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Abstract 

 

Q. Cao. Exploring Spatially Varying Relationships between Forest Fire and Environmental 

Factors in Fujian, China, 145 pages, 13 tables, 22 figures, 2020. APA style guide used. 

 

In recent decades, the occurrence of forest fires has risen in the world and led to significant, 

long-lasting impacts on ecological, social, and economic systems. Along with the traditional 

tools for fire prediction, statistical modeling has been playing an important role in understanding 

the nature of forest fires and providing guidelines for decision making of fire prevention and 

management. In this dissertation, a large data set was collected from 2001 to 2016 in Fujian 

province, China, including the occurrence of forest fires and many environmental factors. I 

developed spatial generalized linear models and spatial quantile models under the framework of 

geographically weighted regression (GWR) to investigate the relationships between the counts 

and proportion or rate of forest fires and driving topographical, meteorological, human, 

vegetation, and land coverage factors. The corresponding global models were used as the 

benchmarks for model comparisons. These spatial models included: (1) geographically weighted 

Poisson and geographically weighted negative binomial models designed for the counts of forest 

fires; (2) geographically weighted quantile models for the counts of forest fires at different 

quantiles or risk levels; and (3) geographically weighted beta model for the proportion or rate of 

forest fires. The results indicated that the observed forest fires were highly likely to occur in 

lower elevation, smaller aspect index (meaning stronger sunlight), heavier precipitation, smaller 

population density, less vegetation, wider grassland, and/or less cropland, while other 

environmental factors varied greatly with the forest fire occurrence. This study showed the great 

superiority of these GWR models to the corresponding global models in terms of characterizing 

the spatial nonstationary relationships, producing better model fitting and prediction, providing a 

more complete view on the spatial distribution of forest fires, and highlighting the risky local 

“hot spots” of forest fires as well as environmental factors across the Fujian province, China. 

Hopefully, the more detailed and localized information would help and assist the forest and fire 

managers to better understand the behavior of forest fires and influences of the environmental 

factors across the study area. Thus, the government agencies can make wiser and better decisions 

on where and what the fire management and prevention should be focused on with reduced 

economic expenses and improved the efficiency of forest fire management. 

 

Key Words: occurrence of forest fire; driving factors; geographically weighted Poisson 

regression; geographically weighted negative binomial regression; geographically weighted 

quantile regression, geographically weighted beta regression.   
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Chapter I: Introduction 

Overview 

Fire in ancient Greeks was considered as one of the classical elemental forces along with 

water, earth, and air (Thomas et al. 2010). Fire ignited in forests spread out over a large area of 

natural lands. On one hand, forest fires may benefit the ecosystems (Thomas et al. 2010) by 

cleaning fallen tree limbs and brushes, releasing the nutrition back to environment, and 

stimulating new generation of plant life. This cycle is repeated almost endless and slowly 

changing the ecosystem. On the other hand, forest fires usually interrupt wildlife habitats and 

landscape, release carbon dioxide into the atmosphere, destroy homes and communities, and 

pollute air with emissions harmful to human health (Scott et al. 2013). Forest fire is an essential 

element useful for ecosystems, but it can threaten lives, structures, infrastructure, dependent 

economics, and our way of life if it is unmanaged or uncontrolled (Thomas et al. 2010). 

In order to help suppress wildland fires, reduce fire risks, and minimize damages to 

ecosystem and human beings, statistical modeling has been playing an important role in 

understanding the nature of forest fires and providing guidelines for decision making of wildfire 

prevention and management. Pastor et al. (2003) reviewed the most important works on the 

mathematical models of wildfires since 1940s. According to their nature, these models can be 

classified into theoretical, empirical, and semi-empirical models. The theoretical models are 

generated from the laws controlling fluid mechanics, combustion, and heat transfer. The 

empirical models are composed of statistical correlations between wildfire and impact factors 

from experiments or historical wildfire studies. The semi-empirical models are proposed from 

general theoretical expression and validated through experimentation. Within the three 
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categories, the empirical models are the focus of this dissertation. The details of other two types 

of forest fire models can be found in the literature (Pastor et al. 2003).  

Predicting the probability or count of forest fire occurrence are two major aspects in 

empirical models. As the earliest fire index empirical model developed in 1966, the McArthur’s 

fire-danger meter has been operating in Australia. Its equations were re-fitted later by Noble et 

al. (1980) applying the linear and exponential functions of relative humidity, air temperature, 

average wind velocity, and drought factor to calculate the fire danger index. Additionally, 

Forestry Canada Fire Danger Group (1992) built the Canada forest fire behavior prediction 

system based on the linear correlation relationships between forest fire behavior and weather, 

fuel, topography, and elapsed time (De Groot 1993).  

Development of computing power in recent decades has led to wide applications of 

regression methods to investigate the relationships between forest fire and driving factors. To 

predict the number of wildfires, logistic regression and multiple linear regression were widely 

applied (Vega Garcia et al. 1995; Andrews and Bradshaw 1997; Brillinger et al. 2006; Guo et al. 

2016a; Syphard et al. 2007; Sebastián-López et al. 2008; Oliveira et al. 2012). However, both 

logistic and multiple linear regression models have to transfer the forest fire count from discrete 

to continuous. The scale change of the response variable is difficult in model interpretation. 

Instead of transforming the discrete count data to a continuous scale, the expected number of 

forest fires can be estimated via generalized linear models. Poisson regression has been 

considered a reliable method for forest fire counts since the 1970s (Cunningham and Martell 

1973; Dayananda 1977; Gill et al. 1987; Mandallaz and Ye 1997; Wotton et al. 2003, 2010). 

Additionally, negative binomial model has also been applied in forest fire modeling when the 

https://www.sciencedirect.com/science/article/pii/S0168169902001205#BIB7
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forest fire data (dependent variable) are dispersed (Cardille et al. 2001; Xiao et al. 2011; Chas-

Amil et al. 2015).  

Predicting the occurrence probability of forest fires is another essential key in statistical 

modeling. Logistic regression is the most popular technique used to quantify the relationships 

and predictions between the occurrence probability of forest fires and potential explanatory 

variables (Preisler et al. 2004; Preisler and Westerling 2007; Lozano et al. 2007; Hoyo et al. 

2011; Chang et al. 2013; Guo et al. 2016a, 2016b). However, it is only applicable when the 

response variable is binary, i.e., in the outcome there are two possibilities, assigned the value 0 

or 1. Therefore, the logistic regression cannot be used when the response variable, the probability 

of fire occurrence, is continuous within the interval (0, 1). In this case, beta regression is an 

alternative technique to model probability, proportion, or rate, introduced by Ferrari and Cribari-

Neto (2004). These generalized liner models, including logistic, Poisson, negative binomial, and 

beta regression, target on the “mean or average” relationships between response variable (e.g., 

forest fire) and predictor variables (e.g., environmental factors). Therefore, these models 

provided the explanation and prediction on the average level of the forest fires, given the values 

of the predictors.  

When forest fire managers have great interests in the impacts of driving factors at various 

risk levels beyond an average fire risk, quantile regression is a good choice for modeling the 

whole range of forest fire risks. Introduced by Koenker and Bassett (1978), quantile regression is 

viewed as an extension of classical estimation of conditional mean models to the estimation of an 

ensemble of models for several conditional quantile functions (Koenker and Hallock 2001). It 

computes several different regression curves corresponding to the various percentage points of 
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the distribution (Mosteller and Tukey 1977). Applying the quantile regression to forest fire 

would provide a more complete picture of driving factors. 

Because spatial dependences and heterogeneity exist across forest ecosystems, many 

statistical models have been extended to the framework of geographically weighted regression 

(GWR) to investigate the spatially varying relationships between response variables and 

predictors in various study fields over the last 20 years, such as remote sensing (Foody et al. 

2003), landscape pattern (Su et al. 2012), deforestation (Jaimes et al. 2010), urban ecology (Su et 

al. 2014), AND forestry (Zhang and Shi 2004; Wang et al. 2005; Shi et al. 2006; Guo et al. 

2008; Kimsey et al. 2008; Salvati et al. 2015; Segovia et al. 2016). The major advantages of the 

spatially localized regression models are: (1) develop a model for each geographic location in the 

study area, focusing on local exceptions, statistics, and relationships between response variable 

and predictor variable rather than global regularities; (2) produce better model fitting and 

location-specific model predictions for the response variable of interest; (3) identify “hot spots” 

where local clustering and nonstationarity of the response variables around a particular location; 

and (4) provide mappable model statistics and parameters that can be used to visualize the spatial 

patterns of the “local” relationships across the study area (Fotheringham et al. 2002; Wheeler 

and Páez 2010; Chen and Yang 2012). The forest coverage in Fujian province, China ranks the 

highest with high annual forest fire incidences (Guo et al. 2017). However, the statistical 

analysis of influencing factors on forest fires has been mainly focused on the boreal forests in 

northern China (Liu et al. 2012; Wu et al. 2014; Guo et al. 2015; Guo et al. 2016b; Guo et al. 

2016c), which results in a less informative fire management plan specifically designed for 

subtropical regions like the Fujian province. Further, there are limited applications of the 

spatially localized regression techniques such as GWR to model forest fires (probability and/or 
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count) and topographical, meteorological, human factors, and vegetation and land coverage 

across the study areas (Guo et al. 2016a; Guo et al. 2016b; Guo et al. 2017).  

The main objective of this dissertation was to develop statistical models for exploring the 

spatially varying relationships between the occurrences of forest fires and driving factors in the 

sub-tropic region of China. Specifically, the statistical models included: (1) geographically 

weighted Poisson and geographically weighted negative binomial models designed for the count 

of forest fires; (2) geographically weighted quantile models for the count of forest fires at 

different quantiles or risk levels; and (3) geographically weighted beta model for the proportion 

or rate of forest fires. These spatially localized models were aimed at finding the spatial patterns 

of influential environmental factors on the occurrence of forest fires in the study area.  

It is known that the smoothing process of estimating model coefficients for a global 

regression can overlook the interesting geographical features in the relationships between 

response variable and predictor variables (Su et al. 2017). Therefore, it is expected that the 

spatially localized generalized linear regression models and quantile regression models under the 

framework of GWR would show a great superiority to the corresponding global models in terms 

of characterizing the spatial nonstationary relationships, producing better model fitting and 

predicting performances, and providing a more critical and adequate look on the influential 

factors of forest fire at existing ‘whole’ maple statistics. We expected the newly developed GWR 

models improved the analyses of risky factors of forest fires, and hopefully, would provide wiser 

and better insight into the forest fire mapping, understanding, prevention, and management based 

on the local character prospects. 
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Chapter II: Forest Fire Occurrence Modeling and Analysis of Driving Factors 

Using Global and Geographically Weighted Regression 

Abstract. We applied global Poisson, global negative binomial (NB), geographically weighted 

Poisson regression (GWPR), and geographically weighted negative binomial regression 

(GWNBR) to investigate the spatially varying relationships between forest fire count and 

topographical, meteorological, human, vegetation coverage, and land cover factors in Fujian 

province, southeast China. Our results indicated that more forest fires occurred with lower 

elevation, flatter terrain, and higher population density areas. The global models showed that the 

precipitation and relative humidity had positive impacts on fire occurrence over the study area. 

In contrast, the GWR models revealed that the precipitation was positively correlated with fire 

occurrence in the west of Fujian, but negatively across the eastern coastal regions. The 

correlation between relative humidity and fire occurrence was also spatially different, positive in 

the north and negative in the center of Fujian. There existed overdispersion and spatial non-

stationarity in the forest fire count data. The assessment of model fitting and predictions showed 

that GWNBR fit the forest fire count data better than other models, produced more precise and 

stable model parameter estimation, and yielded more realistic spatial distributions of model 

predictions. Thus, GWNBR is an effective and appropriate method for analyzing the occurrence 

of spatially varying and over-dispersed forest fires, and could provide better insight into forest 

fire mapping, prevention, and management based on local character prospects. 

 

Keywords: geographically weighted Poisson regression; geographically weighted negative 

binomial regression; forest fire count; overdispersion.   
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1. Introduction 

Forest fires spread across a large area of forested land and lead to significant, long-lasting 

impacts on ecological, social, and economic systems (Scott et al. 2013). In recent decades, forest 

fire occurrence has risen, along with the severity and damage they have inflicted. Canada has 

averaged 6863 fires and 2.6 million hectares burnt annually during 2006-2015, and the average 

annual national fire management expenditures exceeded CAD $800 million (Stocks and Martell 

2016). There were 71,499 wildfires in the USA in 2017, burning about 4.05 million hectares, 

higher than the 10-year average (National Interagency Fire Center 2017). In China, about 10,000 

wildfires occur with approximately 820,000 hectares burnt area each year (Guo et al. 2015). 

Many models and methods have been developed to understand the influencing factors on 

fire occurrence and predict their potential threats to the environment, property, and lives 

(Costafreda-Aumedes et al. 2018). In recent years, advances in computer technology and 

software have led to wide applications of regression methods in forest fire modeling. Regression 

techniques provide the relationships and predictions between forest fires and explanatory 

variables such as vegetation patterns, fuel moisture conditions, meteorological variables, and 

some socio-economic factors (e.g., population density, GDP, education level, etc.). Logistic 

regression and multiple linear regression are two widely used methods on the study of fire 

ignition probability and driving factor analysis in different regions of the world (Vega Garcia et 

al. 1995; Andrews and Bradshaw 1997; Preisler et al. 2004; Brillinger et al. 2006; Guo et al. 

2016a; Syphard et al. 2007; Oliveira et al. 2012). Both methods apply a square-root 

transformation to change the number of fires to a continuous scale. Sebastián-López et al. (2008) 

modeled ten-year fire danger based on a multiple linear regression, in which the dependent 

variable (the annual average of fire occurrence) was transformed using a natural logarithm.  
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On the other hand, instead of transforming discrete count data to a continuous scale, the 

expected number of fires can be estimated via generalized linear models. Poisson model has been 

considered a reliable method for fire occurrence modeling and risk analysis since the 1970s 

(Cunningham and Martell 1973; Dayananda 1977; Gill et al. 1987; Mandallaz and Ye 1997; 

Wotton et al. 2003, 2010). In addition to Poisson regression, negative binomial (NB) regression 

has also been applied in fire modeling studies, which have indicated that NB regression performs 

better in model fitting and prediction when the fire data (dependent variable) is dispersed 

(Cardille et al. 2001; Xiao et al. 2011; Chas-Amil et al. 2015).  

The above models can be classified as global models, meaning that a single model with 

one set of model parameters can be used to explain the entire study region. However, spatial 

autocorrelation and heterogeneity exist across forest ecosystems, and the relationships between 

forest fires and environmental factors are nonstationary across space. Geographically weighted 

regression (GWR) was introduced as an alternative approach for modeling the spatially 

nonstationary fires across locations by Fotheringham et al. (2002). This approach considers 

varying relationships in space and allows local variations to be taken into account. With 

geographical information system (GIS) technology, spatially varying regression coefficients of 

GWR models can be visualized to identify local trends and spatial “hotspots” (Fotheringham and 

Brunsdon 2010). Further, GWR methodology has been extended to the framework of generalized 

linear models, such as geographically weighted logistic regression (GWLR) and geographically 

weighted Poisson regression (GWPR) (Nakaya et al. 2005). These developments have provided 

an appropriate foundation for modeling spatially varying binary and count response variables in 

the field of forest fires (Koutsias et al. 2010; Rodrigues et al. 2014; Guo et al. 2016b).  
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However, GWPR is more challenging than a global Poisson model, due to a common 

problem of overdispersion in spatial count data (Haining et al. 2009). Overdispersion is 

concerned with the strict requirement of a Poisson distribution for the count response variable to 

exhibit equal mean and variance. Given the nature of rare events, the occurrence (count data) of 

forest fires usually has much larger variance than the mean, because zero counts tend to occur 

more often than higher numbers of fire occurrence. This is particularly true for spatially clustered 

data such as the count of events in a census tract due to spatial heterogeneity within and between 

small geographical areas. If overdispersion is ignored, model fitting will underestimate the 

standard errors for Poisson regression model coefficients and lead to biased hypothesis testing 

(Lee 2011).  

To model spatial count data with overdispersion, it may be more appropriate to use a 

negative binomial distribution instead of a Poisson distribution. Da Silva and Rodrigues (2014) 

proposed the geographically weighted negative binomial regression (GWNBR) method for 

incorporating spatial count data with overdispersion. Including spatial effects into statistical 

models is valuable for understanding relationships geographically and identifying local “hot 

spots” of high fire risks. In this study, we applied two global models (i.e., Poisson and Negative 

Binomial) and two GWR models (i.e., GWPR and GWNB) to develop forest fire prediction 

models and identify the driving factors of forest fire occurrence in a sub-tropical region of China. 

The results from each individual model were compared and the localized significant explanatory 

variables for prediction and prevention of forest fires were targeted. This study can improve the 

comprehensive understanding of the applicability of global and GWR models on forest fire 

studies.  
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2. Data and Methods 

2.1 Study area 

Fujian province is located in a sub-tropical region of China with a total land area of 

124,000 km2 (Figure 2.1). It is ranked the highest forest coverage in the nation (about 66% of 

Fujian province is covered by forests and vegetation), but experiences high annual forest fire 

incidences, with nearly 15,000 forest fires occurring from 2000 to 2010 (Guo et al. 2017). The 

dominant tree species in the province include Massoniana (Pinus massoniana Lamb.), Chinese 

fir (Cunninghamia lanceolate (Lamb.) Hook), Casuarina (Casuarina equisetifolia L.), Pubescens 

(Phyllostachys heterocycle (Carr.) Mitford cv. Pubescens), and others. The climate is warm and 

humid with an average annual rainfall of 1400 – 2000 mm and average temperature of 17 – 

21 °C. Forest fire season typically spans from September to April (Guo et al. 2016a).  

 
Figure 2.1 Location map of Fujian province, P.R. China. 

2.2 Data preparation 

2.2.1 Fire data (response variable) 

In this study we used Medium Resolution Imaging Spectroscopy (MODIS) to record the 

spatial distribution of fire pixels in Fujian province from 2001 to 2016. This product is 

javascript:;
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considered a reliable and suitable source for monitoring forest fires (Justice et al. 2002). We 

obtained a daily forest fire product (MOD14A1) with a resolution of 1 km, which has been 

widely used in recent forest fire studies (Amraoui et al. 2015; Guo et al. 2017). Since this 

product cannot distinguish forest fires from non-forest fires that occur in cities/towns, 

construction sites, agricultural lands, and other areas, we further processed the fire data by: (1) 

removing the fire points in cities/towns, construction sites, and farmland based on a 1 km 

resolution land-use map (the map is provided by Resource and Environmental Data Cloud 

Platform (http://www.resdc.cn/Default.aspx) and (2) extracting fire points based on the time of 

fire occurrence within the fire season (September 15 to April 30 of the following year). All forest 

fire points were recorded using geographical coordinates. Create Fishnet and Spatial Join in 

ArcGIS 10.2 (ESRI 2010) were then used to divide Fujian province into 4 × 4 km grids (a total 

of 7433 grids). Thus, the response variable was the total number of forest fire occurrences in 

each grid during a period of 16 years (2001 – 2016). Figure 2.2 shows the frequency distribution 

of the forest fire occurrence.  

