrected
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Figure 5.14: Tongs plot for a single array hybridized with strongly degraded RNA in the RatQC experiment
(RIN = 6.1) before (panel a) and after (panel b) correction of the probe intensities for the 3 -bias (compare
Figure 5.6). Panel ¢ shows the respective distributions of expression values before correction and after
index- and position-based correction (see next section). The right flank clearly shifts towards larger
expression values after correction.

by the following algorithm:

1. Calculate the degradation hook AX, . -vs-X using all perfect-match probe
intensities for the current array as described in Section 5.2.2.

2. Probes are considered as specifically hybridized if the sigma-value of the respective
probe set meets the condition X35 —-04<AX, . <XU5+0.2  where
o =argmax{AZ, . (»)} ‘

3. The decay function d*(x) (x =k, L) is calculated as described in Section 5.3.1 using
the subensemble of all specifically hybridized probes.

4. The mean fraction of probe intensities due to specific hybridization is estimated for
each probe set as, (y) =A%, (y)/AZis .

5. The correction function is calculated as weighted sum of the decay functions due
to specific and non-specific hybridization where the latter one is simply set to unity,
A" = Lie.Cluy) =’ () £ (y)+d" () (1= () = )£ () + (1-£3(y))

6. The biased probe intensities are then corrected using the inverse of the correction
function, ™" =I"/C(x,y).

Each probe intensity is rescaled according to value of the mean intensity decay at its
position (x = k or L) and according to its hybridization mode as indicated by the abscissa-
value of its probe set y. Consequently, probe intensities taken from the non-specific
hybridization range remain uncorrected. With increasing degree of specific hybridization
the probes are progressively scaled up with increasing distance from the 3’-end of the
transcript. The maximum correction applies to probe sets in the S-hybridization range. MM
probe intensities are scaled using the mean logged MM-intensity of the probe set as

argument.

Figure 5.14 illustrates the effect of the correction by replicating the tongs plot for a sample
from the RatQC data set with strong degradation (RIN = 6.1, also compare Figure 5.6)

before (panel a) and after (panel b) correction with the algorithm described above. It
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demonstrates that the tongs opening, and thus the degradation bias affecting particularly
specifically binding probes, is largely removed from the intensity data. Figure 5.14c shows
the frequency distributions of expression values obtained after hook calibration of
uncorrected, index- and position-based 3’-corrected intensity data (see below). The
correction shifts the right flank towards larger expression values. Both correction methods
affect the distribution nearly identically. The distribution reflects the mean correction

amplitude without emphasis on the individual probe sets.

5.5.3 Index and position based correction

We here compare the effect of the correction on the obtained expression values using either
on the absolute probe position (‘L-correction’) or on the relative probe position (index-
based, ‘k-correction’) relative to the 3’ transcript end. Consider the special case of
predominant specifically hybridized probes below saturation (S-regime, fy=1) which
implies that expression and intensity values roughly agree owing to the small effect of non-
specific hybridization. We also assume an exponentially decaying correction function for
sake of simplicity (d...=0 in Eq.(5.18)). The logged mean intensity averaged over a
selected probe set then becomes after correction (compare the correction algorithm in
Section 5.5.2 with f;=1)

<log Lo >pset = <10g I£> +<x>pSet /A, -In10. (5.23)

pset

Let us first consider the index-based correction. The probe set averaged mean index is
identical with the array-related mean index averaged over all probe sets of the array, i.e.
<k>pset :<k>my, if all probe sets contain the same number of probes. This applies to
GeneChip microarrays to a good approximation because the overwhelming majority of
probe sets contains the same number of probes per set (usually ky.x=11 and thus
<k>uray=5.5). The index-based correction consequently scales the intensity values
referring to specific hybridization (fs= 1) of one array by a constant factor, or, in log-scale,
adds the increment term ~(k >amy /A, (see Eq.(5.23)).

Contrarily, the position-based correction applies a specific correction ~<L>pse[ /A, toeach
probe set. The mean position of the probes of each probe set varies from set to set and thus

it usually deviates from the mean value averaged over all probe sets on the array, i.e.
<L>pset # <L>array ’

Using the previously defined <AL> (Eq. (5.1)) then allows to link the index- and position-
corrected mean intensities
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Figure 5.15: M-A plots of the L-corrected versus uncorrected intensities (panel a), and L-corrected-versus-
k-corrected intensities (b) of the RIN = 6.1 sample of the RatQC series. Each symbol refers to the mean of
the logged probe intensities averaged over the probe set. Panel ¢ — f show the respective M-A plots of
expression values obtained after intensity calibration using the hook method (panel ¢ and d) and MASS (e
and f). The lower quartile of probe sets which are located closer to the 3’-end of the transcripts are colored
in red and the upper quartile of probe sets located far away from the 3 -end are colored in green.
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~ <10g Illj’k’“’“> + <L>‘°SC‘

(logIy~=m) re (D),

~11-(k),.. /X -In10. (5.24)

pset

Eq. (5.24) shows that both correction types agree if the set averaged mean position of the

probes agrees with the respective total array average, <L>pset = <L> o For probe sets with

<<L>my) the index-based
, this

relation reverses. The analysis of a series of different array types shows that the 25%- and

a mean position nearer the 3’-transcript end (i.e. <L>pset

correction exceeds that of the position-based correction whereas for <L>pset > <L>arra
75%-percentiles of the distributions of <L>,, provide correction factors
((L)pset /<L>array —1) =-0.4 — -0.5 and +0.4 - +0.5, respectively (compare Figure 5.3).
Hence, the position-specific correction deviates from the index-based correction by more
or less than +0.1/-0.1 for 50% of the probe sets if one assumes Ax= 10 referring to
relatively strong degradation (e.g. RIN = 6.1 of the ratQC data set, see Figure 5.15b). In the
mix-range one expects the same qualitative relations between both options for correcting
the 3’-bias of expression values, however with a systematically reduced amplitude due to
the down-weighting of the effect (fs< 1).

Hence, the index-based correction effectively applies the same factor to all probe sets
which is scaled solely by the degree of specific hybridization whereas the positional
correction applies a specific factor to each probe-set. The M-A—plot in Figure 5.15b shows
the difference between L-corrected and k-corrected intensities. Each point represents the
mean of the logged probe intensities over a probe set using the same strongly degraded
microarray sample as in Figure 5.14 (RIN = 6.1 from the RatQC experiment). The points
have been colored according to the average location <L> of the probes within each probe
set: the lower quartile of probe sets located closer to the 3’-end of the transcripts are
colored in red and the upper quartile of probe sets located far away from the 3’-end are
colored in green. Figure 5.15a shows that the log-scale correction increment increases with
increasing intensity level of the respective probes set, with the strongest corrections of
Alogl = 0.55 for the probe sets which are more distant to the 3’ end. A comparison of the
red and green symbol in Figure 5.15b shows that probe sets located on the average nearer
to the 3’-end of the transcripts are corrected to a less degree than probe sets located more
distant from the 3’-end of the transcripts for the position-based correction compared to the

index-based corrections.

Panels c-f of Figure 5.15 show similar M-A-plots as in panels a and b, but this time based
on expression values as computed with MASS5 and with the hook calibration methods. The
normalization and summarization steps applied to the probe intensities result in a more
heterogeneous effect of the corrections which however shows the same general trend as

discussed for the intensity data.
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In summary, the k-correction applies the same positional factor to all probe sets. In
consequence, the probe set-specificity of the correction is solely determined by the degree
of specific hybridization. Contrarily, the L-correction applies a specific factor to each
probe-set depending on the particular location of its probes. Comparison of both correction
methods shows that probe sets located on the average nearer to 3’-end of the transcript are
corrected to a less degree using their absolute position than probe sets located more distant
from the 3’ transcript end. Hence, the L-correction is more specific with respect to each
particular probe set. On the other hand, the k-correction is more robust with respect to

outliers.

We recommend use of absolute probe positions to cope with the effect of differently
distributed probes. In practice the intensity changes due to index-based and position-based
correction differ only slightly with, in general, small differences in the resulting expression

values.

5.6 An R package for the analysis and correction of
RNA quality effects

We developed the R package AffyRNADegradation that facilitates the analysis of RNA
quality of Affymetrix expression data. It provides programmatic access to the RNA quality
measure described in Section 5.3.1 that overcomes the drawbacks of existing methods by
strictly referring to specific hybridization. Furthermore, it enables correction of the 3’-
probe intensity bias for improved downstream analysis. We will here illustrate the
functionality of the AffyRNADegradation packages using the RNeasy data set where the
same cell extract has been used for multiple microarray hybridizations, however either

prepared with RNeasy to remove RNA degrading enzymes, or not [81].

The first package functionality addresses the analysis of the effects of RNA degradation
and amplification on the microarray signals. The degradation hook-plot, shown in Figure
5.16a and b, displays this 3°/5” intensity difference in dependence on the mean logged
probe intensity approximating the expression degree of the respective gene (see Section
5.2.2). Cross-hybridization of partly matching targets of other genes causes nearly equal
intensities for weakly expressed genes [37]. With increasing expression competitive
binding of specific targets progressively unmasks their actual 3°/5 gradient, until probe
saturation sets in. Desirable would be equal intensities for 3’ and 5’ probes for all
expression levels. The maximum height of the hook-plot reflects the relevant 3°/5’-

intensity gradient of the selected array enabling the unbiased comparison of differentially
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Figure 5.16: Degradation hook plots referring to strongly and weakly degraded RNA taken from the RNeasy
data set before (panel a) and after (panel b) correction using AffyRNADegradation. The height of the hook
curve increases with increasing degradation level. Panel ¢ shows the respective probe positional decays d(x)
as plotted by the AffyRNADegradation package: the worse the RNA quality, the steeper is the respective
decay.

expressed genes under variable RNA quality. The hook-plot is accessible using the
PlotDegradationHook function in the package. A complementary representation is

the Tongs Plot (see Section 5.2.2) which is accessible using the P1ot Tongs function.

The second package functionality addresses the estimation of RNA quality of a particular
sample. We found in Section 5.2.3 that one should only use specifically hybridized probes
for the estimation of RNA quality because of the 3°/5° gradient of the intensity as a
function of the expression degree. For these probes we compute the mean probe intensity
separately for each probe index k =1...11 starting from the 3’ end of the target transcript.
Figure 5.16¢ shows the resulting probe positional intensity decay after normalization with
respect to the mean intensity for the first probe k = 1. Alternatively the intensity decay can
be calculated as a function of the distance L of the probes given in units of nucleotides

from the 3’-transcript end (see also Figure 5.8).

We determine the decay-length parameter d from the mean intensity decays of all
specifically hybridized probes. As we showed in Section 5.3, it provides an accurate
estimate for the RNA quality of a particular array hybridization improving other array-
based metrices. The d(x =k,L) plot is available via the PlotDx function and the RNA
quality estimate is available via the d function in the AffyRNADegradation package.

The third package functionality addresses the correction of the RNA quality bias.
Differences in RNA quality and the resulting probe positional intensity decay are technical
artifacts which can affect expression measures and the results of differential expression
analysis. We here aim at removing the systematic differences in probe positional intensities
between different conditions. Figure 5.16a shows two such conditions in the example data
relating to degraded transcripts due to increased presence of RNases not removed by
RNeasy treatment. AffyRNADegradation uses a correction function that reverses the probe
positional intensity decay d(x) after applying the expression level dependency of the

hybridization mode as described in Section 5.5.2. Optionally, the correction can be
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performed based on probe indices k as well as probe distances L. Figure 5.16b shows the
degradation hook after application of the correction using probe indices k: The 3°/5’ bias is
almost completely removed. Corrected probe intensities are available via the afbatch

function.

The AffyRNADegradation package extends the Bioconductor package affy [75] and
integrates well in a typical microarray analysis workflow. All calculations are performed
directly on the AffyBatch object and carried out separately for each particular
microarray hybridization in a single-chip approach. Our approach corrects the 3°/5’-bias on
the level of raw probe intensities which can afterwards be processed with any method. The
runtime is about 2 minutes and 3 minutes per sample for index and distance based
corrections, respectively. Since each chip is processed independently, arbitrarily large data

sets can be processed.

5.7 Summary and conclusions

Amplification of RNA-material using primed in-vitro transcription protocols and
degradation of RNA during extraction, storage and processing of the samples affects RNA-
quality in microarray experiments with consequences for expression estimates and their
interpretation. We systematically analyzed the effect of varying RNA quality on
microarray probe intensities using a physicochemical hybridization model and propose (i)
new measures to assess RNA quality and (ii), a method to correct probe intensities for the

degradation bias.

Particularly, it is shown that poor RNA quality is associated with a 3’-bias of transcript
abundance which affects only the probe signal due to specific hybridization. Estimation
and correction of the resulting signal bias of each particular probe requires consideration of
its hybridization mode (specific, non-specific or a superposition of both) and of the
positional effect of probe intensity along the respective gene due to truncated transcripts.
The former issue is solved by applying a modified ‘hook’-approach of data analysis based
on Langmuir hybridization theory. The latter effect is taken into account by estimating the
mean positional intensity decay on each array as a function of either the probe index or the

probe’s distance to the 3° end of its target transcript.

