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Abstract 

Modern high-throughput technologies like DNA microarrays are powerful tools that are 
widely used in biomedical research. They target a variety of genomics applications ranging 
from gene expression profiling over DNA genotyping to gene regulation studies. However, 
the recent discovery of false positives among prominent research findings indicates a lack 
of awareness or understanding of the non-biological factors negatively affecting the 
accuracy of data produced using these technologies. The aim of this thesis is to study the 
origins, effects and potential correction methods for selected methodical biases in 
microarray data. 

The two-species Langmuir model serves as the basal physicochemical model of microarray 
hybridization describing the fluorescence signal response of oligonucleotide probes. The 
so-called hook method allows to estimate essential model parameters and to compute 
summary parameters characterizing a particular microarray sample. We show that this 
method can be applied successfully to various types of microarrays which share the same 
basic mechanism of multiplexed nucleic acid hybridization. 

Using appropriate modifications of the model we study RNA quality and sequence effects 
using publicly available data from Affymetrix GeneChip expression arrays. Varying 
amounts of hybridized RNA result in systematic changes of raw intensity signals and 
appropriate indicator variables computed from these. Varying RNA quality strongly affects 
intensity signals of probes which are located at the 3’ end of transcripts. We develop new 
methods that help assessing the RNA quality of a particular microarray sample. A new 
metric for determining RNA quality, the degradation index, is proposed which improves 
previous RNA quality metrics. Furthermore, we present a method for the correction of the 
3’ intensity bias. These functionalities have been implemented in the freely available 
program package AffyRNADegradation. 

We show that microarray probe signals are affected by sequence effects which are studied 
systematically using positional-dependent nearest-neighbor models. Analysis of the 
resulting sensitivity profiles reveals that specific sequence patterns such as runs of 
guanines at the solution end of the probes have a strong impact on the probe signals. The 
sequence effects differ for different chip- and target-types, probe types and hybridization 
modes. Theoretical and practical solutions for the correction of the introduced sequence 
bias are provided.  

Assessment of RNA quality and sequence biases in a representative ensemble of over 8000 
available microarray samples reveals that RNA quality issues are prevalent: about 10% of 



4 Abstract 

the samples have critically low RNA quality. Sequence effects exhibit considerable 
variation within the investigated samples but have limited impact on the most common 
patterns in the expression space. Variations in RNA quality and quantity in contrast have a 
significant impact on the obtained expression measurements.  

These hybridization biases should be considered and controlled in every microarray 
experiment to ensure reliable results. Application of rigorous quality control and signal 
correction methods is strongly advised to avoid erroneous findings. Also, incremental 
refinement of physicochemical models is a promising way to improve signal calibration 
paralleled with the opportunity to better understand the fundamental processes in 
microarray hybridization.  
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1 Introduction 

1.1 The role of high-throughput technologies in modern 
life sciences 

When a researcher in the field of molecular biology carried out an experiment in the early 
1990s he would need experience, craftsmanship and a lot of time. Assume the researcher 
was interested in gene expression. For example, he would like to know whether a gene that 
potentially causes cancer is active in some tumor cells or not. He could employ a technique 
called Northern blot and follow a long protocol of manual steps involving, amongst other 
things, production of an agarose gel, RNA separation using gel electrophoresis, transfer of 
RNAs to a membrane and production of labeled probes. Including proper controls the 
whole procedure would usually take days up to weeks to complete successfully. At the end, 
he would know whether his gene of interest is expressed in a single cell line of a single 
species. 

If the same researcher was interested in the same question only 10 years later in the early 
2000s, the experiment would run markedly different. He could resort to several 
commercially fabricated instruments and automated techniques specifically designed to aid 
in his experiment. For example, he could employ a sensitive scanner device that uses lasers 
to read signals out of miniaturized DNA microarrays. He would be able to simply order 
some of the pre-manufactured microarrays that contain probes designed to measure the 
expression of his gene of interest and many other genes at the same time. And he would be 
able to buy tailor-made reagents that help him preparing his sample for the assay in a few 
simple steps.  The procedure would take only hours instead of weeks.  

It is easy to see why high-throughput technologies like microarrays quickly replaced 
previous techniques in labs all over the world. They revolutionized the way how 
researchers could approach the problems they were facing in their particular domain. It 
allowed them conducting experiments hypothesis-free: The researcher could not only study 
the expression of one single gene he chose because he hypothesized that it relates to the 
cancer, but he could instead screen thousands of genes for their expression status in the 
tumor cells. Also it allowed conducting experiments that could not be done before because 
of time or money restrictions of the previous techniques. Edward Southern, one of the 
inventors and early adopters of these automated techniques, later commented on this 
dramatic development: “Genomics, in its early days, used a range of techniques that were 
developed to explore the composition and sequence organization of the nuclear DNA. 
High-throughput methods changed that, and most research in genomics is now done in 
factory-like laboratories, with robots doing much of the work.” [1] 
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Today, many areas of life sciences rely on the methodological advances provided by a 
large toolbox of available high-throughput technologies. Gene expression profiling using 
microarrays is such a tool - being one of the first and more popular ones it is probably the 
best known representative for the whole toolbox. These assays are now performed 
routinely and in large-scale for testing the reaction of cells on different treatments and 
condition changes. Consider the following numbers: More than 25.000 peer-reviewed 
papers have been published using microarray technology from a single vendor 
(Affymetrix) alone [2]. Each of these publications refers to one or more experiments. For 
some experiments the generated data is made publicly available. Over 28.000 datasets 
comprising over 850.000 microarray samples have been stored in two public data 
repositories in the last 5 years alone1. The data of many more experiments is not shared in 
public databases, but is kept secretly, particularly for experiments performed at companies 
and private institutions.  

Every experiment performed using high-throughput technologies has the property of 
producing large amounts of data that must afterwards be analyzed and interpreted.  The 
analysis of such complex data is no simple task, even for experienced researchers. Without 
a deep understanding of the limitations of the technology and knowledge about proper 
statistical analysis it can easily be misinterpreted. Daniel MacArthur notes that “all high-
throughput genomic technologies come with error modes and systematic biases that, to the 
unwary eye, can seem like interesting biology. As a result, researchers who are 
inexperienced with a technology — and some who should know better — can jump to the 
wrong conclusion” [3]. The combination of difficult-to-analyze data and the hope of 
surprising results can lead to so-called ‘false positives’, erroneous research findings that 
later had to be revoked after other groups have pointed out flaws in the analysis done by 
the original authors. 

One example about how critical it is to ensure accurateness and rigorousness in high-
throughput data analysis is given by a study published in 2007 by Spielman et al. [4]. It 
was previously known that the genetic divergence, the differences in the genetic code, 
between individuals of our species is drastically small. The human to human nucleotide 
divergence for example was estimated to be around 0.1% [5]. The study of Spielman et al., 
which was published in Nature Genetics, sought to find the factors that contributed to the 
large phenotypic differences between human populations. Their approach was to focus on 
the variation of gene expression, patterns of genetic activity, rather than on the variation of 
DNA sequence. Microarray technology was to be used to obtain profiles of genetic activity 
in lymphoblastoid cell lines from individuals belonging to one of three population groups. 
The authors found that the expression of about 25% of the tested genes differs significantly 

                                                 
1 Queried on the ArrayExpress website http://www.ebi.ac.uk/arrayexpress/ on January 7, 2013.  
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between European and Asian populations. These numbers suggested that phenotypic 
variability to a large part is reflected in expression variability which constituted an 
important finding.  

However, later concerns about the accuracy of these numbers were raised [6]. Akey et al. 
reanalyzed the data of Spielman et al. and found 78% of the genes – a rather unrealistic 
number - to be significantly differentially expressed. After closer inspection of the 
microarray data, they found that samples have been processed in groups spanning a time of 
more than 3 years and that European and Asian samples had been mostly processed at 
different times. Akey et al. then found that 79% of the genes are differentially expressed 
between processing years but within the same population. This significant variation 
between the processing groups cannot be explained by biology. They concluded that the 
data possesses a systematic and confounding technical bias, and that the reliability of the 
obtained results is therefore at least questionable. 

The publication of these spurious results of Spielman et al. in one of the most trusted 
scientific journals illustrates how difficult it can be to control the quality of high-
throughput data and to implement its analysis. Errors and biases can be introduced in many 
steps and at different levels in the course of such an experiment. Differences in sample 
storage and treatment, reagent composition, lab worker experience, device or program 
variants and many other factors can lead to different results. These are methodological 
issues, relating to technical effects of the employed tools. Note that measurement errors are 
a critical but common element in scientific research methodology since its earliest days. 
However, for the recent high-throughput technologies the number of ‘error modes’ is 
drastically higher, and their impact on the complex data multifaceted and therefore hard to 
detect.  

In summary, the powerful high-throughput technologies enjoy a high popularity in research 
applications, yet there are issues with the accuracy of data generation and analysis. Many 
factors aside the biological variable of interest influence the measured quantities. Given the 
critical impact of these technical effects as illustrated for the case of Spielman et al. it is 
imperative to thoroughly study them to better understand their origins and ideally to 
provide solutions for controlling them. Doing so for the important classes of RNA 
quantity, RNA quality and sequence effects in the context of common high-density 
microarray technologies is the main aim of this thesis.  
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1.2 Physicochemical models for microarray data 
analysis 

An essential task in high-throughput data analysis is the obtainment of accurate estimates 
of the input quantity (e.g. transcript abundances) from the measurement output (e.g. 
intensity signals) which is affected by various technical disturbances. This calibration step 
requires a model describing the relationship between both quantities which is subject to the 
entirety of processes in the experimental system. Note that this modeling of technical 
processes is complementary to the modeling of the input quantities in their complex 
biological systems as for example in gene regulatory network models. 

Most calibration methods for data originating from high-throughput technologies rely on 
statistical approaches. A prominent example is the MAS5 algorithm included in the 
manufacturer software that ships with each Affymetrix microarray device. As the default 
solution for computing gene expression estimates for various array types it is widely used. 
This simple method applies a bi-weight estimator to compute a robust mean of the probe 
signals interrogating one, mostly gene-related transcript [7].  

The benefit of such relatively simple approaches is that no prior knowledge of the exact 
experimental processes is required. The processes involved in a typical microarray 
measurement, for example, are complex: The hybridization is highly multiplexed with 
thousands of competing reactions occurring in parallel. The devices are imperfect with 
manufacturing errors which are hard to detect, for example the probes may vary in 
length (‘polydispersity’) and sequence. There are a large number of biases and errors that 
can be introduced during the multi-step assay for sample preparation. Purely statistical 
approaches here provide a straightforward solution for obtaining fast and effective signal 
calibrations. 

On the other hand, the simplicity of those methods comes with the cost of decreasing 
accuracy in the obtained results. While it is obviously not feasible to consider all relevant 
factors, it is possible to incorporate existing knowledge about important processes involved 
in the measurement. There are accepted physicochemical models that well describe binding 
of molecules on surfaces as well as the hybridization of nucleic acids, and either of these 
processes is central in microarray hybridizations. We and a number of peers believe that 
building upon basal models based on these fundamental physical principles and their 
incremental refinement will eventually lead to a better high-throughput data analysis. 
Improving on these models will increase our understanding of these complex technologies 
and, at the same time, increase our ability to control the data.  
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1.3 Objectives and outline 

The objective of this thesis is to rigorously assess the specifics of microarray technology 
using Affymetrix GeneChip microarrays as an example. We aim to establish a deeper 
understanding of the limitations of current technology and to investigate how to make the 
most of available and future microarray data within these limitations. Particularly we 
intend to 

• objectively assess the quality of microarray experiments (quality-control) and 
detect and possibly correct for confounding factors affecting the reliability of the 
obtained results 

• evaluate and improve the precision and accuracy of microarray gene expression 
estimates under varying experimental conditions 

• improve the understanding of the basal mechanism of surface hybridization by 
employing physicochemical models of duplex formation 

Particularly critical methodical issues relate to variations in quality and quantity of the 
RNA used for hybridization as well as to variations in sequence-dependent binding due to 
changing experimental conditions. These effects lead to systematic changes in the 
microarray data which are however unrelated to the biological changes under study. Using 
appropriate experimental designs and newly developed methods we are able to study these 
technical variations and to investigate the physicochemical principles of the processes 
involved in microarray measurements. 

We here focus on the widely adopted Affymetrix GeneChip type of microarrays. The 
challenges and limitations are however similar for a wide range of other chip types and to a 
certain degree also for other technologies that exploit the mechanisms of nucleic acid 
hybridization in general.  

This thesis will be laid out as follows. Chapter 2 will describe microarray technology for 
gene expression analysis, genotyping and other applications. Chapter 3 will lay the 
foundations for modeling of microarray signals using physicochemical principles of 
competitive surface hybridization. We will describe the Hook method and its use for the 
robust estimation of essential model parameters. In Chapter 4 we investigate whether this 
methodology can also be applied to other microarray technologies besides Affymetrix 
GeneChip expression arrays. Chapter 5 focuses on RNA quality as a technical bias in 
microarray experiments and how it can be determined and corrected within the resulting 
data. Chapter 6 deals with sequence effects largely referring to changes in the observed 
probe signals due to molecular interactions of complementary nucleotide strands. We will 
investigate which models are both adequate and practical for modeling the signal 
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contribution due to sequence variation. Chapter 7 addresses the important and more 
general question of the impact and prevalence of technical bias in gene expression 
experiments. We will use the methodology developed in the previous chapters to study the 
effect of known sources of batch effects in a meta-study comprising thousands of 
microarray samples. The final Chapter 8 will discuss and conclude the results of this thesis. 



2 Microarray technology 

2.1 Microarrays assembly and assay 

Microarrays are a powerful technology for the targeted analysis of thousands of DNA or 
RNA molecules in parallel. The basic principle is the hybridization of a mixture of 
unknown, but marked, nucleotide strands to a set of known nucleotide strands called 
probes. During the reversible chemical reaction of hybridization, complementary 
nucleotide strands build up a duplex structure. Quantification of bound nucleotide strands 
allows then to infer the contents of the mixture. 

Microarrays are today available in a wide variety in terms of available instruments and 
assays, as well as its applications. Possible applications of microarrays include, but are not 
limited to, gene expression analysis, DNA genotyping, copy-number analysis, isoform 
expression, microRNA profiling and discovery of novel transcripts or protein/DNA 
interaction sites. We will here focus on microarrays of the manufacturer Affymetrix with 
application to gene expression analysis. Other applications and manufacturers differ in the 
employed protocols, reagents and instruments, but the overall principle is similar for all 
microarray types. Consider the following four basic elements of a microarray experiment: 
the microarray with surface-attached probes, the preparation of the target mixture, the 
scanner device and computational image/data analysis. 

The microarray itself refers to a solid surface with attached oligonucleotide probes. Figure 
2.1a shows how the surface is separated into thousands of spots or features. The size of a 
spot ranges between 5 by 5 square microns (HuExon) and 20 by 20 square microns (HG-
U95) [8]. Each spot comprises more than one million oligonucleotides that are, separated 
by a linker molecule, covalently attached to the surface [9]. The oligonlucleotides are built 
up one base at a time during fabrication using photolotographic masks [10]. In an ideal 
production, all oligonucleotides attached to one spot have the same length and identical 
nucleotide composition termed probe sequence.  

The mixture sample containing unknown nucleotide strands must be prepared to be 
suitable for being hybridized to the microarray. Let us consider a target preparation assay 
for gene expression studies (Affymetrix 3' IVT Express Kit [11]) where one is interested in 
profiling cellular mRNAs. These assays follow a protocol developed by Van Gelder et al. 
called the ‘Eberwine method’ [12]. After extraction of the total RNA from the cells or 
tissue of interest, mRNA is reverse-transcribed into complementary DNA (cDNA). The  
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Figure 2.2: Probe design in Affymetrix 3’IVT expression microarrays. Paired perfect-match (blue) and 
mismatch probes (red) query sequences located towards the 3’ end of the target mRNA (green). Together, 
these probes form a probe set. 

basic mechanisms of molecular biology, to characterize disease states and to classify tumor 
types, and to assess the transcriptional variation of whole populations. 

The length of the spotted oligonucleotides is 25 bases for all types of Affymetrix 
expression microarrays. These short probes have a relatively low sensitivity for the 
detection of  gene expression changes in complex mixtures [14]. To cope with this 
shortcoming Affymetrix uses not only a single probe, but instead a probe set comprising of 
11-16 probes to interrogate each target sequence. The probe set is selected to be “unique to 
a single transcript or common among a small set of similar transcript variants” [15]. 
Having multiple intensity measurements for each transcript has several advantages. For 
example it is hard to predict whether each probe is always fully functioning or if it suffers 
from deficiencies like strong cross-hybridization to other sequences in the mixture or intra-
probe folding. Those errors can be compensated, improving the accuracy of the 
summarized signal. Furthermore, multiple measurements allow calculating statistics for 
assessing the confidence in each expression estimate. 

The probe sets in 3’ expression arrays are primarily designed to target the 3’ end of the 
transcripts. Figure 2.2 illustrates how the probes of a probe set interrogate sequences in the 
3’ untranslated region (3’ UTR) as well as in the adjacent first exon of a longer transcript. 
As a result, gene expression estimates from these arrays are necessarily an extrapolation 
from the 3’UTR abundance of the genes.  

Another ‘specialty’ of Affymetrix microarrays is that probes come in pairs: each perfect-
match (PM) probe has an accompanying mismatch (MM) probe which has identical 
sequence except the center base. With the short 25meric oligonucleotides such a single 
mismatch destabilizes duplex formation between probe and specific target. The ratio 
behind using mismatch probes is to quantify the sequence-dependent amount of cross-
hybridization, which can later be subtracted from the specific signal to improve specificity 
and sensitivity of the obtained signal [16]. 

probe set with
perfect-match and
mismatch probes

3‘ end of
target mRNA

exonic region 3‘ untranslated region
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Figure 2.3: Comparison of how probes align to a target gene for various types of Affymetrix microarrays. 
Whereas probes are located towards the 3’ end of the target mRNA (the respective genomic region with 
exons, introns and UTRs is shown in black and green) in 3’ based expression arrays, other array types query 
sequences in the entire gene. For tiling arrays, probe sets (light blue boxes) are not defined. 

2.3 Gene ST and Exon ST arrays 

About 40-60% of human genes are not transcribed solely into a single form of mature 
mRNA [17]. Instead the primary transcripts of these genes are transformed into a number 
of different isoforms by alternative splicing. Since each splicing isoform can encode for a 
different, potentially functional protein one is highly interested in their identification and 
quantification. Affymetrix 3’ expression arrays are however by design unable to 
discriminate splice variants. Gene ST and Exon ST microarrays are designed to overcome 
these drawbacks. 

For one, these whole transcript expression arrays employ a different target preparation 
protocol, typically using the Ambion WT Expression Kit [18]. Synthesis of cDNA strands 
here is not done using poly-T primers starting at the 3’ end of the transcript, but rather 
using a pool of reverse transcription primers. These bind at various loci in non-ribosomal 
RNAs to initiate the polymerase reaction. In-vitro transcription is then used to amplify 
these fragments which span various regions of the available transcripts. Biotinylated sense-
strand cDNA, opposed to the cRNA used in 3’ IVT expression arrays, is then fragmented 
and end-labeled for hybridization to the array. The resulting DNA-DNA duplexes between 
probes and targets have been found to be more specific than DNA-RNA duplexes [19]. 

Affymetrix 3’ IVT expression arrays
one probe set with
perfect-match and
mismatch probes

Gene ST arrays
one probe set with

perfect-match
probes

Exon ST arrays
multiple probe sets
with perfect-match

probes

Tiling arrays
regularly spaced

probes span 
genomic regions
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The probes of whole transcript arrays interrogate sequences spread across the entire gene 
with the aim of getting a more complete picture of gene expression. As shown in Figure 
2.3, the probe set of a 3’ IVT array contains a fixed number of perfect-match and mismatch 
probes which concentrate at the 3’ end of the transcript. A transcript is queried by typically 
one probe set. For the Exon ST arrays, each exon or non-coding region is interrogated by 
about four probes. Using these exon-level probe sets allows distinguishing between 
different splicing isoforms. The probes of multiple exons can be combined, giving about 
40 probes per gene and allowing a complementary gene-level expression analysis. The 
Gene ST arrays are designed as a less expensive alternative to the Exon ST arrays 
containing only a subset of the probes mainly designed for gene-level analysis. A high 
concordance has been found between the gene-level estimates of Gene ST, Exon ST and 
3’ IVT expression arrays [20, 21].  

It should be noted that Gene ST arrays are less popular than Affymetrix’ 3’ expression 
arrays. McCall et al. found that “between 1 June 2010 and 1 June 2011, over 13 000 
Affymetrix Human Genome U133 Plus 2.0 samples were added to the Gene Expression 
Omnibus (GEO)” but “during the same time period, less than 2000 Human Gene 1.0 ST 
samples were added” [22]. 

2.4 Genome-wide SNP arrays 

Another important application of microarrays is the analysis of genetic variants. In diploid 
human cells the genetic information is spread on two homologous sets of 23 chromosomes. 
Alleles are alternative forms of a certain position or region of a chromosome (a locus) that 
occur between members of a species or within the chromosome set. In the case of the most 
common type of variation, the single nucleotide polymorphism (SNP), only a single base 
of DNA is altered. Since there are four possible nucleotides a SNP can have at most four 
alleles. Most SNPs have however only two alleles [23]. These bi-allelic loci result in three 
possible states a SNP can take in a diploid chromosome set: either homozygous allele AA 
with allele A on both chromosomes, homozygous allele BB, or heterozygous AB with two 
different alleles on both chromosomes. Genotype calling or genotyping aims at inferring 
these states. 

Another form of variation measured by microarrays is copy-number variants. These are 
alterations of chromosome structure in which large segments (> 1 kb) of the DNA are 
present in variable copy number compared to a reference genome [24]. A duplication of 
certain segment of the chromosome, for example, would have the effect that all previously 
unique genes in that section are now present in two copies. About 12% of the human 
 



22 2 Microarray technology 

 
Figure 2.4: Probe design of Affymetrix SNP Arrays. All probes (blue PM probes and red MM probes) 
interrogate a single SNP located in genomic DNA. The SNP has the two alleles C and T each being 
interrogated by an allele set of probes. 

genome has been found to be covered by copy number variations [25] rendering them an 
significant source of genome heterogeneity and a potential factor contributing to 
phenotypic variation and disease states/susceptibility.  

Specific target preparation assays and microarray designs are employed to allow detection 
of genetic variants with high sensitivity. Compared to gene expression experiments, these 
assays do not target (m)RNA molecules but instead genomic DNA. Total genomic DNA is 
digested with restriction enzymes (see Genome-Wide Human SNP Nsp/Sty Assay Kit 6.0 
documentation [26]). Adapters are ligated to the resulting fragments which are then used 
for a PCR procedure that has been optimized to amplify fragments of certain size range to 
reduce complexity of the genomic DNA. The amplified DNA is further fragmented, end-
labeled and finally hybridized to the array [27]. 