 

 

 

 

 

 

Figure 2.2 Frequency distribution of forest fire occurrences. 

 

2.2.2 Potential driving factors (explanatory variables) 

A total of 15 explanatory variables were collected in this study. 

http://www.resdc.cn/Default.aspx
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Topography  

Topographic variables included elevation (km), slope (degree), and aspect index. High 

resolution (25 m) Digital Elevation Model (DEM) data was collected from the National 

Administration of Surveying, Mapping and Geoinformation of China 

(http://www.gscloud.cn/sources). Using 3D Analysis in ArcGIS 10.2, the slope and slope 

direction were derived from DEM, and aspect was then converted into an aspect index using the 

following formula (Guo et al. 2017): Aspect index = cos(θ×π / 180), where θ is the degree of 

slope generated in ArcGIS ranging from 0 – 360° so that the aspect index ranges from -1 to 1. 

An aspect index value closer to 1 indicates higher potential solar radiation. Average elevation, 

slope, and aspect index were then extracted using Zonal Statistics as Table in ArcGIS 10.2 for 

each grid. 

Meteorology 

Meteorological variables included precipitation (mm/day), temperature (°C), and relative 

humidity (%), which were derived from the HadCM2 global climate model (Guo et al. 2016b), 

an ocean-air coupling model developed by the Hadley Centre. ArcGIS 10.2 was used to calculate 

annual average daily values of each meteorological variable, and then Zonal Statistics as Table 

was used to extract averages of each meteorological variable for each grid. Precipitation and 

temperature impact the occurrence of forest fires by limiting the fuel moisture content. 

Therefore, they are reasonable and effective alternative fuel factors when other fuel factors are 

not available. In addition, the annual meteorological factor is a traditional and better indicator to 

measure the influence of climate change on forest fires, compared to the average meteorological 

data during the period of forest fire (Scholze et al. 2006; McCoy and Burn 2005; Xystrakis et al. 

2013).   

http://www.gscloud.cn/
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Human factors 

Human factors included the socioeconomic variables (per capita GDP and population 

density) and infrastructural variables. GDP and population data was obtained from Resource and 

Environmental Data Cloud Platform (http://www.resdc.cn/Default.aspx). Data included grid 

population density and per capita GDP for the years 2000, 2005, 2010, and 2015 at 1 km 

resolution. Based on raster population and GDP data, the Raster Calculator tool in ArcGIS10.2 

was used to calculate average annual growth rates of population and per capita GDP from 2000 

to 2015. Average population and per capita GDP from 2000 to 2015 were then extracted using 

the Zonal Statistics as Table for each grid. Infrastructural variables included road density 

(km/km2, ratio of road length to the grid area) and water density. An 1:250,000 vector map of 

infrastructure is provided by the National Geomatics Center of China (http://www.ngcc.cn/), and 

ArcGIS10.2 were used to evaluate the ratio of the length of road and area of water within each 

grid to the grid area. 

Vegetation coverage and land coverage 

Vegetation coverage is used to indicate the total amount of live and dead fuels above the 

surface. One practical estimation method uses the Normalized Difference Vegetation Index 

(NDVI). NDVI data was derived from the MODIS NDVI product with a spatial resolution of 500 

m, provided by the Geospatial Data Cloud (http://www.gscloud.cn/). Variables of land use 

features were estimated from the Resource and Environmental Data Cloud Platform in China 

(http://www.resdc.cn/Default.aspx). It is a 1 km resolution raster data, providing the spatial 

distribution of vegetation types by digitizing the collections of vegetation type in China on the 

scale 1 : 1 million. Forest, including subtropical evergreen broad-leave forest type and mixed 

conifer and broad-leave forest type, covers about 64.95% of the total area. Vegetation type of 

http://www.resdc.cn/Default.aspx
http://www.ngcc.cn/
http://www.gscloud.cn/
http://www.resdc.cn/Default.aspx
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shrub contains the subtropical evergreen broad-leave shrub, tropical evergreen broad-leaved 

shrub, and deciduous and broad-leaved shrub, taking about 20.40% of the study region. The 

cultivated land, fruit forest, and non-timber product forest are categorized into the cropland, 

covering about 12.6% of the total area. Grass (subtropical grass and tropical grass) only covers 

1.69% of the total area. About 0.36% of the total area is the development land. According to the 

survey, regional forest coverage proportion is 66.80% and the agriculture land is about 11%, 

indicating the land classification of the raster data is close to reality. ArcGIS10.2 was used to 

calculate the proportion of each land cover in each grid. 

2.2.3 Preliminary selection of variables  

A multicollinearity analysis was performed before model fitting. The variance inflation 

factor (VIF) was used to detect the multicollinearity problems among the explanatory variables. 

In general, a VIF above 10 indicates that the parameter estimation and its standard error of an 

explanatory variable are impacted and damaged by multicollinearity. We used global Poisson 

model to test the multicollinearity, and resulted in the elimination of the socioeconomic variable 

of GDP because its VIF was 18.56. Therefore, there were a total of 14 explanatory variables used 

to fit the models in this study. Summary of fire occurrence (response variable) and 14 predictor 

variables were listed in Table 2.1. Figure 2.3(a) illustrated the spatial distribution of forest fire 

points, and Figures 2.3(b) – (p) presented the spatial distribution of predictor variables. 
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Table 2.1 Descriptive statistics of response and predictor variables. 

 

Variable Mean Median Std Dev Minimum Maximum 

Fire Occurrence 4.2500 3.000 6.4271 0.0000 153.000 

Elevation (km) 0.4885 0.4688 0.2714 -0.0064 1.7577 

Slope (degree) 19.78 20.72 5.77 0.105 37.68 

Aspect Index -0.0073 -0.0116 0.1186 -0.5728 0.5523 

Precipitation (mm/day) 3.9514 4.0659 0.5058 2.3232 4.9986 

Temperature (°C) 21.9846                        21.9041 1.5452 15.7449 25.3113 

Humidity (%) 83.7273 83.7565 0.8788 81.3790 87.0881 

Road Density  0.3632 0.3600 0.0804 0.00002 0.8427 

Water Density 0.5969 0.5584 0.1962 0.0015 1.6537 

Population (1000 people) 0.2839 0.1335 0.2714 0.0568 17.8995 

NDVI 0.7742 0.7910 0.0662 0.3287 0.8729 

Forest Cover (%)  51.752 55.374 39.487 0.000 100.00 

Shrub Cover (%) 18.608 0.000 28.160 0.000 99.99 

Grass Cover (%) 1.409 0.000 9.583 0.000 99.99 

Crop Cover (%) 10.161 0.000 22.499 0.000  99.99 
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Figure 2.3 Spatial distribution of (a) Observed forest fire count, (b) Temperature, (c) 

Precipitation, (d) Relative humidity, (e) Water density, (f) Road density, (g) Population density, 

(h) GDP, (i) Elevation, (j) Slope, (k) Aspect index, (l) NDVI, (m) Forest cover, (n) Shrub cover, 

(o) Crop cover, and (p) Grass cover. 
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2.3 Models 

2.3.1 Poisson regression 

A count response variable (Yi) has non-negative integer values (i = 1, 2,…, n), and 

Poisson regression is often used to model a count response variable Yi against the underlying 

predictor variables (McCulloch and Searle 2001; Myers et al. 2002). The probability density 

function (pdf) of the Poisson distribution is: 

( )
i iY

i
i

i

e
P Y

Y !

− 
=         [1] 

where P(Yi) is the probability that the number of event (Yi) occurred during a given time period, 

and μi is the parameter representing the expected value of Yi. The Poisson distribution assumes 

equal mean and variance such that ( )i iE Y =   and ( )i iVar Y =  . The explanatory variables are 

linked to the expected value μi via a link function such as a natural logarithm: 

( )i 0 iln X = +          [2] 

where iX  represents the explanatory variables, β0 is the intercept coefficient, and β is the vector 

of the model slope coefficients. Thus, the expected value of μi can be predicted by the inverse 

link function 
( )0 i
ˆ ˆX

i
ˆ e

 + 
 = . 

2.3.2 Negative binomial (NB) regression 

Although Poisson regression is a common choice for modeling a count response variable, 

it is often criticized for its restrictive assumption of equal mean and variance. It is well known 

that the potential drawback of Poisson regression is the underestimation of standard errors of the 

model coefficients due to the overdispersion problem in the data. One way of dealing with this 

issue is to rescale the standard errors by the estimated dispersion parameter, while keeping the 

model coefficients unchanged. However, a better alternative for correcting the overdispersion 
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problem is to use the negative binomial (NB) regression, which automatically builds in a 

dispersion parameter in its distribution function so that the estimation of both model coefficients 

and standard errors are corrected for the overdispersion in the data (McCulloch and Searle 2001; 

Myers et al. 2002). The unconditional distribution of Yi can be written as: 

( )
( )

i1 Yi
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1
P Y

1 1 1
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    [3] 

where  denotes the gamma function,   is the dispersion parameter, and the mean and variance 

of Yi are: 

( )iE Y =           [4] 

( ) ( )r

iV Y 1= +  =  +         [5] 

Thus, the Poisson model is the limiting model of the negative binomial model when 0→ . The 

common link function for the negative binomial regression is the same as the Poisson regression 

(Eq. [2]).  

2.3.3 Geographically weighted regression (GWR) 

To investigate the spatial variation or heterogeneity of a regression relationship, the data 

must be collected with the location coordinates (vxi, vyi) for each observation i. This local 

information allows for estimation of the localized regression coefficients of the relationship of 

interest. When GWR was first developed, the Gaussian assumption was assumed for the model 

error term (Fotheringham et al. 1998), expressed as: 

( ) ( )
p

i 0 xi yi k xi yi ki i

k 1

Y v , v v , v X
=

=  +  +       [6] 
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where Yi is the response variable, Xk is a set of p explanatory variables (k = 1, 2, …, p), β0(vxi, 

vyi), β1(vxi, vyi), …, βp (vxi, vyi) are the regression coefficients for the kth predictor variable at the 

ith location, and εi is the random error term whose distribution is assumed N(0, σ2I) with I 

denoting an identity matrix. The aim of GWR is to obtain the estimates of these functions for 

each predictor variable and each geographic location i. The estimation procedure is as follows: (i) 

draw a circle of a given radius around one particular location i (the center), (ii) compute a weight 

(wij) for each neighboring observation j according to the distance dij between location j and 

center i, and (iii) estimate the model coefficients using weighted least-square regression such 

that:  

( )
1

i i i
ˆ X W X X W Y

−
  =        [7] 

where the weight matrix Wi is: 

Wi = (

wi1 0 ⋯ 0
0 wi2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … win

)       [8] 

The weighting function is defined by the kernel type and size of kernel (bandwidth), 

which determines the geographical weight of the jth neighboring observation at the ith regression 

point. The weight should decrease gradually as the distance between i and j increases, until it 

reaches a constant or zero. The model parameter estimates are highly related to the kernel size, 

so the choice of the kernel is important in the modeling process of GWR.  

2.3.4 Geographically weighted Poisson regression (GWPR) 

The GWPR model is developed by adding geographical location into the standard 

Poisson regression. It uses a similar link function to Eq. [2] and is in the following form: 

( ) ( ) ( )
p

i 0 xi yi k xi yi ki

k 1

ln u v , v v , v X
=

=  +       [9] 
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where β0 and βk are the GWPR model parameters specifically describing the location of i with x 

and y coordinates. 

2.3.5 Geographically weighted negative binomial regression (GWNBR) 

GWNBR is an extension of the global model of NB regression that allows the spatial 

variation of parameters β0, βk, and  . This local model is described as: 

( ) ( ) ( ) ( )
p

i 0 xi yi k xi yi ki i xi yi

k 1

ln u v , v v , v X , v , v
=

 
=  +   
 

    [10] 

where β0 and βk are the GWPR model parameters specifically describing the location of i with x 

and y coordinates, and 
i  is the local dispersion parameter. 

In this study, we applied the same Gaussian kernel function and bandwidths to both 

GWPR and GWNBR models. It is known that the bandwidth has profound impacts on model 

fitting, the spatial distribution of model predictions, and localized model coefficients 

(Fotheringham et al. 2002; Guo et al. 2008). If different bandwidths were used for GWPR and 

GWNBR, the modeling results would be less compatible between the two models because we 

would not be able to distinguish if the model differences were due to the models per se or the 

bandwidths used.  

2.4 Model evaluation and comparison 

 Overdispersion in the response variable is always a concern when modeling count data. 

One way to detect the problem is to divide the model deviance, which measures the discrepancy 

between the observed and fitted response variable, by its degrees of freedom (df). If this 

deviance/df ratio is close to 1, there is no concern on the overdispersion; if it is greater than 1, an 

overdispersion problem may exist and some correction may be necessary (Myers et al. 2002). 

In a GWR model, it is necessary to decide on an optimal bandwidth for model fitting 

(Fotheringham et al. 2002). There are three common ways of choosing the bandwidth: (1) 
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subjective choice, (2) based on the smallest cross-validation error, or (3) based on the smallest 

Akaike Information Criterion (AIC) (Fotheringham et al. 2002; Guo et al. 2008). In this study, 

we used AIC to decide the optimal bandwidth and related kernel function for estimating each 

GWR model. A number of variogram models (Bailey and Gatrell 1995) were used for the spatial 

data in order to find the optimal bandwidth and kernel function, resulting in a Spherical due to its 

smallest AIC. The estimated bandwidth was selected at 112,410 meters, depending on the 

residuals of global models. 

To evaluate spatial variation or heterogeneity in the model coefficients of GWPR and 

GWNBR, we followed the approach in Chen et al. (2012). The interquartile range (IQR) of the 

coefficient estimates computed by the GWR localized models was compared to the standard 

error of the global estimates derived with a traditional regression model. When IQR is twice as 

large as the standard error, it indicates that spatial non-stationary exists in the relationships 

between the response variable and its accompanying predictor variables. 

 Model fitting was evaluated using AIC and mean squared errors (MSE) (Burnham and 

Anderson 2004). Smaller AIC or MSE imply better model fitting performance. To evaluate the 

spatial autocorrelation of the residuals, the Geary’s contiguity ratio (Geary’s C) was calculated. 

The closer to 1 the Geary’s C, the lower the spatial dependence of the residual will be, and 

hence, the model accounts for more spatial structure problems. Chi-square (χ2) goodness of fit 

was used to compare model prediction performances (Terceiro 2003; Zhen et al. 2018). In 

addition, the predicted fire occurrence of the four models and the spatial distribution of model 

coefficient for each explanatory variable were mapped using ArcGIS10.2.  
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3. Results 

3.1 Model fitting and prediction accuracy comparison 

3.1.1 Overall comparison between global and GWR models 

The statistics of model fitting are listed in Table 2.2, including AIC, MSE, and Geary’s C 

of model residuals with corresponding Z-test and p-value. and NB models, The AIC values were 

53282.4 for the global Poisson model and 36446.6 for the global NB model, which were much 

greater than those of both GWPR (27066.3) and GWNBR (22886.7) models. The MSE of the 

GWR models (28.4 for GWPR and 31.3 for GWNBR) were smaller than those of the two global 

models (36.2 for Poisson and 36.7 for NB). Thus, it was evident that the GWR models fitted the 

fire occurrence data better than the two global models. Additionally, the Geary’s C of the two 

global model residuals was significantly smaller than one, indicating a clustered spatial pattern 

(i.e., positive spatial autocorrelations among the model residuals). In contrast, the Geary’s C of 

the GWNBR model residuals was not significantly different from one, representing a desirable 

random spatial pattern; while the Geary’s C of the GWPR model residuals was significantly 

larger than one, indicating a dispersed / uniform spatial pattern (i.e., negative spatial 

autocorrelations among the model residuals) (Table 2.2).   
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Table 2.2 Statistics of model fitting and prediction for global and GWR models. 

 

Statistics 
Global 

Poisson 
GWPR 

Global 

Negative 

Binomial 

GWNBR 

AIC 53282.4 27066.3 36446.6 22886.7 

MSE 36.21 28.38 36.68 31.32 

Geary’s C 0.9918 1.0090 0.9888 1.0035 

Z-score -3.63 3.99 -4.98 1.56 

p-value 0.0003 <.0001 <.0001 0.1187 

Goodness of fit 

(χ2) 
5234.6 3949.6 5157.9 4129.1 

Deviance / df 4.6593 - 1.1117 - 

 

 In terms of model predictions, the GWR models were closer to the observed forest fire 

counts than the global models. The predicted counts from the global models did not exceed 20, 

indicating that no grid across Fujian province had fire occur more than 20 times during this time 

period (Figures 2.4(a) and (c)). In contrast, the predictions from the GWR models showed wider 

ranges, where some locations were predicted greater than 20 fire occurrences during this time 

period (Figures 2.4(b) and (d)). Regarding the spatial distribution of model predictions, the GWR 

models showed that high incidences (> 10) of forest fires were mainly concentrated in the 

northwest and center regions, while only few high incidences of forest fires predicted by the 

global models randomly scattered across the study area (Figures 4(a) and (c)). To compare the 

model predictions for GWR, we used Chi-square (χ2) goodness of fit statistics (Table 2.2). In this 

study, the response variable (i.e., forest fire counts), is divided into 17 categories, which are 0, 1, 

2…, 15, and > 15. We then compared the predicted with observed counts respectively. The Chi-

square statistics of the GWR models were smaller than the global models, indicating that GWPR 
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and GWNBR were better than Poisson and NB in model prediction performance. 

3.1.2 Comparison between global Poisson and NB models 

 In this study, the deviance/df ratio of the global Poisson model was 4.6593 (Table 2.2), 

showing the existence of the overdispersion problem. But the deviance/df ratio of the global NB 

model was 1.1117, close to 1. Therefore, the NB model was indeed a better choice than the 

Poisson model for handling the overdispersion in our fire count data. Furthermore, the AIC of 

the two models confirmed that the global NB model (36446.6) was superior to the global Poisson 

model (53282.4) for fitting the fire count data (Table 2.2).  

 The predictions from both global Poisson and NB models were between 0 and 20, 

suggesting that 0 or at most 20 fires were expected in each grid during this time period. Both 

global models projected that the areas with frequent forest fires were mainly concentrated in the 

northwest and southeast of the study area (Figures 2.4(a) and (c)). 
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Figure 2.4 Spatial distributions of model predictions from (a) global Poisson, (b) GWPR, (c) 

global NB, and (d) GWNBR. 

 

3.1.3 Comparison between GWPR and GWNBR models 

 Similar to the global models, the GWNBR model (22886.7) had a much smaller AIC than 

the GWPR model (27066.3). The Geary’s C of GWNBR revealed that its model residuals were 

randomly distributed. The results of AIC and Geary’s C implied that GWNBR was better than 

GWPR for fitting the fire count data. The spatial distributions of the fire predictions from the two 
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GWR models were similar, i.e., the areas with high frequencies of forest fires (i.e., predicted fire 

occurrence > 10) were concentrated in the northwest and center of Fujian province. The Chi-

square statistics implied the GWPR was slightly better than GWPR in terms of model prediction 

(Table 2.2). 