RNA quality is estimated in terms of the 3’/5’-intensity gradient of specifically hybridized
probes. In addition to appropriate quality values (such as the ‘tongs opening’-parameter
and the degradation ratio d) we introduce graphical characteristics allowing assessment of
RNA quality of each single array (‘tongs plot’ and ‘degradation hook’). The parameters

have a well-defined physical meaning related to the fold change of transcript abundance
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along the genes. ‘Poor’ RNA quality is characterized roughly by a decay of the mean
specific signal by a factor of less than 0.5 between probes near the 3’-end and probes

located about 600 nt away.

Our approach improves established RNA-integrity measures such as ‘affyslope’ and the
3’/5’-intensity ratio of degradation control probe sets. Both methods are prone to
overestimate RNA quality if the signals are dominated by non-specific
hybridization (affyslope) and/or saturation (controls). Our microarray-based quality
estimate correlates well with the RNA integrity number (RIN) which, in addition, is
affected by more complex properties of RNA degradation not uniquely related to transcript
length. Short probe sets near the 3’-end are prone to non-specific hybridization presumably
because of uncertainties in 3’UTR length owing to inaccurate assignment of the 3’-end and

transcript isoforms.

Poor RNA quality is associated with a decreased amount of RNA material hybridized on
the array paralleled by a decreased total signal level. Additionally, it causes a gene-specific
loss of signal due to the positional bias of transcript abundance which requires an
individual, gene-specific correction. The former total effect can decrease the overall signal
level of an array by the factor of 0.5 - 0.7 in the case of poor RNA quality (RIN < 7). The
latter local effect can be more pronounced with a penalty in expression measures by a

factor of 0.3 - 0.4 or even less in worst cases.

The functionality to assess and to correct RNA quality effects in GeneChip expression data
has been implemented in the software package AffyRNADegradation. It provides
programmatic access to the degradation measures d“ and d" as well to the tongs and
degradation plot visualizations which help to assess RNA quality. Furthermore, it allows
correcting probe intensities for the degradation bias for more reliable downstream
expression analysis. The AffyRNADegradation package is implemented in R and freely

available via the Bioconductor software repository”.

* http://www.bioconductor.org/
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6.1 Probe sequence affects intensities and expression
values

The mechanism of nucleic acid binding on solid surfaces is the basic principle of
microarrays and a significant number of other technologies widely used in life sciences.
Yet there are many unknowns among the factors affecting the binding process itself. It is
known that the base composition has a large effect on duplex yield in solution, particularly
for short oligonucleotides as used in microarrays [89]. This is mainly due to the higher
stability of duplexes containing GC base pairs compared to AT base pairs. Besides these
probe-target interactions there is a substantial number of additional interactions that occur
on microarray surfaces: probe-probe interactions [89], probe-folding [90], non-specific
binding [47], intra-target RNA folding [44], target-target interactions [91], steric
crowding [92], sequence-specific fluorescence marking and more [37]. These interactions
alter the effective binding of marked nucleic acids to the probes, and thus the observed
fluorescent intensity signal. They must therefore be studied thoroughly in order to improve
the specificity and sensitivity of those signals and to fully understand the dependence of

intensity signals on factors like probe sequence.

Figure 6.1 shows the surface image of a hybridized Affymetrix GeneChip expression array.
The image clearly reveals dark and bright horizontal stripes which correlate with the non-
random arrangement of probe sequences on the chip: Firstly, the vertical position of perfect
match probes (PM) alternates with that of paired mismatch (MM) probes. The intensity of
the former ones exceeds that of the latter ones on the average due to their altered middle
base which mismatches the target. Secondly and more importantly, the probe sequences
arrange in rows with respect to short motifs. In particular, the position of most of the
probes possessing triple degenerated guanines at the solution end of their
sequence ((GGG),) are found within a horizontal band which exactly matches the brightest
stripe of the chip image. The respective intensities exceed the average intensity level of the
array typically by a factor of two to ten. It seems unlikely that these strong intensity values
are associated with extraordinary large expression levels of the respective target genes.
Instead the bright intensities can be attributed to probe effects which typically reflect the
sequence specifics of probe/target interactions [54]. Such probe effects must be removed

from the data to obtain accurate expression values.
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Figure 6.1: (a) Fluorescence image of a hybridized Affymetrix GeneChip Mouse Genome MG430 2.0
array (GEO GSE12545). The chip surface divides into a grid of nearly 10° fluorescing probe spots. The
bright horizontal stripe matches with probes the 25meric sequence of which starts with triple degenerated
guanines ((GGG),; motif). Triple runs of other nucleotides are not associated with bright srtipes. The position
of the respective probes are shown at the rigth border of the figure. (b) Boxplots of expression measures
obtained from the intensity data shown in panel a using various preprocessing methods (see text for
assignments). The boxplots are computed separately for all probe sets (45,100) and for probe sets with at
least two probes containing the (GGG);-motif (836, i.e. 2% of the total number). ‘log I' denotes the
distributions of raw intensity data. Note that essentially all methods except Plier and partly mas5 are unable
to correct expression values for the (GGG);-bias. The respective distributions of probe sets containing
(GGG);-probes are systematically shifted towards larger expression values compared with the distribution of
all probe sets.

The obligate correction and summarization of raw intensities into expression values prior
to downstream expression analysis is called calibration or preprocessing. Numerous
preprocessing algorithms are presently available to transform raw intensity data into
expression measures (for example, vsn [93], RMA [94] and gcRMA [35], dChip [95],
MASS [96], Plier [97]). Fig. 1b shows the distribution of expression values obtained after
calibration of the intensity data shown in panel a using different preprocessing methods.
The boxplots are calculated alternately either for all probe sets of the array or for probe sets
which contain at minimum two (GGG); probes. The results obtained from most of the
preprocessing methods clearly reveal a systematic shift of the expression values of this
(GGG), sub-ensemble to higher levels. These calibrations obviously fail to correct the

strong intensity bias properly.

As one option to solve this problem one can simply exclude the 'bad' (GGG); probes from
further analysis. However, we show below that also other motifs, for example runs of
degenerate guanines along the whole sequence, can cause systematic intensity biases. The

masking of such 'bad' probes will exclude a significant fraction of the available intensity
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data from expression analysis and thus reduce the information potentially available from
the microarray experiment. We suggest therefore an alternative strategy which intends to
correct the probe-related intensity effects. It aims at extracting the 'hidden' information
about target abundance in terms of corrected intensities for further use in downstream

analysis.

This section addresses this issue and presents a systematic study of the effect of sequence
motifs on the probe intensities. We will here focus on short motifs of up to four adjacent
nucleotides at all possible sequence positions. Other approaches focusing on longer motifs
require combining data from many microarray hybridizations [98]. We here compare the
results obtained for different hybridizations after variation of the sample RNA, chip type
and/or the amplification protocol. Our approach aims at identifying the minimum motif
length for appropriate intensity prediction using a positional and motif dependent model.
We focus on the effect of runs of degenerated guanines which have been found to behave
unusually compared with other motifs in different chip assays including Affymetrix
expression and SNP arrays [29, 99-103].

6.1.1 Used expression data

We here investigate various data sets dealing with different generations and types of
Affymetrix GeneChip arrays which were taken from the public Gene Expression Omnibus
(GEO) data repository (www.ncbi.nlm.nih.gov/geo/). The central examples are
summarized in Table 6.1: (i) Human Genome HG UI33A arrays taken from the
'HG133A_S' dataset were reanalyzed to verify the effect of G-stacks reported recently
[103]. (i1) Identical human reference RNA was hybridized to both HG U133A and HG
U133 Plus 2.0 arrays in the ' HG133P_Z' and 'HG133A Z' datasets [104]. The latter arrays
offer smaller feature sizes (11 versus 18 microns) and a larger number of probe sets
(54.675 versus 22.300). All probes of the HG U133A are replicated on the the HG 133
Plus 2.0 array allowing direct comparison of the signal response of identical probes upon
hybridization with the same RNA. (iii) In the 'Mouse' dataset we analyzed Mouse Genome
430 arrays referring to the same generation as the HG U133 Plus 2.0 array. (iv) The
'ENCODE'-dataset comprises human tiling arrays taken from the ENCODE-project [105].
This array-type not only contains a further increased number of probes but also uses
different hybridization and labelling chemistries compared with the expression arrays of
the other data sets. Particularly, cRNA-targets are replaced with ¢cDNA targets and
nucleotide-labelling throughout the sequence is changed into end-labelling. Arrays of the
ENCODE type can also be applied in ChipChIP experiments with altered amplification
protocols to explore protein/DNA interactions. We included ChipChIP data to study the

effect of the amplification protocol.
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Table 6.1: Chip characteristics of selected data sets studied.

Data set HG133A S  Mouse ENCODE HG133P Z HGI133A Z

GEO® GSE1133 GSE12545 GSE6292 GSE3061 GSE3061

Chip type HGUI33A MG4302.0 Human HG HG U133A
Tiling Ul133plus2

# probes x =0.5 ~1.0 ~1.5 ~1.2 ~0.5

10°°

# probe 22,300 45,101 300,000° 54,675 22,300

sets”

% absent* 61.9% 63.1% 94.8% 54.9% 42.8%

<logN>chip® 2.0 2.3 1.1 1.94 2.09

<log M>* 4.48 4.71 3.45 4.32 4.45

%(GGG); 2% 1.9% 2% 2% 2%

probesf

%(GGG),; 20% 19% - 20% 20%

probe sets’

a Gene Expression Omnibus (GEO) accession number

b number of probes and of probe sets per array

¢ pseudo sets are assembled using five consecutive probes

d percentage of absent probes per array

e mean value of the logged non specific background intensity and logged saturation intensity

f percentage of probes containing the (GGG)I1-motif and of probe sets containing at minimum one of these
probes

6.2 Positional-dependent sensitivity profiles

We apply the positional dependent sensitivity model to the intensity data shown in Figure
6.1a. The model provides sensitivity profiles of rank 1-4, the maximum rank being limited
by the available number of data points. Figure 6.2 (left part) shows the profiles which were
obtained using the intensities of 'absent' called PM probes. The sensitivity terms can be
interpreted as the logged intensity increment due to the respective sequence motif of r

consecutive bases starting at position k of the 25meric sequence (see subsection 3.4).

The shapes of the four single base profiles (r = 1) virtually agree with previously published
data [36, 50, 53, 106, 107]: The sensitivities of adenines (A) and cytosines (C) are roughly
symmetrical with respect to the x-axis and change in a parabola-like fashion, the maximum
being near the middle of the probe sequence. The profiles of guanine (G) and thymine (T)
indicate a more monotonous dependence. All profiles are asymmetrical with respect to the
ends of the probe sequence: They converge towards the surface-attached side at k =25 but
differ significantly near the solution end at k = 1. The sensitivities and thus the base- and
positional dependent contribution to the intensities increase according to A <T <G < C for

most sequence positions.
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Figure 0.2: Positional-dependent sensitivity profiles of different rank for non-specific (left) and
specific (right) hybridization computed from the Mouse-dataset shown in Figure 6.1. Runs of equal
bases (e.g. AAA) are emphasized by thick lines in different colors. Note the different ranges of the ordinate
scales in both rows of figures.

The nearest neighbor model (r = 2) provides a total of 16 profiles. Most of them relatively
tightly group about the x-axis resembling essentially the parabola-like shape of the single
base profiles for A and C. The contributions of the CC-profile however markedly inflates
for all sequence positions whereas the GG-profile increases especially at small k. This
latter trend is partly counterbalanced by negative values of T-containing NN-terms,

especially of 'TT".

Inspection of the 384 NNN-profiles (r =3) shows that these trends further intensify for
stacks of cytosines ('CCC') and guanines ('GGG') where the relative level of the latter

profile increases compared with that of 'CCC'.

G-quadruples clearly dominate at small position indices k <4 among the 1512 quadruple
profiles of rank r = 4. Also other motifs indicate a relatively strong contribution at small k
as well (e.g. 'GCCC' and 'GGGA"). The contribution of 'GGGG'-quadruples (and of other
triple-G containing motifs) markedly drops for k> 13, i.e. for positions closer to the
surface end of the probes. Note also, that the parabola-like shape of the profile of runs of
adjacent cytosines changes into a broad plateau which decreases only near the ends of the

probe sequence.

Hence, the contribution of a few motifs, especially of degenerated runs of C and G but also
of selected 'GC'-rich tuples, increases above average with the extension of the model rank
from r =1 to r =4: more than twofold for CCCC and up to tenfold for GGGG compared
with the respective single nucleotide values. Longer homo-motifs obviously adapt to

specific intensity effects.

The sequence effect of some of the motifs reaches its maximum in the middle of the

sequence. With increasing model rank, these peaks reshape into broad plateaus of virtually
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constant sensitivity values which markedly change only near the ends of the probe
sequence. In contrast, G-rich subsequences add strong intensity contributions at small
position indices especially at the first sequence position. The respective contributions
progressively increase for r=1 to 3 but then remain virtually unchanged for r =4. Note
that also the guanine profiles of lower rank (G, GG and GGG), show exceptional large
positive values at sequence positions k <4. The possible origin of this behavior will be

discussed below.