The probes are designed to tile around each SNP with slight variations in perfect matches, 
mismatches, and flanking sequence [28] as shown in Figure 2.4. The Affymetrix GeneChip 
Human Mapping 100k Array Set, for example, uses 40 different 25meric probes for each 
SNP. For each of the two interrogated alleles there is an allele set consisting of 10 probe 
pairs: 10 PM probes and 10 corresponding MM  probes with a mismatch at the center base, 
depicted separately in Figure 2.4. The probes include the SNP at the center base or are 
slightly shifted by some offsets δ = -4,..0,..4. Of the 10 PM probes 3 to 7 target the sense 
strand whereas the remaining ones target the antisense strand. This design with a large 
number of probed sequence combinations can be used to study the impact of mismatches 
and other duplex interactions on probe signals [29]. Some arrays such as the Genome-Wide 
Human SNP Array 6.0 omit the mismatch probes which makes it possible to capture 1.8 
million genetic variants with about 6 million probes.  

C
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2.5 Agilent expression arrays 

Agilent’s manufacturing technology differs from that of the other two major producers of 
high-density microarrays namely Affymetrix (which use photolithographic masking [10]) 
and Illumina (which use self-assembling silica beads [30]). Agilent prints its arrays similar 
to how an inkjet printer prints a document - instead of ink on paper, nucleic acids are 
printed base by base onto the glass surface [31]. A major advance of this technology is that 
the features can easily be customized for each microarray: probes are designed to 
interrogate the targets of interest and then added or removed as desired. This flexibility is 
not given for Affymetrix technology, where only standardized expression microarrays are 
available.  

The most recent Agilent SurePrint G3 Gene Expression Microarrays comprise more than 
one million features. The printed oligonucleotides have a length of 60 bp. These 60mer 
probes were shown to be significantly more sensitive to expression changes in complex 
mixtures compared to 25mer oligonucleotides [14], according to Agilent between five and 
eight times [32]. Longer probes are however less specific – 25mers are about 20 times 
more specific for differentiating a single mismatch [14]. This tolerance with respect to 
sequence mismatches can however also be an advantage when probing highly polymorphic 
regions. Agilent arrays support different target preparation assays including two-color and 
one-color preparations. 

2.6 Summary and conclusions 

Microarrays come in a diverse set of flavors aiming at different genomics applications 
ranging from gene expression analysis and profiling over DNA analysis and genotyping to 
gene regulation analysis. The great utility of microarrays in these fields of applications has 
driven - and vice versa has been driven by - many developments in the private and in the 
academic sector resulting in the rapid advancement of the technology since its appearance 
in the 90s. These improvements in terms of accuracy, coverage, reproducibility, 
standardization and cost have made microarrays an established tool widely used in research 
and even in clinical settings [33].  

The variety in the set of possible applications is enabled by differences in microarray 
designs and protocols. Specifically, Affymetrix 3’ expression arrays target sequences that 
reside within the 3’ UTR and act as a proxy for the expression of the respective gene; exon 
arrays interrogate sequences from exons of known splice isoforms, and tiling arrays have 
their probes distributed uniformly across large fractions of the genome. Additional to these 
application-specific differences, each microarray manufacturer has its own ways of 
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production and supports its own instruments and reagents. Affymetrix provides an 
unparalleled coverage and feature density, as well as a high standardization. Agilent in turn 
provides highly customizable microarray designs.  

 

 



3 A model for microarray hybridization 

3.1 Modeling microarray intensity signals 

The presented technologies share the common mechanism of multiplexed hybridization of 
fluorescently labeled target molecules against known oligonucleotide probes. The input 
quantity that one wishes to infer in a microarray experiment is the abundance, or 
concentration, [S] of specific nucleic acid targets. The measured output quantity is 
fluorescence signal intensities I for the surface-attached probes. Modeling microarray 
hybridization with the aim of obtaining accurate signal calibration consequently seeks to 
identify an adequate functional relationship p

gI f ([S ])=  between a probe p and the 
respective target (gene) g. 

Several effects in the microarray measurement prevent an accurate description of the input 
and output quantity via the simple proportional relationship I [S]∝ . Firstly, there are 
technical limitations in the optical recording of the intensity signals using the scanner. 
Even when no specific transcripts are bound to the probes the scanner reports positive 
intensity values I > 0. An additive optical background term O, i.e. in the form I = [S] + O, 
should therefore be considered in microarray calibration methods [34, 35].  

Secondly, several fundamental binding and folding processes can occur at or near the 
microarray surface as shown in Figure 3.1a. The yield of the interaction between free 
probes and specific targets is reduced by bulk-dimerization, non-specific hybridization and 
intra-molecular folding reactions. During non-specific hybridization additional to the fully 
complementary specific targets other, only partly complementary, DNA or RNA fragments 
bind to the probes. Due to the large diversity and quantity of target molecules in the 
complex mixture solution this type of binding typically is considerable [36]. A practicable 
solution for incorporating non-specific binding in the hybridization model is to summarize 
the diversity of non-specific transcripts into a single probe-specific term, 
i.e. I = [S] + [N] (see also [35, 37]). 

Thirdly, the kinetics of the reversible binding reactions of targets in excess to limited, 
surface-attached oligonucleotides can result in a non-linear response of the probe intensity. 
The binding reactions can be regarded as a Langmuir adsorption process as exemplified in 
Figure 3.1b. Accordingly, the amount of adsorbed molecules Θ on a surface in dependence 
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 P,N P,S
p pP

p P,N P,S
p p

X X
I M O

1 (X X )
+

= ⋅ +
+ +

(3.2)
where M is the maximum intensity upon saturation and O is the optical background 
intensity. We here assume that the term O can be corrected in a separate step, for example 
using the Affymetrix zone algorithm [7], and will rely on background-corrected probe 
intensities if not stated otherwise. The numerator P P,N P,S

p p pL M (X X )≡ ⋅ +  is also denoted the 
linearized signal and decomposes into contributions due to non-specific and specific 
binding (see next section) scaled by M. The binding strengths P,hX  linearly scale with the 
respective concentration of specific and non-specific targets, [ ]P,hX h∝  with { }h N,S∈ . 
Only considering the factors described in the previous section, the binding strengths are 
given as  

 [ ]P,S P,S P,N P,N
p g p p pchip

X S K and X N K⎡ ⎤= ⋅ = ⋅⎣ ⎦  (3.3)
where P,h

pK  are the equilibrium constants for the formation of probe/target duplexes. 

Two factors not considered in this thesis are washing and target depletion. The washing 
step that follows hybridization in the microarray assay has been shown to remove probe-
bound targets and inversely scales with the respective binding constants [43]. Target 
depletion in the solution can lead to an underestimation of the concentrations of specific 
transcripts [44]. 

3.3 The hook transformation and hybridization modes 

The parameters of the Langmuir-type model are not directly accessible given only the 
intensity signals of the particular microarray hybridization. The target concentrations are 
unknown in typical applications and the specifics of the hybridization reaction can differ 
for each microarray experiment. The hook method elegantly solves this challenging 
problem by using information inherent in the coupled signals of perfect-match (PM) and 
mismatch (MM) probe pairs [45]. These paired probe signals are transformed in a special 
mean-difference plot: 

 
( ) ( )

hook
pset pset p pset

hook
pset p pset

p k k p p p

mvg_avg( )  and 

1with log log and log log .
2

ΡΜ ΜΜ ΡΜ ΜΜ

Δ = Δ Δ = Δ

Σ = Σ = Σ

Δ ≡ Ι − Ι Σ ≡ Ι + Ι

 (3.4)
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equal intensity level of PM and MM probes for probe sets in this Σ-interval. Targets with 
exact complementary sequence are however expected to have a significantly higher 
binding strength compared to those with a single mismatch in the middle of the probe-
target duplex. The probes consequently do not bind to the interrogated target but to 
fragments of partly complementary sequence – they bind non-specifically. Probes or probe 
sets with virtually only non-specific hybridization are called absent whereas others are 
called present. 

Figure 3.2a also indicates a Σ threshold characterized by a significant increase of the Δ 
values referring to the onset of specific binding. This threshold breakΣ  separates the N and 
mix-regime and consequently separates absent and present probe sets. The ability for this 
separation allows the estimation of essential parameters of the hybridization model [42].  

Estimation of breakΣ should be both accurate and robust. The following heuristic method has 
been shown to improve over previously proposed approaches and delivers reliable results 
over a large variety of chip-types [42, 48, 49]: 

1. Compute the empirical first derivation of the hook plot (by fitting a straight line to 
7 subsequent data points of (Σ, Δ) sorted by Σ) 

2. Find the point of maximum deviation Σmax-d  
3. Use linear regression to find the best joint fit of two straight lines (y = mx + n) to 

all data points between the smallest Σ of the hook plot and Σmax-d (see [49] for 
details about the formulation of the least squares error).   

4. The intersection point between the two lines defines ( breakΣ , breakΔ ) 

Figure 3.2b illustrates this approach of estimating breakΣ . The green line is the empirical 
first derivation computed from the hook curve (shown in blue). The maximum derivation is 
located in the mix regime. The best fitting two straight lines (shown in orange) intersect at 
the threshold break 2.6Σ ≈ . 

3.4 Positional-dependent sequence models 

3.4.1 Modeling the formation of duplexes 

In our model, the binding constants from Eq. (3.3) decompose into 

 P,h P,h P,h
p 0 pK K exp( A ( ))= ⋅ δ ξ (3.5)
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example, to exclude the region of the 1(GGG)  effect 

 ko
P,h P,h
ku,ko r k r

k ku
(b ) (b ).

=

σ = σ∑   (3.7)
3.4.2 Different characteristics for specific and non-specific 

binding 

Binding characteristics are known to be different between specific and non-specific 
hybridization modes [36]. Eq. (3.2) simplifies into N

p pM (I O) L⋅ − ≈  for the special case of 
predominantly non-specific binding far below saturation, N S

p pL L M� � . Restricting our 
basic analysis to this regime, we ensure linearity of the intensity response and 
homogeneous probe-target interactions. The latter are mainly governed by canonical 
Watson-Crick pairings [53]. 

We select the subensemble of probes meeting these conditions using the hook method [42]. 
Typically more than 40% of all probe sets are called ‘absent’ in a particular microarray 
hybridization, providing a sufficient number of probe intensities to adequately fit the 
model (see also Table 6.1 in Chapter 6). 

The ensemble of present (i.e. not-absent) probes refers to signals which partly or 
completely originate from specific hybridization. We apply the hook method to filter out 
probe sets which hybridize predominantly with specific transcripts, (p∈S), and to correct 
their intensities for the effect of saturation (see [42] for details).  

3.4.3 Estimation of profiles 

We define the experimental sensitivity of each probe as the deviation of the logged 
linearized signal of its average over all probes of the respective probe set [54] 

 exp P,h P,h
psetY log X og X .l= − 〈 〉 (3.8)

After insertion of Eqs. (3.5) and (3.6) into (3.8) and making use of 
h h
0 0 psetlog(K ) log(K [h]h )[ ] = 〈 〉  we obtain the theoretical sensitivity of each probe  

 25 r 1
theo k,k r 1 pset

k r r k r
k 1 br

Y (b )·( (b , ) f (b ))
− +

+ −

=

= σ δ ξ −∑ ∑ (3.9)
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with the Kroenecker function (x, y) 1δ =  for x = y and (x, y) 0δ =  otherwise. pset
k rf (b )  is 

the probability to find motif br at sequence position k among the probes of the considered 
probe set. Note that the transcript concentration (specific and non-specific) is assumed to 
be constant for each probe set because each probe within the set targets the same transcript. 
This condition cancels the term 0log(L )  in Eq. (3.5). 

The sensitivity profiles are estimated using multiple linear regression. It minimizes the sum 
of squared residuals [42] 

 2 2

p

1SSR(r) RES RES
#p

= = 〈 〉∑ (3.10)
with exp theoRES (Y Y )= −  by optimizing k r(b )σ  for all r4 ·(25 r 1)− +  base tuples r k(b ) . 
The sum runs over all relevant probes p N∈  or p S∈  and #p defines the respective number 
of probes. The obtained sensitivity terms meet the center condition 

r

k r
all b

(b ) 0σ =∑  for each 
sequence position k. 

3.5 Fitting the hybridization model 

Application of sequence correction leads to a less noisy and more consistent hook curve. 
Figure 3.4 shows two versions of the hook curve: before (panel a) and after 
correction (panel b) of the signal intensities used for the computation of the Δ-Σ-
transformation given in Eq. (3.4) with the positional-dependent nearest neighbor 
model (r = 2) from the previous section. The sequence correction improves the precision of 
the probe signals: the within-probe set variability is reduced as well as the scattering of 
probe set averages around the hook curve. Basic features of the hook curve such as the 
relative positioning of the binding regimes are essentially the same in both versions. The 
N-regime however differs significantly in its width and slope. In summary, these effects 
result in an improved hook curve which is sufficiently robust to allow fitting the theoretical 
hybridization model as described below. 

Let us now give a formulation of the two-species Langmuir model that predicts the Δ  and 
Σ coordinates of the hook curve. We define the relative hybridization degree, or S/N ratio 
R as 

 PM,S
p g

p PM,N
p chip

K [S ]
R .

K [N]
⋅

≡
⋅   (3.11)
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concentration, leaving a total of 50 samples. This study design enables an assessment of 
the effect of technical variation within the replicates and between the dilutions.  

Panel a of Figure 3.6 displays the obtained λ  parameters in dependence of RNA mass 
for the 50 microarray samples. λ  increases with increasing RNA mass between 1 and 
10ug with Pearson correlation coefficients of r = 0.71 for liver tissue and r = 0.78 for 
SNB-19. However, λ  does not increase further for a RNA mass of 20ug which can be 
explained by the up-down effect: increasing RNA concentrations result in a larger non-
specific background accompanied by a smaller effective specific binding constant due to 
bulk dimerization [57]. The λ  summary measure which averages the ratio S/N of 
specific and non-specific binding (see Eqs. (3.15) and (3.11)) is therefore not collinear with 
RNA mass as the effect of bulk dimerization is not considered in the hybridization 
model (Eq. (3.2)). In summary, λ  describes the amounts of aRNA in a particular 
microarray hybridization in a non-linear, yet for typical RNA ranges sensitive fashion.  

The β parameter from Eq. (3.14) characterizes the width of the theoretic hook and typically 
is in the range 2.0 < β < 3.2. Since startlog Mβ = − Σ (Eq. (3.14)), the width is limited by the 
saturation level M and the start of the theoretic hook Σstart at the onset of specific binding, 
and thus describes the measuring range of specific signals [45]. As shown in Figure 3.6b 
the parameter β decreases with increasing RNA mass in the dilution experiment. The 
increasing concentration of RNA in the hybridization solution here results in an increased 
signal contribution due to non-specific binding and thus in a non-linear, negative effect on 
the measuring range β.  

3.7 Summary and conclusions 

Multiplexed hybridization reactions between nucleic acids on a surface can be well 
described using the two-species Langmuir model. This model is based on fundamental 
physical principals of surface adsorption and can be easily refined to incorporate additional 
factors such as sequence-dependent affinities, washing and degradation. Critical is the 
fitting of the model to the intensity data which should ideally be performed separately for 
each microarray hybridization due to a significant variation in the described biological and 
technical factors. The Δ-Σ-transformations provide a practical way to fit the model without 
prior knowledge of target concentrations. 

The Δ-Σ-transformations of probe signals result in the typical hook curve which allows 
identification of different hybridization regimes. We distinguish between N-, mix-, S- and 
sat regime depending on the effect of non-specific binding, specific binding and of 
saturation. The threshold breakΣ  separating N- and mix- regime is of particular importance 
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as it allows independent characterization of specific and non-specific binding. A robust and 
accurate method to estimate breakΣ  is presented. 

Additional to their utility for signal calibration, the hybridization model and the hook 
approach allow studying the technical factors and physicochemical processes involved in 
microarray hybridization. Fitting an alternative formulation of the two-species Langmuir 
model provides summary parameters which are of great utility for the assessment of the 
non-biological variation among the samples of an experiment. Examples are the λ  and β 
parameters which relate to the abundance of hybridized RNA. 



 

 



4 Hook analysis applied to different types of 
microarrays 

In the previous chapter we presented a model for microarray hybridization and showed that 
it adequately predicts microarray data based on the Σ–Δ-transformations of intensity 
signals. We showed this exemplary for Affymetrix GeneChip 3’ IVT expression arrays and 
it remains an open question whether the same approach can also be applied to other 
microarray types: those that interrogate DNA instead of RNA targets, those that employ 
different protocols or different designs, and those produced by other manufactures relying 
on their own proprietary technologies. The ability to obtain suited Σ-Δ-transformations 
provides the basis for successful application of the methods described in this thesis to these 
microarray types.  

4.1 Genome-wide SNP arrays 

In Section 2.4 we defined so-called allele sets for SNP arrays in analogy to the probe set in 
expression arrays. All probes within an allele set interrogate a unique variant of a target 
nucleotide strand, here however referring to fragments of genomic DNA containing a 
particular SNP. We calculated Δ and Σ transformations according to Eq. (3.4) for a 50K 
Array Xba 240 from the Human Mapping 100k Array Set as shown in Figure 4.1a. Note 
that these arrays contain both perfect-match and mismatch probes. Basic features of the 
obtained SNP hook curve are strikingly similar to those of expression arrays (compare 
Figure 3.2a): at Σ = 2.3 the curve starts with small values of Δ ≈ 0 which, due to an 
increasing contribution of specific binding, increases monotonously to Δ = 0.6. The onset 
of saturation then results in a decrease of the Δ values with increasing Σ up to the highest 
probe signals at Σ = 4.1.       

A noteworthy difference between both array types is that expression arrays have a distinct 
N-regime containing a substantial amount of probe sets with Δ ≈ 0. A significant change of 
the slope of the hook curve at breakΣ  separates this region from the subsequent mix-regime. 
In the SNP arrays no change of slope can be observed. The distribution of probe sets in Δ-
Σ-coordinates (orange circles in Figure 3.2 and Figure 4.1) shows that a large fraction of 
probe sets are in the N-regime in expression arrays, whereas in SNP arrays only few probe 
sets are in this regime of predominant non-specific binding. This is not surprising because 
by design each allele set should contain probes exactly complementary to the present 
genomic DNA variant.  
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In the ‘cross’ binding mode the hook curve starts closely to Δ = 0 and is characterized by 
smaller Σ and Δ values compared to the ‘allele’ binding mode. The perfectly 
complementary binding of PM probes to the allele is replaced by a mismatch at the SNP 
locus. Consequently, the PM probes in ‘cross’ allele sets exhibit a single mismatch and 
MM probes exhibit either two (in the case of δ ≠ 0, see Figure 2.4) or one (δ = 0) mismatch 
with respect to their genomic target. Differences in the hook curves of both binding modes 
thus characterize the effect of incremental total mismatches in the probe-target binding.   

In the ‘hetero’ binding mode both alleles are present. The hook curve is a superposition of 
‘allele’ and ‘cross’ binding modes, but more resembles the latter one due to the logarithmic 
signal transformations in the Δ and Σ values. Only few probes are affected by saturation in 
the ‘allele’ and ‘hetero’ binding modes.  

In conclusion, intensity values of probes referring to the ‘allele’ and ‘cross’ binding modes 
give rise to different hook curves because of the different mismatch configurations. 
Conversely, the effect of incremental mismatches can be studied using the specific design 
of the SNP arrays. The hook curve of the heterozygous binding mode can be understood as 
a superposition of ‘allele’ and ‘cross’ binding modes. 

4.2 Gene ST and Exon ST arrays 

Gene ST and Exon ST microarrays by design do not include mismatch probes and will thus 
subsequently be termed PM-only arrays. The key question, therefore, is how the Δ and Σ 
values of the hook transformation be computed for these arrays. As the average intensity of 
all probes in a probe set, including perfect matches and mismatches, the Σ values represent 
a measure of the overall expression level of the target transcript. The use of all perfect-
match probes of a probe set should provide a similar measure of the expression level. The 
Δ values, on the other hand, represent the spread between target abundance measurements 
of high sensitivity and of lower sensitivity targeting the same transcript. The MM probes 
with their mismatch position at the center base are expected to have an about one order of 
magnitude decreased sensitivity compared to the PM probes. While such well-defined 
sensitivity differences are not given within the PM probes, significant intensity differences 
between probes of the same probe set nonetheless exist, for example due to variations in 
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method in different colors. Interestingly, both hook variants show a similar change point at 
Σbreak ≈ 1.9 separating probe sets mainly governed by the N-regime (Σ < 1.9) and the onset 
of specific binding in the mix-regime (Σ > 1.9). 

The sensitivity differences captured in the Δ values vary in the N- and S-regime, in total 
spanning a range of 0 < Δ < 1.0 in Gene ST arrays which agrees well to 3’ expression 
arrays. While the sensitivity differences between PM and MM probes of 3’ expression 
arrays are relatively small in the N-regime, they nonetheless increase to Δ = 1.0 with 
increasing average expression indicated by Σ. The sensitivity differences within PM probes 
increase up to Δ = 0.6 in the N-regime. In the S-regime, where Σ increments are 
accompanied by increments of target abundance, Δ values remain on a flat plateau (as in 
3’ expression arrays, Figure 4.2a) or increase only weakly (as in GeneST arrays, Figure 
4.2b). The flat plateau is observed also for other PM-only microarray types as for example 
the Human Exon ST (data not shown).  

In summary, the Δ and Σ transformations of the probe signals of PM-only arrays provide a 
suited approach for characterizing microarray hybridizations. Although of different shape, 
visual inspection allows detection of the different hybridization regimes in analogy to the 
PM/MM hook curve analysis. Gene ST and Exon ST show essentially the same 
hybridization characteristics as 3’ expression arrays.  

4.3 Agilent expression arrays 

As discussed in Section 2.5 Agilents inking technology allows for full customization of the 
probe design of ordered microarrays. Predesigned arrays with typically one probe per gene 
(e.g. SurePrint Human Gene Expression Microarray) or one probe per exon (e.g. SurePrint 
Human Exon Microarray) are available. However, appropriate Σ–Δ-transformation of 
probe signals require multiple signals per transcript.  

We here employ a custom microarray designed to quantify the expression of splice 
isoforms. It is the aim of the respective study to assess and compare the technical 
performance of microarray and high-throughput sequencing data by independently 
measuring the same RNA samples by both technologies. The microarray probes target 877 
different genes which are known to be present in the RNA samples studied and which have 
a total of 5797 known splice isoforms. Also included are probes targeting 96 external RNA 
control transcripts from the ERCC initiative [59]. The RNA controls here refer to prepared 
mixes containing polyadenylated transcripts from the ERCC plasmid reference library. 
Each target is interrogated by several probes following a tiling design where probes query 
sequences at regular genomic intervals (compare Figure 2.2). 
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nonetheless strong probe effects with a significant intensity variation are present here. 
Such high variations are however not uncommon for microarrays with a tiling design since 
the probes have not been previously optimized. 