3.2 Variability of significant explanatory variables  

3.2.1 Overall comparison between global models and GWR models 

 The relationship between forest fire occurrence and explanatory variables estimated by 

the global models is assumed constant and stationary across the study area. On the other hand, 

the model coefficients of the GWR models are spatially varied from location to location. The 

results of the GWR models showed that the relationship between fire occurrence and explanatory 

variables was spatially non-stationary. Compared to the global models, the GWR models 

highlighted the spatial heterogeneity of the relationships between response and explanatory 

variables. The significance level was chosen at α = 0.05 for this study. Both global models 

showed that elevation, slope, aspect index, humidity, precipitation, population, NDVI, road 

density, water density, grass cover, and crop cover were significantly correlated with the forest 

fire counts (Table 2.3). However, the significance of the GWR model coefficients may not be 

consistent across the study area, but varied from location to location. Figures 2.5 and 2.6 

demonstrated the locally significant model coefficients.   
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Table 2.3 Model parameter estimation of global Poisson and Negative Binomial models. 

 

Parameters 

global Poisson global Negative Binomial 

Estimate 
Standard 

Error 
p-value Estimate 

Standard 

Error 
p-value 

Intercept -13.5939 1.4903 <.0001 -12.6004 3.2821 <.0001 

Elevation -2.000 0.0457 <.0001 -1.7442 0.0880 <.0001 

Slope 0.00589 0.00203 0.0037 -0.0096 0.00483 0.0468 

Aspect index -0.2876 0.0482 <.0001 -0.3075 0.1086 0.0047 

Humidity 0.2076 0.0157 <.0001 0.1840 0.0346 <.0001 

Temperature -0.01828 0.00964 0.0579 0.0145 0.0215 0.4989 

Precipitation 0.2608 0.01767 <.0001 0.3032 0.0360 <.0001 

Population -0.5145 0.0199 <.0001 -0.5165 0.0387 <.0001 

NDVI -3.3388 0.1553 <.0001 -2.9133 0.3788 <.0001 

Road density 2.0681 0.0788 <.0001 1.8798 0.1830 <.0001 

Water 

density 
-0.4232 0.0415 <.0001 -0.3460 0.0968 0.0004 

Forest cover 0.0179 0.0171 0.2940 -0.01007 0.03778 0.7898 

Shrub cover -0.03079 0.0232 0.1844 -0.02973 0.05073 0.5578 

Grass cover 0.3517 0.0560 <.0001 0. 2806 0. 1314 0.0328 

Crop cover -0.241 0.0291 <.0001 -0. 3511 0.07026 <.0001 

Dispersion - - - 0.9026 0.0204 - 
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Figure 2.5 Spatial distribution of significant model coefficients of (a) Temperature, (b) 

Precipitation, (c) Relative humidity, (d) Water density, (e) Road density, (f) Population density, 

(g) Elevation, (h) Slope, (i) Aspect index, (j) NDVI, (k) Forest cover, (l) Shrub cover, (m) Crop 

cover, and (n) Grass cover of the GWPR model.  
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Figure 2.6 Spatial distribution of significant model coefficients of (a) Temperature, (b) 

Precipitation, (c) Relative humidity, (d) Water density, (e) Road density, (f) Population density, 

(g) Elevation, (h) Slope, (i) Aspect index, (j) NDVI, (k) Forest cover, (l) Shrub cover, (m) Crop 

cover, and (n) Grass cover of the GWNBR model. 

 

3.2.2 Comparison of explanatory variables of global models 

 The estimated coefficients of the global Poisson and NB models are listed in Table 2.3. 

The relationship between significant explanatory variables and forest fire occurrence in the NB 
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models had the same correlation as in the global Poisson model. Additionally, in both global 

Poisson and NB models, the estimated model coefficients of humidity, precipitation, road 

density, and grass cover were significantly positive, indicating that greater relative humidity 

and/or precipitation, denser road and grass cover may lead to more forest fires (see discussion 

section for details). In contrast, the estimated model coefficients of water density, population 

density, NDVI, crop cover, and two topographic factors (elevation and aspect index) were 

significantly negative, indicating that forest fires were less likely to occur in developed areas, 

relatively high elevations, less sunshine radiation and/or in the areas with low crop cover.  

3.2.3 Comparison of spatial variability of significant variables in GWR models  

The GWR Poisson and NB model coefficients of all fourteen explanatory variables were 

spatially varied because their IQRs were at least twice as large as the standard errors of the 

corresponding global model coefficients. Our results suggested that the relationships between 

forest fire occurrence and topographical, meteorological variables, human variables (e.g., 

population, water, and road density), and vegetation and land use cover were indeed 

heterogeneous across the study region (Table 2.4). The spatial distributions of the significant 

model coefficients of explanatory variables between GWPR and GWNBR were similar. 

Additionally, the coefficients of explanatory variables were only significant in some locations of 

the study area, and the influencing direction (the sign of coefficients) and power (estimated value 

of coefficients) were also spatially varied (Figures 2.5 and 2.6). For example, the temperature 

was positively correlated to fire occurrence in the north, but negatively correlated to fire counts 

in the center of the province. Similarly, the precipitation and population density showed negative 

relationships with forest fires in the east and southeast of Fujian, but positive relationships in the 

north.  
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Table 2.4 Summary of model parameter estimation of geographically weighted Poisson and Negative Binomial models. 
 

Statistics Model βIntercept βElevation βSlope 
βAspect 

index 
βHumidity βTemperature βPrecipitation βpopulation βNDVI 

βRoad 

density 

βWater 

density 

βForest 

cover 

βShrub 

cover 

βGrass 

cover 

βCrop 

cover 

Local 

dispersion 

Mean 
GWPR -4.292 -1.617 0.00569 -0.3442 0.0829 0.0286 0.3232 0.6032 -3.966 1.3094 -0.1415 0.0252 -0.0137 -5.6522 -0.0375 - 

GWNBR -5.846 -1.628 0.00003 -0.3219 0.1005 0.0291 0.3119 0.7773 -3.645 1.3393 -0.0603 0.0107 -0.0233 -5.7854 -0.1058 0.0565 

Median 
GWPR -5.659 -1.760 0.00227 -0.2787 0.1022 0.0501 0.3207 -0.1382 -3.880 1.2280 -0.2621 0.0204 -0.0115 0.0000 0.0001 - 

GWNBR -5.902 -1.707 -0.00516 -0.2473 0.1099 0.0507 0.2918 -0.1055 -3.667 1.3831 -0.1507 -0.0033 -0.0278 0.0000 -0.0995 0.0510 

Min 
GWPR -108.98 -3.925 -0.0612 -2.0639 -1.2875 -0.5312 -3.9636 -5.6887 -14.584 -1.6778 -2.3525 -0.2585 -0.7401 -428.52 -1.0281 - 

GWNBR -118.33 -3.415 -0.00643 -1.6342 -0.7575 -0.4262 -3.9332 -2.4348 -14.390 -1.3371 -1.9136 -0.2233 -0.5752 -1234.5 -0.8397 0.0190 

Max 
GWPR 111.264 2.809 0.0956 2.0505 1.1494 0.4068 3.0787 9.7859 4.926 5.4778 2.3102 0.8653 0.5377 301.45 1.0482 - 

GWNBR 78.395 1.774 0.0863 1.0643 1.2201 0.4429 2.1058 11.4046 3.681 3.5797 1.7295 0.6013 0.4911 411.82 0.7017 0.1422 

IQR 
GWPR 38.5508 0.9821 0.0313 0.6457 0.3947 0.2537 1.0017 1.3115 4.0899 1.7066 1.3304 0.2282 0.4003 3.2728 0.4229 - 

GWNBR 31.5258 0.8528 0.0371 0.5888 0.3247 0.2188 0.9027 1.3347 3.6160 1.3479 1.0937 0.1580 0.3502 1.8188 0.4297 0.0248 

Std 
GWPR 33.6224 0.9470 0.0286 0.5800 0.3486 0.1795 0.8532 2.2621 2.7867 1.4283 0.9207 0.1548 0.2734 29.089 0.3684 - 

GWNBR 28.3133 0.7823 0.0300 0.4405 0.2816 0.1659 0.7859 2.3213 2.8930 1.1447 0.7916 0.1191 0.2484 45.451 0.3308 0.0217 

Ste†∙ 
GWPR 1.4903 0.0457 0.00203 0.0482 0.0157 0.00964 0.01767 0.0199 0.1553 0.0788 0.0415 0.0171 0.0232 0.056 0.0291 - 

GWNBR 3.2821 0.088 0.00483 0.1086 0.0346 0.0215 0.036 0.0387 0.3788 0.183 0.0968 0.037 0.05 0. 1314 0. 0703 0.0204 

Status 

GWPR NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS - 

GWNBR NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS S 

 

† Note: Standard error (Ste) was estimated from the global regression; NS indicates spatially nonstationary. 
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4. Discussion 

4.1 Comparison of prediction models for forest fire occurrence 

Our study indicated that the GWR models had better model fitting than the global 

models, which was indeed expected as the GWR models estimated the local parameters of each 

location and effectively explained the spatial variability of the response variable (Wu and Zhang 

2013). Our results were in line with previous studies that reported better model fitting and 

predictions of GWR than global models (Guo et al. 2016b; Rodrigues et al. 2014). 

GWPR produced less significant model coefficients of the explanatory variables such as 

water density, road density and forest cover than did GWNBR (Figures 2.5 and 2.6). A possible 

reason for these differences was that GWNBR estimated the dispersion parameter location by 

location. The spatial distribution of the local dispersion parameters is shown in Figure 2.7. It was 

evident that larger dispersion parameters were clustered along the southeast coast of Fujian 

province, where the forest fires occurred less than 2 or more than 10 times (Figure 2.3(a)). The 

local dispersion parameters then gradually decreased in the northwest areas. This was reasonable 

because either extreme small or great forest fire occurrences were detected in the southeast, 

which likely led to a greater overdispersion compared to other regions. The existence of varying 

overdispersion across the study area clearly suggested the need to correct the model standard 

errors location by location. Therefore, GWNBR is more appropriate than GWPR for modeling 

such dispersed fire count data.  
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Figure 2.7 Spatial distribution of local dispersion parameters of GWNBR model. 

 

4.2 Influence of drivers on forest fire occurrence in Fujian 

The drivers and their influence on fire occurrence in Fujian varied between global and 

GWR models. Compared to the global models, the GWR models explained more specific spatial 

relationships between drivers and fire occurrence. Those drivers were not consistently positive or 

negative influencing the fire occurrence across the study area. 

Based on the global models, our results indicated that the number of forest fire 

occurrences in Fujian was increased with lower elevation, flatter terrain, and denser road. The 

findings are generally supported by the GWR models. Human activities more likely occur in the 
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low elevation, flatter terrain, and dense road nets, which may lead to higher fire risks. Several 

empirical studies on forest fires and their driving factors in Fujian province have found that 

human activities are more frequent at low-altitude, in areas with gentle slopes, and close to roads, 

which lead to a higher probability of human-caused fires (Guo et al. 2016a; Guo et al. 2016c). 

However, according to the global models, it was found that areas with high population density 

had fewer forest fires, where human activity was also very frequent. The finding was consistent 

with the GWR models that showed a negative correlation between population density and fire 

occurrence in the eastern coastal areas. High population density tend to be concentrated in cities 

or developed areas with developed industry and low forest coverage, where the combustible 

material is not as continuous as the vegetation in remote forests (Vega Garcia et al. 1995; Maingi 

and Henry 2007; Miranda et al. 2012; Guo et al. 2016a, 2016c).  

In addition, both global and GWR models similarly indicated that the aspect index (value 

from -1 to 1) was negatively associated with fire occurrence. The smaller the aspect index was, 

the closer the region was to the south and southwest, with stronger sunshine, higher 

temperatures, and faster evaporation. These features lead to dryer fuel making it more likely for 

forest fires to occur (Hu 2005). Generally, a higher NDVI means higher fuel load and higher 

probability and frequency of forest fires, but Fujian province shows the opposite effect. One 

explanation for this is that vegetation cover affects wildfire by affecting the temperature of fine 

fuel on the underlying surface. In the areas with high vegetation coverage, the surface 

temperature is low, which makes it difficult for soil moisture to evaporate, leading to higher fuel 

moisture content, thus lower likelihood of burning (Huang et al. 2015).  

The GWR models illustrated that the model coefficients of crop cover were positive in 

the north, but negative in the south. One possible explanation was that the agricultural land was 
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mainly distributed in the southeastern part of Fujian province. The forest coverage rate in these 

areas was relatively low, so the number of forest fires was negatively correlated with the crop 

area. In contrast, the forest area in the northern region is large, and the farmland is mostly in the 

forest interaction zone. As the crop area increased, the frequency of agricultural production 

activities increased, which was likely to lead to more forest fires. Additionally, slope was 

negatively associated with the fire occurrence in the north and had an opposite impact in the 

south. It was because more grassland distributed in southern Fujian. When the slope is large, the 

grass become drier and may cause more fires. There are more forests in the north, and fewer 

human activities occur in high-slope areas, resulting in low human-caused fire source. 

Meteorological factors have been found to be important driving factors of forest fires in 

Fujian (Guo et al. 2017), and this was confirmed by our research. According to the global 

models, the precipitation and relative humidity have positive impacts on fire occurrence over the 

study area. Although the findings seem controversial to the general understanding that as rainfall 

increases, fewer fire will occur. One explanation for this is more rainfall and humidity are 

beneficial to the growth of ground-cover vegetation, and increased amounts of surface fuel load 

which increases the risk of forest fire occurrence. In the Kruger National Park of South Africa, 

van Wilgen et al. (2000) observed a strong positive correlation between precipitation rates and 

fire activity. Spessa et al. (2005) and Randerson et al. (2005) also found a similar positive 

association between precipitation and fire activity in north Australia using different satellite data 

sets. In contrast, the GWR models provided more specific spatial relationships between 

meteorological factors and fire occurrence. Similar to the global models, the precipitation is 

positively correlated with fire occurrence in the west of Fujian, but negatively in the eastern 

coastal regions. Since there is plenty of rainfall in the coastal areas, the role of precipitation is 
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more likely a limiting factor on fire occurrence rather than a promoting factor of fuel load, which 

will positively impact the fire occurrence. The correlation between relative humidity and fire 

occurrence is also spatially different, positive in the north and negative in the center of Fujian 

(Figures 2.5 and 2.6).  

4.3 Other potential models to consider 

There are other potential candidate models for dealing with the overdispersion problem in 

a count data such as a quasi-Poisson model, which is consider an intermediate model between 

Poisson and NB models. The main problem with quasi-Poisson is that there is no corresponding 

distribution or likelihood for the model, and hence some extremely useful statistical tests and fit 

measures (e.g., AIC, LR and etc.) are unavailable. Researchers made different decisions and 

comments on which model is appropriate to the over-dispersed data (Gardner et al. 1995; Power 

and Moser 1999; Potts and Elith 2006; Ver Hoef and Boveng 2007). In recent years, people have 

paid attention to the comparison and selection between quasi-Poisson and negative binomial 

(NB) models. Seyoum et al. (2016) proposed an approach for detecting which model is 

appropriate to the count data with overdispersion. They identified a cut-off point by equating the 

two variance functions of quasi-Poisson and NB models. Then, if the mean of count response 

variable is less than the cut-off point, the negative binomial model should be considered; while if 

the mean of the variable of interest is greater than the cut-off point, the quasi-Poisson model is 

more appropriate. For our fire count data, we fit both quasi-Poisson and NB models to obtain 

their dispersion parameters as follows: the quasi-Poisson dispersion parameter Φ = 6.3220 and 

the negative binomial dispersion parameter θ = 0.9026, so that the cut-off point = (Φ-1) / θ = 

5.8963. Since the mean of the forest fire count was 4.25 < cut-off point, the NB model was more 

appropriate and preferred to the quasi-Poisson model in this study.   
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5. Conclusion 

In this study, the spatial varying relationships between forest fire occurrence and driving 

factors in Fujian province from 2001 - 2016 were evaluated using two global models (Poisson 

and negative binomial (NB)) and two geographically weighted generalized linear models 

(GWPR and GWNBR). Our results indicated that, compared to the global Poisson and NB 

models, the GWR generalized linear models had better performance in model fitting, predictions, 

and spatial distributions of model predictions, as well as detecting the impact hotspots of the 

predictor variables. The GWR generalized linear models can effectively incorporate spatial 

dependence and non-stationary relationships in the count response variable. Simultaneously, we 

compared the performance of GWPR and GWNBR in modeling spatial count data with 

overdispersion and found the estimated model coefficients of GWNBR were more precise and 

stable than those of GWPR.  

In addition, we determined the drivers and spatial distribution of subtropical forest fires 

in Fujian province, China based on the above methods. Two types of models (global and GWR) 

similarly indicated that the number of forest fire occurrences in Fujian was increased with lower 

elevation, flatter terrain, and denser road. Compared to the global models, the GWR models can 

indicate more specific spatial relationships between drivers and fire occurrence. For example, the 

precipitation and population density had different impacts on fire occurrence in the coastal areas 

than other regions of the study area. In summary, GWNBR is an effective and appropriate 

method for analyzing the occurrence of spatially varied and over-dispersed forest fires, It clearly 

indicated the key fire drivers and their influences and can provide reliable insight into forest fire 

mapping, prevention, and management based on local character prospects. 
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Chapter III: Exploring Spatially Varying Relationships between Forest Fires 

and Environmental Factors at Different Quantile Levels 

Abstract. In practice, forest fire managers have great interest in the impacts of driving factors 

on forest fire occurrence at various risk levels beyond an average fire risk. Using the forest fire 

occurrence data collected in Fujian province, P.R. China, we applied global quantile regression 

(QR) and geographically weighted quantile regression (GWQR) to investigate the spatially 

varying relationships between forest fires and environmental factors at the different quantiles 

(e.g., 50th, 75th, 90th, and 99th) of fire occurrence. Our results indicated that (1) at each 

quantile, the regression coefficients of both global QR and GWQR models were negative for 

elevation, slope, NDVI, and positive for the settlement density, national road density, and grass 

cover; (2) the low frequency of high fire occurrence events may dramatically affect the analyses 

and modeling on the relationships between fire occurrence and a specific environmental factor; 

(3) GWQR indicated that the relationships between forest fires and environmental factors 

significantly varied across the study area at different quantiles of forest fires; and (4) the GWQR 

models performed better in model fitting and prediction than the QR models at all quantiles. 

Therefore, the GWQR models provided a more complete view of forest fire distribution and 

highlighted the high risky locations of forest fires across the Fujian province, which would help 

the government agencies to make better decisions on where and what the fire management and 

prevention should focus on. 

 

Keywords: forest fire count; risk assessment; quantile regression; geographically weighted 

quantile regression.  
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1. Introduction 

Forest fires burn vegetation layers partially or completely and affect post-fire soil and 

vegetation processes such as soil erosion, debris flow, flooding, vegetation recovery, and 

changes in biodiversity (Scott et al. 2013). Forest fires can be extremely destructive, killing 

people, and destroying homes and other structures when they occur in wildland-urban interfaces. 

Although forest fires are inevitable, the destruction and damage from the hazards can be lowered 

through the principles of decision science and risk management (Calkin et al. 2014). Wybo et al. 