The right part of Figure 6.2 shows the corresponding profiles of the PM probes
predominantly with specific hybridization. Only 8% to 20% of all probes on the chip meet
this criterion. This relative small number of probes restricts the rank of the model to r = 1-3
and, moreover, gives rise to a relatively large level of noise. The specific profiles possess
essentially the same properties as the non-specific ones shown in the left part of Figure 6.2
except that for G- and T-rich motifs. In particular, profiles of homo-runs of guanines shift
markedly towards smaller values compared with their non-specific values. Note also that
the (GG), and especially (GGG); motifs at the solution end contribute much less to the

specific profiles.

6.3 Guanine effects

6.3.1 Sequence motif assessment

We assume that a model of rank r applies with different quality to different sequence
motifs of length s at position k, (bs)x. Note that the length of the motif s is independent of
the rank of the model. For example, triple motifs (s = 3; e.g., GGC) can be analyzed either
using the nearest neighbor model (r=2; i.e., GG+GC) or the next-nearest neighbor
model (r = 3; i.e., GGC). To assess the fit quality in a motif specific fashion we collect all
probe sequences which contain (bs)x into class p((bs)x) with #p((bs)x) members per chip and
define the motif-specific SSR in analogy with Eq. (3.10)

SSR(I‘, (bs)k) = m Z RESZ = <RESZ>(b5)k (6-1)
sk (by)y

One can subsume all motif effects independently of their position by substituting
(b,), = b, in Eq. (6.1) to get the total SSR of tuple by, SSR(by).

Note that the total SSR (Eq. (3.10)) is given as the weighted sum of the motif-specific SSR
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SSR(r) = D £, SSR(r,(b,),), (6.2)

(b )k

where f, | =#p((b,),)/#p denotes the fraction of probes containing the respective motif.

6.3.2 Quality of fit and standard error

The positional and motif-specific SSR (Eq. (6.1)) estimate the contribution of a
subensemble of probes containing the motif (bs)x to the total sum of squared errors after
fitting the positional dependent sensitivity model of rank r to the whole ensemble of
considered probes (Eq. (6.2)). Ideally, the residuals scatter with equal variance and center
zero for each chosen motif. To detect and to estimate systematic biases of the fits in a
motif specific fashion we calculate the squared sum of the respective residuals to judge the

quality of the fits for each considered sequence motif,

QF(r.(b,),) = (m% RES)? = (RES)?, | . 63)

Ideally one expects QF(r,(bs)x) = 0 for centered distributions of the residuals. Non-zero
values QF(r,(bs)x) # 0 thus indicate systematic deviations of the fits of the model of rank r

with respect to motif (by)y.

The motif-specific variance of the residuals and the respective standard error are given by
Var((b,),) = (RES?), , —<RES){, , and

SE((b,),) =+/Var((b,),)/#p((b,),)- (6.4)

The standard error allows to estimate the confidence level of the positional dependent

sensitivity terms oi(bs).

6.3.3 Triple guanine motif causes large intensities

Part a of Figure 6.3 compares the sensitivity profiles of non-specifically hybridized probes
of the mouse data set shown in Figure 6.2 with the respective profiles of the ENCODE and
HG133A_S data sets. As a general trend, the sensitivity level of poly-C terms nearly linear
increases with increasing rank of the model as indicated by the dotted lines. This trend
reflects a constant incremental contribution per additional cytosine in the considered
motifs. In contrast, the sensitivity of poly-G motifs starting at k=1 steeply gains at
r =3 (ENCODE and mouse data sets) or, to a less extend, at r =4 (HG133A_S data set).
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Figure 6.3: Sensitivity profiles of rank r = 1-4 of different data sets (panel a, see Table 6.1) and the
respective triple-related fit statistics: sum of squared residuals (panel b, Eq. (6.1)), quality of fit (c, Eq. (6.3))
and standard error (d, Eq. (6.4)). Homo-motifs of consecutive A, C, G and T are shown by colored curves.
The thin dotted lines indicate the basic trends of the poly-G and poly-C motifs at position k=1 and k = 12,
respectively. Note the different scaling of the ordinates in panels a and c.

We re-plot the respective sensitivity values in the left part of Figure 6.4. They reflect an
extraordinary strong intensity increment due to three consecutive guanines starting at the
first sequence position in the former situation; and four consecutive guanines along the
probe sequence in the latter situation. We will call these properties shortly (GGG);- and
poly-G-effect, respectively.

The (GGG),-effect is further supported by similar values of the sensitivity terms for
quadruples starting at k = 1 with threefold degenerated guanines GGGB (B = A,T,G,C; see
the arrows in Figure 6.3 and that of the respective triple-G, i.e. 6;(GGG) = 6;(GGGB) (see
Figure 6.4). It shows that the (GGG),-motif adds the dominating intensity contribution to
that of the GGGB-quadruples.

Note that the (GGG),-effect of the ENCODE-data set largely exceeds that of the mouse
data set by nearly one half order of magnitude: An initial run of three G increases the
intensity relative to the mean intensity level by the factor of 10'* =10 and ~10°*=2.5 in
the former and latter data set, respectively. The intensity increment due to a triple-C motif

in the middle of the probe sequence is distinctly smaller and amounts to a factor of
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Figure 6.4: Sensitivity terms and quality of fit of selected motifs of rank r at position k = 1 of the probe
sequence. The data are replotted from Figure 6.3 part a and c. The fact that the sensitivity of degenerated G
levels off for r > 2 whereas that of GGGC steeply increases for the ENCODE and mouse data set indicated
the strong (GGG)-effect. The respective quality of fit reaches acceptable values only for r > 2 which
indicates that at least runs of three guanines must be explicitly considered.

about ~10°* = 1.6. Subtle differences between the sensitivities due to the different
hybridization chemistries (DNA/RNA versus DNA/DNA in the mouse and HG133A S
sets versus ENCODE) will be discussed separately below.

In summary, triple degenerated guanines at the solution end of the probe sequences cause
exceptionally large intensities in selected data sets. Longer runs of consecutive G along the

probe sequence are also associated with large intensities, however to a smaller extend.

6.4 Quality of motif-specific fits

6.4.1 Model-rank assessment with the F-test

The number of independent parameters of the positional dependent sensitivity model

increases with the rank according to

#6(r) = (4" =1)-(25—r+1)+1 (6.5)

providing #o(r) = 76, 361, 1450 and 5611 for r = 1...4, respectively.

The significance of increasing the rank ((r-1) — r) of such nested models can be tested

using the F-statistics
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~ SSR(r—1)—SSR(r)
"~ (df(r—1)—df(r))(SSR(r—1)—SSR(1))

F(r) (6.6)

It follows the F-distribution with the degrees of freedom df (r) = #p—#0o(r)+1 and allows
to estimate the significance of model extension in terms of a p-value. Usually one gets
df = #p because the number of probes (> 10°) largely exceeds the number of model
parameters (< 10%). One consequence of the large number of probe values is that
essentially each improvement of the fit with F > 1.5 is judged as significant with p < 10
for df > 10°.

Eq.(6.6) applies under the assumption of normally distributed, independent residuals. We
found that systematic errors partly contribute to the estimated SSR questioning the
applicability of the F-test. We therefore use the F-values as a simple empirical measure

characterizing the improvement of the fits.

Motif-specific F-values F(r,bs) and F(r,(bs)x) can be calculated for the respective SSR and
with the respective substitution for the number of probes (#p — #p(bs); #p((bs)k)) to judge
the improvement of the model with respect to the chosen sequence motif. The number of
relevant parameters is given by the number of model tuples b, required to describe the
sequence motif by at all positions for the positional independent case. It provides
#o(b,)=(s—r+1)(25-s+1) and #0o((b,),)=s—r+1 for the positional dependent and

indepentent cases, respectively.

6.4.2 Motif-specific differences

The discussed sensitivity profiles are obtained by multiple linear regression fits of Eq.(3.9)
to the intensity data of non-specifically hybridized probes of the respective arrays by
minimizing the total sum of squared residuals (SSR) (see Eq. (3.10)). The fit of models of
increasing rank r improves the goodness of fit in terms of the total SSR(r) (Eq. (3.10)).
Table 6.2 lists the total SSR(1) values of the single base model and the respective F-values
for models of rank r=2-4 (Eq.(6.6)). Maximum improvement is observed for the NN
model compared to N and smallest improvement for NNNN compared to NNN.

The total SSR was decomposed into motif and positional dependent terms according to
Eq.(6.2)) to characterize the model fits of rank r= 1-4 in more detail (Figure 6.3). In
general, the mean level of the SSR-terms decreases with increasing rank of the model
indicating the improvement of the fits in parallel with the decrease of the total SSR

discussed above. The partial SSR values of selected motifs (e.g. degenerated cytosines and
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Table 6.2: Sum of squared residuals of the fits of model ranks r =1 ... 4: SSR of all probes and of probes
containing C-triples and the (GGG)-motif are given for the N-model (r = 1). The respective F-values for the
higher ranks r =2 -3 evaluate the improvement of the fits with respect to the model of next smaller
rankr- 1.

HGI133A_S Mouse ENCODE
SSR(1) 0.048 0.072 0.11
SSR(1, CCC) 0.072 0.088 0.094
SSR(1, (GGG),) 0.071 0.21 0.85

F: N — NN 147.52 202.08 381.73

F: NN — NNN 11.11 20.6 78.07

F: NNN — NNNN  3.09 6.16 8.89

guanines) are larger than the average level for the N-model. Especially the value of the
(GGG)-motif largely exceed the total SSR value by nearly one order of magnitude
(ENCODE) and by the factor of 2 - 3 (mouse data set) indicating inadequate fitting of this
motif (see Table 6.2 and Figure 6.4).

The SSR-values estimate the deviation between the fitted and the experimental data. They
can be attributed to two potential origins, namely the systematic bias due to the inadequacy
of the model and/or the random scattering of the experimental data. We calculate motif-
and positional dependent profiles of the qualitiy of fit (QF, Eq. (6.3)) and of the standard
error (SE, Eq.(6.4)) as suited measures to estimate the respective contributions.
Particularly, one expects vanishing QF-values for adequate fits of the model. The motif
and positional data shown in part ¢ of Figure 6.3 reveal that the N-model fails fitting the
probe intensities of all considered data sets. The NN-model markedly improves the fit for
all motifs except (GGG);. Clearly this motif gives rise to residual systematic deviance
between the fits and the respective intensities of the mouse and ENCODE data sets. It
however largely vanishes for r = 3. This result confirms our hypothesis that the observed
intensity effect is related to threefold degenerated guanines (GGG);. The QF-profiles of the
HGI33A S data set reveal small systematic deviations of degenerated guanines motifs

along the whole sequence for r = 3 and 4 due to the poly-G-effect.

The standard error is relatively invariant for most of the motifs and positions with
SE <0.01 as a rule of thumb (part d of Figure 6.3). A notable exception are selected GC-
rich motifs in the middle of the probe sequence which show high standard errors up to
SE~0.1 for the ENCODE data set and up to SE~=0.07 for the mouse data set,
respectively. Figure 6.5 shows that these motifs are very rare on the MG230 2.0 and
ENCODE arrays with partly less than 100 probes containing them. These small numbers

gives rise to imprecise estimates of the respective sensitivity terms.



100 6 Sequence effects

a b 5001
HG133A Mouse
GAA X GAA
GAG CGT
2000 4
TTT
Y GGA TTT , 10000 GAG
o g
£ cee 2
Q Q
5 s AAA
I+ I+
5 5000 ccc GGG:26
CCC:76
GCC:68
GGC:51
- AAA Y :
CGT CGC CCG:27
0 : . , . 0 . 5 ; CGC:22
5 10 15 20 5 10 15 0 CGG:37
sequence position sequence position GCG17
c Encode

30000

20000

# of probes

10000 GGG:1245
CCC:1210

GCC:735

CCG:231
CGC:122
CGG:310
sequence position GCG:123

Figure 6.5: Frequency of triple motifs. The figures show the positional dependence of the triple motifs in the
probe sequences of three selected array-types. Homo-motifs are highlighted by thick colored curves. Note the
partly different scaling of the ordinates. Rare triple motifs at position k = 13 are explicitly given in the boxes
together with the respective number of probes containing the motif. For example, only 27 probes on the
MG-430 2.0 array contain CCG-triples starting at k = 13. Note that these rare motifs give rise to large
spikes of the respective standard errors for the triple terms.

In summary, the decomposition of the total fit statistics into motif- and positional
dependent contributions reveals adequate fits of most of the motifs using the NN-model.
As a clear exception, the (GGG); effect requires explicit consideration of NNN-terms for

adequate fitting.

6.5 Chip-type and target effects

The data sets so far address different target samples which are hybridized onto different
chip types. Both factors potentially affect the motif and positional dependent sensitivity
profiles, and, in particular, the poly-G effects discussed above. To discriminate between
effects due to target and chip-type we compare the sensitivity profiles for different
hybridizations of the same RNA sample (Universal Human Reference RNA) to two
different chip types, namely the newer HGI133P Z and the previous-generation
HGI133A Z. The nearly 55.000 probe sets of the former chip integrate more than 22.000
probe sets of the latter one and this way allow direct comparison of the intensity of probes

of identical sequences on the two chip types after appropriate masking of the additional
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Figure 6.6: The amplitude of the (GGG)-effect on GeneChips of different type. The bars refer to the
sensitivity terms of triple-G and -C at the first and the middle position of the sequence, respectively. The
arrays are ranked with respect to the difference Ao (GGG) which characterizes the amplitude of the (GGG) -
effect (circles, see text). Sensitivity profiles of three independent hybridizations are averaged for each value.
The numbers on the right assign the chip generation 0 to 3 (see text). The amplitude of the (GGG) -effect
tends to increase with the chip generation. The GEO-accession numbers of the samples analyzed are given in
the Appendix A.

probes in the HG133P_Z data set. The obtained three sets of profiles of rank r=1 - 4 are
very similar and provide no indication that the two considered chip types strongly modify
their shape (see Figure 6.6a). For example, the poly-G effect is observed in all three data

sets.