4.4 Summary and conclusions 

We showed that appropriate Σ–Δ-transformations of probe signals can be found for other 
types of microarrays as well. The necessary modifications to cope with the specifics of 
each microarray type relate mainly to different definitions of probe sets and the lack of 
mismatch probes. Genome-wide SNP arrays require substitution of the ‘probe set’ concept, 
referring to a set of probes with a common mRNA transcript, with the so-called allele-set, 
referring to a set of probes targeting a common allele at a particular genomic location. The 
allele sets can be further split up to allele sets with particular binding modes, resulting in a 
fine-grained view of hybridization on SNP arrays. The lack of mismatch probes in 
Gene ST and Exon ST arrays is coped with by using existing affinity variations among the 
probes of each probe set. No probe sets are given by design for the presented Agilent 
expression array but we showed here how appropriate ones can be defined.  

Using the modified Σ–Δ-transformations of probe signals we obtain characteristically 
shaped hook curves that can be analyzed in a similar fashion to 3’ expression arrays. The 
differences can be well explained by the specifics of the particular microarray type and the 
probed targets. For example, there is essentially no N- hybridization regime in SNP chips 
which can be explained by the expected specific binding of at least one of the two SNP 
variants in the genomic DNA fragment captured by the allele set. The PM-only hook has a 
slightly different shape, for example in Gene ST arrays where the slope in the N-regime is 
higher than that of the mix regime. However, we could show that the change point between 
these slopes again separates the N- and mix hybridization regimes. 

In summary, we showed that it is possible to apply the hook analysis to Affymetrix SNP 
arrays, Gene ST and Exon ST arrays and a custom Agilent expression array. This creates 
the possibility to study the characteristics of the different microarray technologies using the 
methodology presented in this thesis.  



 

 



5 RNA quality effects 

5.1 RNA amplification and degradation in microarray 
experiments 

In this chapter we investigate the effect of varying RNA quality as an ‘unwanted’ covariate 
inducing potential artifacts in microarray data. Measurement of gene expression is based 
on the assumption that an analyzed RNA sample closely represents the amount of 
transcripts in vivo. Several effects can distort the abundance of RNA transcripts during 
extraction and preparation before RNA analytics using, e.g., microarrays. The first problem 
concerns the degradation of the RNA in vitro [60–63]: The quality of purified RNA is 
variable and after the extraction during storage rather unstable (see [64] and the references 
cited therein). Especially long mRNA fragments up to 10 kb are very sensitive to 
degradation through cleavage of RNAses introduced by handling with RNA samples. 
Moreover, transcripts show stability differences of up to two orders of magnitude in vivo, 
raising the possibility that partial degradation during cell lysis could cause a variable extent 
of bias in quantification of different transcripts [65]. The second problem concerns 
amplification of RNA in samples analyzed on microarrays giving rise to the decrease in the 
length of products that are reverse transcribed and amplified using T7 polymerase [66, 67]. 
The multiple rounds of in vitro transcription that are used to generate samples from small 
amounts of RNA thus induce a decrease in transcript yield and length. 

The screening of nearly three thousand publicly available GeneChip array data suggests 
that there are noticeable degradation effects in the majority of the data files and that 2% of 
the files were even so severely degraded that their worth was questionable [68]. Working 
with low-quality RNA may strongly compromise the experimental results and lead to 
erroneous biological conclusions. It is therefore recommended that the highest quality 
RNA be used for genomic analyses. However, in some cases, such as human autopsy 
samples or paraffin embedded tissues, high quality RNA samples may not be 
available [69–71]. It is therefore important to understand how RNA quality affects 
microarray results and also how reliable current quality measures are at indicating RNA 
quality issues. The assessment of RNA integrity is a critical first step in obtaining 
meaningful gene expression data. A second step comprises developing methods to quantify 
degradation and, most importantly, to correct the induced degradation bias in the data and 
thereby provide more coherent expression measures. 

Several RNA quality measures are established based on conventional wet lab techniques 
such as gel optical density measurement or denaturating agarose gel-
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electrophoresis (see [61, 64] for a review). More novel lab-on-chip gel electrophoresis 
techniques like Agilents Bioanalyzer are now state of the art. In combination with 
sophisticated analysis algorithms processing the shape of the electropherogram (and, 
particularly, the 28S/18S rRNA ratio) they provide accepted integrity measures such as the 
DegFac-RQS (degradation factor RNA quality scale) [65] or the RIN (RNA integrity 
number) [72] which have been validated independently using qRT-PCR [64]. 

Importantly, microarray intensity data itself contains information about the RNA quality 
used for hybridization due to the 3’/5’-gradient of transcript abundance [73]. On 
microarrays of the GeneChip-type this gradient is typically measured using either 
specially-designed control probes or exploiting the specifics of the Affymetrix probe 
design. Both options estimate transcript abundance at close and more distant positions 
towards the 3’-end based on the hybridization signal [74, 75]. 

Although proven in many applications, these measures are based on probe intensities 
which, in general, are non-linear functions of transcript abundance [37, 38, 40, 54]. The 
signals can be strongly distorted by effects not related to transcript concentration such as 
saturation and non-specific background hybridization. Intensity-based RNA quality 
measures are therefore potentially prone to systematic errors which, in worst case, can 
provide diametrically opposed information in assessing apparently good RNA quality in 
samples with largely degraded RNA (see below). Moreover, the important task of 
correcting microarray signals for RNA degradation effects remained unsolved at least in 
single chip applications. A linear correction model requiring both expression and RNA 
quality data from a series of arrays has recently been published [63].  

This section addresses the following tasks to overcome these problems: Firstly, we adapt 
non-linear hybridization theory described in Chapter 3 to the special case of truncated 
transcripts due to RNA degradation. We will show that our approach consistently explains 
previous observations such as the effect of RNA quality on transcript intensity level [63] 
and correlations between probe intensity and probe position along the transcripts and their 
effect on expression measures [76]. Analysis of the probe signals in terms of this model 
enables us to define unbiased (in the frame of the hybridization model used) measures of 
RNA integrity. Secondly, we compare these new measures with established ones. We 
demonstrate that methods such as affyslope or the RNA-integrity control probes can 
provide systematically false information on RNA quality. Thirdly, we propose a simple 
correction method which aims at removing the degradation bias from the probe intensities 
and which can be integrated into standard preprocessing pipelines.  
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we will strictly refer to the 3’- and 5’-ends of the source mRNA and not to that of the 
product aRNA). In consequence, the resulting distribution of transcript lengths gives rise to 
a 3’-enriched, decaying towards the 5’-end coverage of the probes of the probe sets 
interrogating the respective transcript with increasing probe index (for convenience we will 
count the probes in direction towards the 5’-end in contrast to Affymetrix counting the 
probes in the opposite direction). Subsequent fragmentation of these aRNA targets into 
pieces of typically between 30 and 200 nt in length before hybridization leaves the 3’-bias 
of probe coverage unaffected. 

Importantly, the decaying coverage of the probes is expected to apply to specific but not to 
non-specific hybridization. In the N-hybridization mode the probes bind aRNA fragments 
of partly complementary sequence originating however from mRNA transcripts not 
referring to the interrogated gene. Trivially, these non-specific transcripts lack a common 
start position with respect to the intended target and, as a consequence, they, on the 
average, uniformly cover the probes of each probe set (see Figure 5.1a). Specific 
hybridization competes with non-specific one and both hybridization modes contribute to 
the measured probe intensities. The consequences of different probe coverages for the 
measured signal will be discussed below. 

Also degradation of mRNA, e.g. upon storage, can produce 3’-biased probe coverages of 
fragmented aRNA by endonuclease activity that cuts RNA internally, or by means of 
exonucleases [77]. In the first case, the poly(A) tail is removed by a deadenylase activity, 
followed by two mechanisms that degrade the mRNA: either decapping followed by a 5’-
to-3’ decay or a 3’-to-5’ decay. Once the mRNA poly(A) tail is removed, reverse 
transcription reaction will not proceed, resulting in low concentrations of truncated 
transcripts (see Figure 5.1b). Several studies have identified RNA degradation to be a 
major cause of microarray expression measure variability [63, 65, 68–71]. 

5.1.2 Probing transcript abundance using GeneChip arrays 

In this section we investigate the details of design and annotation of the probes of 3’ 
expression arrays. Affymetrix constructs their probe sets by selecting the probes from a 
longer target sequence according to various optimization criteria. The original sequences 
used at design time are of one of three types: consensus, exemplar and control sequences. 
According to Affymetrix, "A consensus sequence results from base-calling algorithms that 
align and combine sequence data into groups. An exemplar sequence is a representative 
cDNA sequence for each gene" [78]. Each probe set refers to one and only one of these 
sequences. For each 3’ expression array, we have downloaded the consensus, exemplar and  
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control sequences together with the probe sequences as provided by Affymetrix (see 
www.affymetrix.com). Probe distances to the intended 3’-end of the transcript, Lp, were 
computed  by aligning the probe sequences to the respective transcript sequences. The 
position of each probe Lp (p = 1, 2...) is then defined as the number of nucleotides counted 
between the 3’-end of the transcript and the first (i.e. nearest) base of the 25meric probe 
sequence3. The ordering of probes according to increasing distances Lp defines the probe 
index k within each probe set. 

The probes of each probe set cover transcript lengths which largely exceed the length of 
the individual probes. This design is well suited to study length-dependent alterations of 
transcript abundance due to RNA degradation and imperfect amplification. Figure 5.2a 
shows that the majority of probe sets start (first probe with index k = 1) within the first 
L1 = 100 - 200 nucleotides nearest to their 3’-end and end at position L11 = 250 - 600 for 
the last probe (index k = 11). Only about 5% of all probe sets are located beyond the range 
of 600 nucleotides. Within this range, the sets can be roughly classified into ‘low (i.e., 
more 3’) L1 and low L11’ (LL), ‘low L1 and high (i.e., more 5’) L11’ (LH) and ‘high L1 and 
high L11’ (HH) sets where low refers to distances close to the 3’ end and high refers to 
distances farther towards the 5’ end (see Figure 5.2a). The mean length of the covered 
transcript range (ΔL = L11 – L1) nearly linearly increases with the position of the 11th probe 
up to L11 ≈ 600, and then it remains virtually constant ΔL ≈ 460 (Figure 5.2b). Hence, short 
probe sets with ΔL < 300 accumulate near the 3’ end of the transcripts whereas more 
distant probe sets typically cover a wider length range of the transcripts (350 < ΔL < 600).  

The mean position of all probes on the array with a given index k = 1...11 linearly 
correlates with k to a good approximation (Figure 5.2c). The obtained slope characterizes 
the mean distance between two neighbored probes. It can be interpreted as the probe 
sensitivity per index increment and depends on the probe design of the particular array 
type,  

 1array array array

array array

L L L
L

k 1 k

−
Δ = ≈

− (5.1)
<...>array denotes averaging over all probes of the array. The approximation in the right part 
assumes a vanishing intercept in good agreement with the data (see Figure 5.2c).  

                                                 
3 Precomputed probe distances for most GeneChip microarrays are available on our website 
http://www.izbi.uni-leipzig.de/downloads_ links/programs/rna_integrity.php 
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5.1.3 Used expression data 

Affymetrix microarray raw intensity data (CEL-file format) were downloaded from the 
public repositories Gene expression omnibus [79] or Array Express [80]. In this section we 
study the following data sets. 

The Human tissue dataset (GSE7307, see supplementary text for the detailed list of 
samples used) comprises 677 samples taken from over 90 distinct tissue types hybridized 
to Affymetrix HG-U133 plus 2.0 arrays. 

The RatQC (rat quality control) dataset (E-MEXP-1069) from [69] was generated to 
systemically explore how RNA quality affects microarray results. It consists of 36 rat liver 
RNA samples hybridized to Affymetrix RAE230A expression arrays. The progressive 
change in RNA quality was generated either by thawing frozen tissue or by ex vivo 
incubation of fresh tissue. Each sample was characterized by the RNA integrity 
number (RIN) and mean transcript length in [69]. 

The RNeasy data set consists of five pairs of HG-U133A GeneChips which were 
hybridized with RNA extracted from ovarian cancer samples and processed in two 
different ways namely with and without a cleanup step using RNeasy reagents [62]. The 
RNeasy cleanup should lead to good-quality RNA whereas lack of the cleanup step should 
yield poorer-quality RNA. The RNeasy data set was used in previous work aiming at 
judging RNA-quality from microarray data [81, 82]. 

5.2 Degradation and hybridization mode 

5.2.1 Intensity-based degradation metrics 

In this section we discuss the consequences of the 3’-enriched probe coverage on the 
observed probe intensities. In the following we will subsume the 3’-bias of probe coverage 
as ‘degradation effect’ independent of its origin (IVT amplification or degradation) for the 
sake of convenience. Let us first define the probe-specific and the mean degradation ratio 
averaged over all probes of the array, 

 
all probes,all genes

g,k
g,k g,k

g target

[S ]
d and d d

[S ]
≡ = (5.2)

respectively, which characterize the decrease of the transcript concentration due to the 
degradation effect. [Sg]target is the (true) expression degree of a selected gene g given as the 
total concentration of the target transcripts in the hybridization solution independent of 
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their length. It refers to the target concentration in the absence of degradation and 
presumes that RNA processing proceeds without 3’/5’ bias. Contrarily, [S]g,k denotes the 
apparent expression degree reported by probe with index k = 1,...,Nset designed to 
interrogate target g. It is given as the concentration of the RNA fragments which 
specifically bind to this probe. It consequently refers to the probe coverage which decays 
with increasing distance of the probe to the 3’-end of the target. Angular 
brackets <…>all probes denote averaging over all probes of the array. One expects 
[S]g,k ≤ [Sg]target and thus dg,k ≤ 1 owing to the 3’-enrichment after incomplete amplification 
and degradation of the fragments. The probe specific degradation index, dg,k, thus 
characterizes the loss of mRNA material at a given probe position along the transcribed 
region of the gene. The mean degradation index d averages the single probe effects over all 
probes. It estimates the total loss of RNA probed by the microarray in a given preparation 
prior to hybridization. 

The probe intensities measured in the microarray experiment are described by the 
Langmuir model in Eq. (3.2) where the probe index p ≡ g,k subsumes the gene and probe 
index explicitly used in Eq. (5.2). We here consider the reduction of the concentrations 
[Sg]target and [N]chip after incomplete amplification and/or degradation as an effect of the 
binding strengths due to specific and non-specific hybridization  (compare Eq. (3.3))  

 [ ]P,S P,S P,S P,N P,N
p p p p g p p pchiptarget

X S K d S K and X d N K⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ ⋅ = ⋅ ⋅⎣ ⎦ ⎣ ⎦   (5.3)
respectively. Non-specific hybridization is related to the total amount of RNA used for 
hybridization [57]. [N]chip is consequently reduced by a factor given by the mean 
degradation factor d.  

The probe-specific degradation index dp defines the decrease of transcript concentration 
after amplification and degradation (Eq. (5.2)). In the next step we define the apparent 
degradation index as the intensity ratio of probes located at different positions along the 
target sequence, for example near its 5’- and 3’-end of one selected target, 

 P
app 5 '
5 '/3 ' P

3 '

I
r

I
≡   (5.4)

where the intensities are given by Eqs. (3.2) and  (5.3) with the respective degradation 
ratios d5’ and d3’, respectively.  

Let us consider two special cases if the probes hybridize either far from saturation in the 
linear range ( P ,S P , N

p pX , X 1<< ) or in the range of saturation of specific 
hybridization ( P ,S P , N

p pX 1 X> > ). The apparent degradation index becomes 
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 ( )
( )

S N true P,S P,S P,S P,S S N
5' 5' 5 'app 5 '/3 ' 5 ' 5 ' 3 ' 3'

lin P,N P,N P,N P,N S NS N
5' 5 ' 3 ' 3 '3 ' 3' 3 '

P,S
app 5'
sat P,S

3'

d x d x r (K w / K w ) for x x (specific)
r

(K w / K w ) for x x (non specific)d x d x

w
and r (saturati

w

⋅ + ⋅ ⎧ ⋅ ⋅ ⋅ >>⎪= = ⎨ ⋅ ⋅ << −⋅ + ⋅ ⎪⎩

= on) 
(5.5)

respectively. The lower case x defines the hybridization strengths at ‘ideal’ transcript 
concentrations (see Eq. (5.3) with d = dp = 1: [ ]S P,S P,S

p p pt arget
x S K w≡ ⋅ ⋅

 
and 

[ ]N P,N P,N
p p pchip

x N K w≡ ⋅ ⋅  ) and true
5 '/ 3 ' 5 ' 3 'r d / d≡  denotes the ‘true’ relative degradation index 

between 5’ and 3’ probes, respectively. Eq. (5.5) shows that the apparent degradation index 
is proportional to the true one ( app true

lin 5 '/3 'r r∝ ) in the special situation of dominating specific 
hybridization (xS ≫ xN) far from saturation only. It however scales with the ratio of the 
specific binding and washing constants of the 3’- and 5’-probes, which might be larger or 
smaller than unity depending on the sequences of the particular probes (see [43] for 
details). At dominating non-specific binding or saturation one gets apparent degradation 
indices which are completely independent of the true one. Their values again depend on 
the probe sequences and can be larger or smaller than unity. Hence, the use of intensity-
based degradation metrics raises problems because they reflect the degradation bias of 
transcript abundance in special situations only.  

On the other hand, two intensity-based degradation measures are well established for 
quality control of GeneChip arrays: (i) The slope of a linear function fitted to the so-called 
‘RNA degradation plot’, r5’/3’

slope. This RNA degradation plot displays the mean logged 
intensity averaged over all probes with the same index k, taken from one array, as a 
function of k [75]. (ii) The intensity ratio r5’/3’

control of special control probe sets targeting 
the 5'- and the 3'-end of relatively long transcripts such as beta-actin and GADPH. A 
threshold of the 3’/5’-signal intensity ratio of the GADPH controls less than 3 (in 
logarithmic scale log10 3 = 0.48) is recommended for good quality RNA [83, 84]. 

In view of the discussed problems of intensity-based degradation measures we will revise 
theses estimates and judge their suitability for determining RNA quality. Large values of 
r5’/3’

slope and/or r5’/3’
control near unity are generally thought to indicate small degradation bias 

and thus good RNA quality. Note that reciprocal values of these measures are often used in 
practice estimating the respective 3’/5’-ratios. Here we consequently use 5’/3’-ratios to 
ensure direct comparability between the various measures. 

In summary, probes located nearer to the 3’-end of the interrogated transcripts potentially 
shine brighter than more distant probes due to the 3’-enrichment of probe coverage giving 
rise to expected ‘true’ intensity ratios r5’/3’ < 1. However, this rule applies only to 
conditions of specific hybridization far from saturation. RNA quality measures based on 
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the 5’/3’-intensity ratio consequently require consideration and evaluation of the 
hybridization mode of the chosen probes. Moreover, the potential dependence of the probe 
intensities on the degree of degradation gives rise to systematic errors of the estimated 
expression degree of the transcripts which requires appropriate correction. 

5.2.2 Degradation Hook and Tongs Plot 

In analogy to the Δ and Σ transformations given in Eq. (3.4) we define the following 
modified hook representations 

 
( )

s3'/s5' p ps3' s5'

s p ps pset

i 2
PM MM1

p k k k k2s
k i

(degradation hook)

(tongs plot)

1with and log I log I
3

+

=

ΔΣ ≡ Σ − Σ

ΔΣ ≡ Σ − Σ

Σ ≡ Σ Σ ≡ +∑

  (5.6)
where the subscript s = s3’, s5’ denotes a subset of three consecutive probes within the 
probe set of size Npset nearest to (s3’, i = 1) or most distant from (s5’, i = Npset - 2) the 3’-
end of the transcript, or centered around its middle probe (s = m). The so-called tongs-plot 
shows the three positional-dependent values ΔΣ3’, ΔΣ5’ and optionally ΔΣm as a function of 
Σ whereas the ‘degradation hook’ plots ΔΣ3'/5’-versus- Σ. These plots use the same abscissa 
as the hook curve and they also smooth the noisy data using a running window of 500 -
 1000 probes. Both the ‘degradation hook’ and the ‘tongs plot’ estimate the 3’-enrichment 
of the probes and thus their degradation level in dependence on the hybridization mode. 
Examples for both plots are shown in Figure 5.5 in the next section. 

The two-species Langmuir hybridization isotherm predicts the theoretical hook-curve 
which was previously used to fit the experimental curves and to extract characteristic chip-
related parameters. Here we modify the hook formalism to take into account the effect of 
incomplete transcript amplification and degradation in terms of the degradation ratios 
defined in Eq. (5.2). We thus define the probe-specific S/N ratio similar to Eq. (3.11) under 
consideration of the subset s of probes 

 PM,S
PM,S pp p t arg et chips s

s PM,N PM,N
chip p chip

Kd d [S]XR
d X d [N] K

= ⋅ = ⋅ ⋅ (5.7)
It scales with p s

d / d , the probe specific 3’-bias of the actual transcript abundance 
averaged over the subset s and divided by the mean degradation index of the selected chip, 
d. Similarly to Eq. (3.13), the theoretical expressions for the hook coordinates for the 
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subset s of probes are obtained by inserting Eqs. (3.2) and (5.3) with P = PM and MM into 
Eq. (5.6)  

 
{ } { }

{ } { }

PM MM
p S S S S Ss

p Ss

start PM MM
S S S S

(R ) log (R 1) / (R 10 1) log B (R ) / B (R )

and

(R )

1 1log (R 1) / (R 10 1) log B (R ) / B (R )
2 2

−α

−α

Δ ≡ Δ = + ⋅ + −

Σ ≡ Σ

= Σ + + ⋅ + − 
(5.8)

with the saturation terms  

 start

start

1( )PM 2
S S

1( )MM 2
S S

B (R ) 1 10 (R 1) and

B (R ) 1 10 (R 10 1)

− β+ Δ

− β− Δ −α

= + ⋅ +

= + ⋅ ⋅ +
  

The vertical and horizontal dimensions of the hook curve and its start coordinates are given 
as 

 ( )
PM,S
p chip PM,N

pMM,S chip
p chip

start PM,N
p chip

K
log , log d log X and

K

log M log X log d

≈ ≈ − +

Σ = + +

α β   (5.9)
respectively. Note that the width and the start coordinate of the hook curve, β and Σstart, 
change with the mean degradation index d whereas the height of the hook α doesn’t 
depend on degradation. 

