2,254 research outputs found

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Exploring Spatially Varying Relationships between Forest Fire and Environmental Factors in Fujian, China

    Get PDF
    In recent decades, the occurrence of forest fires has risen in the world and led to significant, long-lasting impacts on ecological, social, and economic systems. Along with the traditional tools for fire prediction, statistical modeling has been playing an important role in understanding the nature of forest fires and providing guidelines for decision making of fire prevention and management. In this dissertation, a large data set was collected from 2001 to 2016 in Fujian province, China, including the occurrence of forest fires and many environmental factors. I developed spatial generalized linear models and spatial quantile models under the framework of geographically weighted regression (GWR) to investigate the relationships between the counts and proportion or rate of forest fires and driving topographical, meteorological, human, vegetation, and land coverage factors. The corresponding global models were used as the benchmarks for model comparisons. These spatial models included: (1) geographically weighted Poisson and geographically weighted negative binomial models designed for the counts of forest fires; (2) geographically weighted quantile models for the counts of forest fires at different quantiles or risk levels; and (3) geographically weighted beta model for the proportion or rate of forest fires. The results indicated that the observed forest fires were highly likely to occur in lower elevation, smaller aspect index (meaning stronger sunlight), heavier precipitation, smaller population density, less vegetation, wider grassland, and/or less cropland, while other environmental factors varied greatly with the forest fire occurrence. This study showed the great superiority of these GWR models to the corresponding global models in terms of characterizing the spatial nonstationary relationships, producing better model fitting and prediction, providing a more complete view on the spatial distribution of forest fires, and highlighting the risky local “hot spots” of forest fires as well as environmental factors across the Fujian province, China. Hopefully, the more detailed and localized information would help and assist the forest and fire managers to better understand the behavior of forest fires and influences of the environmental factors across the study area. Thus, the government agencies can make wiser and better decisions on where and what the fire management and prevention should be focused on with reduced economic expenses and improved the efficiency of forest fire management

    Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, the Hai Phong city (Vietnam) using GIS-Based Kernel Logistic Regression

    Get PDF
    -The Cat Ba National Park area (Vietnam) with the tropical forest is recognized to be part of the world biodiversity conservation by United Nations Educational, Scientific and Cultural Oranization (UNESCO) and is a well-known destination for tourist with around 500,000 travellers per year. This area has been the site for many research projects; however no project has been carried out for the forest fire susceptibility assessment. Thus, protection of the forest including fire prevention is one of the main concerns of the local authority. This work aims to produce a tropical forest fire susceptibility map for the Cat Ba National Park area, which may be helpful for the local authority in the forest fire protection management. To obtain this purpose, first, historical forest fires and related factors were collected from various sources to construct a GIS database. Then a forest fire susceptibility model was developed using Kernel logistic regression. The quality of the model was assessed using the Receiver Operating Characteristic (ROC) curve, area under the ROC curve (AUC), and five statistical evaluation measures. The usability of the resulting model is further compared with a benchmark model, the Support vector machine. The results show that the Kernel logistic regression model has high performance on both the training and validation dataset with a prediction capability of 92.2%. Since the Kernel logistic regression model outperform the benchmark model, we conclude that the proposed model is a promising alternative tool that should be considered for forest fire susceptibility mapping also for other areas. The result in this study is useful for the local authority in forest planning and management