In the next step we compare the profiles of different RNA-hybridizations to the same chip
type (MG430 2.0, see Figure 6.6b). Also in this case the profiles of most of the motifs look
similar for the different hybridizations except the sensitivity terms of homo-G runs at the
first sequence position which indicate different amplitudes of the (GGQG);-effect. For direct
comparison we normalize the respective triple sensitivity term with respect to the
maximum sensitivity value of triple-C motifs in the middle of the sequence and calculate
the difference Ac(GGG)=0,(GGG)—06,,(CCC) as a relative measure of the amplitude of
the (GGG),-effect (see Figure 6.6b for illustration). Part ¢ of Figure 6.6 shows the
distribution of the obtained Ac(GGG)-values for a series 29 independent hybridizations
using MG430 2.0 arrays. The data show that the amplitude of the (GGG);-effect varies

over a wide range for different target hybridizations of the same chip type.
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In the next step we estimated the amplitude of the (GGG);-effect for eigtheen different
array types. Figure 6.6 plots the mean sensitivity amplitudes 6;(GGG), 612(CCC) and their
difference. The considered chip types can be roughly classified into four chip-generations
(numbered 0 to 3) which use different probe spot sizes, number of probe spots per chip and
partly different hybridization chemistries. The spot sizes decrease from 18-20 pum
(generations 0 and 1), 11 um (generation 2) to 5 um (generation 3) which results in the
marked increase of the number of probes per chip. Generation 3 (Human Gene 1.0 ST and
Human Exon 1.0 ST arrays) uses a PM-only design without MM-probes and DNA/DNA
instead of DNA/RNA hybridization chemistry. We assign the ENCODE arrays also to
generation 3 because it applies DNA/DNA hybridizations as well. However, it still uses
MM probes and larger spot sizes (10 um) compared with Gene 1.0 ST and Exon 1.0 ST
arrays. 'ChipChIP' assigns arrays of the ENCODE-type which are applied in ChipChIP
experiments. On chips of generations 1 — 3 most of the probes containing (GGG); motifs

are located in a row as shown in Figure 6.1.

It turned out that the (GGG);-effect can be identified for all arrays of generations 1 to 3. Its
amplitude tends to increase for chips of later generations 2 and 3. The differences between
the chip generations are however moderate without clear indication that type-specific

factors such as the arrangement of probes, their spot size, density and number explicitly
explain the (GGQG);-effect.

Interestingly, our data reveal a large difference of the amplitude of the (GGG)-effect
between the ENCODE-expression and ENCODE-ChipChIP-hybridizations (Figure 6.6).
Both experiments use the same type of ENCODE tiling arrays but different amplification
protocols: The former one amplifies sample mRNA via T7-priming and subsequent reverse
transcription to double stranded cDNA whereas the latter one amplifies genomic DNA
after immunoprecipitation via random priming without the T7-protocol [105, 108—110].
Note that fragments of the T7-primers used in the amplification step of mRNA-sample
preparation partly remain bound to the amplified targets as has been discussed in [111].
The respective common G-rich sequence motif of the primer (5-GGGCGGAGG...)
contaminates a large fraction of the targets at their 5'-end and preferentially bind to probes

with complementary, C-rich motifs [111].

In summary, we found systematic differences between the amplitude of the guanine effects
between GeneChips of different generations which are rather gradual than fundamental. On
the other hand, our data suggest that the amplification protocol for the used targets strongly
affects the (GGG);-effect. Previous studies showed that the targets become contaminated
with G-rich primer fragments after T7 amplification. One might hypothesize that these

fragments are prone to associate to selected G-rich probe sequences.
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Figure 6.7: Sensitivity difference profiles obtained by fitting the positional dependent NNN model to the
logged intensity difference of each probe pair, A = log I' - log I'™. The profiles are sorted according to the
central base in the NNN-terms of the PM probes, xBy with B,x,y = A,C,G,T. Only profiles of triple
degenerated homo-motifs and the respective "mirror' motifs with complementary center base are highlighted
by colored thick lines. The upper panel gives the respective base pairings in the duplexes of the PM and
MM (upper and lower case letters refer to the probe and the target respectively). The dotted rectangles refer
to the middle tripe (sequence position k = 11 ... 13). The triple terms within this range are different for PM-
and MM-probes. Their amplitudes refer to the respective swap of the middle base at k = 13 in the sequence
of the MM-probes. Note the symmetries of the obtained profiles for complementary degenerated triples. The
PM and MM probe sequences are identical outside the middle range. The absence of large amplitudes
indicates that the intensities of both, PM and MM probes, similarly respond to sequence effects.
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6.6 Perfect match and mismatch probes

Each perfect match (PM) probe is paired with one mismatch (MM) probe on most of the
Affymetrix microarray types. The MM probes use the same 25meric sequence as the
respective PM probes except for the middle base, which is substituted by its complement.
To extract subtle differences between the sensitivity profiles of both probe types we
calculate the logged intensity difference of each probe pair, A=logI™ —logI™ and
subsequently fit the NNN-sensitivity model of rank r = 3 to the intensity data of the three

data sets given in Table 6.1.

The obtained terms characterize subtle intensity differences between both probe types in a
motif- and position-dependent way. Their amplitudes virtually vanish for k<11 and
13 <k (Figure 6.7). This result seems trivial because the sequences of PM and MM probes
are identical at these positions. It clearly indicates, however, that the (GGG);- and poly-G
effects apply to the PM and MM probes as well.

The NNN-sensitivity data markedly deviate from the baseline at positions k=11...13 at
which the triple motifs diverge between the PM- and MM-probes owing to the swapped
middle base (in Figure 6.7 this range is indicated by the dotted vertical lines). Here we
focus our discussion to triple degenerated homo-motifs in the middle of the PM- (or MM-)
sequence which combine with motifs of broken degeneracy in the respective paired MM-
(or PM-) sequence. For example, (GGG);; combines with (GGC);;, (GGG),, with (GCG);,
and (GGG);3 with (CGG);3. The calculated sensitivity amplitudes consequently

characterize the logged intensity difference due to both motifs.

Figure 6.7 sorts the profiles with respect to the central base B of the middle triples in the
PM sequence, xBy with B,x,y = A,C,G,T. The complete base pairings in the triple motifs
are given in the figure. Base pairings in DNA/DNA duplexes are symmetrical with respect
to bond reversal [112]. One expects therefore a central symmetrical pattern for the profiles
of degenerated triples and the triples with swapped central base, e.g. AAA versus ATA and
TTT versus TAT. The obtained sensitivity-profiles indeed show this symmetrical pattern.
One expects also equal amplitudes for complementary homo-motifs, e.g. AAA and TTT.
The observed effect however ranks according to AAA = TTT < CCC < GGG. The slightly
larger peak of (GGG),, compared with (CCC);, indicates the poly-G effect along the

sequence.

The mouse and HGI133A S data sets refer to DNA/RNA hybridizations. The chemical
asymmetry of base-pairings between the DNA probes and RNA targets (see, e.g., [113,
114]) explains the slightly modified pattern of the obtained triple motifs compared with
that of the ENCODE data set. Particularly, one gets for the mouse data set
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GGG K AAA K TTT « CCC which is compatible with solution data (see also below). It
therefore provides no indication of the poly-G effect. In contrast, in the HG133A S data
one observes the reversed relation for guanines and cytosines, GGG > CCC, which

indicates a slightly larger intensity contribution of degenerated runs of guanines.

In summary, the joint analysis of the PM- and MM-intensities shows that both probe types
are affected by the poly-G and (GGQG);-effect to a similar extent. It also reveals a relatively
large intensity contribution of poly-G motifs in the middle of the sequence in some cases.

The amplitude of this effects is however relatively small compared with the (GGG);-effect.

6.7 Specific and non-specific hybridization

Our analysis so far mainly uses the positional sensitivity profiles of non-specifically
hybridized PM probes and of the logged PM-MM difference. Selected profiles due to
specific hybridization revealed a decreased sensitivity level of runs of degenerated
guanines and, in particular, of the (GGG), motif (see the right part of Figure 6.2 for the
mouse data set, the specific profiles of the other data sets analyzed are given in the
supplementary material). This result suggests that the (GGG);-effect is only weakly or

even not at all associated with specific hybridization.

It should be taken into account, however, that the specific sensitivity profiles are relatively
uncertain owing to incomplete correction for parasitic effects such as saturation of the
probe spots and bulk hybridization which deform the shape of the profiles and shift their
level against each other [54, 57, 115]. Moreover, the number of probes in the sub-
ensembles of probes used for calculating the specific profiles are typically much smaller
than that of the non-specific probes. In addition, the specific sub-ensemble of probes is
typically contaminated with contributions due to non-specific hybridization. All these
factors give rise to relatively noisy profiles which still reflect properties of non-specific

hybridization.

We therefore apply a different approach to answer the question whether the (GGG),-effect
extends also to specific hybridization or not. Part a of Figure 6.8 plots the smoothed probe
intensities of the mouse data set as a function of the expression degree which was
calculated using the hook method. This calibration approach inverts the two-species
Langmuir hybridization isotherm and estimates the linearized intensity-equivalent due to
specific hybridization L3=M-X® (see Section 3.1) using the respective raw intensity
values. The graphs in Figure 6.8 thus characterize the mean dependence of the intensity as

a function of the specific transcript concentration [S] which is directly related to LS. These
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Figure 6.8: Hybridization isotherms of the mouse data set: The isotherms in panel a were calculated by
plotting the probe intensities as a function of their expression value which is directly related to the
concentration of specific transcripts, LS o [S]. The data were subsequently smoothed over a moving window
of 1000 probe intensities. The isotherms were calculated using either all PM- or MM-probe data of the chip
or, alternatively, the sub-ensemble of probes containing the (GGG);-motif, i.e. a run of three consecutive
guanines starting at the first sequence position. The horizontal bar in the upper part of the figure assigns the
hybridization ranges (N, mix and S) which are described in the text. The arrows indicate the regions which
are dominated either by specific or non-specific hybridization. Panel b shows theoretical isotherms which
were calculated using Eq. (3.2) assuming three scenarios: (A) the reference situation describing the behavior
of all probes, (B) stronger non-specific binding compared with A and; (C) stronger non-specific and specific
binding compared with A (see also the text for details). Note that the intensity level in the N-range is directly
related to KN, the mean binding constant of non-specific hybridization, whereas the position of the inflection
point halfway between the N- and asymptotic saturation levels is inversely related to 1/KS, the mean binding
constant of specific hybridization as indicated in the figure. The experimental data are compatible with
stronger non-specific binding and invariant specific binding to (GGG)1-motifs compared with the respective
main level of the binding strength of the array (scenario B). The MM-probes virtually behave like weak-
affine PM probes with respect to specific binding.

isotherms roughly divide into the N-range which is dominated by non-specific
hybridization at small abscissa values; into the S-range in which the intensity is dominated
by specific hybridization at large abscissa values and into the mix-range in-between, in
which both, specific and non-specific hybridization significantly contribute to the observed

intensity (see also Figure 6.8 for assignment).

Figure 6.8 shows two different isotherms for the PM and MM probes each. One was
calculated by averaging over all PM- (or MM) probes of the chip and the other one by
selecting the respective sub-ensembles of probes containing the (GGG);-motif. In the N-
range, the intensity level of the (GGQG);-containing probes is clearly larger compared with
that of all probes. The respective log-intensity increment of about 0.5 roughly agrees with
the sensitivity amplitude of the (GGG);-motifs 6;(GGG)~= 0.4 (see Figure 6.2). The
difference between both types of isotherms, however, progressively decreases with

increasing expression degree and virtually vanishes in the S-range.

In panel b of Figure 6.8 we plot theoretical isotherms calculated using Eq. (3.2) with the
substitution L'; —L"=M-(K"*[S]+K"N[N]) as a function of the specific transcript
concentration [S] for P = PM, MM. Three scenarios, (A) - (C), are considered to interpret

the experimental data: (A) The ‘reference' case with a parameter set which was chosen to
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fit the mean isotherms of the array averaged over all PM- or MM-probes; and scenarios (B)
and (C) which aim at reproducing the behavior of the (GGG);-subensemble. Particularly,
in scenario (B) only the value of the non-specific binding constant is increased compared

. . N _ 1005 N
with the reference case (A) according to K ) =10"""K,,

. . . S S
binding constant remained unchanged K =K/,,.

specific binding constant is increased by the same factor as K" in case (B), i.e.

S _1n05.S N _ N
K, =10""K{,, and K ) =K.

whereas the value of the specific

In scenario (C) also the value of the

Comparison of the theoretical and experimental curves clearly reveals that the intensity
increment of the (GGG);-containing subensemble is readily described by the second
case (B) which only assumes the stronger non-specific binding of the probes. Case (C)
assumes also an increased specific binding. It clearly fails descibing the data: The
inflection point of the calculated isotherms shifts to smaller abscissa values whereas that

of the experimental isotherms remains roughly at the same position.