The mean expression index characterizes the mean expression level of present probes of 
the chip, 

 PM,S PM,S PM,N PM,S
p p p pchip chip

log(d X ) log(R) logX logd≡ ⋅ ≈ + +ϕ (5.10)
The ordinate values of the degradation plots are obtained by inserting Eq. (5.8) into 
Eq. (5.6), 

 s s s1/s2 s1 s2(R) (R ) (R) and (R) (R ) (R )ΔΣ ≡ Σ −Σ ΔΣ ≡ Σ −Σ (5.11)
One gets after explicit consideration of Eq. (5.8)  
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α

α   (5.12)
where ΔΣs1(R) refers to the special case rs2 = 1. The parameters  

 [ ]
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s
s s

chip
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3'/5' 3' 5'

5'

S
log r log with s 3',5 ',m and

S

S
log

S

γ ≡ = =

Δγ ≡ γ − γ =

  (5.13)
define the 3’-bias of transcript abundance (see also Eqs. (5.5) and (5.7)). Particularly, 

3'/5'Δγ  provides the logged fold change of the probe specific transcript concentrations 
between probes located nearer the 3’- and 5’-ends of the transcript. The mean transcript 
concentration averaged over all probes can be estimated as the geometric mean over the 3’ 
and 5’ transcript concentrations, 

 [ ] 1
3 '/5 '2 5 '

3 ' 3 ' 5 'chip 3 '
3 '

[S]S S 10 [S] [S] [S]
[S]

− Δγ≈ ≈ ⋅ ≈ ⋅ (5.14)
if one assumes uniformly distributed probes along the relevant transcript regions. With 

[ ] [ ]t arg et 3 '
S S≈  and Eq. (5.2) one gets  

 3'/5'logd 0.5≈ − ⋅Δγ   (5.15)
Hence, the mean amount of RNA (Eq. (5.2)) is directly related to the 3’/5’-difference of 
transcript abundance. 
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between probes located nearer and farther to the 3’end of the transcripts, and thus the 3’/5’-
bias of the probe intensities in the probe sets due to the degradation effect. 

Interestingly, the different hybridization modes analogously affect the intensity differences 
in the standard and the degradation hook as well. For example, upon non-specific 
hybridization both, the PM/MM difference and the 3’-bias essentially disappear because 
both effects, the MM-penalty and the 3’/5’-bias, require duplexing of the probes with the 
intended targets. Non-specific binding doesn’t meet this criterion because the binding of 
non-specific transcripts is indifferent with respect to the mismatched pairing of the middle 
base of the MM probes and with respect to the degradation bias as well. Vice versa, both 
hook-versions show their maximum in the S-range because specific binding is associated 
with the intended intensity penalty of the MM-probes and of probes located more distant 
from the 3’-end, respectively.  

Note that the two standard hook plots shown in panel a and b of Figure 5.5 are of virtually 
equal height owing to the similar MM-penalty (α = 0.83 – 0.85) whereas the respective 
degradation hooks markedly differ in this respect (Δγ3'/5'  = 0.57 and 0.29, respectively) 
revealing marked differences in the degradation level between both samples. Comparison 
of the heights of both hook-types shows that strong degradation can affect the probe 
intensities nearly by the same order of magnitude as one mismatched base pairing. 

The tongs plots explicitly estimate the intensity bias at three positions of the probe sets and 
thus it illustrates the progression of degradation with increasing probe index. The ΔΣs 
curves of all three subsets (s = 3’, 5’ and m) degenerate in the N-hybridzation range 
indicating the absence of the 3’-bias for non-specific binding as discussed above (see also 
Eq. (5.5) for xS ≪ xN). In the mix-range the ΔΣs-curves split into three branches which 
progressively diverge with increasing sigma and thus with increasing contribution of 
specific hybridization. The ‘opening of the tongs’, i.e. the split between the 3’- and 5’-
branches, reaches its maximum in the S-range of hybridization in parallel with the 
maximum of the hook curve and of the degradation hook. Subsequently, the different 
branches start to converge as predicted for the range of saturation (see Eq. (5.5)). Both, the 
experimental degradation hook and the tongs plot are well described by theoretical curves 
based on the Langmuir-model of array hybridization in Eq. (5.12). The split parameter 
Δγ3’/5’ characterizes the height of the degradation hook, or equivalently, the ‘tongs opening’ 
serving as a measure of the maximum vertical difference between the 5’- and the 3’-
branches of the tongs, respectively. Δγ3’/5’ estimates the 5’-depletion of probe coverage in 
terms of the logged concentration increment between the targets covering the 5’- and 3’-
probes (Eq. (5.15)). The examples shown in Figure 5.5 a and b refer to relatively strong 
and  weak depletion of targets with 5’/3’-concentration ratios of dtongs= 10-0.57 = 0.27 and 
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degradation whereas autolysis of fresh liver tissue appeared to be a much slower 
process [69]. 

In summary, the 3’/5’-bias of probe intensities essentially disappears for probes which 
hybridize predominantly non-specifically and it markedly decreases for probes which are 
strongly saturated with specific transcripts. The 3’/5’-bias consequently provides a suited 
metrics for RNA-quality only in the linear range of specific hybridization in agreement 
with the theoretical predictions made in Section 5.2.1. 

5.2.4 Short 3’-probe sets are prone to non-specific hybridization 

In the next step we selected the probe sets from the non-specific and specific hybridization 
ranges of the hook curve and calculated their frequency histograms as a function of L1 and 
Lmax, the position of the nearest and of the most distant probe from the 3’-end in each 
probe set.  

Figure 5.7 shows the distribution of the fraction of probe sets of either hybridization range 
normalized with respect to the total number of probe sets in the respective group. Probe 
sets which cover the range near the 3’-end with L1 < 100 and Lmax < 500 are more prone to 
non-specific hybridization than probe sets located at larger distances from the 3’-end with 
L1 > 100 and Lmax > 500 which are more affected by specific hybridization on the average. 
The relative difference of the fractions in both groups is large: For example, the fraction of 
N-hybridized probe sets exceeds that of S-hybridized ones by about 50% at small 
Lmax < 300. Vice versa, at large Lmax > 700, the S-hybridized fraction considerably exceeds 
the N-fraction. The observed distributions are very similar for the different arrays of the 
Rat-QC data set showing that the positional-dependent variation of the hybridization mode 
is virtually insensitive to the degree of RNA-degradation. 

We suspect that the increased fraction of non-specific hybridization towards the 3’ end of 
the transcripts is caused by inaccurate assignment of the 3’-transcript end upon probe 
design and/or by variations of the 3’-end of the transcripts, e.g. due to effects such as 
alternative polyadenylation as discussed previously [85, 86]. Alternative polyadenylation 
leads to transcript isoforms with differences in the 3’ UTR length. In these situations the 
‘true’ 3’-end of the transcript can be located at L3’> 0 and all probes at positions closer to 
the apparent transcript end, L3’ > L > 1, will hybridize exclusively non-specifically owing 
to the absence of specific transcripts. In consequence, the mean fraction of non-specific 
hybridization of probes at small L will exceed that of specific hybridization on relative 
scale, as observed. A very similar plot as shown in Figure 5.7 for the rat genome array 
RG230A was obtained for alternative array types such the human genome HGU133A 
plus2 (see Additional File of [87]). 
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3’-end, presumably owing to its inaccurate assignment and to transcript isoforms with 
variable 3’ UTR lengths. 

5.3 Metrics for RNA quality 

5.3.1 Positional-dependent intensity decays 

The degradation hook and the tongs plot shown in Figure 5.5 highly resolve the 3’-bias of 
probe intensities in dependence on the hybridization mode. These plots allow classifying 
each probe set into one of five different hybridization regimes within a microarray 
experiment. However, this approach only coarsely resolves the positional bias along the 
transcripts by collecting together three probe intensity values at two or three selected 
positions only (3’, 5’ and m).  

In this subsection we describe an orthogonal method which uses a more coarse graduation 
of the hybridization mode while highly resolving the 3’-bias with respect to the probe 
position. Particularly, we select two groups of probe sets taken either from the N- or the S-
hybridization range of the hook curve. We then calculated the logged mean intensities of 
the selected PM-probes as a function of two alternative arguments, namely their probe 
index k in the probe set or their probe distance L relative to the 3’-end given in units of the 
number of nucleotides, 

 p

h h h h
p pp k L L L

log I (k) log I and log I (L) log I with h S, N
= = ±δ

= = = (5.16)
respectively. The angular brackets denote averaging either over all probes with the same 
index k or over all probes with the same absolute position within a moving window L-
δL < Lp ≤ L + δL. 

Figure 5.8a shows the obtained intensity profiles for the example shown in Figure 5.5a. 
The mean intensity due to specific hybridization markedly decays with increasing distance 
of the probes from the 3’-end of the transcripts whereas the intensity due to non-specific 
binding is much smaller and remains virtually constant, as expected. The decay due to 
specific hybridization can be approximated with a distant-dependent degradation index, 

P,S S
pd d (L)=  which is given by an ‘exponential plus constant’ decay law in analogy with 

Eq. (5.17) (see below). The obtained curves well describe the intensity decay in the 
intermediate L-range and its flattening at small and large L-values (see dotted curve b in 
Figure 5.8a).  
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This approach attributes the flattening of the decay near the 3’-end to the saturation of the 
probes with bound transcripts. However this effect becomes relevant usually at large 
intensity values only (log I ~ log M > 4; see Figure 5.5). The observed mean initial 
intensity values of the decays are however much smaller (log I(3’) ~ 3). We conclude that 
another effect and not saturation causes the flattening of the decays at small L-values. The 
decrease of the relative contribution of specific hybridization near the 3’-end discussed in 
the previous subsection well explains the observed trend: Non-specific hybridization still 
adds a small residual contribution to the specific decays due to imperfect decomposition of 
the different hybridization modes. The decrease of the contribution of specific binding 
presumably due to inaccurate assignment and transcript isoforms then effectively increases 
the relative weight of non-specific binding and adds a constant component to the decays at 
small distances from the 3’end which in consequence flattens the initial decay. 

To account for this effect we pursue a simple approach which neglects saturation and 
normalizes the decays with respect to their maximum intensity level near the 3’ end of the 
transcripts, 

 ( )h h hd x I (x) / I (3') with x k, L and h N,S= = = (5.17)
The obtained degradation index due to non-specific hybridization is given by a constant, 
dN(x) ≈ 1, to a good approximation (Figure 5.8). The degradation decays due to specific 
hybridization are well described using a ‘shifted exponential plus constant’ functions of the 
form, 

 ( ) ( )S x x0

x

x xd x d (x) 1 d exp d∞ ∞

⎛ ⎞−= ≈ − ⋅ − +⎜ ⎟λ⎝ ⎠
(5.18)

as illustrated by the dotted curves in Figure 5.8. The obtained decay length λ characterizes 
the mean slope of the 3’-bias in units of the number of probes (λk) or nucleotides (λL) after 
which the variable contribution of the intensity decays to 1/e of its initial value. The 
constant dx

∞ defines the residual constant intensity level at large distances from the 3’-end. 
The shift-parameters x0 = k0, L0 account for the potential flattening of the decay at small 
arguments discussed above. Both decay constants are linked via the <ΔL>-value, i.e. 

 k L Lλ ≈ λ ⋅ Δ   (5.19)
Panel b and c of Figure 5.8 show selected examples taken from the rat-QC and the RNeasy 
cleanup data sets which refer to different array types (RAE 230A and HG-U133A, 
respectively). With decreasing RNA quality the decays become steeper paralleled by 
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increasing absolute values of the limiting intensity levels but almost constant initial shift 
parameters L0 ≈ 150 – 200 and k0 = 1 - 2. Index- and nucleotide-based length scales give 
rise to similar trends (compare the right and the left parts in Figure 5.8b and c). The L-
scale in units of nucleotides is associated with a slightly more flat and smaller asymptotic 
level than the relative k-scale using the probe indices as argument. Note that about 95% of 
the probes of the arrays are positioned with similar frequencies in the range 100 < L < 600 
whereas only less than 5% of them are found at larger distances, however with a broad 
distribution over the range 600 < L < 2800 (Figure 5.2). Most of the more distant probes 
refer to the probe indices k = 10, 11. This assignment effectively compresses the 
asymptotic region to the last two probes with indices k = 10 and 11. As a consequence the 
decays in relative k-scale can be described with sufficient accuracy using a ‘single 
exponential’ decays (Eq. (5.18) with d∞

k = 0) where the values d(10) and d(11) roughly 
refer to the limiting decay level obtained in the fits using the L-scale, d∞

L.  

The L-decays of specifically hybridized probes obviously behave differently for L > 600 
showing a less pronounced loss of intensity than for L < 600. The origin of this difference 
is unknown. The standard error of the experimental decays roughly agrees with the symbol 
size (k-dependencies, left part of Figure 5.8b and c) or it slightly exceeds line 
thickness (L-dependencies, right part of Figure 5.8b and c). The small oscillations in the 
decays and the relative increase at L > 600 thus reflect systematic effects presumably due 
to differences of the probe properties in the different subensembles of probes referring to 
each data point such as their binding affinity and also their degradation degree. Recall that 
the number of probes drastically decreases at L > 600 which makes this range less relevant 
for correcting purposes of the majority of probes. We exclude this range therefore from 
curve fitting. 

Our fits show that the values of the decay parameters systematically depend on the chosen 
decay function and strongly correlate each with another. To illustrate this correlation we 
show fits with variable d∞

L but constant λL = 150 in Figure 5.8b (right part) and fits with 
constant d∞

L = 0 but variable λL in Figure 5.8c (right part). The values of the variable 
parameters d∞

L and λL systematically decrease with progressive degradation. Both options 
equally well describe the decaying part of d(L) in the range 100 < L < 600. 

To obtain a robust decay characteristics we substitute the exponential fit functions in 
Eq.(5.18) by a simple two-point estimate 

 k S S

k 10,11 k 1,2
logd logI logI

= =
= − (5.20)

This logged degradation ratio characterizes the intensity decay in the index-range 
kstart - kend = 2-10, or equivalently, in the positional range Lstart - Lend = <L>1,2 - 
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<L>10,11 ~ 150 - 550 which comprises the majority of more than 95% of all probes. The 
degradation ratio can be transformed into estimates of the decay length of the exponential 
decays: k

k 8 / ln dλ ≈  and k
L 8 L / ln dλ ≈ ⋅ Δ .  

Please note that the decay function defined in Eq. (5.17) estimates the fold change of 
transcript abundance at position x and x0, to a good approximation, i.e.  

 ( ) [ ] [ ]
0x x

d x S / S≈   (5.21)
The degradation ratio (Eq. (5.20)) consequently estimates the mean fold change of 
transcript abundance reported by the probes positioned near the 5’- and 3’-ends of the 
probed range. It represents an alternative estimate of the tongs opening parameter 
introduced above, 3'/5 'k

tongsd d 10Δγ∝ =  (Eq. (5.13)). Figure 5.6c shows the time course of 
RNA degradation in the Rat QC experiment using the tongs opening (panel c) and the 
dk (panel d) parameters. Both measures strongly correlate (see insertion in Figure 5.6d) and 
essentially reflect the same degradation behavior of the samples studied.  

In summary, the effect of degradation can be described as a function of the probe position 
in terms of a ‘shifted exponential decay plus constant’-function using either the probe 
index or the ‘absolute’ probe position as argument. This information can be further 
condensed into a single degradation ratio parameter characterizing the fold change of 
transcript abundance over the length of the DNA region interrogated by the probes. 

5.3.2 3’/5’-controls are affected by the hybridization mode 

It was previously shown that the 3'/5' intensity ratios of special control probe sets 
interrogating long transcripts such as GADPH and beta-actin might not represent a 
sufficient measure of the degradation bias at small expression degrees because non-specific 
binding leads to an underestimation of the 3’/5’-bias [45]. Here we show that the controls 
are often prone to saturation which also leads to the systematic underestimation of the 
3’/5’-bias (see also Eq.(5.5)). 

The threshold hook represents a modified version of the degradation hook described in 
Section 5.2.2. It defines a threshold of the 3’/5-intensity ratio of the probe sets used to 
assess RNA-quality such a GADPH or beta-actin. The threshold hook accounts for the fact 
that the probe signals are affected by non-specific binding and by saturation. Both effects 
give rise to an intensity-dependent threshold for estimating good RNA-quality. 
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different data points residing along one hook curve refer to identical true degradation 
levels irrespective of their different delta coordinates characterizing their apparent 
degradation level. 

The application of a constant threshold instead of the variable one will cause false quality 
estimates. We estimated the error of the 3’/5’-intensity ratio of the GADPH-control taken 
from the tissue data set as example: Figure 5.9b shows the hook-coordinates of the 
GADPH control probe sets of the 677 samples of the human tissue data set (see 
Eq. (5.22)). The threshold hook and the horizontal line provide the true and the apparent 
(false) thresholds for good RNA quality in terms of the logged 3’/5’-intensity ratios, 
Δ3’/5’ < Δthreshold. The constant threshold is assumed to agree with that of the hook curve in 
the range of specific hybridization. It consequently forms the tangent of the hook-curve at 
its maximum referring to the S-range of hybridization. The hook curve describes Δthreshold 
under the realistic assumption of saturation whereas the constant threshold neglects this 
effect. As a consequence, data located between both thresholds (colored in blue) define 
false positives (FP) with respect to the constant threshold whereas data below the hook and 
above the line are true positives (TP, red) and true negatives (TN, orange), respectively. 
The number of false negatives (FN) is zero because the hook threshold remains below the 
constant one. The positive predictive value (PPV = TP/(TP+FP)) and the specificity 
(Sp = TN/(FP+TN)) are 0.48 and 0.79, respectively, meaning that less than 50% of the 
3’/5’ controls properly estimate the quality of RNA in terms of good and degraded one. 
This particular example assumes that the 3'/5' signal ratio for GADPH for good RNA is of 
no more than 3, or in our notation Δ3’/5’ < log(3) ≈ 0.5.  

To assess the effect of the hybridization mode on the 3’/5’ controls we first estimated the 
hybridization regime of the GADPH and beta-actin controls of the rat-QC and the human 
tissue data sets using modified hook plots (Figure 5.10). They depict the logged PM-
intensity ratio of the 3’- and 5’-probe sets of the controls (Δcontrol

3’/5’, Eq. (5.22)) along the 
horizontal coordinate and either the sigma coordinate of each probe set (Σ, Eq. (3.4)) or the 
mean sigma of both probe sets (Σcontrol

3’+5’, Eq.  (5.22)) along the vertical coordinate axis. 
In the former plots, each control (GADPH and beta-actin) thus provides two data points 
per array referring to the 3’- and 5’-probe sets, respectively (see green and blue dots in 
Figure 5.10). In the latter plots both data points are merged together to illustrate the mean 
intensity trend of the controls as a function of the degradation index.  

To judge the hybridization mode we also depict the sigma coordinates of the non-specific 
background intensity (N, red dots) and of the asymptotic saturation level (as, black dots) 
obtained from the standard hook analysis of each of the arrays. Recall, that the sigma-
values of the N- and the as-mode limit the range of possible probe intensities. They 
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The 3’/5’-intensity ratio of the probe sets is however not constant for a given RNA-quality 
level. Instead it depends on the hybridization mode (see above and Eq. (5.5)). Particularly, 
the 3’/5’-intensity ratio referring to a constant RNA-quality level follows the degradation 
hook shown in Figure 5.5: It is maximal in the S-hybridization range and vanishes near the 
N- and as-ranges of hybridization. We plot representative degradation hook curves in 
Figure 5.10 (see the orange curves; note that the x- and y-axes are exchanged in 
comparison with Figure 5.5) which are calculated using the threshold value of good RNA-
quality (Δγ3’/5’ = 0.47) the mean sigma-levels in the N- and as-ranges of the respective data 
sets. Hence, the degradation hook illustrates that the threshold value of the 3’/5’-intensity 
ratio strongly decreases in the mix- and sat-ranges due to the progressive effects of non-
specific hybridization and of saturation, respectively. It consequently defines a variable, 
sigma-dependent threshold-curve which allows differentiating between bad and good RNA 
quality data independent of the particular hybridization mode of the respective probes. In 
other words, it is more appropriate to apply this variable 3’/5’-‘threshold hook’ for quality 
assessment beyond the linear hybridization range instead of using a constant threshold 
value of the 3’/5’-intensity ratio.  

For example, a large fraction of the GADPH- and beta-actin intensity ratios of the tissue 
data set meet the constant quality criterion, Δcontrol

3’/5’ < threshold = 0.47, indicating 
apparently good RNA quality (Figure 5.10, right part). Consideration of the hybridization-
dependent ‘threshold hook’ divides this region further into true positive estimates 
(Δcontrol

3’/5’ < hookthreshold) and false positives (hookthreshold < Δcontrol
3’/5’ < threshold), where 

the latter data are located between the curved and linear thresholds as shown in Figure 
5.10. We estimated a positive predictive value for GADPH controls of about 0.48 which 
reflects overestimation of RNA-quality for about 50% of all 677 arrays of the tissue data 
set. Note also that strong saturation of the probes can completely prevent detection of poor 
RNA-quality samples because the respective intensity ratio levels off to Δcontrol

3’/5’ = 0. 

The mean sigma coordinates (Σcontrol
3’+5’) of the Rat-QC data set are found approximately 

halfway between the respective N- and as- levels indicating that the controls are 
predominantly hybridized in the S-range (Figure 5.10, left part). Application of a constant 
quality threshold seems appropriate for this data.  

The sigma values of both data sets studied clearly indicate the decrease of the mean 
intensity of the controls with decreasing RNA quality due to the loss of material assumed, 
e.g. in Eq. (5.21). In consequence, the hybridization regime of the controls can shift with 
changing RNA-quality. Note also that GADPH is associated with slightly larger probe 
signals than beta-actin in both data sets. Beta-actin controls are consequently less prone to 
saturation than GADPH  controls. 
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In summary, control probes can overestimate RNA-quality if one uses a constant threshold 
criterion because the true threshold level strongly decays for saturated probes. The problem 
can be fixed either by using an intensity dependent ‘threshold’ hook or by using alternative 
RNA-quality estimates such as the degradation ratio dk.  

5.3.3 Affy-slope is affected by absent probes 

A widely applied metric for RNA quality is the ‘RNA degradation plot’ provided with the 
R package affy [15-16]. The RNA degradation plot displays the mean log intensity 
averaged over all probes with the same index k of one microarray as a function of the 
probe index, k = 1,...,Npset. The slope of the regression line then provides a summary 
measure to characterize the mean degree of RNA-degradation in a chip-specific fashion. 
Note that the affy-slope parameter originally does not intend to serve as an absolute RNA 
quality measure per se but instead, represents a relative measure for comparing RNA 
quality between different chips in a particular series of measurements. 