(1995) believed that the key point for prevention and firefighting was risk assessment. It can be 

done from different points of view and at different time scales, such as from historical data, by 

real time monitoring, and/or by forecasting (Blanchi et al. 2002). In addition to forest fire danger 

index systems (e.g., Bradshaw et al. 1984; Burgan et al. 1998; Lopez et al. 2002), statistical 

modeling has been applied and played an important role for the risk assessment of forest fires 

(Brillinger et al. 2003). Logistic regression was usually fitted to estimate the probability of forest 

fire ignition (Preisler et al. 2004; Preisler and Westerling 2007). Poisson regression was often 

utilized for estimating the number of forest fire occurrence (Mandallaz and Ye 1997; Wotten et 

al. 2010). In other cases, multiple linear regression was used (e.g., McKenzie et al. 2000; 

Syphard et al. 2007; Oliveira et al. 2012). 

However, most published regression models are global in nature, assuming that the 

relationships between response and predictors are spatial stationary and / or homogenous. These 

assumptions may not be reasonable and appropriate for identifying the relationships between 

forest fire ignition / occurrence and influence factors across a large geographical region 

(Koutsias et al. 2010; Finney et al. 2011). On the other hand, geographically weighted regression 

(GWR) has become popular in different disciplines in recent decades (Fotheringham et al. 1998; 
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Foody 2003). Later, the framework of GWR has been extended to generalized linear models, 

such as geographically weighted logistic regression (GWLR) and geographically weighted 

Poisson regression (GWPR) (Nakaya et al. 2005). Previous studies in forest fire modeling 

usually applied the GWLR or/and GWPR method to explore the relationships between fire 

occurrence and regional variations of driving environmental factors (Koutsias et al. 2010; 

Martínez-Fernández et al. 2013; Rodrigues et al. 2014; Oliveira et al. 2014; Rodrigues et al. 

2018).  

Furthermore, most regression models, including global, GWR, and GWR generalized 

models, focus on the “mean or average” relationships between response variable and predictor 

variables so that they provide the prediction on the conditional mean (i.e., central behavior) of 

the response variable given the values of the predictors (Yu et al. 2003). In contrast, quantile 

regression (QR) provides the ability of exploring more complete and comprehensive picture of 

relationships between response variable and predictor variables (Koenker and Bassett 1978). It 

has been applied to various study fields such as ecology, investment, finance, economics, 

medicine, engineering, and etc. (e.g., Cade and Noon 2003; Zhang et al. 2005; Huang et al. 

2017), as well as in wildfire studies (Mueller et al. 2014; Barros and Pereira 2014; Rijal 2018). 

Thus, QR can be particularly useful when people are interested in the relationships between 

forest fires and driving environmental factors at different risk levels and/or extremes of a fire 

response variable (e.g., probability of ignition or occurrence). Recently, Chen et al. (2012) 

developed geographically weighted quantile regression (GWQR) to integrate the GWR 

methodology with the traditional QR framework. This innovative approach provides a 

foundation for modeling spatially nonstationary relationships between variables at a range of 
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conditional quantiles of the response variable distributions. Since then, to our best knowledge, 

there were very limited applications of GWQR in ecosystems and wildfire management.  

In China, Fujian province ranks the highest forest coverage in the nation, but experiences 

high annual forest fire incidences, with nearly 15,000 forest fires occurring from 2000 to 2010. 

Although the fire prevention efforts have reduced the number of annual forest fires in recent 

years, the total area of forest burned has increased in the Fijian province (Guo et al. 2018). 

However, the analysis of influencing factors on forest fires is a relatively new and developing 

study field in China, which has been mainly focused on the boreal forests in northern China (Wu 

et al. 2014; Guo et al. 2015; Guo et al. 2016b). Up to date, limited modeling approaches have 

been utilized to develop statistical models for the risk assessment and prevention of forest fires in 

China, including logistic regression (Guo et al. 2015), multiple linear regression (Liu et al. 

2012), and random forests (Wu et al. 2014; Guo et al. 2016c; Guo et al. 2017), which results in 

less informative fire management plan, especially in the subtropical regions like the Fujian 

province. 

The objective of this study was to apply global quantile regression (QR) and 

geographically weighted quantile regression (GWQR) to model the spatially varying forest fires 

against the environment factors of infrastructure, topography, and meteorology at different 

quantiles, rather than the conditional mean / average, of the forest fire occurrence. Hopefully, 

these quantile models enable us to explore the full distribution of forest fires and identify “high 

fire occurrence” locations or areas across the Fujian province, China. 
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2. Data 

2.1 Study area 

Fujian province is located in a sub-tropical region of China with a total land area of 

124,000 km2 (Figure 3.1). It ranks the highest forest coverage in the nation (about 66% of Fujian 

province is covered by forests and vegetation), but experiences high annual forest fire 

incidences, with nearly 15,000 forest fires occurring from 2000 to 2010 (Guo et al. 2018). The 

dominant tree species in Fujian include Massoniana (Pinus massoniana Lamb.), Chinese fir 

(Cunninghamia lanceolate (Lamb.) Hook), Casuarina (Casuarina equisetifolia L.), and 

Pubescens (Phyllostachys heterocycle (Carr.) Mitford cv. Pubescens). The climate is warm and 

humid with an average annual rainfall of 1400 – 2000 mm and average temperature of 17 – 21 

°C. Forest fire season is typically spanning from September to April (Guo et al. 2016a).  

 
Figure 3.1 Location map of Fujian province, P.R. China. 

 

2.2 Data collection 

2.2.1 Fire data (response variable) 

javascript:;
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In this study, we used MODIS hotspots product (MOD14A1) which has been considered 

as a reliable and suitable source for monitoring forest fires to analyze the relationship between 

forest fire occurrence and environmental factors in Fujian, China (Guo et al. 2016 a,b; Su et al. 

2019). The time span of the study is 16 years (2001-2016). Since MOD14A1cannot distinguish 

forest fires from non-forest fires that occur in cities/towns, construction sites, agricultural lands, 

and other areas, we further processed the fire data by: (1) removing the fire points in 

cities/towns, construction sites, and farmland based on a 1 km resolution land-use map; and (2) 

extracting fire points based on the time of fire occurrence within the fire season of the study area 

(September 15 to April 30 of the following year). The whole study area was divided into 4 × 4 

km grids (a total of 7433 grids) using ArcGIS 10.2 (ESRI 2010) and the total number of forest 

fire occurrences in each grid were calculated as the response variable in the model fitting. The 

quantiles of forest fire occurrence were calculated and summarized in Table 3.1. The frequency 

and spatial distributions of the forest fire occurrence are illustrated in Figure 3.2. 

Table 3.1 Distribution summary of the forest fire occurrence. 

 

τ 0.25 0.50 0.60 0.75 0.80 0.90 0.95 0.99 1.0 

( )  1 3 3.2 6 7 10 14 27 153 
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Figure 3.2 Frequency and spatial distributions of the forest fire occurrence. 

 

2.2.2 Potential driving factors (predictor variables) 

A total of 18 predictor or explanatory variables were collected and grouped into four 

categories, including topographical, meteorological, human related, and vegetation and land use 

predictors. The specific variable collection processes are as follows: 

Topographic variables  

Topographic variables included elevation (km), slope (degree), and aspect index. High 

resolution (25 m) Digital Elevation Model (DEM) data were collected from the National 

Administration of Surveying, Mapping and Geoinformation of China 

(http://www.gscloud.cn/sources). The slope and slope direction were derived from DEM, and 

aspect was then converted into an aspect index using the following formula: Aspect Index = 

cos(θ×π / 180), where θ is the degree of slope generated in ArcGIS ranging from 0 – 360° so that 

the aspect index ranges from -1 to 1 (Guo et al. 2017). The average elevation, slope, and aspect 

index of each grid were then extracted using ArcGIS 10.2.  

Meteorological variables 

http://www.gscloud.cn/
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Meteorological variables included precipitation (mm/day), temperature (°C), and relative 

humidity (%), which were obtained from the platform of National Earth System Science Data 

Center (http://www.geodata.cn), an important component of National Science and Technology 

Infrastructure. The climatic variables are interpolated from ANUSPLIN, a software package 

developed by Hutchinson (2004) based on the thin-plate smoothing method to generate 

hydrometeorological maps. ANUSPLIN includes a linear covariate to represent the elevation 

dependent meteorological factors, and it outperformed in climate interpolation (Zhang et al. 

2010) and long period climatic data (McKenney et al. 2006). Raster calculator in ArcGIS 10.2 

was used to calculate the annual average of each meteorological variable for each grid from year 

2001 to 2016. Precipitation and temperature impact the occurrence of forest fire by limiting the 

fuel moisture content. Therefore, they are reasonable and effective alternative fuel factors when 

other fuel factor is not available. In addition, the annual meteorological factor is a traditional and 

better indicator to measure the influence of climate change on forest fires, compared to the 

average meteorological data during the period of forest fire (Scholze et al. 2006; McCoy and 

Burn 2005; Xystrakis et al. 2013).   

Human factors  

Human factors included the socioeconomic variables (per capita GDP and population 

density) and infrastructural variables. The GDP and population data were obtained from 

Resource and Environmental Data Cloud Platform (http://www.resdc.cn/Default.aspx) and the 

data resolution was 1 km. The infrastructural variables included road density (km/km2, ratio of 

road length to the grid area) and water density. A 1:250,000 vector map of infrastructure was 

provided by the National Geomatics Center of China (http://www.ngcc.cn/). We classified the 

road into national, provincial, and local road. Their buffer areas were built based on 50 m, 25 m, 

http://www.geodata.cn/
http://www.resdc.cn/Default.aspx
http://www.ngcc.cn/
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and 10 m, respectively, by using the tool of neighborhood analysis in ArcGIS 10.2. The ratio of 

the road area was calculated in each grid (Hoyo et al. 2011). All the selected human factors for 

each grid from year 2001 to 2016 were calculated using ArcGIS 10.2.  

Vegetation coverage and land use factor  

The Normalized Difference Vegetation Index (NDVI) was used to reflect the vegetation 

coverage of the study area. The NDVI data were derived from the MODIS NDVI product with a 

spatial resolution of 500 m provided by the Geospatial Data Cloud (http://www.gscloud.cn/). The 

land use data (1 km resolution) were obtained from the Resource and Environmental Data Cloud 

Platform (http://www.resdc.cn/Default.aspx). It provides the spatial distribution of vegetation 

types by digitizing the collections of vegetation type in China on the scale 1 : 1 million. Forest, 

including subtropical evergreen broad-leave forest type and mixed conifer and broad-leave forest 

type, covers about 64.95% of the total area. Vegetation type of shrub contains the subtropical 

evergreen broad-leave shrub, tropical evergreen broad-leaved shrub, and deciduous and broad-

leaved shrub, taking about 20.40% of the study region. The cultivated land, fruit forest, and non-

timber product forest are categorized into the cropland, covering about 12.6% of the total area. 

Grass (subtropical grass and tropical grass) only covers 1.69% of the total area. About 0.36% of 

the total area is the development land. According to the survey, regional forest coverage 

proportion is 66.80% and the agriculture land is about 11%, indicating the land classification of 

the raster data is close to reality. ArcGIS10.2 was used to calculate the proportion of each land 

cover in each grid. 

2.2.3 Multicollinearity analysis among explanatory variables 

We used the variance inflation factor (VIF) to detect the multicollinearity among 

variables before fitting the regression models. In general, a VIF above 10 indicates high 

http://www.gscloud.cn/
http://www.resdc.cn/Default.aspx
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correlations between explanatory variables (Guo et al. 2017). In this study, the socioeconomic 

variable of GDP was removed because its VIF was 18.58, while other 17 explanatory variables 

were used to fit both global and GWR quantile models. The descriptive statistics of the response 

variable (i.e., forest fire occurrence) and 17 predictor variables were listed in Table 3.2. The 

spatial distributions of 17 predictor variables across the Fujian province are shown in Figure 3.3. 
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Table 3.2 Descriptive statistics of the response and predictor variables. 

 

Variable Mean Median Std Dev Minimum Maximum 

Fire Occurrence 4.2500 3.000 6.4271 0.0000 153.000 

Elevation (km) 0.4885 0.4688 0.2714 -0.0064 1.7577 

Slope (degree) 19.78 20.72 5.77 0.105 37.68 

Aspect Index -0.0073 -0.0116 0.1186 -0.5728 0.5523 

Precipitation (mm/day) 1670 1682 158.1292 1247 2042 

Temperature (°C) 18.3 18.0 1.1564 15.27 21.12 

Humidity (%) 76.07 76.00 1.4118 73.00 79.20 

River Density (%) 0.5969 0.5584 0.1962 0.0015 1.6537 

Settlement Density (%) 0.4523 0.0000 3.7411 0.0000 95.4832 

National Road Density (%) 0.2006 0.0000 0.7451 0.0000 6.5424 

Provincial Road Density (%) 0.2176 0.0000 0.5220 0.0000 5.3110 

Local Road Density (%) 1.052 1.051 0.5848 0.0000 4.873 

Population (people/km2) 283.9 133.5 535.7 56.8 17899.5 

NDVI 0.7742 0.7910 0.0662 0.3287 0.8729 

Forest Cover (%)  51.752 55.374 39.487 0.000 100.00 

Shrub Cover (%) 18.608 0.000 28.160 0.000 99.99 

Grass Cover (%) 1.409 0.000 9.583 0.000 99.99 

Crop Cover (%) 10.161 0.000 22.499 0.000  99.99 
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Figure 3.3 Spatial distributions of (a) Forest fire counts classified by quantiles, (b) Elevation, (c) Slope, (d) Aspect index, (e) 

Precipitation, (f) Relative humidity, (g) Temperature, (h) River density, (i) Settlement density, (j) National road density, (k) Provincial 

road density, (l) Local road density, (m) Population density, (n) NDVI, (o) Forest cover, (p) Shrub cover, (q) Grass cover, and (r) Crop 

cover.
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3. Method 

3.1 Theoretical background  

3.1.1 Quantile regression (QR) 

For a random response variable Y with a cumulative distribution function (cdf)

( ) ( )yYPryF = , the τth quantile of Y is defined as the inverse of the cdf at τ, that is the value 

of Y such that ( ) ( ) == YPYF , where 0 < τ < 1. Thus, the proportion of the population with 

the response variable below ( )  is τ. The inverse function ( ) ( ) ( )( )== − YF:yinfFQ 1
 is 

called the quantile function of F(Y). The general τth sample quantile ( ) , which is the analogue 

of ( )Q , can be obtained by minimizing: 

( ) ( )( ) ( ) ( )( ) ( )( )
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where the loss function   assigns a weight of τ to positive residuals ( )−iY  and a weight of 

(1 – τ) to negative residuals (Koenker 2005). 

QR is designed to model the effects of p predictor variables (X) on the conditional 

percentiles or quantiles of a response variable, such that ( ) ( ) ( )+= XX|Q , where 0 < τ < 1. 

However, the model error term ε(τ) is unspecified and is only assumed that ε(τ) satisfies the 

quantile restriction ( )( ) 0X|Q =  (Koenker and Bassett 1978). The QR coefficients can be 

obtained by solving for any quantile 0 < τ < 1: 

 ( ) ( )( )
=

 −=
n

1i

XYminˆ        [2] 

where   is a V-shaped piecewise loss function (Koenker 2005). For the case of τ = 0.5, the QR 

is the median regression, also known as L1 regression estimator. 
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3.1.2 Geographically weighted quantile regression (GWQR) 

To investigate the spatial heterogeneity of a regression relationship, the data must be 

collected with the location coordinates (ui, vi) for each observation i (i = 1, 2,…, n). The local 

information leads to estimate the localized regression coefficients of the relationship of interest. 

Chen et al. (2012) expressed the GWQR as follows: 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )++=+= 
=

i

p

1k

kiiikii0iiiii Xv,uv,uv,uXY  [3] 

where Yi is the response variable, Xk is a set of p predictor variables (k = 1, 2,…, p), εi is the 

error term of the conditional τth quantile function, and ( )( ) ( )( ) ( )( )iipii1ii0 v,u,,v,u，v,u    

are the local QR coefficients for the τth quantile at the ith location.  

For a given regression point (u0, v0), the solution of the GWQR coefficients for the τth 

quantile in Eq. [3] can be obtained by minimizing the geographically weighted loss function 

using the data within the kernel window: 

 ( ) ( )( ) ( )( ) 
= =
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where W0 is the spatial weights defined by a kernel function K(d0i / h), where h is the bandwidth 

and d0i is the distance between each neighboring location i and the regression point (u0, v0). Note: 

there is no explicit form available for the solution of the model coefficient vector in Eq. [4]. 

Instead, it can be equivalently formulated as a linear programming optimization problem (Chen 

and Wei 2005; Koenker 2005) as follows: let ( ) ( )ii00 v,uv,u =  (i = 1, 2,…, n), the estimator 

( )( )iik v,uˆ   (k = 0, 1, 2,…, p) for each GWQR coefficient can be obtained so that the 

corresponding τth quantile is estimated by  
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 ( ) ( )( ) ( )( ) ( )( )
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p
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iikikii0iiiiii v,uˆXv,uˆv,uˆXv,u,XQ̂   [5] 

where ( )( )ii v,uˆ   is the vector of regression coefficient estimates and Xi denotes the vector of 

observed predictor variables at the ith location ( )ii v,u . More details on the GWQR coefficient 

estimates, standard errors of regression coefficients, kernel function, bandwidth selection, and 

the assessment of spatial non-stationarity were available in Chen et al. (2012). 

3.2 Regression model 

We chose the following linear models for both global QR and GWQR to explore the 

relationships between forest fire occurrence (Yi) and predictor variables at the four quantiles of 

Yi (τ = 0.50, 0.75, 0.90, and 0.99), respectively: 

Yi(τ) = β0 + β1X1i + β2X2i + ... + β16X16i + β17X17i + εi   [6] 

 Yi(τ) = β0(ui,vi) + β1(ui,vi)X1i + β2(ui,vi)X2i + … + β17(ui,vi)X17i + εi [7] 

The SAS procedure PROC QUANTREG was used to fit the global QR models (Eq. [6]) 

(SAS Institute, Inc. 2013), and the SAS macro provided by Chen et al. (2012) was used to fit the 

GWQR models (Eq. [7]). 

3.3 Bandwidth selection for GWQR 

In this study, we used Akaike Information Criterion (AIC) to decide the optimal 

bandwidth and related kernel function for estimating each regression coefficient for each 

geographic location i and each predictor variable (Fotheringham et al. 2002; Guo et al. 2008). 

Variogram model (Bailey and Gatrell 1995) was fitted through the variogram values in order to 

find the optimal bandwidth and kernel function. We tried the residuals of global quantile models 

at the four quantiles for variogram respectively. All optimal kernel functions and estimated 

bandwidth were chosen at the smallest AIC.  
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3.4 Assessment of spatial autocorrelation and nonstationary 

Existence of spatial autocorrelation and heterogeneity can be evaluated from the model 

residuals of the four global quantile regression models by Moran’s Index (Moran 1950). The 

positive Moran’s I values indicated that a “high fire occurrence number (HON)” pixel was 

neighboring with the HON pixels, while a “low fire occurrence number (LON)” pixel was 

neighboring with the LON pixels across the study area.  