Hence, comparison between measured and calculated isotherms provides no indication that
specific hybridization contributes to the (GGG),-effect to a similar extent as non-specific
binding. Instead they show that the (GGG);-effect is mainly associated with non-specific
hybridization.

The isotherms of the MM-probes are shown in Figure 6.8 together with the isotherms of
the PM-probes. Both probe types are equally affected by non-specific hybridization on the
average in both considered probe ensembles. Particularly, the (GGG);-motif increases the
intensity level of the MM-probes in the N-range to the same extent as that of the PM-
probes. The slight shift of the mix- and S-ranges of the MM-probes towards larger
expression values is caused by the weaker specific binding of the MM due to their
swapped middle bases which mismatches the target sequence. Hence, the MM-probes
virtually behave like weak-affine PM-probes with respect to specific hybridization. This
difference also implies that the mean saturation intensity of the MM-probes is smaller than
that of the PM-probes owing to post-hybridization washing [43, 116, 117]. The calculated
1sotherms of the MM-probes clearly show that specific binding is virtually not affected by
the (GGG);-motif by the same arguments as for the PM-probes.

6.8 Correction of microarray data for sequence effects

6.8.1 The NN+GGG hybrid rank model

Our analysis shows that the quality of fit of sequence models is heterogeneous with respect
to the selected motifs and their position along the probe sequence. The positional

dependent NN model well describes most sequence-dependent intensity effects due to non-
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specific hybridization with the exception of motifs of three or more consecutive guanines.
Higher order models of rank r=3 or 4 are able to successfully remove the associated
sequence bias. However they are computationally expensive. Minimization of the linear
regression model Eq. (3.9) provides a system of (4r-1)-(25r+ 1) linear equations, the
solution of which requires a runtime in the order of O(#p-(4r)®). In practice, profiles with
rank up to r=2 can be computed in minutes per array on a standard personal computer

whereas models of rank r = 3 and 4 run hours or even days, respectively.

We therefore developed a hybrid-rank model based on the positional dependent nearest
neighbor approach plus additional higher order contributions for selected “critical' motifs
such as (GGG); which applies to the intensity components due to non-specific binding.
The algorithm fits the NN-model of rank r=2 to all probes which do not contain the
critical poly-G motifs in their sequence. The intensities of these probes is corrected
according to Eq. (3.6). The intensities of probes which contain such motifs are separately
fit to a NNN-model of rank r =3 which only considers triple-G motifs at all possible
sequence positions. In general, this approach can be modified to apply to other special

motifs.

The algorithm works in detail as follows:

1) The set of predominantly non-specifically hybridized probe sets, the so-called “absent'
or N-subset, is identified as described in Section 3.3

2) The N-subset is further split into two sub-ensembles not-containing and containing
triple-G motifs, PSyn and PSgge, respectively. They are subsequently corrected in two
steps for sequence effects:

2a) The PSnn sub-ensemble is used to train the NN model by multiple linear regression of
the data using (3.8) - (3.10) with r=2. The fit provides the basal set of NN-terms
o™ = g(by).

2b) Each probe set of the second PSggs sub-ensemble contains at least one probe with at

minimum one motif of three consecutive guanines. Eq. (3.5) rewrites for these probes into
K" =Kg"-exp(8A™"(€,))- exp(BA™ (&, ) (6.7)

where 8A™"(E)) is given by Eq. (3.6) with r=2 and the set of NN-terms estimated in
step 2a. The excess correction term A" (ép) considers the effect of the critical motif in

the probe sequences in analogy with Eq.(3.7)
23
SAYOTN(E) =D 6,"(GGG)-d(GGG,E ) (6.8)
k=1

With Eq. (3.8) one gets the theoretical sensitivity
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23
Y = YR + 36, (GGG)(8(GGG, &) 1, (GGG)) (6.9)

k=1

Y;?Ij‘) denotes the basal sensitivity which is calculated using Eq. (3.9) and the basal set of
NN-terms estimated in step 2a. After minimizing Eq. (3.10) one gets the profile of excess
terms ox(GGG).

3) The corrected intensities of the probes of the PSyn- and PSggg-subsets are calculated
after rearrangement of Egs. (3.5) and (6.7), respectively.

4) The present probes not included in the N-sub ensemble are corrected as described
previously [42, 45]. In short: A NN-model of rank r =2 is parameterized using the probe
sets which are hybridized to more than 80% with specific transcripts. They are then
corrected using this model. Probe sets with a fraction of specific-hybridization of less than
80% are corrected by a weighted combination of the sensitivity profiles referring to
specific and non-specific hybridization determined in step 2.

5) The sensitivity-corrected intensity data are exported in the standard *.CEL file format.
The corrected signal values can then be feed into standard GeneChip preprocessing

programs for further improvement and/or downstream analysis.

The correction algorithm is implemented in the Larpack program package which can be
downloaded freely from the project website currently available under the URL

www.izbi.uni-leipzig.de/downloads_links/programs/hook.php.

6.8.2 Effect of the correction

Figure 6.9 compares the performance of the hybrid rank correction with that of the N and
NN models using the same type of representation as in Figure 6.8. It clearly shows that the
latter two models only insufficiently correct the (GGG);-effect as expected. On the other
hand, the systematic bias of the (GGG),-containing probes in the non-specific
hybridization range almost completely vanishes after applying the NN+GGG correction to
the non-specifically hybridized probes using the algorithm described in the previous

subsection.

Residual profiles of the triple-G motifs of four different data sets are shown in Figure 6.10.
They clearly reveal the strong intensity excess at position k=1 due to the (GGG);-effect
(mouse and ENCODE data sets). The mean level of the poly-G effect affecting the
remaining sequence positions is about ox(GGG)=0.1 for these chips. This excess
sensitivity value refers to an intensity bias of 10 ~ 1.25 compared with the NN-model.
Interestingly, hybridizations of ENCODE arrays using the ChipChIP technique indicate a
negative GGG-level throughout the sequence for k > 1. This indicates an average intensity

bias in the opposite direction of about 10"~ 0.85.
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Figure 6.9: Correction of microarray intensity data using models of rank r = 1, 2 and the hybrid rank model
NN+GGG for the non-specifically hybridized probes of the mouse data set. Specific hybridization is
corrected using the NN-model in all cases. The figure shows the averaged intensity as a function of
expression as in Figure 6.8. The systematic bias of probes containing the (GGG);-motif progressively
decreases with increasing rank of the model and it virtually vanishes for the NN+GGG model. Correction
using the NNN model provides a plot which is virtually indistinguishable from that of the NN+GGG
model (not shown).
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Figure 6.10: Positional dependent residual sensitivity profiles of triple-G motifs. The data clearly reveal the
poly-G and the strong (GGG)-effect of the mouse and ENCODE data sets. The hatched region refers to
sequence positions with very small numbers of probes containing the (GGG);-motif printed on the mouse
and ENCODE arrays (see Figure 6.5). Interestingly, ChipChIP applications of the ENCODE arrays give rise
to negative residual GGG-sensitivity values for most of the sequence positions.
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We argued above that the ChipChlIP targets lack G-rich primer fragments which otherwise
cause the strong intensity bias due their involvement into G-stack formation on expression
arrays. Their absence would explain a tiny or even zero but not a negative amplitude-level
of the triple-G excess sensitivity. A similar negative sensitivity effect of poly-G motifs has
been found for SNP GeneChip arrays [29]. These arrays use genomic DNA for
hybridization after amplification via ligation and not via T7 priming [118]. This "dim'
effect has been attributed to G-stack formation in agreement with previous
assumptions [99, 119]. Such probe quadruplexes reduce the amount of free probe
oligomers available for the binding of specific and non-specific targets. This trend then
decreases the intensity of the respective probe spots because only targets are labeled with

optical markers.

In summary, the NN+GGG hybrid-rank model properly corrects the intensity bias
associated with probes which contain poly-G motifs. In addition, the obtained excess
GGG-profiles provide further insights into the amplitude of the effects due to degenerated
guanines in different hybridizations. It changes sign and switches from positive to negative

values for hybridizations which use different amplification protocols.

6.8.3 Preprocessing of microarray intensity data

Calibration of microarray measurements aims at removing systematic biases from the
probe-level intensity data to get expression estimates which linearly correlate with the
transcript abundance in the studied samples. The performance of different preprocessing
algorithms to correct intensity data for the (GGG);-effect are illustrated in Figure 6.1b by
means of boxplots which roughly characterize the distribution of the expression values in
terms of their median and interquartile range. The results revealed that the strong intensity
effect is not removed from the expression data after standard preprocessing with several

popular methods.

To get further insights we plot the density distributions of the preprocessed expression
values of all 45,100 probe sets of the mouse data set and of the sub-ensemble of 836 probe
sets containing at minimum two probes with a (GGG);-motif (Figure 6.11). The results
indicate the systematic shift of the (GGG), sub-ensemble towards larger expression values
in decreasing order for the preprocessing methods vsn [93], RMA [120-122] and
gcRMA [123]. Note that vsn and RMA use global baseline-corrections for non-specific
hybridzation which subtracts one common background value from all probe intensities of a
selected microarray. Clearly these approaches fail to describe the probe specifics of the

(GGG);-motif giving rise to a strong bias due to improper background correction.
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Figure 6.11: The distribution of expression measures obtained from intensity data shown in Figure 6.1 and
various preprocessing methods. The whole density distributions reveal subtle differences produced by the
different methods. The distributions are computed separately for all probe sets (45,100) and for probe sets
with at least two probes containing a (GGG) -motif (836, i.e. 2% of the total number) and for absent probe
sets hybridized exclusively nonspecifically (45% of all probes). The multichip methods (RMA, gcRMA, dChip,
vsn, Plier) are applied by computing intensity data of 5 arrays from the respective experimental series. 'log I'
denotes the distributions of raw intensity data. The distributions of expression measures of probe sets
containing (GGG); probes for RMA, gcRMA and to a less degree for MASS5 and dChip are systematically
shifted to the right compared with the distribution of all probe sets. These methods are partly unable to
correct expression values for the (GGG)-bias whereas hook and Plier remove the bias.

Figure 6.11 also shows the distribution of the sub-ensemble of “absent' probe sets (49% of
all probe sets) which have been identified using the hook method. Comparison with the
other distributions reveals that the amplitude of the (GGG);-bias decreases with increasing
expression value. However, it affects not only the range of non-specific background but
extends to probe sets with a significant contribution of specific hybridization. These
signals are potentially used in downstream expression analysis. The right tail of the
distribution is dominated by specific hybridization which has been shown to remain
virtually unaffected by the (GGG);-effect.

The preprocessing methods dChip [124], gcRMA, MASS [125], Plier [97] and hook [42]
apply probe-specific baseline correction algorithms which estimate an individual

background value for each probe. The obtained distributions significantly widen, and
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Figure 6.12: The figure shows the same data as in Figure 6.1 after sensitivity correction using the NN+GGG
model. (a) Pseudo image of the chip calculated from the CEL-file of corrected intensities. The bright stripes
seen in Figure 6.1a disappear. (b) Boxplots of expression measures obtained from the pre-corrected
intensities. The GGG-bias essentially vanishes after correction (compare with Figure 6.1).

extend towards smaller expression values offering a larger dynamic range of the obtained
expression estimates. The detailed inspection of the density distributions however also
reveals a small (GGG),-bias in the left part of the distributions obtained by MASS, dChip
and gcRMA which is dominated by non-specific hybridization. gcRMA applies a
positional dependent sequence correction of rank r =1 similar to ours (Eq. (3.6)) which is
obviously insufficient to account for the (GGG),-effect. MASS, dChip and also Plier
explicitly use the intensities of the MM probes to estimate the non-specific background of
the PM signals. PM- and MM-probes are both affected by the poly-G motifs to a similar
extent which enables its effective correction by combining PM- and MM-data. Finally,
hook and Plier almost completely remove the (GGG);-bias from the data over the whole
width of the distributions.

Figure 6.12 reproduces Figure 6.1 for corrected intensity values using the NN+GGG
model. Panel a shows a pseudo-image of the array using the CEL-file of corrected
intensities. The bright stripes due to the (GGG); probes evident in Figure 6.1a clearly
disappeared. Panel b illustrates the performance of different preprocessing methods with
respect to the (GGG);-bias after applied correction. The boxplots clearly show that our

correction effectively removes the (GGG);-effect from the resulting expression values.

In summary, most of established preprocessing methods only inadequately calibrate raw
intensity data for strong sequence effects of the non-specific background contribution.

Methods which explicitly process suitable reference probes, such as the MM, perform
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better than PMonly methods. Precorrection of the intensity data using the NN+GGG

sensitivity model removes the bias due to degenerated guanines from the data.