However, the affy-slope degradation plot is virtually identical with the reciprocal 
positional dependent degradation index introduced above in Eq. (5.17) (dh(k)-1) except the 
fact that it considers all probes of the array whereas our approach separately averages over 
the N- and S-subensembles referring either to the S- or N-hybridization regimes, 
respectively. The affy-slope estimates are expected to underestimate the degradation level 
owing to the inclusion of predominantly non-specifically hybridized probes (so-called 
absent probes) which do not respond to RNA quality as shown above. More importantly, 
the chip-to-chip variability of the fraction of absent probes (%N; as determined by methods 
such as MAS5 or hook) is expected to affect the affy-slope measures by factors which are 
not or only weakly related to RNA quality.  

To illustrate this effect, a series of affy-slope curves referring to different degradation 
levels are shown in Figure 5.11a. Panel b of the figure plots our degradation profiles dS(k) 
of the specifically hybridized probes for the same arrays. Both presentations provide 
similar trends for the microarrays with similar %N-values. However, affy-slope and our 
degradation plot provide different results for arrays with marked differences of %N, as 
expected. Particularly, affy-slope tends to underestimate the slope for large %N values and 
thus to overestimate RNA quality. 

Hence, the apparent degradation ratio derived from the simple affy-slope intensity 
measures is strongly modulated by the fraction of non-specifically hybridized ‘absent’ 
probes leading potentially to the systematic overestimation of RNA quality. Contrarily, the 
proposed use of specifically hybridized probes largely removes this bias from the data and  
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types of parameters respond differently to changes of the length distribution of the 
transcripts due to degradation. Below we address this issue more in detail. 

The regression line between the dk parameter and the 5’/3’-intensity ratio of the controls 
allows to transform the quality threshold of the latter ratio into a dk threshold (Figure 
5.12d, see orange lines). We replot these thresholds into panel a and c of Figure 5.12: The 
RIN threshold is clearly more restrictive assigning more samples to bad RNA-quality than 
the threshold of the microarray-based control probes. 

5.4 Degradation reduces total transcript abundance 

We so far estimated RNA quality in relative units using suited 5’/3’-intensity metrics 
which reflect the decrease of transcript abundance with increasing distance from the 
3’-end. Trivially, this effect is expected to reduce the total amount of mRNA used for 
hybridization. The decrease of the mean intensity of the control probe sets with increasing 
degradation ratio as shown in Figure 5.10 confirms the decrease of the total amount of the 
respective specific transcripts with progressive degradation. Figure 5.10 also shows the 
non-specific intensity level of each of the arrays studied (red dots), which tends to decrease 
with increasing degradation.  

The hook method enables the independent estimation of the mean levels of non-specific 
‘background’ hybridization and that of specific expression using the simple summary 
measures β (see Eq. (3.14)) and ϕ (Eq. (5.10) ) which are based on large ensembles of 
probe sets on each array. Particularly, the width of the hook curve β has been shown to 
relate to the total amount of RNA material [45, 57]. Figure 5.13a shows how β decreases 
with progressive degradation. The observed decrement indicates that the amount of RNA 
material decreases by about 40% in the Rat-QC experiment.  

The degree of specific binding drops upon degradation, however to a considerable smaller 
degree than the amount of non-specific binding (Figure 5.13b). This discrepancy surprises 
because naively one expects that the loss of material similarly affects specific and non-
specific binding on the average, i.e. dN ≈ dS. The mean hybridization levels of specific and 
non-specific binding are however directly related also to the respective mean binding 
constants, <KP,S> and <KN>, respectively (Eq. (5.3)). We have previously shown, that the 
decrease of RNA-material used for hybridization increases the specific binding constant 
due to weaker bulk hybridization and vice versa [57]. In consequence, this so-called up-
down effect will partly compensate the decrease of the concentration of specific transcripts 
giving rise to the smaller decrease of the specific hybridization strength upon RNA 
degradation. 
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correlate with the quality of their transcripts [63]. The authors explain this ‘…the worse the 
quality the stronger the signal…’-effect by either the enrichment of low quality RNA in the 
low signal range due to nonspecific hybridization or by compensating effects due to chip-
to-chip normalization. The former interpretation disagrees with our results presented in the 
Section 5.4. We found that progressive degradation dilutes the sample and by this way 
decreases the amount of nonspecific hybridization. On the other hand, the observed 
negative correlations also mean ‘…the better the (apparent) quality the weaker the 
signal…’ in agreement with our results: For low intensity signals the 3’/5’-ratio indeed 
improves with decreasing intensity suggesting better RNA-quality. We demonstrated that 
this trend is however caused by the increasing amount of nonspecific hybridization and not 
by improved RNA-integrity. 

Considering also correlations between 3’/5’-quality measures and signal values (called 
LEV, ‘labeling extension values’), Lee et al. [76] found that LEV are typically small at low 
expression values but step-wisely increase beyond a certain expression threshold. The 
authors hypothesized that the positional 3’/5’-bias is less notable for low abundant 
transcripts due to inefficient reverse transcription. However, according to our results, the 
observed trend can be explained by the dominance of non-specific hybridization lacking 
positional 3’-bias at small expression levels. These two examples demonstrate advantages 
of model-based expression analysis using physicochemical hybridization theory compared 
with simple correlation analysis. 

The aim is therefore to use the degradation model for correcting the 3’-probe intensity bias 
to provide (largely) unbiased probe signals for downstream analysis. One expects that the 
loss of RNA material in general and particularly, RNA-fragments probed far away from 
the 3’-end, systematically decreases the apparent expression degree extracted from 
microarray probe intensities.  

5.5.2 Correcting the 3’/5’ bias of probe intensities 

Two main factors related to RNA quality potentially affect the intensities of the probes : (i) 
the distance of a probe relative to the 3’-end of the transcript, L (or, alternatively, the probe 
index in the probe set, k, which counts the probes in direction away from the 3’-end of the 
transcript) and (ii), the hybridization mode [87]. The specific hybridization regime below 
saturation is particularly prone to biased intensities as opposed to non-specific 
hybridization and specific hybridization in the asymptotic saturation range. 

Under consideration of these factors, the raw probe intensities of each sample are corrected 
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demonstrates that the tongs opening, and thus the degradation bias affecting particularly 
specifically binding probes, is largely removed from the intensity data. Figure 5.14c shows 
the frequency distributions of expression values obtained after hook calibration of 
uncorrected, index- and position-based 3’-corrected intensity data (see below). The 
correction shifts the right flank towards larger expression values. Both correction methods 
affect the distribution nearly identically. The distribution reflects the mean correction 
amplitude without emphasis on the individual probe sets. 

5.5.3 Index and position based correction 

We here compare the effect of the correction on the obtained expression values using either 
on the absolute probe position (‘L-correction’) or on the relative probe position (index-
based, ‘k-correction’) relative to the 3’ transcript end. Consider the special case of 
predominant specifically hybridized probes below saturation (S-regime, fs = 1) which 
implies that expression and intensity values roughly agree owing to the small effect of non-
specific hybridization. We also assume an exponentially decaying correction function for 
sake of simplicity (d∞

x = 0 in Eq.(5.18)). The logged mean intensity averaged over a 
selected probe set then becomes after correction (compare the correction algorithm in 
Section 5.5.2 with fs = 1) 

 P,x corr P
p p xpsetpset pset

logI logI x / ln10.− = + λ ⋅ (5.23)
Let us first consider the index-based correction. The probe set averaged mean index is 
identical with the array-related mean index averaged over all probe sets of the array, i.e.

pset array
k k= , if all probe sets contain the same number of probes. This applies to 

GeneChip microarrays to a good approximation because the overwhelming majority of 
probe sets contains the same number of probes per set (usually kmax = 11 and thus 
<k>array = 5.5). The index-based correction consequently scales the intensity values 
referring to specific hybridization (fS = 1) of one array by a constant factor, or, in log-scale, 
adds the increment term ~ karray

k / λ (see Eq.(5.23)).  

Contrarily, the position-based correction applies a specific correction ~ Lpset
L / λ    to each 

probe set. The mean position of the probes of each probe set varies from set to set and thus 
it usually deviates from the mean value averaged over all probe sets on the array, i.e. 

pset array
L L≠ . 

Using the previously defined <ΔL> (Eq. (5.1)) then allows to link the index- and position-
corrected mean intensities 
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 psetP,L corr P,k corr
p p karraypset pset

array

L
log I log I 1 k / ln10.

L
− −

⎛ ⎞
⎜ ⎟≈ + − ⋅ λ ⋅
⎜ ⎟
⎝ ⎠

  (5.24)
Eq. (5.24) shows that both correction types agree if the set averaged mean position of the 
probes agrees with the respective total array average, 

pset array
L L= . For probe sets with 

a mean position nearer the 3’-transcript end (i.e. 
pset array

L L< ) the index-based 
correction exceeds that of the position-based correction whereas for 

pset array
L L>  this 

relation reverses. The analysis of a series of different array types shows that the 25%- and 
75%-percentiles of the distributions of <L>pset provide correction factors 

( )pset array
L / L 1−  = - 0.4 – -0.5 and +0.4 - +0.5, respectively (compare Figure 5.3). 

Hence, the position-specific correction deviates from the index-based correction by more 
or less than +0.1/-0.1 for 50% of the probe sets if one assumes λk = 10 referring to 
relatively strong degradation (e.g. RIN = 6.1 of the ratQC data set, see Figure 5.15b). In the 
mix-range one expects the same qualitative relations between both options for correcting 
the 3’-bias of expression values, however with a systematically reduced amplitude due to 
the down-weighting of the effect (fS < 1).  

Hence, the index-based correction effectively applies the same factor to all probe sets 
which is scaled solely by the degree of specific hybridization whereas the positional 
correction applies a specific factor to each probe-set. The M-A–plot in Figure 5.15b shows 
the difference between L-corrected and k-corrected intensities. Each point represents the 
mean of the logged probe intensities over a probe set using the same strongly degraded 
microarray sample as in Figure 5.14 (RIN = 6.1 from the RatQC experiment). The points 
have been colored according to the average location <L> of the probes within each probe 
set: the lower quartile of probe sets located closer to the 3’-end of the transcripts are 
colored in red and the upper quartile of probe sets located far away from the 3’-end are 
colored in green. Figure 5.15a shows that the log-scale correction increment increases with 
increasing intensity level of the respective probes set, with the strongest corrections of 
ΔlogI = 0.55 for the probe sets which are more distant to the 3’ end. A comparison of the 
red and green symbol in Figure 5.15b shows that probe sets located on the average nearer 
to the 3’-end of the transcripts are corrected to a less degree than probe sets located more 
distant from the 3’-end of the transcripts for the position-based correction compared to the 
index-based corrections. 

Panels c-f of Figure 5.15 show similar M-A-plots as in panels a and b, but this time based 
on expression values as computed with MAS5 and with the hook calibration methods. The 
normalization and summarization steps applied to the probe intensities result in a more 
heterogeneous effect of the corrections which however shows the same general trend as 
discussed for the intensity data. 
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In summary, the k-correction applies the same positional factor to all probe sets. In 
consequence, the probe set-specificity of the correction is solely determined by the degree 
of specific hybridization. Contrarily, the L-correction applies a specific factor to each 
probe-set depending on the particular location of its probes. Comparison of both correction 
methods shows that probe sets located on the average nearer to 3’-end of the transcript are 
corrected to a less degree using their absolute position than probe sets located more distant 
from the 3’ transcript end. Hence, the L-correction is more specific with respect to each 
particular probe set. On the other hand, the k-correction is more robust with respect to 
outliers.  

We recommend use of absolute probe positions to cope with the effect of differently 
distributed probes. In practice the intensity changes due to index-based and position-based 
correction differ only slightly with, in general, small differences in the resulting expression 
values. 

5.6 An R package for the analysis and correction of 
RNA quality effects 

We developed the R package AffyRNADegradation that facilitates the analysis of RNA 
quality of Affymetrix expression data. It provides programmatic access to the RNA quality 
measure described in Section 5.3.1 that overcomes the drawbacks of existing methods by 
strictly referring to specific hybridization. Furthermore, it enables correction of the 3’-
probe intensity bias for improved downstream analysis. We will here illustrate the 
functionality of the AffyRNADegradation packages using the RNeasy data set where the 
same cell extract has been used for multiple microarray hybridizations, however either 
prepared with RNeasy to remove RNA degrading enzymes, or not [81]. 

The first package functionality addresses the analysis of the effects of RNA degradation 
and amplification on the microarray signals. The degradation hook-plot, shown in Figure 
5.16a and b, displays this 3’/5’ intensity difference in dependence on the mean logged 
probe intensity approximating the expression degree of the respective gene (see Section 
5.2.2). Cross-hybridization of partly matching targets of other genes causes nearly equal 
intensities for weakly expressed genes [37]. With increasing expression competitive 
binding of specific targets progressively unmasks their actual 3’/5’ gradient, until probe 
saturation sets in. Desirable would be equal intensities for 3’ and 5’ probes for all 
expression levels. The maximum height of the hook-plot reflects the relevant 3’/5’-
intensity gradient of the selected array enabling the unbiased comparison of differentially  
 



86 

Figur
data s
curve 
as plo
decay

expre
Plot

the T

The 
samp
for t
funct
separ
Figur
respe
be ca
from

We 
speci
estim
based
quali

The 
Diffe
artifa
analy
betw
relati
RNea
posit
hybri

re 5.16: Degra
set before (pa
increases wit

otted by the A
y. 

essed gene
tDegrada

Tongs Plot (

second pac
ple. We fou
the estimati
tion of the 
rately for ea
re 5.16c sh
ect to the m
alculated as

m the 3’-tran

determine 
ifically hyb

mate for the
d metrices. 
ity estimate

third pack
erences in R
acts which 
ysis. We her

ween differen
ing to degr
asy treatme
tional inten
idization m

adation hook p
anel a) and af
th increasing 
AffyRNADegr

es under va
ationHoo

(see Section

kage functi
und in Sectio
ion of RNA
expression 
ach probe in
ows the res

mean intensit
s a function

nscript end (

the decay-
bridized pro
e RNA qua

The d(x = 
 is available

kage functi
RNA quality
can affect 
re aim at re
nt condition
raded trans
ent. AffyRNA
nsity decay 
mode as de

plots referring
fter (panel b) 
degradation l

radation packa

ariable RN
k function 

n 5.2.2) whic

ionality add
on 5.2.3 tha
A quality b
degree. For
ndex k = 1…

sulting prob
ty for the fi
n of the dis
(see also Fig

-length par
obes. As w
ality of a pa

k,L) plot i
e via the d f

ionality add
y and the re
expression 
moving the
ns. Figure 5
scripts due 
ADegradati

d(x) after 
escribed in 

g to strongly 
correction us

level. Panel c 
kage: the wors

NA quality.
in the pack
ch is access

dresses the e
at one shoul
because of 
r these prob
…11 startin
be positiona
irst probe k
stance L of 
gure 5.8). 

rameter d 
we showed 
articular arr
is available 
function in 

dresses the
esulting prob

measures 
e systematic
5.16a shows

to increase
ion uses a c

applying 
Section 5

and weakly de
sing AffyRNAD
shows the res
se the RNA q

The hook
kage. A com
sible using t

estimation o
ld only use 
the 3’/5’ g

bes we com
ng from the 
al intensity d

= 1. Altern
f the probes

from the m
in Section

ray hybridi
via the Pl

the AffyRNA

e correction
be positiona
and the res

c differences
s two such c
ed presence
correction fu
the express

5.5.2. Optio

egraded RNA 
Degradation. 
spective probe
quality, the st

k-plot is ac
mplementar
the PlotTo

of RNA qu
specifically

gradient of 
mpute the m

3’ end of th
decay after 

natively the 
s given in u

mean inten
n 5.3, it pro
ization impr
lotDx func
ADegradati

n of the R
al intensity 
sults of diff
s in probe p
conditions i
e of RNase
unction that
sion level 
onally, the 

5 RNA qual

 taken from th
The height of

e positional d
teeper is the 

ccessible u
ry represen
ongs funct

uality of a p
y hybridized
f the intens

mean probe 
the target tr
normalizat
intensity de

units of nuc

nsity decay
rovides an 
roving othe
ction and th
ion package

RNA quali
decay are t

ferential ex
positional in
in the exam
es not rem
t reverses th
dependency
correction 

lity effects 

 
he RNeasy 
f the hook 

decays d(x) 
respective 

sing the 
ntation is 
tion. 

particular 
d probes 
sity as a 
intensity 
anscript. 
tion with 
ecay can 
cleotides 

s of all 
accurate 
er array-
he RNA 
e. 

ity bias. 
technical 
xpression 
ntensities 
mple data 

oved by 
he probe 
y of the 

can be 



5.7 Summary and conclusions 87 

performed based on probe indices k as well as probe distances L. Figure 5.16b shows the 
degradation hook after application of the correction using probe indices k: The 3’/5’ bias is 
almost completely removed. Corrected probe intensities are available via the afbatch 
function. 

The AffyRNADegradation package extends the Bioconductor package affy [75] and 
integrates well in a typical microarray analysis workflow. All calculations are performed 
directly on the AffyBatch object and carried out separately for each particular 
microarray hybridization in a single-chip approach. Our approach corrects the 3’/5’-bias on 
the level of raw probe intensities which can afterwards be processed with any method. The 
runtime is about 2 minutes and 3 minutes per sample for index and distance based 
corrections, respectively. Since each chip is processed independently, arbitrarily large data 
sets can be processed. 

5.7 Summary and conclusions 

Amplification of RNA-material using primed in-vitro transcription protocols and 
degradation of RNA during extraction, storage and processing of the samples affects RNA-
quality in microarray experiments with consequences for expression estimates and their 
interpretation. We systematically analyzed the effect of varying RNA quality on 
microarray probe intensities using a physicochemical hybridization model and propose (i) 
new measures to assess RNA quality and (ii), a method to correct probe intensities for the 
degradation bias. 

Particularly, it is shown that poor RNA quality is associated with a 3’-bias of transcript 
abundance which affects only the probe signal due to specific hybridization. Estimation 
and correction of the resulting signal bias of each particular probe requires consideration of 
its hybridization mode (specific, non-specific or a superposition of both) and of the 
positional effect of probe intensity along the respective gene due to truncated transcripts. 
The former issue is solved by applying a modified ‘hook’-approach of data analysis based 
on Langmuir hybridization theory. The latter effect is taken into account by estimating the 
mean positional intensity decay on each array as a function of either the probe index or the 
probe’s distance to the 3’ end of its target transcript. 

RNA quality is estimated in terms of the 3’/5’-intensity gradient of specifically hybridized 
probes. In addition to appropriate quality values (such as the ‘tongs opening’-parameter 
and the degradation ratio d) we introduce graphical characteristics allowing assessment of 
RNA quality of each single array (‘tongs plot’ and ‘degradation hook’). The parameters 
have a well-defined physical meaning related to the fold change of transcript abundance 
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along the genes. ‘Poor’ RNA quality is characterized roughly by a decay of the mean 
specific signal by a factor of less than 0.5 between probes near the 3’-end and probes 
located about 600 nt away. 

Our approach improves established RNA-integrity measures such as ‘affyslope’ and the 
3’/5’-intensity ratio of degradation control probe sets. Both methods are prone to 
overestimate RNA quality if the signals are dominated by non-specific 
hybridization (affyslope) and/or saturation (controls). Our microarray-based quality 
estimate correlates well with the RNA integrity number (RIN) which, in addition, is 
affected by more complex properties of RNA degradation not uniquely related to transcript 
length. Short probe sets near the 3’-end are prone to non-specific hybridization presumably 
because of uncertainties in 3’UTR length owing to inaccurate assignment of the 3’-end and 
transcript isoforms. 

Poor RNA quality is associated with a decreased amount of RNA material hybridized on 
the array paralleled by a decreased total signal level. Additionally, it causes a gene-specific 
loss of signal due to the positional bias of transcript abundance which requires an 
individual, gene-specific correction. The former total effect can decrease the overall signal 
level of an array by the factor of 0.5 - 0.7 in the case of poor RNA quality (RIN < 7). The 
latter local effect can be more pronounced with a penalty in expression measures by a 
factor of 0.3 - 0.4 or even less in worst cases. 

The functionality to assess and to correct RNA quality effects in GeneChip expression data 
has been implemented in the software package AffyRNADegradation. It provides 
programmatic access to the degradation measures dk and dL  as well to the tongs and 
degradation plot visualizations which help to assess RNA quality. Furthermore, it allows 
correcting probe intensities for the degradation bias for more reliable downstream 
expression analysis. The AffyRNADegradation package is implemented in R and freely 
available via the Bioconductor software repository4. 

 

                                                 
4 http://www.bioconductor.org/ 



6 Sequence effects 

6.1 Probe sequence affects intensities and expression 
values 

The mechanism of nucleic acid binding on solid surfaces is the basic principle of 
microarrays and a significant number of other technologies widely used in life sciences. 
Yet there are many unknowns among the factors affecting the binding process itself. It is 
known that the base composition has a large effect on duplex yield in solution, particularly 
for short oligonucleotides as used in microarrays [89]. This is mainly due to the higher 
stability of duplexes containing GC base pairs compared to AT base pairs. Besides these 
probe-target interactions there is a substantial number of additional interactions that occur 
on microarray surfaces: probe-probe interactions [89], probe-folding [90], non-specific 
binding [47], intra-target RNA folding [44], target-target interactions [91], steric 
crowding [92], sequence-specific fluorescence marking and more [37]. These interactions 
alter the effective binding of marked nucleic acids to the probes, and thus the observed 
fluorescent intensity signal. They must therefore be studied thoroughly in order to improve 
the specificity and sensitivity of those signals and to fully understand the dependence of 
intensity signals on factors like probe sequence. 

Figure 6.1 shows the surface image of a hybridized Affymetrix GeneChip expression array. 
The image clearly reveals dark and bright horizontal stripes which correlate with the non-
random arrangement of probe sequences on the chip: Firstly, the vertical position of perfect 
match probes (PM) alternates with that of paired mismatch (MM) probes. The intensity of 
the former ones exceeds that of the latter ones on the average due to their altered middle 
base which mismatches the target. Secondly and more importantly, the probe sequences 
arrange in rows with respect to short motifs. In particular, the position of most of the 
probes possessing triple degenerated guanines at the solution end of their 
sequence ((GGG)1) are found within a horizontal band which exactly matches the brightest 
stripe of the chip image. The respective intensities exceed the average intensity level of the 
array typically by a factor of two to ten. It seems unlikely that these strong intensity values 
are associated with extraordinary large expression levels of the respective target genes. 
Instead the bright intensities can be attributed to probe effects which typically reflect the 
sequence specifics of probe/target interactions [54]. Such probe effects must be removed 
from the data to obtain accurate expression values.  
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data from expression analysis and thus reduce the information potentially available from 
the microarray experiment. We suggest therefore an alternative strategy which intends to 
correct the probe-related intensity effects. It aims at extracting the 'hidden' information 
about target abundance in terms of corrected intensities for further use in downstream 
analysis. 