To evaluate the spatial variation in regression coefficients of GWQR, we followed the 

approach in Chen et al. (2012). At a specified quantile, the interquartile ranges (IQR) of the local 

model coefficients computed by GWQR were compared with the corresponding standard errors 

of the global QR model coefficients. When IQR was twice as large as the standard error, it would 

indicate that spatial non-stationarity existed in the relationship between response variable and a 

specific predictor variable. 

3.5 Model evaluation 

The pinball loss function was used to evaluate the prediction accuracy of the quantile 

regression models. Different from the classic regression models, in which the goal is to have the 

model prediction as close as possible to the observed values of response variable, quantile 

regression is designed to estimate the conditional quantiles by minimizing asymmetrically 

weighted errors, which is called pinball loss. It returns a value interpreted as the accuracy of a 

quantile regression model. The lower the pinball loss is, the more accurate the quantile model is 

(Yu et al. 2018). The pinball loss function in quantile regression can be expressed as: 

Lτ = (Y − Z) τ               if   Y ≥ Z 

Lτ = (Z − Y)(1 − τ)     if   Y < Z      [8] 
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where Y represents the observed quantile value and Z is the predicted quantile value at the target 

quantile τ.  

4. Results 

4.1 Relationships between forest fires and environmental factors based on global QR 

The global QR models were fitted with the seventeen predictor variables at τ = 0.50, 0.75, 

0.90, and 0.99 quantiles, respectively. In terms of statistical testing on the regression coefficients, 

the predictor variables of elevation, slope, and NDVI were statistically significant at all four 

quantiles, while local road density, forest cover, and shrub cover was statistically non-significant 

at the significance level α = 0.05 (Table 3.3). The significance of other predictors varied 

depending on a particular quantile. For example, the predictors of precipitation, humidity, and 

population density were significant at τ = 0.50, 0.75 and 0.95 quantiles, but not significant at τ = 

0.99 quantile. Other predictor variables were only important at a particular quantile (Table 3.3). 

The regression coefficients of three topographical variables (elevation, slope, and aspect 

index), NDVI, and crop cover were negative at all quantiles, indicating that the forest fire 

occurrence reduced with higher elevation, steeper terrain, denser vegetation and / or crop cover. 

In contrast, precipitation, settlement density, and national road density were positively related to 

the forest fire occurrence, implying that heavier rainfall, denser settlement and larger national 

road occupancy may cause higher chance of forest fire occurrence (Table 3.3). Some variables 

such as precipitation, settlement density, humidity, and population density were significant at τ = 

0.50, 0.75, and 0.90 quantiles, but not at τ = 0.99 quantiles. In particular, settlement density was 

significant at low quantiles (0.50, 0.75), indicating settlement density had more contribution in 

affecting the LON pixels (i.e., less forest fire occurrences). Inversely, grass cover was not 

significant at τ = 0.50 quantile, but strongly related to the HON pixels (Table 3.3). The spatial 
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maps of the coefficients of each predictor variable at the four quantiles confirmed that the 

relationships between fire occurrence and some predictors were fluctuated as the quantile 

increased (Figure 3.4). 
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Table 3.3 Global quantile regression (QR) estimates for the 0.50, 0.75, 0.90, and 0.99 quantiles. 

Parameters 
50.0=  75.0=  90.0=  99.0=  

Estimate 
Standard 

Error 
p-value Estimate 

Standard 

Error 
p-value Estimate 

Standard 

Error 
p-value Estimate 

Standard 

Error 
p-value 

Intercept -23.972 5.6425 <.0001 -23.294 10.2676 0.0233 -73.928 16.6996 <.0001 107.340 92.1423 0.1605 

Elevation -3.7732 0.1758 <.0001 -6.8132 0.3157 <.0001 -8.9991 0.4444 <.0001 -18.6104 2.5360 <.0001 

Slope -0.0504 0.0144 <.0001 -0.0478 0.0236 0.0434 -0.196 0.0374 <.0001 -0.5613 0.1724 0.0065 

Aspect Index -1.1098 0.3368 0.0010 -1.3137 0.6183 0.0336 -1.7822 0.9224 0.0534 -2.8749 4.0387 0.4766 

Precipitation 0.0027 0.0004 <.0001 0.0030 0.0007 <.0001 0.0066 0.0011 <.0001 0.0084 0.0052 0.1050 

Humidity 0.331 0.0521 <.0001 0.45 0.091 <.0001 1.0062 0.1284 <.0001 -0.2806 0.7505 0.7085 

Temperature 0.1379 0.0777 0.0759 0.0512 0.355 0.7057 0.6082 0.1933 0.0017 -1.2191 1.0559 0.2483 

River Density 0.5599 0.3281 0.0880 0.9599 0.5352 0.0729 2.4154 0.9083 0.0079 -1.7924 4.0387 0.6880 

Settlement Density 0.1196 0.0258 <.0001 0.3853 0.1236 0.0018 0.6683 0.4699 0.1500 0.7496 5.4149 0.8899 

National Road Density 0.3034 0.0998 0.0024 0.5114 0.2168 0.0183 0.7225 0.3769 0.0553 6.8423 3.1275 0.0287 

Provincial Road Density -0.0043 0.1001 0.9657 -0.179 0.1721 0.4642 0.2404 0.5170 0.6420 14.9971 4.4116 0.0007 

Local Road Density -0.0202 0.0768 0.7927 -0.0997 0.1517 0.5111 -0.1298 0.2069 0.5304 -0.2647 0.7839 0.7356 

Population  -0.0014 0.0002 <.0001 -0.002 0.0003 <.0001 -0.0028 0.0005 <.0001 -0.005 0.0041 0.2223 

NDVI -3.1728 1.3755 0.0211 -9.1403 2.5307 0.0003 -9.7537 4.2174 0.0208 -42.4522 11.8378 0.0003 

Forest Cover -0.1443 0.1315 0.2727 0.0906 0.2286 0.6920 -0.0134 0.3952 0.9730 -0.6700 1.2367 0.5880 

Shrub Cover 0.1240 0.1679 0.4600 0.4191 0.2888 0.1468 -0.2387 0.4550 0.5998 -1.2901 1.9927 0.5174 

Grass Cover 1.4590 1.0544 0.1665 2.9718 1.3932 0.0329 4.0933 1.8053 0.0234 7.0644 4.2930 0.0999 

Crop Cover -1.2928 0.2750 <.0001 -2.5684 0.4361 <.0001 -1.8676 1.0289 0.0695 -6.7250 3.3823 0.0468 

Note: The quantile model coefficient indicates how much the response variable changes at a quantile τ for one unit change in a predictor variable. For 

example, at a moderate risk level (τ = 0.50), the predicted fire occurrence will be decreased by 3.7732 when the elevation rises one kilometer, while 

at a high risk level (τ = 0.99), the predicted forest fire occurrence will be decreased by 18.61 when the elevation rises one kilometer.
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Figure 3.4 Model coefficient estimates of the global quantile regression models at different 

quantiles. 
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4.2 Spatial autocorrelation and nonstationary analysis 

Table 3.4 revealed that the spatial autocorrelations were statistically significant in the 

study area. The Moran’s I became greater in the model residuals for larger quantiles (e.g., τ = 

0.90 and 0.99 quantiles), implying that the HON pixels (i.e., more forest fire occurrences) were 

more spatially clustered. We performed the variogram analyses on the residuals of global 

quantile models at the four quantiles. Specifically, the kernel functions and estimated bandwidths 

at τ = 0.50, 0.75, and 0.90 quantiles are similar, but dissimilar at τ = 0.99 quantile (Table 3.4).  

In addition, our results indicated that most IQRs of the localized model coefficients were 

at least twice the standard errors of the global model coefficients, except for slope, aspect index, 

river density, provincial road density, local road density, and shrub cover at τ = 0.99 quantile, 

suggesting that the relationships between forest fire occurrences and some environmental factors 

indeed varied across the Fujian province (Table 3.5).  

Table 3.4 Moran’s Index and variogram estimations for the residuals of global quantile 

regression models. 

Statistics 
Residuals

50.0=  

Residuals

75.0=  

Residuals

90.0=  

Residuals

99.0=  

Moran’s Index 0.0165 0.0145 0.0210 0.0263 

Z-score 64.21 57.81 83.40 104.2 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

Kernel Spherical Spherical Spherical Exponential 

Bandwidth (m) 136,361 134,707 137,115 300,081 
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Table 3.5 Summary of model parameter estimation of geographically weighted quantile regression models. 
 

Statist

ics 
τ  

βInterc

ept 
βElevation βSlope 

βAspect 

index 

βPrecipitat

ion 

βRelative 

Humidity 

βTemperat

ure 

βRiver 

density 

βSettlement 

density 

βNational 

road density 

βProvincial 

road density 

βLocal road 

density 

βPopulat

ion 
βNDVI 

βForest 

cover 

βShrub 

cover 

βGrass 

cover 

βCrop 

cover 

Mean 

0.50 -13.51 -2.779 -0.0657 -0.7158 -0.0036 0.3271 0.3720 0.5404 0.1348 0.3971 -0.0336 0.021 -0.0008 -8.024 -0.1068 0.4426 5.747 -0.8276 

0.75 -19.52 -5.838 -0.0405 -1.5363 -0.0014 0.5249 0.2822 1.1442 0.7524 0.7609 -0.1928 -0.1732 0.0001 -17.594 0.2048 0.0573 6.5613 -1.3778 

0.90 -4.041 -7.698 -0.1133 -2.4093 -0.0033 0.5999 0.0088 1.372 1.828 1.9107 -0.0644 -0.3566 0.0026 -25.087 -0.5396 -0.7937 11.105 -2.0121 

0.99 195.9 -6.796 -0.379 1.1198 -0.0467 -0.04726 0.3227 4.139 3.038 3.6985 8.4171 -0.5973 -0.0012 -112.66 -1.4494 -0.4667 1.2935 5.909 

Media

n 

0.50 -12.75 -2.669 -0.0538 -0.8845 -0.0038 0.4358 0.2944 0.4364 0.0979 0.3708 -0.0826 0.0193 -0.0006 -8.355 -0.0856 0.1812 5.643 -0.6782 

0.75 -26.57 -5.519 -0.0202 -1.1639 -0.0024 0.6193 0.3839 0.7088 0.5125 0.7163 -0.2963 -0.2427 -0.0004 -16.44 0.1800 0.0754 5.2588 -1.0895 

0.90 -28.04 -7.648 -0.0952 -2.1791 -0.0045 0.8239 0.2206 1.306 1.3832 1.7431 -0.0061 -0.4442 0.0024 -26.282 -0.278 -0.5999 6.3304 -1.8226 

0.99 193.2 -6.187 -0.3973 0.1138 -0.0517 -0.2925 0.4252 5.388 2.795 3.4511 8.4302 -0.9466 -0.0018 -112.49 -0.6857 -0.5331 -0.6775 4.428 

Minim

um 

0.50 -202.6 -9.649 -0.4293 -3.6184 -0.0206 -2.0287 -1.814 -2.4516 -0.1673 -0.7625 -1.1016 -1.0113 -0.0079 -43.849 -1.3544 -3.7099 -5.665 -4.5105 

0.75 -243.3 -16.85 -0.6173 -9.8455 -0.0308 -3.1822 -3.8673 -4.5859 -0.2564 -0.9994 -1.5665 -1.7811 -0.0126 -60.886 -2.3739 -2.2614 -30.225 -8.3854 

0.90 -422.5 -21.593 -1.0046 -10.737 -0.0436 -6.1908 -6.5644 -6.098 -3.0567 -1.0502 -3.2589 -2.7742 -0.014 -84.492 -6.4118 -8.3341 -67.269 -18.998 

0.99 33.62 -18.22 -0.6931 -7.8383 -0.1092 -4.4063 -12.085 -10.147 -1.457 -2.3926 -0.0584 -2.371 -0.0082 -277.92 -7.4125 -9.7132 -20.874 -12.486 

Maxi

mum 

0.50 190.3 3.641 0.3187 2.6024 0.0111 2.1126 2.5463 4.4767 0.78 1.5756 1.2759 1.0538 0.0052 23.70 0.9167 3.1243 18.263 1.2993 

0.75 309.1 0.24 0.6869 5.2024 0.0235 2.7727 3.1958 1.49 0.0457 0.002 0.0482 0.0157 0.0099 34.208 2.4918 3.005 35.644 3.2066 

0.90 554.2 4.833 0.9434 4.9056 0.0314 4.9197 4.0218 17.215 6.8099 6.5476 3.19 2.3727 0.0155 105.20 1.7726 3.5661 60.654 8.4625 

0.99 798.2 6.461 0.0113 13.722 0.0159 3.6721 13.5014 14.831 7.826 12.0922 20.6273 2.4694 0.0088 61.09 1.9779 6.794 25.811 45.712 

IQR 

0.50 62.33 2.745 0.1391 1.2011 0.0092 0.8602 0.6814 2.1393 0.1138 0.2684 0.3746 0.2369 0.0026 11.909 0.4798 1.1189 5.9112 1.3949 

0.75 124.2 4.0153 0.1697 3.1509 0.0107 1.2015 1.4599 4.3478 0.7968 0.8263 0.7699 0.5746 0.0058 26.168 1.1741 1.5377 13.502 3.1648 

0.90 200.4 5.3934 0.3226 4.6259 0.0209 2.4057 2.4312 6.2844 1.8279 2.2765 1.6812 0.9823 0.0093 50.374 1.6239 2.1605 26.016 4.2225 

0.99 552.7 8.3711 0.2058 5.638 0.0404 3.1386 10.725 5.6906 3.5416 6.038 5.3343 1.2454 0.0044 122.34 3.5506 3.8548 13.032 8.1598 

Ste†∙ 

0.50 5.646 0.1857 0.0127 0.347 0.0004 0.0514 0.0781 0.3093 0.0257 0.106 0.1092 0.0886 0.0002 1.3564 0.1315 0.1679 1.0544 0.2750 

0.75 10.26 0.3050 0.0266 0.5891 0.0008 0.091 0.1415 0.7021 0.0962 0.2045 0.1716 0.1517 0.0003 2.5835 0.2286 0.2888 1.3932 0.4361 

0.90 16.70 0.4444 0.0486 1.1136 0.0013 0.1568 0.2366 1.1837 0.2789 0.4269 0.4579 0.2649 0.0005 4.087 0.3952 0.4550 1.8053 1.0289 

0.99 92.14 2.5360 0.1724 3.7413 0.0051 0.8643 0.2950 4.0343 1.2875 2.9488 3.5667 1.047 0.0022 16.856 1.2367 1.9927 4.2930 3.3823 

Status 

0.50 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

0.75 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

0.90 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

0.99 NS NS S S NS NS NS S NS NS S S NS NS NS S NS NS 

† Note: Standard error (Ste) was estimated from the global quantile regression models. 
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4.3 Relationships between forest fires and environmental factors based on GWQR 

The coefficient estimates of variables were computed based on GWQR and generally 

showed a similar change trend as the global QR models in terms of the mean or median of the 

model coefficients at different quantile levels (Table 3.5). GWQR produced the model 

coefficients for each location (pixel) across the study area at a specific quantile. Following Chen 

et al. (2012), we constructed the spatial maps of the GWQR model coefficients where the local t-

test exceed ±1.96 (i.e., statistically significant) for each predictor variable at different quantile 

levels. Figures 3.5-3.8 illustrates the spatial map for the significant model coefficients of 

predictor variables across the study area at the four quantiles.  

Figure 3.5(a)-(d) indicated that the local coefficient of elevation was statistically 

significant across the most study area at τ = 0.5, 0.75, and 0.90 quantiles. For the τ = 0.99 

quantile, however, the larger negative coefficients were clustered in the northwest region. 

Similarly, the larger negative coefficients of slope were significantly concentrated on the north 

and west at τ = 0.50, 0.75, and 0.90 quantiles. Different from elevation and slope, the significant 

coefficients of aspect index were less and only located in the south of the study area (Figure 

3.5(i)-(l)).  

Greater positive coefficients of precipitation were located at the south at τ = 0.50, 0.75, 

and 0.90 quantiles. For τ = 0.99 quantile, the coefficients of precipitation became all negative 

and clustered in the north region. The positive significant coefficients of humidity were clustered 

at the northeastern and west regions, but humidity became less important for τ = 0.99 quantile. 

Unlike humidity, the more significant coefficients of temperature were concentrated in the 

northeastern coastal region when the quantile increased from 0.50 to 0.99 (Figure 3.6).
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Figure 3.5 Spatial maps of the significant model coefficients of GWQR for topographical predictors.  
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Figure 3.6 Spatial maps of the significant coefficients of GWQR for meteorological predictors. 
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Figure 3.7 Spatial maps of the significant coefficients of GWQR for human related predictors. 
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Figure 3.8 Spatial maps of the significant coefficients of GWQR for vegetation and land use 

predictors.  
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 The significant coefficient of settlement density and national road density were clustered in the 

west regions. Similarly, the more significant coefficients of provincial road density were identified 

from south to north when the quantile increased from 0.50 to 0.99. The negative coefficients of 

population density were gathered along the eastern coast, while they became more positive in the 

western regions of the province for the quantile smaller than 0.90 (Figure 3.7).  

 Similarly, the significant negative coefficient of NDVI occupied most north and east regions of 

the province, but gradually became stronger from south to north. Forest cover and shrub cover in the 

global models were not statistically significant, but they showed significant impacts on the forest fire 

occurrence on in some particular locations of the study area at the four quantiles. For example, for τ = 

0.50, 0.75, and 0.90 quantiles, grass cover was significant in the northeast and south, while crop cover 

was significant in the south and central regions (Figure 3.8).  

4.4 Comparison on prediction accuracy between QR and GWQR 

The comparison of the pinball loss values between global QR models and GWQR models were 

shown in Table 3.6 at the four quantiles. It revealed that the loss function values of GWQR models 

were all smaller than the corresponding global QR models at each quantile, clearly indicating that 

GWQR performed better than the global QR models. In addition, the improvement of GWQR 

forecasting increased as the quantile became larger. The pinball loss function values of GWQR 

reduced 3.74%, 6.37%, 9.20%, and 20.84% against the global QR models as the quantile increased 

from 0.50 to 0.99, respectively (Table 3.6). 

Table 3.6 Pinball loss value for comparing GWQR against the global quantile models at different 

quantiles (smaller is better). 

 

Model τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.99 

Global Quantile 11716.58 12093.17 8622.89 2180.45 

GWQR 11277.26 11322.69 7928.88 1726.00 

Improvement 3.74% 6.37% 9.20% 20.84% 

 



82 

 

5. Discussion  

Our results indicated that the importance of the predictor variables varied at different quantiles 

of forest fire occurrence. For example, the aspect index was statistically significant at a relatively low 

quantile (τ = 0.50), but not significant at the higher quantiles (τ = 0.90 and 0.99). In contrast, the grass 

cover was less associated with forest fires at a lower quantile of fire occurrence (τ = 0.50), while 

significantly related to the upper quantiles (e.g., τ = 0.75 and 0.90) of forest fires (Table 3.3). In 

practice, when the upper or lower quantiles of the response variable are more interested to researchers 

or policy makers, the QR models are particular useful for exploring the full range of the variable 

relationships (Cade and Noon 2003). However, QR only offers a picture of global regularity. The 

issues of local spatial constituents, structure, variability, and complexity are still undetected.  