6.8.4 Comparison of sequence-specific intensity corrections

The correction for sequence-specific intensity effects is a crucial step which largely affects
the performance of the preprocessing of microarray data. It applies to specific
hybridization (“affinity' correction) as well as to non-specific hybridization (correction for
the chemical background). Numerous sequence models have been developed for

microarray analysis so far. They can be roughly divided into the following four classes:

(1) "Fully' physical, AG based approaches (here AG symbolizes the change of the free
energy upon probe/target binding) [102, 115, 126—133]: These models explicitly and in-
detail consider different processes which potentially affect probe hybridization such as
probe/target duplexing including their zippering, bulk dimerization of the targets or folding
of target and probe in terms of effective reaction constants or statistical thermodynamics.
Elementary interactions are described on the level of base pairings using stacking free
energy parameters which have been estimated in independent dimerization experiments of
oligonucleotides in solution [112, 134]. Such models helped to improve our basic
understanding of the functioning of microarrays and also to judge the relevance of different
contributions to the observed probe intensities. These approaches often apply special fitting
approaches and/or idealized assumptions to describe intensity data of selected microarray
experiments (for example spiked-in data sets). Often, the used tools and algorithms
however fail in practical microarray analysis because particular factors significantly
affecting the performance of chip measurements are either considered in a simplified
fashion or even neglected. For example, the lack of knowledge about the exact length, full
sequence and concentration of the targets circumvents the detailed estimation of their
folding and duplexing products. On the other hand, these “physical' models clearly showed
that microarray hybridization is in agreement with elementary physical rules of interacting
probes and targets, which however take place in a complex environment owing to the
attachment of probes to the chip surface and the heterogeneous composition of the target
solution. The latter conclusion was also supported by the results of reverse top-down
studies which extract interaction parameters on the level of base pairings from microarray
intensity data. For example, the resulting intensity-based NN parameters in most cases
correlate well with the respective stacking free energies of independent solution
experiments [29, 54, 102, 129].
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Figure 6.13: Correlation plots between the integral sensitivity of the positional dependent NN-model and
solution free energies of DNA/DNA- and DNA/RNA-hybridizations taken from [112, 135] and [114],
respectively. The three panels refer to DNA/DNA (ENCODE) and DNA/RNA (mouse, HGI33A4_S)
hybridizations. The integral sensitivities are calculated using either all sequence positions (circles) or
positions 3 - 24 (crosses). The latter data are normalized using the normalization factor 24/21 for direct
comparison with the former data. Regression lines are shown for the latter data. The regression
coefficients (R) and the slopes are given in the figure. The values in parentheses refer to the reduced sum.
Note that the integral sensitivities of GG nearest neighbor motifs clearly decrease if one neglects the first two
sequence positions. However, the effect on the regression remains small. Selected NN motifs are assigned in
the figure.

Our results confirm these previous findings (Figure 6.13). In particular, we calculated the
sum of all terms of the NN-profiles over all 24 sequence positions for the selected data sets
to obtain positional independent mean sensitivity estimates. The obtained integral NN-
terms were correlated with the respective nearest-neighbor free energies for DNA/DNA or
DNA/RNA duplexes in solution which were taken from [112, 135] and [114], respectively.
The microarray sensitivities well correlate with the solution free energies (regression
coefficients of R > 0.7). To judge the amplitude of the (GGG);-effect on the integral NN-
terms we calculated a second data set which omits the first three sequence positions in each

sum for the integral NN-terms (see the crosses in Figure 6.13). Only the values of the GG-
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terms reduce notably in the mouse and ENCODE data sets accompanied by a small

improvement of the respective fits.

The latter result shows that global parameter estimates can mask special intensity effects
associated with selected sequence motifs such as runs of guanines, which results in the

poor modeling of the intensities of probes containing these motifs.

(i1) Positional dependent intensity models with freely adjustable parameters in analogy to
the approach used in this study: This class of models was independently introduced by
Mei et al. [101] and Naef and Magnasco [50] which originally use single base terms, rank
r=1. Shortly after the method has been upgraded to NN-terms of rank r=2 [51] and
successfully applied in different calibration algorithms for microarray data using either
N-[107, 136] or NN-models [34, 42, 137—139]. The parameters are estimated individually
for each array. The model thus accounts for the specifics of each particular hybridization
which potentially varies from chip to chip due to different levels of non-specific
hybridization, bulk dimerization, washing and/or saturation. All these effect are shown to
modify the respective parameter profiles [57, 106]. The obtained parameters are therefore
called effective affinities [106] or sensitivities [53, 54] depending on the special
experimental setup. Moreover, the model also enables to describe subtle differences
between non-specific and specific hybridization on the level of base pairings, for example,
due to the presence of defined mismatches in the probe/target duplexes [36, 42, 53]. The
approach successfully applies to chips of different generations and types [45, 136] and it
can be combined with elements of model class (i), for example, to account for probe and
target folding [137, 139] or for special motifs and additional factors [101, 136]. For
example, the pioneering approach of Mei ef al. [101] combines the positional dependent N-
model with special correction terms for intramolecular hairpins and G-quadruplexes. The
latter effect was separately assigned to runs of at least four guanines at the beginning, the
middle and the end of the probes. Here we extended the model to positional dependent
triple and quadruplex motifs of rank r =3 and 4. Our analyses show that the NN-model
well accounts for most of the sequence effects except special motifs such as runs of
consecutive guanines. We also demonstrated the diagnostic power of this approach to

detect subtle sequence effects in terms of position and motif.

(111) Positional dependent approaches with common “shape functions': This class of models
is closely related to the previous class (i1). In contrast, it however factorizes the positional
and motif dependent sensitivity profiles into two independent contributions namely into
positional independent but motif specific “energy' terms and into a positional dependent
but motif independent ‘shape'-function common for all motifs. This so-called PDNN

model was originally introduced by Zhang et al. [47]. It is used with modifications in
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Figure 6.14: Heatmaps of the similarity matrix SI (b2, b2) of the shapes of positional dependent sensitivity
profiles of rank r = 2 (panel a) and r = 3 (panel b) of the mouse data set. Pair-wise similarity is color-coded.:
dark spots indicate small similarity (see text).

different algorithms and applications [102, 140—142]. The common shape function of the
PDNN model considerably reduces the number of adjustable sequence parameters by
nearly one order of magnitude and consequently also the computational effort compared
with the NN-model with motif specific profiles ((16 - 1) + 24 =39 PDNN-parameters
versus 361 NN-parameters, see Eq.(6.5)). It has however to be asked whether the common
shape function adequately reflects the positional dependence of the individual NN-profiles
or not? The inspection of the plots in Figure 6.1 and Figure 6.2 suggests, for example, that
the shape of guanine-rich profiles strongly deviates from the shape of other motifs owing
to the (GGG),-effect. For a systematic evaluation we make use of the NN-model with
adjustable positional sensitivities of class (ii) and compare all pairwise combinations of the
16 sensitivity profiles using a simple similarity metrics based on the least squares

optimization of a scalable factor a and a shift-term c;

25-1+1

SSR(b,,b,)= Y. (6, (b,)—ac, (b,)+c)> = min (6.10)

Here b; and b, denote two selections from the 16 NN terms. The similarity matrix
SI(b,,b,)=0.5-(SSR(b,,b,)+SSR(b,,b,)) indeed reveals that the profile of GG-
sensitivities poorly matches the remaining profiles, except TT (Figure 6.14a). Bad or only
moderate agreement is also observed between the profiles of other NN-motifs such as CC,
AA and TT. The similarity matrix of the NNN-profiles of rank r =3 reveals a similar
picture with poor matches especially for GGG motifs and partly also for CCC and
CCQG (see Figure 6.14b). Hence, the assumption of a common shape fails for selected

motifs.
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1v) Multichip statistical models: These approaches decompose each probe intensity into
independent factors due to probe and chip effects. The former factor is assumed to be
invariant for each probe in a series of arrays and thus models the respective sequence-
specific affinity of the probe. The latter factor is assumed to describe the expression index
which usually varies between the chips. The relation between intensity and expression
index is either linear (RMA, gcRMA, vsn, dchip, Plier) or hyperbolical assuming a
Langmuir isotherm (NIfit, [143]). The parameters are estimated by fitting the model to the
intensities of a series of, at minimum, 5 - 10 arrays. The approach has the potential to
correct the intensities for any probe effect because each probe is handled individually
without explicitly processing its sequence in terms of a sequence model as in the
alternative classes of approaches (i) - (ii1). On the other hand, chip and probe effects are
not independent in real situations due, e.g., to different levels of bulk dimerization and
other effects (see above). More importantly, the probe-related affinity correction of the
multichip methods in most cases applies to specific hybridization only whereas the non-
specific background is corrected using simpler approaches such as global background
(RMA, vsn) or N-profiles (gcRMA). Hence, the performance of the method largely
depends on the type of background correction (see also the previous subsection). Note that
dChip and NIlfit assume a probe dependent background which partly removes the the
(GGQG);-bias from the data (see the results for dChip in Figure 6.11).

We conclude that hybrid models of class (i1) are conceptually best suited to account for
special sequence effects in single-chip based calibration algorithms for microarrays which
use a high number (>10°) of short (length <30 bp) oligonucleotide probes such as
GeneChips. Here the large number of intensity values allows successful fitting of hundreds
of model parameters. Possibly, the performance of models of this class can be further
improved using amendments taken from physical models of type (i), e.g. to consider the
folding propensity of the targets and/or their length. The non-linear approach [143] offers
an interesting option of models of class (iv) because it allows to apply adequate
hybridization laws beyond the linear approximation in combination with sophisticated
affinity corrections. Its multichip character, however, adds normalization tasks to consider
variations between different hybridizations which might produce biased expression
estimates [57]. Models of class (ii1)) must be complemented with special terms to account
for special sequence effects deviating from the mean positional dependence of the array.
With this amendment they represent an interesting choice for array-types using long
oligonucleotide probes (length > 30 bp) because it requires fitting of a reduced number of

positional parameters compared with models of class (ii).
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6.9 Summary and conclusions

We analyzed the specifics of probe intensities on the level of short motifs of one to four
adjacent nucleotides along the 25meric probe sequence using positional dependent
sensitivity models. The decomposition of the fit statistics into motif- and positional
dependent contributions reveals that most of the motif-specific terms are adequately
described using a nearest-neighbor model. In contrast, runs of degenerated guanines

require explicit consideration of next nearest neighbor terms for adequate fitting.

Longer runs of at minimum three consecutive guanines along the probe sequence and
especially triple degenerated G at its solution end typically cause exceptionally large probe
intensities on expression arrays. This intensity bias affects PM- and MM-probes to a
similar extend. Our analysis clearly shows that it is associated with non-specific
hybridization. Hence, the interpretation of the extraordinary strong signals of probes
containing runs of degenerated guanines in terms of high expression levels of the

respective genes seems not justified.

The (GGG)-effect tends to increase gradually for microarrays of later GeneChip
generations. It was detected for hybridizations which use DNA/RNA as well as DNA/DNA
probe/target-chemistries. Different amplitudes of the guanine effect were found for
hybridizations which apply different amplification protocols. In particular, the T7
amplification step for sample messenger RNA is associated with strong amplitudes of the
guanine effect whereas amplification protocols for genomic DNA lacking T7 priming

behave differently.

The origin of the very strong (GGQG); effect is unknown. Its association with the T7-
protocol however implies that the T7-amplified targets containing the G-rich primer
fragments are prone to form mixed probe/target G-stacks via association with G-rich probe
motifs. The large concentration of G-rich targets in the hybridization solution facilitate
their strong binding to G-rich probes resulting in their strong intensity. The absence of
these G-rich target motifs in the ChipChIP hybridization possibly explains the much
smaller intensity of the respective (GGG), probes compared with the ENCODE. This

hypothesis requires further verification using, e.g., methods developed in [111].

Established preprocessing methods only insufficiently remove the guanine bias from data.
Methods which explicitly process the intensities of the MM probes as suitable references
perform better than PMonly methods. We propose a positional dependent NN+GGG
hybrid-rank model to correct the intensity bias associated with probes containing poly-G
motifs. It can be applied prior to established preprocessing methods in a pre-correction

step. The positional and motif dependent sensitivity models are conceptually best suited to
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account for special sequence effects in single-chip based calibration algorithms for

microarrays which use a high number of short oligonucleotide probes such as GeneChips.

The structural rationale behind the guanine effects has been concordantly assigned to the
propensity of degenerated G-motifs to arrange into stable stacks of guanine tetrads which
bundle four oligonucleotide strands into molecular quadruplexes [29, 99—-101, 103]. These
structures potentially affect the efficiency of oligonucleotide synthesis and/or the
hybridization of the probes to their target sequences accounting for the abnormal
performance of G-runs on the array [29]. Upton ef al. [99] suggested a mechanism which
increases the intensity of poly-G containing probes via the local opening of regions in the

vicinity of quadruplexes formed by adjacent probes.

Alternatively one can assume that G-rich probes form G-quadruplexes of different
stoichiometry which involve either exclusively adjacent probe oligonucleotides or also
non-specific targets containing longer runs of guanines. We suggest that T7 amplification
contaminates the targets with G-rich primer fragments which drastically increase their
propensity to form such mixed probe/target G-quadruplexes. This model predicts that the
large concentration of G-rich targets in the hybridization solution gives rise to their strong
binding to G-rich probes which finally causes their strong intensity. The absence of these
G-rich motifs upon hybridization of genomic DNA then explains the much smaller

intensity of the respective probes.