This section addresses this issue and presents a systematic study of the effect of sequence 
motifs on the probe intensities. We will here focus on short motifs of up to four adjacent 
nucleotides at all possible sequence positions. Other approaches focusing on longer motifs 
require combining data from many microarray hybridizations [98]. We here compare the 
results obtained for different hybridizations after variation of the sample RNA, chip type 
and/or the amplification protocol. Our approach aims at identifying the minimum motif 
length for appropriate intensity prediction using a positional and motif dependent model. 
We focus on the effect of runs of degenerated guanines which have been found to behave 
unusually compared with other motifs in different chip assays including Affymetrix 
expression and SNP arrays [29, 99–103]. 

6.1.1 Used expression data 

We here investigate various data sets dealing with different generations and types of 
Affymetrix GeneChip arrays which were taken from the public Gene Expression Omnibus 
(GEO) data repository (www.ncbi.nlm.nih.gov/geo/). The central examples are 
summarized in Table 6.1: (i) Human Genome HG U133A arrays taken from the 
'HG133A_S' dataset were reanalyzed to verify the effect of G-stacks reported recently 
[103].  (ii) Identical human reference RNA was hybridized to both HG U133A and HG 
U133 Plus 2.0 arrays in the ' HG133P_Z' and 'HG133A_Z' datasets [104]. The latter arrays 
offer smaller feature sizes (11 versus 18 microns) and a larger number of probe sets 
(54.675 versus 22.300). All probes of the HG U133A are replicated on the the HG 133 
Plus 2.0 array allowing direct comparison of the signal response of identical probes upon 
hybridization with the same RNA. (iii) In the 'Mouse' dataset we analyzed Mouse Genome 
430 arrays referring to the same generation as the HG U133 Plus 2.0 array.  (iv) The 
'ENCODE'-dataset comprises human tiling arrays taken from the ENCODE-project [105]. 
This array-type not only contains a further increased number of probes but also uses 
different hybridization and labelling chemistries compared with the expression arrays of 
the other data sets. Particularly, cRNA-targets are replaced with cDNA targets and 
nucleotide-labelling throughout the sequence is changed into end-labelling. Arrays of the 
ENCODE type can also be applied in ChipChIP experiments with altered amplification 
protocols to explore protein/DNA interactions. We included ChipChIP data to study the 
effect of the amplification protocol. 
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Table 6.1: Chip characteristics of selected data sets studied.  

Data set HG133A_S  Mouse ENCODE HG133P_Z HG133A_Z 
GEOa  GSE1133  GSE12545  GSE6292  GSE3061  GSE3061 
Chip type  HG U133A MG 430 2.0 Human 

Tiling 
HG 
U133plus2 

HG U133A 

# probes × 
106 b  

≈ 0.5 ≈ 1.0 ≈ 1.5 ≈ 1.2 ≈ 0.5 

# probe 
setsb    

22,300 45,101 300,000c 54,675 22,300 

% absentd  61.9% 63.1% 94.8% 54.9% 42.8% 
<logN>chipe  2.0 2.3 1.1 1.94 2.09 
<log M>e  4.48 4.71 3.45 4.32 4.45 
%(GGG)1 
probesf   

2% 1.9% 2% 2% 2% 

%(GGG)1 
probe setsf 

20% 19% - 20% 20% 

      
a Gene Expression Omnibus (GEO) accession number 
b number of probes and of probe sets per array 
c pseudo sets are assembled using five consecutive probes 
d percentage of absent probes per array 
e mean value of the logged non specific background intensity and logged saturation intensity 
f percentage of probes containing the (GGG)1-motif and of probe sets containing at minimum one of these 
probes 

6.2 Positional-dependent sensitivity profiles 

We apply the positional dependent sensitivity model to the intensity data shown in Figure 
6.1a.  The model provides sensitivity profiles of rank 1-4, the maximum rank being limited 
by the available number of data points. Figure 6.2 (left part) shows the profiles which were 
obtained using the intensities of 'absent' called PM probes. The sensitivity terms can be 
interpreted as the logged intensity increment due to the respective sequence motif of r 
consecutive bases starting at position k of the 25meric sequence (see subsection 3.4). 

The shapes of the four single base profiles (r = 1) virtually agree with previously published 
data [36, 50, 53, 106, 107]: The sensitivities of adenines (A) and cytosines (C) are roughly 
symmetrical with respect to the x-axis and change in a parabola-like fashion, the maximum 
being near the middle of the probe sequence. The profiles of guanine (G) and thymine (T) 
indicate a more monotonous dependence. All profiles are asymmetrical with respect to the 
ends of the probe sequence: They converge towards the surface-attached side at k = 25 but 
differ significantly near the solution end at k = 1. The sensitivities and thus the base- and 
positional dependent contribution to the intensities increase according to A < T < G < C for 
most sequence positions.   
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constant sensitivity values which markedly change only near the ends of the probe 
sequence. In contrast, G-rich subsequences add strong intensity contributions at small 
position indices especially at the first sequence position. The respective contributions 
progressively increase for r = 1 to 3 but then remain virtually unchanged for r = 4. Note 
that also the guanine profiles of lower rank (G, GG and GGG), show exceptional large 
positive values at sequence positions k < 4.  The possible origin of this behavior will be 
discussed below. 

The right part of Figure 6.2 shows the corresponding profiles of the PM probes 
predominantly with specific hybridization. Only 8% to 20% of all probes on the chip meet 
this criterion. This relative small number of probes restricts the rank of the model to r = 1-3 
and, moreover, gives rise to a relatively large level of noise. The specific profiles possess 
essentially the same properties as the non-specific ones shown in the left part of Figure 6.2 
except that for G- and T-rich motifs. In particular, profiles of homo-runs of guanines shift 
markedly towards smaller values compared with their non-specific values. Note also that 
the (GG)1 and especially (GGG)1 motifs at the solution end contribute much less to the 
specific profiles. 

6.3 Guanine effects 

6.3.1 Sequence motif assessment 

We assume that a model of rank r applies with different quality to different sequence 
motifs of length s at position k, (bs)k. Note that the length of the motif s is independent of 
the rank of the model. For example, triple motifs (s = 3; e.g., GGC) can be analyzed either 
using the nearest neighbor model (r = 2; i.e., GG+GC) or the next-nearest neighbor 
model (r = 3; i.e., GGC).  To assess the fit quality in a motif specific fashion we collect all 
probe sequences which contain (bs)k  into class p((bs)k) with #p((bs)k) members per chip and 
define the motif-specific SSR in analogy with Eq. (3.10) 

 s k

s k

2 2
s k (b )

(b )s k )
1SSR(r,(b ) ) RES RES

#p((b )
= = 〈 〉∑ (6.1)

One can subsume all motif effects independently of their position by substituting 

s k s(b ) b→  in Eq. (6.1) to get the total SSR of tuple bs, SSR(bs).  

Note that the total SSR (Eq. (3.10)) is given as the weighted sum of the motif-specific SSR  
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 s k

s k

(b ) s k
(b )

SSR(r) f ·SSR(r, (b ) ),= ∑ (6.2)
where 

s k(b ) s kf #p((b ) ) / #p=  denotes the fraction of probes containing the respective motif. 

6.3.2 Quality of fit and standard error 

The positional and motif-specific SSR (Eq. (6.1)) estimate the contribution of a 
subensemble of probes containing the motif (bs)k to the total sum of squared errors after 
fitting the positional dependent sensitivity model of rank r to the whole ensemble of 
considered probes (Eq. (6.2)).  Ideally, the residuals scatter with equal variance and center 
zero  for each chosen motif. To detect and to estimate systematic biases of the fits in a 
motif specific fashion we calculate the squared sum of the respective residuals to judge the 
quality of the fits for each considered sequence motif, 

 s k

s k

2 2
s k (b )

(b )s k

1QF(r,(b ) ) ( RES) RES .
#p((b ) )

= = 〈 〉∑ (6.3)
Ideally one expects QF(r,(bs)k) = 0 for centered distributions of the residuals. Non-zero 
values QF(r,(bs)k) ≠ 0 thus indicate systematic deviations of the fits of the model of rank r 
with respect to motif (bs)k.   

The motif-specific variance of the residuals and the respective standard error are given by 

s k s k

2 2
s k (b ) (b )Var((b ) ) RES RES= 〈 〉 − < 〉 and 

 s k s k s kSE((b ) ) Var((b ) ) / # p((b ) ).= (6.4)
The standard error allows to estimate the confidence level of the positional dependent 
sensitivity terms σk(bs).  

6.3.3 Triple guanine motif causes large intensities 

Part a of Figure 6.3 compares the sensitivity profiles of non-specifically hybridized probes 
of the mouse data set shown in Figure 6.2 with the respective profiles of the ENCODE and 
HG133A_S data sets. As a general trend, the sensitivity level of poly-C terms nearly linear 
increases with increasing rank of the model as indicated by the dotted lines. This trend 
reflects a constant incremental contribution per additional cytosine in the considered 
motifs. In contrast, the sensitivity of poly-G motifs starting at k = 1 steeply gains at 
r = 3 (ENCODE and mouse data sets) or, to a less extend, at r = 4 (HG133A_S data set).  
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 SSR (r 1) SSR (r)F(r) .
(df (r 1) df (r))(SSR (r 1) SSR (r))

− −=
− − − − (6.6)

It follows the F-distribution with the degrees of freedom df (r) # p # (r) 1= − σ +  and allows 
to estimate the significance of model extension in terms of a p-value.  Usually one gets 
df ≅ #p because the number of probes (> 105) largely exceeds the number of model 
parameters (< 103). One consequence of the large number of probe values is that 
essentially each improvement of the fit with F > 1.5 is judged as significant with p < 10-2 
for df > 105.  

Eq.(6.6) applies under the assumption of normally distributed, independent residuals. We 
found that systematic errors partly contribute to the estimated SSR questioning the 
applicability of the F-test. We therefore use the F-values as a simple empirical measure 
characterizing the improvement of the fits. 

Motif-specific F-values F(r,bs) and F(r,(bs)k) can be calculated for the respective SSR and 
with the respective substitution for the number of probes (#p → #p(bs); #p((bs)k)) to judge 
the improvement of the model with respect to the chosen sequence motif. The number of 
relevant parameters is given by the number of model tuples br required to describe the 
sequence motif bs at all positions for the positional independent case. It provides 

s# (b ) (s r 1)·(25 s 1)σ = − + − +  and s k# ((b ) ) s r 1σ = − +  for the positional dependent and 
indepentent cases, respectively. 

 

6.4.2 Motif-specific differences 

The discussed sensitivity profiles are obtained by multiple linear regression fits of Eq.(3.9) 
to the intensity data of non-specifically hybridized probes of the respective arrays by 
minimizing the total sum of squared residuals (SSR) (see Eq. (3.10)). The fit of models of 
increasing rank r improves the goodness of fit in terms of the total SSR(r) (Eq. (3.10)). 
Table 6.2 lists the total SSR(1) values of the single base model and the respective F-values 
for models of rank r = 2-4 (Eq.(6.6)). Maximum improvement is observed for the NN 
model compared to N and smallest improvement for NNNN compared to NNN. 

The total SSR was decomposed into motif and positional dependent terms according to 
Eq.(6.2)) to characterize the model fits of rank r = 1-4 in more detail (Figure 6.3). In 
general, the mean level of the SSR-terms decreases with increasing rank of the model 
indicating the improvement of the fits in parallel with the decrease of the total SSR 
discussed above. The partial SSR values of selected motifs (e.g. degenerated cytosines and 
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Table 6.2: Sum of squared residuals of the fits of model ranks r = 1 ... 4: SSR of all probes and of probes 
containing C-triples and the (GGG)1-motif are given for the N-model (r = 1). The respective F-values for the 
higher ranks r = 2 - 3 evaluate the improvement of the fits with respect to the model of next smaller 
rank r - 1.   

 HG133A_S  Mouse ENCODE 
SSR(1)  0.048 0.072  0.11 
SSR(1, CCC)  0.072 0.088 0.094 
SSR(1, (GGG)1)  0.071 0.21 0.85 
F: N → NN  147.52 202.08 381.73 
F: NN → NNN  11.11 20.6 78.07 
F: NNN → NNNN  3.09 6.16 8.89 
 

guanines) are larger than the average level for the N-model. Especially the value of the 
(GGG)1-motif largely exceed the total SSR value by nearly one order of magnitude 
(ENCODE) and by the factor of 2 - 3 (mouse data set) indicating inadequate fitting of this 
motif (see Table 6.2 and Figure 6.4). 

The SSR-values estimate the deviation between the fitted and the experimental data. They 
can be attributed to two potential origins, namely the systematic bias due to the inadequacy 
of the model and/or the random scattering of the experimental data. We calculate motif- 
and positional dependent profiles of the qualitiy of fit (QF, Eq. (6.3)) and of the standard 
error (SE, Eq. (6.4)) as suited measures to estimate the respective contributions.  
Particularly, one expects vanishing QF-values for adequate fits of the model. The motif 
and positional data shown in part c of Figure 6.3 reveal that the N-model fails fitting the 
probe intensities of all considered data sets. The NN-model markedly improves the fit for 
all motifs except (GGG)1. Clearly this motif gives rise to residual systematic deviance 
between the fits and the respective intensities of the mouse and ENCODE data sets. It 
however largely vanishes for r = 3. This result confirms our hypothesis that the observed 
intensity effect is related to threefold degenerated guanines (GGG)1. The QF-profiles of the 
HG133A_S data set reveal small systematic deviations of degenerated guanines motifs 
along the whole sequence for r = 3 and 4 due to the poly-G-effect. 

The standard error is relatively invariant for most of the motifs and positions with 
SE < 0.01 as a rule of thumb (part d of Figure 6.3). A notable exception are selected GC-
rich motifs in the middle of the probe sequence which show high standard errors up to 
SE ≈ 0.1 for the ENCODE data set and up to SE ≈ 0.07 for the mouse data set, 
respectively. Figure 6.5 shows that these motifs are very rare on the MG230 2.0 and 
ENCODE arrays with partly less than 100 probes containing them. These small numbers 
gives rise to imprecise estimates of the respective sensitivity terms. 



100 

Figur
probe
partly
togeth
MG-4
spikes

In su
depe
As a
adeq

6.5 

The 
chip 
profi
effec
hybri
diffe
HG1
probe
of id
 

re 6.5: Freque
e sequences of
y different sca
her with the r
430 2.0 array 
s of the respec

ummary, th
ndent contr

a clear excep
quate fitting.

Chip

data sets so
types. Both

iles, and, in
cts due to 
idizations o
rent chip 
33A_Z. Th
e sets of the

dentical seq

ency of triple m
f three selecte

aling of the ord
respective num
contain CCG

ctive standard

he decomp
ributions re
ption, the (
. 

p-type a

o far addre
h factors p

n particular,
target and 

of the sam
types, na

he nearly 55
e latter one 

quences on 

motifs. The fig
d array-types.
dinates. Rare 
mber of prob
G-triples start
d errors for the

position of 
eveals adequ
GGG)1 effe

nd targ

ss different
otentially a
, the poly-G

chip-type 
me RNA sa
amely the 
5.000 probe
and this wa
the two chi

gures show th
. Homo-motifs
triple motifs a

bes containing
ting at k = 13
e triple terms.

the total 
uate fits of 
ect requires

et effec

t target sam
affect the m
G effects di

we compa
ample (Uni

newer HG
e sets of the
ay allow dir
ip types aft

he positional d
fs are highligh
at position k =
g the motif. F
3. Note that 
 

fit statistic
most of th

s explicit co

cts 

mples which
motif and po
iscussed ab
are the sen
iversal Hum
G133P_Z
e former ch
rect compar
ter appropri

dependence of
hted by thick c
= 13 are expli
For example, 
these rare mo

cs into mo
e motifs us

onsideration

h are hybrid
ositional de

bove. To di
nsitivity pro
man Refere
and the p

hip integrate
rison of the
iate maskin

6 Sequen

f the triple mo
colored curves
icitly given in
only 27 prob
otifs give rise

otif- and p
sing the NN
n of NNN-t

dized onto 
ependent se
scriminate 
ofiles for 
ence RNA)
previous-ge
e more than
e intensity o
ng of the ad

nce effects 

 
otifs in the 
s. Note the 
 the boxes 

bes on the 
e to large 

ositional 
N-model. 
erms for 

different 
ensitivity 
between 
different 
 to two 

eneration 
n 22.000 
of probes 
dditional 



6.5 Ch

Figur
sensit
arrays
effect 
The n
tends 
the Ap

probe
very 
their 
sets. 

In th
type 
simil
first 
comp
maxi
the d
the (
distri
using
over 

hip-type and t

re 6.6: The a
tivity terms of
s are ranked w
(circles, see t

numbers on th
to increase w

ppendix A.  

es in the H
similar and
shape (see

he next step 
(MG430 2.

lar for the d
sequence po
parison we
imum sensi
difference Δ
(GGG)1-eff
ibution of t
g MG430 2
a wide rang

target effects 

amplitude of 
f triple-G and
with respect to
text). Sensitiv

he right assign
with the chip g

G133P_Z d
d provide no
e Figure 6.6

we compar
.0, see Figu
different hy
osition whi

e normalize
itivity value

(GGG)Δσ =
fect (see F
the obtaine
2.0 arrays. 
ge for differ

the (GGG)1-e
d -C at the fir
o the differenc
ity profiles of
n the chip ge
eneration. Th

data set. The
o indication

6a). For exa

re the profil
re 6.6b). Al

ybridizations
ch indicate 
e the respe
e of triple-C

1(GGG)= σ −
igure 6.6b 
d Δσ(GGG
The data sh
rent target h

effect on Gen
rst and the m
ce Δσ (GGG) 
f three indepe
eneration 0 to
e GEO-access

e obtained 
n that the tw
ample, the p

les of differ
lso in this c
s except the
different am
ective tripl

C motifs in 

12(CCC)−σ
for illustr

G)-values fo
how that th
hybridizatio

neChips of di
middle position

which charac
ndent hybridiz

o 3 (see text). 
sion numbers 

three sets o
wo consider
poly-G effec

rent RNA-h
ase the prof
e sensitivity
mplitudes o
le sensitivi
the middle 
 as a relativ
ation). Part

or a series 2
he amplitud
ons of the sa

 
ifferent type. 
n of the sequ
cterizes the am
zations are av
The amplitud
of the sample

of profiles o
red chip typ
ct is observ

hybridizatio
files of mos
y terms of h
f the (GGG
ty term w
of the sequ

ve measure 
t c of Figu
29 indepen

de of the (G
ame chip typ

The bars ref
uence, respect
mplitude of the
veraged for ea
de of the (GG
es analyzed ar

of rank r = 
pes strongly
ved in all th

ons to the sa
st of the mo
homo-G run

G)1-effect. F
with respect
uence and c
of the amp
ure 6.6 sh

ndent hybrid
GGG)1-effec
pe.  

101 

fer to the 
tively. The 
e (GGG)1-
ach value. 

GG)1-effect 
re given in 

1 - 4 are 
y modify 
hree data 

ame chip 
otifs look 
ns at the 
or direct 
t to the 
calculate 
litude of 

hows the 
dizations 
ct varies 



102 6 Sequence effects 

In the next step we estimated the amplitude of the (GGG)1-effect for eigtheen different 
array types. Figure 6.6 plots the mean sensitivity amplitudes σ1(GGG), σ12(CCC) and their 
difference. The considered chip types can be roughly classified into four chip-generations 
(numbered 0 to 3) which use different probe spot sizes, number of probe spots per chip and 
partly different hybridization chemistries. The spot sizes decrease from 18-20 μm 
(generations 0 and 1), 11 μm (generation 2) to 5 μm (generation 3) which results in the 
marked increase of the number of probes per chip. Generation 3 (Human Gene 1.0 ST and 
Human Exon 1.0 ST arrays) uses a PM-only design without MM-probes and DNA/DNA 
instead of DNA/RNA hybridization chemistry. We assign the ENCODE arrays also to 
generation 3 because it applies DNA/DNA hybridizations as well. However, it still uses 
MM probes and larger spot sizes (10 μm) compared with Gene 1.0 ST and Exon 1.0 ST 
arrays. `ChipChIP' assigns arrays of the ENCODE-type which are applied in ChipChIP 
experiments. On chips of generations 1 – 3 most of the probes containing (GGG)1 motifs 
are located in a row as shown in Figure 6.1. 

It turned out that the (GGG)1-effect can be identified for all arrays of generations 1 to 3. Its 
amplitude tends to increase for chips of later generations 2 and 3. The differences between 
the chip generations are however moderate without clear indication that type-specific 
factors such as the arrangement of probes, their spot size, density and number explicitly 
explain the (GGG)1-effect. 

Interestingly, our data reveal a large difference of the amplitude of the (GGG)1-effect 
between the ENCODE-expression and ENCODE-ChipChIP-hybridizations (Figure 6.6). 
Both experiments use the  same type of ENCODE tiling arrays but different amplification 
protocols: The former one amplifies sample mRNA via T7-priming and subsequent reverse 
transcription to double stranded cDNA whereas the latter one amplifies genomic DNA 
after immunoprecipitation via random priming without the T7-protocol [105, 108–110].  
Note that fragments of the T7-primers used in the amplification step of mRNA-sample 
preparation partly remain bound to the amplified targets as has been discussed in [111]. 
The respective common G-rich sequence motif of the primer (5'-GGGCGGAGG…) 
contaminates a large fraction of the targets at their 5'-end and preferentially bind to probes 
with complementary, C-rich motifs [111].  

In summary, we found systematic differences between the amplitude of the guanine effects 
between GeneChips of different generations which are rather gradual than fundamental. On 
the other hand, our data suggest that the amplification protocol for the used targets strongly 
affects the (GGG)1-effect. Previous studies showed that the targets become contaminated 
with G-rich primer fragments after T7 amplification. One might hypothesize that these 
fragments are prone to associate to selected G-rich probe sequences. 
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6.6 Perfect match and mismatch probes 

Each perfect match (PM) probe is paired with one mismatch (MM) probe on most of the 
Affymetrix microarray types. The MM probes use the same 25meric sequence as the 
respective PM probes except for the middle base, which is substituted by its complement. 
To extract subtle differences between the sensitivity profiles of both probe types we 
calculate the logged intensity difference of each probe pair, PM MMlogI logIΔ = − , and 
subsequently fit the NNN-sensitivity model of rank r = 3 to the intensity data of the three 
data sets given in Table 6.1. 

The obtained terms characterize subtle intensity differences between both probe types in a 
motif- and position-dependent way. Their amplitudes virtually vanish for k < 11 and 
13 < k (Figure 6.7). This result seems trivial because the sequences of PM and MM probes 
are identical at these positions. It clearly indicates, however, that the (GGG)1- and poly-G 
effects apply to the PM and MM probes as well.  