Methodologically, GWQR is extended from global QR, which can account for both spatial 

effects and quantile distributions of the response variable and make no distributional assumption about 

the error term of the model. In other words, GWQR is not stuck to the issues of violating the 

assumption of an ordinary least squares (OLS) model such as normality and constant variance. For 

example, in this study, about 20% of the grid pixels did not have forest fires. Thus, the overdispersion 

of the response variable violates both assumptions of normality and constant variance, including both 

global and GWR. Therefore, GWQR is unbiased when the tails and central location of the conditional 

distribution vary differently in the response variable (Chen et al. 2012). Specifically, GWQR allows 

exploring non-stationarity across the study area depending on the various quantiles of the response 

variable, which are particularly important in the fields of forest fire risk assessment. For example, it 

indicated that slope had important negative influence on the fire occurrence at τ = 0.50, 0.75, and 0.90 

quantiles on the north and west edge of the study area where the terrains were relatively flatter than 

other areas (Figure 3.5). However, the difference of 9% HON pixels (τ = 0.90 and 0.99) were 

dramatically changed the relationships between slope and fire occurrence (the significant coefficient 
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was concentrated in the central regions of the study area). Similarly, the significant positive 

coefficients of precipitation and humidity were detected in some certain locations of the study area 

where daily rainfall around 1600 mm (or less) and relative humidity is less than 77% (Figure 3.6) at τ 

= 0.50, 0.75, and 0.90 quantiles. While τ increased to τ = 0.99 quantile, both precipitation and humidity 

became less important to the fire occurrence. The findings suggested that a few HON events may 

dramatically affect the entire distribution of the relationships between fire occurrence and a specific 

environmental factor. Ignoring this important fact would mislead the fire regimes analysis and 

management.  

In addition, our results also indicated that the estimated model coefficients of all predictor 

variables were very different between the model of τ = 0.50 quantile and the model of τ = 0.99 quantile 

(Table 3.3). It was noticeable that not only the model coefficients were dissimilar at different quantiles 

of forest fires, the locations of significant coefficient of each predictor were also divergent (Figures 

3.5-3.8), indicating that the impacts of these environmental factors were spatially varying at different 

quantiles of forest fires. Therefore, GWQR is able to help researchers to explore the locally detailed 

relationships simultaneously across different conditional distributions of the response variable. 

Ultimately, those deeper insights may help planning and investment into management activities.  

Overall, our findings on the relationships between fire occurrence and specific environmental 

factors were consistent with the previous studies that applied different method in the Fujian province in 

terms of the coefficient signs (+ or -) of factors (Guo et al. 2016a, 2017). In this study, both QR and 

GWQR indicated that precipitation and relative humidity had positive impacts on fire occurrence 

across the study area at different quantiles (τ = 0.50, 0.75, and 0.90). Although these findings seem 

contradictory to the general understanding that as rainfall increases, fewer fires will occur, one 

explanation is that more rainfall and humidity are beneficial to the growth of ground-cover vegetation, 

and increased amounts of surface fuel load, which increases the risk of forest fire occurrence. In the 
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Kruger National Park of South Africa, van Wilgen et al. (2000) observed a strong positive correlation 

between precipitation rates and fire activity. Spessa et al. (2005) and Randerson et al. (2005) also 

found a similar positive association between precipitation and fire activity in north Australia using 

different satellite data sets. 

As an improved regression method toward a spatial quantile-based analysis, some issues of 

GWQR still need to be further developed and discussed. One issue is the bandwidth selection. In this 

study, the variogram model (Bailey and Gaterell 1995) was fitted through the observed response 

variable and residuals based on the global quantile models. Given the difference of optimal model and 

estimated bandwidths (Table 3.4), we chose the bandwidth referenced on the residuals of global 

quantile models at the four quantiles for the further GWQR analysis. However, the optimal bandwidth 

may be selected in terms of other criterions, such as subjective and smallest cross-validation error 

(Chen et al. 2012).  

6. Conclusion 

In this study we applied global QR and GWQR to model the relationships between forest fire 

occurrence and environmental factors at different quantiles (τ = 0.50, 0.75, 0.90, and 0.99). A total of 

seventeen (17) predictor variables from four categories (topography, meteorology, human, vegetation 

coverage, and land use) were collected for fitting both global and GWR quantile regression models. 

Our results showed that the impacts of those environmental factors on forest fires significantly 

varied not only at different quantiles of fire occurrence, but also across the geographical study area. 

Some driving factors, such as elevation, slope, NDVI, settlement density, national road density, and 

grass cover, were statistically significant at the four quantiles. The degree of the significance, however, 

varied across different regions of the study area between different quantiles and /or within the same 

quantile. Other factors were statistically significant at particular quantiles (e.g., either lower quantiles 
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or higher quantiles). Even few factors were not important in the global QR models, their model 

coefficients might be important in particular regions.  

It was evidence that GWQR integrated the entire distributions (i.e., different quantiles) of forest 

fires and the spatially variations of the relationships between forest fires and driving factors. Thus, 

GWQR would provide useful information on the different levels of forest fire risks, as well as high 

risky locations of forest fires across the study area. Hopefully, the information would assist the 

government agencies to make better decisions on where and what the fire management and fire 

prevention should be focused on in order to reduce economic expenses and improve the efficiency of 

forest fire management.  
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Chapter IV: Studying the Relationship between Proportion of Forest Fire 

Occurrence and Environmental Factors Using Beta Regression 

Abstract. When a response variable is binary (i.e., yes or no), logistic regression is usually applied to 

model the probability of the event. However, when a response variable is proportion / percentage / rate, 

beta regression is more appropriate for providing direct and quantitative views on the relationships 

between the response variable and explanatory variables. In this study, we applied the global beta 

regression, geographically weighted beta regression (GWBR), and classical geographically weighted 

regression (GWR) to explore the spatially varying relationships between the proportion of forest fire 

occurrence and topographical, meteorological, human, vegetation coverage, and land cover factors in 

Fujian province, southeast China. Our results indicated that, in general, the proportion of forest fires 

was higher in lower elevation, stronger sunshine, denser settlement, and less cropland coverage. 

Environmental factors were spatially variedly related to the proportion of fire occurrence in the study 

region. With regards to model fitting and predicting, the global beta and GWBR models exhibited 

better performances than the classical GWR model for the proportion or rate response variable. 

Additionally, the GWBR model was productive at targeting the essential hotspots of predictor 

variables. Therefore, GWBR is an appropriate method to analyze the probability of forest fire 

occurrence which spatially varied and within range between (0, 1), and support better understanding 

for local prevention and management of forest fire.  

 

 

Keywords: proportion of forest fire occurrence, beta regression, geographically weighted beta 

regression  
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1. Introduction 

Forest fires represent a significant threat to ecological and social systems (Pyne et al. 1996) 

causing escalating social, eco-environmental and fiscal costs along with the changing climate (Calkin 

et al. 2014; Westerling et al. 2006). Every year in China, about 10,000 wildfires occurred with 820,000 

hectares burnt areas (Guo et al. 2015). Despite its threats to people’s lives, infrastructures, and 

valuable environmental resources, wildfire plays a natural function in forest renewal and succession 

(Podur et al. 2003; Chang et al. 2007). To reduce the losses caused by forest fires, prevention and 

suppression are the main tasks of forest management agencies, including better understanding of the 

occurrence probability and patterns of forest fires, the impacts of environmental drivers on forest fire 

ignition, develop, and spread, and efficient and effective strategies for forest fire prevention, detection, 

control, and suppression. 

To investigate the forest fire ignition probability, various methods and models have been 

developed. In the review of mathematical models of wildfires since 1940 (Pastor et al. 2003), the 

empirical model, which applied the statistical methods to discover how the impact factors influenced 

forest fires, was considered one of three major methods in general. Within the statistical methods, 

logistic regression is the most popular technique because it is reasonably flexible and accepts a mixture 

of continuous and categorical variables, as well as non-normally distributed variables (Catry et al. 

2009). It is used to quantify the relationships and predictions between the occurrence probability of 

forest fires and potential explanatory variables. Martell et al. (1987) developed a procedure based on a 

logistic model for predicting daily people-caused forest fire occurrences in Ontario. Vega Garcia et al. 

(1995) used it to predict the number of fire-days in the Whitecourt Forest of Albert, Canada. In 2004, 

Preisler et al. presented a probability-based model for estimating fire risk, by fitting a spatially and 

temporally explicit non-parametric logistic regression to grouped data. Then, Preisler and Westerling 

(2007) described a method based on the logistic regression to accommodate the relationships between 
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fire-danger predictors and the probability of large fire events. Lozano et al. (2007) assessed the 

performance of several spectral indices derived from Landsat data when modeling fire occurrence 

probability through logistic regression. Hoyo et al. (2011) estimated human-caused wildfire risk based 

on the logistic regression in Spain. Chang et al. (2013) predicted the fire occurrence pattern with the 

logistic regression in Heilongjiang Province, China. Guo et al. (2016) used the logistic regression to 

identify the drivers of wildfire and predict the likelihood of fire occurrence in southeast China. 

Different from the feature of logistic regression that transfers a binary response variable to an 

odds ratio, beta regression is an alternative technique to model probability, proportion, or rate. It is 

introduced by Ferrari and Cribari-Neto (2004), based on the assumption that the response variable 

follows a beta distribution, which is a family of continuous probability distributions strictly defined on 

the interval (0, 1) with two shape parameters. Those two positive shape parameters control the shape of 

distribution within the (0, 1) interval. Therefore, the beta distribution is very flexible for continuous 

response variables in an (0, 1) interval with two shape parameters. However, the previous application 

of beta distribution did not involve the situation that the response variable can be modeled as a 

function of exogenous variables until beta regression was proposed (Ferrari and Cribari-Neto 2004). 

By transferring two original shape parameters into mean and dispersion, the beta regression 

model is interpretable in terms of the mean of the response variable (proportion or rate). The function 

of mean is given by a linear predictor defined by regression coefficients and explanatory variables. 

Thus, the beta regression model is related to other variables through a regression structure, similar to 

generalized linear models. The parameter estimation is performed by maximum likelihood (more 

details of beta regression will be represented in the method section). Therefore, the beta regression 

model is more suitable for modeling continuous response variables such as probability, percentages, 

proportions, rates, and fractions without data transformation. 
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Because of its flexibility and empirical application, more beta regression models have been 

developed, extending to fit different conditions (Ferrari 2013). For instance, time-series beta regression 

model for periodic data with a trend by Rydlewski in 2007; inflated beta regression model (Ospina and 

Ferrari 2012) considering extreme values of zero and one; semi-parametric beta regression (Branscum 

et al. 2007) based on Bayesian inference method to estimate household expenditure and genetic 

distance between foot-and-mouth disease viruses; multivariate beta regression (Souza and Moura 

2012) for jointly modeling two or more than two variables whose values belong to the (0, 1) interval; 

mixed beta regression (Zimprich 2010) including the random effect for longitudinal data; beta 

rectangular regression model (Bayes et al. 2012) flexible for outlying observations. The literature 

discussed on special topics of diagnostics, tests, robust inference, optimal designs, and maximum 

likelihood estimators in beta regression has been growing over the last few years. To date, beta 

regression models are applied to a wide range of study fields, such as medicine, deontology, 

hydrobiology, economics, aquaculture nutrition, forest sciences, education, political science, waste 

management, and etc. (Ferrari 2013). In the field of the forest fire science, Ríos-Pena et al. (2018) 

proposed the Zero-One-Inflated structured additive beta regression to study wildfire occurrence and 

burnt area simultaneously in Spain. 

To our best knowledge, there is no study to model the proportion of forest fires using beta 

regression. Therefore, we propose to apply the modeling technique to estimate the relationships 

between forest fire proportion or probability and potential environmental and human factors. However, 

it is well known that spatial autocorrelation and heterogeneity exist across forest ecosystems, and the 

relationships between forest fires and environmental factors are spatially nonstationary. In addition to 

the global beta regression model, we developed the geographically weighted beta regression (GWBR) 

to explore and quantify the spatially varying association across the study area. The GWBR model was 

designed referring to the framework of Geographically Weighted Regression (GWR) defined by 



96 

 

Fotheringham et al. (1996), Brunsdon et al. (1996, 1998), and Fotheringham et al. (2002), which is a 

spatial modeling technique that takes non-stationary variables into consideration and investigate the 

local relationships between these predictors and an outcome of interest. GWBR is the extension d of 

beta regression concepts to GWR for locally modeling data within the interval of (0, 1). 

The objectives of this research were using beta regression: (1) to identify potential driving 

factors of forest fire proportion, from the infrastructure, topography, meteorology, human activity, and 

land coverage; (2) to explore spatial variability relationships between the probability of forest fire 

occurrence and influential risk factors; (3) to target the localized significant explanatory variables for 

prediction and prevention of forest fires; and (4) to compare the performances of global beta, GWBR, 

and GWR for modeling the proportion of forest fire. 

2. Data 

2.1 Study area 

 Fujian province is located in a sub-tropical region of China and has a total land area of 124,000 

km2 (Figure 4.1). It ranks the highest forest coverage in the nation, with about 66% of Fujian province 

covered by forests and vegetation. It also experiences high annual forest fire incidences, with nearly 

15,000 forest fires occurring from 2000 to 2010 (Guo et al. 2018). The dominant tree species in Fujian 

include Massoniana (Pinus massoniana Lamb.), Chinese fir (Cunninghamia lanceolate (Lamb.) 

Hook), Casuarina (Casuarina equisetifolia L.), and Pubescens (Phyllostachys heterocycle (Carr.) 

Mitford cv. Pubescens). The climate is warm and humid with an average annual rainfall of 1400 – 

2000 mm and average temperature of 17 – 21 °C. Forest fire season typically spans from September to 

April (Guo et al. 2016a).  

javascript:;
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Figure 4.1 Location map of Fujian Province. 

 

2.2 Data collection 

2.2.1 Fire data (response variable) 

In this study, we used MODIS hotspots product (MOD14A1) which has been considered as a 

reliable and suitable source for monitoring forest fires to analyze the relationships between forest fire 

occurrence and environmental factors in Fujian, China (Guo et al. 2016 a,b; Su et al. 2019). The time 

period of the study is 16 years (2001 - 2016). Since MOD14A1 cannot distinguish forest fires from 

non-forest fires that occur in cities/towns, construction sites, agricultural lands, and other areas, we 

further processed the fire data by: (1) removing the fire points in cities/towns, construction sites, and 

farmland based on an 1 km resolution land-use map; and (2) extracting fire points based on the time of 

fire occurrence within the fire season of the study area (September 15 to April 30 of the following 

year). The whole study area was divided into 4 × 4 km grids (a total of 7433 grids) using ArcGIS 10.2 

(ESRI, 2010) and the total number of forest fire occurrences in each grid was calculated. Using the 

information of forest fire counts and years, we calculate the proportion of forest fire occurrence during 

the 16-year period (2001 - 2016) by, 

P = N / 16 + W 
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where P is the proportion of forest fire occurrence, N represents the total number of years that each 

grid had wildfire occurred, sixteen is the total years, and W is the weight probability of annual extra 

wildfire counts as: 

W = (T – N) * (10% / 153) 

where T is the total number of forest fire in that grid for the 16-year period. With the principle that the 

probability does not exceed 100%, the maximum weight probability of extra fire occurrence is 10%. 

For each extra wildfire occurrence, the weight is calculated as the 10% divided by 153, which is the 

maximum extra wildfire number in this study. Statistic summary of the proportion of forest fire 

occurrence is listed in Table 4.1, and its frequency distribution and geospatial map are presented in 

Figures 4.2 and 4.3(a), respectively.  
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Table 4.1 Descriptive statistics of response and predictor variables and correlation coefficients to 

response variable. 

 

Variable Mean Median Std Dev Minimum Maximum 
Correlation 

coefficient 

Proportion of Fire Occurrence 0.1567 0.1250 0.1497 0.0001 0.9999 1.00 

Elevation (km) 0.4885 0.4688 0.2714 -0.0064 1.7577 -0.304 

Slope (degree) 19.78 20.72 5.77 0.105 37.68 -0.214 

Aspect Index -0.0073 -0.0116 0.1186 -0.5728 0.5523 -0.011 

Precipitation (mm/day) 1670 1682 158.1292 1247 2042 0.019 

Temperature (°C) 18.30              18.00 1.16 15.27 21.12 0.036 

Humidity (%) 76.07 76.00 1.4118 73.00 79.20 0.072 

River Density (%) 0.5969 0.5584 0.1962 0.0015 1.6537 0.100 

Settlement Density (%) 0.4523 0.0000 3.7411 0.0000 95.4832 0.091 

National Road Density (%) 0.2006 0.0000 0.7451 0.0000 6.5424 0.130 

Provincial Road Density (%) 0.2176 0.0000 0.5220 0.0000 5.3110 0.083 

Local Road Density (%) 1.052 1.051 0.5848 0.0000 4.873 0.005 

Population (people/km2) 283.9 133.5 535.7 56.8 17899.5 -0.001 

NDVI 0.7742 0.7910 0.0662 0.3287 0.8729 -0.139 

Forest Cover (%)  51.752 55.374 39.487 0.000 100.00 -0.044 

Shrub Cover (%) 18.608 0.000 28.160 0.000 99.99 -0.044 

Grass Cover (%) 1.409 0.000 9.583 0.000 99.99 0.043 

Crop Cover (%) 10.161 0.000 22.499 0.000  99.99 0.071 
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Figure 4.2 Frequency distribution of forest fire proportions with fitted beta curve. 

 

2.2.2 Potential driving factors (predictor variables) 

A total of 18 predictor or explanatory variables were collected and grouped into four 

categories, including topographical, meteorological, human related, and vegetation and land use 

predictors. The specific variable collection processes were as follows: 

Topographic variables  

Topographic variables included elevation (km), slope (degree), and aspect index. High 

resolution (25 m) Digital Elevation Model (DEM) data were collected from the National 

Administration of Surveying, Mapping and Geoinformation of China (http://www.gscloud.cn/sources). 

The slope and slope direction were derived from DEM, and aspect was then converted into an aspect 

index using the following formula: Aspect Index = cos(θ×π / 180), where θ is the degree of slope 

http://www.gscloud.cn/
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generated in ArcGIS ranging from 0 – 360° so that the aspect index ranges from -1 to 1 (Guo et al. 

2017). The average elevation, slope, and aspect index of each grid were then extracted using ArcGIS 

10.2.  

Meteorological variables 

Meteorological variables included precipitation (mm/day), temperature (°C), and relative 

humidity (%), which were obtained from the platform of National Earth System Science Data Center 

(http://www.geodata.cn), an important component of National Science and Technology Infrastructure. 

The climatic variables are interpolated from ANUSPLIN, a software package developed by 

Hutchinson (2004) based on the thin-plate smoothing method to generate hydrometeorological maps. 