7 Prevalence and impact of technical bias

7.1 Technical artifacts can be observed in batches

Non-biological, systematic variation due to varying experimental conditions constitutes a
technical bias that negatively affects the reliability of microarray results. This was
impressively shown in the introductory example in Section 1.1 where the results of the
study of Spielman et al. were found to be spurious because more than 79% of genes were
differentially expressed between two groups of samples processed at different times - an
unrealistic number that cannot be explained by biological variation. These batch effects are
a major issue in microarray data analysis and corrupt gene expression measurements via
factors clearly unrelated to biology [144]. Correlation of such a factor with the biological
variable of interest can prevent identification of the true biological source of variation and

render the results of a microarray experiment worthless.

It is therefore of great importance to study the various sources of batch effects, their
prevalence and their impact. A possibility to assess whether batch effects are present in a
data set is to test for correlations between the potentially confounding factors and the
expression measurements. A prerequisite however is that one has data on the factors
potentially varying between batches of samples, for example the quality of the RNA, the
used hybridization buffers and the employed instruments. In practice however, only a few
of those factors are recorded in the course of an experiment - typically experimental date or
location. These are frequently used as surrogate variables for the actual sources of

variation.

In this section, we employ the methodology developed in the previous sections to the
broader issue of common sources for batch effects. We investigate the general prevalence
of a number of known technical effects using a large and representative number of
microarray samples. For each of the considered effects, we will assess its impact on the
experimental results in the form of gene expression estimates, and suggest how to avoid or

remove them.

7.1.1 Human expression data

We have downloaded the HumanExpressionAtlas data set (E-MTAB-62 on Array Express)
compiled by Lukk et al. [145] consisting of 5372 (‘qc-included’) samples hybridized to
Affymetrix HG-U133a microarrays. This data set has been collected from 206 public

experiments and represents 369 distinct human cell and tissue types, disease states and cell
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lines. The resulting expression space, the combined and processed gene expression data
from this diverse collection of human samples, can also be queried using the dedicated
database ArrayExpress Atlas [146].

In [145] the 5372 samples have been selected from a larger data set of 8268 samples after
application of strict quality control (qc). We obtained a full list of the 8268 samples from
the authors and downloaded the remaining 2896 (‘qc-excluded’) samples from public
databases. From these, 137 samples could however not be retained as they were removed
from the databases, leaving in total 8268 — 137 =8131 samples. The full set of 8268
unique samples represents virtually all HG-U133a data publicly available in the two major
public databases GEO and ArrayExpress in 2006. This HumanArraysSet therefore is a

representative set of available human microarray samples.

7.1.2 Principal component analysis for gene expression data

The typical result of a gene expression experiment has the form of a huge nxm matrix
containing estimates for the expression of n genes in m samples. The size of n ranges
between a few hundred genes for spotted microarrays up to many thousands of genes. For
example there are about 55.000 probe sets representing over 38,500 genes on a recent
GeneChip microarray (see Table 6.1). The number of observations m typically ranges
between a handful of samples for screening experiments up to thousands of samples for

large cohorts.

A widely applied method for explorative analysis of such high-dimensional, multivariate
data is Principal Component Analysis (PCA). It reduces the number of dimensions by
transforming the possibly depending input variables into linearly independent variables
called principal components [147]. These new variables are selected such that they explain
most of the variance in the data (see [148]). Consequently, PCA captures the predominant
patterns among the experimental features including both biological and technical
variability. One typically focuses on the first couple of principal components ordered by

decreasing amount of variability explained.

Consider the HumanExpressionAtlas data set described in the previous section. Lukk ez al.
classified each of the 5372 samples into 369 biological categories representing a particular
cell or tissue type, disease state or cell line, and also introduced several ‘meta-groups’.
Figure 7.1 displays the first two principal components of the HumanExpressionAltas
expression data where each point representing a sample is colored according the meta-
groups hematopoietic system, solid tissues, incompletely differentiated cell types and

connective tissues (left side) as well as the meta-groups cell lines, neoplasms, non-
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Figure 7.1: The first two principal components of the HumanExpressionAtlas data set. Each dot represents
one of the 5372 samples colored according to its biological group. The first principal component (x-axis)
separates hematopoietic system—derived samples from the other samples (left side) whereas the second
principal component (y-axis) separates ‘malignancy types’ with cell line samples at the bottom, neoplasm
samples in the middle and nonneoplastic disease and normal samples at the top (right side). Image taken
from [145].

neoplastic diseases, and normal (right side). These categories separate along the first two
principal axes indicating a possible biological interpretation. Lukk ef al. found that the first
three principal components, which explain more than 37% of the variability, have

biological interpretations [145].

We here seek to investigate whether these biological factors of the HumanExpressionAtlas
are confounded by other, non-biological factors, raising the possibility for alternate
interpretations of the principal components. Similar to the approach above, correlation
between a known technical variable (e.g. RNA-quality) and a major principal component
indicates the presence of an unwanted technical side-effect in the resulting gene expression
data.

7.2 RNA quality

Good RNA quality is an important prerequisite for obtaining reliable results from a
microarray gene expression experiment (compare Section 5.1). Low RNA quality
propagates to the obtained gene expression estimates and consequently to differential
expression results. These risks combined with the previous detection of a noticeable

degradation effect upon the majority of microarray samples [68] suggest that variation in
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RNA quality could constitute a major technical bias. In this section we thus investigate the
general variability of RNA quality among a large, representative set of array samples, and
assess the prevalence of samples with critically low RNA quality. Lastly, we study the
impact of this factor on the gene expression estimates of the HumanExpressionAtlas data
set.

The RNA Integrity Number (RIN) provides a measure for RNA quality that is determined
for most microarray samples before hybridization [72]. RIN values scale between 1 and 10,
and using only samples with RIN>7 is recommended for microarray analyses [84].
However, RIN values are unfortunately seldom stored in conjunction with the experimental
data. The d“ degradation parameter (Eq. (5.20)) provides a sensitive estimate of RNA-
quality that can be computed from raw microarray data and, as we showed in Section 5.3.4,
correlates well with RIN. For fresh tissue, the cutoff of RIN > 7 corresponds to a d“>0.45
cutoff. Note that d* values are not only sensitive, but also specific for RNA quality since
only RNA degradation and amplification have such a systematic effect on the probe

intensity decay (see Section 5.1.1).

We have computed the d* values for all 8331 samples of the HumanArraySet which were
either included or excluded from the HumanExpressionAtlas data set as described above.
Figure 7.2a shows the resulting density distribution of the d* values for the gc-included/qc-
excluded sample sets. Most samples included after quality control have a degradation
index between 0.5 < d* < 0.8 referring to acceptable RNA quality. On the other hand, a
large fraction of the qc-excluded samples exhibits values of d“ < 0.45 referring to critically
low RNA quality. This applies to 25% of the qc-excluded samples and to 10% (868) of all

investigated samples.

Furthermore, 3% (162) of the qc-included samples are so severely degraded that they
should have been excluded by RIN analysis. Expression estimates of these samples are
biased, with negative consequences for the reliability of downstream results. That these
samples are however included in the HumanExpressionAtlas suggests that a more rigorous
assessment of RN A-quality should be applied in quality control procedures. Note that these
results correspond well with a previous estimation of 2% of low RNA-quality samples
given by Upton et al. [68].

Interestingly, only few qc-included samples have values larger than of d* = 0.8 which
obviously represents an upper limit referring to the ‘least possible intensity decay’
(compare Section 5.3.1). The presence of this limit could be attributed either to the
insufficiency of the cleanup assays to stop RNAase activity or to the ubiquitous incomplete
amplification of aRNA fragments. A fraction of 8.1% of the qc-excluded samples has

values of d* > 0.8 which could be due to other signal deficiencies (e.g. surface effects).
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Figure 7.2: Variaton of RNA quality among a large set of microarray samples and the impact on expression
results. Panel a shows the density distribution of d* values measuring the degradation for samples either
included or excluded in the HumanExpressionAtlas data set by independent quality control. The red line
indicates the low quality threshold corresponding to RIN < 7. Panel b replicates Figure 7.1 showing the first
two principal components of the HumanExpressionAtlas data set, but this time the points are colored
according to the value of d*. A correlation between the second principal component and degradation is
clearly visible.

To test for confounding of the HumanExpressionAtlas with the effect of variable RNA
quality we re-plot its first two principal components similar to Figure 7.1. This time the
samples are not colored according to biological groups but instead according to the value
of the degradation index d*. The resulting plot in Figure 7.2b shows a clear color gradient
along the second principal axis (‘malignancy axis’) with, in gemneral, lower RNA
quality (red spots) at the top and higher RNA quality (yellow spots) at the bottom. The
second principal component, a major pattern in the expression space, visibly relates with
the RNA quality. Formally, one can test for correlation between the first couple of
principal components and the technical factor or variable of interest as done for example
by Leek el al. [149]. We found the highest correlation (in absolute terms) to be with the

second principal component with a Pearson’s correlation coefficient of r = -0.44.

In summary, investigation of the RNA quality of publicly available microarray data
suggests that a substantial fraction of samples has substandard quality and should be
excluded from further analysis. A correlation between degradation index d* and the second
principal component of the HumanExpressionAtlas data was found. According to
Lukk et al., this so-called ‘malignency axis’ differentiates cell lines, neoplasms and
normal/non-neoplastic disease tissues (see Figure 7.1). Our analysis shows that this axis
also differentiates RNA quality where normal/non-neoplastic disease tissues are associated
with low RNA quality. Given the confounding of biological classification with RNA
quality, identification of the true origin of this important source of variation — is it
biological or is it rather related to the preparation of the respective cell and tissue types —

requires further investigation.
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7.3 Amount of hybridized RNA

Ideally sufficiently large amounts of aRNA transcripts at constant levels in the range of
10-100ug should be used for hybridization to the surface-attached microarray probes to
obtain good quality data [150]. In practice these ideals are hard to archive due to the
considerable variation in the amount of available source RNA. In some types of
experiments the amount of source RNA is highly limited, down to nanogram and even
picogram ranges, for example in applications where specific cells are selected by laser
capture microdissection [151]. Specialized RNA amplification and sample preparation
assays have been developed helping to obtain sufficient amounts of aRNA (for a
comparison of these methods see e.g. [66, 152]). Too low and too high amounts of aRNA
can reduce the dynamic range of the fluorescence signals and increase the signal-to-noise
ratio by insufficiently exhausting the measuring range for specific transcripts.
Consequently, varying RNA amounts can affect gene expression estimates and reduce data
quality, rendering the assessment of the prevalence and impact of the thereby induced

technical bias reasonable.

In Section 3.6 we showed that the summary measure <k> (Eq. (3.15)) within its limitations
is a sensitive parameter for varying amounts of RNA. The density distribution of the <7\,>
parameter, as previously separated for the qc-included/qc-excluded sample sets, is
displayed in Figure 7.3a. For most good quality samples <7L> ranges between 1.0 and 1.5
with the peak at <7L> = 1.2. Interestingly, the peak of the <7\,> distribution is significantly
shifted to the left to <k> =1.05 for samples excluded by quality control, indicating that
low quality samples have decreased relative specific transcript levels possibly relating to

low RNA amounts (see below).

Virtually none (< 0.1%) of the samples that passed stringent quality control exhibit values
smaller than <7\,> = 0.95, which we consequently consider a conservative threshold for
samples of critically low quality due to decreased RNA amounts. We find that 133 (1.6%)
of all samples exhibit <7L> values below this threshold. This equals a fraction of 4.6% from

the qc-excluded samples.

It should be noted that <7»> describes the average specific transcript level of all genes in
units of the non-specific one, and the unexpectedly low expression levels of some genes
can have other origins than low RNA amounts, for example local surface deficiencies (e.g.
fingerprints). Also note that low RNA amounts can as well be a result of degraded

RNA (see Section 5.4), suggesting an overlap between both technical effects.
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components 2 and 4 of the HumanExpressionAtlas data (panel ¢, compare Figure 7.2).

The density distribution of the [ parameters describing the measurement range (see
Section 3.6) of the microarray hybridization is shown in Figure 7.3b. Low RNA amounts
are associated with a larger B values whereas high RNA amounts increase the non-specific
background with negative consequences for the measuring range, and thus the signal
calibration [57]. For qc-included samples the summary values are distribute closely (£0.3)
around the peak at B = 2.25 whereas for qc-excluded samples the B wvalues spread much
broader with a second peak for smaller measuring ranges. Selecting a threshold of B < 1.8,

we find that 344 samples (4.2%) have a low measurement range.

We also assessed the impact of the non-biological variables <7»> and B by relating them
with the first five principal components of the expression space of the
HumanExpressionAtlas data set. We obtained a correlation of r=-0.61 of <7»> with the
fourth principal component. Furthermore, a correlation of r=-0.33 with the second
principal component, which we previously showed to relate with RNA quality, was found.
The other three components show only low correlations of -0.16 <r<0.21. With
coefficients of -0.04 <r <0.01, the B parameter exhibits no correlation with the first five

principal components.

In summary, a significant fraction of the human samples is affected by a ‘decreased
specific transcript level’ set of effects that relate to low amounts of hybridized RNA. We
find that the predominant patterns of expression variation are significantly affected by the
technical variable <7»> which highly correlates with the fourth principal component of the
HumanExpressionAtlas data. This is a different principal component than the one showing
high correlation with the RNA quality measure d*. Analysis of the p parameter shows that
about 4% of the samples have low measurement ranges, and that B has no impact on the

predominant patterns in the expression space.
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7.4 Sequence effects

7.4.1 Maximum sensitivity amplitude

Nucleic acid folding and formation of DNA/DNA or DNA/RNA duplexes on surfaces are
fundamental reactions for any microarray assay and largely depend on the conditions under
which they occur. For example, the temperature and time given for the reactions affects
sensitivity and specificity of nucleic acid binding [14]. Condition changes can thus lead to
sequence-dependent variations in the probe intensity signals, which can further propagate

to the gene expression estimates and therefore constitute potential technical artifacts.