The NNN-sensitivity data markedly deviate from the baseline at positions k = 11…13 at 
which the triple motifs diverge between the PM- and MM-probes owing to the swapped 
middle base (in Figure 6.7 this range is indicated by the dotted vertical lines). Here we 
focus our discussion to triple degenerated homo-motifs in the middle of the PM- (or MM-) 
sequence which combine with motifs of broken degeneracy in the respective paired MM- 
(or PM-) sequence. For example, (GGG)11 combines with (GGC)11, (GGG)12 with (GCG)12 
and (GGG)13 with (CGG)13. The calculated sensitivity amplitudes consequently 
characterize the logged intensity difference due to both motifs. 

Figure 6.7 sorts the profiles with respect to the central base B of the middle triples in the 
PM sequence, xBy with B,x,y = A,C,G,T. The complete base pairings in the triple motifs 
are given in the figure. Base pairings in DNA/DNA duplexes are symmetrical with respect 
to bond reversal [112]. One expects therefore a central symmetrical pattern for the profiles 
of degenerated triples and the triples with swapped central base, e.g. AAA versus ATA and 
TTT versus TAT. The obtained sensitivity-profiles indeed show this symmetrical pattern. 
One expects also equal amplitudes for complementary homo-motifs, e.g. AAA and TTT. 
The observed effect however ranks according to AAA ≈ TTT < CCC < GGG. The slightly 
larger peak of (GGG)12 compared with (CCC)12 indicates the poly-G effect along the 
sequence.   

The mouse and HG133A_S data sets refer to DNA/RNA hybridizations. The chemical 
asymmetry of base-pairings between the DNA probes and RNA targets (see, e.g., [113, 
114]) explains the slightly modified pattern of the obtained triple motifs compared with 
that of the ENCODE data set. Particularly, one gets for the mouse data set 
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GGG ≪ AAA ≪ TTT ≪ CCC which is compatible with solution data (see also below). It 
therefore provides no indication of the poly-G effect. In contrast, in the HG133A_S data 
one observes the reversed relation for guanines and cytosines, GGG > CCC, which 
indicates a slightly larger intensity contribution of degenerated runs of guanines. 

In summary, the joint analysis of the PM- and MM-intensities shows that both probe types 
are affected by the poly-G and (GGG)1-effect to a similar extent. It also reveals a relatively 
large intensity contribution of poly-G motifs in the middle of the sequence in some cases. 
The amplitude of this effects is however relatively small compared with the (GGG)1-effect.  

6.7 Specific and non-specific hybridization 

Our analysis so far mainly uses the positional sensitivity profiles of non-specifically 
hybridized PM probes and of the logged PM-MM difference. Selected profiles due to 
specific hybridization revealed a decreased sensitivity level of runs of degenerated 
guanines and, in particular, of the (GGG)1 motif (see the right part of Figure 6.2 for the 
mouse data set, the specific profiles of the other data sets analyzed are given in the 
supplementary material). This result suggests that the (GGG)1-effect is only weakly or 
even not at all associated with specific hybridization. 

It should be taken into account, however, that the specific sensitivity profiles are relatively 
uncertain owing to incomplete correction for parasitic effects such as saturation of the 
probe spots and bulk hybridization which deform the shape of the profiles and shift their 
level against each other [54, 57, 115]. Moreover, the number of probes in the sub-
ensembles of probes used for calculating the specific profiles are typically much smaller 
than that of the non-specific probes. In addition, the specific sub-ensemble of probes is 
typically contaminated with contributions due to non-specific hybridization. All these 
factors give rise to relatively noisy profiles which still reflect properties of non-specific 
hybridization.  

We therefore apply a different approach to answer the question whether the (GGG)1-effect 
extends also to specific hybridization or not. Part a of Figure 6.8 plots the smoothed probe 
intensities of the mouse data set as a function of the expression degree which was 
calculated using the hook method. This calibration approach inverts the two-species 
Langmuir hybridization isotherm and estimates the linearized intensity-equivalent due to 
specific hybridization LS = M · XS (see Section 3.1) using the respective raw intensity 
values. The graphs in Figure 6.8 thus characterize the mean dependence of the intensity as 
a function of the specific transcript concentration [S] which is directly related to LS. These 
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fit the mean isotherms of the array averaged over all PM- or MM-probes; and scenarios (B) 
and (C) which aim at reproducing the behavior of the (GGG)1-subensemble. Particularly, 
in scenario (B) only the value of the non-specific binding constant is increased compared 
with the reference case (A) according to N 0.5 N

(B) (A)K 10 ·K=  whereas the value of the specific 
binding constant remained unchanged S S

(B) (A)K K= . In scenario (C) also the value of the 
specific binding constant is increased by the same factor as KN in case (B), i.e. 

S 0.5 S
(C) (A)K 10 ·K=  and N N

(C) (B)K K= . 

Comparison of the theoretical and experimental curves clearly reveals that the intensity 
increment of the (GGG)1-containing subensemble is readily described by the second 
case (B) which only assumes the stronger non-specific binding of the probes. Case (C) 
assumes also an increased specific binding. It clearly fails descibing the data: The 
inflection point of the calculated isotherms shifts to smaller  abscissa values whereas that 
of the experimental isotherms remains roughly at the same position. 

Hence, comparison between measured and calculated isotherms provides no indication that 
specific hybridization contributes to the (GGG)1-effect to a similar extent as non-specific 
binding. Instead they show that the (GGG)1-effect is mainly associated with non-specific 
hybridization.  

The isotherms of the MM-probes are shown in Figure 6.8 together with the isotherms of 
the PM-probes. Both probe types are equally affected by non-specific hybridization on the 
average in both considered probe ensembles. Particularly, the (GGG)1-motif increases the 
intensity level of the MM-probes in the N-range to the same extent as that of the PM-
probes. The slight shift of the mix- and S-ranges of the MM-probes towards larger 
expression values is caused by the weaker specific binding of the MM due to their 
swapped middle bases which mismatches the target sequence. Hence, the MM-probes 
virtually behave like weak-affine PM-probes with respect to specific hybridization. This 
difference also implies that the mean saturation intensity of the MM-probes is smaller than 
that of the PM-probes owing to post-hybridization washing [43, 116, 117]. The calculated 
isotherms of the MM-probes clearly show that specific binding is virtually not affected by 
the (GGG)1-motif by the same arguments as for the PM-probes.  

6.8 Correction of microarray data for sequence effects 

6.8.1 The NN+GGG hybrid rank model 

Our analysis shows that the quality of fit of sequence models is heterogeneous with respect 
to the selected motifs and their position along the probe sequence. The positional 
dependent NN model well describes most sequence-dependent intensity effects due to non-
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specific hybridization with the exception of motifs of three or more consecutive guanines. 
Higher order models of rank r = 3 or 4 are able to successfully remove the associated 
sequence bias. However they are computationally expensive. Minimization of the linear 
regression model Eq. (3.9) provides a system of (4r - 1) · (25r + 1) linear equations, the 
solution of which requires a runtime in the order of O(#p·(4r)2). In practice, profiles with 
rank up to r = 2 can be computed in minutes per array on a standard personal computer 
whereas models of rank r = 3 and 4 run hours or even days, respectively. 

We therefore developed a hybrid-rank model based on the positional dependent nearest 
neighbor approach plus additional higher order contributions for selected `critical' motifs 
such as (GGG)1 which applies to the intensity components due to non-specific binding. 
The algorithm fits the NN-model of rank r = 2 to all probes which do not contain the 
critical poly-G motifs in their sequence. The intensities of these probes is corrected 
according to Eq. (3.6). The intensities of probes which contain such motifs are separately 
fit to a NNN-model of rank r = 3 which only considers triple-G motifs at all possible 
sequence positions. In general, this approach can be modified to apply to other special 
motifs. 

The algorithm works in detail as follows: 
1) The set of predominantly non-specifically hybridized probe sets, the so-called `absent' 
or N-subset, is identified as described in Section 3.3  
2) The N-subset is further split into two sub-ensembles not-containing and containing 
triple-G motifs, PSNN and PSGGG, respectively. They are subsequently corrected in two 
steps for sequence effects:  
2a) The PSNN sub-ensemble  is used to train the NN model by multiple linear regression of 
the data using (3.8) - (3.10) with r = 2. The fit provides the basal set of NN-terms 
σNN ≡ σk(b2). 
2b) Each probe set of the second PSGGG sub-ensemble contains at least one probe with at 
minimum one motif of three consecutive guanines. Eq. (3.5) rewrites for these probes into  

 P,h P,h NN,P,h GGG,P,h
p 0 p pK K exp( A ( )) exp( A ( ))= ⋅ δ ξ ⋅ δ ξ (6.7)

where NN,h
pA ( )δ ξ  is given by Eq. (3.6) with r = 2 and the set of NN-terms estimated in 

step 2a. The excess correction term GGG,h
pA ( )δ ξ  considers the effect of the critical motif in 

the probe sequences in analogy with Eq.(3.7) 

 23
GGG,P,h P,h k,k 2

k
k 1

A ( ) (GGG)· (GGG, )+

=

δ ξ = σ δ ξ∑ (6.8)
With Eq. (3.8) one gets the theoretical sensitivity  
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 23
theo theo k,k 2

NN k k
k 1

Y Y (GGG)·( (GGG, ) f (GGG))+

=

= + σ δ ξ −∑ (6.9)
theo
NNY  denotes the basal sensitivity which is calculated using Eq. (3.9) and the basal set of 

NN-terms estimated in step 2a. After minimizing Eq. (3.10) one gets the profile of excess 
terms σk(GGG). 
3) The corrected intensities of the probes of the PSNN- and PSGGG-subsets are calculated 
after rearrangement of Eqs. (3.5) and (6.7), respectively.  
4) The present probes not included in the N-sub ensemble are corrected as described 
previously [42, 45]. In short: A NN-model of rank r = 2 is parameterized using the probe 
sets which are hybridized to more than 80% with specific transcripts. They are then 
corrected using this model. Probe sets with a fraction of specific-hybridization of less than 
80% are corrected by a weighted combination of the sensitivity profiles referring to 
specific and non-specific hybridization determined in step 2. 
5) The sensitivity-corrected intensity data are exported in the standard *.CEL file format. 
The corrected signal values can then be feed into standard GeneChip preprocessing 
programs for further improvement and/or downstream analysis.  

The correction algorithm is implemented in the Larpack program package which can be 
downloaded freely from the project website currently available under the URL 
www.izbi.uni-leipzig.de/downloads_links/programs/hook.php. 

6.8.2 Effect of the correction 

Figure 6.9 compares the performance of the hybrid rank correction with that of the N and 
NN models using the same type of representation as in Figure 6.8. It clearly shows that the 
latter two models only insufficiently correct the (GGG)1-effect as expected. On the other 
hand, the systematic bias of the (GGG)1-containing probes in the non-specific 
hybridization range almost completely vanishes after applying the NN+GGG correction to 
the non-specifically hybridized probes using the algorithm described in the previous 
subsection. 

Residual profiles of the triple-G motifs of four different data sets are shown in Figure 6.10. 
They clearly reveal the strong intensity excess at position k = 1 due to the (GGG)1-effect 
(mouse and ENCODE data sets). The mean level of the poly-G effect affecting the 
remaining sequence positions is about σk(GGG) ≈ 0.1 for these chips. This excess 
sensitivity value refers to an intensity bias of 100.1 ≈ 1.25 compared with the NN-model. 
Interestingly, hybridizations of ENCODE arrays using the ChipChIP technique indicate a 
negative GGG-level throughout the sequence for k > 1. This indicates an average intensity 
bias in the opposite direction of about 10-0.07 ≈ 0.85. 
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We argued above that the ChipChIP targets lack G-rich primer fragments which otherwise 
cause the strong intensity bias due their involvement into G-stack formation on expression 
arrays. Their absence would explain a tiny or even zero but not a negative amplitude-level 
of the triple-G excess sensitivity. A similar negative sensitivity effect of poly-G motifs has 
been found for SNP GeneChip arrays [29]. These arrays use genomic DNA for 
hybridization after amplification via ligation and not via T7 priming [118]. This `dim' 
effect has been attributed to G-stack formation in agreement with previous 
assumptions [99, 119]. Such probe quadruplexes reduce the amount of free probe 
oligomers available for the binding of specific and non-specific targets. This trend then 
decreases the intensity of the respective probe spots because only targets are labeled with 
optical markers.  

In summary, the NN+GGG hybrid-rank model properly corrects the intensity bias 
associated with probes which contain poly-G motifs. In addition, the obtained excess 
GGG-profiles provide further insights into the amplitude of the effects due to degenerated 
guanines in different hybridizations. It changes sign and switches from positive to negative 
values for hybridizations which use different amplification protocols. 

6.8.3 Preprocessing of microarray intensity data 

Calibration of microarray measurements aims at removing systematic biases from the 
probe-level intensity data to get expression estimates which linearly correlate with the 
transcript abundance in the studied samples. The performance of different preprocessing 
algorithms to correct intensity data for the (GGG)1-effect are illustrated in Figure 6.1b by 
means of boxplots which roughly characterize the distribution of the expression values in 
terms of their median and interquartile range. The results revealed that the strong intensity 
effect is not removed from the expression data after standard preprocessing with several 
popular methods.  

To get further insights we plot the density distributions of the preprocessed expression 
values of all 45,100 probe sets of the mouse data set and of the sub-ensemble of 836 probe 
sets containing at minimum two probes with a (GGG)1-motif (Figure 6.11). The results 
indicate the systematic shift of the (GGG)1 sub-ensemble towards larger expression values 
in decreasing order for the preprocessing methods vsn [93], RMA [120–122] and 
gcRMA [123]. Note that vsn and RMA use global baseline-corrections for non-specific 
hybridzation which subtracts one common background value from all probe intensities of a 
selected microarray. Clearly these approaches fail to describe the probe specifics of the 
(GGG)1-motif giving rise to a strong bias due to improper background correction.  
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better than PMonly methods. Precorrection of the intensity data using the NN+GGG 
sensitivity model removes the bias due to degenerated guanines from the data.  

6.8.4 Comparison of sequence-specific intensity corrections 

The correction for sequence-specific intensity effects is a crucial step which largely affects 
the performance of the preprocessing of microarray data. It applies to specific 
hybridization (`affinity' correction) as well as to non-specific hybridization (correction for 
the chemical background). Numerous sequence models have been developed for 
microarray analysis so far. They can  be roughly divided into the following four classes:     

(i) `Fully' physical, ΔG based approaches (here ΔG symbolizes the change of the free 
energy upon probe/target binding) [102, 115, 126–133]: These models explicitly and in-
detail consider different processes which potentially affect probe hybridization such as 
probe/target duplexing including their zippering, bulk dimerization of the targets or folding 
of target and probe in terms of effective reaction constants or statistical thermodynamics. 
Elementary interactions are described on the level of base pairings using stacking free 
energy parameters which have been estimated in independent dimerization experiments of 
oligonucleotides in solution [112, 134]. Such models helped to improve our basic 
understanding of the functioning of microarrays and also to judge the relevance of different 
contributions to the observed probe intensities. These approaches often apply special fitting 
approaches and/or idealized assumptions to describe intensity data of selected microarray 
experiments (for example spiked-in data sets). Often, the used tools and algorithms 
however fail in practical microarray analysis because particular factors significantly 
affecting the performance of chip measurements are either considered in a simplified 
fashion or even neglected. For example, the lack of knowledge about the exact length, full 
sequence and concentration of the targets circumvents the detailed estimation of their 
folding and duplexing products. On the other hand, these `physical' models clearly showed 
that microarray hybridization is in agreement with elementary physical rules of interacting 
probes and targets, which however take place in a complex environment owing to the 
attachment of probes to the chip surface and the heterogeneous composition of the target 
solution. The latter conclusion was also supported by the results of reverse top-down 
studies which extract interaction parameters on the level of base pairings from microarray 
intensity data. For example, the resulting intensity-based NN parameters in most cases 
correlate well with the respective stacking free energies of independent solution 
experiments [29, 54, 102, 129]. 
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terms reduce notably in the mouse and ENCODE data sets accompanied by a small 
improvement of the respective fits.  

The latter result shows that global parameter estimates can mask special intensity effects 
associated with selected sequence motifs such as runs of guanines, which results in the 
poor modeling of the intensities of probes containing these motifs. 

(ii) Positional dependent intensity models with freely adjustable parameters in analogy to 
the approach used in this study: This class of models was independently introduced by 
Mei et al. [101] and Naef and Magnasco [50] which originally use single base terms, rank 
r = 1. Shortly after the method has been upgraded to NN-terms of rank r = 2 [51] and 
successfully applied in different calibration algorithms for microarray data using either 
N- [107, 136] or NN-models [34, 42, 137–139]. The parameters are estimated individually 
for each array. The model thus accounts for the specifics of each particular hybridization 
which potentially varies from chip to chip due to different levels of non-specific 
hybridization, bulk dimerization, washing and/or saturation. All these effect are shown to 
modify the respective parameter profiles [57, 106]. The obtained parameters are therefore 
called effective affinities [106] or sensitivities [53, 54] depending on the special 
experimental setup. Moreover, the model also enables to describe subtle differences 
between non-specific and specific hybridization on the level of base pairings, for example, 
due to the presence of defined mismatches in the probe/target duplexes [36, 42, 53]. The 
approach successfully applies to chips of different generations and types [45, 136] and it 
can be combined with elements of model class (i), for example, to account for probe and 
target folding [137, 139] or for special motifs and additional factors [101, 136]. For 
example, the pioneering approach of Mei et al. [101] combines the positional dependent N-
model with special correction terms for  intramolecular hairpins and G-quadruplexes. The 
latter effect was separately assigned to runs of at least four guanines at the beginning, the 
middle and the end of the probes. Here we extended the model to positional dependent 
triple and quadruplex motifs of rank r = 3 and 4. Our analyses show that the NN-model 
well accounts for most of the sequence effects except special motifs such as runs of 
consecutive guanines. We also demonstrated the diagnostic power of this approach to 
detect subtle sequence effects in terms of position and motif.  

(iii) Positional dependent approaches with common `shape functions': This class of models 
is closely related to the previous class (ii). In contrast, it however factorizes the positional 
and motif dependent sensitivity profiles into two independent contributions namely into 
positional independent but motif specific `energy' terms and into a positional dependent 
but motif independent `shape'-function common for all motifs. This so-called PDNN 
model was originally introduced by Zhang et al. [47]. It is used with modifications in  
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iv) Multichip statistical models: These approaches decompose each probe intensity into 
independent factors due to probe and chip effects. The former factor is assumed to be 
invariant for each probe in a series of arrays and thus models the respective sequence-
specific affinity of the probe. The latter factor is assumed to describe the expression index 
which usually varies between the chips. The relation between intensity and expression 
index is either linear (RMA, gcRMA, vsn, dchip, Plier) or hyperbolical assuming a 
Langmuir isotherm (Nlfit, [143]). The parameters are estimated by fitting the model to the 
intensities of a series of, at minimum, 5 - 10 arrays. The approach has the potential to 
correct the intensities for any probe effect because each probe is handled individually 
without explicitly processing its sequence in terms of a sequence model as in the 
alternative classes of approaches (i) - (iii). On the other hand, chip and probe effects are 
not independent in real situations due, e.g., to different levels of bulk dimerization and 
other effects (see above). More importantly, the probe-related affinity correction of the 
multichip methods in most cases applies to specific hybridization only whereas the non-
specific background is corrected using simpler approaches such as global background 
(RMA, vsn) or N-profiles (gcRMA). Hence, the performance of the method largely 
depends on the type of background correction (see also the previous subsection). Note that 
dChip and Nlfit assume a probe dependent background which partly removes the the 
(GGG)1-bias from the data (see the results for dChip in Figure 6.11).  

We conclude that hybrid models of class (ii) are conceptually best suited to account for 
special sequence effects in single-chip based calibration algorithms for microarrays which 
use a high number (> 105) of short (length < 30 bp) oligonucleotide probes such as 
GeneChips. Here the large number of intensity values allows successful fitting of hundreds 
of model parameters. Possibly, the performance of models of this class can be further 
improved using amendments taken from physical models of type (i), e.g. to consider the 
folding propensity of the targets and/or their length. The non-linear approach [143] offers 
an interesting option of models of class (iv) because it allows to apply adequate 
hybridization laws beyond the linear approximation in combination with sophisticated 
affinity corrections. Its multichip character, however, adds normalization tasks to consider 
variations between different hybridizations which might produce biased expression 
estimates [57]. Models of class (iii) must be complemented with special terms to account 
for special sequence effects deviating from the mean positional dependence of the array. 
With this amendment they represent an interesting choice for array-types using long 
oligonucleotide probes (length > 30 bp) because it requires fitting of a reduced number of 
positional parameters compared with models of class (ii). 
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6.9 Summary and conclusions 

We analyzed the specifics of probe intensities on the level of short motifs of one to four 
adjacent nucleotides along the 25meric probe sequence using positional dependent 
sensitivity models. The decomposition of the fit statistics into motif- and positional 
dependent contributions reveals that most of the motif-specific terms are adequately 
described using a nearest-neighbor model. In contrast, runs of degenerated guanines 
require explicit consideration of next nearest neighbor terms for adequate fitting. 

Longer runs of at minimum three consecutive guanines along the probe sequence and 
especially triple degenerated G at its solution end typically cause exceptionally large probe 
intensities on expression arrays. This intensity bias affects PM- and MM-probes to a 
similar extend. Our analysis clearly shows that it is associated with non-specific 
hybridization. Hence, the interpretation of the extraordinary strong signals of probes 
containing runs of degenerated guanines in terms of high expression levels of the 
respective genes seems not justified. 

The (GGG)1-effect tends to increase gradually for microarrays of later GeneChip 
generations. It was detected for hybridizations which use DNA/RNA as well as DNA/DNA 
probe/target-chemistries. Different amplitudes of the guanine effect were found for 
hybridizations which apply different amplification protocols. In particular, the T7 
amplification step for sample messenger RNA is associated with strong amplitudes of the 
guanine effect whereas amplification protocols for genomic DNA lacking T7 priming 
behave differently. 

The origin of the very strong (GGG)1 effect is unknown. Its association with the T7-
protocol however implies that the T7-amplified targets containing the G-rich primer 
fragments are prone to form mixed probe/target G-stacks via association with G-rich probe 
motifs. The large concentration of G-rich targets in the hybridization solution facilitate 
their strong binding to G-rich probes resulting in their strong intensity. The absence of 
these G-rich target motifs in the ChipChIP hybridization possibly explains the much 
smaller intensity of the respective (GGG)1 probes compared with the ENCODE. This 
hypothesis requires further verification using, e.g., methods developed in [111]. 