ANUSPLIN includes a linear covariate to represent the elevation dependent meteorological factors, 

and it outperformed in climate interpolation (Zhang et al. 2010) and long period climatic data 

(McKenney et al. 2006). Raster calculator in ArcGIS 10.2 was used to calculate the annual average of 

each meteorological variable for each grid from year 2001 to 2016. Precipitation and temperature 

impact the occurrence of forest fire by limiting the fuel moisture content. Therefore, they are 

reasonable and effective alternative fuel factors when other fuel factor is not available. In addition, the 

annual meteorological factor is a traditional and better indicator to measure the influence of climate 

change on forest fires, compared to the average meteorological data during the period of forest fire 

(Scholze et al. 2006; McCoy and Burn 2005; Xystrakis et al. 2013).  

Human factors  

Human factors included the socioeconomic variables (per capita GDP and population density) 

and infrastructural variables. The GDP and population data were obtained from Resource and 

Environmental Data Cloud Platform (http://www.resdc.cn/Default.aspx) and the data resolution was 1 

km. The infrastructural variables included road density (km/km2, ratio of road length to the grid area) 

and water density. The 1:250,000 vector map of infrastructure was provided by the National Geomatics 

http://www.geodata.cn/
http://www.resdc.cn/Default.aspx
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Center of China (http://www.ngcc.cn/). We classified the road into national, provincial, and local road. 

Their buffer areas were built based on 50 m, 25 m, and 10 m, respectively, by using the tool of 

neighborhood analysis in ArcGIS 10.2. The ratio of the road area was calculated in each grid (Hoyo et 

al. 2011). All the selected human factors for each grid from year 2001 to 2016 were calculated using 

ArcGIS 10.2.  

Vegetation coverage and land use factor  

The Normalized Difference Vegetation Index (NDVI) was used to reflect the vegetation 

coverage of the study area. The NDVI data were derived from the MODIS NDVI product with a 

spatial resolution of 500 m provided by the Geospatial Data Cloud (http://www.gscloud.cn/). The land 

use data (1 km resolution) were obtained from the Resource and Environmental Data Cloud Platform 

(http://www.resdc.cn/Default.aspx), which provides the spatial distribution of vegetation types by 

digitizing the collections of vegetation type in China on the scale 1 : 1 million. Forest, including 

subtropical evergreen broad-leave forest type and mixed conifer and broad-leave forest type, covers 

about 64.95% of the total area. Vegetation type of shrub contains the subtropical evergreen broad-leave 

shrub, tropical evergreen broad-leaved shrub, and deciduous and broad-leaved shrub, taking about 

20.40% of the study region. The cultivated land, fruit forest, and non-timber product forest are 

categorized into the cropland, covering about 12.6% of the total area. Grass (subtropical grass and 

tropical grass) only covers 1.69% of the total area. About 0.36% of the total area is the development 

land. According to the survey, regional forest coverage proportion is 66.80% and the agriculture land is 

about 11%, indicating the land classification of the raster data is close to reality. ArcGIS10.2 was used 

to calculate the proportion of each land cover in each grid. 

2.2.3 Multicollinearity analysis among explanatory variables 

We used the variance inflation factor (VIF) to detect the multicollinearity among the predictor 

variables before fitting the regression models. In general, a VIF above 10 indicates high correlations 

http://www.ngcc.cn/
http://www.gscloud.cn/
http://www.resdc.cn/Default.aspx
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between explanatory variables (Guo et al. 2017). In this study, the socioeconomic variable GDP was 

removed because its VIF was 18.58, while other 17 predictor variables were used to fit both global and 

local beta regression models. The descriptive statistics of the 17 predictor variables were listed in 

Table 4.1. The spatial distributions of 17 predictor variables across the Fujian province are shown in 

Figure 4.3(b)-(r). 
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Figure 4.3 Spatial distributions of (a) Forest Fire Proportions, (b) Elevation, (c) Slope, (d) Aspect index, (e) Precipitation, (f) Relative 

humidity, (g) Temperature, (h) River density, (i) Settlement density, (j) National road density, (k) Provincial road density, (l) Local road 

density, (m) Population density, (n) NDVI, (o) Forest cover, (p) Shrub cover, (q) Grass cover, and (r) Crop cover. 
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3. Methodology 

3.1 Theoretical background 

3.1.1 Beta regression 

Beta distribution is highly flexible and able to accommodate both unimodal and bimodal 

densities with varying degrees of skewness and heteroscedasticity. It is considered a natural choice for 

characterizing random variables within an interval (0, 1) such as proportion, percentage, or rate 

(Swearingen et al. 2011). Beta regression is a member of generalized linear models (McCullagh and 

Nelder 1989). Ferrari and Cribari-Neto (2004) proposed it for modeling continuous proportions based 

on the assumption that the response variable (y) follows a beta distribution. The beta distribution has 

the following probability density function (pdf): 

( )
( )

( ) ( )
( )

q 1p 1
p q

f y;p,q y 1 y , 0 y 1
p q

−−
 +

= −  
 

   [1] 

where p > 0, q > 0 and Γ(.) is the gamma function. The mean and variance of the beta random variable 

are: 
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To model the mean of response variable more directly, Ferrari and Cribari-Neto (2004) re-

parameterized the beta pdf by setting ( )qpp +=  and qp += . Therefore, the Equations [2] 

and [3] are changed to: 

( ) = y          [4] 
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1

 −
=

+
        [5] 



106 

 

Thus, the beta pdf (Equation [1]) can be rewritten using the new parameters, e.g.,  represents 

the mean and  𝜙 is a precision parameter. If μ is fixed, a greater 𝜙 indicates a smaller variance of y 

(Ospina and Ferrari 2011). Then, the beta pdf with the new reparameterization is: 

( )
( )

( ) ( )( )
( )

( )1 11f y; , y 1 y , 0 y 1
1

− −−
 

  = −  
   − 

 [6] 

where 0 < μ < 1 and 𝜙 > 0. The response variable y is assumed within the interval (0, 1). 

Let y1, … , yn be a random sample of the response variable which are independent from each 

other and each yi, (i = 1,…, n) follows the beta pdf (Equation [6]) with the mean μ and precision 

parameter 𝜙. The mean of yi can be linked to a linear function of predictor variables (X) such that: 

g(μi) = η = X β        [7] 

where β is a vector of unknown regression coefficients which can be estimated by maximum likelihood 

methods. Hence, η = Xβ is a linear predictor and g(μi) is called a link function, which is a strictly 

monotonic and twice differentiable function that maps the interval of (0, 1). Several possible choices 

for the link function, in which the logit link function is commonly uses in practice, 
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3.1.2 Geographically weighted regression (GWR) 

To explore the spatial heterogeneity the data must have location coordinates (vxi, vyi) for each 

observation i (i = 1, 2, …, n). When the geographically weighted regression (GWR) was first 

developed, the Gaussian assumption was assumed for the model error term (Fotheringham et al. 1998), 

expressed as follows: 

( ) ( )
p

i 0 xi yi k xi yi ki i

k 1

y v , v v , v X
=

=  +  +       [9] 

where yi is the response variable, Xk is a set of p predictor variables (k = 1, 2, …, p), β0(vxi, vyi), β1(vxi, 

vyi), …, βp(vxi, vyi) are the regression coefficients for the kth predictor variable at the ith location, and εi 
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is the random error term whose distribution is N(0, σ2I) with I denoting an identity matrix. To obtain 

the estimates of these functions for each predictor variable and each geographic location i, the model 

fitting procedure of GWR is as follows: (1) draw a circle of a given radius around one particular 

location i (the center), (2) compute a weight (wij) for each neighboring observation j according to the 

distance dij between the location j and center i, and (3) estimate the model coefficients using weighted 

least-square regression such that:  

( )
1

i i i
ˆ X W X X W y

−
  =        [10] 

where the weight matrix Wi is: 
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The weighting function is defined by the kernel type and the size of kernel (bandwidth), which 

determines the geographical weight of the jth neighboring observation at the ith regression point. The 

weight should decrease gradually as the distance between i and j increases, until to a constant or zero. 

Parameter estimates are highly related to kernel size, so the choice of kernel is an important 

consideration. If Wi = I (i.e., identity matrix), each observation in the data has a weight of unity and the 

GWR model is equivalent to the ordinary least squares model. There are two common types of kernel 

function:  

(i) Gaussian kernel with fixed bandwidth, in which each local regression model has the same 

spatial size of kernel, but each kernel may cover a different number of data points.  

2

ijd

h

ijw e

 
−  
 =          [12] 

where dij is the distance between regression point i and neighbor j, and h is the bandwidth.  
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(ii) Adaptive methods with bi-square kernel, in which the bandwidth covers the same number 

of data points with non-zero weight within each regression model. This adaptive kernel is a common 

choice, especially when the sampling density varies greatly across space.  

2
2

ij

ij ij

d
w 1 ,d h

h

  
 = −  
   

   or   ij ijw 0 , d h=      [13] 

Essentially, GWR lets the data speak for themselves when estimating each regression 

coefficient βik for each geographic location i and each independent variable k. Furthermore, the GWR 

methodology has been extended to the generalized linear modeling framework. 

3.1.3 Geographically weighted beta regression (GWBR) 

Silva et al. (2017) specified the GWBR as follows: 

( ) ( ) ( )
p

i i 0 xi yi k xi yi ki i

k 1

g v , v v , v X
=

 =  =  +  +   ni ,,1 =   [14]

 

where g(.) is a link function that associated to the mean of response variable within the interval (0, 1), 

(vxi, vyi) represents the geographical coordinates of the ith observation, i = 1, …, n., and βk(ui, vi) is the 

local model coefficient for the kth predictor variable at the ith location. Using the local log-likelihood 

for the ith location (vxi, vyi), and the log-likelihood of beta regression (Ferrari and Cribari-Neto 2004), 

L(μi,βk(vxi,vyi),φi)= log Γ (φi)- log Γ (μiφi)- log Γ ((1-μi)φi) 

                                       +(μiφi-1) log yi +((1-μi)φi-1) log ( 1-yi)  [15] 

where µi is the predicted mean at the location i.  

Then, the local parameters can be estimated as the beta regression, using some nonlinear 

algorithm for optimization such as Newton or Quasi-Newton. More details on GWBR coefficient 

estimates and variances of regression coefficients are available in Silva et al. (2017). 
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3.2 Regression model 

We choose the following regression model for both global beta and GWBR to investigate the 

relationships between forest fire proportions (yi) and predictor variables: 

 
i 0 1 1i 2 2i 16 16i 17 17i iy X X X X= + + + + + +    [16] 

 ( ) ( ) ( )i 0 i i 1 i i 1i 17 i i 17i iy u , v u , v X u , v X=  + + + +    [17] 

The SAS procedure PROC GLIMMIX was used to fit the global beta and GWBR models 

(Equation [6]) (SAS Institute, Inc. 2014). The software GWR4.0, developed by Nakaya et al. (2014), 

was used to fit the GWR model. 

3.3 Bandwidth selection for GWR and GWBR 

In this study, we used Akaike Information Criterion (AIC) to determine the optimal bandwidth 

and related kernel function for estimating each regression coefficient for each geographic location i 

and each predictor variable (Fotheringham et al. 2002; Guo et al. 2008). A variogram model (Bailey 

and Gatrell 1995) was fitted in order to find the optimal bandwidth and kernel function. All optimal 

kernel functions and estimated bandwidths were chosen at the smallest AIC.  

3.4 Assessment of spatial autocorrelation and nonstationary 

Existence of spatial autocorrelation and heterogeneity can be evaluated from the model 

residuals of the global and local beta regression models using Moran’s Index (Moran 1950). A positive 

Moran’s I value indicates that a “high fire occurrence proportion (HOP)” pixel is neighboring with the 

HOP pixels, while a “low fire occurrence proportion (LOP)” pixel is neighboring with the LOP pixels. 

A negative Moran’s I value indicates that a HOP pixel is neighboring with the LOP pixels, while a 

LOP pixel is neighboring with the HOP pixels. 

To evaluate the spatial variation in the regression coefficients of GWBR, we followed the 

approach in Chen et al. (2012). The interquartile ranges (IQR) of the local model coefficients 

computed by GWBR were compared to the corresponding standard errors of the global beta model 
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coefficients. When the IQR was twice as large as the standard error, it indicated that spatial non-

stationarity existed in the relationship between the response variable and a specific predictor variable 

(Chen et al. 2012). 

3.5 Model evaluation 

Global beta and GWBR models were evaluated by: (1) mean squared of errors (MSE), (2) 

Akaike Information Criterion (AIC) (Sakamoto et al. 1986), (3) Pseudo R2 for beta regression (Ferrari 

and Cribari-Neto 2004), and (4) correlation of generalized linear model (Zheng and Agresti 2000). The 

pseudo R2 is the squared correlation of linear predictor and link-transformed response, specifically 

designed for beta regression (Ferrari and Cribari-Neto 2004). The correlation of generalized linear 

model (GLM) is a measure of predictive power for a GLM (Zheng and Argesti 2000). It follows: 

1/2

1/2

Cov(y,E(y | X))
Corr(y,E(y | X))

[Var(y)Var(E(y | X))]

E[Var(y | X)]
1

Var(y)

=

 
= − 
 

    [19]

 

where y is the observed value of the response variable, E(y|X) represents the conditional mean of y. 

The correlation between them equals to the positive square root of the average proportion of variance 

explained by the predictors. 

Smaller values of MSE and AIC, greater values of pseudo R2 and correlation indicate better 

model fitting and prediction. 

4. Results 

4.1 Global beta model 

The estimated coefficients of all predictor variables for modeling the proportions of forest fire 

occurrence by the global beta model were listed in Table 4.2. All model coefficients of the 

topographical variables (i.e., elevation, slope, and aspect index) were negative, suggesting that the 

forest fire proportion would be decreased when any of them was increased. In contrast, the 



111 

 

meteorology variables (i.e., precipitation, relative humidity, and temperature) had positive model 

coefficients, indicating the forest fire proportion would be increased if any of the meteorology 

variables was increased. For the human factors, only population density was negatively associated with 

the proportion of forest fire, meaning that the wildfire was more frequently happened in the region 

with low population density. Other human related factors, such as river density, settlement density, and 

road density (national, provincial, and local), played a positive role to the forest fire proportion. As any 

of them was increased, more frequent forest fires would be expected. The land coverage of forest, 

shrub, and grass were also positively related to the forest fire proportion, indicating that larger area of 

them would have higher chance of forest fire occurrence. On the contrary, the land cover of crop and 

NDVI were negatively associated to the forest fire proportion, implying that if the area had more 

vegetation or crop, the proportion of forest fire would go down (Table 4.2). 

In terms of statistical significance, the important predictor variables were elevation, slope, 

aspect index, precipitation, relative humidity, river density, settlement density, national road density, 

population, NDVI, grass cover, and crop cover. On the other hand, the temperature, provincial and 

local roads, and land coverage of forest and shrub were not statistically significant to the forest fire 

proportion (Table 4.2). 
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Table 4.2 Estimated coefficients of global beta regression. 

Variable Estimate Standard Error p-value 

Intercept -9.9264 1.5208 <.0001 

Elevation -1.5264 0.06736 <.0001 

Slope -0.0118 0.00414 0.0043 

Aspect Index -0.2834 0.1009 0.005 

Precipitation 0.00089 0.00012 <.0001 

Humidity 0.1035 0.01391 <.0001 

Temperature 0.01761 0.02281 0.4401 

River Density 0.1665 0.07974 0.0368 

Settlement Density 0.02645 0.00392 <.0001 

National Road Density 0.0424 0.01728 0.0142 

Provincial Road Density 0.04465 0.02479 0.0717 

Local Road Density 0.00762 0.02161 0.7244 

Population  -0.4501 0.04435 <.0001 

NDVI -0.7397 0.3457 0.0324 

Forest Cover 0.02754 0.036 0.4443 

Shrub Cover 0.02498 0.04824 0.6046 

Grass Cover 0.4022 0.1351 0.0029 

Crop Cover -0.3925 0.06714 <.0001 

Scale 3.2651 0.05854  
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4.2 GWR and GWBR models 

The summaries of estimated coefficients of both GWR and GWBR models were displayed in 

Table 4.3. The coefficient estimates of the predictor variables in GWR generally showed a similar 

trend or pattern to the global beta model in terms of the mean or median of the model coefficients, 

except temperature, local road density, forest cover, and shrub cover density. While using the GWBR 

model, the mean and median of estimated coefficients of relative humidity, temperature, local road 

density, forest cover, and shrub cover density showed opposite directional trends compared to the 

global beta model.  

Because both GWR and GWBR models produced the model coefficients for each location 

(pixel) across the study area, the spatial variation of the local model coefficients can be evaluated by 

comparing their IQRs and the standard errors of the global model coefficients. For the GWBR model, 

the IQRs of the local coefficients of all predictors were at least twice larger than the corresponding 

standard errors of the global beta model coefficients, indicating that all topographical, meteorological, 

human related, vegetable, and land coverage factors were spatially heterogeneous across Fujian 

Province. The estimated model coefficients from GWR were also spatially varied across the region, 

except the local road density (Table 4.3). 

We constructed the spatial maps of the local model coefficients which had the local t-test 

exceeded ±1.96 (i.e., statistically significant) for each predictor variable for GWBR (Figure 4.4) and 

GWR (Figure 4.5). For the GWBR models, the forest fire proportions were significantly negatively 

related to the elevation almost across the whole regions of Fujian province, except some flat terrain 

along the southeast coast, where the big cities are located. Moreover, that relationship became stronger 

from southeast to northwest. The slope is essentially a negative factor in north and west, positive on 

the southern corner, but not important in east. The aspect index did not show a clear pattern across the 

study area as the elevation and slope did, except few significant clusters in southwest negatively 
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associated with the forest fire proportion. All three meteorological predictor variables were 

significantly related to the forest fire proportions across the majority of Fujian Province, with different 

spatial magnitude patterns. Generally, the precipitation played a positive role in west, but negative in 

east. The relative humidity positively impacted on the forest fire proportion in north, while negatively 

affected it in south. The temperature was negatively associated in the center area, but changed to 

positive in northwest, northeast, and south corner. For the human factors, the population showed the 

different relationships with the forest fire proportion between northwest and southeast. The river 

density had negative association in the central study area, but gradually changed to positive toward to 

the edge of Fujian Province. Other human explanatory variables (i.e., settlement density, national, 

provincial, and local road density) presented significances in some areas, but did not reveal clear 

pattern or trend. Vegetation coverage (NDVI) was positively related to the forest fire proportion from 

southwest to northeast, negatively related in northwest. For the four land cover types, forest, shrub, and 

crop had significant influences on more than half of the study area, but grass only had few positive 

spots in south and northwest. Significant forest cover was scattered across the study area. Shrub cover 

was positively linked in the majority of south and some spots in north, while negative linked in the 

central areas. In general, connection between crop cover and the forest fire proportion changed from 

positive to negative from northwest to southeast.  

For the GWR models, the elevation was statistically significant in northwest, and NDVI was an 

important factor in southeast. Though the other factors had some local important relationships with the 

forest fire proportions, they were scattered across the study region without a clear trend or pattern.  
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Table 4.3 Summary statistics for estimated local coefficients from GWR and GWBR models and relative spatial variation status. 