To this end, we investigate how sequence-dependent binding affects gene expression data.
We first define the maximum sensitivity amplitude based on most extreme sequence

contribution A (see Eq. (3.6)) in positive and negative direction

A 10g(K i) = max (A" (£)) — ming (A" (€)) (7.1)

measured in units of log intensity contributions. We here refer to the perfect-match
probes (P =PM) of the non-specific hybridization mode (h =NS). Given the estimated
sensitivities, it determines how much a probe could shine brighter than another one given
that both probes target the same transcript. For example, a value of log(Kgigr) =5 for a
particular hybridization means that, on the average, two hypothetical probes (most likely
with the sequences AAA...A and CCC...C) would differ in their intensity values by 5
orders of magnitude. It can thus be thought of as the maximum strength, or impact, of the

sequence effect.

As previously, we computed log(Kg;gr) for all 8331 samples of the HumanArraySet and plot
the respective density distribution in Figure 7.4a. By trend qc-excluded samples show a
lower maximum sensitivity amplitude, rendering it a potential marker for low quality
samples. Based on the observation that barely any good quality samples (< 0.1%) exhibit a
smaller maximum sensitivity amplitude , log(Kgifr) = 3 is chosen as conservative threshold
selecting samples with critically low sequence effect size. This applies to a fraction
of 4.1% of the samples.

In order to assess the impact of the sequence effect size we computed correlations of the
log(Kaifr) parameter with the first five principal components of the HumanExpressionAtlas
data. The largest correlation in absolute scales is r=-0.17 with the third principal
component. Correlations for the remaining principal components are smaller than
[r|=0.11. In conclusion, the sequence effect size is not a technical variable with a large

impact on the most common patterns in the expression space.
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7.4.2 Guanine effects

In Section 6.3 we found that runs of guanines within the probe sequence, particularly runs
of guanines as long or longer than 3, significantly affect the obtained signal intensities. We
showed later that this (GGG), effect propagates through the various preprocessing methods
of microarray analysis and can lead to biased expression estimates. The origin of the
(GGQ); effect lies in the formation G-quadruplex structures. The formation of duplexes
between negatively charged nucleic acids in general, and between G-quadruplexes in
particular, depends on the ionic strength and thus on the employed solution buffer [153].
This dependency on the ionic strength also applies to hybridization reactions on solid
surfaces [154]. Given both its dependence on changing conditions and its potential effect
on the expression results, it is reasonable to study the overall prevalence and impact of

guanine effects in microarray expression experiments.

We here define the strength of the guanine effect in terms of the inftensity increase due to
the (GGG); motif as follows

_ PM Y
Ol(GGG)) = <log I >§};3:(GGG) <logp >(TTT)eé’;p : (7.2)

A value of 8I(GGG), = 0.3 thus reflects an on the average 10°° = 2 times as large intensity
of probes containing the (GGG); motif compared to probes containing (TTT) anywhere in
their sequence. The average intensity of (TTT) containing probes here serves as

appropriate baseline normalization.
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Figure 7.4b shows the density distribution of the 6I(GGG), parameter which varies
between 0 <0I(GGG);<0.3 for qc-included samples. We consider samples with a
threshold of dI(GGG); > 0.25 to be significantly affected by GGG bias — this reflects an
intensity increase of +75% of the respective probes. Accordingly, 254 (3.1%) of the
samples have a GGG related intensity bias. Many of them are removed by strict quality

control, only 63 (1.1%) of qc-included samples are above the threshold.

Assessing the correlation of GGG, bias with the first five principal components of the
HumanExpressionAtlas expression data we observe correlation coefficients between
0.14 <r] <0.19. Consequently, guanine effects have only minor impact on the common
patterns in the expression space. Note that the RMA method was used for calibration, and
we showed in Section 6.8.3 that expression estimates from this preprocessing approach are

in general susceptible to GGG effects.

In summary, guanine effects are an important technical artifact that however only affects
the expression estimates of some genes in a significant fraction of microarray samples. It
does not affect the majority of features and is consequently not a major determinant for the

predominant patterns in the expression space.

7.5 Summary and conclusions

In this section we have studied the general prevalence and impact of a RNA quality, RNA
quantity and sequence effects using a large and representative set of microarray samples
from the Affymetrix HG-U133a platform. To this end, we defined novel parameters, or
used previously defined ones, that quantify each technical artifact based on systematic
changes in the intensity signals. We determined appropriate thresholds indicating low-
quality samples potentially leading to biased expression estimates due to the respective
artifact. Their impact on the expression estimates was analyzed by computing correlations
between the technical variables and the first five principal components of the expression

space of the HumanExpressionAtlas.

We found that a large fraction of 10% of the 8131 samples are so severely degraded, that
they should be excluded from further analysis. While most of these samples where indeed
excluded from the HumanExpressionAtlas, still about 3% of the low-quality RNA samples
passed quality control highlighting the need for a more rigorous assessment of RNA

quality in microarray data analysis.

Unexpectedly high impact on the gene expression data was found for RNA quality and
RNA abundance variation. Both affect the most common patterns in the expression space.

The RNA quality measure d* and the relative specific transcript level <7L> highly correlate
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with different principal components. Together with the observed high prevalence of these
artifacts, they constitute major sources of technical bias and should be monitored carefully

in every experiment.

We found that sequence effects are highly variable in the investigated Affymetrix HG-
U133a platform. The total sequence effect size is particularly low among low-quality
samples where 4% of the samples are affected. 3% of the samples have a strong GGG,
effect. While the GGG effect can have a critical impact on the expression estimates of
some of the genes, we found that the overall impact of the studied sequence effects on the

expression space is relatively low.






8 Summary and discussion

In this thesis, we reviewed a number of established microarray technologies with a wide
range of genomics applications together with the challenges that arise when their technical
limitations meet the high standards required in research and clinical environments.
Particularly, we showed how changes in the experimental conditions can have a large
impact on the obtained data and can thereby lead to unreliable results. To better understand
and control the experimental system we employed a model of microarray hybridization and

demonstrated how it can be applied to different types of microarrays.

Using appropriate modifications of that model we studied the effect of selected
hybridization biases using publicly available data from Affymetrix GeneChip expression
arrays. We showed that varying amounts of hybridized RNA result in changes of the raw
intensity signals and of the summary parameters <k> and B computed from these. We also
found that varying RNA quality strongly affects intensity signals of probes which are
located at the 3’ end of transcripts. New theoretical approaches and visualization methods
were introduced that help assessing the RNA quality of a particular microarray sample. We
developed a new metric for determining RNA quality based on the 3°/5’ intensity bias of
specific probes and showed that it outperforms other microarray-based quality metrics. We
proposed a method for the correction of the 3’ intensity bias, which, together with the other

functionalities, has been implemented in the Bioconductor package AffyRNADegradation.

We further found that probe signals are affected by sequence effects which were studied
systematically using positional-dependent nearest-neighbor models. Analysis of the
resulting sensitivity profiles revealed that particular sequence patterns such as the GGG,
motif have a strong impact on the probe signals. We showed that sequence effects differ
for different chip- and target-types, probe types and hybridization modes. These and other
factors introduce a strong sequence bias in the intensities that should be corrected in order
to obtain reliable results. We showed that the NN+GGG PDNN model provides a good
trade-off between correction efficiency and speed, and provide a software implementation
for the sequence correction of raw intensity data of Affymetrix expression arrays in the

Larpack program package.

In the final chapter, we used the previously developed methodology for the assessment of
technical artifacts to study their general prevalence and impact on available microarray
data. Using a representative ensemble of over 8000 human microarray samples, we found
that in particular RNA quality and quantity have a strong impact on the obtained
expression values. We also showed that about 10% of microarray samples have such low
RNA quality that they should be discarded from further analysis.
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Despite great advances in the efficiency of biological high throughput technologies and
data analysis methodology, we still fail at explaining a significant fraction of the observed
variability in the data. For example, probe intensities of tiling arrays exhibit a within-gene
variability of several orders of magnitude and it is largely unknown whether there is a yet
to be found biological explanation, or if it is due to technical artifacts. Hence there is either
a lack of understanding of the complex cellular mechanisms and biochemical reactions
leading to the production of the measured biomolecules, or a lack of understanding of the
technical steps of sample preparation and the measurement process in these widely-used

technologies.

The aim of this thesis is to increase the understanding and the control over systematic
technical variation in microarray data. More understanding of the mechanisms of surface
hybridization can help to improve on existing and potential future technologies. More
control about the sources of technical variation increases the amount of reliable
information about true biological variation, and thus the amount of knowledge that can be

gained from high-throughput experiments.

In this thesis, we pointed out several problems in current microarray data generation and
analysis methods, and proposed new approaches helping to solve them. Undoubtedly,
further efforts are necessary to increase the validity and utility of the obtained results. First
of all, awareness should be raised about existing technical limitations and possible biases
in the data. For example, we showed here that biased expression estimates can be a result
of sequence effects like the GGG, effect, which in turn are highly dependent on the
conditions of the hybridization reaction. By these means differences in the experimental
conditions, like the use of different buffers in two collaborating laboratories, can propagate
to expression measure differences between two batches of samples. Researchers unaware

of these effects can easily draw false conclusions.

Further, high standards in data quality control and documentation are immensely valuable,
and should be further enforced. A first important step has been made by the establishment
of standardized descriptions as MIAME (Minimum Information About a Microarray
Experiment, [155]) which are now mandatory on common platforms hosting public
microarray data. The required information includes descriptions of the experimental
design, the array design and the used biological material and its treatments. While these
important community standards help to reproduce and to validate the results of microarray
experiments, we believe that the mandatory recording and storage of additional
information on the experimental conditions and intermediate measurements would be a
large benefit. We showed that more factors than previously thought have a significant
impact on the microarray results in the form of expression data. The specifics of the design

and protocols of the Affymetrix GeneChip platform allowed us to infer some of the
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missing parameters from systematic changes in microarray expression data. However, this
is not easily possible for other effects and other platforms. Only storage of intermediate
results like RNA integrity or pH measurements along with the primary data enables further

analysis of these technical effects and their origins.

Finally and importantly, model-based analysis helped to improve our understanding of
microarray technologies. A basic hybridization model based on fundamental physical
principles of surface binding applied well to gene expression data, as well as to the data of
other microarray technologies with different applications. The model-based analysis of
sequence and degradation effects allowed us to understand the introduced biases and to
develop appropriate extensions to the basic hybridization model. With continuous
refinement of our understanding and of our modeling, we hope to once reach a sufficiently
comprehensive model so we can explain most of the technical variation, and can

concentrate on understanding biology.






A List of data sets used

Table A.1: Microarray data sets used in this thesis. GSExxxx and GSMxxxx are the accession numbers of
datasets downloaded from the GEO repository (http://www.ncbi.nlm.nih.gov/geo/). E-TABM-xxx and
ArrayExpress

E-MEXP-xxx

are

accession  numbers  of data  sets downloaded  from

(http://www.ebi.ac.uk/arrayexpress/).

Chip type Employed publicly available dataset

HG-U95A Genelogic dilution series (http://www.genelogic.com/support/scientific-
studies)

Mapping50k  Mapping 100k HapMap Trio Dataset

Xba240 (http://www .affymetrix.com/support/technical/sample data/hapmap trio d
ata.affx)

HG-U133 GSE7307 (Human tissue)

plus 2.0

Rat230A E-MEXP-1069 (RatQC)

HG-U133A  GSE1133

HG-U133A  GSE3061

and

HG-U133

plus 2.0

MG4302.0 GSE12545

ENCODE GSE2800, GSE6292

Yeast 2 GSE9302

MG430 2 GSE12545

Zebrafish GSE5048

EColi_2 GSE6893

CElagans GSE6547

Rice GSE6893

Chicken GSE12268

ATH- GSE7432

121501

Rat230 2 E-TABM-536

MG430A GSM154799, GSM355022, GSM366810

DrosGenom  Fruitfly time series

el (http://camda.bioinfo.cipf.es/camda08/contest dataset)

MG74A GSM104601, GSM34328, GSM4310

HG-U133A  Affymetrix Latin Square HG-U133A
(http://www.affymetrix.com/support/technical/sample data/datasets.affx)

HG-U95A Affymetrix Latin Square HG-U95A
(http://www.affymetrix.com/support/technical/sample data/datasets.affx)

30 random GSM172403, GSM176889, GSM 177368, GSM 178084, GSM 187846,

MG430 a GSM211338, GSM211425, GSM237785, GSM238367, GSM250880,

arrays GSM252214, GSM264815, GSM280709, GSM282803, GSM311514,
GSM313208, GSM315604, GSM318915, GSM325421, GSM326978,
GSM326998, GSM337788, GSM337834, GSM432906, GSM443776,
GSM455430, GSM53318, GSM94768

HG-U133A  E-MTAB-62 (HumanExpressionAtlas)
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