Established preprocessing methods only insufficiently remove the guanine bias from data. 
Methods which explicitly process the intensities of the MM probes as suitable references 
perform better than PMonly methods. We propose a positional dependent NN+GGG 
hybrid-rank model to correct the intensity bias associated with probes containing poly-G 
motifs. It can be applied prior to established preprocessing methods in a pre-correction 
step. The positional and motif dependent sensitivity models are conceptually best suited to 
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account for special sequence effects in single-chip based calibration algorithms for 
microarrays which use a high number of short oligonucleotide probes such as GeneChips. 

The structural rationale behind the guanine effects has been concordantly assigned to the 
propensity of degenerated G-motifs to arrange into stable stacks of guanine tetrads which 
bundle four oligonucleotide strands into molecular quadruplexes [29, 99–101, 103]. These 
structures potentially affect the efficiency of oligonucleotide synthesis and/or the 
hybridization of the probes to their target sequences accounting for the abnormal 
performance of G-runs on the array [29]. Upton et al. [99] suggested a mechanism which 
increases the intensity of poly-G containing probes via the local opening of regions in the 
vicinity of quadruplexes formed by adjacent probes.  

Alternatively one can assume that G-rich probes form G-quadruplexes of different 
stoichiometry which involve either exclusively adjacent probe oligonucleotides or also 
non-specific targets containing longer runs of guanines. We suggest that T7 amplification 
contaminates the targets with G-rich primer fragments which drastically increase their 
propensity to form such mixed probe/target G-quadruplexes. This model predicts that the 
large concentration of G-rich targets in the hybridization solution gives rise to their strong 
binding to G-rich probes which finally causes their strong intensity. The absence of these 
G-rich motifs upon hybridization of genomic DNA then explains the much smaller 
intensity of the respective probes.  

 



7 Prevalence and impact of technical bias 

7.1 Technical artifacts can be observed in batches 

Non-biological, systematic variation due to varying experimental conditions constitutes a 
technical bias that negatively affects the reliability of microarray results. This was 
impressively shown in the introductory example in Section 1.1 where the results of the 
study of Spielman et al. were found to be spurious because more than 79% of genes were 
differentially expressed between two groups of samples processed at different times - an 
unrealistic number that cannot be explained by biological variation. These batch effects are 
a major issue in microarray data analysis and corrupt gene expression measurements via 
factors clearly unrelated to biology [144]. Correlation of such a factor with the biological 
variable of interest can prevent identification of the true biological source of variation and 
render the results of a microarray experiment worthless. 

It is therefore of great importance to study the various sources of batch effects, their 
prevalence and their impact. A possibility to assess whether batch effects are present in a 
data set is to test for correlations between the potentially confounding factors and the 
expression measurements. A prerequisite however is that one has data on the factors 
potentially varying between batches of samples, for example the quality of the RNA, the 
used hybridization buffers and the employed instruments. In practice however, only a few 
of those factors are recorded in the course of an experiment - typically experimental date or 
location. These are frequently used as surrogate variables for the actual sources of 
variation.  

In this section, we employ the methodology developed in the previous sections to the 
broader issue of common sources for batch effects. We investigate the general prevalence 
of a number of known technical effects using a large and representative number of 
microarray samples. For each of the considered effects, we will assess its impact on the 
experimental results in the form of gene expression estimates, and suggest how to avoid or 
remove them. 

7.1.1 Human expression data 

We have downloaded the HumanExpressionAtlas data set (E-MTAB-62 on Array Express) 
compiled by Lukk et al. [145] consisting of 5372 (‘qc-included’) samples hybridized to 
Affymetrix HG-U133a microarrays. This data set has been collected from 206 public 
experiments and represents 369 distinct human cell and tissue types, disease states and cell 
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lines. The resulting expression space, the combined and processed gene expression data 
from this diverse collection of human samples, can also be queried using the dedicated 
database ArrayExpress Atlas [146].  

In [145] the 5372 samples have been selected from a larger data set of 8268 samples after 
application of strict quality control (qc). We obtained a full list of the 8268 samples from 
the authors and downloaded the remaining 2896 (‘qc-excluded’) samples from public 
databases. From these, 137 samples could however not be retained as they were removed 
from the databases, leaving in total 8268 – 137 = 8131 samples. The full set of 8268 
unique samples represents virtually all HG-U133a data publicly available in the two major 
public databases GEO and ArrayExpress in 2006. This HumanArraysSet therefore is a 
representative set of available human microarray samples.  

7.1.2 Principal component analysis for gene expression data 

The typical result of a gene expression experiment has the form of a huge n×m matrix 
containing estimates for the expression of n genes in m samples. The size of n ranges 
between a few hundred genes for spotted microarrays up to many thousands of genes. For 
example there are about 55.000 probe sets representing over 38,500 genes on a recent 
GeneChip microarray (see Table 6.1). The number of observations m typically ranges 
between a handful of samples for screening experiments up to thousands of samples for 
large cohorts. 

A widely applied method for explorative analysis of such high-dimensional, multivariate 
data is Principal Component Analysis (PCA). It reduces the number of dimensions by 
transforming the possibly depending input variables into linearly independent variables 
called principal components [147]. These new variables are selected such that they explain 
most of the variance in the data (see [148]). Consequently, PCA captures the predominant 
patterns among the experimental features including both biological and technical 
variability. One typically focuses on the first couple of principal components ordered by 
decreasing amount of variability explained.  

Consider the HumanExpressionAtlas data set described in the previous section. Lukk et al. 
classified each of the 5372 samples into 369 biological categories representing a particular 
cell or tissue type, disease state or cell line, and also introduced several ‘meta-groups’. 
Figure 7.1 displays the first two principal components of the HumanExpressionAltas 
expression data where each point representing a sample is colored according the meta-
groups hematopoietic system, solid tissues, incompletely differentiated cell types and 
connective tissues (left side) as well as the meta-groups cell lines, neoplasms, non- 
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RNA quality could constitute a major technical bias. In this section we thus investigate the 
general variability of RNA quality among a large, representative set of array samples, and 
assess the prevalence of samples with critically low RNA quality. Lastly, we study the 
impact of this factor on the gene expression estimates of the HumanExpressionAtlas data 
set. 

The RNA Integrity Number (RIN) provides a measure for RNA quality that is determined 
for most microarray samples before hybridization [72]. RIN values scale between 1 and 10, 
and using only samples with RIN ≥ 7 is recommended for microarray analyses [84]. 
However, RIN values are unfortunately seldom stored in conjunction with the experimental 
data. The dk degradation parameter (Eq. (5.20)) provides a sensitive estimate of RNA-
quality that can be computed from raw microarray data and, as we showed in Section 5.3.4, 
correlates well with RIN. For fresh tissue, the cutoff of RIN ≥ 7 corresponds to a dk ≥ 0.45 
cutoff. Note that dk values are not only sensitive, but also specific for RNA quality since 
only RNA degradation and amplification have such a systematic effect on the probe 
intensity decay (see Section 5.1.1).  

We have computed the dk values for all 8331 samples of the HumanArraySet which were 
either included or excluded from the HumanExpressionAtlas data set as described above. 
Figure 7.2a shows the resulting density distribution of the dk values for the qc-included/qc-
excluded sample sets. Most samples included after quality control have a degradation 
index between 0.5 ≤ dk ≤ 0.8 referring to acceptable RNA quality. On the other hand, a 
large fraction of the qc-excluded samples exhibits values of dk < 0.45 referring to critically 
low RNA quality. This applies to 25% of the qc-excluded samples and to 10% (868) of all 
investigated samples.  

Furthermore, 3% (162) of the qc-included samples are so severely degraded that they 
should have been excluded by RIN analysis. Expression estimates of these samples are 
biased, with negative consequences for the reliability of downstream results. That these 
samples are however included in the HumanExpressionAtlas suggests that a more rigorous 
assessment of RNA-quality should be applied in quality control procedures. Note that these 
results correspond well with a previous estimation of 2% of low RNA-quality samples 
given by Upton et al. [68].  

Interestingly, only few qc-included samples have values larger than of dk = 0.8 which 
obviously represents an upper limit referring to the ‘least possible intensity decay’ 
(compare Section 5.3.1). The presence of this limit could be attributed either to the 
insufficiency of the cleanup assays to stop RNAase activity or to the ubiquitous incomplete 
amplification of aRNA fragments. A fraction of 8.1% of the qc-excluded samples has 
values of dk > 0.8 which could be due to other signal deficiencies (e.g. surface effects). 
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7.3 Amount of hybridized RNA 

Ideally sufficiently large amounts of aRNA transcripts at constant levels in the range of 
10-100ug should be used for hybridization to the surface-attached microarray probes to 
obtain good quality data [150]. In practice these ideals are hard to archive due to the 
considerable variation in the amount of available source RNA. In some types of 
experiments the amount of source RNA is highly limited, down to nanogram and even 
picogram ranges, for example in applications where specific cells are selected by laser 
capture microdissection [151]. Specialized RNA amplification and sample preparation 
assays have been developed helping to obtain sufficient amounts of aRNA (for a 
comparison of these methods see e.g. [66, 152]). Too low and too high amounts of aRNA 
can reduce the dynamic range of the fluorescence signals and increase the signal-to-noise 
ratio by insufficiently exhausting the measuring range for specific transcripts. 
Consequently, varying RNA amounts can affect gene expression estimates and reduce data 
quality, rendering the assessment of the prevalence and impact of the thereby induced 
technical bias reasonable. 

In Section 3.6 we showed that the summary measure λ  (Eq. (3.15)) within its limitations 
is a sensitive parameter for varying amounts of RNA. The density distribution of the λ  
parameter, as previously separated for the qc-included/qc-excluded sample sets, is 
displayed in Figure 7.3a. For most good quality samples λ  ranges between 1.0 and 1.5 
with the peak at λ  = 1.2. Interestingly, the peak of the λ  distribution is significantly 
shifted to the left to λ  = 1.05 for samples excluded by quality control, indicating that 
low quality samples have decreased relative specific transcript levels possibly relating to 
low RNA amounts (see below).  

Virtually none (< 0.1%) of the samples that passed stringent quality control exhibit values 
smaller than λ  = 0.95, which we consequently consider a conservative threshold for 
samples of critically low quality due to decreased RNA amounts. We find that 133 (1.6%) 
of all samples exhibit λ  values below this threshold. This equals a fraction of 4.6% from 
the qc-excluded samples. 

It should be noted that λ  describes the average specific transcript level of all genes in 
units of the non-specific one, and the unexpectedly low expression levels of some genes 
can have other origins than low RNA amounts, for example local surface deficiencies (e.g. 
fingerprints). Also note that low RNA amounts can as well be a result of degraded 
RNA (see Section 5.4), suggesting an overlap between both technical effects.  
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7.4 Sequence effects 

7.4.1 Maximum sensitivity amplitude 

Nucleic acid folding and formation of DNA/DNA or DNA/RNA duplexes on surfaces are 
fundamental reactions for any microarray assay and largely depend on the conditions under 
which they occur. For example, the temperature and time given for the reactions affects 
sensitivity and specificity of nucleic acid binding [14]. Condition changes can thus lead to 
sequence-dependent variations in the probe intensity signals, which can further propagate 
to the gene expression estimates and therefore constitute potential technical artifacts.  

To this end, we investigate how sequence-dependent binding affects gene expression data. 
We first define the maximum sensitivity amplitude based on most extreme sequence 
contribution δA (see Eq. (3.6)) in positive and negative direction 

 P,h P,h P,h
max diff malog(K ) A ( ) A ( )x ( ) min ( )ξ ξΔ ≡ δ δ ξ−ξ (7.1)

measured in units of log intensity contributions. We here refer to the perfect-match 
probes (P = PM) of the non-specific hybridization mode (h = NS). Given the estimated 
sensitivities, it determines how much a probe could shine brighter than another one given 
that both probes target the same transcript. For example, a value of log(Kdiff) = 5 for a 
particular hybridization means that, on the average, two hypothetical probes (most likely 
with the sequences AAA…A and CCC…C) would differ in their intensity values by 5 
orders of magnitude. It can thus be thought of as the maximum strength, or impact, of the 
sequence effect.  

As previously, we computed log(Kdiff) for all 8331 samples of the HumanArraySet and plot 
the respective density distribution in Figure 7.4a. By trend qc-excluded samples show a 
lower maximum sensitivity amplitude, rendering it a potential marker for low quality 
samples. Based on the observation that barely any good quality samples (< 0.1%) exhibit a 
smaller maximum sensitivity amplitude , log(Kdiff) = 3 is chosen as conservative threshold 
selecting samples with  critically low sequence effect size. This applies to a fraction 
of 4.1% of the samples. 

In order to assess the impact of the sequence effect size we computed correlations of the 
log(Kdiff) parameter with the first five principal components of the HumanExpressionAtlas 
data. The largest correlation in absolute scales is r = -0.17 with the third principal 
component. Correlations for the remaining principal components are smaller than 
|r| = 0.11. In conclusion, the sequence effect size is not a technical variable with a large 
impact on the most common patterns in the expression space. 
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Figure 7.4b shows the density distribution of the δI(GGG)1 parameter which varies 
between 0 < δI(GGG)1 < 0.3 for qc-included samples. We consider samples with a 
threshold of δI(GGG)1 > 0.25 to be significantly affected by GGG1 bias – this reflects an 
intensity increase of +75% of the respective probes. Accordingly, 254 (3.1%) of the 
samples have a GGG1 related intensity bias. Many of them are removed by strict quality 
control, only 63 (1.1%) of qc-included samples are above the threshold. 

Assessing the correlation of GGG1 bias with the first five principal components of the 
HumanExpressionAtlas expression data we observe correlation coefficients between 
0.14 < |r| < 0.19. Consequently, guanine effects have only minor impact on the common 
patterns in the expression space. Note that the RMA method was used for calibration, and 
we showed in Section 6.8.3 that expression estimates from this preprocessing approach are 
in general susceptible to GGG1 effects.  

In summary, guanine effects are an important technical artifact that however only affects 
the expression estimates of some genes in a significant fraction of microarray samples. It 
does not affect the majority of features and is consequently not a major determinant for the 
predominant patterns in the expression space. 

7.5 Summary and conclusions 

In this section we have studied the general prevalence and impact of a RNA quality, RNA 
quantity and sequence effects using a large and representative set of microarray samples 
from the Affymetrix HG-U133a platform. To this end, we defined novel parameters, or 
used previously defined ones, that quantify each technical artifact based on systematic 
changes in the intensity signals. We determined appropriate thresholds indicating low-
quality samples potentially leading to biased expression estimates due to the respective 
artifact. Their impact on the expression estimates was analyzed by computing correlations 
between the technical variables and the first five principal components of the expression 
space of the HumanExpressionAtlas. 

We found that a large fraction of 10% of the 8131 samples are so severely degraded, that 
they should be excluded from further analysis. While most of these samples where indeed 
excluded from the HumanExpressionAtlas, still about 3% of the low-quality RNA samples 
passed quality control highlighting the need for a more rigorous assessment of RNA 
quality in microarray data analysis.  

Unexpectedly high impact on the gene expression data was found for RNA quality and 
RNA abundance variation. Both affect the most common patterns in the expression space. 
The RNA quality measure dk and the relative specific transcript level λ  highly correlate 
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with different principal components. Together with the observed high prevalence of these 
artifacts, they constitute major sources of technical bias and should be monitored carefully 
in every experiment. 

We found that sequence effects are highly variable in the investigated Affymetrix HG-
U133a platform. The total sequence effect size is particularly low among low-quality 
samples where 4% of the samples are affected. 3% of the samples have a strong GGG1 
effect. While the GGG1 effect can have a critical impact on the expression estimates of 
some of the genes, we found that the overall impact of the studied sequence effects on the 
expression space is relatively low. 





8 Summary and discussion 

In this thesis, we reviewed a number of established microarray technologies with a wide 
range of genomics applications together with the challenges that arise when their technical 
limitations meet the high standards required in research and clinical environments. 
Particularly, we showed how changes in the experimental conditions can have a large 
impact on the obtained data and can thereby lead to unreliable results. To better understand 
and control the experimental system we employed a model of microarray hybridization and 
demonstrated how it can be applied to different types of microarrays.  

Using appropriate modifications of that model we studied the effect of selected 
hybridization biases using publicly available data from Affymetrix GeneChip expression 
arrays. We showed that varying amounts of hybridized RNA result in changes of the raw 
intensity signals and of the summary parameters λ and β computed from these. We also 
found that varying RNA quality strongly affects intensity signals of probes which are 
located at the 3’ end of transcripts. New theoretical approaches and visualization methods 
were introduced that help assessing the RNA quality of a particular microarray sample. We 
developed a new metric for determining RNA quality based on the 3’/5’ intensity bias of 
specific probes and showed that it outperforms other microarray-based quality metrics. We 
proposed a method for the correction of the 3’ intensity bias, which, together with the other 
functionalities, has been implemented in the Bioconductor package AffyRNADegradation. 

We further found that probe signals are affected by sequence effects which were studied 
systematically using positional-dependent nearest-neighbor models. Analysis of the 
resulting sensitivity profiles revealed that particular sequence patterns such as the GGG1 
motif have a strong impact on the probe signals. We showed that sequence effects differ 
for different chip- and target-types, probe types and hybridization modes. These and other 
factors introduce a strong sequence bias in the intensities that should be corrected in order 
to obtain reliable results. We showed that the NN+GGG PDNN model provides a good 
trade-off between correction efficiency and speed, and provide a software implementation 
for the sequence correction of raw intensity data of Affymetrix expression arrays in the 
Larpack program package. 

In the final chapter, we used the previously developed methodology for the assessment of 
technical artifacts to study their general prevalence and impact on available microarray 
data. Using a representative ensemble of over 8000 human microarray samples, we found 
that in particular RNA quality and quantity have a strong impact on the obtained 
expression values. We also showed that about 10% of microarray samples have such low 
RNA quality that they should be discarded from further analysis.  
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Despite great advances in the efficiency of biological high throughput technologies and 
data analysis methodology, we still fail at explaining a significant fraction of the observed 
variability in the data. For example, probe intensities of tiling arrays exhibit a within-gene 
variability of several orders of magnitude and it is largely unknown whether there is a yet 
to be found biological explanation, or if it is due to technical artifacts. Hence there is either 
a lack of understanding of the complex cellular mechanisms and biochemical reactions 
leading to the production of the measured biomolecules, or a lack of understanding of the 
technical steps of sample preparation and the measurement process in these widely-used 
technologies.  

The aim of this thesis is to increase the understanding and the control over systematic 
technical variation in microarray data. More understanding of the mechanisms of surface 
hybridization can help to improve on existing and potential future technologies.  More 
control about the sources of technical variation increases the amount of reliable 
information about true biological variation, and thus the amount of knowledge that can be 
gained from high-throughput experiments.  

In this thesis, we pointed out several problems in current microarray data generation and 
analysis methods, and proposed new approaches helping to solve them. Undoubtedly, 
further efforts are necessary to increase the validity and utility of the obtained results. First 
of all, awareness should be raised about existing technical limitations and possible biases 
in the data. For example, we showed here that biased expression estimates can be a result 
of sequence effects like the GGG1 effect, which in turn are highly dependent on the 
conditions of the hybridization reaction. By these means differences in the experimental 
conditions, like the use of different buffers in two collaborating laboratories, can propagate 
to expression measure differences between two batches of samples. Researchers unaware 
of these effects can easily draw false conclusions.  

Further, high standards in data quality control and documentation are immensely valuable, 
and should be further enforced. A first important step has been made by the establishment 
of standardized descriptions as MIAME (Minimum Information About a Microarray 
Experiment, [155]) which are now mandatory on common platforms hosting public 
microarray data. The required information includes descriptions of the experimental 
design, the array design and the used biological material and its treatments. While these 
important community standards help to reproduce and to validate the results of microarray 
experiments, we believe that the mandatory recording and storage of additional 
information on the experimental conditions and intermediate measurements would be a 
large benefit. We showed that more factors than previously thought have a significant 
impact on the microarray results in the form of expression data. The specifics of the design 
and protocols of the Affymetrix GeneChip platform allowed us to infer some of the 
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missing parameters from systematic changes in microarray expression data. However, this 
is not easily possible for other effects and other platforms. Only storage of intermediate 
results like RNA integrity or pH measurements along with the primary data enables further 
analysis of these technical effects and their origins.  

Finally and importantly, model-based analysis helped to improve our understanding of 
microarray technologies. A basic hybridization model based on fundamental physical 
principles of surface binding applied well to gene expression data, as well as to the data of 
other microarray technologies with different applications. The model-based analysis of 
sequence and degradation effects allowed us to understand the introduced biases and to 
develop appropriate extensions to the basic hybridization model. With continuous 
refinement of our understanding and of our modeling, we hope to once reach a sufficiently 
comprehensive model so we can explain most of the technical variation, and can 
concentrate on understanding biology. 

  





A List of data sets used 

Table A.1: Microarray data sets used in this thesis. GSExxxx and GSMxxxx are the accession numbers of 
datasets downloaded from the GEO repository (http://www.ncbi.nlm.nih.gov/geo/). E-TABM-xxx and 
E-MEXP-xxx are accession numbers of data sets downloaded from ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/). 

Chip type Employed publicly available dataset 
HG-U95A Genelogic dilution series (http://www.genelogic.com/support/scientific-

studies) 
Mapping50k 
Xba240 

Mapping 100k HapMap Trio Dataset 
(http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_d
ata.affx) 

HG-U133 
plus 2.0 

GSE7307 (Human tissue) 

Rat230A E-MEXP-1069 (RatQC) 
HG-U133A GSE1133 
HG-U133A 
and 
HG-U133 
plus 2.0 

GSE3061 

MG430 2.0 GSE12545 
ENCODE GSE2800, GSE6292 
Yeast_2 GSE9302 
MG430_2 GSE12545 
Zebrafish GSE5048 
EColi_2 GSE6893 
CElagans GSE6547 
Rice GSE6893 
Chicken GSE12268 
ATH-
121501 

GSE7432 

Rat230_2 E-TABM-536 
MG430A GSM154799, GSM355022, GSM366810 
DrosGenom
e1 

Fruitfly time series 
(http://camda.bioinfo.cipf.es/camda08/contest_dataset) 

MG74A GSM104601, GSM34328, GSM4310 
HG-U133A Affymetrix Latin Square HG-U133A 

(http://www.affymetrix.com/support/technical/sample_data/datasets.affx) 
HG-U95A Affymetrix Latin Square HG-U95A 

(http://www.affymetrix.com/support/technical/sample_data/datasets.affx) 
30 random 
MG430_a 
arrays 

GSM172403, GSM176889, GSM177368, GSM178084, GSM187846, 
GSM211338, GSM211425, GSM237785, GSM238367, GSM250880, 
GSM252214, GSM264815, GSM280709, GSM282803, GSM311514, 
GSM313208, GSM315604, GSM318915, GSM325421, GSM326978, 
GSM326998, GSM337788, GSM337834, GSM432906, GSM443776, 
GSM455430, GSM53318, GSM94768 

HG-U133A E-MTAB-62 (HumanExpressionAtlas) 
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