Statistic Model βElevation βSlope 
βAspect 

index 

βPrecipita

tion 

βRelative 

Humidity 

βTempera

ture 

βRiver 

density 

βSettleme

nt density 

βNational 

road density 

βProvincial 

road density 

βLocal road 

density 

βPopulat

ion 
βNDVI 

βForest 

cover 

βShrub 

cover 

βGrass 

cover 

βCrop 

cover 

Mean 
GWR -0.217 -0.0007 -0.0221 0.00012 0.00669 -0.0134 0.02828 0.00523 0.007147 0.00157 -0.00242 0. 035 -0.1944 -0.0051 -0.0102 0.0486 -0.0152 

GWBR -1.705 -0.0056 -0.2495 0.00137 -0.0788 -0.1006 0.2261 0.03938 0.01744 0.01337 -0.02232 -0.0773 -1.429 -0.0123 -0.0356 7.082 -0.2448 

Median 

GWR -0.211 -0.0009 -0.0214 0.00017 0.00371 -0.0057 0.02279 0.00372 0.00683 0.00303 -0.00276 -0.016 -0.2498 -0.0028 -0.0102 0.0419 -0.0181 

GWBR -1.659 -0.0066 -0.2457 0.00082 -0.0544 -0.1450 0.3163 0.02687 0.02807 0.01853 -0.02264 -0.2877 -1.970 -0.0151 -0.0227 0.105 -0.2707 

Min 

GWR -0.395 -0.0113 -0.0879 -0.0012 -0.0489 -0.0897 -0.1039 -0.0033 -0.01283 -0.02902 -0.01476 -0.504 -1.0786 -0.0374 -0.0698 -1.3325 -0.1091 

GWBR -6.107 -0.1774 -3.4203 -0.0362 -1.6507 -1.5989 -4.9711 -0.5566 -1.7668 -0.7378 -0.6158 -17.477 -14.423 -0.8317 -1.6921 -234.07 -2.2976 

Max 

GWR 0.097 0.00899 0.07520 0.00142 0.05459 0.1187 0.16134 0.03135 0.03238 0.02636 0.01104 0.638 0.5804 0.0368 0.0796 0.3027 0.1653 

GWBR 4.640 0.1719 2.0256 0.0354 1.1763 3.4335 3.4992 1.7956 3.9569 0.6567 0.5231 28.539 19.026 1.1086 1.2803 20220 1.9970 

IQR 

GWR 0.126 0.00515 0.03627 0.00041 0.03066 0.0376 0.07608 0.00637 0.007626 0.008226 0.00566 0.130 0.51104 0.0133 0.035 0.3533 0.0404 

GWBR 1.7824 0.0736 0.7634 0.00588 0.5900 0.7571 1.3701 0.05283 0.14496 0.21072 0.17265 0.3074 6.1249 0.2918 0.5101 1.1602 0.6092 

Ste†∙ 
GWR 0.00903 0.00058 0.01354 1.60E-05 0.0019 0.00306 0.01098 0.00053 0.00235 0.00337 0.00294 0.0045 0.04695 0.0048 0.0065 0.0178 0.009 

GWBR 0.06736 0.00414 0.1009 0.00012 0.01391 0.02281 0.07974 0.00392 0.01728 0.02479 0.02161 0.0444 0.3457 0.036 0.0482 0.1351 0.06714 

Status 
GWR NS NS NS NS NS NS NS NS NS NS S NS NS NS NS NS NS 

GWBR NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

 

† Note: Standard error (Ste) was estimated from the global model.
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Figure 4.4 Geographical maps for significant coefficients (±1.96) of predictors based on GWBR model.
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Figure 4.5 Geographical maps for significant coefficients (±1.96) of predictors based on GWR model. 
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4.3 Model fitting and predictive performance 

The performance of model fitting was listed in Table 4.4. Smaller MSE or/and AIC indicates 

better model fitting. However, the model fitting performance was mixed among the three models, 

depending on which statistics were used. The MSE of global beta, GWBR, and GWR were 0.0188, 

0.0282, and 0.0103 respectively. The AIC of global beta, GWBR, and GWR models were -19844.66, -

19734.34, and -10676.07, separately. Therefore, GWR fitted the data better than both global beta and 

GWBR in terms of MSE, but GWR had the largest AIC (i.e. worst model fitting) among the three 

models. Rather, the global beta had smaller AIC than both GWBR and GWR (Table 4.4).  

 Pseudo R2 and the correlation of generalized linear model were used to compare the model 

fitting and predictive power between global beta and GWBR. The pseudo R2 of the global beta was 

12.63%, and GWBR was 11.56%. The correlations of the global beta and GWBR were 39.24% and 

31.23%, respectively. The global beta model had larger pseudo R2 and correlation, indicating that it 

performed better in model fitting and prediction than GWBR (Table 4.4). 

Table 4.4 Model fitting performance of Global beta, GWBR, and GWR. 

 

Statistics Global beta 
GWBR 

h = 100,000 m 

GWR 

h = 16,464.29 m 

MSE 0.0188 0.0282 0.0103 

AIC -19844.66 -19734.34 -10676.07 

Pseudo R2 
0.1263 0.1156 

0.5385 

(R2) 

Correlation 0.3924 0.3123 0.7376 

 

Figure 4.6 illustrates the frequency distributions of the observed forest fire proportion and 

predicted forest fire proportion from global beta, GWR, and GWBR models. It revealed that the GWR 

model generated some predicted values smaller than 0, outside the interval of forest fire proportion (0, 

1). On the other hand, both global beta and GWBR models predicted forest fire proportions within (0, 

1). With regards to the shape of frequency distribution, the predictions based on the global beta and 
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GWBR models were skewed to right, similar to the observed forest fire proportion, while the 

predictions from GWR were less skewed or relatively normal distributed. 

 

Figure 4.6 Frequency distributions of observed and predicted forest fire proportions from global beta, 

GWR, and GWBR models. 
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5. Discussion  

5.1 Model comparison for proportion of forest fire occurrence 

Our results implied that the global beta and GWR models were relatively better in model fitting 

and prediction than GWBR models for the forest fire proportion in this study, but both of them have 

limitations. For the global beta model, it derived the average relationships between response variable 

(i.e., proportion of forest fire occurrence) and environmental factors across the whole study region and 

assumed the relationships invariant over space. However, the existence of spatial non-stationary of the 

response variable (Moran’s I = 0.044, p < 0.0001) and variations of predictor variables suggested the 

demand of local statistics and models to detect the localized clustering around an individual location, 

especially in a large area when the single measure of global association may contribute little meaning. 

The spatial heterogeneity of the model coefficients from both GWR and GWBR models (Table 4.3) 

confirmed the necessary and appropriateness to use local models to investigate the spatially varying 

relationships between the proportion of forest fire and predictors.  

The GWR and GWBR models provided local significance tests on the model coefficients, 

which would help us to target the geographical spots where a given predictor may have different 

impacts on the response variable. For instance, the temperature was not an important factor based on 

the global beta model, but was statistically significant within some regions, e.g., the temperature 

negatively impacted the forest fire proportion in the central area of the Fujian Province, while 

positively impacted it in northwest, northeast, and south corner. Therefore, the GWR and GWBR 

models were preferred to detect the local association. Those significant local relationships could also 

present some pattern or trend connected with the study area. For example, the strength of elevation 

significantly related to the forest fire proportion based on the GWBR models was decreased from 

northwest to southeast. That pattern was reasonable according to the terrain of Fujian Province, where 

the mountains are clustered in northwest and cities are located along southeast. However, the GWR 
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models did not produce the relationship patterns between forest fire proportions and environmental 

factors as clear as the GWBR models. Instead, most of the geographical maps of significant predictors 

of the GWR models are scattered and sparse, resulting the difficulties for interpretation. Thus, the 

GWBR model performed more appropriately in targeting the geographical spots where the 

environment factors are significant and important to the proportion of forest fire occurrence.  

It is not surprised that GWR had the smallest MSE, highest R2, and correlation (Table 4.4), 

since the localized ordinary least square regression is designed by minimizing the sum of squared 

errors. However, the data of forest fire proportions not only is restricted within the unit interval (0, 1), 

but also commonly have varying degrees of skewness and heteroscedasticity (Figure 4.2). Beta 

regression is a relatively new and modern regression method designed for proportion or rate response 

variables (Ferrari and Cribari-Neto 2004). The advantages of beta regression include that it is naturally 

heteroskedastic, can easily accommodate the varying degrees of skewness, and is highly flexible to 

model both unimodal and bimodal distributions of proportion data. The smaller AIC values of global 

beta and GWBR models proved that they were superior to GWR for modeling the forest fire 

proportions. In addition to model fitting, GWR had some negative predictions, which exceeds the 

lower limit zero, violating the definition of proportion between 0 and 1. In addition, the frequency 

distribution of GWR predictions was relatively normal, which did not match the observed forest fire 

proportion skewed to right. In summary, the large AIC, negative predicted value, normal distributed 

frequency of model predictions, and difficult interpretation of significant local relationship implied that 

GWR was not appropriate to model the forest fire proportions. 

5.2 Influence of drivers on proportion of forest fire in Fujian 

 In this study the response variable, proportion of forest fire occurrence, was used evaluate the 

frequent levels of wildfire occurrence within a time interval (from 2001 to 2016) in Fujian province. 



122 

 

Both global beta and GWBR models were applied to investigate the environment drivers and their 

influences on the proportions of fire occurrence. 

According to the global beta model, the proportion of the forest fire occurrence was increased 

with lower topographical factors (i.e., elevation, slope, and aspect index), greater meteorological 

factors (i.e., precipitation, humidity, and relative humidity), more human manufacturing factors (i.e., 

river, settlement, national, provincial and local road density), smaller population, less vegetation 

coverage and cropland coverage, but more forest, shrub and grassland. However, the GWBR models 

showed that they were not constantly positive or negative across whole study area. For example, the 

significant model coefficients of population revealed a trend that the forest fire proportion was highly 

likely to happen with more people in northwest, but less chance with more people in southeast. One 

reason is that the developed cities are clustered in southeast. Denser population would cause reduced 

forest cover and result in smaller possibility of forest fires. While in northwest where most regions are 

covered by forests, the growth of population would create more human activities so increasing the 

chance of human-caused forest fires. The signs of the statistically significant model coefficients of 

three meteorological factors also changed across the study area. The precipitation and relative humidity 

had positive effects in northwest, but negative in southeast. One explanation is that the relative 

humidity affects the growth of ground cover vegetation. Higher relative humidity is beneficial to the 

growth of ground cover vegetation, which increases the fuel load (Su et al. 2019). Since the majority of 

the northwest are forests, the ground is covered with vegetation. More rainfall and humidity fostered 

the surface fuel load, increasing the probability of forest fires. In contrast, the developed cities were 

along southeast, where the ground vegetation is too small to produce the surface fuel load so that more 

precipitation and humidity would lessen the chance of forest fires. In addition to the varied signs of the 

influential factors, GWBR also provided significant local factors which were not revealed by the 

global beta model. Specifically, the temperature, forest cover, and shrub cover had essential roles to 
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the forest fire probability in most regions. But the grass cover, an important factor estimated by the 

global beta model, only regionally significant in a part of southeast, where have more grasslands. 

5.3 Shortcomings 

There were other limitations in this study. Firstly, the beta regression is designed to model all 

proportions or rates between (0, 1), but neither 0 nor 1 is included. It means that the value of response 

variable modeled by the beta regression can be close to 0 and 1, say .001 or .998, but not 0 or 1 

exactly. In our study, there are a total of 1525 locations with no fire occurrence and 2 regions had 

100% proportions of fore fire occurrence. To keep all proportion of forest fire occurrence within the 

interval of (0, 1), we had to change 0 into 0.0001 and 1 into 0.9999. Thus, about 20% of raw data were 

changed. Although the percentage of the changed data was relatively small, the impact to model fitting 

and prediction was unknown. A version of beta regression model, called Zero-One-Inflated beta 

regression (Ospina and Ferrari 2012; Swearingen et al. 2012), may work in this situation. It’s one of 

those models that has been around in theory so far, but is only in the past few years the technique 

became available in (some) mainstream statistical software. It is a type of mixture model that has three 

modeling processes. One is a process that distinguishes between zeros and larger than zeros. Likewise, 

there is a process that distinguishes between ones and less than one. And then there is a third process 

that determines between zero and one (not including zero and one). The first and second processes can 

be modeled via a logistic regression and the third is a beta regression. These three models should be 

fitted run simultaneously. They can each have their own set of predictors and their own set of 

predictors. Zero-One-Inflated beta model would be a good alternative to globally model the forest fire 

proportions. However, it would be difficult to use it to explore the spatially varying relationships under 

a GWR framework. Following the process of Zero-One-Inflated beta model, three bandwidths should 

be chosen for GWR Zero-Inflated Poisson, GWR One-Inflated Poisson, and GWR beta models, 

respectively. The raw data is divided into three parts: all zeros, all ones, and all between zero and one. 
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The split of response variable makes the difficult of model comparison to global beta and GWR 

models. Additionally, the bandwidth selections for GWR Zero-Inflated Poisson, GWR One-Inflated 

Poisson, and GWR beta models also will be a challenge.  

The second main concern is the bandwidth selection. In this study, we used AIC value as the 

criteria for the GWR model, resulted to the bandwidth 16,464 m to define how many pixels nearby 

were included to compute the local model to the focal location. But when we applied that bandwidth to 

GWBR model, it cannot be estimated from beta log-likelihood. Silva and Lima (2017) developed a 

SAS marco of GWBR, which contains the bandwidth search function. However, it cannot work for our 

data (a total of 7433 observations and 17 explanatory variables) due to the limitation of SAS memory. 

Therefore, we used the spatial variogram to find the reasonable possible bandwidth (Figure 4.7), which 

was between 100,000 m and 200,000 m using the spherical kernel function. We subjectively selected 

20 bandwidths between them, and found that bandwidth of 100,000 m yielded best results, closer to the 

global beta model. However, 100,000 m might not be the best choice if all possible bandwidths were 

simulated. This can be a good research topic in the future.  

 
 

Figure 4.7 Variogram and fitted spherical kernel line for observed probability of forest fire occurrence.  
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As mentioned before, most of statistic models for evaluating the probability of forest fire were 

logistic or modified logit model, this study may be the first application of beta regression and 

geographically weighted beta regression. Because the logit model accentuated on probability while 

beta regression was quantitative value, it was impossible to compare these two statistic tools. 

Therefore, there was not enough reference to assess the beta regression application in forest fire 

proportion. 

6. Conclusion 

This study investigated both global and local relationship between the proportion of forest fire 

occurrence and relevant topographical, meteorological, human, vegetation coverage, and land coverage 

factors by the global beta, GWR and GWBR models. The response variable, the proportion of forest 

fire, is designed to evaluate the probability of wildfire occurrence during the time period from year 

2001 to 2016 in Fujian province, China. The results indicated that global beta and GWBR models 

displayed better model fitting and prediction performances than the classical GWR model for the rate / 

proportion response variable. In addition to model performance, GWBR was well at targeting the 

essential hotspots of predictor variables.  

The drivers and its spatially varied association to the proportion of forest fire occurrence were 

also explored by the GWBR model. Generally, the likelihood of wildfire is higher in lower elevation, 

stronger sunshine (meaning smaller aspect index), denser settlement, and less cropland coverage. Other 

factors had different influence on probability of forest fire through the study region. In summary, 

GWBR is an appropriate method to analyze the proportion of forest fire occurrence which spatially 

varied and within range between (0, 1).  
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Chapter V: Summary and Conclusion 

This dissertation presents the applications of geographically weighted generalized linear 

models and geographically weighted quantile regression for modeling the occurrence of forest fires in 

Fujian province, China. The first study was on the applications and comparisons of global Poisson and 

negative binomial models against geographically weighted Poisson (GWPR), and geographically 

weighted negative binomial (GWNBR) models to determine the spatially varying relationships 

between the counts of forest fire and topographical, meteorological, human, vegetation coverage, and 

land cover factors. The results implied that, in general, more forest fires occurred with lower elevation, 

flatter terrain, and higher population density areas. Across the study area, the count of forest fire had 

the problems of overdispersion and spatial non-stationarity. The assessment of model fitting and 

predictions showed that GWNBR fitted the dispersed forest fire count data better than other models, 

produced more precise and stable model parameter estimation, and yielded more realistic spatial 

distributions of model predictions.  

Generalized linear models evaluated the relationships between forest fire counts at a mean or 

average level and related driving factors. However, people are also interested in learning the risks of 

forest fire at different quantile levels in order to gain a full knowledge of possible risk levels of the 

forest fire occurrence, which can be achieved by quantile regression. In the second study, we applied 

the global and geographically weighted quantile regression (GWQR) models to investigate the 

spatially varying relationships at the 50th, 75th, 90th, and 99th quantile levels of forest fire risks. Our 

results showed that even the frequency of high fire occurrence events was low, it may dramatically 

affect the analyses and modeling on the relationships between fire occurrence and a specific 

environmental factor. GWQR indicated that the relationships between forest fires and environmental 

factors significantly varied across the study area at different quantiles of fire occurrence. Compared to 

the global quantile model, the GWQR models performed better in model fitting and prediction at all 
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quantile levels of forest fire risk. Therefore, the GWQR models provided a more complete view of 

forest fire distribution and highlighted the high risky locations of forest fires across the study area. 

In addition to the forest fire count, the proportion / rate of forest fire occurrence was also 

evaluated and predicted in the third study. The response variable, the proportion of forest fire in an 

interval of 0 and 1 was calculated using the empirical data from year 2001 to 2016 across the study 

area, including both temporal and spatial information. To estimate how relevant topographical, 

meteorological, human, vegetable coverage, and land coverage factors influenced spatially and 

temporally on the proportion of fire occurrence, we applied the global beta model and developed the 

geographically weighted beta regression (GWBR) models, which were theoretically different from the 

traditional techniques of logistic regression and multiple linear regression. Our results showed that, 

generally, the likelihood of forest fire was higher in lower elevation, stronger sunshine (meaning 

smaller aspect index), denser settlement, and less cropland coverage. Other factors had different 

influence across the study region. Also, the environmental factors were spatially variedly related to the 

proportion of forest fire occurrence. In terms of model fitting and prediction, the global beta and 

GWBR models displayed better and more reasonable than the classical GWR model for the rate / 

proportion response variable. GWBR is an appropriate method to analyze the proportion of forest fire 

occurrence within a range between 0 and 1, and support better understanding for local prevention and 

management of forest fire.  

Overall, this dissertation explored the spatially varying relationships between forest fire 

occurrence at both average and different quantile levels and related environmental factors in Fujian 

province, China, using both global and geographically weighted generalized linear models and quantile 

regression. As a global trend, the observed forest fire in this study was highly likely to occur in lower 

elevation, smaller aspect index (meaning stronger sunlight), heavier precipitation, smaller population 

density, less vegetation, wider grassland, and/or less cropland. Other environmental factors variedly 
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relationships with the forest fire occurrence, including slope, relative humidity, temperature, road 

density, river density, settlement density, forest cover, and shrub cover density. The significant 

hotspots of predictor variables for forest fire count at both average level and different quantile levels, 

and the proportion of forest fire occurrence were evaluated respectively across the geographical 

locations of the study area. Therefore, the localized spatial models presented a more complete view of 

forest fire distribution and highlighted the risky local factors across the Fujian province, China. 

Hopefully, the information would assist the government agencies to make better decisions on where 

and what the fire management and prevention should be focused on with reduced economic expenses 

and improved the efficiency of forest fire management.  
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