    Modeling Naturally Occurring Wildfires Across the US Using Niche Modeling

    Get PDF
    Wildfires can cause significant damage to an area by destroying forested and agricultural areas, homes, businesses, and leading to the potential loss of life. Climate change may further increase the frequency of wildfires. Thus, developing a quick, simple, and accurate method for identifying key drivers that cause wildfires and modeling and predicting their occurrence becomes very important and urgent. Various modeling methods have been developed and applied for this purpose. The objective of this study was to identify key drivers and search for an appropriate method for modeling and predicting natural wildfire occurrence for the United States. In this thesis, various vegetation, topographic and climate variables were examined and key drivers were identified based on their spatial distributions and using their correlations with natural wildfire occurrence. Five models including General Linearized Models (GLM) with Binomial and Poisson distribution, MaxEnt, Random Forests, Artificial Neural Networks, and Multiple Adaptive Regression Splines, were compared to predict natural wildfire occurring for seven different climate regions across the United States. The comparisons were conducted using three datasets including LANDFIRE consisting of thirteen variables including characteristics of vegetation, topography and disturbance, BIOCLIM containing climate variables such as temperature and precipitation, and composite data that combine the most important variables from LANDFIRE and BIOCLIM after the multicollinearity test of the variables done using variance inflation factor (VIF). This results of this study showed that niche modeling techniques such as MaxEnt, GLM with logistic regression (LR), and binomial distribution were an appropriate choice for modeling natural wildfire occurrence. MaxEnt provided highly accurate predictions of natural wildfire occurrence for most of seven different climate regions across the United States. This implied that MaxEnt offered a powerful solution for modeling natural wildfire occurrence for complex and highly specialized systems. This study also showed that although MaxEnt and GLM were quite similar, both models produced very different spatial distributions of probability for natural wildfire occurrence in some regions. Moreover, it was found that natural wildfire occurrence in the western regions was more influenced by precipitation and drought conditions while in the eastern regions the natural wildfire occurrence was more affected by extreme temperature

    Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS images

    Get PDF
    Forest fires are one of the most dangerous natural hazards, especially when they are recurrent. In areas such as Galicia (Spain), forest fires are frequent and devastating. The development of fire risk models becomes a very important prevention task for these regions. Vegetation and moisture indices can be used to monitor vegetation status; however, the different indices may perform differently depending on the vegetation species. Eight different spectral indices were selected to determine the most appropriate index in Galicia. This study was extended to the adjacent region of Asturias. Six years of MODIS (Moderate Resolution Imaging Spectroradiometer) images, together with ground fire data in a 10 × 10 km grid basis were used. The percentage of fire events met the variations suffered by some of the spectral indices, following a linear regression in both Galicia and Asturias. The Enhanced Vegetation Index (EVI) was the index leading to the best results. Based on these results, a simple fire danger model was established, using logistic regression, by combining the EVI variation with other variables, such as fire history in each cell and period of the year. A seventy percent overall concordance was obtained between estimated and observed fire frequency

    Comparative study on machine learning algorithms for early fire forest detection system using geodata

    Get PDF
    Forest fires have caused considerable losses to ecologies, societies and economies worldwide. To minimize these losses and reduce forest fires, modeling and predicting the occurrence of forest fires are meaningful because they can support forest fire prevention and management. In recent years, the convolutional neural network (CNN) has become an important state-of-the-art deep learning algorithm, and its implementation has enriched many fields. Therefore, a competitive spatial prediction model for automatic early detection of wild forest fire using machine learning algorithms can be proposed. This model can help researchers to predict forest fires and identify risk zonas. System using machine learning algorithm on geodata will be able to notify in real time the interested parts and authorities by providing alerts and presenting on maps based on geographical treatments for more efficacity and analyzing of the situation. This research extends the application of machine learning algorithms for early fire forest prediction to detection and representation in geographical information system (GIS) maps

    Human-caused fire occurrence modelling in perspective: a review

    Full text link

    Forest Fire Risk Prediction

    Get PDF
    Globally, fire regimes are being altered by changing climatic conditions and land use changes. This has the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Accurate prediction of the risk of forest fires over short timescales (weeks or months) is required for land managers to target suppression resources in order to protect people, property, and infrastructure, as well as fire-sensitive ecosystems. Over longer timescales, prediction of changes in forest fire regimes is required to model the effect of wildfires on the terrestrial carbon cycle and subsequent feedbacks into the climate system.This was the motivation to publish this book, which is focused on quantifying and modelling the risk factors of forest fires. More specifically, the chapters in this book address four topics: (i) the use of fire danger metrics and other approaches to understand variation in wildfire activity; (ii) understanding changes in the flammability of live fuel; (iii) modeling dead fuel moisture content; and (iv) estimations of emission factors.The book will be of broad relevance to scientists and managers working with fire in different forest ecosystems globally
    corecore